xref: /dragonfly/sys/platform/pc64/x86_64/machdep.c (revision 0ccdae7f)
1 /*-
2  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3  * Copyright (c) 1992 Terrence R. Lambert.
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 2008 The DragonFly Project.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
40  * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
41  */
42 
43 //#include "use_npx.h"
44 #include "use_isa.h"
45 #include "opt_cpu.h"
46 #include "opt_ddb.h"
47 #include "opt_inet.h"
48 #include "opt_msgbuf.h"
49 #include "opt_swap.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/sysproto.h>
54 #include <sys/signalvar.h>
55 #include <sys/kernel.h>
56 #include <sys/linker.h>
57 #include <sys/malloc.h>
58 #include <sys/proc.h>
59 #include <sys/priv.h>
60 #include <sys/buf.h>
61 #include <sys/reboot.h>
62 #include <sys/mbuf.h>
63 #include <sys/msgbuf.h>
64 #include <sys/sysent.h>
65 #include <sys/sysctl.h>
66 #include <sys/vmmeter.h>
67 #include <sys/bus.h>
68 #include <sys/usched.h>
69 #include <sys/reg.h>
70 #include <sys/sbuf.h>
71 #include <sys/ctype.h>
72 #include <sys/serialize.h>
73 #include <sys/systimer.h>
74 
75 #include <vm/vm.h>
76 #include <vm/vm_param.h>
77 #include <sys/lock.h>
78 #include <vm/vm_kern.h>
79 #include <vm/vm_object.h>
80 #include <vm/vm_page.h>
81 #include <vm/vm_map.h>
82 #include <vm/vm_pager.h>
83 #include <vm/vm_extern.h>
84 
85 #include <sys/thread2.h>
86 #include <sys/mplock2.h>
87 #include <sys/mutex2.h>
88 
89 #include <sys/user.h>
90 #include <sys/exec.h>
91 #include <sys/cons.h>
92 
93 #include <sys/efi.h>
94 
95 #include <ddb/ddb.h>
96 
97 #include <machine/cpu.h>
98 #include <machine/clock.h>
99 #include <machine/specialreg.h>
100 #if 0 /* JG */
101 #include <machine/bootinfo.h>
102 #endif
103 #include <machine/md_var.h>
104 #include <machine/metadata.h>
105 #include <machine/pc/bios.h>
106 #include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
107 #include <machine/globaldata.h>		/* CPU_prvspace */
108 #include <machine/smp.h>
109 #include <machine/cputypes.h>
110 #include <machine/intr_machdep.h>
111 #include <machine/framebuffer.h>
112 
113 #ifdef OLD_BUS_ARCH
114 #include <bus/isa/isa_device.h>
115 #endif
116 #include <machine_base/isa/isa_intr.h>
117 #include <bus/isa/rtc.h>
118 #include <sys/random.h>
119 #include <sys/ptrace.h>
120 #include <machine/sigframe.h>
121 
122 #include <sys/machintr.h>
123 #include <machine_base/icu/icu_abi.h>
124 #include <machine_base/icu/elcr_var.h>
125 #include <machine_base/apic/lapic.h>
126 #include <machine_base/apic/ioapic.h>
127 #include <machine_base/apic/ioapic_abi.h>
128 #include <machine/mptable.h>
129 
130 #define PHYSMAP_ENTRIES		10
131 
132 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
133 
134 extern void printcpuinfo(void);	/* XXX header file */
135 extern void identify_cpu(void);
136 #if 0 /* JG */
137 extern void finishidentcpu(void);
138 #endif
139 extern void panicifcpuunsupported(void);
140 
141 static void cpu_startup(void *);
142 static void pic_finish(void *);
143 static void cpu_finish(void *);
144 
145 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
146 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
147 static void init_locks(void);
148 
149 extern void pcpu_timer_always(struct intrframe *);
150 
151 SYSINIT(cpu, SI_BOOT2_START_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
152 SYSINIT(pic_finish, SI_BOOT2_FINISH_PIC, SI_ORDER_FIRST, pic_finish, NULL);
153 SYSINIT(cpu_finish, SI_BOOT2_FINISH_CPU, SI_ORDER_FIRST, cpu_finish, NULL);
154 
155 #ifdef DDB
156 extern vm_offset_t ksym_start, ksym_end;
157 #endif
158 
159 struct privatespace CPU_prvspace_bsp __aligned(4096);
160 struct privatespace *CPU_prvspace[MAXCPU] = { &CPU_prvspace_bsp };
161 
162 vm_paddr_t efi_systbl_phys;
163 int	_udatasel, _ucodesel, _ucode32sel;
164 u_long	atdevbase;
165 int64_t tsc_offsets[MAXCPU];
166 cpumask_t smp_idleinvl_mask;
167 cpumask_t smp_idleinvl_reqs;
168 
169 static int cpu_mwait_halt_global; /* MWAIT hint (EAX) or CPU_MWAIT_HINT_ */
170 
171 #if defined(SWTCH_OPTIM_STATS)
172 extern int swtch_optim_stats;
173 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
174 	CTLFLAG_RD, &swtch_optim_stats, 0, "");
175 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
176 	CTLFLAG_RD, &tlb_flush_count, 0, "");
177 #endif
178 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_halt,
179 	CTLFLAG_RD, &cpu_mwait_halt_global, 0, "");
180 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_spin, CTLFLAG_RD, &cpu_mwait_spin, 0,
181     "monitor/mwait target state");
182 
183 #define CPU_MWAIT_HAS_CX	\
184 	((cpu_feature2 & CPUID2_MON) && \
185 	 (cpu_mwait_feature & CPUID_MWAIT_EXT))
186 
187 #define CPU_MWAIT_CX_NAMELEN	16
188 
189 #define CPU_MWAIT_C1		1
190 #define CPU_MWAIT_C2		2
191 #define CPU_MWAIT_C3		3
192 #define CPU_MWAIT_CX_MAX	8
193 
194 #define CPU_MWAIT_HINT_AUTO	-1	/* C1 and C2 */
195 #define CPU_MWAIT_HINT_AUTODEEP	-2	/* C3+ */
196 
197 SYSCTL_NODE(_machdep, OID_AUTO, mwait, CTLFLAG_RW, 0, "MWAIT features");
198 SYSCTL_NODE(_machdep_mwait, OID_AUTO, CX, CTLFLAG_RW, 0, "MWAIT Cx settings");
199 
200 struct cpu_mwait_cx {
201 	int			subcnt;
202 	char			name[4];
203 	struct sysctl_ctx_list	sysctl_ctx;
204 	struct sysctl_oid	*sysctl_tree;
205 };
206 static struct cpu_mwait_cx	cpu_mwait_cx_info[CPU_MWAIT_CX_MAX];
207 static char			cpu_mwait_cx_supported[256];
208 
209 static int			cpu_mwait_c1_hints_cnt;
210 static int			cpu_mwait_hints_cnt;
211 static int			*cpu_mwait_hints;
212 
213 static int			cpu_mwait_deep_hints_cnt;
214 static int			*cpu_mwait_deep_hints;
215 
216 #define CPU_IDLE_REPEAT_DEFAULT	750
217 
218 static u_int			cpu_idle_repeat = CPU_IDLE_REPEAT_DEFAULT;
219 static u_long			cpu_idle_repeat_max = CPU_IDLE_REPEAT_DEFAULT;
220 static u_int			cpu_mwait_repeat_shift = 1;
221 
222 #define CPU_MWAIT_C3_PREAMBLE_BM_ARB	0x1
223 #define CPU_MWAIT_C3_PREAMBLE_BM_STS	0x2
224 
225 static int			cpu_mwait_c3_preamble =
226 				    CPU_MWAIT_C3_PREAMBLE_BM_ARB |
227 				    CPU_MWAIT_C3_PREAMBLE_BM_STS;
228 
229 SYSCTL_STRING(_machdep_mwait_CX, OID_AUTO, supported, CTLFLAG_RD,
230     cpu_mwait_cx_supported, 0, "MWAIT supported C states");
231 SYSCTL_INT(_machdep_mwait_CX, OID_AUTO, c3_preamble, CTLFLAG_RD,
232     &cpu_mwait_c3_preamble, 0, "C3+ preamble mask");
233 
234 static int	cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS,
235 		    int *, boolean_t);
236 static int	cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS);
237 static int	cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS);
238 static int	cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS);
239 
240 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, idle, CTLTYPE_STRING|CTLFLAG_RW,
241     NULL, 0, cpu_mwait_cx_idle_sysctl, "A", "");
242 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, spin, CTLTYPE_STRING|CTLFLAG_RW,
243     NULL, 0, cpu_mwait_cx_spin_sysctl, "A", "");
244 SYSCTL_UINT(_machdep_mwait_CX, OID_AUTO, repeat_shift, CTLFLAG_RW,
245     &cpu_mwait_repeat_shift, 0, "");
246 
247 long physmem = 0;
248 
249 u_long ebda_addr = 0;
250 
251 int imcr_present = 0;
252 
253 int naps = 0; /* # of Applications processors */
254 
255 u_int base_memory;
256 
257 static int
258 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
259 {
260 	u_long pmem = ctob(physmem);
261 
262 	int error = sysctl_handle_long(oidp, &pmem, 0, req);
263 	return (error);
264 }
265 
266 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
267 	0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
268 
269 static int
270 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
271 {
272 	int error = sysctl_handle_int(oidp, 0,
273 		ctob(physmem - vmstats.v_wire_count), req);
274 	return (error);
275 }
276 
277 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
278 	0, 0, sysctl_hw_usermem, "IU", "");
279 
280 static int
281 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
282 {
283 	int error = sysctl_handle_int(oidp, 0,
284 		x86_64_btop(avail_end - avail_start), req);
285 	return (error);
286 }
287 
288 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
289 	0, 0, sysctl_hw_availpages, "I", "");
290 
291 vm_paddr_t Maxmem;
292 vm_paddr_t Realmem;
293 
294 /*
295  * The number of PHYSMAP entries must be one less than the number of
296  * PHYSSEG entries because the PHYSMAP entry that spans the largest
297  * physical address that is accessible by ISA DMA is split into two
298  * PHYSSEG entries.
299  */
300 vm_phystable_t phys_avail[VM_PHYSSEG_MAX + 1];
301 vm_phystable_t dump_avail[VM_PHYSSEG_MAX + 1];
302 
303 /* must be 1 less so 0 0 can signal end of chunks */
304 #define PHYS_AVAIL_ARRAY_END (NELEM(phys_avail) - 1)
305 #define DUMP_AVAIL_ARRAY_END (NELEM(dump_avail) - 1)
306 
307 static vm_offset_t buffer_sva, buffer_eva;
308 vm_offset_t clean_sva, clean_eva;
309 static vm_offset_t pager_sva, pager_eva;
310 static struct trapframe proc0_tf;
311 
312 static void
313 cpu_startup(void *dummy)
314 {
315 	caddr_t v;
316 	vm_size_t size = 0;
317 	vm_offset_t firstaddr;
318 
319 	/*
320 	 * Good {morning,afternoon,evening,night}.
321 	 */
322 	kprintf("%s", version);
323 	startrtclock();
324 	printcpuinfo();
325 	panicifcpuunsupported();
326 	kprintf("real memory  = %ju (%ju MB)\n",
327 		(intmax_t)Realmem,
328 		(intmax_t)Realmem / 1024 / 1024);
329 	/*
330 	 * Display any holes after the first chunk of extended memory.
331 	 */
332 	if (bootverbose) {
333 		int indx;
334 
335 		kprintf("Physical memory chunk(s):\n");
336 		for (indx = 0; phys_avail[indx].phys_end != 0; ++indx) {
337 			vm_paddr_t size1;
338 
339 			size1 = phys_avail[indx].phys_end -
340 				phys_avail[indx].phys_beg;
341 
342 			kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
343 				(intmax_t)phys_avail[indx].phys_beg,
344 				(intmax_t)phys_avail[indx].phys_end - 1,
345 				(intmax_t)size1,
346 				(intmax_t)(size1 / PAGE_SIZE));
347 		}
348 	}
349 
350 	/*
351 	 * Allocate space for system data structures.
352 	 * The first available kernel virtual address is in "v".
353 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
354 	 * As pages of memory are allocated and cleared,
355 	 * "firstaddr" is incremented.
356 	 * An index into the kernel page table corresponding to the
357 	 * virtual memory address maintained in "v" is kept in "mapaddr".
358 	 */
359 
360 	/*
361 	 * Make two passes.  The first pass calculates how much memory is
362 	 * needed and allocates it.  The second pass assigns virtual
363 	 * addresses to the various data structures.
364 	 */
365 	firstaddr = 0;
366 again:
367 	v = (caddr_t)firstaddr;
368 
369 #define	valloc(name, type, num) \
370 	    (name) = (type *)v; v = (caddr_t)((name)+(num))
371 #define	valloclim(name, type, num, lim) \
372 	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
373 
374 	/*
375 	 * The nominal buffer size (and minimum KVA allocation) is MAXBSIZE.
376 	 * For the first 64MB of ram nominally allocate sufficient buffers to
377 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
378 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
379 	 * the buffer cache we limit the eventual kva reservation to
380 	 * maxbcache bytes.
381 	 *
382 	 * factor represents the 1/4 x ram conversion.
383 	 */
384 	if (nbuf == 0) {
385 		long factor = 4 * NBUFCALCSIZE / 1024;
386 		long kbytes = physmem * (PAGE_SIZE / 1024);
387 
388 		nbuf = 50;
389 		if (kbytes > 4096)
390 			nbuf += min((kbytes - 4096) / factor, 65536 / factor);
391 		if (kbytes > 65536)
392 			nbuf += (kbytes - 65536) * 2 / (factor * 5);
393 		if (maxbcache && nbuf > maxbcache / NBUFCALCSIZE)
394 			nbuf = maxbcache / NBUFCALCSIZE;
395 	}
396 
397 	/*
398 	 * Do not allow the buffer_map to be more then 1/2 the size of the
399 	 * kernel_map.
400 	 */
401 	if (nbuf > (virtual_end - virtual_start +
402 		    virtual2_end - virtual2_start) / (MAXBSIZE * 2)) {
403 		nbuf = (virtual_end - virtual_start +
404 			virtual2_end - virtual2_start) / (MAXBSIZE * 2);
405 		kprintf("Warning: nbufs capped at %ld due to kvm\n", nbuf);
406 	}
407 
408 	/*
409 	 * Do not allow the buffer_map to use more than 50% of available
410 	 * physical-equivalent memory.  Since the VM pages which back
411 	 * individual buffers are typically wired, having too many bufs
412 	 * can prevent the system from paging properly.
413 	 */
414 	if (nbuf > physmem * PAGE_SIZE / (NBUFCALCSIZE * 2)) {
415 		nbuf = physmem * PAGE_SIZE / (NBUFCALCSIZE * 2);
416 		kprintf("Warning: nbufs capped at %ld due to physmem\n", nbuf);
417 	}
418 
419 	/*
420 	 * Do not allow the sizeof(struct buf) * nbuf to exceed half of
421 	 * the valloc space which is just the virtual_end - virtual_start
422 	 * section.  We use valloc() to allocate the buf header array.
