xref: /dragonfly/sys/platform/pc64/x86_64/machdep.c (revision 0dace59e)
1 /*-
2  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3  * Copyright (c) 1992 Terrence R. Lambert.
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 2008 The DragonFly Project.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
40  * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
41  */
42 
43 //#include "use_npx.h"
44 #include "use_isa.h"
45 #include "opt_compat.h"
46 #include "opt_cpu.h"
47 #include "opt_ddb.h"
48 #include "opt_directio.h"
49 #include "opt_inet.h"
50 #include "opt_ipx.h"
51 #include "opt_msgbuf.h"
52 #include "opt_swap.h"
53 
54 #include <sys/param.h>
55 #include <sys/systm.h>
56 #include <sys/sysproto.h>
57 #include <sys/signalvar.h>
58 #include <sys/kernel.h>
59 #include <sys/linker.h>
60 #include <sys/malloc.h>
61 #include <sys/proc.h>
62 #include <sys/priv.h>
63 #include <sys/buf.h>
64 #include <sys/reboot.h>
65 #include <sys/mbuf.h>
66 #include <sys/msgbuf.h>
67 #include <sys/sysent.h>
68 #include <sys/sysctl.h>
69 #include <sys/vmmeter.h>
70 #include <sys/bus.h>
71 #include <sys/usched.h>
72 #include <sys/reg.h>
73 
74 #include <vm/vm.h>
75 #include <vm/vm_param.h>
76 #include <sys/lock.h>
77 #include <vm/vm_kern.h>
78 #include <vm/vm_object.h>
79 #include <vm/vm_page.h>
80 #include <vm/vm_map.h>
81 #include <vm/vm_pager.h>
82 #include <vm/vm_extern.h>
83 
84 #include <sys/thread2.h>
85 #include <sys/mplock2.h>
86 #include <sys/mutex2.h>
87 
88 #include <sys/user.h>
89 #include <sys/exec.h>
90 #include <sys/cons.h>
91 
92 #include <ddb/ddb.h>
93 
94 #include <machine/cpu.h>
95 #include <machine/clock.h>
96 #include <machine/specialreg.h>
97 #if JG
98 #include <machine/bootinfo.h>
99 #endif
100 #include <machine/md_var.h>
101 #include <machine/metadata.h>
102 #include <machine/pc/bios.h>
103 #include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
104 #include <machine/globaldata.h>		/* CPU_prvspace */
105 #include <machine/smp.h>
106 #ifdef PERFMON
107 #include <machine/perfmon.h>
108 #endif
109 #include <machine/cputypes.h>
110 #include <machine/intr_machdep.h>
111 
112 #ifdef OLD_BUS_ARCH
113 #include <bus/isa/isa_device.h>
114 #endif
115 #include <machine_base/isa/isa_intr.h>
116 #include <bus/isa/rtc.h>
117 #include <sys/random.h>
118 #include <sys/ptrace.h>
119 #include <machine/sigframe.h>
120 
121 #include <sys/machintr.h>
122 #include <machine_base/icu/icu_abi.h>
123 #include <machine_base/icu/elcr_var.h>
124 #include <machine_base/apic/lapic.h>
125 #include <machine_base/apic/ioapic.h>
126 #include <machine_base/apic/ioapic_abi.h>
127 #include <machine/mptable.h>
128 
129 #define PHYSMAP_ENTRIES		10
130 
131 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
132 
133 extern void printcpuinfo(void);	/* XXX header file */
134 extern void identify_cpu(void);
135 #if JG
136 extern void finishidentcpu(void);
137 #endif
138 extern void panicifcpuunsupported(void);
139 
140 static void cpu_startup(void *);
141 static void pic_finish(void *);
142 static void cpu_finish(void *);
143 
144 #ifndef CPU_DISABLE_SSE
145 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
146 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
147 #endif /* CPU_DISABLE_SSE */
148 #ifdef DIRECTIO
149 extern void ffs_rawread_setup(void);
150 #endif /* DIRECTIO */
151 static void init_locks(void);
152 
153 SYSINIT(cpu, SI_BOOT2_START_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
154 SYSINIT(pic_finish, SI_BOOT2_FINISH_PIC, SI_ORDER_FIRST, pic_finish, NULL)
155 SYSINIT(cpu_finish, SI_BOOT2_FINISH_CPU, SI_ORDER_FIRST, cpu_finish, NULL)
156 
157 #ifdef DDB
158 extern vm_offset_t ksym_start, ksym_end;
159 #endif
160 
161 struct privatespace CPU_prvspace[MAXCPU] __aligned(4096); /* XXX */
162 
163 int	_udatasel, _ucodesel, _ucode32sel;
164 u_long	atdevbase;
165 int64_t tsc_offsets[MAXCPU];
166 int cpu_mwait_halt;
167 
168 #if defined(SWTCH_OPTIM_STATS)
169 extern int swtch_optim_stats;
170 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
171 	CTLFLAG_RD, &swtch_optim_stats, 0, "");
172 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
173 	CTLFLAG_RD, &tlb_flush_count, 0, "");
174 #endif
175 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_halt,
176 	CTLFLAG_RW, &cpu_mwait_halt, 0, "");
177 
178 long physmem = 0;
179 
180 u_long ebda_addr = 0;
181 
182 int imcr_present = 0;
183 
184 int naps = 0; /* # of Applications processors */
185 
186 u_int base_memory;
187 struct mtx dt_lock;		/* lock for GDT and LDT */
188 
189 static int
190 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
191 {
192 	u_long pmem = ctob(physmem);
193 
194 	int error = sysctl_handle_long(oidp, &pmem, 0, req);
195 	return (error);
196 }
197 
198 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
199 	0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
200 
201 static int
202 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
203 {
204 	int error = sysctl_handle_int(oidp, 0,
205 		ctob(physmem - vmstats.v_wire_count), req);
206 	return (error);
207 }
208 
209 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
210 	0, 0, sysctl_hw_usermem, "IU", "");
211 
212 static int
213 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
214 {
215 	int error = sysctl_handle_int(oidp, 0,
216 		x86_64_btop(avail_end - avail_start), req);
217 	return (error);
218 }
219 
220 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
221 	0, 0, sysctl_hw_availpages, "I", "");
222 
223 vm_paddr_t Maxmem;
224 vm_paddr_t Realmem;
225 
226 /*
227  * The number of PHYSMAP entries must be one less than the number of
228  * PHYSSEG entries because the PHYSMAP entry that spans the largest
229  * physical address that is accessible by ISA DMA is split into two
230  * PHYSSEG entries.
231  */
232 #define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
233 
234 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
235 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
236 
237 /* must be 2 less so 0 0 can signal end of chunks */
238 #define PHYS_AVAIL_ARRAY_END (NELEM(phys_avail) - 2)
239 #define DUMP_AVAIL_ARRAY_END (NELEM(dump_avail) - 2)
240 
241 static vm_offset_t buffer_sva, buffer_eva;
242 vm_offset_t clean_sva, clean_eva;
243 static vm_offset_t pager_sva, pager_eva;
244 static struct trapframe proc0_tf;
245 
246 static void
247 cpu_startup(void *dummy)
248 {
249 	caddr_t v;
250 	vm_size_t size = 0;
251 	vm_offset_t firstaddr;
252 
253 	/*
254 	 * Good {morning,afternoon,evening,night}.
255 	 */
256 	kprintf("%s", version);
257 	startrtclock();
258 	printcpuinfo();
259 	panicifcpuunsupported();
260 #ifdef PERFMON
261 	perfmon_init();
262 #endif
263 	kprintf("real memory  = %ju (%ju MB)\n",
264 		(intmax_t)Realmem,
265 		(intmax_t)Realmem / 1024 / 1024);
266 	/*
267 	 * Display any holes after the first chunk of extended memory.
268 	 */
269 	if (bootverbose) {
270 		int indx;
271 
272 		kprintf("Physical memory chunk(s):\n");
273 		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
274 			vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
275 
276 			kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
277 				(intmax_t)phys_avail[indx],
278 				(intmax_t)phys_avail[indx + 1] - 1,
279 				(intmax_t)size1,
280 				(intmax_t)(size1 / PAGE_SIZE));
281 		}
282 	}
283 
284 	/*
285 	 * Allocate space for system data structures.
286 	 * The first available kernel virtual address is in "v".
287 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
288 	 * As pages of memory are allocated and cleared,
289 	 * "firstaddr" is incremented.
290 	 * An index into the kernel page table corresponding to the
291 	 * virtual memory address maintained in "v" is kept in "mapaddr".
292 	 */
293 
294 	/*
295 	 * Make two passes.  The first pass calculates how much memory is
296 	 * needed and allocates it.  The second pass assigns virtual
297 	 * addresses to the various data structures.
298 	 */
299 	firstaddr = 0;
300 again:
301 	v = (caddr_t)firstaddr;
302 
303 #define	valloc(name, type, num) \
304 	    (name) = (type *)v; v = (caddr_t)((name)+(num))
305 #define	valloclim(name, type, num, lim) \
306 	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
307 
308 	/*
309 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
310 	 * For the first 64MB of ram nominally allocate sufficient buffers to
311 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
312 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
313 	 * the buffer cache we limit the eventual kva reservation to
314 	 * maxbcache bytes.
315 	 *
316 	 * factor represents the 1/4 x ram conversion.
317 	 */
318 	if (nbuf == 0) {
319 		long factor = 4 * BKVASIZE / 1024;
320 		long kbytes = physmem * (PAGE_SIZE / 1024);
321 
322 		nbuf = 50;
323 		if (kbytes > 4096)
324 			nbuf += min((kbytes - 4096) / factor, 65536 / factor);
325 		if (kbytes > 65536)
326 			nbuf += (kbytes - 65536) * 2 / (factor * 5);
327 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
328 			nbuf = maxbcache / BKVASIZE;
329 	}
330 
331 	/*
332 	 * Do not allow the buffer_map to be more then 1/2 the size of the
333 	 * kernel_map.
