xref: /dragonfly/sys/platform/pc64/isa/clock.c (revision b0d289c2)
1 /*-
2  * Copyright (c) 1990 The Regents of the University of California.
3  * Copyright (c) 2008 The DragonFly Project.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * William Jolitz and Don Ahn.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
38  * $FreeBSD: src/sys/i386/isa/clock.c,v 1.149.2.6 2002/11/02 04:41:50 iwasaki Exp $
39  */
40 
41 /*
42  * Routines to handle clock hardware.
43  */
44 
45 /*
46  * inittodr, settodr and support routines written
47  * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
48  *
49  * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
50  */
51 
52 #if 0
53 #include "opt_clock.h"
54 #endif
55 
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/eventhandler.h>
59 #include <sys/time.h>
60 #include <sys/kernel.h>
61 #include <sys/bus.h>
62 #include <sys/sysctl.h>
63 #include <sys/cons.h>
64 #include <sys/systimer.h>
65 #include <sys/globaldata.h>
66 #include <sys/thread2.h>
67 #include <sys/machintr.h>
68 #include <sys/interrupt.h>
69 
70 #include <machine/clock.h>
71 #include <machine/cputypes.h>
72 #include <machine/frame.h>
73 #include <machine/ipl.h>
74 #include <machine/limits.h>
75 #include <machine/md_var.h>
76 #include <machine/psl.h>
77 #include <machine/segments.h>
78 #include <machine/smp.h>
79 #include <machine/specialreg.h>
80 #include <machine/intr_machdep.h>
81 
82 #include <machine_base/apic/ioapic.h>
83 #include <machine_base/apic/ioapic_abi.h>
84 #include <machine_base/icu/icu.h>
85 #include <bus/isa/isa.h>
86 #include <bus/isa/rtc.h>
87 #include <machine_base/isa/timerreg.h>
88 
89 static void i8254_restore(void);
90 static void resettodr_on_shutdown(void *arg __unused);
91 
92 /*
93  * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
94  * can use a simple formula for leap years.
95  */
96 #define	LEAPYEAR(y) ((u_int)(y) % 4 == 0)
97 #define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
98 
99 #ifndef TIMER_FREQ
100 #define TIMER_FREQ   1193182
101 #endif
102 
103 static uint8_t i8254_walltimer_sel;
104 static uint16_t i8254_walltimer_cntr;
105 
106 int	adjkerntz;		/* local offset from GMT in seconds */
107 int	disable_rtc_set;	/* disable resettodr() if != 0 */
108 int	tsc_present;
109 int	tsc_invariant;
110 int	tsc_mpsync;
111 int64_t	tsc_frequency;
112 int	tsc_is_broken;
113 int	wall_cmos_clock;	/* wall CMOS clock assumed if != 0 */
114 int	timer0_running;
115 enum tstate { RELEASED, ACQUIRED };
116 enum tstate timer0_state;
117 enum tstate timer1_state;
118 enum tstate timer2_state;
119 
120 static	int	beeping = 0;
121 static	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
122 static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
123 static	u_char	rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
124 static  int	rtc_loaded;
125 
126 static int i8254_cputimer_div;
127 
128 static int i8254_nointr;
129 static int i8254_intr_disable = 1;
130 TUNABLE_INT("hw.i8254.intr_disable", &i8254_intr_disable);
131 
132 static struct callout sysbeepstop_ch;
133 
134 static sysclock_t i8254_cputimer_count(void);
135 static void i8254_cputimer_construct(struct cputimer *cputimer, sysclock_t last);
136 static void i8254_cputimer_destruct(struct cputimer *cputimer);
137 
138 static struct cputimer	i8254_cputimer = {
139     SLIST_ENTRY_INITIALIZER,
140     "i8254",
141     CPUTIMER_PRI_8254,
142     0,
143     i8254_cputimer_count,
144     cputimer_default_fromhz,
145     cputimer_default_fromus,
146     i8254_cputimer_construct,
147     i8254_cputimer_destruct,
148     TIMER_FREQ,
149     0, 0, 0
150 };
151 
152 static sysclock_t tsc_cputimer_count_mfence(void);
153 static sysclock_t tsc_cputimer_count_lfence(void);
154 static void tsc_cputimer_construct(struct cputimer *, sysclock_t);
155 
156 static struct cputimer	tsc_cputimer = {
157     SLIST_ENTRY_INITIALIZER,
158     "TSC",
159     CPUTIMER_PRI_TSC,
160     CPUTIMER_TSC,
161     tsc_cputimer_count_mfence, /* safe bet */
162     cputimer_default_fromhz,
163     cputimer_default_fromus,
164     tsc_cputimer_construct,
165     cputimer_default_destruct,
166     0,
167     0, 0, 0
168 };
169 
170 static void i8254_intr_reload(struct cputimer_intr *, sysclock_t);
171 static void i8254_intr_config(struct cputimer_intr *, const struct cputimer *);
172 static void i8254_intr_initclock(struct cputimer_intr *, boolean_t);
173 
174 static struct cputimer_intr i8254_cputimer_intr = {
175     .freq = TIMER_FREQ,
176     .reload = i8254_intr_reload,
177     .enable = cputimer_intr_default_enable,
178     .config = i8254_intr_config,
179     .restart = cputimer_intr_default_restart,
180     .pmfixup = cputimer_intr_default_pmfixup,
181     .initclock = i8254_intr_initclock,
182     .next = SLIST_ENTRY_INITIALIZER,
183     .name = "i8254",
184     .type = CPUTIMER_INTR_8254,
185     .prio = CPUTIMER_INTR_PRIO_8254,
186     .caps = CPUTIMER_INTR_CAP_PS
187 };
188 
189 /*
190  * timer0 clock interrupt.  Timer0 is in one-shot mode and has stopped
191  * counting as of this interrupt.  We use timer1 in free-running mode (not
192  * generating any interrupts) as our main counter.  Each cpu has timeouts
193  * pending.
194  *
195  * This code is INTR_MPSAFE and may be called without the BGL held.