423 	 */
424 	if (nbuf > (virtual_end - virtual_start) / sizeof(struct buf) / 2) {
425 		nbuf = (virtual_end - virtual_start) /
426 		       sizeof(struct buf) / 2;
427 		kprintf("Warning: nbufs capped at %ld due to valloc "
428 			"considerations\n", nbuf);
429 	}
430 
431 	nswbuf_mem = lmax(lmin(nbuf / 32, 512), 8);
432 #ifdef NSWBUF_MIN
433 	if (nswbuf_mem < NSWBUF_MIN)
434 		nswbuf_mem = NSWBUF_MIN;
435 #endif
436 	nswbuf_kva = lmax(lmin(nbuf / 4, 512), 16);
437 #ifdef NSWBUF_MIN
438 	if (nswbuf_kva < NSWBUF_MIN)
439 		nswbuf_kva = NSWBUF_MIN;
440 #endif
441 
442 	valloc(swbuf_mem, struct buf, nswbuf_mem);
443 	valloc(swbuf_kva, struct buf, nswbuf_kva);
444 	valloc(buf, struct buf, nbuf);
445 
446 	/*
447 	 * End of first pass, size has been calculated so allocate memory
448 	 */
449 	if (firstaddr == 0) {
450 		size = (vm_size_t)(v - firstaddr);
451 		firstaddr = kmem_alloc(&kernel_map, round_page(size),
452 				       VM_SUBSYS_BUF);
453 		if (firstaddr == 0)
454 			panic("startup: no room for tables");
455 		goto again;
456 	}
457 
458 	/*
459 	 * End of second pass, addresses have been assigned
460 	 *
461 	 * nbuf is an int, make sure we don't overflow the field.
462 	 *
463 	 * On 64-bit systems we always reserve maximal allocations for
464 	 * buffer cache buffers and there are no fragmentation issues,
465 	 * so the KVA segment does not have to be excessively oversized.
466 	 */
467 	if ((vm_size_t)(v - firstaddr) != size)
468 		panic("startup: table size inconsistency");
469 
470 	kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
471 		      ((vm_offset_t)(nbuf + 16) * MAXBSIZE) +
472 		      ((nswbuf_mem + nswbuf_kva) * MAXPHYS) + pager_map_size);
473 	kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
474 		      ((vm_offset_t)(nbuf + 16) * MAXBSIZE));
475 	buffer_map.system_map = 1;
476 	kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
477 		      ((vm_offset_t)(nswbuf_mem + nswbuf_kva) * MAXPHYS) +
478 		      pager_map_size);
479 	pager_map.system_map = 1;
480 	kprintf("avail memory = %ju (%ju MB)\n",
481 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages),
482 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages) /
483 		1024 / 1024);
484 }
485 
486 struct cpu_idle_stat {
487 	int	hint;
488 	int	reserved;
489 	u_long	halt;
490 	u_long	spin;
491 	u_long	repeat;
492 	u_long	repeat_last;
493 	u_long	repeat_delta;
494 	u_long	mwait_cx[CPU_MWAIT_CX_MAX];
495 } __cachealign;
496 
497 #define CPU_IDLE_STAT_HALT	-1
498 #define CPU_IDLE_STAT_SPIN	-2
499 
500 static struct cpu_idle_stat	cpu_idle_stats[MAXCPU];
501 
502 static int
503 sysctl_cpu_idle_cnt(SYSCTL_HANDLER_ARGS)
504 {
505 	int idx = arg2, cpu, error;
506 	u_long val = 0;
507 
508 	if (idx == CPU_IDLE_STAT_HALT) {
509 		for (cpu = 0; cpu < ncpus; ++cpu)
510 			val += cpu_idle_stats[cpu].halt;
511 	} else if (idx == CPU_IDLE_STAT_SPIN) {
512 		for (cpu = 0; cpu < ncpus; ++cpu)
513 			val += cpu_idle_stats[cpu].spin;
514 	} else {
515 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
516 		    ("invalid index %d", idx));
517 		for (cpu = 0; cpu < ncpus; ++cpu)
518 			val += cpu_idle_stats[cpu].mwait_cx[idx];
519 	}
520 
521 	error = sysctl_handle_quad(oidp, &val, 0, req);
522         if (error || req->newptr == NULL)
523 	        return error;
524 
525 	if (idx == CPU_IDLE_STAT_HALT) {
526 		for (cpu = 0; cpu < ncpus; ++cpu)
527 			cpu_idle_stats[cpu].halt = 0;
528 		cpu_idle_stats[0].halt = val;
529 	} else if (idx == CPU_IDLE_STAT_SPIN) {
530 		for (cpu = 0; cpu < ncpus; ++cpu)
531 			cpu_idle_stats[cpu].spin = 0;
532 		cpu_idle_stats[0].spin = val;
533 	} else {
534 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
535 		    ("invalid index %d", idx));
536 		for (cpu = 0; cpu < ncpus; ++cpu)
537 			cpu_idle_stats[cpu].mwait_cx[idx] = 0;
538 		cpu_idle_stats[0].mwait_cx[idx] = val;
539 	}
540 	return 0;
541 }
542 
543 static void
544 cpu_mwait_attach(void)
545 {
546 	struct sbuf sb;
547 	int hint_idx, i;
548 
549 	if (!CPU_MWAIT_HAS_CX)
550 		return;
551 
552 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
553 	    (CPUID_TO_FAMILY(cpu_id) > 0xf ||
554 	     (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
555 	      CPUID_TO_MODEL(cpu_id) >= 0xf))) {
556 		int bm_sts = 1;
557 
558 		/*
559 		 * Pentium dual-core, Core 2 and beyond do not need any
560 		 * additional activities to enter deep C-state, i.e. C3(+).
561 		 */
562 		cpu_mwait_cx_no_bmarb();
563 
564 		TUNABLE_INT_FETCH("machdep.cpu.mwait.bm_sts", &bm_sts);
565 		if (!bm_sts)
566 			cpu_mwait_cx_no_bmsts();
567 	}
568 
569 	sbuf_new(&sb, cpu_mwait_cx_supported,
570 	    sizeof(cpu_mwait_cx_supported), SBUF_FIXEDLEN);
571 
572 	for (i = 0; i < CPU_MWAIT_CX_MAX; ++i) {
573 		struct cpu_mwait_cx *cx = &cpu_mwait_cx_info[i];
574 		int sub;
575 
576 		ksnprintf(cx->name, sizeof(cx->name), "C%d", i);
577 
578 		sysctl_ctx_init(&cx->sysctl_ctx);
579 		cx->sysctl_tree = SYSCTL_ADD_NODE(&cx->sysctl_ctx,
580 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait), OID_AUTO,
581 		    cx->name, CTLFLAG_RW, NULL, "Cx control/info");
582 		if (cx->sysctl_tree == NULL)
583 			continue;
584 
585 		cx->subcnt = CPUID_MWAIT_CX_SUBCNT(cpu_mwait_extemu, i);
586 		SYSCTL_ADD_INT(&cx->sysctl_ctx,
587 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
588 		    "subcnt", CTLFLAG_RD, &cx->subcnt, 0,
589 		    "sub-state count");
590 		SYSCTL_ADD_PROC(&cx->sysctl_ctx,
591 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
592 		    "entered", (CTLTYPE_QUAD | CTLFLAG_RW), 0,
593 		    i, sysctl_cpu_idle_cnt, "Q", "# of times entered");
594 
595 		for (sub = 0; sub < cx->subcnt; ++sub)
596 			sbuf_printf(&sb, "C%d/%d ", i, sub);
597 	}
598 	sbuf_trim(&sb);
599 	sbuf_finish(&sb);
600 
601 	/*
602 	 * Non-deep C-states
603 	 */
604 	cpu_mwait_c1_hints_cnt = cpu_mwait_cx_info[CPU_MWAIT_C1].subcnt;
605 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i)
606 		cpu_mwait_hints_cnt += cpu_mwait_cx_info[i].subcnt;
607 	cpu_mwait_hints = kmalloc(sizeof(int) * cpu_mwait_hints_cnt,
608 				  M_DEVBUF, M_WAITOK);
609 
610 	hint_idx = 0;
611 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i) {
612 		int j, subcnt;
613 
614 		subcnt = cpu_mwait_cx_info[i].subcnt;
615 		for (j = 0; j < subcnt; ++j) {
616 			KASSERT(hint_idx < cpu_mwait_hints_cnt,
617 			    ("invalid mwait hint index %d", hint_idx));
618 			cpu_mwait_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
619 			++hint_idx;
620 		}
621 	}
622 	KASSERT(hint_idx == cpu_mwait_hints_cnt,
623 	    ("mwait hint count %d != index %d",
624 	     cpu_mwait_hints_cnt, hint_idx));
625 
626 	if (bootverbose) {
627 		kprintf("MWAIT hints (%d C1 hints):\n", cpu_mwait_c1_hints_cnt);
628 		for (i = 0; i < cpu_mwait_hints_cnt; ++i) {
629 			int hint = cpu_mwait_hints[i];
630 
631 			kprintf("  C%d/%d hint 0x%04x\n",
632 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
633 			    hint);
634 		}
635 	}
636 
637 	/*
638 	 * Deep C-states
639 	 */
640 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i)
641 		cpu_mwait_deep_hints_cnt += cpu_mwait_cx_info[i].subcnt;
642 	cpu_mwait_deep_hints = kmalloc(sizeof(int) * cpu_mwait_deep_hints_cnt,
643 	    M_DEVBUF, M_WAITOK);
644 
645 	hint_idx = 0;
646 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i) {
647 		int j, subcnt;
648 
649 		subcnt = cpu_mwait_cx_info[i].subcnt;
650 		for (j = 0; j < subcnt; ++j) {
651 			KASSERT(hint_idx < cpu_mwait_deep_hints_cnt,
652 			    ("invalid mwait deep hint index %d", hint_idx));
653 			cpu_mwait_deep_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
654 			++hint_idx;
655 		}
656 	}
657 	KASSERT(hint_idx == cpu_mwait_deep_hints_cnt,
658 	    ("mwait deep hint count %d != index %d",
659 	     cpu_mwait_deep_hints_cnt, hint_idx));
660 
661 	if (bootverbose) {
662 		kprintf("MWAIT deep hints:\n");
663 		for (i = 0; i < cpu_mwait_deep_hints_cnt; ++i) {
664 			int hint = cpu_mwait_deep_hints[i];
665 
666 			kprintf("  C%d/%d hint 0x%04x\n",
667 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
668 			    hint);
669 		}
670 	}
671 	cpu_idle_repeat_max = 256 * cpu_mwait_deep_hints_cnt;
672 
673 	for (i = 0; i < ncpus; ++i) {
674 		char name[16];
675 
676 		ksnprintf(name, sizeof(name), "idle%d", i);
677 		SYSCTL_ADD_PROC(NULL,
678 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait_CX), OID_AUTO,
679 		    name, (CTLTYPE_STRING | CTLFLAG_RW), &cpu_idle_stats[i],
680 		    0, cpu_mwait_cx_pcpu_idle_sysctl, "A", "");
681 	}
682 }
683 
684 static void
685 cpu_finish(void *dummy __unused)
686 {
687 	cpu_setregs();
688 	cpu_mwait_attach();
689 }
690 
691 static void
692 pic_finish(void *dummy __unused)
693 {
694 	/* Log ELCR information */
695 	elcr_dump();
696 
697 	/* Log MPTABLE information */
698 	mptable_pci_int_dump();
699 
700 	/* Finalize PCI */
701 	MachIntrABI.finalize();
702 }
703 
704 /*
705  * Send an interrupt to process.
706  *
707  * Stack is set up to allow sigcode stored
708  * at top to call routine, followed by kcall
709  * to sigreturn routine below.  After sigreturn
710  * resets the signal mask, the stack, and the
711  * frame pointer, it returns to the user
712  * specified pc, psl.
713  */
714 void
715 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
716 {
717 	struct lwp *lp = curthread->td_lwp;
718 	struct proc *p = lp->lwp_proc;
719 	struct trapframe *regs;
720 	struct sigacts *psp = p->p_sigacts;
721 	struct sigframe sf, *sfp;
722 	int oonstack;
723 	char *sp;
724 
725 	regs = lp->lwp_md.md_regs;
726 	oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
727 
728 	/* Save user context */
729 	bzero(&sf, sizeof(struct sigframe));
730 	sf.sf_uc.uc_sigmask = *mask;
731 	sf.sf_uc.uc_stack = lp->lwp_sigstk;
732 	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
733 	KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
734 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
735 
736 	/* Make the size of the saved context visible to userland */
737 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
738 
739 	/* Allocate and validate space for the signal handler context. */
740         if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
741 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
742 		sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
743 			      sizeof(struct sigframe));
744 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
745 	} else {
746 		/* We take red zone into account */
747 		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
748 	}
749 
750 	/*
751 	 * XXX AVX needs 64-byte alignment but sigframe has other fields and
752 	 * the embedded ucontext is not at the front, so aligning this won't
753 	 * help us.  Fortunately we bcopy in/out of the sigframe, so the
754 	 * kernel is ok.
755 	 *
756 	 * The problem though is if userland winds up trying to use the
757 	 * context directly.
758 	 */
759 	sfp = (struct sigframe *)((intptr_t)sp & ~(intptr_t)0xF);
760 
761 	/* Translate the signal is appropriate */
762 	if (p->p_sysent->sv_sigtbl) {
763 		if (sig <= p->p_sysent->sv_sigsize)
764 			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
765 	}
766 
767 	/*
768 	 * Build the argument list for the signal handler.
769 	 *
770 	 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
771 	 */
772 	regs->tf_rdi = sig;				/* argument 1 */
773 	regs->tf_rdx = (register_t)&sfp->sf_uc;		/* argument 3 */
774 
775 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
776 		/*
777 		 * Signal handler installed with SA_SIGINFO.
778 		 *
779 		 * action(signo, siginfo, ucontext)
780 		 */
781 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* argument 2 */
782 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
783 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
784 
785 		/* fill siginfo structure */
786 		sf.sf_si.si_signo = sig;
787 		sf.sf_si.si_code = code;
788 		sf.sf_si.si_addr = (void *)regs->tf_addr;
789 	} else {
790 		/*
791 		 * Old FreeBSD-style arguments.
792 		 *
793 		 * handler (signo, code, [uc], addr)
794 		 */
795 		regs->tf_rsi = (register_t)code;	/* argument 2 */
796 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
797 		sf.sf_ahu.sf_handler = catcher;
798 	}
799 
800 	/*
801 	 * If we're a vm86 process, we want to save the segment registers.
802 	 * We also change eflags to be our emulated eflags, not the actual
803 	 * eflags.
