xref: /dragonfly/sys/platform/pc64/x86_64/machdep.c (revision 1310e0bb)
1 /*-
2  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3  * Copyright (c) 1992 Terrence R. Lambert.
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 2008-2017 The DragonFly Project.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
40  * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
41  */
42 
43 //#include "use_npx.h"
44 #include "use_isa.h"
45 #include "opt_cpu.h"
46 #include "opt_ddb.h"
47 #include "opt_inet.h"
48 #include "opt_msgbuf.h"
49 #include "opt_swap.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/sysproto.h>
54 #include <sys/signalvar.h>
55 #include <sys/kernel.h>
56 #include <sys/linker.h>
57 #include <sys/malloc.h>
58 #include <sys/proc.h>
59 #include <sys/priv.h>
60 #include <sys/buf.h>
61 #include <sys/reboot.h>
62 #include <sys/mbuf.h>
63 #include <sys/msgbuf.h>
64 #include <sys/sysent.h>
65 #include <sys/sysctl.h>
66 #include <sys/vmmeter.h>
67 #include <sys/bus.h>
68 #include <sys/usched.h>
69 #include <sys/reg.h>
70 #include <sys/sbuf.h>
71 #include <sys/ctype.h>
72 #include <sys/serialize.h>
73 #include <sys/systimer.h>
74 
75 #include <vm/vm.h>
76 #include <vm/vm_param.h>
77 #include <sys/lock.h>
78 #include <vm/vm_kern.h>
79 #include <vm/vm_object.h>
80 #include <vm/vm_page.h>
81 #include <vm/vm_map.h>
82 #include <vm/vm_pager.h>
83 #include <vm/vm_extern.h>
84 
85 #include <sys/thread2.h>
86 #include <sys/mplock2.h>
87 #include <sys/mutex2.h>
88 
89 #include <sys/user.h>
90 #include <sys/exec.h>
91 #include <sys/cons.h>
92 
93 #include <sys/efi.h>
94 
95 #include <ddb/ddb.h>
96 
97 #include <machine/cpu.h>
98 #include <machine/clock.h>
99 #include <machine/specialreg.h>
100 #if 0 /* JG */
101 #include <machine/bootinfo.h>
102 #endif
103 #include <machine/md_var.h>
104 #include <machine/metadata.h>
105 #include <machine/pc/bios.h>
106 #include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
107 #include <machine/globaldata.h>		/* CPU_prvspace */
108 #include <machine/smp.h>
109 #include <machine/cputypes.h>
110 #include <machine/intr_machdep.h>
111 #include <machine/framebuffer.h>
112 
113 #ifdef OLD_BUS_ARCH
114 #include <bus/isa/isa_device.h>
115 #endif
116 #include <machine_base/isa/isa_intr.h>
117 #include <bus/isa/rtc.h>
118 #include <sys/random.h>
119 #include <sys/ptrace.h>
120 #include <machine/sigframe.h>
121 
122 #include <sys/machintr.h>
123 #include <machine_base/icu/icu_abi.h>
124 #include <machine_base/icu/elcr_var.h>
125 #include <machine_base/apic/lapic.h>
126 #include <machine_base/apic/ioapic.h>
127 #include <machine_base/apic/ioapic_abi.h>
128 #include <machine/mptable.h>
129 
130 #define PHYSMAP_ENTRIES		10
131 
132 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
133 
134 extern void printcpuinfo(void);	/* XXX header file */
135 extern void identify_cpu(void);
136 #if 0 /* JG */
137 extern void finishidentcpu(void);
138 #endif
139 extern void panicifcpuunsupported(void);
140 
141 static void cpu_startup(void *);
142 static void pic_finish(void *);
143 static void cpu_finish(void *);
144 
145 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
146 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
147 static void init_locks(void);
148 
149 extern void pcpu_timer_always(struct intrframe *);
150 
151 SYSINIT(cpu, SI_BOOT2_START_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
152 SYSINIT(pic_finish, SI_BOOT2_FINISH_PIC, SI_ORDER_FIRST, pic_finish, NULL);
153 SYSINIT(cpu_finish, SI_BOOT2_FINISH_CPU, SI_ORDER_FIRST, cpu_finish, NULL);
154 
155 #ifdef DDB
156 extern vm_offset_t ksym_start, ksym_end;
157 #endif
158 
159 struct privatespace CPU_prvspace_bsp __aligned(4096);
160 struct privatespace *CPU_prvspace[MAXCPU] = { &CPU_prvspace_bsp };
161 
162 vm_paddr_t efi_systbl_phys;
163 int	_udatasel, _ucodesel, _ucode32sel;
164 u_long	atdevbase;
165 int64_t tsc_offsets[MAXCPU];
166 cpumask_t smp_idleinvl_mask;
167 cpumask_t smp_idleinvl_reqs;
168 
169 static int cpu_mwait_halt_global; /* MWAIT hint (EAX) or CPU_MWAIT_HINT_ */
170 
171 #if defined(SWTCH_OPTIM_STATS)
172 extern int swtch_optim_stats;
173 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
174 	CTLFLAG_RD, &swtch_optim_stats, 0, "");
175 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
176 	CTLFLAG_RD, &tlb_flush_count, 0, "");
177 #endif
178 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_halt,
179 	CTLFLAG_RD, &cpu_mwait_halt_global, 0, "");
180 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_spin,
181 	CTLFLAG_RD, &cpu_mwait_spin, 0, "monitor/mwait target state");
182 
183 #define CPU_MWAIT_HAS_CX	\
184 	((cpu_feature2 & CPUID2_MON) && \
185 	 (cpu_mwait_feature & CPUID_MWAIT_EXT))
186 
187 #define CPU_MWAIT_CX_NAMELEN	16
188 
189 #define CPU_MWAIT_C1		1
190 #define CPU_MWAIT_C2		2
191 #define CPU_MWAIT_C3		3
192 #define CPU_MWAIT_CX_MAX	8
193 
194 #define CPU_MWAIT_HINT_AUTO	-1	/* C1 and C2 */
195 #define CPU_MWAIT_HINT_AUTODEEP	-2	/* C3+ */
196 
197 SYSCTL_NODE(_machdep, OID_AUTO, mwait, CTLFLAG_RW, 0, "MWAIT features");
198 SYSCTL_NODE(_machdep_mwait, OID_AUTO, CX, CTLFLAG_RW, 0, "MWAIT Cx settings");
199 
200 struct cpu_mwait_cx {
201 	int			subcnt;
202 	char			name[4];
203 	struct sysctl_ctx_list	sysctl_ctx;
204 	struct sysctl_oid	*sysctl_tree;
205 };
206 static struct cpu_mwait_cx	cpu_mwait_cx_info[CPU_MWAIT_CX_MAX];
207 static char			cpu_mwait_cx_supported[256];
208 
209 static int			cpu_mwait_c1_hints_cnt;
210 static int			cpu_mwait_hints_cnt;
211 static int			*cpu_mwait_hints;
212 
213 static int			cpu_mwait_deep_hints_cnt;
214 static int			*cpu_mwait_deep_hints;
215 
216 #define CPU_IDLE_REPEAT_DEFAULT	750
217 
218 static u_int			cpu_idle_repeat = CPU_IDLE_REPEAT_DEFAULT;
219 static u_long			cpu_idle_repeat_max = CPU_IDLE_REPEAT_DEFAULT;
220 static u_int			cpu_mwait_repeat_shift = 1;
221 
222 #define CPU_MWAIT_C3_PREAMBLE_BM_ARB	0x1
223 #define CPU_MWAIT_C3_PREAMBLE_BM_STS	0x2
224 
225 static int			cpu_mwait_c3_preamble =
226 				    CPU_MWAIT_C3_PREAMBLE_BM_ARB |
227 				    CPU_MWAIT_C3_PREAMBLE_BM_STS;
228 
229 SYSCTL_STRING(_machdep_mwait_CX, OID_AUTO, supported, CTLFLAG_RD,
230     cpu_mwait_cx_supported, 0, "MWAIT supported C states");
231 SYSCTL_INT(_machdep_mwait_CX, OID_AUTO, c3_preamble, CTLFLAG_RD,
232     &cpu_mwait_c3_preamble, 0, "C3+ preamble mask");
233 
234 static int	cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS,
235 		    int *, boolean_t);
236 static int	cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS);
237 static int	cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS);
238 static int	cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS);
239 
240 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, idle, CTLTYPE_STRING|CTLFLAG_RW,
241     NULL, 0, cpu_mwait_cx_idle_sysctl, "A", "");
242 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, spin, CTLTYPE_STRING|CTLFLAG_RW,
243     NULL, 0, cpu_mwait_cx_spin_sysctl, "A", "");
244 SYSCTL_UINT(_machdep_mwait_CX, OID_AUTO, repeat_shift, CTLFLAG_RW,
245     &cpu_mwait_repeat_shift, 0, "");
246 
247 long physmem = 0;
248 
249 u_long ebda_addr = 0;
250 
251 int imcr_present = 0;
252 
253 int naps = 0; /* # of Applications processors */
254 
255 u_int base_memory;
256 
257 static int
258 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
259 {
260 	u_long pmem = ctob(physmem);
261 	int error;
262 
263 	error = sysctl_handle_long(oidp, &pmem, 0, req);
264 
265 	return (error);
266 }
267 
268 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
269 	0, 0, sysctl_hw_physmem, "LU",
270 	"Total system memory in bytes (number of pages * page size)");
271 
272 static int
273 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
274 {
275 	u_long usermem = ctob(physmem - vmstats.v_wire_count);
276 	int error;
277 
278 	error = sysctl_handle_long(oidp, &usermem, 0, req);
279 
280 	return (error);
281 }
282 
283 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_ULONG|CTLFLAG_RD,
284 	0, 0, sysctl_hw_usermem, "LU", "");
285 
286 static int
287 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
288 {
289 	int error;
290 	u_long availpages;
291 
292 	availpages = x86_64_btop(avail_end - avail_start);
293 	error = sysctl_handle_long(oidp, &availpages, 0, req);
294 
295 	return (error);
296 }
297 
298 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_ULONG|CTLFLAG_RD,
299 	0, 0, sysctl_hw_availpages, "LU", "");
300 
301 vm_paddr_t Maxmem;
302 vm_paddr_t Realmem;
303 
304 /*
305  * The number of PHYSMAP entries must be one less than the number of
306  * PHYSSEG entries because the PHYSMAP entry that spans the largest
307  * physical address that is accessible by ISA DMA is split into two
308  * PHYSSEG entries.
309  */
310 vm_phystable_t phys_avail[VM_PHYSSEG_MAX + 1];
311 vm_phystable_t dump_avail[VM_PHYSSEG_MAX + 1];
312 
313 /* must be 1 less so 0 0 can signal end of chunks */
314 #define PHYS_AVAIL_ARRAY_END (NELEM(phys_avail) - 1)
315 #define DUMP_AVAIL_ARRAY_END (NELEM(dump_avail) - 1)
316 
317 static vm_offset_t buffer_sva, buffer_eva;
318 vm_offset_t clean_sva, clean_eva;
319 static vm_offset_t pager_sva, pager_eva;
320 static struct trapframe proc0_tf;
321 
322 static void
323 cpu_startup(void *dummy)
324 {
325 	caddr_t v;
326 	vm_size_t size = 0;
327 	vm_offset_t firstaddr;
328 
329 	/*
330 	 * Good {morning,afternoon,evening,night}.
331 	 */
332 	kprintf("%s", version);
333 	startrtclock();
334 	printcpuinfo();
335 	panicifcpuunsupported();
336 	kprintf("real memory  = %ju (%ju MB)\n",
337 		(intmax_t)Realmem,
338 		(intmax_t)Realmem / 1024 / 1024);
339 	/*
340 	 * Display any holes after the first chunk of extended memory.
341 	 */
342 	if (bootverbose) {
343 		int indx;
344 
345 		kprintf("Physical memory chunk(s):\n");
346 		for (indx = 0; phys_avail[indx].phys_end != 0; ++indx) {
347 			vm_paddr_t size1;
348 
349 			size1 = phys_avail[indx].phys_end -
350 				phys_avail[indx].phys_beg;
351 
352 			kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
353 				(intmax_t)phys_avail[indx].phys_beg,
354 				(intmax_t)phys_avail[indx].phys_end - 1,
355 				(intmax_t)size1,
356 				(intmax_t)(size1 / PAGE_SIZE));
357 		}
358 	}
359 
360 	/*
361 	 * Allocate space for system data structures.
362 	 * The first available kernel virtual address is in "v".
363 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
364 	 * As pages of memory are allocated and cleared,
365 	 * "firstaddr" is incremented.
366 	 * An index into the kernel page table corresponding to the
367 	 * virtual memory address maintained in "v" is kept in "mapaddr".
368 	 */
369 
370 	/*
371 	 * Make two passes.  The first pass calculates how much memory is
372 	 * needed and allocates it.  The second pass assigns virtual
373 	 * addresses to the various data structures.
374 	 */
375 	firstaddr = 0;
376 again:
377 	v = (caddr_t)firstaddr;
378 
379 #define	valloc(name, type, num) \
380 	    (name) = (type *)v; v = (caddr_t)((name)+(num))
381 #define	valloclim(name, type, num, lim) \
382 	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
383 
384 	/*
385 	 * The nominal buffer size (and minimum KVA allocation) is MAXBSIZE.
386 	 * For the first 64MB of ram nominally allocate sufficient buffers to
387 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
388 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
389 	 * the buffer cache we limit the eventual kva reservation to
390 	 * maxbcache bytes.
391 	 *
392 	 * factor represents the 1/4 x ram conversion.
393 	 */
394 	if (nbuf == 0) {
395 		long factor = 4 * NBUFCALCSIZE / 1024;
396 		long kbytes = physmem * (PAGE_SIZE / 1024);
397 
398 		nbuf = 50;
399 		if (kbytes > 4096)
400 			nbuf += min((kbytes - 4096) / factor, 65536 / factor);
401 		if (kbytes > 65536)
402 			nbuf += (kbytes - 65536) * 2 / (factor * 5);
403 		if (maxbcache && nbuf > maxbcache / NBUFCALCSIZE)
404 			nbuf = maxbcache / NBUFCALCSIZE;
405 	}
406 
407 	/*
408 	 * Do not allow the buffer_map to be more then 1/2 the size of the
409 	 * kernel_map.
410 	 */
411 	if (nbuf > (virtual_end - virtual_start +
412 		    virtual2_end - virtual2_start) / (MAXBSIZE * 2)) {
413 		nbuf = (virtual_end - virtual_start +
414 			virtual2_end - virtual2_start) / (MAXBSIZE * 2);
415 		kprintf("Warning: nbufs capped at %ld due to kvm\n", nbuf);
416 	}
417 
418 	/*
419 	 * Do not allow the buffer_map to use more than 50% of available
420 	 * physical-equivalent memory.  Since the VM pages which back
421 	 * individual buffers are typically wired, having too many bufs
422 	 * can prevent the system from paging properly.