196  */
197 static void
198 clkintr(void *dummy, void *frame_arg)
199 {
200 	static sysclock_t sysclock_count;	/* NOTE! Must be static */
201 	struct globaldata *gd = mycpu;
202 	struct globaldata *gscan;
203 	int n;
204 
205 	/*
206 	 * SWSTROBE mode is a one-shot, the timer is no longer running
207 	 */
208 	timer0_running = 0;
209 
210 	/*
211 	 * XXX the dispatcher needs work.  right now we call systimer_intr()
212 	 * directly or via IPI for any cpu with systimers queued, which is
213 	 * usually *ALL* of them.  We need to use the LAPIC timer for this.
214 	 */
215 	sysclock_count = sys_cputimer->count();
216 	for (n = 0; n < ncpus; ++n) {
217 	    gscan = globaldata_find(n);
218 	    if (TAILQ_FIRST(&gscan->gd_systimerq) == NULL)
219 		continue;
220 	    if (gscan != gd) {
221 		lwkt_send_ipiq3(gscan, (ipifunc3_t)systimer_intr,
222 				&sysclock_count, 1);
223 	    } else {
224 		systimer_intr(&sysclock_count, 0, frame_arg);
225 	    }
226 	}
227 }
228 
229 
230 /*
231  * NOTE! not MP safe.
232  */
233 int
234 acquire_timer2(int mode)
235 {
236 	if (timer2_state != RELEASED)
237 		return (-1);
238 	timer2_state = ACQUIRED;
239 
240 	/*
241 	 * This access to the timer registers is as atomic as possible
242 	 * because it is a single instruction.  We could do better if we
243 	 * knew the rate.
244 	 */
245 	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
246 	return (0);
247 }
248 
249 int
250 release_timer2(void)
251 {
252 	if (timer2_state != ACQUIRED)
253 		return (-1);
254 	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
255 	timer2_state = RELEASED;
256 	return (0);
257 }
258 
259 #include "opt_ddb.h"
260 #ifdef DDB
261 #include <ddb/ddb.h>
262 
263 DB_SHOW_COMMAND(rtc, rtc)
264 {
265 	kprintf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
266 	       rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
267 	       rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
268 	       rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
269 }
270 #endif /* DDB */
271 
272 /*
273  * Return the current cpu timer count as a 32 bit integer.
274  */
275 static
276 sysclock_t
277 i8254_cputimer_count(void)
278 {
279 	static __uint16_t cputimer_last;
280 	__uint16_t count;
281 	sysclock_t ret;
282 
283 	clock_lock();
284 	outb(TIMER_MODE, i8254_walltimer_sel | TIMER_LATCH);
285 	count = (__uint8_t)inb(i8254_walltimer_cntr);		/* get countdown */
286 	count |= ((__uint8_t)inb(i8254_walltimer_cntr) << 8);
287 	count = -count;					/* -> countup */
288 	if (count < cputimer_last)			/* rollover */
289 		i8254_cputimer.base += 0x00010000;
290 	ret = i8254_cputimer.base | count;
291 	cputimer_last = count;
292 	clock_unlock();
293 	return(ret);
294 }
295 
296 /*
297  * This function is called whenever the system timebase changes, allowing
298  * us to calculate what is needed to convert a system timebase tick
299  * into an 8254 tick for the interrupt timer.  If we can convert to a
300  * simple shift, multiplication, or division, we do so.  Otherwise 64
301  * bit arithmatic is required every time the interrupt timer is reloaded.
302  */
303 static void
304 i8254_intr_config(struct cputimer_intr *cti, const struct cputimer *timer)
305 {
306     int freq;
307     int div;
308 
309     /*
310      * Will a simple divide do the trick?
311      */
312     div = (timer->freq + (cti->freq / 2)) / cti->freq;
313     freq = cti->freq * div;
314 
315     if (freq >= timer->freq - 1 && freq <= timer->freq + 1)
316 	i8254_cputimer_div = div;
317     else
318 	i8254_cputimer_div = 0;
319 }
320 
321 /*
322  * Reload for the next timeout.  It is possible for the reload value
323  * to be 0 or negative, indicating that an immediate timer interrupt
324  * is desired.  For now make the minimum 2 ticks.
325  *
326  * We may have to convert from the system timebase to the 8254 timebase.
327  */
328 static void
329 i8254_intr_reload(struct cputimer_intr *cti, sysclock_t reload)
330 {
331     __uint16_t count;
332 
333     if (i8254_cputimer_div)
334 	reload /= i8254_cputimer_div;
335     else
336 	reload = (int64_t)reload * cti->freq / sys_cputimer->freq;
337 
338     if ((int)reload < 2)
339 	reload = 2;
340 
341     clock_lock();
342     if (timer0_running) {
343 	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);	/* count-down timer */
344 	count = (__uint8_t)inb(TIMER_CNTR0);		/* lsb */
345 	count |= ((__uint8_t)inb(TIMER_CNTR0) << 8);	/* msb */
346 	if (reload < count) {
347 	    outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
348 	    outb(TIMER_CNTR0, (__uint8_t)reload); 	/* lsb */
349 	    outb(TIMER_CNTR0, (__uint8_t)(reload >> 8)); /* msb */
350 	}
351     } else {
352 	timer0_running = 1;
353 	if (reload > 0xFFFF)
354 	    reload = 0;		/* full count */
355 	outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
356 	outb(TIMER_CNTR0, (__uint8_t)reload); 		/* lsb */
357 	outb(TIMER_CNTR0, (__uint8_t)(reload >> 8));	/* msb */
358     }
359     clock_unlock();
360 }
361 
362 /*
363  * DELAY(usec)	     - Spin for the specified number of microseconds.
364  * DRIVERSLEEP(usec) - Spin for the specified number of microseconds,
365  *		       but do a thread switch in the loop
366  *
367  * Relies on timer 1 counting down from (cputimer_freq / hz)
368  * Note: timer had better have been programmed before this is first used!
369  */
370 static void
371 DODELAY(int n, int doswitch)
372 {
373 	ssysclock_t delta, ticks_left;
374 	sysclock_t prev_tick, tick;
375 
376 #ifdef DELAYDEBUG
377 	int getit_calls = 1;
378 	int n1;
379 	static int state = 0;
380 
381 	if (state == 0) {
382 		state = 1;
383 		for (n1 = 1; n1 <= 10000000; n1 *= 10)
384 			DELAY(n1);
385 		state = 2;
386 	}
387 	if (state == 1)
388 		kprintf("DELAY(%d)...", n);
389 #endif
390 	/*
391 	 * Guard against the timer being uninitialized if we are called
392 	 * early for console i/o.