804 	 */
805 #if 0 /* JG */
806 	if (regs->tf_eflags & PSL_VM) {
807 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
808 		struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
809 
810 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
811 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
812 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
813 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
814 
815 		if (vm86->vm86_has_vme == 0)
816 			sf.sf_uc.uc_mcontext.mc_eflags =
817 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
818 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
819 
820 		/*
821 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
822 		 * syscalls made by the signal handler.  This just avoids
823 		 * wasting time for our lazy fixup of such faults.  PSL_NT
824 		 * does nothing in vm86 mode, but vm86 programs can set it
825 		 * almost legitimately in probes for old cpu types.
826 		 */
827 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
828 	}
829 #endif
830 
831 	/*
832 	 * Save the FPU state and reinit the FP unit
833 	 */
834 	npxpush(&sf.sf_uc.uc_mcontext);
835 
836 	/*
837 	 * Copy the sigframe out to the user's stack.
838 	 */
839 	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
840 		/*
841 		 * Something is wrong with the stack pointer.
842 		 * ...Kill the process.
843 		 */
844 		sigexit(lp, SIGILL);
845 	}
846 
847 	regs->tf_rsp = (register_t)sfp;
848 	regs->tf_rip = trunc_page64(PS_STRINGS - *(p->p_sysent->sv_szsigcode));
849 	regs->tf_rip -= SZSIGCODE_EXTRA_BYTES;
850 
851 	/*
852 	 * i386 abi specifies that the direction flag must be cleared
853 	 * on function entry
854 	 */
855 	regs->tf_rflags &= ~(PSL_T | PSL_D);
856 
857 	/*
858 	 * 64 bit mode has a code and stack selector but
859 	 * no data or extra selector.  %fs and %gs are not
860 	 * stored in-context.
861 	 */
862 	regs->tf_cs = _ucodesel;
863 	regs->tf_ss = _udatasel;
864 	clear_quickret();
865 }
866 
867 /*
868  * Sanitize the trapframe for a virtual kernel passing control to a custom
869  * VM context.  Remove any items that would otherwise create a privilage
870  * issue.
871  *
872  * XXX at the moment we allow userland to set the resume flag.  Is this a
873  * bad idea?
874  */
875 int
876 cpu_sanitize_frame(struct trapframe *frame)
877 {
878 	frame->tf_cs = _ucodesel;
879 	frame->tf_ss = _udatasel;
880 	/* XXX VM (8086) mode not supported? */
881 	frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
882 	frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
883 
884 	return(0);
885 }
886 
887 /*
888  * Sanitize the tls so loading the descriptor does not blow up
889  * on us.  For x86_64 we don't have to do anything.
890  */
891 int
892 cpu_sanitize_tls(struct savetls *tls)
893 {
894 	return(0);
895 }
896 
897 /*
898  * sigreturn(ucontext_t *sigcntxp)
899  *
900  * System call to cleanup state after a signal
901  * has been taken.  Reset signal mask and
902  * stack state from context left by sendsig (above).
903  * Return to previous pc and psl as specified by
904  * context left by sendsig. Check carefully to
905  * make sure that the user has not modified the
906  * state to gain improper privileges.
907  *
908  * MPSAFE
909  */
910 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
911 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
912 
913 int
914 sys_sigreturn(struct sigreturn_args *uap)
915 {
916 	struct lwp *lp = curthread->td_lwp;
917 	struct trapframe *regs;
918 	ucontext_t uc;
919 	ucontext_t *ucp;
920 	register_t rflags;
921 	int cs;
922 	int error;
923 
924 	/*
925 	 * We have to copy the information into kernel space so userland
926 	 * can't modify it while we are sniffing it.
927 	 */
928 	regs = lp->lwp_md.md_regs;
929 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
930 	if (error)
931 		return (error);
932 	ucp = &uc;
933 	rflags = ucp->uc_mcontext.mc_rflags;
934 
935 	/* VM (8086) mode not supported */
936 	rflags &= ~PSL_VM_UNSUPP;
937 
938 #if 0 /* JG */
939 	if (eflags & PSL_VM) {
940 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
941 		struct vm86_kernel *vm86;
942 
943 		/*
944 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
945 		 * set up the vm86 area, and we can't enter vm86 mode.
946 		 */
947 		if (lp->lwp_thread->td_pcb->pcb_ext == 0)
948 			return (EINVAL);
949 		vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
950 		if (vm86->vm86_inited == 0)
951 			return (EINVAL);
952 
953 		/* go back to user mode if both flags are set */
954 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
955 			trapsignal(lp, SIGBUS, 0);
956 
957 		if (vm86->vm86_has_vme) {
958 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
959 			    (eflags & VME_USERCHANGE) | PSL_VM;
960 		} else {
961 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
962 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
963 			    (eflags & VM_USERCHANGE) | PSL_VM;
964 		}
965 		bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
966 		tf->tf_eflags = eflags;
967 		tf->tf_vm86_ds = tf->tf_ds;
968 		tf->tf_vm86_es = tf->tf_es;
969 		tf->tf_vm86_fs = tf->tf_fs;
970 		tf->tf_vm86_gs = tf->tf_gs;
971 		tf->tf_ds = _udatasel;
972 		tf->tf_es = _udatasel;
973 		tf->tf_fs = _udatasel;
974 		tf->tf_gs = _udatasel;
975 	} else
976 #endif
977 	{
978 		/*
979 		 * Don't allow users to change privileged or reserved flags.
980 		 */
981 		/*
982 		 * XXX do allow users to change the privileged flag PSL_RF.
983 		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
984 		 * should sometimes set it there too.  tf_eflags is kept in
985 		 * the signal context during signal handling and there is no
986 		 * other place to remember it, so the PSL_RF bit may be
987 		 * corrupted by the signal handler without us knowing.
988 		 * Corruption of the PSL_RF bit at worst causes one more or
989 		 * one less debugger trap, so allowing it is fairly harmless.
990 		 */
991 		if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
992 			kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
993 	    		return(EINVAL);
994 		}
995 
996 		/*
997 		 * Don't allow users to load a valid privileged %cs.  Let the
998 		 * hardware check for invalid selectors, excess privilege in
999 		 * other selectors, invalid %eip's and invalid %esp's.
1000 		 */
1001 		cs = ucp->uc_mcontext.mc_cs;
1002 		if (!CS_SECURE(cs)) {
1003 			kprintf("sigreturn: cs = 0x%x\n", cs);
1004 			trapsignal(lp, SIGBUS, T_PROTFLT);
1005 			return(EINVAL);
1006 		}
1007 		bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
1008 	}
1009 
1010 	/*
1011 	 * Restore the FPU state from the frame
1012 	 */
1013 	crit_enter();
1014 	npxpop(&ucp->uc_mcontext);
1015 
1016 	if (ucp->uc_mcontext.mc_onstack & 1)
1017 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
1018 	else
1019 		lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
1020 
1021 	lp->lwp_sigmask = ucp->uc_sigmask;
1022 	SIG_CANTMASK(lp->lwp_sigmask);
1023 	clear_quickret();
1024 	crit_exit();
1025 	return(EJUSTRETURN);
1026 }
1027 
1028 /*
1029  * Machine dependent boot() routine
1030  *
1031  * I haven't seen anything to put here yet
1032  * Possibly some stuff might be grafted back here from boot()
1033  */
1034 void
1035 cpu_boot(int howto)
1036 {
1037 }
1038 
1039 /*
1040  * Shutdown the CPU as much as possible
1041  */
1042 void
1043 cpu_halt(void)
1044 {
1045 	for (;;)
1046 		__asm__ __volatile("hlt");
1047 }
1048 
1049 /*
1050  * cpu_idle() represents the idle LWKT.  You cannot return from this function
1051  * (unless you want to blow things up!).  Instead we look for runnable threads
1052  * and loop or halt as appropriate.  Giant is not held on entry to the thread.
1053  *
1054  * The main loop is entered with a critical section held, we must release
1055  * the critical section before doing anything else.  lwkt_switch() will
1056  * check for pending interrupts due to entering and exiting its own
1057  * critical section.
1058  *
1059  * NOTE: On an SMP system we rely on a scheduler IPI to wake a HLTed cpu up.
1060  *	 However, there are cases where the idlethread will be entered with
1061  *	 the possibility that no IPI will occur and in such cases
1062  *	 lwkt_switch() sets TDF_IDLE_NOHLT.
1063  *
1064  * NOTE: cpu_idle_repeat determines how many entries into the idle thread
1065  *	 must occur before it starts using ACPI halt.
1066  *
1067  * NOTE: Value overridden in hammer_time().
1068  */
1069 static int	cpu_idle_hlt = 2;
1070 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
1071     &cpu_idle_hlt, 0, "Idle loop HLT enable");
1072 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_repeat, CTLFLAG_RW,
1073     &cpu_idle_repeat, 0, "Idle entries before acpi hlt");
1074 
1075 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_hltcnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1076     0, CPU_IDLE_STAT_HALT, sysctl_cpu_idle_cnt, "Q", "Idle loop entry halts");
1077 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_spincnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1078     0, CPU_IDLE_STAT_SPIN, sysctl_cpu_idle_cnt, "Q", "Idle loop entry spins");
1079 
1080 static void
1081 cpu_idle_default_hook(void)
1082 {
1083 	/*
1084 	 * We must guarentee that hlt is exactly the instruction
1085 	 * following the sti.
1086 	 */
1087 	__asm __volatile("sti; hlt");
1088 }
1089 
1090 /* Other subsystems (e.g., ACPI) can hook this later. */
1091 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
1092 
1093 static __inline int
1094 cpu_mwait_cx_hint(struct cpu_idle_stat *stat)
1095 {
1096 	int hint, cx_idx;
1097 	u_int idx;
1098 
1099 	hint = stat->hint;
1100 	if (hint >= 0)
1101 		goto done;
1102 
1103 	idx = (stat->repeat + stat->repeat_last + stat->repeat_delta) >>
1104 	    cpu_mwait_repeat_shift;
1105 	if (idx >= cpu_mwait_c1_hints_cnt) {
1106 		/* Step up faster, once we walked through all C1 states */
1107 		stat->repeat_delta += 1 << (cpu_mwait_repeat_shift + 1);
1108 	}
1109 	if (hint == CPU_MWAIT_HINT_AUTODEEP) {
1110 		if (idx >= cpu_mwait_deep_hints_cnt)
1111 			idx = cpu_mwait_deep_hints_cnt - 1;
1112 		hint = cpu_mwait_deep_hints[idx];
1113 	} else {
1114 		if (idx >= cpu_mwait_hints_cnt)
1115 			idx = cpu_mwait_hints_cnt - 1;
1116 		hint = cpu_mwait_hints[idx];
1117 	}
1118 done:
1119 	cx_idx = MWAIT_EAX_TO_CX(hint);
1120 	if (cx_idx >= 0 && cx_idx < CPU_MWAIT_CX_MAX)
1121 		stat->mwait_cx[cx_idx]++;
1122 	return hint;
1123 }
1124 
1125 void
1126 cpu_idle(void)
1127 {
1128 	globaldata_t gd = mycpu;
1129 	struct cpu_idle_stat *stat = &cpu_idle_stats[gd->gd_cpuid];
1130 	struct thread *td __debugvar = gd->gd_curthread;
1131 	int reqflags;
1132 	int quick;
1133 
1134 	stat->repeat = stat->repeat_last = cpu_idle_repeat_max;
1135 
1136 	crit_exit();
1137 	KKASSERT(td->td_critcount == 0);
1138 
1139 	for (;;) {
1140 		/*
1141 		 * See if there are any LWKTs ready to go.
1142 		 */
1143 		lwkt_switch();
1144 
1145 		/*
1146 		 * When halting inside a cli we must check for reqflags
1147 		 * races, particularly [re]schedule requests.  Running
1148 		 * splz() does the job.
1149 		 *
1150 		 * cpu_idle_hlt:
1151 		 *	0	Never halt, just spin
1152 		 *
1153 		 *	1	Always use MONITOR/MWAIT if avail, HLT
1154 		 *		otherwise.
1155 		 *
1156 		 *		Better default for modern (Haswell+) Intel
1157 		 *		cpus.
1158 		 *
1159 		 *	2	Use HLT/MONITOR/MWAIT up to a point and then
1160 		 *		use the ACPI halt (default).  This is a hybrid
1161 		 *		approach.  See machdep.cpu_idle_repeat.
1162 		 *
1163 		 *		Better default for modern AMD cpus and older
1164 		 *		Intel cpus.
1165 		 *
1166 		 *	3	Always use the ACPI halt.  This typically
1167 		 *		eats the least amount of power but the cpu
1168 		 *		will be slow waking up.  Slows down e.g.
1169 		 *		compiles and other pipe/event oriented stuff.
1170 		 *
1171 		 *		Usually the best default for AMD cpus.
1172 		 *
1173 		 *	4	Always use HLT.
1174 		 *
1175 		 *	5	Always spin.
1176 		 *
1177 		 * NOTE: Interrupts are enabled and we are not in a critical
1178 		 *	 section.
1179 		 *
1180 		 * NOTE: Preemptions do not reset gd_idle_repeat.   Also we
1181 		 *	 don't bother capping gd_idle_repeat, it is ok if
1182 		 *	 it overflows.
1183 		 *
1184 		 * Implement optimized invltlb operations when halted
1185 		 * in idle.  By setting the bit in smp_idleinvl_mask
1186 		 * we inform other cpus that they can set _reqs to
1187 		 * request an invltlb.  Current the code to do that
1188 		 * sets the bits in _reqs anyway, but then check _mask
1189 		 * to determine if they can assume the invltlb will execute.
1190 		 *
1191 		 * A critical section is required to ensure that interrupts
1192 		 * do not fully run until after we've had a chance to execute
1193 		 * the request.