423 	 */
424 	if (nbuf > physmem * PAGE_SIZE / (NBUFCALCSIZE * 2)) {
425 		nbuf = physmem * PAGE_SIZE / (NBUFCALCSIZE * 2);
426 		kprintf("Warning: nbufs capped at %ld due to physmem\n", nbuf);
427 	}
428 
429 	/*
430 	 * Do not allow the sizeof(struct buf) * nbuf to exceed 1/4 of
431 	 * the valloc space which is just the virtual_end - virtual_start
432 	 * section.  This is typically ~2GB regardless of the amount of
433 	 * memory, so we use 500MB as a metric.
434 	 *
435 	 * This is because we use valloc() to allocate the buf header array.
436 	 *
437 	 * NOTE: buffer space in bytes is limited by vfs.*bufspace sysctls.
438 	 */
439 	if (nbuf > (virtual_end - virtual_start) / sizeof(struct buf) / 4) {
440 		nbuf = (virtual_end - virtual_start) /
441 		       sizeof(struct buf) / 2;
442 		kprintf("Warning: nbufs capped at %ld due to "
443 			"valloc considerations\n",
444 			nbuf);
445 	}
446 
447 	nswbuf_mem = lmax(lmin(nbuf / 32, 512), 8);
448 #ifdef NSWBUF_MIN
449 	if (nswbuf_mem < NSWBUF_MIN)
450 		nswbuf_mem = NSWBUF_MIN;
451 #endif
452 	nswbuf_kva = lmax(lmin(nbuf / 4, 512), 16);
453 #ifdef NSWBUF_MIN
454 	if (nswbuf_kva < NSWBUF_MIN)
455 		nswbuf_kva = NSWBUF_MIN;
456 #endif
457 
458 	valloc(swbuf_mem, struct buf, nswbuf_mem);
459 	valloc(swbuf_kva, struct buf, nswbuf_kva);
460 	valloc(buf, struct buf, nbuf);
461 
462 	/*
463 	 * End of first pass, size has been calculated so allocate memory
464 	 */
465 	if (firstaddr == 0) {
466 		size = (vm_size_t)(v - firstaddr);
467 		firstaddr = kmem_alloc(&kernel_map, round_page(size),
468 				       VM_SUBSYS_BUF);
469 		if (firstaddr == 0)
470 			panic("startup: no room for tables");
471 		goto again;
472 	}
473 
474 	/*
475 	 * End of second pass, addresses have been assigned
476 	 *
477 	 * nbuf is an int, make sure we don't overflow the field.
478 	 *
479 	 * On 64-bit systems we always reserve maximal allocations for
480 	 * buffer cache buffers and there are no fragmentation issues,
481 	 * so the KVA segment does not have to be excessively oversized.
482 	 */
483 	if ((vm_size_t)(v - firstaddr) != size)
484 		panic("startup: table size inconsistency");
485 
486 	kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
487 		      ((vm_offset_t)(nbuf + 16) * MAXBSIZE) +
488 		      ((nswbuf_mem + nswbuf_kva) * MAXPHYS) + pager_map_size);
489 	kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
490 		      ((vm_offset_t)(nbuf + 16) * MAXBSIZE));
491 	buffer_map.system_map = 1;
492 	kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
493 		      ((vm_offset_t)(nswbuf_mem + nswbuf_kva) * MAXPHYS) +
494 		      pager_map_size);
495 	pager_map.system_map = 1;
496 	kprintf("avail memory = %ju (%ju MB)\n",
497 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages),
498 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages) /
499 		1024 / 1024);
500 }
501 
502 struct cpu_idle_stat {
503 	int	hint;
504 	int	reserved;
505 	u_long	halt;
506 	u_long	spin;
507 	u_long	repeat;
508 	u_long	repeat_last;
509 	u_long	repeat_delta;
510 	u_long	mwait_cx[CPU_MWAIT_CX_MAX];
511 } __cachealign;
512 
513 #define CPU_IDLE_STAT_HALT	-1
514 #define CPU_IDLE_STAT_SPIN	-2
515 
516 static struct cpu_idle_stat	cpu_idle_stats[MAXCPU];
517 
518 static int
519 sysctl_cpu_idle_cnt(SYSCTL_HANDLER_ARGS)
520 {
521 	int idx = arg2, cpu, error;
522 	u_long val = 0;
523 
524 	if (idx == CPU_IDLE_STAT_HALT) {
525 		for (cpu = 0; cpu < ncpus; ++cpu)
526 			val += cpu_idle_stats[cpu].halt;
527 	} else if (idx == CPU_IDLE_STAT_SPIN) {
528 		for (cpu = 0; cpu < ncpus; ++cpu)
529 			val += cpu_idle_stats[cpu].spin;
530 	} else {
531 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
532 		    ("invalid index %d", idx));
533 		for (cpu = 0; cpu < ncpus; ++cpu)
534 			val += cpu_idle_stats[cpu].mwait_cx[idx];
535 	}
536 
537 	error = sysctl_handle_quad(oidp, &val, 0, req);
538         if (error || req->newptr == NULL)
539 	        return error;
540 
541 	if (idx == CPU_IDLE_STAT_HALT) {
542 		for (cpu = 0; cpu < ncpus; ++cpu)
543 			cpu_idle_stats[cpu].halt = 0;
544 		cpu_idle_stats[0].halt = val;
545 	} else if (idx == CPU_IDLE_STAT_SPIN) {
546 		for (cpu = 0; cpu < ncpus; ++cpu)
547 			cpu_idle_stats[cpu].spin = 0;
548 		cpu_idle_stats[0].spin = val;
549 	} else {
550 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
551 		    ("invalid index %d", idx));
552 		for (cpu = 0; cpu < ncpus; ++cpu)
553 			cpu_idle_stats[cpu].mwait_cx[idx] = 0;
554 		cpu_idle_stats[0].mwait_cx[idx] = val;
555 	}
556 	return 0;
557 }
558 
559 static void
560 cpu_mwait_attach(void)
561 {
562 	struct sbuf sb;
563 	int hint_idx, i;
564 
565 	if (!CPU_MWAIT_HAS_CX)
566 		return;
567 
568 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
569 	    (CPUID_TO_FAMILY(cpu_id) > 0xf ||
570 	     (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
571 	      CPUID_TO_MODEL(cpu_id) >= 0xf))) {
572 		int bm_sts = 1;
573 
574 		/*
575 		 * Pentium dual-core, Core 2 and beyond do not need any
576 		 * additional activities to enter deep C-state, i.e. C3(+).
577 		 */
578 		cpu_mwait_cx_no_bmarb();
579 
580 		TUNABLE_INT_FETCH("machdep.cpu.mwait.bm_sts", &bm_sts);
581 		if (!bm_sts)
582 			cpu_mwait_cx_no_bmsts();
583 	}
584 
585 	sbuf_new(&sb, cpu_mwait_cx_supported,
586 	    sizeof(cpu_mwait_cx_supported), SBUF_FIXEDLEN);
587 
588 	for (i = 0; i < CPU_MWAIT_CX_MAX; ++i) {
589 		struct cpu_mwait_cx *cx = &cpu_mwait_cx_info[i];
590 		int sub;
591 
592 		ksnprintf(cx->name, sizeof(cx->name), "C%d", i);
593 
594 		sysctl_ctx_init(&cx->sysctl_ctx);
595 		cx->sysctl_tree = SYSCTL_ADD_NODE(&cx->sysctl_ctx,
596 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait), OID_AUTO,
597 		    cx->name, CTLFLAG_RW, NULL, "Cx control/info");
598 		if (cx->sysctl_tree == NULL)
599 			continue;
600 
601 		cx->subcnt = CPUID_MWAIT_CX_SUBCNT(cpu_mwait_extemu, i);
602 		SYSCTL_ADD_INT(&cx->sysctl_ctx,
603 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
604 		    "subcnt", CTLFLAG_RD, &cx->subcnt, 0,
605 		    "sub-state count");
606 		SYSCTL_ADD_PROC(&cx->sysctl_ctx,
607 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
608 		    "entered", (CTLTYPE_QUAD | CTLFLAG_RW), 0,
609 		    i, sysctl_cpu_idle_cnt, "Q", "# of times entered");
610 
611 		for (sub = 0; sub < cx->subcnt; ++sub)
612 			sbuf_printf(&sb, "C%d/%d ", i, sub);
613 	}
614 	sbuf_trim(&sb);
615 	sbuf_finish(&sb);
616 
617 	/*
618 	 * Non-deep C-states
619 	 */
620 	cpu_mwait_c1_hints_cnt = cpu_mwait_cx_info[CPU_MWAIT_C1].subcnt;
621 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i)
622 		cpu_mwait_hints_cnt += cpu_mwait_cx_info[i].subcnt;
623 	cpu_mwait_hints = kmalloc(sizeof(int) * cpu_mwait_hints_cnt,
624 				  M_DEVBUF, M_WAITOK);
625 
626 	hint_idx = 0;
627 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i) {
628 		int j, subcnt;
629 
630 		subcnt = cpu_mwait_cx_info[i].subcnt;
631 		for (j = 0; j < subcnt; ++j) {
632 			KASSERT(hint_idx < cpu_mwait_hints_cnt,
633 			    ("invalid mwait hint index %d", hint_idx));
634 			cpu_mwait_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
635 			++hint_idx;
636 		}
637 	}
638 	KASSERT(hint_idx == cpu_mwait_hints_cnt,
639 	    ("mwait hint count %d != index %d",
640 	     cpu_mwait_hints_cnt, hint_idx));
641 
642 	if (bootverbose) {
643 		kprintf("MWAIT hints (%d C1 hints):\n", cpu_mwait_c1_hints_cnt);
644 		for (i = 0; i < cpu_mwait_hints_cnt; ++i) {
645 			int hint = cpu_mwait_hints[i];
646 
647 			kprintf("  C%d/%d hint 0x%04x\n",
648 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
649 			    hint);
650 		}
651 	}
652 
653 	/*
654 	 * Deep C-states
655 	 */
656 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i)
657 		cpu_mwait_deep_hints_cnt += cpu_mwait_cx_info[i].subcnt;
658 	cpu_mwait_deep_hints = kmalloc(sizeof(int) * cpu_mwait_deep_hints_cnt,
659 	    M_DEVBUF, M_WAITOK);
660 
661 	hint_idx = 0;
662 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i) {
663 		int j, subcnt;
664 
665 		subcnt = cpu_mwait_cx_info[i].subcnt;
666 		for (j = 0; j < subcnt; ++j) {
667 			KASSERT(hint_idx < cpu_mwait_deep_hints_cnt,
668 			    ("invalid mwait deep hint index %d", hint_idx));
669 			cpu_mwait_deep_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
670 			++hint_idx;
671 		}
672 	}
673 	KASSERT(hint_idx == cpu_mwait_deep_hints_cnt,
674 	    ("mwait deep hint count %d != index %d",
675 	     cpu_mwait_deep_hints_cnt, hint_idx));
676 
677 	if (bootverbose) {
678 		kprintf("MWAIT deep hints:\n");
679 		for (i = 0; i < cpu_mwait_deep_hints_cnt; ++i) {
680 			int hint = cpu_mwait_deep_hints[i];
681 
682 			kprintf("  C%d/%d hint 0x%04x\n",
683 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
684 			    hint);
685 		}
686 	}
687 	cpu_idle_repeat_max = 256 * cpu_mwait_deep_hints_cnt;
688 
689 	for (i = 0; i < ncpus; ++i) {
690 		char name[16];
691 
692 		ksnprintf(name, sizeof(name), "idle%d", i);
693 		SYSCTL_ADD_PROC(NULL,
694 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait_CX), OID_AUTO,
695 		    name, (CTLTYPE_STRING | CTLFLAG_RW), &cpu_idle_stats[i],
696 		    0, cpu_mwait_cx_pcpu_idle_sysctl, "A", "");
697 	}
698 }
699 
700 static void
701 cpu_finish(void *dummy __unused)
702 {
703 	cpu_setregs();
704 	cpu_mwait_attach();
705 }
706 
707 static void
708 pic_finish(void *dummy __unused)
709 {
710 	/* Log ELCR information */
711 	elcr_dump();
712 
713 	/* Log MPTABLE information */
714 	mptable_pci_int_dump();
715 
716 	/* Finalize PCI */
717 	MachIntrABI.finalize();
718 }
719 
720 /*
721  * Send an interrupt to process.
722  *
723  * Stack is set up to allow sigcode stored
724  * at top to call routine, followed by kcall
725  * to sigreturn routine below.  After sigreturn
726  * resets the signal mask, the stack, and the
727  * frame pointer, it returns to the user
728  * specified pc, psl.
729  */
730 void
731 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
732 {
733 	struct lwp *lp = curthread->td_lwp;
734 	struct proc *p = lp->lwp_proc;
735 	struct trapframe *regs;
736 	struct sigacts *psp = p->p_sigacts;
737 	struct sigframe sf, *sfp;
738 	int oonstack;
739 	char *sp;
740 
741 	regs = lp->lwp_md.md_regs;
742 	oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
743 
744 	/* Save user context */
745 	bzero(&sf, sizeof(struct sigframe));
746 	sf.sf_uc.uc_sigmask = *mask;
747 	sf.sf_uc.uc_stack = lp->lwp_sigstk;
748 	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
749 	KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
750 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
751 
752 	/* Make the size of the saved context visible to userland */
753 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
754 
755 	/* Allocate and validate space for the signal handler context. */
756         if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
757 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
758 		sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
759 			      sizeof(struct sigframe));
760 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
761 	} else {
762 		/* We take red zone into account */
763 		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
764 	}
765 
766 	/*
767 	 * XXX AVX needs 64-byte alignment but sigframe has other fields and
768 	 * the embedded ucontext is not at the front, so aligning this won't
769 	 * help us.  Fortunately we bcopy in/out of the sigframe, so the
770 	 * kernel is ok.
771 	 *
772 	 * The problem though is if userland winds up trying to use the
773 	 * context directly.
774 	 */
775 	sfp = (struct sigframe *)((intptr_t)sp & ~(intptr_t)0xF);
776 
777 	/* Translate the signal is appropriate */
778 	if (p->p_sysent->sv_sigtbl) {
779 		if (sig <= p->p_sysent->sv_sigsize)
780 			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
781 	}
782 
783 	/*
784 	 * Build the argument list for the signal handler.
785 	 *
786 	 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
787 	 */
788 	regs->tf_rdi = sig;				/* argument 1 */
789 	regs->tf_rdx = (register_t)&sfp->sf_uc;		/* argument 3 */
790 
791 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
792 		/*
793 		 * Signal handler installed with SA_SIGINFO.