393 	 */
394 	if (timer0_state == RELEASED)
395 		i8254_restore();
396 
397 	/*
398 	 * Read the counter first, so that the rest of the setup overhead is
399 	 * counted.  Then calculate the number of hardware timer ticks
400 	 * required, rounding up to be sure we delay at least the requested
401 	 * number of microseconds.
402 	 */
403 	prev_tick = sys_cputimer->count();
404 	ticks_left = ((u_int)n * (int64_t)sys_cputimer->freq + 999999) /
405 		     1000000;
406 
407 	/*
408 	 * Loop until done.
409 	 */
410 	while (ticks_left > 0) {
411 		tick = sys_cputimer->count();
412 #ifdef DELAYDEBUG
413 		++getit_calls;
414 #endif
415 		delta = tick - prev_tick;
416 		prev_tick = tick;
417 		if (delta < 0)
418 			delta = 0;
419 		ticks_left -= delta;
420 		if (doswitch && ticks_left > 0)
421 			lwkt_switch();
422 		cpu_pause();
423 	}
424 #ifdef DELAYDEBUG
425 	if (state == 1)
426 		kprintf(" %d calls to getit() at %d usec each\n",
427 		       getit_calls, (n + 5) / getit_calls);
428 #endif
429 }
430 
431 /*
432  * DELAY() never switches.
433  */
434 void
435 DELAY(int n)
436 {
437 	DODELAY(n, 0);
438 }
439 
440 /*
441  * Returns non-zero if the specified time period has elapsed.  Call
442  * first with last_clock set to 0.
443  */
444 int
445 CHECKTIMEOUT(TOTALDELAY *tdd)
446 {
447 	sysclock_t delta;
448 	int us;
449 
450 	if (tdd->started == 0) {
451 		if (timer0_state == RELEASED)
452 			i8254_restore();
453 		tdd->last_clock = sys_cputimer->count();
454 		tdd->started = 1;
455 		return(0);
456 	}
457 	delta = sys_cputimer->count() - tdd->last_clock;
458 	us = (u_int64_t)delta * (u_int64_t)1000000 /
459 	     (u_int64_t)sys_cputimer->freq;
460 	tdd->last_clock += (u_int64_t)us * (u_int64_t)sys_cputimer->freq /
461 			   1000000;
462 	tdd->us -= us;
463 	return (tdd->us < 0);
464 }
465 
466 
467 /*
468  * DRIVERSLEEP() does not switch if called with a spinlock held or
469  * from a hard interrupt.
470  */
471 void
472 DRIVERSLEEP(int usec)
473 {
474 	globaldata_t gd = mycpu;
475 
476 	if (gd->gd_intr_nesting_level || gd->gd_spinlocks) {
477 		DODELAY(usec, 0);
478 	} else {
479 		DODELAY(usec, 1);
480 	}
481 }
482 
483 static void
484 sysbeepstop(void *chan)
485 {
486 	outb(IO_PPI, inb(IO_PPI)&0xFC);	/* disable counter2 output to speaker */
487 	beeping = 0;
488 	release_timer2();
489 }
490 
491 int
492 sysbeep(int pitch, int period)
493 {
494 	if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
495 		return(-1);
496 	if (sysbeep_enable == 0)
497 		return(-1);
498 	/*
499 	 * Nobody else is using timer2, we do not need the clock lock
500 	 */
501 	outb(TIMER_CNTR2, pitch);
502 	outb(TIMER_CNTR2, (pitch>>8));
503 	if (!beeping) {
504 		/* enable counter2 output to speaker */
505 		outb(IO_PPI, inb(IO_PPI) | 3);
506 		beeping = period;
507 		callout_reset(&sysbeepstop_ch, period, sysbeepstop, NULL);
508 	}
509 	return (0);
510 }
511 
512 /*
513  * RTC support routines
514  */
515 
516 int
517 rtcin(int reg)
518 {
519 	u_char val;
520 
521 	crit_enter();
522 	outb(IO_RTC, reg);
523 	inb(0x84);
524 	val = inb(IO_RTC + 1);
525 	inb(0x84);
526 	crit_exit();
527 	return (val);
528 }
529 
530 static __inline void
531 writertc(u_char reg, u_char val)
532 {
533 	crit_enter();
534 	inb(0x84);
535 	outb(IO_RTC, reg);
536 	inb(0x84);
537 	outb(IO_RTC + 1, val);
538 	inb(0x84);		/* XXX work around wrong order in rtcin() */
539 	crit_exit();
540 }
541 
542 static __inline int
543 readrtc(int port)
544 {
545 	return(bcd2bin(rtcin(port)));
546 }
547 
548 static u_int
549 calibrate_clocks(void)
550 {
551 	u_int64_t old_tsc;
552 	u_int tot_count;
553 	sysclock_t count, prev_count;
554 	int sec, start_sec, timeout;
555 
556 	if (bootverbose)
557 	        kprintf("Calibrating clock(s) ...\n");
558 	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
559 		goto fail;
560 	timeout = 100000000;
561 
562 	/* Read the mc146818A seconds counter. */
563 	for (;;) {
564 		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
565 			sec = rtcin(RTC_SEC);
566 			break;
567 		}
568 		if (--timeout == 0)
569 			goto fail;
570 	}
571 
572 	/* Wait for the mC146818A seconds counter to change. */
573 	start_sec = sec;
574 	for (;;) {
575 		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
576 			sec = rtcin(RTC_SEC);
577 			if (sec != start_sec)
578 				break;
579 		}
580 		if (--timeout == 0)
581 			goto fail;
582 	}
583 
584 	/* Start keeping track of the i8254 counter. */
585 	prev_count = sys_cputimer->count();
586 	tot_count = 0;
587 
588 	if (tsc_present)
589 		old_tsc = rdtsc();
590 	else
591 		old_tsc = 0;		/* shut up gcc */
592 
593 	/*
594 	 * Wait for the mc146818A seconds counter to change.  Read the i8254
595 	 * counter for each iteration since this is convenient and only
596 	 * costs a few usec of inaccuracy. The timing of the final reads
597 	 * of the counters almost matches the timing of the initial reads,
598 	 * so the main cause of inaccuracy is the varying latency from
599 	 * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
600 	 * rtcin(RTC_SEC) that returns a changed seconds count.  The
601 	 * maximum inaccuracy from this cause is < 10 usec on 486's.