1194 		 */
1195 		if (gd->gd_idle_repeat == 0) {
1196 			stat->repeat = (stat->repeat + stat->repeat_last) >> 1;
1197 			if (stat->repeat > cpu_idle_repeat_max)
1198 				stat->repeat = cpu_idle_repeat_max;
1199 			stat->repeat_last = 0;
1200 			stat->repeat_delta = 0;
1201 		}
1202 		++stat->repeat_last;
1203 
1204 		++gd->gd_idle_repeat;
1205 		reqflags = gd->gd_reqflags;
1206 		quick = (cpu_idle_hlt == 1) ||
1207 			(cpu_idle_hlt == 2 &&
1208 			 gd->gd_idle_repeat < cpu_idle_repeat);
1209 
1210 		if (quick && (cpu_mi_feature & CPU_MI_MONITOR) &&
1211 		    (reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1212 			splz(); /* XXX */
1213 			crit_enter_gd(gd);
1214 			ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask, gd->gd_cpuid);
1215 			cpu_mmw_pause_int(&gd->gd_reqflags, reqflags,
1216 			    cpu_mwait_cx_hint(stat), 0);
1217 			stat->halt++;
1218 			ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask, gd->gd_cpuid);
1219 			if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1220 						      gd->gd_cpuid)) {
1221 				cpu_invltlb();
1222 				cpu_mfence();
1223 			}
1224 			crit_exit_gd(gd);
1225 		} else if (cpu_idle_hlt) {
1226 			__asm __volatile("cli");
1227 			splz();
1228 			crit_enter_gd(gd);
1229 			ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask, gd->gd_cpuid);
1230 			if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1231 				if (cpu_idle_hlt == 5) {
1232 					__asm __volatile("sti");
1233 				} else if (quick || cpu_idle_hlt == 4) {
1234 					cpu_idle_default_hook();
1235 				} else {
1236 					cpu_idle_hook();
1237 				}
1238 			}
1239 			__asm __volatile("sti");
1240 			stat->halt++;
1241 			ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask, gd->gd_cpuid);
1242 			if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1243 						      gd->gd_cpuid)) {
1244 				cpu_invltlb();
1245 				cpu_mfence();
1246 			}
1247 			crit_exit_gd(gd);
1248 		} else {
1249 			splz();
1250 			__asm __volatile("sti");
1251 			stat->spin++;
1252 			crit_enter_gd(gd);
1253 			crit_exit_gd(gd);
1254 		}
1255 	}
1256 }
1257 
1258 /*
1259  * Called in a loop indirectly via Xcpustop
1260  */
1261 void
1262 cpu_smp_stopped(void)
1263 {
1264 	globaldata_t gd = mycpu;
1265 	volatile __uint64_t *ptr;
1266 	__uint64_t ovalue;
1267 
1268 	ptr = CPUMASK_ADDR(started_cpus, gd->gd_cpuid);
1269 	ovalue = *ptr;
1270 	if ((ovalue & CPUMASK_SIMPLE(gd->gd_cpuid & 63)) == 0) {
1271 		if (cpu_mi_feature & CPU_MI_MONITOR) {
1272 			if (cpu_mwait_hints) {
1273 				cpu_mmw_pause_long(__DEVOLATILE(void *, ptr),
1274 					   ovalue,
1275 					   cpu_mwait_hints[CPU_MWAIT_C1], 0);
1276 			} else {
1277 				cpu_mmw_pause_long(__DEVOLATILE(void *, ptr),
1278 					   ovalue, 0, 0);
1279 			}
1280 		} else {
1281 			cpu_halt();	/* depend on lapic timer */
1282 		}
1283 	}
1284 }
1285 
1286 /*
1287  * This routine is called if a spinlock has been held through the
1288  * exponential backoff period and is seriously contested.  On a real cpu
1289  * we let it spin.
1290  */
1291 void
1292 cpu_spinlock_contested(void)
1293 {
1294 	cpu_pause();
1295 }
1296 
1297 /*
1298  * Clear registers on exec
1299  */
1300 void
1301 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
1302 {
1303 	struct thread *td = curthread;
1304 	struct lwp *lp = td->td_lwp;
1305 	struct pcb *pcb = td->td_pcb;
1306 	struct trapframe *regs = lp->lwp_md.md_regs;
1307 
1308 	/* was i386_user_cleanup() in NetBSD */
1309 	user_ldt_free(pcb);
1310 
1311 	clear_quickret();
1312 	bzero((char *)regs, sizeof(struct trapframe));
1313 	regs->tf_rip = entry;
1314 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
1315 	regs->tf_rdi = stack;		/* argv */
1316 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
1317 	regs->tf_ss = _udatasel;
1318 	regs->tf_cs = _ucodesel;
1319 	regs->tf_rbx = ps_strings;
1320 
1321 	/*
1322 	 * Reset the hardware debug registers if they were in use.
1323 	 * They won't have any meaning for the newly exec'd process.
1324 	 */
1325 	if (pcb->pcb_flags & PCB_DBREGS) {
1326 		pcb->pcb_dr0 = 0;
1327 		pcb->pcb_dr1 = 0;
1328 		pcb->pcb_dr2 = 0;
1329 		pcb->pcb_dr3 = 0;
1330 		pcb->pcb_dr6 = 0;
1331 		pcb->pcb_dr7 = 0; /* JG set bit 10? */
1332 		if (pcb == td->td_pcb) {
1333 			/*
1334 			 * Clear the debug registers on the running
1335 			 * CPU, otherwise they will end up affecting
1336 			 * the next process we switch to.
1337 			 */
1338 			reset_dbregs();
1339 		}
1340 		pcb->pcb_flags &= ~PCB_DBREGS;
1341 	}
1342 
1343 	/*
1344 	 * Initialize the math emulator (if any) for the current process.
1345 	 * Actually, just clear the bit that says that the emulator has
1346 	 * been initialized.  Initialization is delayed until the process
1347 	 * traps to the emulator (if it is done at all) mainly because
1348 	 * emulators don't provide an entry point for initialization.
1349 	 */
1350 	pcb->pcb_flags &= ~FP_SOFTFP;
1351 
1352 	/*
1353 	 * NOTE: do not set CR0_TS here.  npxinit() must do it after clearing
1354 	 *	 gd_npxthread.  Otherwise a preemptive interrupt thread
1355 	 *	 may panic in npxdna().
1356 	 */
1357 	crit_enter();
1358 	load_cr0(rcr0() | CR0_MP);
1359 
1360 	/*
1361 	 * NOTE: The MSR values must be correct so we can return to
1362 	 * 	 userland.  gd_user_fs/gs must be correct so the switch
1363 	 *	 code knows what the current MSR values are.
1364 	 */
1365 	pcb->pcb_fsbase = 0;	/* Values loaded from PCB on switch */
1366 	pcb->pcb_gsbase = 0;
1367 	mdcpu->gd_user_fs = 0;	/* Cache of current MSR values */
1368 	mdcpu->gd_user_gs = 0;
1369 	wrmsr(MSR_FSBASE, 0);	/* Set MSR values for return to userland */
1370 	wrmsr(MSR_KGSBASE, 0);
1371 
1372 	/* Initialize the npx (if any) for the current process. */
1373 	npxinit();
1374 	crit_exit();
1375 
1376 	pcb->pcb_ds = _udatasel;
1377 	pcb->pcb_es = _udatasel;
1378 	pcb->pcb_fs = _udatasel;
1379 	pcb->pcb_gs = _udatasel;
1380 }
1381 
1382 void
1383 cpu_setregs(void)
1384 {
1385 	register_t cr0;
1386 
1387 	cr0 = rcr0();
1388 	cr0 |= CR0_NE;			/* Done by npxinit() */
1389 	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1390 	cr0 |= CR0_WP | CR0_AM;
1391 	load_cr0(cr0);
1392 	load_gs(_udatasel);
1393 }
1394 
1395 static int
1396 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1397 {
1398 	int error;
1399 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1400 		req);
1401 	if (!error && req->newptr)
1402 		resettodr();
1403 	return (error);
1404 }
1405 
1406 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1407 	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1408 
1409 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1410 	CTLFLAG_RW, &disable_rtc_set, 0, "");
1411 
1412 #if 0 /* JG */
1413 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1414 	CTLFLAG_RD, &bootinfo, bootinfo, "");
1415 #endif
1416 
1417 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1418 	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1419 
1420 static int
1421 efi_map_sysctl_handler(SYSCTL_HANDLER_ARGS)
1422 {
1423 	struct efi_map_header *efihdr;
1424 	caddr_t kmdp;
1425 	uint32_t efisize;
1426 
1427 	kmdp = preload_search_by_type("elf kernel");
1428 	if (kmdp == NULL)
1429 		kmdp = preload_search_by_type("elf64 kernel");
1430 	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
1431 	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
1432 	if (efihdr == NULL)
1433 		return (0);
1434 	efisize = *((uint32_t *)efihdr - 1);
1435 	return (SYSCTL_OUT(req, efihdr, efisize));
1436 }
1437 SYSCTL_PROC(_machdep, OID_AUTO, efi_map, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
1438     efi_map_sysctl_handler, "S,efi_map_header", "Raw EFI Memory Map");
1439 
1440 /*
1441  * Initialize 386 and configure to run kernel
1442  */
1443 
1444 /*
1445  * Initialize segments & interrupt table
1446  */
1447 
1448 int _default_ldt;
1449 struct user_segment_descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1450 struct gate_descriptor idt_arr[MAXCPU][NIDT];
1451 #if 0 /* JG */
1452 union descriptor ldt[NLDT];		/* local descriptor table */
1453 #endif
1454 
1455 /* table descriptors - used to load tables by cpu */
1456 struct region_descriptor r_gdt;
1457 struct region_descriptor r_idt_arr[MAXCPU];
1458 
1459 /* JG proc0paddr is a virtual address */
1460 void *proc0paddr;
1461 /* JG alignment? */
1462 char proc0paddr_buff[LWKT_THREAD_STACK];
1463 
1464 
1465 /* software prototypes -- in more palatable form */
1466 struct soft_segment_descriptor gdt_segs[] = {
1467 /* GNULL_SEL	0 Null Descriptor */
1468 {	0x0,			/* segment base address  */
1469 	0x0,			/* length */
1470 	0,			/* segment type */
1471 	0,			/* segment descriptor priority level */
1472 	0,			/* segment descriptor present */
1473 	0,			/* long */
1474 	0,			/* default 32 vs 16 bit size */
1475 	0  			/* limit granularity (byte/page units)*/ },
1476 /* GCODE_SEL	1 Code Descriptor for kernel */
1477 {	0x0,			/* segment base address  */
1478 	0xfffff,		/* length - all address space */
1479 	SDT_MEMERA,		/* segment type */
1480 	SEL_KPL,		/* segment descriptor priority level */
1481 	1,			/* segment descriptor present */
1482 	1,			/* long */
1483 	0,			/* default 32 vs 16 bit size */
1484 	1  			/* limit granularity (byte/page units)*/ },
1485 /* GDATA_SEL	2 Data Descriptor for kernel */
1486 {	0x0,			/* segment base address  */
1487 	0xfffff,		/* length - all address space */
1488 	SDT_MEMRWA,		/* segment type */
1489 	SEL_KPL,		/* segment descriptor priority level */
1490 	1,			/* segment descriptor present */
1491 	1,			/* long */
1492 	0,			/* default 32 vs 16 bit size */
1493 	1  			/* limit granularity (byte/page units)*/ },
1494 /* GUCODE32_SEL	3 32 bit Code Descriptor for user */
1495 {	0x0,			/* segment base address  */
1496 	0xfffff,		/* length - all address space */
1497 	SDT_MEMERA,		/* segment type */
1498 	SEL_UPL,		/* segment descriptor priority level */
1499 	1,			/* segment descriptor present */
1500 	0,			/* long */
1501 	1,			/* default 32 vs 16 bit size */
1502 	1  			/* limit granularity (byte/page units)*/ },
1503 /* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
1504 {	0x0,			/* segment base address  */
1505 	0xfffff,		/* length - all address space */
1506 	SDT_MEMRWA,		/* segment type */
1507 	SEL_UPL,		/* segment descriptor priority level */
1508 	1,			/* segment descriptor present */
1509 	0,			/* long */
1510 	1,			/* default 32 vs 16 bit size */
1511 	1  			/* limit granularity (byte/page units)*/ },
1512 /* GUCODE_SEL	5 64 bit Code Descriptor for user */
1513 {	0x0,			/* segment base address  */
1514 	0xfffff,		/* length - all address space */
1515 	SDT_MEMERA,		/* segment type */
1516 	SEL_UPL,		/* segment descriptor priority level */
1517 	1,			/* segment descriptor present */
1518 	1,			/* long */
1519 	0,			/* default 32 vs 16 bit size */
1520 	1  			/* limit granularity (byte/page units)*/ },
1521 /* GPROC0_SEL	6 Proc 0 Tss Descriptor */
1522 {
1523 	0x0,			/* segment base address */
1524 	sizeof(struct x86_64tss)-1,/* length - all address space */
1525 	SDT_SYSTSS,		/* segment type */
1526 	SEL_KPL,		/* segment descriptor priority level */
1527 	1,			/* segment descriptor present */
1528 	0,			/* long */
1529 	0,			/* unused - default 32 vs 16 bit size */
1530 	0  			/* limit granularity (byte/page units)*/ },
1531 /* Actually, the TSS is a system descriptor which is double size */
1532 {	0x0,			/* segment base address  */
1533 	0x0,			/* length */
1534 	0,			/* segment type */
1535 	0,			/* segment descriptor priority level */
1536 	0,			/* segment descriptor present */
1537 	0,			/* long */
1538 	0,			/* default 32 vs 16 bit size */
1539 	0  			/* limit granularity (byte/page units)*/ },
1540 /* GUGS32_SEL	8 32 bit GS Descriptor for user */
1541 {	0x0,			/* segment base address  */
1542 	0xfffff,		/* length - all address space */
1543 	SDT_MEMRWA,		/* segment type */
1544 	SEL_UPL,		/* segment descriptor priority level */
1545 	1,			/* segment descriptor present */
1546 	0,			/* long */
1547 	1,			/* default 32 vs 16 bit size */
1548 	1  			/* limit granularity (byte/page units)*/ },
1549 };
1550 
1551 void
1552 setidt_global(int idx, inthand_t *func, int typ, int dpl, int ist)
1553 {
1554 	int cpu;
1555 
1556 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
1557 		struct gate_descriptor *ip = &idt_arr[cpu][idx];
1558 
1559 		ip->gd_looffset = (uintptr_t)func;
1560 		ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1561 		ip->gd_ist = ist;
1562 		ip->gd_xx = 0;
1563 		ip->gd_type = typ;
1564 		ip->gd_dpl = dpl;
1565 		ip->gd_p = 1;
1566 		ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1567 	}
1568 }
1569 
1570 void
1571 setidt(int idx, inthand_t *func, int typ, int dpl, int ist, int cpu)
1572 {
1573 	struct gate_descriptor *ip;
1574 
1575 	KASSERT(cpu >= 0 && cpu < ncpus, ("invalid cpu %d", cpu));
1576 
1577 	ip = &idt_arr[cpu][idx];
1578 	ip->gd_looffset = (uintptr_t)func;
1579 	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1580 	ip->gd_ist = ist;
1581 	ip->gd_xx = 0;
1582 	ip->gd_type = typ;
1583 	ip->gd_dpl = dpl;
1584 	ip->gd_p = 1;
1585 	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1586 }
1587 
1588 #define	IDTVEC(name)	__CONCAT(X,name)
1589 
1590 extern inthand_t
1591 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1592 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1593 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1594 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1595 	IDTVEC(xmm), IDTVEC(dblfault),
1596 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1597 
1598 void
1599 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1600 {
1601 	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1602 	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1603 	ssd->ssd_type  = sd->sd_type;
1604 	ssd->ssd_dpl   = sd->sd_dpl;
1605 	ssd->ssd_p     = sd->sd_p;
1606 	ssd->ssd_def32 = sd->sd_def32;
1607 	ssd->ssd_gran  = sd->sd_gran;
1608 }
1609 
1610 void
1611 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1612 {
1613 
1614 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1615 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1616 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1617 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1618 	sd->sd_type  = ssd->ssd_type;
1619 	sd->sd_dpl   = ssd->ssd_dpl;
1620 	sd->sd_p     = ssd->ssd_p;
1621 	sd->sd_long  = ssd->ssd_long;
1622 	sd->sd_def32 = ssd->ssd_def32;
1623 	sd->sd_gran  = ssd->ssd_gran;
1624 }
1625 
1626 void
1627 ssdtosyssd(struct soft_segment_descriptor *ssd,
1628     struct system_segment_descriptor *sd)
1629 {
1630 
1631 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1632 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1633 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1634 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1635 	sd->sd_type  = ssd->ssd_type;
1636 	sd->sd_dpl   = ssd->ssd_dpl;
1637 	sd->sd_p     = ssd->ssd_p;
1638 	sd->sd_gran  = ssd->ssd_gran;
1639 }
1640 
1641 /*
1642  * Populate the (physmap) array with base/bound pairs describing the
1643  * available physical memory in the system, then test this memory and
1644  * build the phys_avail array describing the actually-available memory.