794 		 *
795 		 * action(signo, siginfo, ucontext)
796 		 */
797 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* argument 2 */
798 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
799 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
800 
801 		/* fill siginfo structure */
802 		sf.sf_si.si_signo = sig;
803 		sf.sf_si.si_code = code;
804 		sf.sf_si.si_addr = (void *)regs->tf_addr;
805 	} else {
806 		/*
807 		 * Old FreeBSD-style arguments.
808 		 *
809 		 * handler (signo, code, [uc], addr)
810 		 */
811 		regs->tf_rsi = (register_t)code;	/* argument 2 */
812 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
813 		sf.sf_ahu.sf_handler = catcher;
814 	}
815 
816 	/*
817 	 * If we're a vm86 process, we want to save the segment registers.
818 	 * We also change eflags to be our emulated eflags, not the actual
819 	 * eflags.
820 	 */
821 #if 0 /* JG */
822 	if (regs->tf_eflags & PSL_VM) {
823 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
824 		struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
825 
826 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
827 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
828 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
829 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
830 
831 		if (vm86->vm86_has_vme == 0)
832 			sf.sf_uc.uc_mcontext.mc_eflags =
833 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
834 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
835 
836 		/*
837 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
838 		 * syscalls made by the signal handler.  This just avoids
839 		 * wasting time for our lazy fixup of such faults.  PSL_NT
840 		 * does nothing in vm86 mode, but vm86 programs can set it
841 		 * almost legitimately in probes for old cpu types.
842 		 */
843 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
844 	}
845 #endif
846 
847 	/*
848 	 * Save the FPU state and reinit the FP unit
849 	 */
850 	npxpush(&sf.sf_uc.uc_mcontext);
851 
852 	/*
853 	 * Copy the sigframe out to the user's stack.
854 	 */
855 	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
856 		/*
857 		 * Something is wrong with the stack pointer.
858 		 * ...Kill the process.
859 		 */
860 		sigexit(lp, SIGILL);
861 	}
862 
863 	regs->tf_rsp = (register_t)sfp;
864 	regs->tf_rip = trunc_page64(PS_STRINGS - *(p->p_sysent->sv_szsigcode));
865 	regs->tf_rip -= SZSIGCODE_EXTRA_BYTES;
866 
867 	/*
868 	 * x86 abi specifies that the direction flag must be cleared
869 	 * on function entry
870 	 */
871 	regs->tf_rflags &= ~(PSL_T | PSL_D);
872 
873 	/*
874 	 * 64 bit mode has a code and stack selector but
875 	 * no data or extra selector.  %fs and %gs are not
876 	 * stored in-context.
877 	 */
878 	regs->tf_cs = _ucodesel;
879 	regs->tf_ss = _udatasel;
880 	clear_quickret();
881 }
882 
883 /*
884  * Sanitize the trapframe for a virtual kernel passing control to a custom
885  * VM context.  Remove any items that would otherwise create a privilage
886  * issue.
887  *
888  * XXX at the moment we allow userland to set the resume flag.  Is this a
889  * bad idea?
890  */
891 int
892 cpu_sanitize_frame(struct trapframe *frame)
893 {
894 	frame->tf_cs = _ucodesel;
895 	frame->tf_ss = _udatasel;
896 	/* XXX VM (8086) mode not supported? */
897 	frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
898 	frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
899 
900 	return(0);
901 }
902 
903 /*
904  * Sanitize the tls so loading the descriptor does not blow up
905  * on us.  For x86_64 we don't have to do anything.
906  */
907 int
908 cpu_sanitize_tls(struct savetls *tls)
909 {
910 	return(0);
911 }
912 
913 /*
914  * sigreturn(ucontext_t *sigcntxp)
915  *
916  * System call to cleanup state after a signal
917  * has been taken.  Reset signal mask and
918  * stack state from context left by sendsig (above).
919  * Return to previous pc and psl as specified by
920  * context left by sendsig. Check carefully to
921  * make sure that the user has not modified the
922  * state to gain improper privileges.
923  *
924  * MPSAFE
925  */
926 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
927 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
928 
929 int
930 sys_sigreturn(struct sigreturn_args *uap)
931 {
932 	struct lwp *lp = curthread->td_lwp;
933 	struct trapframe *regs;
934 	ucontext_t uc;
935 	ucontext_t *ucp;
936 	register_t rflags;
937 	int cs;
938 	int error;
939 
940 	/*
941 	 * We have to copy the information into kernel space so userland
942 	 * can't modify it while we are sniffing it.
943 	 */
944 	regs = lp->lwp_md.md_regs;
945 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
946 	if (error)
947 		return (error);
948 	ucp = &uc;
949 	rflags = ucp->uc_mcontext.mc_rflags;
950 
951 	/* VM (8086) mode not supported */
952 	rflags &= ~PSL_VM_UNSUPP;
953 
954 #if 0 /* JG */
955 	if (eflags & PSL_VM) {
956 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
957 		struct vm86_kernel *vm86;
958 
959 		/*
960 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
961 		 * set up the vm86 area, and we can't enter vm86 mode.
962 		 */
963 		if (lp->lwp_thread->td_pcb->pcb_ext == 0)
964 			return (EINVAL);
965 		vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
966 		if (vm86->vm86_inited == 0)
967 			return (EINVAL);
968 
969 		/* go back to user mode if both flags are set */
970 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
971 			trapsignal(lp, SIGBUS, 0);
972 
973 		if (vm86->vm86_has_vme) {
974 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
975 			    (eflags & VME_USERCHANGE) | PSL_VM;
976 		} else {
977 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
978 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
979 			    (eflags & VM_USERCHANGE) | PSL_VM;
980 		}
981 		bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
982 		tf->tf_eflags = eflags;
983 		tf->tf_vm86_ds = tf->tf_ds;
984 		tf->tf_vm86_es = tf->tf_es;
985 		tf->tf_vm86_fs = tf->tf_fs;
986 		tf->tf_vm86_gs = tf->tf_gs;
987 		tf->tf_ds = _udatasel;
988 		tf->tf_es = _udatasel;
989 		tf->tf_fs = _udatasel;
990 		tf->tf_gs = _udatasel;
991 	} else
992 #endif
993 	{
994 		/*
995 		 * Don't allow users to change privileged or reserved flags.
996 		 */
997 		/*
998 		 * XXX do allow users to change the privileged flag PSL_RF.
999 		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
1000 		 * should sometimes set it there too.  tf_eflags is kept in
1001 		 * the signal context during signal handling and there is no
1002 		 * other place to remember it, so the PSL_RF bit may be
1003 		 * corrupted by the signal handler without us knowing.
1004 		 * Corruption of the PSL_RF bit at worst causes one more or
1005 		 * one less debugger trap, so allowing it is fairly harmless.
1006 		 */
1007 		if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
1008 			kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
1009 			return(EINVAL);
1010 		}
1011 
1012 		/*
1013 		 * Don't allow users to load a valid privileged %cs.  Let the
1014 		 * hardware check for invalid selectors, excess privilege in
1015 		 * other selectors, invalid %eip's and invalid %esp's.
1016 		 */
1017 		cs = ucp->uc_mcontext.mc_cs;
1018 		if (!CS_SECURE(cs)) {
1019 			kprintf("sigreturn: cs = 0x%x\n", cs);
1020 			trapsignal(lp, SIGBUS, T_PROTFLT);
1021 			return(EINVAL);
1022 		}
1023 		bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
1024 	}
1025 
1026 	/*
1027 	 * Restore the FPU state from the frame
1028 	 */
1029 	crit_enter();
1030 	npxpop(&ucp->uc_mcontext);
1031 
1032 	if (ucp->uc_mcontext.mc_onstack & 1)
1033 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
1034 	else
1035 		lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
1036 
1037 	lp->lwp_sigmask = ucp->uc_sigmask;
1038 	SIG_CANTMASK(lp->lwp_sigmask);
1039 	clear_quickret();
1040 	crit_exit();
1041 	return(EJUSTRETURN);
1042 }
1043 
1044 /*
1045  * Machine dependent boot() routine
1046  *
1047  * I haven't seen anything to put here yet
1048  * Possibly some stuff might be grafted back here from boot()
1049  */
1050 void
1051 cpu_boot(int howto)
1052 {
1053 }
1054 
1055 /*
1056  * Shutdown the CPU as much as possible
1057  */
1058 void
1059 cpu_halt(void)
1060 {
1061 	for (;;)
1062 		__asm__ __volatile("hlt");
1063 }
1064 
1065 /*
1066  * cpu_idle() represents the idle LWKT.  You cannot return from this function
1067  * (unless you want to blow things up!).  Instead we look for runnable threads
1068  * and loop or halt as appropriate.  Giant is not held on entry to the thread.
1069  *
1070  * The main loop is entered with a critical section held, we must release
1071  * the critical section before doing anything else.  lwkt_switch() will
1072  * check for pending interrupts due to entering and exiting its own
1073  * critical section.
1074  *
1075  * NOTE: On an SMP system we rely on a scheduler IPI to wake a HLTed cpu up.
1076  *	 However, there are cases where the idlethread will be entered with
1077  *	 the possibility that no IPI will occur and in such cases
1078  *	 lwkt_switch() sets TDF_IDLE_NOHLT.
1079  *
1080  * NOTE: cpu_idle_repeat determines how many entries into the idle thread
1081  *	 must occur before it starts using ACPI halt.
1082  *
1083  * NOTE: Value overridden in hammer_time().
1084  */
1085 static int	cpu_idle_hlt = 2;
1086 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
1087     &cpu_idle_hlt, 0, "Idle loop HLT enable");
1088 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_repeat, CTLFLAG_RW,
1089     &cpu_idle_repeat, 0, "Idle entries before acpi hlt");
1090 
1091 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_hltcnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1092     0, CPU_IDLE_STAT_HALT, sysctl_cpu_idle_cnt, "Q", "Idle loop entry halts");
1093 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_spincnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1094     0, CPU_IDLE_STAT_SPIN, sysctl_cpu_idle_cnt, "Q", "Idle loop entry spins");
1095 
1096 static void
1097 cpu_idle_default_hook(void)
1098 {
1099 	/*
1100 	 * We must guarentee that hlt is exactly the instruction
1101 	 * following the sti.
1102 	 */
1103 	__asm __volatile("sti; hlt");
1104 }
1105 
1106 /* Other subsystems (e.g., ACPI) can hook this later. */
1107 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
1108 
1109 static __inline int
1110 cpu_mwait_cx_hint(struct cpu_idle_stat *stat)
1111 {
1112 	int hint, cx_idx;
1113 	u_int idx;
1114 
1115 	hint = stat->hint;
1116 	if (hint >= 0)
1117 		goto done;
1118 
1119 	idx = (stat->repeat + stat->repeat_last + stat->repeat_delta) >>
1120 	    cpu_mwait_repeat_shift;
1121 	if (idx >= cpu_mwait_c1_hints_cnt) {
1122 		/* Step up faster, once we walked through all C1 states */
1123 		stat->repeat_delta += 1 << (cpu_mwait_repeat_shift + 1);
1124 	}
1125 	if (hint == CPU_MWAIT_HINT_AUTODEEP) {
1126 		if (idx >= cpu_mwait_deep_hints_cnt)
1127 			idx = cpu_mwait_deep_hints_cnt - 1;
1128 		hint = cpu_mwait_deep_hints[idx];
1129 	} else {
1130 		if (idx >= cpu_mwait_hints_cnt)
1131 			idx = cpu_mwait_hints_cnt - 1;
1132 		hint = cpu_mwait_hints[idx];
1133 	}
1134 done:
1135 	cx_idx = MWAIT_EAX_TO_CX(hint);
1136 	if (cx_idx >= 0 && cx_idx < CPU_MWAIT_CX_MAX)
1137 		stat->mwait_cx[cx_idx]++;
1138 	return hint;
1139 }
1140 
1141 void
1142 cpu_idle(void)
1143 {
1144 	globaldata_t gd = mycpu;
1145 	struct cpu_idle_stat *stat = &cpu_idle_stats[gd->gd_cpuid];
1146 	struct thread *td __debugvar = gd->gd_curthread;
1147 	int reqflags;
1148 	int quick;
1149 
1150 	stat->repeat = stat->repeat_last = cpu_idle_repeat_max;
1151 
1152 	crit_exit();
1153 	KKASSERT(td->td_critcount == 0);
1154 
1155 	for (;;) {
1156 		/*
1157 		 * See if there are any LWKTs ready to go.
1158 		 */
1159 		lwkt_switch();
1160 
1161 		/*
1162 		 * When halting inside a cli we must check for reqflags
1163 		 * races, particularly [re]schedule requests.  Running
1164 		 * splz() does the job.
1165 		 *
1166 		 * cpu_idle_hlt:
1167 		 *	0	Never halt, just spin
1168 		 *
1169 		 *	1	Always use MONITOR/MWAIT if avail, HLT
1170 		 *		otherwise.
1171 		 *
1172 		 *		Better default for modern (Haswell+) Intel
1173 		 *		cpus.
1174 		 *
1175 		 *	2	Use HLT/MONITOR/MWAIT up to a point and then
1176 		 *		use the ACPI halt (default).  This is a hybrid
1177 		 *		approach.  See machdep.cpu_idle_repeat.
1178 		 *
1179 		 *		Better default for modern AMD cpus and older
1180 		 *		Intel cpus.
1181 		 *
1182 		 *	3	Always use the ACPI halt.  This typically
1183 		 *		eats the least amount of power but the cpu
1184 		 *		will be slow waking up.  Slows down e.g.
1185 		 *		compiles and other pipe/event oriented stuff.
1186 		 *
1187 		 *		Usually the best default for AMD cpus.
1188 		 *
1189 		 *	4	Always use HLT.
1190 		 *
1191 		 *	5	Always spin.
1192 		 *
1193 		 * NOTE: Interrupts are enabled and we are not in a critical
1194 		 *	 section.
1195 		 *
1196 		 * NOTE: Preemptions do not reset gd_idle_repeat.   Also we
1197 		 *	 don't bother capping gd_idle_repeat, it is ok if
1198 		 *	 it overflows.
1199 		 *
1200 		 * Implement optimized invltlb operations when halted
1201 		 * in idle.  By setting the bit in smp_idleinvl_mask
1202 		 * we inform other cpus that they can set _reqs to
1203 		 * request an invltlb.  Current the code to do that
1204 		 * sets the bits in _reqs anyway, but then check _mask
1205 		 * to determine if they can assume the invltlb will execute.
1206 		 *
1207 		 * A critical section is required to ensure that interrupts
1208 		 * do not fully run until after we've had a chance to execute
1209 		 * the request.