334 	 */
335 	if (nbuf > (virtual_end - virtual_start +
336 		    virtual2_end - virtual2_start) / (BKVASIZE * 2)) {
337 		nbuf = (virtual_end - virtual_start +
338 			virtual2_end - virtual2_start) / (BKVASIZE * 2);
339 		kprintf("Warning: nbufs capped at %ld due to kvm\n", nbuf);
340 	}
341 
342 	/*
343 	 * Do not allow the buffer_map to use more than 50% of available
344 	 * physical-equivalent memory.  Since the VM pages which back
345 	 * individual buffers are typically wired, having too many bufs
346 	 * can prevent the system from paging properly.
347 	 */
348 	if (nbuf > physmem * PAGE_SIZE / (BKVASIZE * 2)) {
349 		nbuf = physmem * PAGE_SIZE / (BKVASIZE * 2);
350 		kprintf("Warning: nbufs capped at %ld due to physmem\n", nbuf);
351 	}
352 
353 	/*
354 	 * Do not allow the sizeof(struct buf) * nbuf to exceed half of
355 	 * the valloc space which is just the virtual_end - virtual_start
356 	 * section.  We use valloc() to allocate the buf header array.
357 	 */
358 	if (nbuf > (virtual_end - virtual_start) / sizeof(struct buf) / 2) {
359 		nbuf = (virtual_end - virtual_start) /
360 		       sizeof(struct buf) / 2;
361 		kprintf("Warning: nbufs capped at %ld due to valloc "
362 			"considerations", nbuf);
363 	}
364 
365 	nswbuf = lmax(lmin(nbuf / 4, 256), 16);
366 #ifdef NSWBUF_MIN
367 	if (nswbuf < NSWBUF_MIN)
368 		nswbuf = NSWBUF_MIN;
369 #endif
370 #ifdef DIRECTIO
371 	ffs_rawread_setup();
372 #endif
373 
374 	valloc(swbuf, struct buf, nswbuf);
375 	valloc(buf, struct buf, nbuf);
376 
377 	/*
378 	 * End of first pass, size has been calculated so allocate memory
379 	 */
380 	if (firstaddr == 0) {
381 		size = (vm_size_t)(v - firstaddr);
382 		firstaddr = kmem_alloc(&kernel_map, round_page(size));
383 		if (firstaddr == 0)
384 			panic("startup: no room for tables");
385 		goto again;
386 	}
387 
388 	/*
389 	 * End of second pass, addresses have been assigned
390 	 *
391 	 * nbuf is an int, make sure we don't overflow the field.
392 	 *
393 	 * On 64-bit systems fragmentation can create serious performance
394 	 * loss due to the large number of buffers the system is likely
395 	 * going to maintain.  The easiest solution is to create a KVA
396 	 * section that is twice as big as the nominal buffer cache size,
397 	 * hence the multiplication by 2 below.
398 	 */
399 	if ((vm_size_t)(v - firstaddr) != size)
400 		panic("startup: table size inconsistency");
401 
402 	kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
403 		      ((vm_offset_t)nbuf * BKVASIZE * 2) +
404 		      (nswbuf * MAXPHYS) + pager_map_size);
405 	kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
406 		      ((vm_offset_t)nbuf * BKVASIZE * 2));
407 	buffer_map.system_map = 1;
408 	kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
409 		      ((vm_offset_t)nswbuf * MAXPHYS) + pager_map_size);
410 	pager_map.system_map = 1;
411 
412 #if defined(USERCONFIG)
413 	userconfig();
414 	cninit();		/* the preferred console may have changed */
415 #endif
416 
417 	kprintf("avail memory = %ju (%ju MB)\n",
418 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages),
419 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages) /
420 		1024 / 1024);
421 
422 	/*
423 	 * Set up buffers, so they can be used to read disk labels.
424 	 */
425 	bufinit();
426 	vm_pager_bufferinit();
427 }
428 
429 static void
430 cpu_finish(void *dummy __unused)
431 {
432 	cpu_setregs();
433 }
434 
435 static void
436 pic_finish(void *dummy __unused)
437 {
438 	/* Log ELCR information */
439 	elcr_dump();
440 
441 	/* Log MPTABLE information */
442 	mptable_pci_int_dump();
443 
444 	/* Finalize PCI */
445 	MachIntrABI.finalize();
446 }
447 
448 /*
449  * Send an interrupt to process.
450  *
451  * Stack is set up to allow sigcode stored
452  * at top to call routine, followed by kcall
453  * to sigreturn routine below.  After sigreturn
454  * resets the signal mask, the stack, and the
455  * frame pointer, it returns to the user
456  * specified pc, psl.
457  */
458 void
459 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
460 {
461 	struct lwp *lp = curthread->td_lwp;
462 	struct proc *p = lp->lwp_proc;
463 	struct trapframe *regs;
464 	struct sigacts *psp = p->p_sigacts;
465 	struct sigframe sf, *sfp;
466 	int oonstack;
467 	char *sp;
468 
469 	regs = lp->lwp_md.md_regs;
470 	oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
471 
472 	/* Save user context */
473 	bzero(&sf, sizeof(struct sigframe));
474 	sf.sf_uc.uc_sigmask = *mask;
475 	sf.sf_uc.uc_stack = lp->lwp_sigstk;
476 	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
477 	KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
478 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
479 
480 	/* Make the size of the saved context visible to userland */
481 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
482 
483 	/* Allocate and validate space for the signal handler context. */
484         if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
485 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
486 		sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
487 			      sizeof(struct sigframe));
488 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
489 	} else {
490 		/* We take red zone into account */
491 		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
492 	}
493 
494 	/*
495 	 * XXX AVX needs 64-byte alignment but sigframe has other fields and
496 	 * the embedded ucontext is not at the front, so aligning this won't
497 	 * help us.  Fortunately we bcopy in/out of the sigframe, so the
498 	 * kernel is ok.
499 	 *
500 	 * The problem though is if userland winds up trying to use the
501 	 * context directly.
502 	 */
503 	sfp = (struct sigframe *)((intptr_t)sp & ~(intptr_t)0xF);
504 
505 	/* Translate the signal is appropriate */
506 	if (p->p_sysent->sv_sigtbl) {
507 		if (sig <= p->p_sysent->sv_sigsize)
508 			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
509 	}
510 
511 	/*
512 	 * Build the argument list for the signal handler.
513 	 *
514 	 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
515 	 */
516 	regs->tf_rdi = sig;				/* argument 1 */
517 	regs->tf_rdx = (register_t)&sfp->sf_uc;		/* argument 3 */
518 
519 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
520 		/*
521 		 * Signal handler installed with SA_SIGINFO.
522 		 *
523 		 * action(signo, siginfo, ucontext)
524 		 */
525 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* argument 2 */
526 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
527 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
528 
529 		/* fill siginfo structure */
530 		sf.sf_si.si_signo = sig;
531 		sf.sf_si.si_code = code;
532 		sf.sf_si.si_addr = (void *)regs->tf_addr;
533 	} else {
534 		/*
535 		 * Old FreeBSD-style arguments.
536 		 *
537 		 * handler (signo, code, [uc], addr)
538 		 */
539 		regs->tf_rsi = (register_t)code;	/* argument 2 */
540 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
541 		sf.sf_ahu.sf_handler = catcher;
542 	}
543 
544 	/*
545 	 * If we're a vm86 process, we want to save the segment registers.
546 	 * We also change eflags to be our emulated eflags, not the actual
547 	 * eflags.
548 	 */
549 #if JG
550 	if (regs->tf_eflags & PSL_VM) {
551 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
552 		struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
553 
554 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
555 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
556 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
557 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
558 
559 		if (vm86->vm86_has_vme == 0)
560 			sf.sf_uc.uc_mcontext.mc_eflags =
561 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
562 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
563 
564 		/*
565 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
566 		 * syscalls made by the signal handler.  This just avoids
567 		 * wasting time for our lazy fixup of such faults.  PSL_NT
568 		 * does nothing in vm86 mode, but vm86 programs can set it
569 		 * almost legitimately in probes for old cpu types.
570 		 */
571 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
572 	}
573 #endif
574 
575 	/*
576 	 * Save the FPU state and reinit the FP unit
577 	 */
578 	npxpush(&sf.sf_uc.uc_mcontext);
579 
580 	/*
581 	 * Copy the sigframe out to the user's stack.
582 	 */
583 	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
584 		/*
585 		 * Something is wrong with the stack pointer.
586 		 * ...Kill the process.
587 		 */
588 		sigexit(lp, SIGILL);
589 	}
590 
591 	regs->tf_rsp = (register_t)sfp;
592 	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
593 
594 	/*
595 	 * i386 abi specifies that the direction flag must be cleared
596 	 * on function entry
597 	 */
598 	regs->tf_rflags &= ~(PSL_T|PSL_D);
599 
600 	/*
601 	 * 64 bit mode has a code and stack selector but
602 	 * no data or extra selector.  %fs and %gs are not
603 	 * stored in-context.
604 	 */
605 	regs->tf_cs = _ucodesel;
606 	regs->tf_ss = _udatasel;
607 	clear_quickret();
608 }
609 
610 /*
611  * Sanitize the trapframe for a virtual kernel passing control to a custom
612  * VM context.  Remove any items that would otherwise create a privilage
613  * issue.
614  *
615  * XXX at the moment we allow userland to set the resume flag.  Is this a
616  * bad idea?
617  */
618 int
619 cpu_sanitize_frame(struct trapframe *frame)
620 {
621 	frame->tf_cs = _ucodesel;
622 	frame->tf_ss = _udatasel;
623 	/* XXX VM (8086) mode not supported? */
624 	frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
625 	frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
626 
627 	return(0);
628 }
629 
630 /*
631  * Sanitize the tls so loading the descriptor does not blow up
632  * on us.  For x86_64 we don't have to do anything.
633  */
634 int
635 cpu_sanitize_tls(struct savetls *tls)
636 {
637 	return(0);
638 }
639 
640 /*
641  * sigreturn(ucontext_t *sigcntxp)
642  *
643  * System call to cleanup state after a signal
644  * has been taken.  Reset signal mask and
645  * stack state from context left by sendsig (above).