1645  *
1646  * If we cannot accurately determine the physical memory map, then use
1647  * value from the 0xE801 call, and failing that, the RTC.
1648  *
1649  * Total memory size may be set by the kernel environment variable
1650  * hw.physmem or the compile-time define MAXMEM.
1651  *
1652  * Memory is aligned to PHYSMAP_ALIGN which must be a multiple
1653  * of PAGE_SIZE.  This also greatly reduces the memory test time
1654  * which would otherwise be excessive on machines with > 8G of ram.
1655  *
1656  * XXX first should be vm_paddr_t.
1657  */
1658 
1659 #define PHYSMAP_ALIGN		(vm_paddr_t)(128 * 1024)
1660 #define PHYSMAP_ALIGN_MASK	(vm_paddr_t)(PHYSMAP_ALIGN - 1)
1661 #define PHYSMAP_SIZE		VM_PHYSSEG_MAX
1662 
1663 vm_paddr_t physmap[PHYSMAP_SIZE];
1664 struct bios_smap *smapbase, *smap, *smapend;
1665 struct efi_map_header *efihdrbase;
1666 u_int32_t smapsize;
1667 
1668 #define PHYSMAP_HANDWAVE	(vm_paddr_t)(2 * 1024 * 1024)
1669 #define PHYSMAP_HANDWAVE_MASK	(PHYSMAP_HANDWAVE - 1)
1670 
1671 static void
1672 add_smap_entries(int *physmap_idx)
1673 {
1674 	int i;
1675 
1676 	smapsize = *((u_int32_t *)smapbase - 1);
1677 	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1678 
1679 	for (smap = smapbase; smap < smapend; smap++) {
1680 		if (boothowto & RB_VERBOSE)
1681 			kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1682 			    smap->type, smap->base, smap->length);
1683 
1684 		if (smap->type != SMAP_TYPE_MEMORY)
1685 			continue;
1686 
1687 		if (smap->length == 0)
1688 			continue;
1689 
1690 		for (i = 0; i <= *physmap_idx; i += 2) {
1691 			if (smap->base < physmap[i + 1]) {
1692 				if (boothowto & RB_VERBOSE) {
1693 					kprintf("Overlapping or non-monotonic "
1694 						"memory region, ignoring "
1695 						"second region\n");
1696 				}
1697 				break;
1698 			}
1699 		}
1700 		if (i <= *physmap_idx)
1701 			continue;
1702 
1703 		Realmem += smap->length;
1704 
1705 		if (smap->base == physmap[*physmap_idx + 1]) {
1706 			physmap[*physmap_idx + 1] += smap->length;
1707 			continue;
1708 		}
1709 
1710 		*physmap_idx += 2;
1711 		if (*physmap_idx == PHYSMAP_SIZE) {
1712 			kprintf("Too many segments in the physical "
1713 				"address map, giving up\n");
1714 			break;
1715 		}
1716 		physmap[*physmap_idx] = smap->base;
1717 		physmap[*physmap_idx + 1] = smap->base + smap->length;
1718 	}
1719 }
1720 
1721 static void
1722 add_efi_map_entries(int *physmap_idx)
1723 {
1724 	 struct efi_md *map, *p;
1725 	 const char *type;
1726 	 size_t efisz;
1727 	 int i, ndesc;
1728 
1729 	static const char *types[] = {
1730 		"Reserved",
1731 		"LoaderCode",
1732 		"LoaderData",
1733 		"BootServicesCode",
1734 		"BootServicesData",
1735 		"RuntimeServicesCode",
1736 		"RuntimeServicesData",
1737 		"ConventionalMemory",
1738 		"UnusableMemory",
1739 		"ACPIReclaimMemory",
1740 		"ACPIMemoryNVS",
1741 		"MemoryMappedIO",
1742 		"MemoryMappedIOPortSpace",
1743 		"PalCode"
1744 	 };
1745 
1746 	/*
1747 	 * Memory map data provided by UEFI via the GetMemoryMap
1748 	 * Boot Services API.
1749 	 */
1750 	efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
1751 	map = (struct efi_md *)((uint8_t *)efihdrbase + efisz);
1752 
1753 	if (efihdrbase->descriptor_size == 0)
1754 		return;
1755 	ndesc = efihdrbase->memory_size / efihdrbase->descriptor_size;
1756 
1757 	if (boothowto & RB_VERBOSE)
1758 		kprintf("%23s %12s %12s %8s %4s\n",
1759 		    "Type", "Physical", "Virtual", "#Pages", "Attr");
1760 
1761 	for (i = 0, p = map; i < ndesc; i++,
1762 	    p = efi_next_descriptor(p, efihdrbase->descriptor_size)) {
1763 		if (boothowto & RB_VERBOSE) {
1764 			if (p->md_type <= EFI_MD_TYPE_PALCODE)
1765 				type = types[p->md_type];
1766 			else
1767 				type = "<INVALID>";
1768 			kprintf("%23s %012lx %12p %08lx ", type, p->md_phys,
1769 			    p->md_virt, p->md_pages);
1770 			if (p->md_attr & EFI_MD_ATTR_UC)
1771 				kprintf("UC ");
1772 			if (p->md_attr & EFI_MD_ATTR_WC)
1773 				kprintf("WC ");
1774 			if (p->md_attr & EFI_MD_ATTR_WT)
1775 				kprintf("WT ");
1776 			if (p->md_attr & EFI_MD_ATTR_WB)
1777 				kprintf("WB ");
1778 			if (p->md_attr & EFI_MD_ATTR_UCE)
1779 				kprintf("UCE ");
1780 			if (p->md_attr & EFI_MD_ATTR_WP)
1781 				kprintf("WP ");
1782 			if (p->md_attr & EFI_MD_ATTR_RP)
1783 				kprintf("RP ");
1784 			if (p->md_attr & EFI_MD_ATTR_XP)
1785 				kprintf("XP ");
1786 			if (p->md_attr & EFI_MD_ATTR_RT)
1787 				kprintf("RUNTIME");
1788 			kprintf("\n");
1789 		}
1790 
1791 		switch (p->md_type) {
1792 		case EFI_MD_TYPE_CODE:
1793 		case EFI_MD_TYPE_DATA:
1794 		case EFI_MD_TYPE_BS_CODE:
1795 		case EFI_MD_TYPE_BS_DATA:
1796 		case EFI_MD_TYPE_FREE:
1797 			/*
1798 			 * We're allowed to use any entry with these types.
1799 			 */
1800 			break;
1801 		default:
1802 			continue;
1803 		}
1804 
1805 		Realmem += p->md_pages * PAGE_SIZE;
1806 
1807 		if (p->md_phys == physmap[*physmap_idx + 1]) {
1808 			physmap[*physmap_idx + 1] += p->md_pages * PAGE_SIZE;
1809 			continue;
1810 		}
1811 
1812 		*physmap_idx += 2;
1813 		if (*physmap_idx == PHYSMAP_SIZE) {
1814 			kprintf("Too many segments in the physical "
1815 				"address map, giving up\n");
1816 			break;
1817 		}
1818 		physmap[*physmap_idx] = p->md_phys;
1819 		physmap[*physmap_idx + 1] = p->md_phys + p->md_pages * PAGE_SIZE;
1820 	 }
1821 }
1822 
1823 struct fb_info efi_fb_info;
1824 static int have_efi_framebuffer = 0;
1825 
1826 static void
1827 efi_fb_init_vaddr(int direct_map)
1828 {
1829 	uint64_t sz;
1830 	vm_offset_t addr, v;
1831 
1832 	v = efi_fb_info.vaddr;
1833 	sz = efi_fb_info.stride * efi_fb_info.height;
1834 
1835 	if (direct_map) {
1836 		addr = PHYS_TO_DMAP(efi_fb_info.paddr);
1837 		if (addr >= DMAP_MIN_ADDRESS && addr + sz < DMAP_MAX_ADDRESS)
1838 			efi_fb_info.vaddr = addr;
1839 	} else {
1840 		efi_fb_info.vaddr = (vm_offset_t)pmap_mapdev_attr(
1841 		    efi_fb_info.paddr, sz, PAT_WRITE_COMBINING);
1842 	}
1843 }
1844 
1845 static u_int
1846 efifb_color_depth(struct efi_fb *efifb)
1847 {
1848 	uint32_t mask;
1849 	u_int depth;
1850 
1851 	mask = efifb->fb_mask_red | efifb->fb_mask_green |
1852 	    efifb->fb_mask_blue | efifb->fb_mask_reserved;
1853 	if (mask == 0)
1854 		return (0);
1855 	for (depth = 1; mask != 1; depth++)
1856 		mask >>= 1;
1857 	return (depth);
1858 }
1859 
1860 int
1861 probe_efi_fb(int early)
1862 {
1863 	struct efi_fb	*efifb;
1864 	caddr_t		kmdp;
1865 	u_int		depth;
1866 
1867 	if (have_efi_framebuffer) {
1868 		if (!early &&
1869 		    (efi_fb_info.vaddr == 0 ||
1870 		     efi_fb_info.vaddr == PHYS_TO_DMAP(efi_fb_info.paddr)))
1871 			efi_fb_init_vaddr(0);
1872 		return 0;
1873 	}
1874 
1875 	kmdp = preload_search_by_type("elf kernel");
1876 	if (kmdp == NULL)
1877 		kmdp = preload_search_by_type("elf64 kernel");
1878 	efifb = (struct efi_fb *)preload_search_info(kmdp,
1879 	    MODINFO_METADATA | MODINFOMD_EFI_FB);
1880 	if (efifb == NULL)
1881 		return 1;
1882 
1883 	depth = efifb_color_depth(efifb);
1884 	/*
1885 	 * Our bootloader should already notice, when we won't be able to
1886 	 * use the UEFI framebuffer.
1887 	 */
1888 	if (depth != 24 && depth != 32)
1889 		return 1;
1890 
1891 	have_efi_framebuffer = 1;
1892 
1893 	efi_fb_info.is_vga_boot_display = 1;
1894 	efi_fb_info.width = efifb->fb_width;
1895 	efi_fb_info.height = efifb->fb_height;
1896 	efi_fb_info.depth = depth;
1897 	efi_fb_info.stride = efifb->fb_stride * (depth / 8);
1898 	efi_fb_info.paddr = efifb->fb_addr;
1899 	if (early) {
1900 		efi_fb_info.vaddr = 0;
1901 	} else {
1902 		efi_fb_init_vaddr(0);
1903 	}
1904 	efi_fb_info.fbops.fb_set_par = NULL;
1905 	efi_fb_info.fbops.fb_blank = NULL;
1906 	efi_fb_info.fbops.fb_debug_enter = NULL;
1907 	efi_fb_info.device = NULL;
1908 
1909 	return 0;
1910 }
1911 
1912 static void
1913 efifb_startup(void *arg)
1914 {
1915 	probe_efi_fb(0);
1916 }
1917 
1918 SYSINIT(efi_fb_info, SI_BOOT1_POST, SI_ORDER_FIRST, efifb_startup, NULL);
1919 
1920 static void
1921 getmemsize(caddr_t kmdp, u_int64_t first)
1922 {
1923 	int off, physmap_idx, pa_indx, da_indx;
1924 	int i, j;
1925 	vm_paddr_t pa;
1926 	vm_paddr_t msgbuf_size;
1927 	u_long physmem_tunable;
1928 	pt_entry_t *pte;
1929 	quad_t dcons_addr, dcons_size;
1930 
1931 	bzero(physmap, sizeof(physmap));
1932 	physmap_idx = 0;
1933 
1934 	/*
1935 	 * get memory map from INT 15:E820, kindly supplied by the loader.
1936 	 *
1937 	 * subr_module.c says:
1938 	 * "Consumer may safely assume that size value precedes data."
1939 	 * ie: an int32_t immediately precedes smap.
1940 	 */
1941 	efihdrbase = (struct efi_map_header *)preload_search_info(kmdp,
1942 		     MODINFO_METADATA | MODINFOMD_EFI_MAP);
1943 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1944 		   MODINFO_METADATA | MODINFOMD_SMAP);
1945 	if (smapbase == NULL && efihdrbase == NULL)
1946 		panic("No BIOS smap or EFI map info from loader!");
1947 
1948 	if (efihdrbase == NULL)
1949 		add_smap_entries(&physmap_idx);
1950 	else
1951 		add_efi_map_entries(&physmap_idx);
1952 
1953 	base_memory = physmap[1] / 1024;
1954 	/* make hole for AP bootstrap code */
1955 	physmap[1] = mp_bootaddress(base_memory);
1956 
1957 	/* Save EBDA address, if any */
1958 	ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
1959 	ebda_addr <<= 4;
1960 
1961 	/*
1962 	 * Maxmem isn't the "maximum memory", it's one larger than the
1963 	 * highest page of the physical address space.  It should be
1964 	 * called something like "Maxphyspage".  We may adjust this
1965 	 * based on ``hw.physmem'' and the results of the memory test.
1966 	 */
1967 	Maxmem = atop(physmap[physmap_idx + 1]);
1968 
1969 #ifdef MAXMEM
1970 	Maxmem = MAXMEM / 4;
1971 #endif
1972 
1973 	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1974 		Maxmem = atop(physmem_tunable);
1975 
1976 	/*
1977 	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1978 	 * in the system.
1979 	 */
1980 	if (Maxmem > atop(physmap[physmap_idx + 1]))
1981 		Maxmem = atop(physmap[physmap_idx + 1]);
1982 
1983 	/*
1984 	 * Blowing out the DMAP will blow up the system.
1985 	 */
1986 	if (Maxmem > atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS)) {
1987 		kprintf("Limiting Maxmem due to DMAP size\n");
1988 		Maxmem = atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS);
1989 	}
1990 
1991 	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1992 	    (boothowto & RB_VERBOSE)) {
1993 		kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
1994 	}
1995 
1996 	/*
1997 	 * Call pmap initialization to make new kernel address space
1998 	 *
1999 	 * Mask off page 0.
2000 	 */
2001 	pmap_bootstrap(&first);
2002 	physmap[0] = PAGE_SIZE;
2003 
2004 	/*
2005 	 * Align the physmap to PHYSMAP_ALIGN and cut out anything
2006 	 * exceeding Maxmem.