1210 		 */
1211 		if (gd->gd_idle_repeat == 0) {
1212 			stat->repeat = (stat->repeat + stat->repeat_last) >> 1;
1213 			if (stat->repeat > cpu_idle_repeat_max)
1214 				stat->repeat = cpu_idle_repeat_max;
1215 			stat->repeat_last = 0;
1216 			stat->repeat_delta = 0;
1217 		}
1218 		++stat->repeat_last;
1219 
1220 		/*
1221 		 * General idle thread halt code
1222 		 *
1223 		 * IBRS NOTES - IBRS is a SPECTRE mitigation.  When going
1224 		 *		idle, IBRS
1225 		 */
1226 		++gd->gd_idle_repeat;
1227 		reqflags = gd->gd_reqflags;
1228 		quick = (cpu_idle_hlt == 1) ||
1229 			(cpu_idle_hlt == 2 &&
1230 			 gd->gd_idle_repeat < cpu_idle_repeat);
1231 
1232 
1233 		if (quick && (cpu_mi_feature & CPU_MI_MONITOR) &&
1234 		    (reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1235 			/*
1236 			 * MWAIT halt
1237 			 */
1238 			splz(); /* XXX */
1239 			crit_enter_gd(gd);
1240 			ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask, gd->gd_cpuid);
1241 			if (pscpu->trampoline.tr_pcb_gflags &
1242 			    (PCB_IBRS1 | PCB_IBRS2)) {
1243 				wrmsr(0x48, 0);	/* IBRS (spectre) */
1244 			}
1245 			cpu_mmw_pause_int(&gd->gd_reqflags, reqflags,
1246 					  cpu_mwait_cx_hint(stat), 0);
1247 			if (pscpu->trampoline.tr_pcb_gflags &
1248 			    (PCB_IBRS1 | PCB_IBRS2)) {
1249 				wrmsr(0x48, 1);	/* IBRS (spectre) */
1250 			}
1251 			stat->halt++;
1252 			ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask, gd->gd_cpuid);
1253 			if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1254 						      gd->gd_cpuid)) {
1255 				cpu_invltlb();
1256 				cpu_mfence();
1257 			}
1258 			crit_exit_gd(gd);
1259 		} else if (cpu_idle_hlt) {
1260 			/*
1261 			 * Idle halt
1262 			 */
1263 			__asm __volatile("cli");
1264 			splz();
1265 			crit_enter_gd(gd);
1266 			ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask, gd->gd_cpuid);
1267 			if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1268 				if (cpu_idle_hlt == 5) {
1269 					__asm __volatile("sti");
1270 				} else if (quick || cpu_idle_hlt == 4) {
1271 					if (pscpu->trampoline.tr_pcb_gflags &
1272 					    (PCB_IBRS1 | PCB_IBRS2)) {
1273 						/* IBRS (spectre) */
1274 						wrmsr(0x48, 0);
1275 					}
1276 					cpu_idle_default_hook();
1277 					if (pscpu->trampoline.tr_pcb_gflags &
1278 					    (PCB_IBRS1 | PCB_IBRS2)) {
1279 						/* IBRS (spectre) */
1280 						wrmsr(0x48, 1);
1281 					}
1282 				} else {
1283 					if (pscpu->trampoline.tr_pcb_gflags &
1284 					    (PCB_IBRS1 | PCB_IBRS2)) {
1285 						wrmsr(0x48, 0);
1286 					}
1287 					cpu_idle_hook();
1288 					if (pscpu->trampoline.tr_pcb_gflags &
1289 					    (PCB_IBRS1 | PCB_IBRS2)) {
1290 						wrmsr(0x48, 1);
1291 					}
1292 				}
1293 			}
1294 			__asm __volatile("sti");
1295 			stat->halt++;
1296 			ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask, gd->gd_cpuid);
1297 			if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1298 						      gd->gd_cpuid)) {
1299 				cpu_invltlb();
1300 				cpu_mfence();
1301 			}
1302 			crit_exit_gd(gd);
1303 		} else {
1304 			splz();
1305 			__asm __volatile("sti");
1306 			stat->spin++;
1307 			crit_enter_gd(gd);
1308 			crit_exit_gd(gd);
1309 		}
1310 	}
1311 }
1312 
1313 /*
1314  * Called in a loop indirectly via Xcpustop
1315  */
1316 void
1317 cpu_smp_stopped(void)
1318 {
1319 	globaldata_t gd = mycpu;
1320 	volatile __uint64_t *ptr;
1321 	__uint64_t ovalue;
1322 
1323 	ptr = CPUMASK_ADDR(started_cpus, gd->gd_cpuid);
1324 	ovalue = *ptr;
1325 	if ((ovalue & CPUMASK_SIMPLE(gd->gd_cpuid & 63)) == 0) {
1326 		if (cpu_mi_feature & CPU_MI_MONITOR) {
1327 			if (cpu_mwait_hints) {
1328 				cpu_mmw_pause_long(__DEVOLATILE(void *, ptr),
1329 					   ovalue,
1330 					   cpu_mwait_hints[CPU_MWAIT_C1], 0);
1331 			} else {
1332 				cpu_mmw_pause_long(__DEVOLATILE(void *, ptr),
1333 					   ovalue, 0, 0);
1334 			}
1335 		} else {
1336 			cpu_halt();	/* depend on lapic timer */
1337 		}
1338 	}
1339 }
1340 
1341 /*
1342  * This routine is called if a spinlock has been held through the
1343  * exponential backoff period and is seriously contested.  On a real cpu
1344  * we let it spin.
1345  */
1346 void
1347 cpu_spinlock_contested(void)
1348 {
1349 	cpu_pause();
1350 }
1351 
1352 /*
1353  * Clear registers on exec
1354  */
1355 void
1356 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
1357 {
1358 	struct thread *td = curthread;
1359 	struct lwp *lp = td->td_lwp;
1360 	struct pcb *pcb = td->td_pcb;
1361 	struct trapframe *regs = lp->lwp_md.md_regs;
1362 
1363 	user_ldt_free(pcb);
1364 
1365 	clear_quickret();
1366 	bzero((char *)regs, sizeof(struct trapframe));
1367 	regs->tf_rip = entry;
1368 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
1369 	regs->tf_rdi = stack;		/* argv */
1370 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
1371 	regs->tf_ss = _udatasel;
1372 	regs->tf_cs = _ucodesel;
1373 	regs->tf_rbx = ps_strings;
1374 
1375 	/*
1376 	 * Reset the hardware debug registers if they were in use.
1377 	 * They won't have any meaning for the newly exec'd process.
1378 	 */
1379 	if (pcb->pcb_flags & PCB_DBREGS) {
1380 		pcb->pcb_dr0 = 0;
1381 		pcb->pcb_dr1 = 0;
1382 		pcb->pcb_dr2 = 0;
1383 		pcb->pcb_dr3 = 0;
1384 		pcb->pcb_dr6 = 0;
1385 		pcb->pcb_dr7 = 0; /* JG set bit 10? */
1386 		if (pcb == td->td_pcb) {
1387 			/*
1388 			 * Clear the debug registers on the running
1389 			 * CPU, otherwise they will end up affecting
1390 			 * the next process we switch to.
1391 			 */
1392 			reset_dbregs();
1393 		}
1394 		pcb->pcb_flags &= ~PCB_DBREGS;
1395 	}
1396 
1397 	/*
1398 	 * Initialize the math emulator (if any) for the current process.
1399 	 * Actually, just clear the bit that says that the emulator has
1400 	 * been initialized.  Initialization is delayed until the process
1401 	 * traps to the emulator (if it is done at all) mainly because
1402 	 * emulators don't provide an entry point for initialization.
1403 	 */
1404 	pcb->pcb_flags &= ~FP_SOFTFP;
1405 
1406 	/*
1407 	 * NOTE: do not set CR0_TS here.  npxinit() must do it after clearing
1408 	 *	 gd_npxthread.  Otherwise a preemptive interrupt thread
1409 	 *	 may panic in npxdna().
1410 	 */
1411 	crit_enter();
1412 	load_cr0(rcr0() | CR0_MP);
1413 
1414 	/*
1415 	 * NOTE: The MSR values must be correct so we can return to
1416 	 *	 userland.  gd_user_fs/gs must be correct so the switch
1417 	 *	 code knows what the current MSR values are.
1418 	 */
1419 	pcb->pcb_fsbase = 0;	/* Values loaded from PCB on switch */
1420 	pcb->pcb_gsbase = 0;
1421 	mdcpu->gd_user_fs = 0;	/* Cache of current MSR values */
1422 	mdcpu->gd_user_gs = 0;
1423 	wrmsr(MSR_FSBASE, 0);	/* Set MSR values for return to userland */
1424 	wrmsr(MSR_KGSBASE, 0);
1425 
1426 	/* Initialize the npx (if any) for the current process. */
1427 	npxinit();
1428 	crit_exit();
1429 
1430 	pcb->pcb_ds = _udatasel;
1431 	pcb->pcb_es = _udatasel;
1432 	pcb->pcb_fs = _udatasel;
1433 	pcb->pcb_gs = _udatasel;
1434 }
1435 
1436 void
1437 cpu_setregs(void)
1438 {
1439 	register_t cr0;
1440 
1441 	cr0 = rcr0();
1442 	cr0 |= CR0_NE;			/* Done by npxinit() */
1443 	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1444 	cr0 |= CR0_WP | CR0_AM;
1445 	load_cr0(cr0);
1446 	load_gs(_udatasel);
1447 }
1448 
1449 static int
1450 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1451 {
1452 	int error;
1453 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1454 		req);
1455 	if (!error && req->newptr)
1456 		resettodr();
1457 	return (error);
1458 }
1459 
1460 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1461 	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1462 
1463 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1464 	CTLFLAG_RW, &disable_rtc_set, 0, "");
1465 
1466 #if 0 /* JG */
1467 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1468 	CTLFLAG_RD, &bootinfo, bootinfo, "");
1469 #endif
1470 
1471 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1472 	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1473 
1474 static int
1475 efi_map_sysctl_handler(SYSCTL_HANDLER_ARGS)
1476 {
1477 	struct efi_map_header *efihdr;
1478 	caddr_t kmdp;
1479 	uint32_t efisize;
1480 
1481 	kmdp = preload_search_by_type("elf kernel");
1482 	if (kmdp == NULL)
1483 		kmdp = preload_search_by_type("elf64 kernel");
1484 	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
1485 	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
1486 	if (efihdr == NULL)
1487 		return (0);
1488 	efisize = *((uint32_t *)efihdr - 1);
1489 	return (SYSCTL_OUT(req, efihdr, efisize));
1490 }
1491 SYSCTL_PROC(_machdep, OID_AUTO, efi_map, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
1492     efi_map_sysctl_handler, "S,efi_map_header", "Raw EFI Memory Map");
1493 
1494 /*
1495  * Initialize x86 and configure to run kernel
1496  */
1497 
1498 /*
1499  * Initialize segments & interrupt table
1500  */
1501 
1502 int _default_ldt;
1503 struct user_segment_descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1504 struct gate_descriptor idt_arr[MAXCPU][NIDT];
1505 #if 0 /* JG */
1506 union descriptor ldt[NLDT];		/* local descriptor table */
1507 #endif
1508 
1509 /* table descriptors - used to load tables by cpu */
1510 struct region_descriptor r_gdt;
1511 struct region_descriptor r_idt_arr[MAXCPU];
1512 
1513 /* JG proc0paddr is a virtual address */
1514 void *proc0paddr;
1515 /* JG alignment? */
1516 char proc0paddr_buff[LWKT_THREAD_STACK];
1517 
1518 
1519 /* software prototypes -- in more palatable form */
1520 struct soft_segment_descriptor gdt_segs[] = {
1521 /* GNULL_SEL	0 Null Descriptor */
1522 {	0x0,			/* segment base address  */
1523 	0x0,			/* length */
1524 	0,			/* segment type */
1525 	0,			/* segment descriptor priority level */
1526 	0,			/* segment descriptor present */
1527 	0,			/* long */
1528 	0,			/* default 32 vs 16 bit size */
1529 	0			/* limit granularity (byte/page units)*/ },
1530 /* GCODE_SEL	1 Code Descriptor for kernel */
1531 {	0x0,			/* segment base address  */
1532 	0xfffff,		/* length - all address space */
1533 	SDT_MEMERA,		/* segment type */
1534 	SEL_KPL,		/* segment descriptor priority level */
1535 	1,			/* segment descriptor present */
1536 	1,			/* long */
1537 	0,			/* default 32 vs 16 bit size */
1538 	1			/* limit granularity (byte/page units)*/ },
1539 /* GDATA_SEL	2 Data Descriptor for kernel */
1540 {	0x0,			/* segment base address  */
1541 	0xfffff,		/* length - all address space */
1542 	SDT_MEMRWA,		/* segment type */
1543 	SEL_KPL,		/* segment descriptor priority level */
1544 	1,			/* segment descriptor present */
1545 	1,			/* long */
1546 	0,			/* default 32 vs 16 bit size */
1547 	1			/* limit granularity (byte/page units)*/ },
1548 /* GUCODE32_SEL	3 32 bit Code Descriptor for user */
1549 {	0x0,			/* segment base address  */
1550 	0xfffff,		/* length - all address space */
1551 	SDT_MEMERA,		/* segment type */
1552 	SEL_UPL,		/* segment descriptor priority level */
1553 	1,			/* segment descriptor present */
1554 	0,			/* long */
1555 	1,			/* default 32 vs 16 bit size */
1556 	1			/* limit granularity (byte/page units)*/ },
1557 /* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
1558 {	0x0,			/* segment base address  */
1559 	0xfffff,		/* length - all address space */
1560 	SDT_MEMRWA,		/* segment type */
1561 	SEL_UPL,		/* segment descriptor priority level */
1562 	1,			/* segment descriptor present */
1563 	0,			/* long */
1564 	1,			/* default 32 vs 16 bit size */
1565 	1			/* limit granularity (byte/page units)*/ },
1566 /* GUCODE_SEL	5 64 bit Code Descriptor for user */
1567 {	0x0,			/* segment base address  */
1568 	0xfffff,		/* length - all address space */
1569 	SDT_MEMERA,		/* segment type */
1570 	SEL_UPL,		/* segment descriptor priority level */
1571 	1,			/* segment descriptor present */
1572 	1,			/* long */
1573 	0,			/* default 32 vs 16 bit size */
1574 	1			/* limit granularity (byte/page units)*/ },
1575 /* GPROC0_SEL	6 Proc 0 Tss Descriptor */
1576 {
1577 	0x0,			/* segment base address */
1578 	sizeof(struct x86_64tss)-1,/* length - all address space */
1579 	SDT_SYSTSS,		/* segment type */
1580 	SEL_KPL,		/* segment descriptor priority level */
1581 	1,			/* segment descriptor present */
1582 	0,			/* long */
1583 	0,			/* unused - default 32 vs 16 bit size */
1584 	0			/* limit granularity (byte/page units)*/ },
1585 /* Actually, the TSS is a system descriptor which is double size */
1586 {	0x0,			/* segment base address  */
1587 	0x0,			/* length */
1588 	0,			/* segment type */
1589 	0,			/* segment descriptor priority level */
1590 	0,			/* segment descriptor present */
1591 	0,			/* long */
1592 	0,			/* default 32 vs 16 bit size */
1593 	0			/* limit granularity (byte/page units)*/ },
1594 /* GUGS32_SEL	8 32 bit GS Descriptor for user */
1595 {	0x0,			/* segment base address  */
1596 	0xfffff,		/* length - all address space */
1597 	SDT_MEMRWA,		/* segment type */
1598 	SEL_UPL,		/* segment descriptor priority level */
1599 	1,			/* segment descriptor present */
1600 	0,			/* long */
1601 	1,			/* default 32 vs 16 bit size */
1602 	1			/* limit granularity (byte/page units)*/ },
1603 };
1604 
1605 void
1606 setidt_global(int idx, inthand_t *func, int typ, int dpl, int ist)
1607 {
1608 	int cpu;
1609 
1610 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
1611 		struct gate_descriptor *ip = &idt_arr[cpu][idx];
1612 
1613 		ip->gd_looffset = (uintptr_t)func;
1614 		ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1615 		ip->gd_ist = ist;
1616 		ip->gd_xx = 0;
1617 		ip->gd_type = typ;
1618 		ip->gd_dpl = dpl;
1619 		ip->gd_p = 1;
1620 		ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1621 	}
1622 }
1623 
1624 void
1625 setidt(int idx, inthand_t *func, int typ, int dpl, int ist, int cpu)
1626 {
1627 	struct gate_descriptor *ip;
1628 
1629 	KASSERT(cpu >= 0 && cpu < ncpus, ("invalid cpu %d", cpu));
1630 
1631 	ip = &idt_arr[cpu][idx];
1632 	ip->gd_looffset = (uintptr_t)func;
1633 	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1634 	ip->gd_ist = ist;
1635 	ip->gd_xx = 0;
1636 	ip->gd_type = typ;
1637 	ip->gd_dpl = dpl;
1638 	ip->gd_p = 1;
1639 	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1640 }
1641 
1642 #define	IDTVEC(name)	__CONCAT(X,name)
1643 
1644 extern inthand_t
1645 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1646 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1647 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1648 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1649 	IDTVEC(xmm), IDTVEC(dblfault),
1650 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1651 
1652 void
1653 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1654 {
1655 	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1656 	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1657 	ssd->ssd_type  = sd->sd_type;
1658 	ssd->ssd_dpl   = sd->sd_dpl;
1659 	ssd->ssd_p     = sd->sd_p;
1660 	ssd->ssd_def32 = sd->sd_def32;
1661 	ssd->ssd_gran  = sd->sd_gran;
1662 }
1663 
1664 void
1665 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1666 {
1667 
1668 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1669 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1670 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1671 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1672 	sd->sd_type  = ssd->ssd_type;
1673 	sd->sd_dpl   = ssd->ssd_dpl;
1674 	sd->sd_p     = ssd->ssd_p;
1675 	sd->sd_long  = ssd->ssd_long;
1676 	sd->sd_def32 = ssd->ssd_def32;
1677 	sd->sd_gran  = ssd->ssd_gran;
1678 }
1679 
1680 void
1681 ssdtosyssd(struct soft_segment_descriptor *ssd,
1682     struct system_segment_descriptor *sd)
1683 {
1684 
1685 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1686 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1687 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1688 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1689 	sd->sd_type  = ssd->ssd_type;
1690 	sd->sd_dpl   = ssd->ssd_dpl;
1691 	sd->sd_p     = ssd->ssd_p;
1692 	sd->sd_gran  = ssd->ssd_gran;
1693 }
1694 
1695 /*
1696  * Populate the (physmap) array with base/bound pairs describing the
1697  * available physical memory in the system, then test this memory and
1698  * build the phys_avail array describing the actually-available memory.