646  * Return to previous pc and psl as specified by
647  * context left by sendsig. Check carefully to
648  * make sure that the user has not modified the
649  * state to gain improper privileges.
650  *
651  * MPSAFE
652  */
653 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
654 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
655 
656 int
657 sys_sigreturn(struct sigreturn_args *uap)
658 {
659 	struct lwp *lp = curthread->td_lwp;
660 	struct trapframe *regs;
661 	ucontext_t uc;
662 	ucontext_t *ucp;
663 	register_t rflags;
664 	int cs;
665 	int error;
666 
667 	/*
668 	 * We have to copy the information into kernel space so userland
669 	 * can't modify it while we are sniffing it.
670 	 */
671 	regs = lp->lwp_md.md_regs;
672 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
673 	if (error)
674 		return (error);
675 	ucp = &uc;
676 	rflags = ucp->uc_mcontext.mc_rflags;
677 
678 	/* VM (8086) mode not supported */
679 	rflags &= ~PSL_VM_UNSUPP;
680 
681 #if JG
682 	if (eflags & PSL_VM) {
683 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
684 		struct vm86_kernel *vm86;
685 
686 		/*
687 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
688 		 * set up the vm86 area, and we can't enter vm86 mode.
689 		 */
690 		if (lp->lwp_thread->td_pcb->pcb_ext == 0)
691 			return (EINVAL);
692 		vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
693 		if (vm86->vm86_inited == 0)
694 			return (EINVAL);
695 
696 		/* go back to user mode if both flags are set */
697 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
698 			trapsignal(lp, SIGBUS, 0);
699 
700 		if (vm86->vm86_has_vme) {
701 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
702 			    (eflags & VME_USERCHANGE) | PSL_VM;
703 		} else {
704 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
705 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
706 			    (eflags & VM_USERCHANGE) | PSL_VM;
707 		}
708 		bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
709 		tf->tf_eflags = eflags;
710 		tf->tf_vm86_ds = tf->tf_ds;
711 		tf->tf_vm86_es = tf->tf_es;
712 		tf->tf_vm86_fs = tf->tf_fs;
713 		tf->tf_vm86_gs = tf->tf_gs;
714 		tf->tf_ds = _udatasel;
715 		tf->tf_es = _udatasel;
716 		tf->tf_fs = _udatasel;
717 		tf->tf_gs = _udatasel;
718 	} else
719 #endif
720 	{
721 		/*
722 		 * Don't allow users to change privileged or reserved flags.
723 		 */
724 		/*
725 		 * XXX do allow users to change the privileged flag PSL_RF.
726 		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
727 		 * should sometimes set it there too.  tf_eflags is kept in
728 		 * the signal context during signal handling and there is no
729 		 * other place to remember it, so the PSL_RF bit may be
730 		 * corrupted by the signal handler without us knowing.
731 		 * Corruption of the PSL_RF bit at worst causes one more or
732 		 * one less debugger trap, so allowing it is fairly harmless.
733 		 */
734 		if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
735 			kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
736 	    		return(EINVAL);
737 		}
738 
739 		/*
740 		 * Don't allow users to load a valid privileged %cs.  Let the
741 		 * hardware check for invalid selectors, excess privilege in
742 		 * other selectors, invalid %eip's and invalid %esp's.
743 		 */
744 		cs = ucp->uc_mcontext.mc_cs;
745 		if (!CS_SECURE(cs)) {
746 			kprintf("sigreturn: cs = 0x%x\n", cs);
747 			trapsignal(lp, SIGBUS, T_PROTFLT);
748 			return(EINVAL);
749 		}
750 		bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
751 	}
752 
753 	/*
754 	 * Restore the FPU state from the frame
755 	 */
756 	crit_enter();
757 	npxpop(&ucp->uc_mcontext);
758 
759 	if (ucp->uc_mcontext.mc_onstack & 1)
760 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
761 	else
762 		lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
763 
764 	lp->lwp_sigmask = ucp->uc_sigmask;
765 	SIG_CANTMASK(lp->lwp_sigmask);
766 	clear_quickret();
767 	crit_exit();
768 	return(EJUSTRETURN);
769 }
770 
771 /*
772  * Machine dependent boot() routine
773  *
774  * I haven't seen anything to put here yet
775  * Possibly some stuff might be grafted back here from boot()
776  */
777 void
778 cpu_boot(int howto)
779 {
780 }
781 
782 /*
783  * Shutdown the CPU as much as possible
784  */
785 void
786 cpu_halt(void)
787 {
788 	for (;;)
789 		__asm__ __volatile("hlt");
790 }
791 
792 /*
793  * cpu_idle() represents the idle LWKT.  You cannot return from this function
794  * (unless you want to blow things up!).  Instead we look for runnable threads
795  * and loop or halt as appropriate.  Giant is not held on entry to the thread.
796  *
797  * The main loop is entered with a critical section held, we must release
798  * the critical section before doing anything else.  lwkt_switch() will
799  * check for pending interrupts due to entering and exiting its own
800  * critical section.
801  *
802  * NOTE: On an SMP system we rely on a scheduler IPI to wake a HLTed cpu up.
803  *	 However, there are cases where the idlethread will be entered with
804  *	 the possibility that no IPI will occur and in such cases
805  *	 lwkt_switch() sets TDF_IDLE_NOHLT.
806  *
807  * NOTE: cpu_idle_hlt again defaults to 2 (use ACPI sleep states).  Set to
808  *	 1 to just use hlt and for debugging purposes.
809  *
810  * NOTE: cpu_idle_repeat determines how many entries into the idle thread
811  *	 must occur before it starts using ACPI halt.
812  */
813 static int	cpu_idle_hlt = 2;
814 static int	cpu_idle_hltcnt;
815 static int	cpu_idle_spincnt;
816 static u_int	cpu_idle_repeat = 750;
817 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
818     &cpu_idle_hlt, 0, "Idle loop HLT enable");
819 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hltcnt, CTLFLAG_RW,
820     &cpu_idle_hltcnt, 0, "Idle loop entry halts");
821 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_spincnt, CTLFLAG_RW,
822     &cpu_idle_spincnt, 0, "Idle loop entry spins");
823 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_repeat, CTLFLAG_RW,
824     &cpu_idle_repeat, 0, "Idle entries before acpi hlt");
825 
826 static void
827 cpu_idle_default_hook(void)
828 {
829 	/*
830 	 * We must guarentee that hlt is exactly the instruction
831 	 * following the sti.
832 	 */
833 	__asm __volatile("sti; hlt");
834 }
835 
836 /* Other subsystems (e.g., ACPI) can hook this later. */
837 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
838 
839 void
840 cpu_idle(void)
841 {
842 	globaldata_t gd = mycpu;
843 	struct thread *td __debugvar = gd->gd_curthread;
844 	int reqflags;
845 	int quick;
846 
847 	crit_exit();
848 	KKASSERT(td->td_critcount == 0);
849 	for (;;) {
850 		/*
851 		 * See if there are any LWKTs ready to go.
852 		 */
853 		lwkt_switch();
854 
855 		/*
856 		 * When halting inside a cli we must check for reqflags
857 		 * races, particularly [re]schedule requests.  Running
858 		 * splz() does the job.
859 		 *
860 		 * cpu_idle_hlt:
861 		 *	0	Never halt, just spin
862 		 *
863 		 *	1	Always use HLT (or MONITOR/MWAIT if avail).
864 		 *		This typically eats more power than the
865 		 *		ACPI halt.
866 		 *
867 		 *	2	Use HLT/MONITOR/MWAIT up to a point and then
868 		 *		use the ACPI halt (default).  This is a hybrid
869 		 *		approach.  See machdep.cpu_idle_repeat.
870 		 *
871 		 *	3	Always use the ACPI halt.  This typically
872 		 *		eats the least amount of power but the cpu
873 		 *		will be slow waking up.  Slows down e.g.
874 		 *		compiles and other pipe/event oriented stuff.
875 		 *
876 		 * NOTE: Interrupts are enabled and we are not in a critical
877 		 *	 section.
878 		 *
879 		 * NOTE: Preemptions do not reset gd_idle_repeat.   Also we
880 		 *	 don't bother capping gd_idle_repeat, it is ok if
881 		 *	 it overflows.
882 		 */
883 		++gd->gd_idle_repeat;
884 		reqflags = gd->gd_reqflags;
885 		quick = (cpu_idle_hlt == 1) ||
886 			(cpu_idle_hlt < 3 &&
887 			 gd->gd_idle_repeat < cpu_idle_repeat);
888 
889 		if (quick && (cpu_mi_feature & CPU_MI_MONITOR) &&
890 		    (reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
891 			splz(); /* XXX */
892 			cpu_mmw_pause_int(&gd->gd_reqflags, reqflags,
893 					  cpu_mwait_halt);
894 			++cpu_idle_hltcnt;
895 		} else if (cpu_idle_hlt) {
896 			__asm __volatile("cli");
897 			splz();
898 			if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
899 				if (quick)
900 					cpu_idle_default_hook();
901 				else
902 					cpu_idle_hook();
903 			}
904 			__asm __volatile("sti");
905 			++cpu_idle_hltcnt;
906 		} else {
907 			splz();
908 			__asm __volatile("sti");
909 			++cpu_idle_spincnt;
910 		}
911 	}
912 }
913 
914 /*
915  * This routine is called if a spinlock has been held through the
916  * exponential backoff period and is seriously contested.  On a real cpu
917  * we let it spin.
918  */
919 void
920 cpu_spinlock_contested(void)
921 {
922 	cpu_pause();
923 }
924 
925 /*
926  * Clear registers on exec
927  */
928 void
929 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
930 {
931 	struct thread *td = curthread;
932 	struct lwp *lp = td->td_lwp;
933 	struct pcb *pcb = td->td_pcb;
934 	struct trapframe *regs = lp->lwp_md.md_regs;
935 
936 	/* was i386_user_cleanup() in NetBSD */
937 	user_ldt_free(pcb);
938 
939 	clear_quickret();
940 	bzero((char *)regs, sizeof(struct trapframe));
941 	regs->tf_rip = entry;
942 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
943 	regs->tf_rdi = stack;		/* argv */
944 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
945 	regs->tf_ss = _udatasel;
946 	regs->tf_cs = _ucodesel;
947 	regs->tf_rbx = ps_strings;
948 
949 	/*
950 	 * Reset the hardware debug registers if they were in use.