2007 	 */
2008 	for (i = j = 0; i <= physmap_idx; i += 2) {
2009 		if (physmap[i+1] > ptoa(Maxmem))
2010 			physmap[i+1] = ptoa(Maxmem);
2011 		physmap[i] = (physmap[i] + PHYSMAP_ALIGN_MASK) &
2012 			     ~PHYSMAP_ALIGN_MASK;
2013 		physmap[i+1] = physmap[i+1] & ~PHYSMAP_ALIGN_MASK;
2014 
2015 		physmap[j] = physmap[i];
2016 		physmap[j+1] = physmap[i+1];
2017 
2018 		if (physmap[i] < physmap[i+1])
2019 			j += 2;
2020 	}
2021 	physmap_idx = j - 2;
2022 
2023 	/*
2024 	 * Align anything else used in the validation loop.
2025 	 */
2026 	first = (first + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
2027 
2028 	/*
2029 	 * Size up each available chunk of physical memory.
2030 	 */
2031 	pa_indx = 0;
2032 	da_indx = 0;
2033 	phys_avail[pa_indx].phys_beg = physmap[0];
2034 	phys_avail[pa_indx].phys_end = physmap[0];
2035 	dump_avail[da_indx].phys_beg = 0;
2036 	dump_avail[da_indx].phys_end = physmap[0];
2037 	pte = CMAP1;
2038 
2039 	/*
2040 	 * Get dcons buffer address
2041 	 */
2042 	if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
2043 	    kgetenv_quad("dcons.size", &dcons_size) == 0)
2044 		dcons_addr = 0;
2045 
2046 	/*
2047 	 * Validate the physical memory.  The physical memory segments
2048 	 * have already been aligned to PHYSMAP_ALIGN which is a multiple
2049 	 * of PAGE_SIZE.
2050 	 */
2051 	for (i = 0; i <= physmap_idx; i += 2) {
2052 		vm_paddr_t end;
2053 		vm_paddr_t incr = PHYSMAP_ALIGN;
2054 
2055 		end = physmap[i + 1];
2056 
2057 		for (pa = physmap[i]; pa < end; pa += incr) {
2058 			int page_bad, full;
2059 			volatile uint64_t *ptr = (uint64_t *)CADDR1;
2060 			uint64_t tmp;
2061 
2062 			incr = PHYSMAP_ALIGN;
2063 			full = FALSE;
2064 
2065 			/*
2066 			 * block out kernel memory as not available.
2067 			 */
2068 			if (pa >= 0x200000 && pa < first)
2069 				goto do_dump_avail;
2070 
2071 			/*
2072 			 * block out dcons buffer
2073 			 */
2074 			if (dcons_addr > 0
2075 			    && pa >= trunc_page(dcons_addr)
2076 			    && pa < dcons_addr + dcons_size) {
2077 				goto do_dump_avail;
2078 			}
2079 
2080 			page_bad = FALSE;
2081 
2082 			/*
2083 			 * Always test the first and last block supplied in
2084 			 * the map entry, but it just takes too long to run
2085 			 * the test these days and we already have to skip
2086 			 * pages.  Handwave it on PHYSMAP_HANDWAVE boundaries.
2087 			 */
2088 			if (pa != physmap[i]) {
2089 				vm_paddr_t bytes = end - pa;
2090 				if ((pa & PHYSMAP_HANDWAVE_MASK) == 0 &&
2091 				    bytes >= PHYSMAP_HANDWAVE + PHYSMAP_ALIGN) {
2092 					incr = PHYSMAP_HANDWAVE;
2093 					goto handwaved;
2094 				}
2095 			}
2096 
2097 			/*
2098 			 * map page into kernel: valid, read/write,non-cacheable
2099 			 */
2100 			*pte = pa |
2101 			    kernel_pmap.pmap_bits[PG_V_IDX] |
2102 			    kernel_pmap.pmap_bits[PG_RW_IDX] |
2103 			    kernel_pmap.pmap_bits[PG_N_IDX];
2104 			cpu_invlpg(__DEVOLATILE(void *, ptr));
2105 			cpu_mfence();
2106 
2107 			tmp = *ptr;
2108 			/*
2109 			 * Test for alternating 1's and 0's
2110 			 */
2111 			*ptr = 0xaaaaaaaaaaaaaaaaLLU;
2112 			cpu_mfence();
2113 			if (*ptr != 0xaaaaaaaaaaaaaaaaLLU)
2114 				page_bad = TRUE;
2115 			/*
2116 			 * Test for alternating 0's and 1's
2117 			 */
2118 			*ptr = 0x5555555555555555LLU;
2119 			cpu_mfence();
2120 			if (*ptr != 0x5555555555555555LLU)
2121 				page_bad = TRUE;
2122 			/*
2123 			 * Test for all 1's
2124 			 */
2125 			*ptr = 0xffffffffffffffffLLU;
2126 			cpu_mfence();
2127 			if (*ptr != 0xffffffffffffffffLLU)
2128 				page_bad = TRUE;
2129 			/*
2130 			 * Test for all 0's
2131 			 */
2132 			*ptr = 0x0;
2133 			cpu_mfence();
2134 			if (*ptr != 0x0)
2135 				page_bad = TRUE;
2136 			/*
2137 			 * Restore original value.
2138 			 */
2139 			*ptr = tmp;
2140 handwaved:
2141 
2142 			/*
2143 			 * Adjust array of valid/good pages.
2144 			 */
2145 			if (page_bad == TRUE)
2146 				continue;
2147 
2148 			/*
2149 			 * If this good page is a continuation of the
2150 			 * previous set of good pages, then just increase
2151 			 * the end pointer. Otherwise start a new chunk.
2152 			 * Note that "end" points one higher than end,
2153 			 * making the range >= start and < end.
2154 			 * If we're also doing a speculative memory
2155 			 * test and we at or past the end, bump up Maxmem
2156 			 * so that we keep going. The first bad page
2157 			 * will terminate the loop.
2158 			 */
2159 			if (phys_avail[pa_indx].phys_end == pa) {
2160 				phys_avail[pa_indx].phys_end += incr;
2161 			} else {
2162 				++pa_indx;
2163 				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
2164 					kprintf(
2165 		"Too many holes in the physical address space, giving up\n");
2166 					--pa_indx;
2167 					full = TRUE;
2168 					goto do_dump_avail;
2169 				}
2170 				phys_avail[pa_indx].phys_beg = pa;
2171 				phys_avail[pa_indx].phys_end = pa + incr;
2172 			}
2173 			physmem += incr / PAGE_SIZE;
2174 do_dump_avail:
2175 			if (dump_avail[da_indx].phys_end == pa) {
2176 				dump_avail[da_indx].phys_end += incr;
2177 			} else {
2178 				++da_indx;
2179 				if (da_indx == DUMP_AVAIL_ARRAY_END) {
2180 					--da_indx;
2181 					goto do_next;
2182 				}
2183 				dump_avail[da_indx].phys_beg = pa;
2184 				dump_avail[da_indx].phys_end = pa + incr;
2185 			}
2186 do_next:
2187 			if (full)
2188 				break;
2189 		}
2190 	}
2191 	*pte = 0;
2192 	cpu_invltlb();
2193 	cpu_mfence();
2194 
2195 	/*
2196 	 * The last chunk must contain at least one page plus the message
2197 	 * buffer to avoid complicating other code (message buffer address
2198 	 * calculation, etc.).
2199 	 */
2200 	msgbuf_size = (MSGBUF_SIZE + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
2201 
2202 	while (phys_avail[pa_indx].phys_beg + PHYSMAP_ALIGN + msgbuf_size >=
2203 	       phys_avail[pa_indx].phys_end) {
2204 		physmem -= atop(phys_avail[pa_indx].phys_end -
2205 				phys_avail[pa_indx].phys_beg);
2206 		phys_avail[pa_indx].phys_beg = 0;
2207 		phys_avail[pa_indx].phys_end = 0;
2208 		--pa_indx;
2209 	}
2210 
2211 	Maxmem = atop(phys_avail[pa_indx].phys_end);
2212 
2213 	/* Trim off space for the message buffer. */
2214 	phys_avail[pa_indx].phys_end -= msgbuf_size;
2215 
2216 	avail_end = phys_avail[pa_indx].phys_end;
2217 
2218 	/* Map the message buffer. */
2219 	for (off = 0; off < msgbuf_size; off += PAGE_SIZE) {
2220 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2221 	}
2222 	/* Try to get EFI framebuffer working as early as possible */
2223 	if (have_efi_framebuffer)
2224 		efi_fb_init_vaddr(1);
2225 }
2226 
2227 struct machintr_abi MachIntrABI;
2228 
2229 /*
2230  * IDT VECTORS:
2231  *	0	Divide by zero
2232  *	1	Debug
2233  *	2	NMI
2234  *	3	BreakPoint
2235  *	4	OverFlow
2236  *	5	Bound-Range
2237  *	6	Invalid OpCode
2238  *	7	Device Not Available (x87)
2239  *	8	Double-Fault
2240  *	9	Coprocessor Segment overrun (unsupported, reserved)
2241  *	10	Invalid-TSS
2242  *	11	Segment not present
2243  *	12	Stack
2244  *	13	General Protection
2245  *	14	Page Fault
2246  *	15	Reserved
2247  *	16	x87 FP Exception pending
2248  *	17	Alignment Check
2249  *	18	Machine Check
2250  *	19	SIMD floating point
2251  *	20-31	reserved
2252  *	32-255	INTn/external sources
2253  */
2254 u_int64_t
2255 hammer_time(u_int64_t modulep, u_int64_t physfree)
2256 {
2257 	caddr_t kmdp;
2258 	int gsel_tss, x, cpu;
2259 #if 0 /* JG */
2260 	int metadata_missing, off;
2261 #endif
2262 	struct mdglobaldata *gd;
2263 	u_int64_t msr;
2264 
2265 	/*
2266 	 * Prevent lowering of the ipl if we call tsleep() early.
2267 	 */
2268 	gd = &CPU_prvspace[0]->mdglobaldata;
2269 	bzero(gd, sizeof(*gd));
2270 
2271 	/*
2272 	 * Note: on both UP and SMP curthread must be set non-NULL
2273 	 * early in the boot sequence because the system assumes
2274 	 * that 'curthread' is never NULL.
2275 	 */
2276 
2277 	gd->mi.gd_curthread = &thread0;
2278 	thread0.td_gd = &gd->mi;
2279 
2280 	atdevbase = ISA_HOLE_START + PTOV_OFFSET;
2281 
2282 #if 0 /* JG */
2283 	metadata_missing = 0;
2284 	if (bootinfo.bi_modulep) {
2285 		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
2286 		preload_bootstrap_relocate(KERNBASE);
2287 	} else {
2288 		metadata_missing = 1;
2289 	}
2290 	if (bootinfo.bi_envp)
2291 		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
2292 #endif
2293 
2294 	preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
2295 	preload_bootstrap_relocate(PTOV_OFFSET);
2296 	kmdp = preload_search_by_type("elf kernel");
2297 	if (kmdp == NULL)
2298 		kmdp = preload_search_by_type("elf64 kernel");
2299 	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
2300 	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
2301 #ifdef DDB
2302 	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
2303 	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
2304 #endif
2305 	efi_systbl_phys = MD_FETCH(kmdp, MODINFOMD_FW_HANDLE, vm_paddr_t);
2306 
2307 	if (boothowto & RB_VERBOSE)
2308 		bootverbose++;
2309 
2310 	/*
2311 	 * Default MachIntrABI to ICU
2312 	 */
2313 	MachIntrABI = MachIntrABI_ICU;
2314 
2315 	/*
2316 	 * start with one cpu.  Note: with one cpu, ncpus_fit_mask remain 0.
2317 	 */
2318 	ncpus = 1;
2319 	ncpus_fit = 1;
2320 	/* Init basic tunables, hz etc */
2321 	init_param1();
2322 
2323 	/*
2324 	 * make gdt memory segments
2325 	 */
2326 	gdt_segs[GPROC0_SEL].ssd_base =
2327 		(uintptr_t) &CPU_prvspace[0]->mdglobaldata.gd_common_tss;
2328 
2329 	gd->mi.gd_prvspace = CPU_prvspace[0];
2330 
2331 	for (x = 0; x < NGDT; x++) {
2332 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
2333 			ssdtosd(&gdt_segs[x], &gdt[x]);
2334 	}
2335 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2336 	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
2337 
2338 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
2339 	r_gdt.rd_base =  (long) gdt;
2340 	lgdt(&r_gdt);
2341 
2342 	wrmsr(MSR_FSBASE, 0);		/* User value */
2343 	wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
2344 	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
2345 
2346 	mi_gdinit(&gd->mi, 0);
2347 	cpu_gdinit(gd, 0);
2348 	proc0paddr = proc0paddr_buff;
2349 	mi_proc0init(&gd->mi, proc0paddr);
2350 	safepri = TDPRI_MAX;
2351 
2352 	/* spinlocks and the BGL */
2353 	init_locks();
2354 
2355 	/* exceptions */
2356 	for (x = 0; x < NIDT; x++)
2357 		setidt_global(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
2358 	setidt_global(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
2359 	setidt_global(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
2360 	setidt_global(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 1);
2361  	setidt_global(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
2362 	setidt_global(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
2363 	setidt_global(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
2364 	setidt_global(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
2365 	setidt_global(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
2366 	setidt_global(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
2367 	setidt_global(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
2368 	setidt_global(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
2369 	setidt_global(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
2370 	setidt_global(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
2371 	setidt_global(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
2372 	setidt_global(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
2373 	setidt_global(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
2374 	setidt_global(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
2375 	setidt_global(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
2376 	setidt_global(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
2377 
2378 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
2379 		r_idt_arr[cpu].rd_limit = sizeof(idt_arr[cpu]) - 1;
2380 		r_idt_arr[cpu].rd_base = (long) &idt_arr[cpu][0];
2381 	}
2382 
2383 	lidt(&r_idt_arr[0]);
2384 
2385 	/*
2386 	 * Initialize the console before we print anything out.
2387 	 */
2388 	cninit();
2389 
2390 #if 0 /* JG */
2391 	if (metadata_missing)
2392 		kprintf("WARNING: loader(8) metadata is missing!\n");
2393 #endif
2394 
2395 #if	NISA >0
2396 	elcr_probe();
2397 	isa_defaultirq();
2398 #endif
2399 	rand_initialize();
2400 
2401 	/*
2402 	 * Initialize IRQ mapping
2403 	 *
2404 	 * NOTE:
2405 	 * SHOULD be after elcr_probe()
2406 	 */
2407 	MachIntrABI_ICU.initmap();
2408 	MachIntrABI_IOAPIC.initmap();
2409 
2410 #ifdef DDB
2411 	kdb_init();
2412 	if (boothowto & RB_KDB)
2413 		Debugger("Boot flags requested debugger");
2414 #endif
2415 
2416 #if 0 /* JG */
2417 	finishidentcpu();	/* Final stage of CPU initialization */
2418 	setidt(6, &IDTVEC(ill),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2419 	setidt(13, &IDTVEC(prot),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2420 #endif
2421 	identify_cpu();		/* Final stage of CPU initialization */
2422 	initializecpu(0);	/* Initialize CPU registers */
2423 
2424 	/*
2425 	 * On modern Intel cpus, haswell or later, cpu_idle_hlt=1 is better
2426 	 * because the cpu does significant power management in MWAIT
2427 	 * (also suggested is to set sysctl machdep.mwait.CX.idle=AUTODEEP).