602 	 */
603 	start_sec = sec;
604 	for (;;) {
605 		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
606 			sec = rtcin(RTC_SEC);
607 		count = sys_cputimer->count();
608 		tot_count += (int)(count - prev_count);
609 		prev_count = count;
610 		if (sec != start_sec)
611 			break;
612 		if (--timeout == 0)
613 			goto fail;
614 	}
615 
616 	/*
617 	 * Read the cpu cycle counter.  The timing considerations are
618 	 * similar to those for the i8254 clock.
619 	 */
620 	if (tsc_present) {
621 		tsc_frequency = rdtsc() - old_tsc;
622 	}
623 
624 	if (tsc_present) {
625 		kprintf("TSC%s clock: %llu Hz, ",
626 		    tsc_invariant ? " invariant" : "",
627 		    (long long)tsc_frequency);
628 	}
629 	kprintf("i8254 clock: %u Hz\n", tot_count);
630 	return (tot_count);
631 
632 fail:
633 	kprintf("failed, using default i8254 clock of %u Hz\n",
634 		i8254_cputimer.freq);
635 	return (i8254_cputimer.freq);
636 }
637 
638 static void
639 i8254_restore(void)
640 {
641 	timer0_state = ACQUIRED;
642 
643 	clock_lock();
644 
645 	/*
646 	 * Timer0 is our fine-grained variable clock interrupt
647 	 */
648 	outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
649 	outb(TIMER_CNTR0, 2);	/* lsb */
650 	outb(TIMER_CNTR0, 0);	/* msb */
651 	clock_unlock();
652 
653 	if (!i8254_nointr) {
654 		cputimer_intr_register(&i8254_cputimer_intr);
655 		cputimer_intr_select(&i8254_cputimer_intr, 0);
656 	}
657 
658 	/*
659 	 * Timer1 or timer2 is our free-running clock, but only if another
660 	 * has not been selected.
661 	 */
662 	cputimer_register(&i8254_cputimer);
663 	cputimer_select(&i8254_cputimer, 0);
664 }
665 
666 static void
667 i8254_cputimer_construct(struct cputimer *timer, sysclock_t oldclock)
668 {
669  	int which;
670 
671 	/*
672 	 * Should we use timer 1 or timer 2 ?
673 	 */
674 	which = 0;
675 	TUNABLE_INT_FETCH("hw.i8254.walltimer", &which);
676 	if (which != 1 && which != 2)
677 		which = 2;
678 
679 	switch(which) {
680 	case 1:
681 		timer->name = "i8254_timer1";
682 		timer->type = CPUTIMER_8254_SEL1;
683 		i8254_walltimer_sel = TIMER_SEL1;
684 		i8254_walltimer_cntr = TIMER_CNTR1;
685 		timer1_state = ACQUIRED;
686 		break;
687 	case 2:
688 		timer->name = "i8254_timer2";
689 		timer->type = CPUTIMER_8254_SEL2;
690 		i8254_walltimer_sel = TIMER_SEL2;
691 		i8254_walltimer_cntr = TIMER_CNTR2;
692 		timer2_state = ACQUIRED;
693 		break;
694 	}
695 
696 	timer->base = (oldclock + 0xFFFF) & ~0xFFFF;
697 
698 	clock_lock();
699 	outb(TIMER_MODE, i8254_walltimer_sel | TIMER_RATEGEN | TIMER_16BIT);
700 	outb(i8254_walltimer_cntr, 0);	/* lsb */
701 	outb(i8254_walltimer_cntr, 0);	/* msb */
702 	outb(IO_PPI, inb(IO_PPI) | 1);	/* bit 0: enable gate, bit 1: spkr */
703 	clock_unlock();
704 }
705 
706 static void
707 i8254_cputimer_destruct(struct cputimer *timer)
708 {
709 	switch(timer->type) {
710 	case CPUTIMER_8254_SEL1:
711 	    timer1_state = RELEASED;
712 	    break;
713 	case CPUTIMER_8254_SEL2:
714 	    timer2_state = RELEASED;
715 	    break;
716 	default:
717 	    break;
718 	}
719 	timer->type = 0;
720 }
721 
722 static void
723 rtc_restore(void)
724 {
725 	/* Restore all of the RTC's "status" (actually, control) registers. */
726 	writertc(RTC_STATUSB, RTCSB_24HR);
727 	writertc(RTC_STATUSA, rtc_statusa);
728 	writertc(RTC_STATUSB, rtc_statusb);
729 }
730 
731 /*
732  * Restore all the timers.
733  *
734  * This function is called to resynchronize our core timekeeping after a
735  * long halt, e.g. from apm_default_resume() and friends.  It is also
736  * called if after a BIOS call we have detected munging of the 8254.
737  * It is necessary because cputimer_count() counter's delta may have grown
738  * too large for nanouptime() and friends to handle, or (in the case of 8254
739  * munging) might cause the SYSTIMER code to prematurely trigger.
740  */
741 void
742 timer_restore(void)
743 {
744 	crit_enter();
745 	i8254_restore();		/* restore timer_freq and hz */
746 	rtc_restore();			/* reenable RTC interrupts */
747 	crit_exit();
748 }
749 
750 /*
751  * Initialize 8254 timer 0 early so that it can be used in DELAY().
752  */
753 void
754 startrtclock(void)
755 {
756 	u_int delta, freq;
757 
758 	/*
759 	 * Can we use the TSC?
760 	 *
761 	 * NOTE: If running under qemu, probably a good idea to force the
762 	 *	 TSC because we are not likely to detect it as being
763 	 *	 invariant or mpsyncd if you don't.  This will greatly
764 	 *	 reduce SMP contention.