951 	 * They won't have any meaning for the newly exec'd process.
952 	 */
953 	if (pcb->pcb_flags & PCB_DBREGS) {
954 		pcb->pcb_dr0 = 0;
955 		pcb->pcb_dr1 = 0;
956 		pcb->pcb_dr2 = 0;
957 		pcb->pcb_dr3 = 0;
958 		pcb->pcb_dr6 = 0;
959 		pcb->pcb_dr7 = 0; /* JG set bit 10? */
960 		if (pcb == td->td_pcb) {
961 			/*
962 			 * Clear the debug registers on the running
963 			 * CPU, otherwise they will end up affecting
964 			 * the next process we switch to.
965 			 */
966 			reset_dbregs();
967 		}
968 		pcb->pcb_flags &= ~PCB_DBREGS;
969 	}
970 
971 	/*
972 	 * Initialize the math emulator (if any) for the current process.
973 	 * Actually, just clear the bit that says that the emulator has
974 	 * been initialized.  Initialization is delayed until the process
975 	 * traps to the emulator (if it is done at all) mainly because
976 	 * emulators don't provide an entry point for initialization.
977 	 */
978 	pcb->pcb_flags &= ~FP_SOFTFP;
979 
980 	/*
981 	 * NOTE: do not set CR0_TS here.  npxinit() must do it after clearing
982 	 *	 gd_npxthread.  Otherwise a preemptive interrupt thread
983 	 *	 may panic in npxdna().
984 	 */
985 	crit_enter();
986 	load_cr0(rcr0() | CR0_MP);
987 
988 	/*
989 	 * NOTE: The MSR values must be correct so we can return to
990 	 * 	 userland.  gd_user_fs/gs must be correct so the switch
991 	 *	 code knows what the current MSR values are.
992 	 */
993 	pcb->pcb_fsbase = 0;	/* Values loaded from PCB on switch */
994 	pcb->pcb_gsbase = 0;
995 	mdcpu->gd_user_fs = 0;	/* Cache of current MSR values */
996 	mdcpu->gd_user_gs = 0;
997 	wrmsr(MSR_FSBASE, 0);	/* Set MSR values for return to userland */
998 	wrmsr(MSR_KGSBASE, 0);
999 
1000 	/* Initialize the npx (if any) for the current process. */
1001 	npxinit(__INITIAL_FPUCW__);
1002 	crit_exit();
1003 
1004 	pcb->pcb_ds = _udatasel;
1005 	pcb->pcb_es = _udatasel;
1006 	pcb->pcb_fs = _udatasel;
1007 	pcb->pcb_gs = _udatasel;
1008 }
1009 
1010 void
1011 cpu_setregs(void)
1012 {
1013 	register_t cr0;
1014 
1015 	cr0 = rcr0();
1016 	cr0 |= CR0_NE;			/* Done by npxinit() */
1017 	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1018 	cr0 |= CR0_WP | CR0_AM;
1019 	load_cr0(cr0);
1020 	load_gs(_udatasel);
1021 }
1022 
1023 static int
1024 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1025 {
1026 	int error;
1027 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1028 		req);
1029 	if (!error && req->newptr)
1030 		resettodr();
1031 	return (error);
1032 }
1033 
1034 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1035 	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1036 
1037 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1038 	CTLFLAG_RW, &disable_rtc_set, 0, "");
1039 
1040 #if JG
1041 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1042 	CTLFLAG_RD, &bootinfo, bootinfo, "");
1043 #endif
1044 
1045 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1046 	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1047 
1048 extern u_long bootdev;		/* not a cdev_t - encoding is different */
1049 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1050 	CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1051 
1052 /*
1053  * Initialize 386 and configure to run kernel
1054  */
1055 
1056 /*
1057  * Initialize segments & interrupt table
1058  */
1059 
1060 int _default_ldt;
1061 struct user_segment_descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1062 struct gate_descriptor idt_arr[MAXCPU][NIDT];
1063 #if JG
1064 union descriptor ldt[NLDT];		/* local descriptor table */
1065 #endif
1066 
1067 /* table descriptors - used to load tables by cpu */
1068 struct region_descriptor r_gdt;
1069 struct region_descriptor r_idt_arr[MAXCPU];
1070 
1071 /* JG proc0paddr is a virtual address */
1072 void *proc0paddr;
1073 /* JG alignment? */
1074 char proc0paddr_buff[LWKT_THREAD_STACK];
1075 
1076 
1077 /* software prototypes -- in more palatable form */
1078 struct soft_segment_descriptor gdt_segs[] = {
1079 /* GNULL_SEL	0 Null Descriptor */
1080 {	0x0,			/* segment base address  */
1081 	0x0,			/* length */
1082 	0,			/* segment type */
1083 	0,			/* segment descriptor priority level */
1084 	0,			/* segment descriptor present */
1085 	0,			/* long */
1086 	0,			/* default 32 vs 16 bit size */
1087 	0  			/* limit granularity (byte/page units)*/ },
1088 /* GCODE_SEL	1 Code Descriptor for kernel */
1089 {	0x0,			/* segment base address  */
1090 	0xfffff,		/* length - all address space */
1091 	SDT_MEMERA,		/* segment type */
1092 	SEL_KPL,		/* segment descriptor priority level */
1093 	1,			/* segment descriptor present */
1094 	1,			/* long */
1095 	0,			/* default 32 vs 16 bit size */
1096 	1  			/* limit granularity (byte/page units)*/ },
1097 /* GDATA_SEL	2 Data Descriptor for kernel */
1098 {	0x0,			/* segment base address  */
1099 	0xfffff,		/* length - all address space */
1100 	SDT_MEMRWA,		/* segment type */
1101 	SEL_KPL,		/* segment descriptor priority level */
1102 	1,			/* segment descriptor present */
1103 	1,			/* long */
1104 	0,			/* default 32 vs 16 bit size */
1105 	1  			/* limit granularity (byte/page units)*/ },
1106 /* GUCODE32_SEL	3 32 bit Code Descriptor for user */
1107 {	0x0,			/* segment base address  */
1108 	0xfffff,		/* length - all address space */
1109 	SDT_MEMERA,		/* segment type */
1110 	SEL_UPL,		/* segment descriptor priority level */
1111 	1,			/* segment descriptor present */
1112 	0,			/* long */
1113 	1,			/* default 32 vs 16 bit size */
1114 	1  			/* limit granularity (byte/page units)*/ },
1115 /* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
1116 {	0x0,			/* segment base address  */
1117 	0xfffff,		/* length - all address space */
1118 	SDT_MEMRWA,		/* segment type */
1119 	SEL_UPL,		/* segment descriptor priority level */
1120 	1,			/* segment descriptor present */
1121 	0,			/* long */
1122 	1,			/* default 32 vs 16 bit size */
1123 	1  			/* limit granularity (byte/page units)*/ },
1124 /* GUCODE_SEL	5 64 bit Code Descriptor for user */
1125 {	0x0,			/* segment base address  */
1126 	0xfffff,		/* length - all address space */
1127 	SDT_MEMERA,		/* segment type */
1128 	SEL_UPL,		/* segment descriptor priority level */
1129 	1,			/* segment descriptor present */
1130 	1,			/* long */
1131 	0,			/* default 32 vs 16 bit size */
1132 	1  			/* limit granularity (byte/page units)*/ },
1133 /* GPROC0_SEL	6 Proc 0 Tss Descriptor */
1134 {
1135 	0x0,			/* segment base address */
1136 	sizeof(struct x86_64tss)-1,/* length - all address space */
1137 	SDT_SYSTSS,		/* segment type */
1138 	SEL_KPL,		/* segment descriptor priority level */
1139 	1,			/* segment descriptor present */
1140 	0,			/* long */
1141 	0,			/* unused - default 32 vs 16 bit size */
1142 	0  			/* limit granularity (byte/page units)*/ },
1143 /* Actually, the TSS is a system descriptor which is double size */
1144 {	0x0,			/* segment base address  */
1145 	0x0,			/* length */
1146 	0,			/* segment type */
1147 	0,			/* segment descriptor priority level */
1148 	0,			/* segment descriptor present */
1149 	0,			/* long */
1150 	0,			/* default 32 vs 16 bit size */
1151 	0  			/* limit granularity (byte/page units)*/ },
1152 /* GUGS32_SEL	8 32 bit GS Descriptor for user */
1153 {	0x0,			/* segment base address  */
1154 	0xfffff,		/* length - all address space */
1155 	SDT_MEMRWA,		/* segment type */
1156 	SEL_UPL,		/* segment descriptor priority level */
1157 	1,			/* segment descriptor present */
1158 	0,			/* long */
1159 	1,			/* default 32 vs 16 bit size */
1160 	1  			/* limit granularity (byte/page units)*/ },
1161 };
1162 
1163 void
1164 setidt_global(int idx, inthand_t *func, int typ, int dpl, int ist)
1165 {
1166 	int cpu;
1167 
1168 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
1169 		struct gate_descriptor *ip = &idt_arr[cpu][idx];
1170 
1171 		ip->gd_looffset = (uintptr_t)func;
1172 		ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1173 		ip->gd_ist = ist;
1174 		ip->gd_xx = 0;
1175 		ip->gd_type = typ;
1176 		ip->gd_dpl = dpl;
1177 		ip->gd_p = 1;
1178 		ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1179 	}
1180 }
1181 
1182 void
1183 setidt(int idx, inthand_t *func, int typ, int dpl, int ist, int cpu)
1184 {
1185 	struct gate_descriptor *ip;
1186 
1187 	KASSERT(cpu >= 0 && cpu < ncpus, ("invalid cpu %d", cpu));
1188 
1189 	ip = &idt_arr[cpu][idx];
1190 	ip->gd_looffset = (uintptr_t)func;
1191 	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1192 	ip->gd_ist = ist;
1193 	ip->gd_xx = 0;
1194 	ip->gd_type = typ;
1195 	ip->gd_dpl = dpl;
1196 	ip->gd_p = 1;
1197 	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1198 }
1199 
1200 #define	IDTVEC(name)	__CONCAT(X,name)
1201 
1202 extern inthand_t
1203 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1204 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1205 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1206 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1207 	IDTVEC(xmm), IDTVEC(dblfault),
1208 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1209 
1210 #ifdef DEBUG_INTERRUPTS
1211 extern inthand_t *Xrsvdary[256];
1212 #endif
1213 
1214 void
1215 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1216 {
1217 	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1218 	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1219 	ssd->ssd_type  = sd->sd_type;
1220 	ssd->ssd_dpl   = sd->sd_dpl;
1221 	ssd->ssd_p     = sd->sd_p;
1222 	ssd->ssd_def32 = sd->sd_def32;
1223 	ssd->ssd_gran  = sd->sd_gran;
1224 }
1225 
1226 void
1227 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1228 {
1229 
1230 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1231 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1232 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1233 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1234 	sd->sd_type  = ssd->ssd_type;
1235 	sd->sd_dpl   = ssd->ssd_dpl;
1236 	sd->sd_p     = ssd->ssd_p;
1237 	sd->sd_long  = ssd->ssd_long;
1238 	sd->sd_def32 = ssd->ssd_def32;
1239 	sd->sd_gran  = ssd->ssd_gran;
1240 }
1241 
1242 void
1243 ssdtosyssd(struct soft_segment_descriptor *ssd,
1244     struct system_segment_descriptor *sd)
1245 {
1246 
1247 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1248 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1249 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1250 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1251 	sd->sd_type  = ssd->ssd_type;
1252 	sd->sd_dpl   = ssd->ssd_dpl;
1253 	sd->sd_p     = ssd->ssd_p;
1254 	sd->sd_gran  = ssd->ssd_gran;
1255 }
1256 
1257 /*
1258  * Populate the (physmap) array with base/bound pairs describing the
1259  * available physical memory in the system, then test this memory and
1260  * build the phys_avail array describing the actually-available memory.