1699  *
1700  * If we cannot accurately determine the physical memory map, then use
1701  * value from the 0xE801 call, and failing that, the RTC.
1702  *
1703  * Total memory size may be set by the kernel environment variable
1704  * hw.physmem or the compile-time define MAXMEM.
1705  *
1706  * Memory is aligned to PHYSMAP_ALIGN which must be a multiple
1707  * of PAGE_SIZE.  This also greatly reduces the memory test time
1708  * which would otherwise be excessive on machines with > 8G of ram.
1709  *
1710  * XXX first should be vm_paddr_t.
1711  */
1712 
1713 #define PHYSMAP_ALIGN		(vm_paddr_t)(128 * 1024)
1714 #define PHYSMAP_ALIGN_MASK	(vm_paddr_t)(PHYSMAP_ALIGN - 1)
1715 #define PHYSMAP_SIZE		VM_PHYSSEG_MAX
1716 
1717 vm_paddr_t physmap[PHYSMAP_SIZE];
1718 struct bios_smap *smapbase, *smap, *smapend;
1719 struct efi_map_header *efihdrbase;
1720 u_int32_t smapsize;
1721 
1722 #define PHYSMAP_HANDWAVE	(vm_paddr_t)(2 * 1024 * 1024)
1723 #define PHYSMAP_HANDWAVE_MASK	(PHYSMAP_HANDWAVE - 1)
1724 
1725 static void
1726 add_smap_entries(int *physmap_idx)
1727 {
1728 	int i;
1729 
1730 	smapsize = *((u_int32_t *)smapbase - 1);
1731 	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1732 
1733 	for (smap = smapbase; smap < smapend; smap++) {
1734 		if (boothowto & RB_VERBOSE)
1735 			kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1736 			    smap->type, smap->base, smap->length);
1737 
1738 		if (smap->type != SMAP_TYPE_MEMORY)
1739 			continue;
1740 
1741 		if (smap->length == 0)
1742 			continue;
1743 
1744 		for (i = 0; i <= *physmap_idx; i += 2) {
1745 			if (smap->base < physmap[i + 1]) {
1746 				if (boothowto & RB_VERBOSE) {
1747 					kprintf("Overlapping or non-monotonic "
1748 						"memory region, ignoring "
1749 						"second region\n");
1750 				}
1751 				break;
1752 			}
1753 		}
1754 		if (i <= *physmap_idx)
1755 			continue;
1756 
1757 		Realmem += smap->length;
1758 
1759 		if (smap->base == physmap[*physmap_idx + 1]) {
1760 			physmap[*physmap_idx + 1] += smap->length;
1761 			continue;
1762 		}
1763 
1764 		*physmap_idx += 2;
1765 		if (*physmap_idx == PHYSMAP_SIZE) {
1766 			kprintf("Too many segments in the physical "
1767 				"address map, giving up\n");
1768 			break;
1769 		}
1770 		physmap[*physmap_idx] = smap->base;
1771 		physmap[*physmap_idx + 1] = smap->base + smap->length;
1772 	}
1773 }
1774 
1775 static void
1776 add_efi_map_entries(int *physmap_idx)
1777 {
1778 	 struct efi_md *map, *p;
1779 	 const char *type;
1780 	 size_t efisz;
1781 	 int i, ndesc;
1782 
1783 	static const char *types[] = {
1784 		"Reserved",
1785 		"LoaderCode",
1786 		"LoaderData",
1787 		"BootServicesCode",
1788 		"BootServicesData",
1789 		"RuntimeServicesCode",
1790 		"RuntimeServicesData",
1791 		"ConventionalMemory",
1792 		"UnusableMemory",
1793 		"ACPIReclaimMemory",
1794 		"ACPIMemoryNVS",
1795 		"MemoryMappedIO",
1796 		"MemoryMappedIOPortSpace",
1797 		"PalCode"
1798 	 };
1799 
1800 	/*
1801 	 * Memory map data provided by UEFI via the GetMemoryMap
1802 	 * Boot Services API.
1803 	 */
1804 	efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
1805 	map = (struct efi_md *)((uint8_t *)efihdrbase + efisz);
1806 
1807 	if (efihdrbase->descriptor_size == 0)
1808 		return;
1809 	ndesc = efihdrbase->memory_size / efihdrbase->descriptor_size;
1810 
1811 	if (boothowto & RB_VERBOSE)
1812 		kprintf("%23s %12s %12s %8s %4s\n",
1813 		    "Type", "Physical", "Virtual", "#Pages", "Attr");
1814 
1815 	for (i = 0, p = map; i < ndesc; i++,
1816 	    p = efi_next_descriptor(p, efihdrbase->descriptor_size)) {
1817 		if (boothowto & RB_VERBOSE) {
1818 			if (p->md_type <= EFI_MD_TYPE_PALCODE)
1819 				type = types[p->md_type];
1820 			else
1821 				type = "<INVALID>";
1822 			kprintf("%23s %012lx %12p %08lx ", type, p->md_phys,
1823 			    p->md_virt, p->md_pages);
1824 			if (p->md_attr & EFI_MD_ATTR_UC)
1825 				kprintf("UC ");
1826 			if (p->md_attr & EFI_MD_ATTR_WC)
1827 				kprintf("WC ");
1828 			if (p->md_attr & EFI_MD_ATTR_WT)
1829 				kprintf("WT ");
1830 			if (p->md_attr & EFI_MD_ATTR_WB)
1831 				kprintf("WB ");
1832 			if (p->md_attr & EFI_MD_ATTR_UCE)
1833 				kprintf("UCE ");
1834 			if (p->md_attr & EFI_MD_ATTR_WP)
1835 				kprintf("WP ");
1836 			if (p->md_attr & EFI_MD_ATTR_RP)
1837 				kprintf("RP ");
1838 			if (p->md_attr & EFI_MD_ATTR_XP)
1839 				kprintf("XP ");
1840 			if (p->md_attr & EFI_MD_ATTR_RT)
1841 				kprintf("RUNTIME");
1842 			kprintf("\n");
1843 		}
1844 
1845 		switch (p->md_type) {
1846 		case EFI_MD_TYPE_CODE:
1847 		case EFI_MD_TYPE_DATA:
1848 		case EFI_MD_TYPE_BS_CODE:
1849 		case EFI_MD_TYPE_BS_DATA:
1850 		case EFI_MD_TYPE_FREE:
1851 			/*
1852 			 * We're allowed to use any entry with these types.
1853 			 */
1854 			break;
1855 		default:
1856 			continue;
1857 		}
1858 
1859 		Realmem += p->md_pages * PAGE_SIZE;
1860 
1861 		if (p->md_phys == physmap[*physmap_idx + 1]) {
1862 			physmap[*physmap_idx + 1] += p->md_pages * PAGE_SIZE;
1863 			continue;
1864 		}
1865 
1866 		*physmap_idx += 2;
1867 		if (*physmap_idx == PHYSMAP_SIZE) {
1868 			kprintf("Too many segments in the physical "
1869 				"address map, giving up\n");
1870 			break;
1871 		}
1872 		physmap[*physmap_idx] = p->md_phys;
1873 		physmap[*physmap_idx + 1] = p->md_phys + p->md_pages * PAGE_SIZE;
1874 	 }
1875 }
1876 
1877 struct fb_info efi_fb_info;
1878 static int have_efi_framebuffer = 0;
1879 
1880 static void
1881 efi_fb_init_vaddr(int direct_map)
1882 {
1883 	uint64_t sz;
1884 	vm_offset_t addr, v;
1885 
1886 	v = efi_fb_info.vaddr;
1887 	sz = efi_fb_info.stride * efi_fb_info.height;
1888 
1889 	if (direct_map) {
1890 		addr = PHYS_TO_DMAP(efi_fb_info.paddr);
1891 		if (addr >= DMAP_MIN_ADDRESS && addr + sz < DMAP_MAX_ADDRESS)
1892 			efi_fb_info.vaddr = addr;
1893 	} else {
1894 		efi_fb_info.vaddr = (vm_offset_t)pmap_mapdev_attr(
1895 		    efi_fb_info.paddr, sz, PAT_WRITE_COMBINING);
1896 	}
1897 }
1898 
1899 static u_int
1900 efifb_color_depth(struct efi_fb *efifb)
1901 {
1902 	uint32_t mask;
1903 	u_int depth;
1904 
1905 	mask = efifb->fb_mask_red | efifb->fb_mask_green |
1906 	    efifb->fb_mask_blue | efifb->fb_mask_reserved;
1907 	if (mask == 0)
1908 		return (0);
1909 	for (depth = 1; mask != 1; depth++)
1910 		mask >>= 1;
1911 	return (depth);
1912 }
1913 
1914 int
1915 probe_efi_fb(int early)
1916 {
1917 	struct efi_fb	*efifb;
1918 	caddr_t		kmdp;
1919 	u_int		depth;
1920 
1921 	if (have_efi_framebuffer) {
1922 		if (!early &&
1923 		    (efi_fb_info.vaddr == 0 ||
1924 		     efi_fb_info.vaddr == PHYS_TO_DMAP(efi_fb_info.paddr)))
1925 			efi_fb_init_vaddr(0);
1926 		return 0;
1927 	}
1928 
1929 	kmdp = preload_search_by_type("elf kernel");
1930 	if (kmdp == NULL)
1931 		kmdp = preload_search_by_type("elf64 kernel");
1932 	efifb = (struct efi_fb *)preload_search_info(kmdp,
1933 	    MODINFO_METADATA | MODINFOMD_EFI_FB);
1934 	if (efifb == NULL)
1935 		return 1;
1936 
1937 	depth = efifb_color_depth(efifb);
1938 	/*
1939 	 * Our bootloader should already notice, when we won't be able to
1940 	 * use the UEFI framebuffer.
1941 	 */
1942 	if (depth != 24 && depth != 32)
1943 		return 1;
1944 
1945 	have_efi_framebuffer = 1;
1946 
1947 	efi_fb_info.is_vga_boot_display = 1;
1948 	efi_fb_info.width = efifb->fb_width;
1949 	efi_fb_info.height = efifb->fb_height;
1950 	efi_fb_info.depth = depth;
1951 	efi_fb_info.stride = efifb->fb_stride * (depth / 8);
1952 	efi_fb_info.paddr = efifb->fb_addr;
1953 	if (early) {
1954 		efi_fb_info.vaddr = 0;
1955 	} else {
1956 		efi_fb_init_vaddr(0);
1957 	}
1958 	efi_fb_info.fbops.fb_set_par = NULL;
1959 	efi_fb_info.fbops.fb_blank = NULL;
1960 	efi_fb_info.fbops.fb_debug_enter = NULL;
1961 	efi_fb_info.device = NULL;
1962 
1963 	return 0;
1964 }
1965 
1966 static void
1967 efifb_startup(void *arg)
1968 {
1969 	probe_efi_fb(0);
1970 }
1971 
1972 SYSINIT(efi_fb_info, SI_BOOT1_POST, SI_ORDER_FIRST, efifb_startup, NULL);
1973 
1974 static void
1975 getmemsize(caddr_t kmdp, u_int64_t first)
1976 {
1977 	int off, physmap_idx, pa_indx, da_indx;
1978 	int i, j;
1979 	vm_paddr_t pa;
1980 	vm_paddr_t msgbuf_size;
1981 	u_long physmem_tunable;
1982 	pt_entry_t *pte;
1983 	quad_t dcons_addr, dcons_size;
1984 
1985 	bzero(physmap, sizeof(physmap));
1986 	physmap_idx = 0;
1987 
1988 	/*
1989 	 * get memory map from INT 15:E820, kindly supplied by the loader.