765 	 */
766 	if (cpu_feature & CPUID_TSC) {
767 		tsc_present = 1;
768 		TUNABLE_INT_FETCH("hw.tsc_cputimer_force", &tsc_invariant);
769 
770 		if ((cpu_vendor_id == CPU_VENDOR_INTEL ||
771 		     cpu_vendor_id == CPU_VENDOR_AMD) &&
772 		    cpu_exthigh >= 0x80000007) {
773 			u_int regs[4];
774 
775 			do_cpuid(0x80000007, regs);
776 			if (regs[3] & 0x100)
777 				tsc_invariant = 1;
778 		}
779 	} else {
780 		tsc_present = 0;
781 	}
782 
783 	/*
784 	 * Initial RTC state, don't do anything unexpected
785 	 */
786 	writertc(RTC_STATUSA, rtc_statusa);
787 	writertc(RTC_STATUSB, RTCSB_24HR);
788 
789 	/*
790 	 * Set the 8254 timer0 in TIMER_SWSTROBE mode and cause it to
791 	 * generate an interrupt, which we will ignore for now.
792 	 *
793 	 * Set the 8254 timer1 in TIMER_RATEGEN mode and load 0x0000
794 	 * (so it counts a full 2^16 and repeats).  We will use this timer
795 	 * for our counting.
796 	 */
797 	i8254_restore();
798 	freq = calibrate_clocks();
799 #ifdef CLK_CALIBRATION_LOOP
800 	if (bootverbose) {
801 		kprintf(
802 		"Press a key on the console to abort clock calibration\n");
803 		while (cncheckc() == -1)
804 			calibrate_clocks();
805 	}
806 #endif
807 
808 	/*
809 	 * Use the calibrated i8254 frequency if it seems reasonable.
810 	 * Otherwise use the default, and don't use the calibrated i586
811 	 * frequency.
812 	 */
813 	delta = freq > i8254_cputimer.freq ?
814 			freq - i8254_cputimer.freq : i8254_cputimer.freq - freq;
815 	if (delta < i8254_cputimer.freq / 100) {
816 #ifndef CLK_USE_I8254_CALIBRATION
817 		if (bootverbose)
818 			kprintf(
819 "CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
820 		freq = i8254_cputimer.freq;
821 #endif
822 		/*
823 		 * NOTE:
824 		 * Interrupt timer's freq must be adjusted
825 		 * before we change the cuptimer's frequency.
826 		 */
827 		i8254_cputimer_intr.freq = freq;
828 		cputimer_set_frequency(&i8254_cputimer, freq);
829 	} else {
830 		if (bootverbose)
831 			kprintf(
832 		    "%d Hz differs from default of %d Hz by more than 1%%\n",
833 			       freq, i8254_cputimer.freq);
834 		tsc_frequency = 0;
835 	}
836 
837 #ifndef CLK_USE_TSC_CALIBRATION
838 	if (tsc_frequency != 0) {
839 		if (bootverbose)
840 			kprintf(
841 "CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
842 		tsc_frequency = 0;
843 	}
844 #endif
845 	if (tsc_present && tsc_frequency == 0) {
846 		/*
847 		 * Calibration of the i586 clock relative to the mc146818A
848 		 * clock failed.  Do a less accurate calibration relative
849 		 * to the i8254 clock.
850 		 */
851 		u_int64_t old_tsc = rdtsc();
852 
853 		DELAY(1000000);
854 		tsc_frequency = rdtsc() - old_tsc;
855 #ifdef CLK_USE_TSC_CALIBRATION
856 		if (bootverbose) {
857 			kprintf("TSC clock: %llu Hz (Method B)\n",
858 				tsc_frequency);
859 		}
860 #endif
861 	}
862 
863 	EVENTHANDLER_REGISTER(shutdown_post_sync, resettodr_on_shutdown, NULL, SHUTDOWN_PRI_LAST);
864 }
865 
866 /*
867  * Sync the time of day back to the RTC on shutdown, but only if
868  * we have already loaded it and have not crashed.
869  */
870 static void
871 resettodr_on_shutdown(void *arg __unused)
872 {
873  	if (rtc_loaded && panicstr == NULL) {
874 		resettodr();
875 	}
876 }
877 
878 /*
879  * Initialize the time of day register, based on the time base which is, e.g.
880  * from a filesystem.
881  */
882 void
883 inittodr(time_t base)
884 {
885 	unsigned long	sec, days;
886 	int		year, month;
887 	int		y, m;
888 	struct timespec ts;
889 
890 	if (base) {
891 		ts.tv_sec = base;
892 		ts.tv_nsec = 0;
893 		set_timeofday(&ts);
894 	}
895 
896 	/* Look if we have a RTC present and the time is valid */
897 	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
898 		goto wrong_time;
899 
900 	/* wait for time update to complete */
901 	/* If RTCSA_TUP is zero, we have at least 244us before next update */
902 	crit_enter();
903 	while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
904 		crit_exit();
905 		crit_enter();
906 	}
907 
908 	days = 0;
909 #ifdef USE_RTC_CENTURY
910 	year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
911 #else
912 	year = readrtc(RTC_YEAR) + 1900;
913 	if (year < 1970)
914 		year += 100;
915 #endif
916 	if (year < 1970) {
917 		crit_exit();
918 		goto wrong_time;
919 	}
920 	month = readrtc(RTC_MONTH);
921 	for (m = 1; m < month; m++)
922 		days += daysinmonth[m-1];
923 	if ((month > 2) && LEAPYEAR(year))
924 		days ++;
925 	days += readrtc(RTC_DAY) - 1;
926 	for (y = 1970; y < year; y++)
927 		days += DAYSPERYEAR + LEAPYEAR(y);
928 	sec = ((( days * 24 +
929 		  readrtc(RTC_HRS)) * 60 +
930 		  readrtc(RTC_MIN)) * 60 +
931 		  readrtc(RTC_SEC));
932 	/* sec now contains the number of seconds, since Jan 1 1970,
933 	   in the local time zone */
934 
935 	sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
936 
937 	y = (int)(time_second - sec);
938 	if (y <= -2 || y >= 2) {
939 		/* badly off, adjust it */
940 		ts.tv_sec = sec;
941 		ts.tv_nsec = 0;
942 		set_timeofday(&ts);
943 	}
944 	rtc_loaded = 1;
945 	crit_exit();
946 	return;
947 
948 wrong_time:
949 	kprintf("Invalid time in real time clock.\n");