2428 	 *
2429 	 * On modern AMD cpus cpu_idle_hlt=3 is better, because the cpu does
2430 	 * significant power management only when using ACPI halt mode.
2431 	 *
2432 	 * On older AMD or Intel cpus, cpu_idle_hlt=2 is better because ACPI
2433 	 * is needed to reduce power consumption, but wakeup times are often
2434 	 * too long longer.
2435 	 */
2436 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
2437 	    CPUID_TO_MODEL(cpu_id) >= 0x3C) {	/* Haswell or later */
2438 		cpu_idle_hlt = 1;
2439 	}
2440 	if (cpu_vendor_id == CPU_VENDOR_AMD) {
2441 		if (CPUID_TO_FAMILY(cpu_id) >= 0x17) {
2442 			/* Ryzen or later */
2443 			cpu_idle_hlt = 3;
2444 		} else if (CPUID_TO_FAMILY(cpu_id) >= 0x14) {
2445 			/* Bobcat or later */
2446 			cpu_idle_hlt = 3;
2447 		}
2448 	}
2449 
2450 	TUNABLE_INT_FETCH("hw.apic_io_enable", &ioapic_enable); /* for compat */
2451 	TUNABLE_INT_FETCH("hw.ioapic_enable", &ioapic_enable);
2452 	TUNABLE_INT_FETCH("hw.lapic_enable", &lapic_enable);
2453 	TUNABLE_INT_FETCH("machdep.cpu_idle_hlt", &cpu_idle_hlt);
2454 
2455 	/*
2456 	 * Some of the virtual machines do not work w/ I/O APIC
2457 	 * enabled.  If the user does not explicitly enable or
2458 	 * disable the I/O APIC (ioapic_enable < 0), then we
2459 	 * disable I/O APIC on all virtual machines.
2460 	 *
2461 	 * NOTE:
2462 	 * This must be done after identify_cpu(), which sets
2463 	 * 'cpu_feature2'
2464 	 */
2465 	if (ioapic_enable < 0) {
2466 		if (cpu_feature2 & CPUID2_VMM)
2467 			ioapic_enable = 0;
2468 		else
2469 			ioapic_enable = 1;
2470 	}
2471 
2472 	/* make an initial tss so cpu can get interrupt stack on syscall! */
2473 	gd->gd_common_tss.tss_rsp0 =
2474 		(register_t)(thread0.td_kstack +
2475 			     KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb));
2476 	/* Ensure the stack is aligned to 16 bytes */
2477 	gd->gd_common_tss.tss_rsp0 &= ~(register_t)0xF;
2478 
2479 	/* double fault stack */
2480 	gd->gd_common_tss.tss_ist1 =
2481 		(long)&gd->mi.gd_prvspace->idlestack[
2482 			sizeof(gd->mi.gd_prvspace->idlestack)];
2483 
2484 	/* Set the IO permission bitmap (empty due to tss seg limit) */
2485 	gd->gd_common_tss.tss_iobase = sizeof(struct x86_64tss);
2486 
2487 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2488 	gd->gd_tss_gdt = &gdt[GPROC0_SEL];
2489 	gd->gd_common_tssd = *gd->gd_tss_gdt;
2490 	ltr(gsel_tss);
2491 
2492 	/* Set up the fast syscall stuff */
2493 	msr = rdmsr(MSR_EFER) | EFER_SCE;
2494 	wrmsr(MSR_EFER, msr);
2495 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
2496 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
2497 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
2498 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
2499 	wrmsr(MSR_STAR, msr);
2500 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
2501 
2502 	getmemsize(kmdp, physfree);
2503 	init_param2(physmem);
2504 
2505 	/* now running on new page tables, configured,and u/iom is accessible */
2506 
2507 	/* Map the message buffer. */
2508 #if 0 /* JG */
2509 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2510 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2511 #endif
2512 
2513 	msgbufinit(msgbufp, MSGBUF_SIZE);
2514 
2515 
2516 	/* transfer to user mode */
2517 
2518 	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2519 	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2520 	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
2521 
2522 	load_ds(_udatasel);
2523 	load_es(_udatasel);
2524 	load_fs(_udatasel);
2525 
2526 	/* setup proc 0's pcb */
2527 	thread0.td_pcb->pcb_flags = 0;
2528 	thread0.td_pcb->pcb_cr3 = KPML4phys;
2529 	thread0.td_pcb->pcb_ext = NULL;
2530 	lwp0.lwp_md.md_regs = &proc0_tf;	/* XXX needed? */
2531 
2532 	/* Location of kernel stack for locore */
2533 	return ((u_int64_t)thread0.td_pcb);
2534 }
2535 
2536 /*
2537  * Initialize machine-dependant portions of the global data structure.
2538  * Note that the global data area and cpu0's idlestack in the private
2539  * data space were allocated in locore.
2540  *
2541  * Note: the idlethread's cpl is 0
2542  *
2543  * WARNING!  Called from early boot, 'mycpu' may not work yet.
2544  */
2545 void
2546 cpu_gdinit(struct mdglobaldata *gd, int cpu)
2547 {
2548 	if (cpu)
2549 		gd->mi.gd_curthread = &gd->mi.gd_idlethread;
2550 
2551 	lwkt_init_thread(&gd->mi.gd_idlethread,
2552 			gd->mi.gd_prvspace->idlestack,
2553 			sizeof(gd->mi.gd_prvspace->idlestack),
2554 			0, &gd->mi);
2555 	lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
2556 	gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
2557 	gd->mi.gd_idlethread.td_sp -= sizeof(void *);
2558 	*(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
2559 }
2560 
2561 /*
2562  * We only have to check for DMAP bounds, the globaldata space is
2563  * actually part of the kernel_map so we don't have to waste time
2564  * checking CPU_prvspace[*].
2565  */
2566 int
2567 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
2568 {
2569 #if 0
2570 	if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
2571 	    eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
2572 		return (TRUE);
2573 	}
2574 #endif
2575 	if (saddr >= DMAP_MIN_ADDRESS && eaddr <= DMAP_MAX_ADDRESS)
2576 		return (TRUE);
2577 	return (FALSE);
2578 }
2579 
2580 struct globaldata *
2581 globaldata_find(int cpu)
2582 {
2583 	KKASSERT(cpu >= 0 && cpu < ncpus);
2584 	return(&CPU_prvspace[cpu]->mdglobaldata.mi);
2585 }
2586 
2587 /*
2588  * This path should be safe from the SYSRET issue because only stopped threads
2589  * can have their %rip adjusted this way (and all heavy weight thread switches
2590  * clear QUICKREF and thus do not use SYSRET).  However, the code path is
2591  * convoluted so add a safety by forcing %rip to be cannonical.
2592  */
2593 int
2594 ptrace_set_pc(struct lwp *lp, unsigned long addr)
2595 {
2596 	if (addr & 0x0000800000000000LLU)
2597 		lp->lwp_md.md_regs->tf_rip = addr | 0xFFFF000000000000LLU;
2598 	else
2599 		lp->lwp_md.md_regs->tf_rip = addr & 0x0000FFFFFFFFFFFFLLU;
2600 	return (0);
2601 }
2602 
2603 int
2604 ptrace_single_step(struct lwp *lp)
2605 {
2606 	lp->lwp_md.md_regs->tf_rflags |= PSL_T;
2607 	return (0);
2608 }
2609 
2610 int
2611 fill_regs(struct lwp *lp, struct reg *regs)
2612 {
2613 	struct trapframe *tp;
2614 
2615 	if ((tp = lp->lwp_md.md_regs) == NULL)
2616 		return EINVAL;
2617 	bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
2618 	return (0);
2619 }
2620 
2621 int
2622 set_regs(struct lwp *lp, struct reg *regs)
2623 {
2624 	struct trapframe *tp;
2625 
2626 	tp = lp->lwp_md.md_regs;
2627 	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
2628 	    !CS_SECURE(regs->r_cs))
2629 		return (EINVAL);
2630 	bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
2631 	clear_quickret();
2632 	return (0);
2633 }
2634 
2635 static void
2636 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2637 {
2638 	struct env87 *penv_87 = &sv_87->sv_env;
2639 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2640 	int i;
2641 
2642 	/* FPU control/status */
2643 	penv_87->en_cw = penv_xmm->en_cw;
2644 	penv_87->en_sw = penv_xmm->en_sw;
2645 	penv_87->en_tw = penv_xmm->en_tw;
2646 	penv_87->en_fip = penv_xmm->en_fip;
2647 	penv_87->en_fcs = penv_xmm->en_fcs;
2648 	penv_87->en_opcode = penv_xmm->en_opcode;
2649 	penv_87->en_foo = penv_xmm->en_foo;
2650 	penv_87->en_fos = penv_xmm->en_fos;
2651 
2652 	/* FPU registers */
2653 	for (i = 0; i < 8; ++i)
2654 		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2655 }
2656 
2657 static void
2658 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2659 {
2660 	struct env87 *penv_87 = &sv_87->sv_env;
2661 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2662 	int i;
2663 
2664 	/* FPU control/status */
2665 	penv_xmm->en_cw = penv_87->en_cw;
2666 	penv_xmm->en_sw = penv_87->en_sw;
2667 	penv_xmm->en_tw = penv_87->en_tw;
2668 	penv_xmm->en_fip = penv_87->en_fip;
2669 	penv_xmm->en_fcs = penv_87->en_fcs;
2670 	penv_xmm->en_opcode = penv_87->en_opcode;
2671 	penv_xmm->en_foo = penv_87->en_foo;
2672 	penv_xmm->en_fos = penv_87->en_fos;
2673 
2674 	/* FPU registers */
2675 	for (i = 0; i < 8; ++i)
2676 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2677 }
2678 
2679 int
2680 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2681 {
2682 	if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
2683 		return EINVAL;
2684 	if (cpu_fxsr) {
2685 		fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2686 				(struct save87 *)fpregs);
2687 		return (0);
2688 	}
2689 	bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2690 	return (0);
2691 }
2692 
2693 int
2694 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2695 {
2696 	if (cpu_fxsr) {
2697 		set_fpregs_xmm((struct save87 *)fpregs,
2698 			       &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2699 		return (0);
2700 	}
2701 	bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2702 	return (0);
2703 }
2704 
2705 int
2706 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2707 {
2708 	struct pcb *pcb;
2709 
2710         if (lp == NULL) {
2711                 dbregs->dr[0] = rdr0();
2712                 dbregs->dr[1] = rdr1();
2713                 dbregs->dr[2] = rdr2();
2714                 dbregs->dr[3] = rdr3();
2715                 dbregs->dr[4] = rdr4();
2716                 dbregs->dr[5] = rdr5();
2717                 dbregs->dr[6] = rdr6();
2718                 dbregs->dr[7] = rdr7();
2719 		return (0);
2720         }
2721 	if (lp->lwp_thread == NULL || (pcb = lp->lwp_thread->td_pcb) == NULL)
2722 		return EINVAL;
2723 	dbregs->dr[0] = pcb->pcb_dr0;
2724 	dbregs->dr[1] = pcb->pcb_dr1;
2725 	dbregs->dr[2] = pcb->pcb_dr2;
2726 	dbregs->dr[3] = pcb->pcb_dr3;
2727 	dbregs->dr[4] = 0;
2728 	dbregs->dr[5] = 0;
2729 	dbregs->dr[6] = pcb->pcb_dr6;
2730 	dbregs->dr[7] = pcb->pcb_dr7;
2731 	return (0);
2732 }
2733 
2734 int
2735 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2736 {
2737 	if (lp == NULL) {
2738 		load_dr0(dbregs->dr[0]);
2739 		load_dr1(dbregs->dr[1]);
2740 		load_dr2(dbregs->dr[2]);
2741 		load_dr3(dbregs->dr[3]);
2742 		load_dr4(dbregs->dr[4]);
2743 		load_dr5(dbregs->dr[5]);
2744 		load_dr6(dbregs->dr[6]);
2745 		load_dr7(dbregs->dr[7]);
2746 	} else {
2747 		struct pcb *pcb;
2748 		struct ucred *ucred;
2749 		int i;
2750 		uint64_t mask1, mask2;
2751 
2752 		/*
2753 		 * Don't let an illegal value for dr7 get set.	Specifically,
2754 		 * check for undefined settings.  Setting these bit patterns
2755 		 * result in undefined behaviour and can lead to an unexpected
2756 		 * TRCTRAP.
2757 		 */
2758 		/* JG this loop looks unreadable */
2759 		/* Check 4 2-bit fields for invalid patterns.
2760 		 * These fields are R/Wi, for i = 0..3
2761 		 */
2762 		/* Is 10 in LENi allowed when running in compatibility mode? */
2763 		/* Pattern 10 in R/Wi might be used to indicate
2764 		 * breakpoint on I/O. Further analysis should be
2765 		 * carried to decide if it is safe and useful to
2766 		 * provide access to that capability
2767 		 */
2768 		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2769 		     i++, mask1 <<= 4, mask2 <<= 4)
2770 			if ((dbregs->dr[7] & mask1) == mask2)
2771 				return (EINVAL);
2772 
2773 		pcb = lp->lwp_thread->td_pcb;
2774 		ucred = lp->lwp_proc->p_ucred;
2775 
2776 		/*
2777 		 * Don't let a process set a breakpoint that is not within the
2778 		 * process's address space.  If a process could do this, it
2779 		 * could halt the system by setting a breakpoint in the kernel
2780 		 * (if ddb was enabled).  Thus, we need to check to make sure
2781 		 * that no breakpoints are being enabled for addresses outside
2782 		 * process's address space, unless, perhaps, we were called by
2783 		 * uid 0.
2784 		 *
2785 		 * XXX - what about when the watched area of the user's
2786 		 * address space is written into from within the kernel
2787 		 * ... wouldn't that still cause a breakpoint to be generated
2788 		 * from within kernel mode?
2789 		 */
2790 
2791 		if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2792 			if (dbregs->dr[7] & 0x3) {
2793 				/* dr0 is enabled */
2794 				if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2795 					return (EINVAL);
2796 			}
2797 
2798 			if (dbregs->dr[7] & (0x3<<2)) {
2799 				/* dr1 is enabled */
2800 				if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2801 					return (EINVAL);
2802 			}
2803 
2804 			if (dbregs->dr[7] & (0x3<<4)) {
2805 				/* dr2 is enabled */
2806 				if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2807 					return (EINVAL);
2808 			}
2809 
2810 			if (dbregs->dr[7] & (0x3<<6)) {
2811 				/* dr3 is enabled */
2812 				if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2813 					return (EINVAL);
2814 			}
2815 		}
2816 
2817 		pcb->pcb_dr0 = dbregs->dr[0];
2818 		pcb->pcb_dr1 = dbregs->dr[1];
2819 		pcb->pcb_dr2 = dbregs->dr[2];
2820 		pcb->pcb_dr3 = dbregs->dr[3];
2821 		pcb->pcb_dr6 = dbregs->dr[6];
2822 		pcb->pcb_dr7 = dbregs->dr[7];
2823 
2824 		pcb->pcb_flags |= PCB_DBREGS;
2825 	}
2826 
2827 	return (0);
2828 }
2829 
2830 /*
2831  * Return > 0 if a hardware breakpoint has been hit, and the
2832  * breakpoint was in user space.  Return 0, otherwise.