1261  *
1262  * If we cannot accurately determine the physical memory map, then use
1263  * value from the 0xE801 call, and failing that, the RTC.
1264  *
1265  * Total memory size may be set by the kernel environment variable
1266  * hw.physmem or the compile-time define MAXMEM.
1267  *
1268  * Memory is aligned to PHYSMAP_ALIGN which must be a multiple
1269  * of PAGE_SIZE.  This also greatly reduces the memory test time
1270  * which would otherwise be excessive on machines with > 8G of ram.
1271  *
1272  * XXX first should be vm_paddr_t.
1273  */
1274 
1275 #define PHYSMAP_ALIGN		(vm_paddr_t)(128 * 1024)
1276 #define PHYSMAP_ALIGN_MASK	(vm_paddr_t)(PHYSMAP_ALIGN - 1)
1277 
1278 static void
1279 getmemsize(caddr_t kmdp, u_int64_t first)
1280 {
1281 	int off, physmap_idx, pa_indx, da_indx;
1282 	int i, j;
1283 	vm_paddr_t physmap[PHYSMAP_SIZE];
1284 	vm_paddr_t pa;
1285 	vm_paddr_t msgbuf_size;
1286 	u_long physmem_tunable;
1287 	pt_entry_t *pte;
1288 	struct bios_smap *smapbase, *smap, *smapend;
1289 	u_int32_t smapsize;
1290 	quad_t dcons_addr, dcons_size;
1291 
1292 	bzero(physmap, sizeof(physmap));
1293 	physmap_idx = 0;
1294 
1295 	/*
1296 	 * get memory map from INT 15:E820, kindly supplied by the loader.
1297 	 *
1298 	 * subr_module.c says:
1299 	 * "Consumer may safely assume that size value precedes data."
1300 	 * ie: an int32_t immediately precedes smap.
1301 	 */
1302 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1303 	    MODINFO_METADATA | MODINFOMD_SMAP);
1304 	if (smapbase == NULL)
1305 		panic("No BIOS smap info from loader!");
1306 
1307 	smapsize = *((u_int32_t *)smapbase - 1);
1308 	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1309 
1310 	for (smap = smapbase; smap < smapend; smap++) {
1311 		if (boothowto & RB_VERBOSE)
1312 			kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1313 			    smap->type, smap->base, smap->length);
1314 
1315 		if (smap->type != SMAP_TYPE_MEMORY)
1316 			continue;
1317 
1318 		if (smap->length == 0)
1319 			continue;
1320 
1321 		for (i = 0; i <= physmap_idx; i += 2) {
1322 			if (smap->base < physmap[i + 1]) {
1323 				if (boothowto & RB_VERBOSE) {
1324 					kprintf("Overlapping or non-monotonic "
1325 						"memory region, ignoring "
1326 						"second region\n");
1327 				}
1328 				break;
1329 			}
1330 		}
1331 		if (i <= physmap_idx)
1332 			continue;
1333 
1334 		Realmem += smap->length;
1335 
1336 		if (smap->base == physmap[physmap_idx + 1]) {
1337 			physmap[physmap_idx + 1] += smap->length;
1338 			continue;
1339 		}
1340 
1341 		physmap_idx += 2;
1342 		if (physmap_idx == PHYSMAP_SIZE) {
1343 			kprintf("Too many segments in the physical "
1344 				"address map, giving up\n");
1345 			break;
1346 		}
1347 		physmap[physmap_idx] = smap->base;
1348 		physmap[physmap_idx + 1] = smap->base + smap->length;
1349 	}
1350 
1351 	base_memory = physmap[1] / 1024;
1352 	/* make hole for AP bootstrap code */
1353 	physmap[1] = mp_bootaddress(base_memory);
1354 
1355 	/* Save EBDA address, if any */
1356 	ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
1357 	ebda_addr <<= 4;
1358 
1359 	/*
1360 	 * Maxmem isn't the "maximum memory", it's one larger than the
1361 	 * highest page of the physical address space.  It should be
1362 	 * called something like "Maxphyspage".  We may adjust this
1363 	 * based on ``hw.physmem'' and the results of the memory test.
1364 	 */
1365 	Maxmem = atop(physmap[physmap_idx + 1]);
1366 
1367 #ifdef MAXMEM
1368 	Maxmem = MAXMEM / 4;
1369 #endif
1370 
1371 	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1372 		Maxmem = atop(physmem_tunable);
1373 
1374 	/*
1375 	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1376 	 * in the system.
1377 	 */
1378 	if (Maxmem > atop(physmap[physmap_idx + 1]))
1379 		Maxmem = atop(physmap[physmap_idx + 1]);
1380 
1381 	/*
1382 	 * Blowing out the DMAP will blow up the system.
1383 	 */
1384 	if (Maxmem > atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS)) {
1385 		kprintf("Limiting Maxmem due to DMAP size\n");
1386 		Maxmem = atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS);
1387 	}
1388 
1389 	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1390 	    (boothowto & RB_VERBOSE)) {
1391 		kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
1392 	}
1393 
1394 	/*
1395 	 * Call pmap initialization to make new kernel address space
1396 	 *
1397 	 * Mask off page 0.
1398 	 */
1399 	pmap_bootstrap(&first);
1400 	physmap[0] = PAGE_SIZE;
1401 
1402 	/*
1403 	 * Align the physmap to PHYSMAP_ALIGN and cut out anything
1404 	 * exceeding Maxmem.
1405 	 */
1406 	for (i = j = 0; i <= physmap_idx; i += 2) {
1407 		if (physmap[i+1] > ptoa(Maxmem))
1408 			physmap[i+1] = ptoa(Maxmem);
1409 		physmap[i] = (physmap[i] + PHYSMAP_ALIGN_MASK) &
1410 			     ~PHYSMAP_ALIGN_MASK;
1411 		physmap[i+1] = physmap[i+1] & ~PHYSMAP_ALIGN_MASK;
1412 
1413 		physmap[j] = physmap[i];
1414 		physmap[j+1] = physmap[i+1];
1415 
1416 		if (physmap[i] < physmap[i+1])
1417 			j += 2;
1418 	}
1419 	physmap_idx = j - 2;
1420 
1421 	/*
1422 	 * Align anything else used in the validation loop.
1423 	 */
1424 	first = (first + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1425 
1426 	/*
1427 	 * Size up each available chunk of physical memory.
1428 	 */
1429 	pa_indx = 0;
1430 	da_indx = 1;
1431 	phys_avail[pa_indx++] = physmap[0];
1432 	phys_avail[pa_indx] = physmap[0];
1433 	dump_avail[da_indx] = physmap[0];
1434 	pte = CMAP1;
1435 
1436 	/*
1437 	 * Get dcons buffer address
1438 	 */
1439 	if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
1440 	    kgetenv_quad("dcons.size", &dcons_size) == 0)
1441 		dcons_addr = 0;
1442 
1443 	/*
1444 	 * Validate the physical memory.  The physical memory segments
1445 	 * have already been aligned to PHYSMAP_ALIGN which is a multiple
1446 	 * of PAGE_SIZE.
1447 	 */
1448 	for (i = 0; i <= physmap_idx; i += 2) {
1449 		vm_paddr_t end;
1450 
1451 		end = physmap[i + 1];
1452 
1453 		for (pa = physmap[i]; pa < end; pa += PHYSMAP_ALIGN) {
1454 			int tmp, page_bad, full;
1455 			int *ptr = (int *)CADDR1;
1456 
1457 			full = FALSE;
1458 			/*
1459 			 * block out kernel memory as not available.