950 	kprintf("Check and reset the date immediately!\n");
951 }
952 
953 /*
954  * Write system time back to RTC
955  */
956 void
957 resettodr(void)
958 {
959 	struct timeval tv;
960 	unsigned long tm;
961 	int m;
962 	int y;
963 
964 	if (disable_rtc_set)
965 		return;
966 
967 	microtime(&tv);
968 	tm = tv.tv_sec;
969 
970 	crit_enter();
971 	/* Disable RTC updates and interrupts. */
972 	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
973 
974 	/* Calculate local time to put in RTC */
975 
976 	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
977 
978 	writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
979 	writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
980 	writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
981 
982 	/* We have now the days since 01-01-1970 in tm */
983 	writertc(RTC_WDAY, (tm+4)%7);			/* Write back Weekday */
984 	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
985 	     tm >= m;
986 	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
987 	     tm -= m;
988 
989 	/* Now we have the years in y and the day-of-the-year in tm */
990 	writertc(RTC_YEAR, bin2bcd(y%100));		/* Write back Year    */
991 #ifdef USE_RTC_CENTURY
992 	writertc(RTC_CENTURY, bin2bcd(y/100));		/* ... and Century    */
993 #endif
994 	for (m = 0; ; m++) {
995 		int ml;
996 
997 		ml = daysinmonth[m];
998 		if (m == 1 && LEAPYEAR(y))
999 			ml++;
1000 		if (tm < ml)
1001 			break;
1002 		tm -= ml;
1003 	}
1004 
1005 	writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
1006 	writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
1007 
1008 	/* Reenable RTC updates and interrupts. */
1009 	writertc(RTC_STATUSB, rtc_statusb);
1010 	crit_exit();
1011 }
1012 
1013 static int
1014 i8254_ioapic_trial(int irq, struct cputimer_intr *cti)
1015 {
1016 	sysclock_t base;
1017 	long lastcnt;
1018 
1019 	/*
1020 	 * Following code assumes the 8254 is the cpu timer,
1021 	 * so make sure it is.
1022 	 */
1023 	KKASSERT(sys_cputimer == &i8254_cputimer);
1024 	KKASSERT(cti == &i8254_cputimer_intr);
1025 
1026 	lastcnt = get_interrupt_counter(irq, mycpuid);
1027 
1028 	/*
1029 	 * Force an 8254 Timer0 interrupt and wait 1/100s for
1030 	 * it to happen, then see if we got it.
1031 	 */
1032 	kprintf("IOAPIC: testing 8254 interrupt delivery\n");
1033 
1034 	i8254_intr_reload(cti, 2);
1035 	base = sys_cputimer->count();
1036 	while (sys_cputimer->count() - base < sys_cputimer->freq / 100)
1037 		; /* nothing */
1038 
1039 	if (get_interrupt_counter(irq, mycpuid) - lastcnt == 0)
1040 		return ENOENT;
1041 	return 0;
1042 }
1043 
1044 /*
1045  * Start both clocks running.  DragonFly note: the stat clock is no longer
1046  * used.  Instead, 8254 based systimers are used for all major clock
1047  * interrupts.
1048  */
1049 static void
1050 i8254_intr_initclock(struct cputimer_intr *cti, boolean_t selected)
1051 {
1052 	void *clkdesc = NULL;
1053 	int irq = 0, mixed_mode = 0, error;
1054 
1055 	KKASSERT(mycpuid == 0);
1056 	callout_init_mp(&sysbeepstop_ch);
1057 
1058 	if (!selected && i8254_intr_disable)
1059 		goto nointr;
1060 
1061 	/*
1062 	 * The stat interrupt mask is different without the
1063 	 * statistics clock.  Also, don't set the interrupt
1064 	 * flag which would normally cause the RTC to generate
1065 	 * interrupts.
1066 	 */
1067 	rtc_statusb = RTCSB_24HR;
1068 
1069 	/* Finish initializing 8254 timer 0. */
1070 	if (ioapic_enable) {
1071 		irq = machintr_legacy_intr_find(0, INTR_TRIGGER_EDGE,
1072 			INTR_POLARITY_HIGH);
1073 		if (irq < 0) {
1074 mixed_mode_setup:
1075 			error = ioapic_conf_legacy_extint(0);
1076 			if (!error) {
1077 				irq = machintr_legacy_intr_find(0,
1078 				    INTR_TRIGGER_EDGE, INTR_POLARITY_HIGH);
1079 				if (irq < 0)
1080 					error = ENOENT;
1081 			}
1082 
1083 			if (error) {
1084 				if (!selected) {
1085 					kprintf("IOAPIC: setup mixed mode for "
1086 						"irq 0 failed: %d\n", error);
1087 					goto nointr;
1088 				} else {
1089 					panic("IOAPIC: setup mixed mode for "
1090 					      "irq 0 failed: %d\n", error);
1091 				}
1092 			}
1093 			mixed_mode = 1;
1094 		}
1095 		clkdesc = register_int(irq, clkintr, NULL, "clk",
1096 				       NULL,
1097 				       INTR_EXCL | INTR_CLOCK |
1098 				       INTR_NOPOLL | INTR_MPSAFE |
1099 				       INTR_NOENTROPY, 0);
1100 	} else {
1101 		register_int(0, clkintr, NULL, "clk", NULL,
1102 			     INTR_EXCL | INTR_CLOCK |
1103 			     INTR_NOPOLL | INTR_MPSAFE |
1104 			     INTR_NOENTROPY, 0);
1105 	}
1106 
1107 	/* Initialize RTC. */
1108 	writertc(RTC_STATUSA, rtc_statusa);
1109 	writertc(RTC_STATUSB, RTCSB_24HR);
1110 
1111 	if (ioapic_enable) {
1112 		error = i8254_ioapic_trial(irq, cti);
1113 		if (error) {
1114 			if (mixed_mode) {
1115 				if (!selected) {
1116 					kprintf("IOAPIC: mixed mode for irq %d "
1117 						"trial failed: %d\n",
1118 						irq, error);
1119 					goto nointr;
1120 				} else {
1121 					panic("IOAPIC: mixed mode for irq %d "
1122 					      "trial failed: %d\n", irq, error);
1123 				}
1124 			} else {
1125 				kprintf("IOAPIC: warning 8254 is not connected "