2833  */
2834 int
2835 user_dbreg_trap(void)
2836 {
2837         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2838         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2839         int nbp;            /* number of breakpoints that triggered */
2840         caddr_t addr[4];    /* breakpoint addresses */
2841         int i;
2842 
2843         dr7 = rdr7();
2844         if ((dr7 & 0xff) == 0) {
2845                 /*
2846                  * all GE and LE bits in the dr7 register are zero,
2847                  * thus the trap couldn't have been caused by the
2848                  * hardware debug registers
2849                  */
2850                 return 0;
2851         }
2852 
2853         nbp = 0;
2854         dr6 = rdr6();
2855         bp = dr6 & 0xf;
2856 
2857         if (bp == 0) {
2858                 /*
2859                  * None of the breakpoint bits are set meaning this
2860                  * trap was not caused by any of the debug registers
2861                  */
2862                 return 0;
2863         }
2864 
2865         /*
2866          * at least one of the breakpoints were hit, check to see
2867          * which ones and if any of them are user space addresses
2868          */
2869 
2870         if (bp & 0x01) {
2871                 addr[nbp++] = (caddr_t)rdr0();
2872         }
2873         if (bp & 0x02) {
2874                 addr[nbp++] = (caddr_t)rdr1();
2875         }
2876         if (bp & 0x04) {
2877                 addr[nbp++] = (caddr_t)rdr2();
2878         }
2879         if (bp & 0x08) {
2880                 addr[nbp++] = (caddr_t)rdr3();
2881         }
2882 
2883         for (i=0; i<nbp; i++) {
2884                 if (addr[i] <
2885                     (caddr_t)VM_MAX_USER_ADDRESS) {
2886                         /*
2887                          * addr[i] is in user space
2888                          */
2889                         return nbp;
2890                 }
2891         }
2892 
2893         /*
2894          * None of the breakpoints are in user space.
2895          */
2896         return 0;
2897 }
2898 
2899 
2900 #ifndef DDB
2901 void
2902 Debugger(const char *msg)
2903 {
2904 	kprintf("Debugger(\"%s\") called.\n", msg);
2905 }
2906 #endif /* no DDB */
2907 
2908 #ifdef DDB
2909 
2910 /*
2911  * Provide inb() and outb() as functions.  They are normally only
2912  * available as macros calling inlined functions, thus cannot be
2913  * called inside DDB.
2914  *
2915  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2916  */
2917 
2918 #undef inb
2919 #undef outb
2920 
2921 /* silence compiler warnings */
2922 u_char inb(u_int);
2923 void outb(u_int, u_char);
2924 
2925 u_char
2926 inb(u_int port)
2927 {
2928 	u_char	data;
2929 	/*
2930 	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2931 	 * %edx, while gcc generates inferior code (movw instead of movl)
2932 	 * if we tell it to load (u_short) port.
2933 	 */
2934 	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2935 	return (data);
2936 }
2937 
2938 void
2939 outb(u_int port, u_char data)
2940 {
2941 	u_char	al;
2942 	/*
2943 	 * Use an unnecessary assignment to help gcc's register allocator.
2944 	 * This make a large difference for gcc-1.40 and a tiny difference
2945 	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2946 	 * best results.  gcc-2.6.0 can't handle this.
2947 	 */
2948 	al = data;
2949 	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2950 }
2951 
2952 #endif /* DDB */
2953 
2954 
2955 
2956 /*
2957  * initialize all the SMP locks
2958  */
2959 
2960 /* critical region when masking or unmasking interupts */
2961 struct spinlock_deprecated imen_spinlock;
2962 
2963 /* lock region used by kernel profiling */
2964 struct spinlock_deprecated mcount_spinlock;
2965 
2966 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2967 struct spinlock_deprecated com_spinlock;
2968 
2969 /* lock regions around the clock hardware */
2970 struct spinlock_deprecated clock_spinlock;
2971 
2972 static void
2973 init_locks(void)
2974 {
2975 	/*
2976 	 * Get the initial mplock with a count of 1 for the BSP.
2977 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
2978 	 */
2979 	cpu_get_initial_mplock();
2980 	/* DEPRECATED */
2981 	spin_init_deprecated(&mcount_spinlock);
2982 	spin_init_deprecated(&imen_spinlock);
2983 	spin_init_deprecated(&com_spinlock);
2984 	spin_init_deprecated(&clock_spinlock);
2985 
2986 	/* our token pool needs to work early */
2987 	lwkt_token_pool_init();
2988 }
2989 
2990 boolean_t
2991 cpu_mwait_hint_valid(uint32_t hint)
2992 {
2993 	int cx_idx, sub;
2994 
2995 	cx_idx = MWAIT_EAX_TO_CX(hint);
2996 	if (cx_idx >= CPU_MWAIT_CX_MAX)
2997 		return FALSE;
2998 
2999 	sub = MWAIT_EAX_TO_CX_SUB(hint);
3000 	if (sub >= cpu_mwait_cx_info[cx_idx].subcnt)
3001 		return FALSE;
3002 
3003 	return TRUE;
3004 }
3005 
3006 void
3007 cpu_mwait_cx_no_bmsts(void)
3008 {
3009 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_STS);
3010 }
3011 
3012 void
3013 cpu_mwait_cx_no_bmarb(void)
3014 {
3015 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_ARB);
3016 }
3017 
3018 static int
3019 cpu_mwait_cx_hint2name(int hint, char *name, int namelen, boolean_t allow_auto)
3020 {
3021 	int old_cx_idx, sub = 0;
3022 
3023 	if (hint >= 0) {
3024 		old_cx_idx = MWAIT_EAX_TO_CX(hint);
3025 		sub = MWAIT_EAX_TO_CX_SUB(hint);
3026 	} else if (hint == CPU_MWAIT_HINT_AUTO) {
3027 		old_cx_idx = allow_auto ? CPU_MWAIT_C2 : CPU_MWAIT_CX_MAX;
3028 	} else if (hint == CPU_MWAIT_HINT_AUTODEEP) {
3029 		old_cx_idx = allow_auto ? CPU_MWAIT_C3 : CPU_MWAIT_CX_MAX;
3030 	} else {
3031 		old_cx_idx = CPU_MWAIT_CX_MAX;
3032 	}
3033 
3034 	if (!CPU_MWAIT_HAS_CX)
3035 		strlcpy(name, "NONE", namelen);
3036 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTO)
3037 		strlcpy(name, "AUTO", namelen);
3038 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTODEEP)
3039 		strlcpy(name, "AUTODEEP", namelen);
3040 	else if (old_cx_idx >= CPU_MWAIT_CX_MAX ||
3041 	    sub >= cpu_mwait_cx_info[old_cx_idx].subcnt)
3042 		strlcpy(name, "INVALID", namelen);
3043 	else
3044 		ksnprintf(name, namelen, "C%d/%d", old_cx_idx, sub);
3045 
3046 	return old_cx_idx;
3047 }
3048 
3049 static int
3050 cpu_mwait_cx_name2hint(char *name, int *hint0, boolean_t allow_auto)
3051 {
3052 	int cx_idx, sub, hint;
3053 	char *ptr, *start;
3054 
3055 	if (allow_auto && strcmp(name, "AUTO") == 0) {
3056 		hint = CPU_MWAIT_HINT_AUTO;
3057 		cx_idx = CPU_MWAIT_C2;
3058 		goto done;
3059 	}
3060 	if (allow_auto && strcmp(name, "AUTODEEP") == 0) {
3061 		hint = CPU_MWAIT_HINT_AUTODEEP;
3062 		cx_idx = CPU_MWAIT_C3;
3063 		goto done;
3064 	}
3065 
3066 	if (strlen(name) < 4 || toupper(name[0]) != 'C')
3067 		return -1;
3068 	start = &name[1];
3069 	ptr = NULL;
3070 
3071 	cx_idx = strtol(start, &ptr, 10);
3072 	if (ptr == start || *ptr != '/')
3073 		return -1;
3074 	if (cx_idx < 0 || cx_idx >= CPU_MWAIT_CX_MAX)
3075 		return -1;
3076 
3077 	start = ptr + 1;
3078 	ptr = NULL;
3079 
3080 	sub = strtol(start, &ptr, 10);
3081 	if (*ptr != '\0')
3082 		return -1;
3083 	if (sub < 0 || sub >= cpu_mwait_cx_info[cx_idx].subcnt)
3084 		return -1;
3085 
3086 	hint = MWAIT_EAX_HINT(cx_idx, sub);
3087 done:
3088 	*hint0 = hint;
3089 	return cx_idx;
3090 }
3091 
3092 static int
3093 cpu_mwait_cx_transit(int old_cx_idx, int cx_idx)
3094 {
3095 	if (cx_idx >= CPU_MWAIT_C3 && cpu_mwait_c3_preamble)
3096 		return EOPNOTSUPP;
3097 	if (old_cx_idx < CPU_MWAIT_C3 && cx_idx >= CPU_MWAIT_C3) {
3098 		int error;
3099 
3100 		error = cputimer_intr_powersave_addreq();
3101 		if (error)
3102 			return error;
3103 	} else if (old_cx_idx >= CPU_MWAIT_C3 && cx_idx < CPU_MWAIT_C3) {
3104 		cputimer_intr_powersave_remreq();
3105 	}
3106 	return 0;
3107 }
3108 
3109 static int
3110 cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS, int *hint0,
3111     boolean_t allow_auto)
3112 {
3113 	int error, cx_idx, old_cx_idx, hint;
3114 	char name[CPU_MWAIT_CX_NAMELEN];
3115 
3116 	hint = *hint0;
3117 	old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name),
3118 	    allow_auto);
3119 
3120 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
3121 	if (error != 0 || req->newptr == NULL)
3122 		return error;
3123 
3124 	if (!CPU_MWAIT_HAS_CX)
3125 		return EOPNOTSUPP;
3126 
3127 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, allow_auto);
3128 	if (cx_idx < 0)
3129 		return EINVAL;
3130 
3131 	error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3132 	if (error)
3133 		return error;
3134 
3135 	*hint0 = hint;
3136 	return 0;
3137 }
3138 
3139 static int
3140 cpu_mwait_cx_setname(struct cpu_idle_stat *stat, const char *cx_name)
3141 {
3142 	int error, cx_idx, old_cx_idx, hint;
3143 	char name[CPU_MWAIT_CX_NAMELEN];
3144 
3145 	KASSERT(CPU_MWAIT_HAS_CX, ("cpu does not support mwait CX extension"));
3146 
3147 	hint = stat->hint;
3148 	old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3149 
3150 	strlcpy(name, cx_name, sizeof(name));
3151 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3152 	if (cx_idx < 0)
3153 		return EINVAL;
3154 
3155 	error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3156 	if (error)
3157 		return error;
3158 
3159 	stat->hint = hint;
3160 	return 0;
3161 }
3162 
3163 static int
3164 cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS)
3165 {
3166 	int hint = cpu_mwait_halt_global;
3167 	int error, cx_idx, cpu;
3168 	char name[CPU_MWAIT_CX_NAMELEN], cx_name[CPU_MWAIT_CX_NAMELEN];
3169 
3170 	cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3171 
3172 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
3173 	if (error != 0 || req->newptr == NULL)
3174 		return error;
3175 
3176 	if (!CPU_MWAIT_HAS_CX)
3177 		return EOPNOTSUPP;
3178 
3179 	/* Save name for later per-cpu CX configuration */
3180 	strlcpy(cx_name, name, sizeof(cx_name));
3181 
3182 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3183 	if (cx_idx < 0)
3184 		return EINVAL;
3185 
3186 	/* Change per-cpu CX configuration */
3187 	for (cpu = 0; cpu < ncpus; ++cpu) {
3188 		error = cpu_mwait_cx_setname(&cpu_idle_stats[cpu], cx_name);
3189 		if (error)
3190 			return error;
3191 	}
3192 
3193 	cpu_mwait_halt_global = hint;
3194 	return 0;
3195 }
3196 
3197 static int
3198 cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS)
3199 {
3200 	struct cpu_idle_stat *stat = arg1;
3201 	int error;
3202 
3203 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3204 	    &stat->hint, TRUE);
3205 	return error;
3206 }
3207 
3208 static int
3209 cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS)
3210 {
3211 	int error;
3212 
3213 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3214 	    &cpu_mwait_spin, FALSE);
3215 	return error;
3216 }
3217 
3218 /*
3219  * This manual debugging code is called unconditionally from Xtimer
3220  * (the per-cpu timer interrupt) whether the current thread is in a
3221  * critical section or not) and can be useful in tracking down lockups.
3222  *
3223  * NOTE: MANUAL DEBUG CODE
3224  */
3225 #if 0
3226 static int saveticks[SMP_MAXCPU];
3227 static int savecounts[SMP_MAXCPU];
3228 #endif
3229 
3230 void
3231 pcpu_timer_always(struct intrframe *frame)
3232 {
3233 #if 0
3234 	globaldata_t gd = mycpu;
3235 	int cpu = gd->gd_cpuid;
3236 	char buf[64];
3237 	short *gptr;
3238 	int i;
3239 
3240 	if (cpu <= 20) {
3241 		gptr = (short *)0xFFFFFFFF800b8000 + 80 * cpu;
3242 		*gptr = ((*gptr + 1) & 0x00FF) | 0x0700;
3243 		++gptr;
3244 
3245 		ksnprintf(buf, sizeof(buf), " %p %16s %d %16s ",
3246 		    (void *)frame->if_rip, gd->gd_curthread->td_comm, ticks,
3247 		    gd->gd_infomsg);
3248 		for (i = 0; buf[i]; ++i) {
3249 			gptr[i] = 0x0700 | (unsigned char)buf[i];
3250 		}
3251 	}
3252 #if 0
3253 	if (saveticks[gd->gd_cpuid] != ticks) {
3254 		saveticks[gd->gd_cpuid] = ticks;
3255 		savecounts[gd->gd_cpuid] = 0;
3256 	}
3257 	++savecounts[gd->gd_cpuid];
3258 	if (savecounts[gd->gd_cpuid] > 2000 && panicstr == NULL) {
3259 		panic("cpud %d panicing on ticks failure",
3260 			gd->gd_cpuid);
3261 	}
3262 	for (i = 0; i < ncpus; ++i) {
3263 		int delta;
3264 		if (saveticks[i] && panicstr == NULL) {
3265 			delta = saveticks[i] - ticks;
3266 			if (delta < -10 || delta > 10) {
3267 				panic("cpu %d panicing on cpu %d watchdog",
3268 				      gd->gd_cpuid, i);
3269 			}
3270 		}
3271 	}
3272 #endif
3273 #endif
3274 }
3275