1460 			 */
1461 			if (pa >= 0x200000 && pa < first)
1462 				goto do_dump_avail;
1463 
1464 			/*
1465 			 * block out dcons buffer
1466 			 */
1467 			if (dcons_addr > 0
1468 			    && pa >= trunc_page(dcons_addr)
1469 			    && pa < dcons_addr + dcons_size) {
1470 				goto do_dump_avail;
1471 			}
1472 
1473 			page_bad = FALSE;
1474 
1475 			/*
1476 			 * map page into kernel: valid, read/write,non-cacheable
1477 			 */
1478 			*pte = pa |
1479 			    kernel_pmap.pmap_bits[PG_V_IDX] |
1480 			    kernel_pmap.pmap_bits[PG_RW_IDX] |
1481 			    kernel_pmap.pmap_bits[PG_N_IDX];
1482 			cpu_invltlb();
1483 
1484 			tmp = *ptr;
1485 			/*
1486 			 * Test for alternating 1's and 0's
1487 			 */
1488 			*(volatile int *)ptr = 0xaaaaaaaa;
1489 			cpu_mfence();
1490 			if (*(volatile int *)ptr != 0xaaaaaaaa)
1491 				page_bad = TRUE;
1492 			/*
1493 			 * Test for alternating 0's and 1's
1494 			 */
1495 			*(volatile int *)ptr = 0x55555555;
1496 			cpu_mfence();
1497 			if (*(volatile int *)ptr != 0x55555555)
1498 				page_bad = TRUE;
1499 			/*
1500 			 * Test for all 1's
1501 			 */
1502 			*(volatile int *)ptr = 0xffffffff;
1503 			cpu_mfence();
1504 			if (*(volatile int *)ptr != 0xffffffff)
1505 				page_bad = TRUE;
1506 			/*
1507 			 * Test for all 0's
1508 			 */
1509 			*(volatile int *)ptr = 0x0;
1510 			cpu_mfence();
1511 			if (*(volatile int *)ptr != 0x0)
1512 				page_bad = TRUE;
1513 			/*
1514 			 * Restore original value.
1515 			 */
1516 			*ptr = tmp;
1517 
1518 			/*
1519 			 * Adjust array of valid/good pages.
1520 			 */
1521 			if (page_bad == TRUE)
1522 				continue;
1523 			/*
1524 			 * If this good page is a continuation of the
1525 			 * previous set of good pages, then just increase
1526 			 * the end pointer. Otherwise start a new chunk.
1527 			 * Note that "end" points one higher than end,
1528 			 * making the range >= start and < end.
1529 			 * If we're also doing a speculative memory
1530 			 * test and we at or past the end, bump up Maxmem
1531 			 * so that we keep going. The first bad page
1532 			 * will terminate the loop.
1533 			 */
1534 			if (phys_avail[pa_indx] == pa) {
1535 				phys_avail[pa_indx] += PHYSMAP_ALIGN;
1536 			} else {
1537 				pa_indx++;
1538 				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1539 					kprintf(
1540 		"Too many holes in the physical address space, giving up\n");
1541 					pa_indx--;
1542 					full = TRUE;
1543 					goto do_dump_avail;
1544 				}
1545 				phys_avail[pa_indx++] = pa;
1546 				phys_avail[pa_indx] = pa + PHYSMAP_ALIGN;
1547 			}
1548 			physmem += PHYSMAP_ALIGN / PAGE_SIZE;
1549 do_dump_avail:
1550 			if (dump_avail[da_indx] == pa) {
1551 				dump_avail[da_indx] += PHYSMAP_ALIGN;
1552 			} else {
1553 				da_indx++;
1554 				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1555 					da_indx--;
1556 					goto do_next;
1557 				}
1558 				dump_avail[da_indx++] = pa;
1559 				dump_avail[da_indx] = pa + PHYSMAP_ALIGN;
1560 			}
1561 do_next:
1562 			if (full)
1563 				break;
1564 		}
1565 	}
1566 	*pte = 0;
1567 	cpu_invltlb();
1568 
1569 	/*
1570 	 * The last chunk must contain at least one page plus the message
1571 	 * buffer to avoid complicating other code (message buffer address
1572 	 * calculation, etc.).
1573 	 */
1574 	msgbuf_size = (MSGBUF_SIZE + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1575 
1576 	while (phys_avail[pa_indx - 1] + PHYSMAP_ALIGN +
1577 	       msgbuf_size >= phys_avail[pa_indx]) {
1578 		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1579 		phys_avail[pa_indx--] = 0;
1580 		phys_avail[pa_indx--] = 0;
1581 	}
1582 
1583 	Maxmem = atop(phys_avail[pa_indx]);
1584 
1585 	/* Trim off space for the message buffer. */
1586 	phys_avail[pa_indx] -= msgbuf_size;
1587 
1588 	avail_end = phys_avail[pa_indx];
1589 
1590 	/* Map the message buffer. */
1591 	for (off = 0; off < msgbuf_size; off += PAGE_SIZE) {
1592 		pmap_kenter((vm_offset_t)msgbufp + off,
1593 			    phys_avail[pa_indx] + off);
1594 	}
1595 }
1596 
1597 struct machintr_abi MachIntrABI;
1598 
1599 /*
1600  * IDT VECTORS:
1601  *	0	Divide by zero
1602  *	1	Debug
1603  *	2	NMI
1604  *	3	BreakPoint
1605  *	4	OverFlow
1606  *	5	Bound-Range
1607  *	6	Invalid OpCode
1608  *	7	Device Not Available (x87)
1609  *	8	Double-Fault
1610  *	9	Coprocessor Segment overrun (unsupported, reserved)
1611  *	10	Invalid-TSS
1612  *	11	Segment not present
1613  *	12	Stack
1614  *	13	General Protection
1615  *	14	Page Fault
1616  *	15	Reserved
1617  *	16	x87 FP Exception pending
1618  *	17	Alignment Check
1619  *	18	Machine Check
1620  *	19	SIMD floating point
1621  *	20-31	reserved
1622  *	32-255	INTn/external sources
1623  */
1624 u_int64_t
1625 hammer_time(u_int64_t modulep, u_int64_t physfree)
1626 {
1627 	caddr_t kmdp;
1628 	int gsel_tss, x, cpu;
1629 #if JG
1630 	int metadata_missing, off;
1631 #endif
1632 	struct mdglobaldata *gd;
1633 	u_int64_t msr;
1634 
1635 	/*
1636 	 * Prevent lowering of the ipl if we call tsleep() early.
1637 	 */
1638 	gd = &CPU_prvspace[0].mdglobaldata;
1639 	bzero(gd, sizeof(*gd));
1640 
1641 	/*
1642 	 * Note: on both UP and SMP curthread must be set non-NULL
1643 	 * early in the boot sequence because the system assumes
1644 	 * that 'curthread' is never NULL.
1645 	 */
1646 
1647 	gd->mi.gd_curthread = &thread0;
1648 	thread0.td_gd = &gd->mi;
1649 
1650 	atdevbase = ISA_HOLE_START + PTOV_OFFSET;
1651 
1652 #if JG
1653 	metadata_missing = 0;
1654 	if (bootinfo.bi_modulep) {
1655 		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1656 		preload_bootstrap_relocate(KERNBASE);
1657 	} else {
1658 		metadata_missing = 1;
1659 	}
1660 	if (bootinfo.bi_envp)
1661 		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1662 #endif
1663 
1664 	preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
1665 	preload_bootstrap_relocate(PTOV_OFFSET);
1666 	kmdp = preload_search_by_type("elf kernel");
1667 	if (kmdp == NULL)
1668 		kmdp = preload_search_by_type("elf64 kernel");
1669 	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1670 	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
1671 #ifdef DDB
1672 	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1673 	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1674 #endif
1675 
1676 	if (boothowto & RB_VERBOSE)
1677 		bootverbose++;
1678 
1679 	/*
1680 	 * Default MachIntrABI to ICU
1681 	 */
1682 	MachIntrABI = MachIntrABI_ICU;
1683 
1684 	/*
1685 	 * start with one cpu.  Note: with one cpu, ncpus2_shift, ncpus2_mask,
1686 	 * and ncpus_fit_mask remain 0.
1687 	 */
1688 	ncpus = 1;
1689 	ncpus2 = 1;
1690 	ncpus_fit = 1;
1691 	/* Init basic tunables, hz etc */
1692 	init_param1();
1693 
1694 	/*
1695 	 * make gdt memory segments
1696 	 */
1697 	gdt_segs[GPROC0_SEL].ssd_base =
1698 		(uintptr_t) &CPU_prvspace[0].mdglobaldata.gd_common_tss;
1699 
1700 	gd->mi.gd_prvspace = &CPU_prvspace[0];
1701 
1702 	for (x = 0; x < NGDT; x++) {
1703 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
1704 			ssdtosd(&gdt_segs[x], &gdt[x]);
1705 	}
1706 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1707 	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1708 
1709 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1710 	r_gdt.rd_base =  (long) gdt;
1711 	lgdt(&r_gdt);
1712 
1713 	wrmsr(MSR_FSBASE, 0);		/* User value */
1714 	wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
1715 	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1716 
1717 	mi_gdinit(&gd->mi, 0);
1718 	cpu_gdinit(gd, 0);
1719 	proc0paddr = proc0paddr_buff;
1720 	mi_proc0init(&gd->mi, proc0paddr);
1721 	safepri = TDPRI_MAX;
1722 
1723 	/* spinlocks and the BGL */
1724 	init_locks();
1725 
1726 	/* exceptions */
1727 	for (x = 0; x < NIDT; x++)
1728 		setidt_global(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1729 	setidt_global(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1730 	setidt_global(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1731 	setidt_global(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 1);
1732  	setidt_global(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1733 	setidt_global(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1734 	setidt_global(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1735 	setidt_global(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1736 	setidt_global(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1737 	setidt_global(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1738 	setidt_global(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1739 	setidt_global(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1740 	setidt_global(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1741 	setidt_global(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1742 	setidt_global(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1743 	setidt_global(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1744 	setidt_global(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1745 	setidt_global(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1746 	setidt_global(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1747 	setidt_global(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1748 
1749 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
1750 		r_idt_arr[cpu].rd_limit = sizeof(idt_arr[cpu]) - 1;
1751 		r_idt_arr[cpu].rd_base = (long) &idt_arr[cpu][0];
1752 	}
1753 
1754 	lidt(&r_idt_arr[0]);
1755 
1756 	/*
1757 	 * Initialize the console before we print anything out.