1126 					"to the correct pin, try mixed mode\n");
1127 				unregister_int(clkdesc, 0);
1128 				goto mixed_mode_setup;
1129 			}
1130 		}
1131 	}
1132 	return;
1133 
1134 nointr:
1135 	i8254_nointr = 1; /* don't try to register again */
1136 	cputimer_intr_deregister(cti);
1137 }
1138 
1139 void
1140 setstatclockrate(int newhz)
1141 {
1142 	if (newhz == RTC_PROFRATE)
1143 		rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1144 	else
1145 		rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1146 	writertc(RTC_STATUSA, rtc_statusa);
1147 }
1148 
1149 #if 0
1150 static unsigned
1151 tsc_get_timecount(struct timecounter *tc)
1152 {
1153 	return (rdtsc());
1154 }
1155 #endif
1156 
1157 #ifdef KERN_TIMESTAMP
1158 #define KERN_TIMESTAMP_SIZE 16384
1159 static u_long tsc[KERN_TIMESTAMP_SIZE] ;
1160 SYSCTL_OPAQUE(_debug, OID_AUTO, timestamp, CTLFLAG_RD, tsc,
1161 	sizeof(tsc), "LU", "Kernel timestamps");
1162 void
1163 _TSTMP(u_int32_t x)
1164 {
1165 	static int i;
1166 
1167 	tsc[i] = (u_int32_t)rdtsc();
1168 	tsc[i+1] = x;
1169 	i = i + 2;
1170 	if (i >= KERN_TIMESTAMP_SIZE)
1171 		i = 0;
1172 	tsc[i] = 0; /* mark last entry */
1173 }
1174 #endif /* KERN_TIMESTAMP */
1175 
1176 /*
1177  *
1178  */
1179 
1180 static int
1181 hw_i8254_timestamp(SYSCTL_HANDLER_ARGS)
1182 {
1183     sysclock_t count;
1184     __uint64_t tscval;
1185     char buf[32];
1186 
1187     crit_enter();
1188     if (sys_cputimer == &i8254_cputimer)
1189 	count = sys_cputimer->count();
1190     else
1191 	count = 0;
1192     if (tsc_present)
1193 	tscval = rdtsc();
1194     else
1195 	tscval = 0;
1196     crit_exit();
1197     ksnprintf(buf, sizeof(buf), "%08x %016llx", count, (long long)tscval);
1198     return(SYSCTL_OUT(req, buf, strlen(buf) + 1));
1199 }
1200 
1201 struct tsc_mpsync_arg {
1202 	volatile uint64_t	tsc_target;
1203 	volatile int		tsc_mpsync;
1204 };
1205 
1206 struct tsc_mpsync_thr {
1207 	volatile int		tsc_done_cnt;
1208 	volatile int		tsc_mpsync_cnt;
1209 };
1210 
1211 static void
1212 tsc_mpsync_test_remote(void *xarg)
1213 {
1214 	struct tsc_mpsync_arg *arg = xarg;
1215 	uint64_t tsc;
1216 
1217 	tsc = rdtsc_ordered();
1218 	if (tsc < arg->tsc_target)
1219 		arg->tsc_mpsync = 0;
1220 }
1221 
1222 static void
1223 tsc_mpsync_test_loop(struct tsc_mpsync_arg *arg)
1224 {
1225 	struct globaldata *gd = mycpu;
1226 	uint64_t test_end, test_begin;
1227 	u_int i;
1228 
1229 	if (bootverbose) {
1230 		kprintf("cpu%d: TSC testing MP synchronization ...\n",
1231 		    gd->gd_cpuid);
1232 	}
1233 
1234 	test_begin = rdtsc_ordered();
1235 	/* Run test for 100ms */
1236 	test_end = test_begin + (tsc_frequency / 10);
1237 
1238 	arg->tsc_mpsync = 1;
1239 	arg->tsc_target = test_begin;
1240 
1241 #define TSC_TEST_TRYMAX		1000000	/* Make sure we could stop */
1242 #define TSC_TEST_TRYMIN		50000
1243 
1244 	for (i = 0; i < TSC_TEST_TRYMAX; ++i) {
1245 		struct lwkt_cpusync cs;
1246 
1247 		crit_enter();
1248 		lwkt_cpusync_init(&cs, gd->gd_other_cpus,
1249 		    tsc_mpsync_test_remote, arg);
1250 		lwkt_cpusync_interlock(&cs);
1251 		arg->tsc_target = rdtsc_ordered();
1252 		cpu_mfence();
1253 		lwkt_cpusync_deinterlock(&cs);
1254 		crit_exit();
1255 
1256 		if (!arg->tsc_mpsync) {
1257 			kprintf("cpu%d: TSC is not MP synchronized @%u\n",
1258 			    gd->gd_cpuid, i);
1259 			break;
1260 		}
1261 		if (arg->tsc_target > test_end && i >= TSC_TEST_TRYMIN)
1262 			break;
1263 	}
1264 
1265 #undef TSC_TEST_TRYMIN
1266 #undef TSC_TEST_TRYMAX
1267 
1268 	if (arg->tsc_target == test_begin) {
1269 		kprintf("cpu%d: TSC does not tick?!\n", gd->gd_cpuid);
1270 		/* XXX disable TSC? */
1271 		tsc_invariant = 0;
1272 		arg->tsc_mpsync = 0;
1273 		return;
1274 	}
1275 
1276 	if (arg->tsc_mpsync && bootverbose) {
1277 		kprintf("cpu%d: TSC is MP synchronized after %u tries\n",
1278 		    gd->gd_cpuid, i);
1279 	}
1280 }
1281 
1282 static void
1283 tsc_mpsync_ap_thread(void *xthr)
1284 {
1285 	struct tsc_mpsync_thr *thr = xthr;
1286 	struct tsc_mpsync_arg arg;
1287 
1288 	tsc_mpsync_test_loop(&arg);
1289 	if (arg.tsc_mpsync) {
1290 		atomic_add_int(&thr->tsc_mpsync_cnt, 1);
1291 		cpu_sfence();
1292 	}
1293 	atomic_add_int(&thr->tsc_done_cnt, 1);
1294 
1295 	lwkt_exit();
1296 }
1297 
1298 static void
1299 tsc_mpsync_test(void)
1300 {
1301 	struct tsc_mpsync_arg arg;
1302 
1303 	if (!tsc_invariant) {
1304 		/* Not even invariant TSC */
1305 		return;
1306 	}
1307 
1308 	if (ncpus == 1) {
1309 		/* Only one CPU */
1310 		tsc_mpsync = 1;
1311 		return;
1312 	}
1313 
1314 	/*
1315 	 * Forcing can be used w/qemu to reduce contention
1316 	 */
1317 	TUNABLE_INT_FETCH("hw.tsc_cputimer_force", &tsc_mpsync);
1318 	if (tsc_mpsync) {
1319 		kprintf("TSC as cputimer forced\n");
1320 		return;
1321 	}
1322 
1323 	if (cpu_vendor_id != CPU_VENDOR_INTEL) {
1324 		/* XXX only Intel works */
1325 		return;
1326 	}
1327 
1328 	kprintf("TSC testing MP synchronization ...\n");
1329 
1330 	tsc_mpsync_test_loop(&arg);
1331 	if (arg.tsc_mpsync) {
1332 		struct tsc_mpsync_thr thr;
1333 		int cpu;
1334 
1335 		/*
1336 		 * Test TSC MP synchronization on APs.