1990 	 *
1991 	 * subr_module.c says:
1992 	 * "Consumer may safely assume that size value precedes data."
1993 	 * ie: an int32_t immediately precedes smap.
1994 	 */
1995 	efihdrbase = (struct efi_map_header *)preload_search_info(kmdp,
1996 		     MODINFO_METADATA | MODINFOMD_EFI_MAP);
1997 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1998 		   MODINFO_METADATA | MODINFOMD_SMAP);
1999 	if (smapbase == NULL && efihdrbase == NULL)
2000 		panic("No BIOS smap or EFI map info from loader!");
2001 
2002 	if (efihdrbase == NULL)
2003 		add_smap_entries(&physmap_idx);
2004 	else
2005 		add_efi_map_entries(&physmap_idx);
2006 
2007 	base_memory = physmap[1] / 1024;
2008 	/* make hole for AP bootstrap code */
2009 	physmap[1] = mp_bootaddress(base_memory);
2010 
2011 	/* Save EBDA address, if any */
2012 	ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
2013 	ebda_addr <<= 4;
2014 
2015 	/*
2016 	 * Maxmem isn't the "maximum memory", it's one larger than the
2017 	 * highest page of the physical address space.  It should be
2018 	 * called something like "Maxphyspage".  We may adjust this
2019 	 * based on ``hw.physmem'' and the results of the memory test.
2020 	 */
2021 	Maxmem = atop(physmap[physmap_idx + 1]);
2022 
2023 #ifdef MAXMEM
2024 	Maxmem = MAXMEM / 4;
2025 #endif
2026 
2027 	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
2028 		Maxmem = atop(physmem_tunable);
2029 
2030 	/*
2031 	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
2032 	 * in the system.
2033 	 */
2034 	if (Maxmem > atop(physmap[physmap_idx + 1]))
2035 		Maxmem = atop(physmap[physmap_idx + 1]);
2036 
2037 	/*
2038 	 * Blowing out the DMAP will blow up the system.
2039 	 */
2040 	if (Maxmem > atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS)) {
2041 		kprintf("Limiting Maxmem due to DMAP size\n");
2042 		Maxmem = atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS);
2043 	}
2044 
2045 	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
2046 	    (boothowto & RB_VERBOSE)) {
2047 		kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
2048 	}
2049 
2050 	/*
2051 	 * Call pmap initialization to make new kernel address space
2052 	 *
2053 	 * Mask off page 0.
2054 	 */
2055 	pmap_bootstrap(&first);
2056 	physmap[0] = PAGE_SIZE;
2057 
2058 	/*
2059 	 * Align the physmap to PHYSMAP_ALIGN and cut out anything
2060 	 * exceeding Maxmem.
2061 	 */
2062 	for (i = j = 0; i <= physmap_idx; i += 2) {
2063 		if (physmap[i+1] > ptoa(Maxmem))
2064 			physmap[i+1] = ptoa(Maxmem);
2065 		physmap[i] = (physmap[i] + PHYSMAP_ALIGN_MASK) &
2066 			     ~PHYSMAP_ALIGN_MASK;
2067 		physmap[i+1] = physmap[i+1] & ~PHYSMAP_ALIGN_MASK;
2068 
2069 		physmap[j] = physmap[i];
2070 		physmap[j+1] = physmap[i+1];
2071 
2072 		if (physmap[i] < physmap[i+1])
2073 			j += 2;
2074 	}
2075 	physmap_idx = j - 2;
2076 
2077 	/*
2078 	 * Align anything else used in the validation loop.
2079 	 *
2080 	 * Also make sure that our 2MB kernel text+data+bss mappings
2081 	 * do not overlap potentially allocatable space.
2082 	 */
2083 	first = (first + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
2084 
2085 	/*
2086 	 * Size up each available chunk of physical memory.
2087 	 */
2088 	pa_indx = 0;
2089 	da_indx = 0;
2090 	phys_avail[pa_indx].phys_beg = physmap[0];
2091 	phys_avail[pa_indx].phys_end = physmap[0];
2092 	dump_avail[da_indx].phys_beg = 0;
2093 	dump_avail[da_indx].phys_end = physmap[0];
2094 	pte = CMAP1;
2095 
2096 	/*
2097 	 * Get dcons buffer address
2098 	 */
2099 	if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
2100 	    kgetenv_quad("dcons.size", &dcons_size) == 0)
2101 		dcons_addr = 0;
2102 
2103 	/*
2104 	 * Validate the physical memory.  The physical memory segments
2105 	 * have already been aligned to PHYSMAP_ALIGN which is a multiple
2106 	 * of PAGE_SIZE.
2107 	 *
2108 	 * We no longer perform an exhaustive memory test.  Instead we
2109 	 * simply test the first and last word in each physmap[]
2110 	 * segment.
2111 	 */
2112 	for (i = 0; i <= physmap_idx; i += 2) {
2113 		vm_paddr_t end;
2114 		vm_paddr_t incr;
2115 
2116 		end = physmap[i + 1];
2117 
2118 		for (pa = physmap[i]; pa < end; pa += incr) {
2119 			int page_bad, full;
2120 			volatile uint64_t *ptr = (uint64_t *)CADDR1;
2121 			uint64_t tmp;
2122 
2123 			full = FALSE;
2124 
2125 			/*
2126 			 * Calculate incr.  Just test the first and
2127 			 * last page in each physmap[] segment.
2128 			 */
2129 			if (pa == end - PAGE_SIZE)
2130 				incr = PAGE_SIZE;
2131 			else
2132 				incr = end - pa - PAGE_SIZE;
2133 
2134 			/*
2135 			 * Make sure we don't skip blacked out areas.
2136 			 */
2137 			if (pa < 0x200000 && 0x200000 < end) {
2138 				incr = 0x200000 - pa;
2139 			}
2140 			if (dcons_addr > 0 &&
2141 			    pa < dcons_addr &&
2142 			    dcons_addr < end) {
2143 				incr = dcons_addr - pa;
2144 			}
2145 
2146 			/*
2147 			 * Block out kernel memory as not available.
2148 			 */
2149 			if (pa >= 0x200000 && pa < first) {
2150 				incr = first - pa;
2151 				if (pa + incr > end)
2152 					incr = end - pa;
2153 				goto do_dump_avail;
2154 			}
2155 
2156 			/*
2157 			 * Block out the dcons buffer if it exists.
2158 			 */
2159 			if (dcons_addr > 0 &&
2160 			    pa >= trunc_page(dcons_addr) &&
2161 			    pa < dcons_addr + dcons_size) {
2162 				incr = dcons_addr + dcons_size - pa;
2163 				incr = (incr + PAGE_MASK) &
2164 				       ~(vm_paddr_t)PAGE_MASK;
2165 				if (pa + incr > end)
2166 					incr = end - pa;
2167 				goto do_dump_avail;
2168 			}
2169 
2170 			page_bad = FALSE;
2171 
2172 			/*
2173 			 * Map the page non-cacheable for the memory
2174 			 * test.
2175 			 */
2176 			*pte = pa |
2177 			    kernel_pmap.pmap_bits[PG_V_IDX] |
2178 			    kernel_pmap.pmap_bits[PG_RW_IDX] |
2179 			    kernel_pmap.pmap_bits[PG_N_IDX];
2180 			cpu_invlpg(__DEVOLATILE(void *, ptr));
2181 			cpu_mfence();
2182 
2183 			/*
2184 			 * Save original value for restoration later.
2185 			 */
2186 			tmp = *ptr;
2187 
2188 			/*
2189 			 * Test for alternating 1's and 0's
2190 			 */
2191 			*ptr = 0xaaaaaaaaaaaaaaaaLLU;
2192 			cpu_mfence();
2193 			if (*ptr != 0xaaaaaaaaaaaaaaaaLLU)
2194 				page_bad = TRUE;
2195 			/*
2196 			 * Test for alternating 0's and 1's
2197 			 */
2198 			*ptr = 0x5555555555555555LLU;
2199 			cpu_mfence();
2200 			if (*ptr != 0x5555555555555555LLU)
2201 				page_bad = TRUE;
2202 			/*
2203 			 * Test for all 1's
2204 			 */
2205 			*ptr = 0xffffffffffffffffLLU;
2206 			cpu_mfence();
2207 			if (*ptr != 0xffffffffffffffffLLU)
2208 				page_bad = TRUE;
2209 			/*
2210 			 * Test for all 0's
2211 			 */
2212 			*ptr = 0x0;
2213 			cpu_mfence();
2214 			if (*ptr != 0x0)
2215 				page_bad = TRUE;
2216 
2217 			/*
2218 			 * Restore original value.
2219 			 */
2220 			*ptr = tmp;
2221 
2222 			/*
2223 			 * Adjust array of valid/good pages.
2224 			 */
2225 			if (page_bad == TRUE) {
2226 				incr = PAGE_SIZE;
2227 				continue;
2228 			}
2229 
2230 			/*
2231 			 * Collapse page address into phys_avail[].  Do a
2232 			 * continuation of the current phys_avail[] index
2233 			 * when possible.
2234 			 */
2235 			if (phys_avail[pa_indx].phys_end == pa) {
2236 				/*
2237 				 * Continuation
2238 				 */
2239 				phys_avail[pa_indx].phys_end += incr;
2240 			} else if (phys_avail[pa_indx].phys_beg ==
2241 				   phys_avail[pa_indx].phys_end) {
2242 				/*
2243 				 * Current phys_avail is completely empty,
2244 				 * reuse the index.
2245 				 */
2246 				phys_avail[pa_indx].phys_beg = pa;
2247 				phys_avail[pa_indx].phys_end = pa + incr;
2248 			} else {
2249 				/*
2250 				 * Allocate next phys_avail index.
2251 				 */
2252 				++pa_indx;
2253 				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
2254 					kprintf(
2255 		"Too many holes in the physical address space, giving up\n");
2256 					--pa_indx;
2257 					full = TRUE;
2258 					goto do_dump_avail;
2259 				}
2260 				phys_avail[pa_indx].phys_beg = pa;
2261 				phys_avail[pa_indx].phys_end = pa + incr;
2262 			}
2263 			physmem += incr / PAGE_SIZE;
2264 
2265 			/*
2266 			 * pa available for dumping
2267 			 */
2268 do_dump_avail:
2269 			if (dump_avail[da_indx].phys_end == pa) {
2270 				dump_avail[da_indx].phys_end += incr;
2271 			} else {
2272 				++da_indx;
2273 				if (da_indx == DUMP_AVAIL_ARRAY_END) {
2274 					--da_indx;
2275 					goto do_next;
2276 				}
2277 				dump_avail[da_indx].phys_beg = pa;
2278 				dump_avail[da_indx].phys_end = pa + incr;
2279 			}
2280 do_next:
2281 			if (full)
2282 				break;
2283 		}
2284 	}
2285 	*pte = 0;
2286 	cpu_invltlb();
2287 	cpu_mfence();
2288 
2289 	/*
2290 	 * The last chunk must contain at least one page plus the message
2291 	 * buffer to avoid complicating other code (message buffer address
2292 	 * calculation, etc.).
2293 	 */
2294 	msgbuf_size = (MSGBUF_SIZE + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
2295 
2296 	while (phys_avail[pa_indx].phys_beg + PHYSMAP_ALIGN + msgbuf_size >=
2297 	       phys_avail[pa_indx].phys_end) {
2298 		physmem -= atop(phys_avail[pa_indx].phys_end -
2299 				phys_avail[pa_indx].phys_beg);
2300 		phys_avail[pa_indx].phys_beg = 0;
2301 		phys_avail[pa_indx].phys_end = 0;
2302 		--pa_indx;
2303 	}
2304 
2305 	Maxmem = atop(phys_avail[pa_indx].phys_end);
2306 
2307 	/* Trim off space for the message buffer. */
2308 	phys_avail[pa_indx].phys_end -= msgbuf_size;
2309 
2310 	avail_end = phys_avail[pa_indx].phys_end;
2311 
2312 	/* Map the message buffer. */
2313 	for (off = 0; off < msgbuf_size; off += PAGE_SIZE) {
2314 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2315 	}
2316 	/* Try to get EFI framebuffer working as early as possible */
2317 	if (have_efi_framebuffer)
2318 		efi_fb_init_vaddr(1);
2319 }
2320 
2321 struct machintr_abi MachIntrABI;
2322 
2323 /*
2324  * IDT VECTORS:
2325  *	0	Divide by zero
2326  *	1	Debug
2327  *	2	NMI
2328  *	3	BreakPoint
2329  *	4	OverFlow
2330  *	5	Bound-Range
2331  *	6	Invalid OpCode
2332  *	7	Device Not Available (x87)
2333  *	8	Double-Fault
2334  *	9	Coprocessor Segment overrun (unsupported, reserved)
2335  *	10	Invalid-TSS
2336  *	11	Segment not present
2337  *	12	Stack
2338  *	13	General Protection
2339  *	14	Page Fault
2340  *	15	Reserved
2341  *	16	x87 FP Exception pending
2342  *	17	Alignment Check
2343  *	18	Machine Check
2344  *	19	SIMD floating point
2345  *	20-31	reserved
2346  *	32-255	INTn/external sources
2347  */
2348 u_int64_t
2349 hammer_time(u_int64_t modulep, u_int64_t physfree)
2350 {
2351 	caddr_t kmdp;
2352 	int gsel_tss, x, cpu;
2353 #if 0 /* JG */
2354 	int metadata_missing, off;
2355 #endif
2356 	struct mdglobaldata *gd;
2357 	struct privatespace *ps;
2358 	u_int64_t msr;
2359 
2360 	/*
2361 	 * Prevent lowering of the ipl if we call tsleep() early.
2362 	 */
2363 	gd = &CPU_prvspace[0]->mdglobaldata;
2364 	ps = (struct privatespace *)gd;
2365 	bzero(gd, sizeof(*gd));
2366 	bzero(&ps->common_tss, sizeof(ps->common_tss));
2367 
2368 	/*
2369 	 * Note: on both UP and SMP curthread must be set non-NULL
2370 	 * early in the boot sequence because the system assumes
2371 	 * that 'curthread' is never NULL.