1758 	 */
1759 	cninit();
1760 
1761 #if JG
1762 	if (metadata_missing)
1763 		kprintf("WARNING: loader(8) metadata is missing!\n");
1764 #endif
1765 
1766 #if	NISA >0
1767 	elcr_probe();
1768 	isa_defaultirq();
1769 #endif
1770 	rand_initialize();
1771 
1772 	/*
1773 	 * Initialize IRQ mapping
1774 	 *
1775 	 * NOTE:
1776 	 * SHOULD be after elcr_probe()
1777 	 */
1778 	MachIntrABI_ICU.initmap();
1779 	MachIntrABI_IOAPIC.initmap();
1780 
1781 #ifdef DDB
1782 	kdb_init();
1783 	if (boothowto & RB_KDB)
1784 		Debugger("Boot flags requested debugger");
1785 #endif
1786 
1787 #if JG
1788 	finishidentcpu();	/* Final stage of CPU initialization */
1789 	setidt(6, &IDTVEC(ill),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1790 	setidt(13, &IDTVEC(prot),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1791 #endif
1792 	identify_cpu();		/* Final stage of CPU initialization */
1793 	initializecpu(0);	/* Initialize CPU registers */
1794 
1795 	TUNABLE_INT_FETCH("hw.apic_io_enable", &ioapic_enable); /* for compat */
1796 	TUNABLE_INT_FETCH("hw.ioapic_enable", &ioapic_enable);
1797 	TUNABLE_INT_FETCH("hw.lapic_enable", &lapic_enable);
1798 
1799 	/*
1800 	 * Some of the virtual machines do not work w/ I/O APIC
1801 	 * enabled.  If the user does not explicitly enable or
1802 	 * disable the I/O APIC (ioapic_enable < 0), then we
1803 	 * disable I/O APIC on all virtual machines.
1804 	 *
1805 	 * NOTE:
1806 	 * This must be done after identify_cpu(), which sets
1807 	 * 'cpu_feature2'
1808 	 */
1809 	if (ioapic_enable < 0) {
1810 		if (cpu_feature2 & CPUID2_VMM)
1811 			ioapic_enable = 0;
1812 		else
1813 			ioapic_enable = 1;
1814 	}
1815 
1816 	/* make an initial tss so cpu can get interrupt stack on syscall! */
1817 	gd->gd_common_tss.tss_rsp0 =
1818 		(register_t)(thread0.td_kstack +
1819 			     KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb));
1820 	/* Ensure the stack is aligned to 16 bytes */
1821 	gd->gd_common_tss.tss_rsp0 &= ~(register_t)0xF;
1822 
1823 	/* double fault stack */
1824 	gd->gd_common_tss.tss_ist1 =
1825 		(long)&gd->mi.gd_prvspace->idlestack[
1826 			sizeof(gd->mi.gd_prvspace->idlestack)];
1827 
1828 	/* Set the IO permission bitmap (empty due to tss seg limit) */
1829 	gd->gd_common_tss.tss_iobase = sizeof(struct x86_64tss);
1830 
1831 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1832 	gd->gd_tss_gdt = &gdt[GPROC0_SEL];
1833 	gd->gd_common_tssd = *gd->gd_tss_gdt;
1834 	ltr(gsel_tss);
1835 
1836 	/* Set up the fast syscall stuff */
1837 	msr = rdmsr(MSR_EFER) | EFER_SCE;
1838 	wrmsr(MSR_EFER, msr);
1839 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1840 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1841 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1842 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1843 	wrmsr(MSR_STAR, msr);
1844 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
1845 
1846 	getmemsize(kmdp, physfree);
1847 	init_param2(physmem);
1848 
1849 	/* now running on new page tables, configured,and u/iom is accessible */
1850 
1851 	/* Map the message buffer. */
1852 #if JG
1853 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1854 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
1855 #endif
1856 
1857 	msgbufinit(msgbufp, MSGBUF_SIZE);
1858 
1859 
1860 	/* transfer to user mode */
1861 
1862 	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1863 	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1864 	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1865 
1866 	load_ds(_udatasel);
1867 	load_es(_udatasel);
1868 	load_fs(_udatasel);
1869 
1870 	/* setup proc 0's pcb */
1871 	thread0.td_pcb->pcb_flags = 0;
1872 	thread0.td_pcb->pcb_cr3 = KPML4phys;
1873 	thread0.td_pcb->pcb_ext = NULL;
1874 	lwp0.lwp_md.md_regs = &proc0_tf;	/* XXX needed? */
1875 
1876 	/* Location of kernel stack for locore */
1877 	return ((u_int64_t)thread0.td_pcb);
1878 }
1879 
1880 /*
1881  * Initialize machine-dependant portions of the global data structure.
1882  * Note that the global data area and cpu0's idlestack in the private
1883  * data space were allocated in locore.
1884  *
1885  * Note: the idlethread's cpl is 0
1886  *
1887  * WARNING!  Called from early boot, 'mycpu' may not work yet.
1888  */
1889 void
1890 cpu_gdinit(struct mdglobaldata *gd, int cpu)
1891 {
1892 	if (cpu)
1893 		gd->mi.gd_curthread = &gd->mi.gd_idlethread;
1894 
1895 	lwkt_init_thread(&gd->mi.gd_idlethread,
1896 			gd->mi.gd_prvspace->idlestack,
1897 			sizeof(gd->mi.gd_prvspace->idlestack),
1898 			0, &gd->mi);
1899 	lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
1900 	gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
1901 	gd->mi.gd_idlethread.td_sp -= sizeof(void *);
1902 	*(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
1903 }
1904 
1905 int
1906 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
1907 {
1908 	if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
1909 	    eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
1910 		return (TRUE);
1911 	}
1912 	if (saddr >= DMAP_MIN_ADDRESS && eaddr <= DMAP_MAX_ADDRESS)
1913 		return (TRUE);
1914 	return (FALSE);
1915 }
1916 
1917 struct globaldata *
1918 globaldata_find(int cpu)
1919 {
1920 	KKASSERT(cpu >= 0 && cpu < ncpus);
1921 	return(&CPU_prvspace[cpu].mdglobaldata.mi);
1922 }
1923 
1924 int
1925 ptrace_set_pc(struct lwp *lp, unsigned long addr)
1926 {
1927 	lp->lwp_md.md_regs->tf_rip = addr;
1928 	return (0);
1929 }
1930 
1931 int
1932 ptrace_single_step(struct lwp *lp)
1933 {
1934 	lp->lwp_md.md_regs->tf_rflags |= PSL_T;
1935 	return (0);
1936 }
1937 
1938 int
1939 fill_regs(struct lwp *lp, struct reg *regs)
1940 {
1941 	struct trapframe *tp;
1942 
1943 	if ((tp = lp->lwp_md.md_regs) == NULL)
1944 		return EINVAL;
1945 	bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
1946 	return (0);
1947 }
1948 
1949 int
1950 set_regs(struct lwp *lp, struct reg *regs)
1951 {
1952 	struct trapframe *tp;
1953 
1954 	tp = lp->lwp_md.md_regs;
1955 	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
1956 	    !CS_SECURE(regs->r_cs))
1957 		return (EINVAL);
1958 	bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
1959 	clear_quickret();
1960 	return (0);
1961 }
1962 
1963 #ifndef CPU_DISABLE_SSE
1964 static void
1965 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
1966 {
1967 	struct env87 *penv_87 = &sv_87->sv_env;
1968 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1969 	int i;
1970 
1971 	/* FPU control/status */
1972 	penv_87->en_cw = penv_xmm->en_cw;
1973 	penv_87->en_sw = penv_xmm->en_sw;
1974 	penv_87->en_tw = penv_xmm->en_tw;
1975 	penv_87->en_fip = penv_xmm->en_fip;
1976 	penv_87->en_fcs = penv_xmm->en_fcs;
1977 	penv_87->en_opcode = penv_xmm->en_opcode;
1978 	penv_87->en_foo = penv_xmm->en_foo;
1979 	penv_87->en_fos = penv_xmm->en_fos;
1980 
1981 	/* FPU registers */
1982 	for (i = 0; i < 8; ++i)
1983 		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
1984 }
1985 
1986 static void
1987 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
1988 {
1989 	struct env87 *penv_87 = &sv_87->sv_env;
1990 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1991 	int i;
1992 
1993 	/* FPU control/status */
1994 	penv_xmm->en_cw = penv_87->en_cw;
1995 	penv_xmm->en_sw = penv_87->en_sw;
1996 	penv_xmm->en_tw = penv_87->en_tw;
1997 	penv_xmm->en_fip = penv_87->en_fip;
1998 	penv_xmm->en_fcs = penv_87->en_fcs;
1999 	penv_xmm->en_opcode = penv_87->en_opcode;
2000 	penv_xmm->en_foo = penv_87->en_foo;
2001 	penv_xmm->en_fos = penv_87->en_fos;
2002 
2003 	/* FPU registers */
2004 	for (i = 0; i < 8; ++i)
2005 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2006 }
2007 #endif /* CPU_DISABLE_SSE */
2008 
2009 int
2010 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2011 {
2012 	if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
2013 		return EINVAL;
2014 #ifndef CPU_DISABLE_SSE
2015 	if (cpu_fxsr) {
2016 		fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2017 				(struct save87 *)fpregs);
2018 		return (0);
2019 	}
2020 #endif /* CPU_DISABLE_SSE */
2021 	bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2022 	return (0);
2023 }
2024 
2025 int
2026 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2027 {
2028 #ifndef CPU_DISABLE_SSE
2029 	if (cpu_fxsr) {
2030 		set_fpregs_xmm((struct save87 *)fpregs,
2031 			       &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2032 		return (0);
2033 	}
2034 #endif /* CPU_DISABLE_SSE */
2035 	bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2036 	return (0);
2037 }
2038 
2039 int
2040 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2041 {
2042 	struct pcb *pcb;
2043 
2044         if (lp == NULL) {
2045                 dbregs->dr[0] = rdr0();
2046                 dbregs->dr[1] = rdr1();
2047                 dbregs->dr[2] = rdr2();
2048                 dbregs->dr[3] = rdr3();
2049                 dbregs->dr[4] = rdr4();
2050                 dbregs->dr[5] = rdr5();
2051                 dbregs->dr[6] = rdr6();
2052                 dbregs->dr[7] = rdr7();
2053 		return (0);
2054         }
2055 	if (lp->lwp_thread == NULL || (pcb = lp->lwp_thread->td_pcb) == NULL)
2056 		return EINVAL;
2057 	dbregs->dr[0] = pcb->pcb_dr0;
2058 	dbregs->dr[1] = pcb->pcb_dr1;
2059 	dbregs->dr[2] = pcb->pcb_dr2;
2060 	dbregs->dr[3] = pcb->pcb_dr3;
2061 	dbregs->dr[4] = 0;
2062 	dbregs->dr[5] = 0;
2063 	dbregs->dr[6] = pcb->pcb_dr6;
2064 	dbregs->dr[7] = pcb->pcb_dr7;
2065 	return (0);
2066 }
2067 
2068 int
2069 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2070 {
2071 	if (lp == NULL) {
2072 		load_dr0(dbregs->dr[0]);
2073 		load_dr1(dbregs->dr[1]);
2074 		load_dr2(dbregs->dr[2]);
2075 		load_dr3(dbregs->dr[3]);
2076 		load_dr4(dbregs->dr[4]);
2077 		load_dr5(dbregs->dr[5]);
2078 		load_dr6(dbregs->dr[6]);
2079 		load_dr7(dbregs->dr[7]);
2080 	} else {
2081 		struct pcb *pcb;
2082 		struct ucred *ucred;
2083 		int i;
2084 		uint64_t mask1, mask2;
2085 
2086 		/*
2087 		 * Don't let an illegal value for dr7 get set.	Specifically,
2088 		 * check for undefined settings.  Setting these bit patterns
2089 		 * result in undefined behaviour and can lead to an unexpected
2090 		 * TRCTRAP.