1337 		 */
1338 
1339 		thr.tsc_done_cnt = 1;
1340 		thr.tsc_mpsync_cnt = 1;
1341 
1342 		for (cpu = 0; cpu < ncpus; ++cpu) {
1343 			if (cpu == mycpuid)
1344 				continue;
1345 
1346 			lwkt_create(tsc_mpsync_ap_thread, &thr, NULL,
1347 			    NULL, 0, cpu, "tsc mpsync %d", cpu);
1348 		}
1349 
1350 		while (thr.tsc_done_cnt != ncpus) {
1351 			cpu_pause();
1352 			cpu_lfence();
1353 		}
1354 		if (thr.tsc_mpsync_cnt == ncpus)
1355 			tsc_mpsync = 1;
1356 	}
1357 
1358 	if (tsc_mpsync)
1359 		kprintf("TSC is MP synchronized\n");
1360 	else
1361 		kprintf("TSC is not MP synchronized\n");
1362 }
1363 SYSINIT(tsc_mpsync, SI_BOOT2_FINISH_SMP, SI_ORDER_ANY, tsc_mpsync_test, NULL);
1364 
1365 #define TSC_CPUTIMER_FREQMAX	128000000	/* 128Mhz */
1366 
1367 static int tsc_cputimer_shift;
1368 
1369 static void
1370 tsc_cputimer_construct(struct cputimer *timer, sysclock_t oldclock)
1371 {
1372 	timer->base = 0;
1373 	timer->base = oldclock - timer->count();
1374 }
1375 
1376 static __inline sysclock_t
1377 tsc_cputimer_count(void)
1378 {
1379 	uint64_t tsc;
1380 
1381 	tsc = rdtsc();
1382 	tsc >>= tsc_cputimer_shift;
1383 
1384 	return (tsc + tsc_cputimer.base);
1385 }
1386 
1387 static sysclock_t
1388 tsc_cputimer_count_lfence(void)
1389 {
1390 	cpu_lfence();
1391 	return tsc_cputimer_count();
1392 }
1393 
1394 static sysclock_t
1395 tsc_cputimer_count_mfence(void)
1396 {
1397 	cpu_mfence();
1398 	return tsc_cputimer_count();
1399 }
1400 
1401 static void
1402 tsc_cputimer_register(void)
1403 {
1404 	uint64_t freq;
1405 	int enable = 1;
1406 
1407 	if (!tsc_mpsync)
1408 		return;
1409 
1410 	TUNABLE_INT_FETCH("hw.tsc_cputimer_enable", &enable);
1411 	if (!enable)
1412 		return;
1413 
1414 	freq = tsc_frequency;
1415 	while (freq > TSC_CPUTIMER_FREQMAX) {
1416 		freq >>= 1;
1417 		++tsc_cputimer_shift;
1418 	}
1419 	kprintf("TSC: cputimer freq %ju, shift %d\n",
1420 	    (uintmax_t)freq, tsc_cputimer_shift);
1421 
1422 	tsc_cputimer.freq = freq;
1423 
1424 	if (cpu_vendor_id == CPU_VENDOR_INTEL)
1425 		tsc_cputimer.count = tsc_cputimer_count_lfence;
1426 	else
1427 		tsc_cputimer.count = tsc_cputimer_count_mfence; /* safe bet */
1428 
1429 	cputimer_register(&tsc_cputimer);
1430 	cputimer_select(&tsc_cputimer, 0);
1431 }
1432 SYSINIT(tsc_cputimer_reg, SI_BOOT2_POST_SMP, SI_ORDER_FIRST,
1433 	tsc_cputimer_register, NULL);
1434 
1435 SYSCTL_NODE(_hw, OID_AUTO, i8254, CTLFLAG_RW, 0, "I8254");
1436 SYSCTL_UINT(_hw_i8254, OID_AUTO, freq, CTLFLAG_RD, &i8254_cputimer.freq, 0,
1437 	    "frequency");
1438 SYSCTL_PROC(_hw_i8254, OID_AUTO, timestamp, CTLTYPE_STRING|CTLFLAG_RD,
1439 	    0, 0, hw_i8254_timestamp, "A", "");
1440 
1441 SYSCTL_INT(_hw, OID_AUTO, tsc_present, CTLFLAG_RD,
1442 	    &tsc_present, 0, "TSC Available");
1443 SYSCTL_INT(_hw, OID_AUTO, tsc_invariant, CTLFLAG_RD,
1444 	    &tsc_invariant, 0, "Invariant TSC");
1445 SYSCTL_INT(_hw, OID_AUTO, tsc_mpsync, CTLFLAG_RD,
1446 	    &tsc_mpsync, 0, "TSC is synchronized across CPUs");
1447 SYSCTL_QUAD(_hw, OID_AUTO, tsc_frequency, CTLFLAG_RD,
1448 	    &tsc_frequency, 0, "TSC Frequency");
1449