2372 	 */
2373 
2374 	gd->mi.gd_curthread = &thread0;
2375 	thread0.td_gd = &gd->mi;
2376 
2377 	atdevbase = ISA_HOLE_START + PTOV_OFFSET;
2378 
2379 #if 0 /* JG */
2380 	metadata_missing = 0;
2381 	if (bootinfo.bi_modulep) {
2382 		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
2383 		preload_bootstrap_relocate(KERNBASE);
2384 	} else {
2385 		metadata_missing = 1;
2386 	}
2387 	if (bootinfo.bi_envp)
2388 		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
2389 #endif
2390 
2391 	preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
2392 	preload_bootstrap_relocate(PTOV_OFFSET);
2393 	kmdp = preload_search_by_type("elf kernel");
2394 	if (kmdp == NULL)
2395 		kmdp = preload_search_by_type("elf64 kernel");
2396 	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
2397 	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
2398 #ifdef DDB
2399 	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
2400 	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
2401 #endif
2402 	efi_systbl_phys = MD_FETCH(kmdp, MODINFOMD_FW_HANDLE, vm_paddr_t);
2403 
2404 	if (boothowto & RB_VERBOSE)
2405 		bootverbose++;
2406 
2407 	/*
2408 	 * Default MachIntrABI to ICU
2409 	 */
2410 	MachIntrABI = MachIntrABI_ICU;
2411 
2412 	/*
2413 	 * start with one cpu.  Note: with one cpu, ncpus_fit_mask remain 0.
2414 	 */
2415 	ncpus = 1;
2416 	ncpus_fit = 1;
2417 	/* Init basic tunables, hz etc */
2418 	init_param1();
2419 
2420 	/*
2421 	 * make gdt memory segments
2422 	 */
2423 	gdt_segs[GPROC0_SEL].ssd_base =
2424 		(uintptr_t) &CPU_prvspace[0]->common_tss;
2425 
2426 	gd->mi.gd_prvspace = CPU_prvspace[0];
2427 
2428 	for (x = 0; x < NGDT; x++) {
2429 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
2430 			ssdtosd(&gdt_segs[x], &gdt[x]);
2431 	}
2432 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2433 	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
2434 
2435 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
2436 	r_gdt.rd_base =  (long) gdt;
2437 	lgdt(&r_gdt);
2438 
2439 	wrmsr(MSR_FSBASE, 0);		/* User value */
2440 	wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
2441 	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
2442 
2443 	mi_gdinit(&gd->mi, 0);
2444 	cpu_gdinit(gd, 0);
2445 	proc0paddr = proc0paddr_buff;
2446 	mi_proc0init(&gd->mi, proc0paddr);
2447 	safepri = TDPRI_MAX;
2448 
2449 	/* spinlocks and the BGL */
2450 	init_locks();
2451 
2452 	/* exceptions */
2453 	for (x = 0; x < NIDT; x++)
2454 		setidt_global(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
2455 	setidt_global(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
2456 	setidt_global(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
2457 	setidt_global(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 1);
2458 	setidt_global(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
2459 	setidt_global(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
2460 	setidt_global(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
2461 	setidt_global(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
2462 	setidt_global(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
2463 	setidt_global(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
2464 	setidt_global(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
2465 	setidt_global(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
2466 	setidt_global(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
2467 	setidt_global(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
2468 	setidt_global(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
2469 	setidt_global(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
2470 	setidt_global(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
2471 	setidt_global(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
2472 	setidt_global(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
2473 	setidt_global(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
2474 
2475 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
2476 		r_idt_arr[cpu].rd_limit = sizeof(idt_arr[cpu]) - 1;
2477 		r_idt_arr[cpu].rd_base = (long) &idt_arr[cpu][0];
2478 	}
2479 
2480 	lidt(&r_idt_arr[0]);
2481 
2482 	/*
2483 	 * Initialize the console before we print anything out.
2484 	 */
2485 	cninit();
2486 
2487 #if 0 /* JG */
2488 	if (metadata_missing)
2489 		kprintf("WARNING: loader(8) metadata is missing!\n");
2490 #endif
2491 
2492 #if	NISA >0
2493 	elcr_probe();
2494 	isa_defaultirq();
2495 #endif
2496 	rand_initialize();
2497 
2498 	/*
2499 	 * Initialize IRQ mapping
2500 	 *
2501 	 * NOTE:
2502 	 * SHOULD be after elcr_probe()
2503 	 */
2504 	MachIntrABI_ICU.initmap();
2505 	MachIntrABI_IOAPIC.initmap();
2506 
2507 #ifdef DDB
2508 	kdb_init();
2509 	if (boothowto & RB_KDB)
2510 		Debugger("Boot flags requested debugger");
2511 #endif
2512 
2513 	identify_cpu();		/* Final stage of CPU initialization */
2514 	initializecpu(0);	/* Initialize CPU registers */
2515 
2516 	/*
2517 	 * On modern Intel cpus, haswell or later, cpu_idle_hlt=1 is better
2518 	 * because the cpu does significant power management in MWAIT
2519 	 * (also suggested is to set sysctl machdep.mwait.CX.idle=AUTODEEP).
2520 	 *
2521 	 * On modern AMD cpus cpu_idle_hlt=3 is better, because the cpu does
2522 	 * significant power management only when using ACPI halt mode.
2523 	 *
2524 	 * On older AMD or Intel cpus, cpu_idle_hlt=2 is better because ACPI
2525 	 * is needed to reduce power consumption, but wakeup times are often
2526 	 * too long longer.
2527 	 */
2528 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
2529 	    CPUID_TO_MODEL(cpu_id) >= 0x3C) {	/* Haswell or later */
2530 		cpu_idle_hlt = 1;
2531 	}
2532 	if (cpu_vendor_id == CPU_VENDOR_AMD) {
2533 		if (CPUID_TO_FAMILY(cpu_id) >= 0x17) {
2534 			/* Ryzen or later */
2535 			cpu_idle_hlt = 3;
2536 		} else if (CPUID_TO_FAMILY(cpu_id) >= 0x14) {
2537 			/* Bobcat or later */
2538 			cpu_idle_hlt = 3;
2539 		}
2540 	}
2541 
2542 	TUNABLE_INT_FETCH("hw.apic_io_enable", &ioapic_enable); /* for compat */
2543 	TUNABLE_INT_FETCH("hw.ioapic_enable", &ioapic_enable);
2544 	TUNABLE_INT_FETCH("hw.lapic_enable", &lapic_enable);
2545 	TUNABLE_INT_FETCH("machdep.cpu_idle_hlt", &cpu_idle_hlt);
2546 
2547 	/*
2548 	 * Some of the virtual machines do not work w/ I/O APIC
2549 	 * enabled.  If the user does not explicitly enable or
2550 	 * disable the I/O APIC (ioapic_enable < 0), then we
2551 	 * disable I/O APIC on all virtual machines.
2552 	 *
2553 	 * NOTE:
2554 	 * This must be done after identify_cpu(), which sets
2555 	 * 'cpu_feature2'
2556 	 */
2557 	if (ioapic_enable < 0) {
2558 		if (cpu_feature2 & CPUID2_VMM)
2559 			ioapic_enable = 0;
2560 		else
2561 			ioapic_enable = 1;
2562 	}
2563 
2564 	/*
2565 	 * TSS entry point for interrupts, traps, and exceptions
2566 	 * (sans NMI).  This will always go to near the top of the pcpu
2567 	 * trampoline area.  Hardware-pushed data will be copied into
2568 	 * the trap-frame on entry, and (if necessary) returned to the
2569 	 * trampoline on exit.
2570 	 *
2571 	 * We store some pcb data for the trampoline code above the
2572 	 * stack the cpu hw pushes into, and arrange things so the
2573 	 * address of tr_pcb_rsp is the same as the desired top of
2574 	 * stack.
2575 	 */
2576 	ps->common_tss.tss_rsp0 = (register_t)&ps->trampoline.tr_pcb_rsp;
2577 	ps->trampoline.tr_pcb_rsp = ps->common_tss.tss_rsp0;
2578 
2579 	/* double fault stack */
2580 	ps->common_tss.tss_ist1 = (register_t)ps->dblstack +
2581 				  sizeof(ps->dblstack);
2582 
2583 	/* Set the IO permission bitmap (empty due to tss seg limit) */
2584 	ps->common_tss.tss_iobase = sizeof(struct x86_64tss);
2585 
2586 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2587 	gd->gd_tss_gdt = &gdt[GPROC0_SEL];
2588 	gd->gd_common_tssd = *gd->gd_tss_gdt;
2589 	ltr(gsel_tss);
2590 
2591 	/* Set up the fast syscall stuff */
2592 	msr = rdmsr(MSR_EFER) | EFER_SCE;
2593 	wrmsr(MSR_EFER, msr);
2594 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
2595 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
2596 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
2597 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
2598 	wrmsr(MSR_STAR, msr);
2599 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
2600 
2601 	getmemsize(kmdp, physfree);
2602 	init_param2(physmem);
2603 
2604 	/* now running on new page tables, configured,and u/iom is accessible */
2605 
2606 	/* Map the message buffer. */
2607 #if 0 /* JG */
2608 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2609 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2610 #endif
2611 
2612 	msgbufinit(msgbufp, MSGBUF_SIZE);
2613 
2614 
2615 	/* transfer to user mode */
2616 
2617 	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2618 	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2619 	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
2620 
2621 	load_ds(_udatasel);
2622 	load_es(_udatasel);
2623 	load_fs(_udatasel);
2624 
2625 	/* setup proc 0's pcb */
2626 	thread0.td_pcb->pcb_flags = 0;
2627 	thread0.td_pcb->pcb_cr3 = KPML4phys;
2628 	thread0.td_pcb->pcb_cr3_iso = 0;
2629 	thread0.td_pcb->pcb_ext = NULL;
2630 	lwp0.lwp_md.md_regs = &proc0_tf;	/* XXX needed? */
2631 
2632 	/* Location of kernel stack for locore */
2633 	return ((u_int64_t)thread0.td_pcb);
2634 }
2635 
2636 /*
2637  * Initialize machine-dependant portions of the global data structure.
2638  * Note that the global data area and cpu0's idlestack in the private
2639  * data space were allocated in locore.
2640  *
2641  * Note: the idlethread's cpl is 0
2642  *
2643  * WARNING!  Called from early boot, 'mycpu' may not work yet.
2644  */
2645 void
2646 cpu_gdinit(struct mdglobaldata *gd, int cpu)
2647 {
2648 	if (cpu)
2649 		gd->mi.gd_curthread = &gd->mi.gd_idlethread;
2650 
2651 	lwkt_init_thread(&gd->mi.gd_idlethread,
2652 			gd->mi.gd_prvspace->idlestack,
2653 			sizeof(gd->mi.gd_prvspace->idlestack),
2654 			0, &gd->mi);
2655 	lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
2656 	gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
2657 	gd->mi.gd_idlethread.td_sp -= sizeof(void *);
2658 	*(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
2659 }
2660 
2661 /*
2662  * We only have to check for DMAP bounds, the globaldata space is
2663  * actually part of the kernel_map so we don't have to waste time
2664  * checking CPU_prvspace[*].
2665  */
2666 int
2667 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
2668 {
2669 #if 0
2670 	if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
2671 	    eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
2672 		return (TRUE);
2673 	}
2674 #endif
2675 	if (saddr >= DMAP_MIN_ADDRESS && eaddr <= DMAP_MAX_ADDRESS)
2676 		return (TRUE);
2677 	return (FALSE);
2678 }
2679 
2680 struct globaldata *
2681 globaldata_find(int cpu)
2682 {
2683 	KKASSERT(cpu >= 0 && cpu < ncpus);
2684 	return(&CPU_prvspace[cpu]->mdglobaldata.mi);
2685 }
2686 
2687 /*
2688  * This path should be safe from the SYSRET issue because only stopped threads
2689  * can have their %rip adjusted this way (and all heavy weight thread switches
2690  * clear QUICKREF and thus do not use SYSRET).  However, the code path is
2691  * convoluted so add a safety by forcing %rip to be cannonical.
2692  */
2693 int
2694 ptrace_set_pc(struct lwp *lp, unsigned long addr)
2695 {
2696 	if (addr & 0x0000800000000000LLU)
2697 		lp->lwp_md.md_regs->tf_rip = addr | 0xFFFF000000000000LLU;
2698 	else
2699 		lp->lwp_md.md_regs->tf_rip = addr & 0x0000FFFFFFFFFFFFLLU;
2700 	return (0);
2701 }
2702 
2703 int
2704 ptrace_single_step(struct lwp *lp)
2705 {
2706 	lp->lwp_md.md_regs->tf_rflags |= PSL_T;
2707 	return (0);
2708 }
2709 
2710 int
2711 fill_regs(struct lwp *lp, struct reg *regs)
2712 {
2713 	struct trapframe *tp;
2714 
2715 	if ((tp = lp->lwp_md.md_regs) == NULL)
2716 		return EINVAL;
2717 	bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
2718 	return (0);
2719 }
2720 
2721 int
2722 set_regs(struct lwp *lp, struct reg *regs)
2723 {
2724 	struct trapframe *tp;
2725 
2726 	tp = lp->lwp_md.md_regs;
2727 	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
2728 	    !CS_SECURE(regs->r_cs))
2729 		return (EINVAL);
2730 	bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
2731 	clear_quickret();
2732 	return (0);
2733 }
2734 
2735 static void
2736 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2737 {
2738 	struct env87 *penv_87 = &sv_87->sv_env;
2739 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2740 	int i;
2741 
2742 	/* FPU control/status */
2743 	penv_87->en_cw = penv_xmm->en_cw;
2744 	penv_87->en_sw = penv_xmm->en_sw;
2745 	penv_87->en_tw = penv_xmm->en_tw;
2746 	penv_87->en_fip = penv_xmm->en_fip;
2747 	penv_87->en_fcs = penv_xmm->en_fcs;
2748 	penv_87->en_opcode = penv_xmm->en_opcode;
2749 	penv_87->en_foo = penv_xmm->en_foo;
2750 	penv_87->en_fos = penv_xmm->en_fos;
2751 
2752 	/* FPU registers */
2753 	for (i = 0; i < 8; ++i)
2754 		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2755 }
2756 
2757 static void
2758 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2759 {
2760 	struct env87 *penv_87 = &sv_87->sv_env;
2761 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2762 	int i;
2763 
2764 	/* FPU control/status */
2765 	penv_xmm->en_cw = penv_87->en_cw;
2766 	penv_xmm->en_sw = penv_87->en_sw;
2767 	penv_xmm->en_tw = penv_87->en_tw;
2768 	penv_xmm->en_fip = penv_87->en_fip;
2769 	penv_xmm->en_fcs = penv_87->en_fcs;
2770 	penv_xmm->en_opcode = penv_87->en_opcode;
2771 	penv_xmm->en_foo = penv_87->en_foo;
2772 	penv_xmm->en_fos = penv_87->en_fos;
2773 
2774 	/* FPU registers */
2775 	for (i = 0; i < 8; ++i)
2776 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2777 }
2778 
2779 int
2780 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2781 {
2782 	if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
2783 		return EINVAL;
2784 	if (cpu_fxsr) {
2785 		fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2786 				(struct save87 *)fpregs);
2787 		return (0);
2788 	}
2789 	bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2790 	return (0);
2791 }
2792 
2793 int
2794 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2795 {
2796 	if (cpu_fxsr) {
2797 		set_fpregs_xmm((struct save87 *)fpregs,
2798 			       &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2799 		return (0);
2800 	}
2801 	bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2802 	return (0);
2803 }
2804 
2805 int
2806 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2807 {
2808 	struct pcb *pcb;
2809 
2810         if (lp == NULL) {
2811                 dbregs->dr[0] = rdr0();
2812                 dbregs->dr[1] = rdr1();
2813                 dbregs->dr[2] = rdr2();
2814                 dbregs->dr[3] = rdr3();
2815                 dbregs->dr[4] = rdr4();
2816                 dbregs->dr[5] = rdr5();
2817                 dbregs->dr[6] = rdr6();
2818                 dbregs->dr[7] = rdr7();
2819 		return (0);
2820         }
2821 	if (lp->lwp_thread == NULL || (pcb = lp->lwp_thread->td_pcb) == NULL)
2822 		return EINVAL;
2823 	dbregs->dr[0] = pcb->pcb_dr0;
2824 	dbregs->dr[1] = pcb->pcb_dr1;
2825 	dbregs->dr[2] = pcb->pcb_dr2;
2826 	dbregs->dr[3] = pcb->pcb_dr3;
2827 	dbregs->dr[4] = 0;
2828 	dbregs->dr[5] = 0;
2829 	dbregs->dr[6] = pcb->pcb_dr6;
2830 	dbregs->dr[7] = pcb->pcb_dr7;
2831 	return (0);
2832 }
2833 
2834 int
2835 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2836 {
2837 	if (lp == NULL) {
2838 		load_dr0(dbregs->dr[0]);
2839 		load_dr1(dbregs->dr[1]);
2840 		load_dr2(dbregs->dr[2]);
2841 		load_dr3(dbregs->dr[3]);
2842 		load_dr4(dbregs->dr[4]);
2843 		load_dr5(dbregs->dr[5]);
2844 		load_dr6(dbregs->dr[6]);
2845 		load_dr7(dbregs->dr[7]);
2846 	} else {
2847 		struct pcb *pcb;
2848 		struct ucred *ucred;
2849 		int i;
2850 		uint64_t mask1, mask2;
2851 
2852 		/*
2853 		 * Don't let an illegal value for dr7 get set.	Specifically,
2854 		 * check for undefined settings.  Setting these bit patterns
2855 		 * result in undefined behaviour and can lead to an unexpected
2856 		 * TRCTRAP.