2091 		 */
2092 		/* JG this loop looks unreadable */
2093 		/* Check 4 2-bit fields for invalid patterns.
2094 		 * These fields are R/Wi, for i = 0..3
2095 		 */
2096 		/* Is 10 in LENi allowed when running in compatibility mode? */
2097 		/* Pattern 10 in R/Wi might be used to indicate
2098 		 * breakpoint on I/O. Further analysis should be
2099 		 * carried to decide if it is safe and useful to
2100 		 * provide access to that capability
2101 		 */
2102 		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2103 		     i++, mask1 <<= 4, mask2 <<= 4)
2104 			if ((dbregs->dr[7] & mask1) == mask2)
2105 				return (EINVAL);
2106 
2107 		pcb = lp->lwp_thread->td_pcb;
2108 		ucred = lp->lwp_proc->p_ucred;
2109 
2110 		/*
2111 		 * Don't let a process set a breakpoint that is not within the
2112 		 * process's address space.  If a process could do this, it
2113 		 * could halt the system by setting a breakpoint in the kernel
2114 		 * (if ddb was enabled).  Thus, we need to check to make sure
2115 		 * that no breakpoints are being enabled for addresses outside
2116 		 * process's address space, unless, perhaps, we were called by
2117 		 * uid 0.
2118 		 *
2119 		 * XXX - what about when the watched area of the user's
2120 		 * address space is written into from within the kernel
2121 		 * ... wouldn't that still cause a breakpoint to be generated
2122 		 * from within kernel mode?
2123 		 */
2124 
2125 		if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2126 			if (dbregs->dr[7] & 0x3) {
2127 				/* dr0 is enabled */
2128 				if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2129 					return (EINVAL);
2130 			}
2131 
2132 			if (dbregs->dr[7] & (0x3<<2)) {
2133 				/* dr1 is enabled */
2134 				if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2135 					return (EINVAL);
2136 			}
2137 
2138 			if (dbregs->dr[7] & (0x3<<4)) {
2139 				/* dr2 is enabled */
2140 				if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2141 					return (EINVAL);
2142 			}
2143 
2144 			if (dbregs->dr[7] & (0x3<<6)) {
2145 				/* dr3 is enabled */
2146 				if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2147 					return (EINVAL);
2148 			}
2149 		}
2150 
2151 		pcb->pcb_dr0 = dbregs->dr[0];
2152 		pcb->pcb_dr1 = dbregs->dr[1];
2153 		pcb->pcb_dr2 = dbregs->dr[2];
2154 		pcb->pcb_dr3 = dbregs->dr[3];
2155 		pcb->pcb_dr6 = dbregs->dr[6];
2156 		pcb->pcb_dr7 = dbregs->dr[7];
2157 
2158 		pcb->pcb_flags |= PCB_DBREGS;
2159 	}
2160 
2161 	return (0);
2162 }
2163 
2164 /*
2165  * Return > 0 if a hardware breakpoint has been hit, and the
2166  * breakpoint was in user space.  Return 0, otherwise.
2167  */
2168 int
2169 user_dbreg_trap(void)
2170 {
2171         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2172         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2173         int nbp;            /* number of breakpoints that triggered */
2174         caddr_t addr[4];    /* breakpoint addresses */
2175         int i;
2176 
2177         dr7 = rdr7();
2178         if ((dr7 & 0xff) == 0) {
2179                 /*
2180                  * all GE and LE bits in the dr7 register are zero,
2181                  * thus the trap couldn't have been caused by the
2182                  * hardware debug registers
2183                  */
2184                 return 0;
2185         }
2186 
2187         nbp = 0;
2188         dr6 = rdr6();
2189         bp = dr6 & 0xf;
2190 
2191         if (bp == 0) {
2192                 /*
2193                  * None of the breakpoint bits are set meaning this
2194                  * trap was not caused by any of the debug registers
2195                  */
2196                 return 0;
2197         }
2198 
2199         /*
2200          * at least one of the breakpoints were hit, check to see
2201          * which ones and if any of them are user space addresses
2202          */
2203 
2204         if (bp & 0x01) {
2205                 addr[nbp++] = (caddr_t)rdr0();
2206         }
2207         if (bp & 0x02) {
2208                 addr[nbp++] = (caddr_t)rdr1();
2209         }
2210         if (bp & 0x04) {
2211                 addr[nbp++] = (caddr_t)rdr2();
2212         }
2213         if (bp & 0x08) {
2214                 addr[nbp++] = (caddr_t)rdr3();
2215         }
2216 
2217         for (i=0; i<nbp; i++) {
2218                 if (addr[i] <
2219                     (caddr_t)VM_MAX_USER_ADDRESS) {
2220                         /*
2221                          * addr[i] is in user space
2222                          */
2223                         return nbp;
2224                 }
2225         }
2226 
2227         /*
2228          * None of the breakpoints are in user space.
2229          */
2230         return 0;
2231 }
2232 
2233 
2234 #ifndef DDB
2235 void
2236 Debugger(const char *msg)
2237 {
2238 	kprintf("Debugger(\"%s\") called.\n", msg);
2239 }
2240 #endif /* no DDB */
2241 
2242 #ifdef DDB
2243 
2244 /*
2245  * Provide inb() and outb() as functions.  They are normally only
2246  * available as macros calling inlined functions, thus cannot be
2247  * called inside DDB.
2248  *
2249  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2250  */
2251 
2252 #undef inb
2253 #undef outb
2254 
2255 /* silence compiler warnings */
2256 u_char inb(u_int);
2257 void outb(u_int, u_char);
2258 
2259 u_char
2260 inb(u_int port)
2261 {
2262 	u_char	data;
2263 	/*
2264 	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2265 	 * %edx, while gcc generates inferior code (movw instead of movl)
2266 	 * if we tell it to load (u_short) port.
2267 	 */
2268 	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2269 	return (data);
2270 }
2271 
2272 void
2273 outb(u_int port, u_char data)
2274 {
2275 	u_char	al;
2276 	/*
2277 	 * Use an unnecessary assignment to help gcc's register allocator.
2278 	 * This make a large difference for gcc-1.40 and a tiny difference
2279 	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2280 	 * best results.  gcc-2.6.0 can't handle this.
2281 	 */
2282 	al = data;
2283 	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2284 }
2285 
2286 #endif /* DDB */
2287 
2288 
2289 
2290 /*
2291  * initialize all the SMP locks
2292  */
2293 
2294 /* critical region when masking or unmasking interupts */
2295 struct spinlock_deprecated imen_spinlock;
2296 
2297 /* critical region for old style disable_intr/enable_intr */
2298 struct spinlock_deprecated mpintr_spinlock;
2299 
2300 /* critical region around INTR() routines */
2301 struct spinlock_deprecated intr_spinlock;
2302 
2303 /* lock region used by kernel profiling */
2304 struct spinlock_deprecated mcount_spinlock;
2305 
2306 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2307 struct spinlock_deprecated com_spinlock;
2308 
2309 /* lock regions around the clock hardware */
2310 struct spinlock_deprecated clock_spinlock;
2311 
2312 static void
2313 init_locks(void)
2314 {
2315 	/*
2316 	 * Get the initial mplock with a count of 1 for the BSP.
2317 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
2318 	 */
2319 	cpu_get_initial_mplock();
2320 	/* DEPRECATED */
2321 	spin_lock_init(&mcount_spinlock);
2322 	spin_lock_init(&intr_spinlock);
2323 	spin_lock_init(&mpintr_spinlock);
2324 	spin_lock_init(&imen_spinlock);
2325 	spin_lock_init(&com_spinlock);
2326 	spin_lock_init(&clock_spinlock);
2327 
2328 	/* our token pool needs to work early */
2329 	lwkt_token_pool_init();
2330 }
2331 
2332