2857 		 */
2858 		/* JG this loop looks unreadable */
2859 		/* Check 4 2-bit fields for invalid patterns.
2860 		 * These fields are R/Wi, for i = 0..3
2861 		 */
2862 		/* Is 10 in LENi allowed when running in compatibility mode? */
2863 		/* Pattern 10 in R/Wi might be used to indicate
2864 		 * breakpoint on I/O. Further analysis should be
2865 		 * carried to decide if it is safe and useful to
2866 		 * provide access to that capability
2867 		 */
2868 		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2869 		     i++, mask1 <<= 4, mask2 <<= 4)
2870 			if ((dbregs->dr[7] & mask1) == mask2)
2871 				return (EINVAL);
2872 
2873 		pcb = lp->lwp_thread->td_pcb;
2874 		ucred = lp->lwp_proc->p_ucred;
2875 
2876 		/*
2877 		 * Don't let a process set a breakpoint that is not within the
2878 		 * process's address space.  If a process could do this, it
2879 		 * could halt the system by setting a breakpoint in the kernel
2880 		 * (if ddb was enabled).  Thus, we need to check to make sure
2881 		 * that no breakpoints are being enabled for addresses outside
2882 		 * process's address space, unless, perhaps, we were called by
2883 		 * uid 0.
2884 		 *
2885 		 * XXX - what about when the watched area of the user's
2886 		 * address space is written into from within the kernel
2887 		 * ... wouldn't that still cause a breakpoint to be generated
2888 		 * from within kernel mode?
2889 		 */
2890 
2891 		if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2892 			if (dbregs->dr[7] & 0x3) {
2893 				/* dr0 is enabled */
2894 				if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2895 					return (EINVAL);
2896 			}
2897 
2898 			if (dbregs->dr[7] & (0x3<<2)) {
2899 				/* dr1 is enabled */
2900 				if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2901 					return (EINVAL);
2902 			}
2903 
2904 			if (dbregs->dr[7] & (0x3<<4)) {
2905 				/* dr2 is enabled */
2906 				if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2907 					return (EINVAL);
2908 			}
2909 
2910 			if (dbregs->dr[7] & (0x3<<6)) {
2911 				/* dr3 is enabled */
2912 				if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2913 					return (EINVAL);
2914 			}
2915 		}
2916 
2917 		pcb->pcb_dr0 = dbregs->dr[0];
2918 		pcb->pcb_dr1 = dbregs->dr[1];
2919 		pcb->pcb_dr2 = dbregs->dr[2];
2920 		pcb->pcb_dr3 = dbregs->dr[3];
2921 		pcb->pcb_dr6 = dbregs->dr[6];
2922 		pcb->pcb_dr7 = dbregs->dr[7];
2923 
2924 		pcb->pcb_flags |= PCB_DBREGS;
2925 	}
2926 
2927 	return (0);
2928 }
2929 
2930 /*
2931  * Return > 0 if a hardware breakpoint has been hit, and the
2932  * breakpoint was in user space.  Return 0, otherwise.
2933  */
2934 int
2935 user_dbreg_trap(void)
2936 {
2937         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2938         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2939         int nbp;            /* number of breakpoints that triggered */
2940         caddr_t addr[4];    /* breakpoint addresses */
2941         int i;
2942 
2943         dr7 = rdr7();
2944         if ((dr7 & 0xff) == 0) {
2945                 /*
2946                  * all GE and LE bits in the dr7 register are zero,
2947                  * thus the trap couldn't have been caused by the
2948                  * hardware debug registers
2949                  */
2950                 return 0;
2951         }
2952 
2953         nbp = 0;
2954         dr6 = rdr6();
2955         bp = dr6 & 0xf;
2956 
2957         if (bp == 0) {
2958                 /*
2959                  * None of the breakpoint bits are set meaning this
2960                  * trap was not caused by any of the debug registers
2961                  */
2962                 return 0;
2963         }
2964 
2965         /*
2966          * at least one of the breakpoints were hit, check to see
2967          * which ones and if any of them are user space addresses
2968          */
2969 
2970         if (bp & 0x01) {
2971                 addr[nbp++] = (caddr_t)rdr0();
2972         }
2973         if (bp & 0x02) {
2974                 addr[nbp++] = (caddr_t)rdr1();
2975         }
2976         if (bp & 0x04) {
2977                 addr[nbp++] = (caddr_t)rdr2();
2978         }
2979         if (bp & 0x08) {
2980                 addr[nbp++] = (caddr_t)rdr3();
2981         }
2982 
2983         for (i=0; i<nbp; i++) {
2984                 if (addr[i] <
2985                     (caddr_t)VM_MAX_USER_ADDRESS) {
2986                         /*
2987                          * addr[i] is in user space
2988                          */
2989                         return nbp;
2990                 }
2991         }
2992 
2993         /*
2994          * None of the breakpoints are in user space.
2995          */
2996         return 0;
2997 }
2998 
2999 
3000 #ifndef DDB
3001 void
3002 Debugger(const char *msg)
3003 {
3004 	kprintf("Debugger(\"%s\") called.\n", msg);
3005 }
3006 #endif /* no DDB */
3007 
3008 #ifdef DDB
3009 
3010 /*
3011  * Provide inb() and outb() as functions.  They are normally only
3012  * available as macros calling inlined functions, thus cannot be
3013  * called inside DDB.
3014  *
3015  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
3016  */
3017 
3018 #undef inb
3019 #undef outb
3020 
3021 /* silence compiler warnings */
3022 u_char inb(u_int);
3023 void outb(u_int, u_char);
3024 
3025 u_char
3026 inb(u_int port)
3027 {
3028 	u_char	data;
3029 	/*
3030 	 * We use %%dx and not %1 here because i/o is done at %dx and not at
3031 	 * %edx, while gcc generates inferior code (movw instead of movl)
3032 	 * if we tell it to load (u_short) port.
3033 	 */
3034 	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
3035 	return (data);
3036 }
3037 
3038 void
3039 outb(u_int port, u_char data)
3040 {
3041 	u_char	al;
3042 	/*
3043 	 * Use an unnecessary assignment to help gcc's register allocator.
3044 	 * This make a large difference for gcc-1.40 and a tiny difference
3045 	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
3046 	 * best results.  gcc-2.6.0 can't handle this.
3047 	 */
3048 	al = data;
3049 	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
3050 }
3051 
3052 #endif /* DDB */
3053 
3054 
3055 
3056 /*
3057  * initialize all the SMP locks
3058  */
3059 
3060 /* critical region when masking or unmasking interupts */
3061 struct spinlock_deprecated imen_spinlock;
3062 
3063 /* lock region used by kernel profiling */
3064 struct spinlock_deprecated mcount_spinlock;
3065 
3066 /* locks com (tty) data/hardware accesses: a FASTINTR() */
3067 struct spinlock_deprecated com_spinlock;
3068 
3069 /* lock regions around the clock hardware */
3070 struct spinlock_deprecated clock_spinlock;
3071 
3072 static void
3073 init_locks(void)
3074 {
3075 	/*
3076 	 * Get the initial mplock with a count of 1 for the BSP.
3077 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
3078 	 */
3079 	cpu_get_initial_mplock();
3080 	/* DEPRECATED */
3081 	spin_init_deprecated(&mcount_spinlock);
3082 	spin_init_deprecated(&imen_spinlock);
3083 	spin_init_deprecated(&com_spinlock);
3084 	spin_init_deprecated(&clock_spinlock);
3085 
3086 	/* our token pool needs to work early */
3087 	lwkt_token_pool_init();
3088 }
3089 
3090 boolean_t
3091 cpu_mwait_hint_valid(uint32_t hint)
3092 {
3093 	int cx_idx, sub;
3094 
3095 	cx_idx = MWAIT_EAX_TO_CX(hint);
3096 	if (cx_idx >= CPU_MWAIT_CX_MAX)
3097 		return FALSE;
3098 
3099 	sub = MWAIT_EAX_TO_CX_SUB(hint);
3100 	if (sub >= cpu_mwait_cx_info[cx_idx].subcnt)
3101 		return FALSE;
3102 
3103 	return TRUE;
3104 }
3105 
3106 void
3107 cpu_mwait_cx_no_bmsts(void)
3108 {
3109 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_STS);
3110 }
3111 
3112 void
3113 cpu_mwait_cx_no_bmarb(void)
3114 {
3115 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_ARB);
3116 }
3117 
3118 static int
3119 cpu_mwait_cx_hint2name(int hint, char *name, int namelen, boolean_t allow_auto)
3120 {
3121 	int old_cx_idx, sub = 0;
3122 
3123 	if (hint >= 0) {
3124 		old_cx_idx = MWAIT_EAX_TO_CX(hint);
3125 		sub = MWAIT_EAX_TO_CX_SUB(hint);
3126 	} else if (hint == CPU_MWAIT_HINT_AUTO) {
3127 		old_cx_idx = allow_auto ? CPU_MWAIT_C2 : CPU_MWAIT_CX_MAX;
3128 	} else if (hint == CPU_MWAIT_HINT_AUTODEEP) {
3129 		old_cx_idx = allow_auto ? CPU_MWAIT_C3 : CPU_MWAIT_CX_MAX;
3130 	} else {
3131 		old_cx_idx = CPU_MWAIT_CX_MAX;
3132 	}
3133 
3134 	if (!CPU_MWAIT_HAS_CX)
3135 		strlcpy(name, "NONE", namelen);
3136 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTO)
3137 		strlcpy(name, "AUTO", namelen);
3138 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTODEEP)
3139 		strlcpy(name, "AUTODEEP", namelen);
3140 	else if (old_cx_idx >= CPU_MWAIT_CX_MAX ||
3141 	    sub >= cpu_mwait_cx_info[old_cx_idx].subcnt)
3142 		strlcpy(name, "INVALID", namelen);
3143 	else
3144 		ksnprintf(name, namelen, "C%d/%d", old_cx_idx, sub);
3145 
3146 	return old_cx_idx;
3147 }
3148 
3149 static int
3150 cpu_mwait_cx_name2hint(char *name, int *hint0, boolean_t allow_auto)
3151 {
3152 	int cx_idx, sub, hint;
3153 	char *ptr, *start;
3154 
3155 	if (allow_auto && strcmp(name, "AUTO") == 0) {
3156 		hint = CPU_MWAIT_HINT_AUTO;
3157 		cx_idx = CPU_MWAIT_C2;
3158 		goto done;
3159 	}
3160 	if (allow_auto && strcmp(name, "AUTODEEP") == 0) {
3161 		hint = CPU_MWAIT_HINT_AUTODEEP;
3162 		cx_idx = CPU_MWAIT_C3;
3163 		goto done;
3164 	}
3165 
3166 	if (strlen(name) < 4 || toupper(name[0]) != 'C')
3167 		return -1;
3168 	start = &name[1];
3169 	ptr = NULL;
3170 
3171 	cx_idx = strtol(start, &ptr, 10);
3172 	if (ptr == start || *ptr != '/')
3173 		return -1;
3174 	if (cx_idx < 0 || cx_idx >= CPU_MWAIT_CX_MAX)
3175 		return -1;
3176 
3177 	start = ptr + 1;
3178 	ptr = NULL;
3179 
3180 	sub = strtol(start, &ptr, 10);
3181 	if (*ptr != '\0')
3182 		return -1;
3183 	if (sub < 0 || sub >= cpu_mwait_cx_info[cx_idx].subcnt)
3184 		return -1;
3185 
3186 	hint = MWAIT_EAX_HINT(cx_idx, sub);
3187 done:
3188 	*hint0 = hint;
3189 	return cx_idx;
3190 }
3191 
3192 static int
3193 cpu_mwait_cx_transit(int old_cx_idx, int cx_idx)
3194 {
3195 	if (cx_idx >= CPU_MWAIT_C3 && cpu_mwait_c3_preamble)
3196 		return EOPNOTSUPP;
3197 	if (old_cx_idx < CPU_MWAIT_C3 && cx_idx >= CPU_MWAIT_C3) {
3198 		int error;
3199 
3200 		error = cputimer_intr_powersave_addreq();
3201 		if (error)
3202 			return error;
3203 	} else if (old_cx_idx >= CPU_MWAIT_C3 && cx_idx < CPU_MWAIT_C3) {
3204 		cputimer_intr_powersave_remreq();
3205 	}
3206 	return 0;
3207 }
3208 
3209 static int
3210 cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS, int *hint0,
3211     boolean_t allow_auto)
3212 {
3213 	int error, cx_idx, old_cx_idx, hint;
3214 	char name[CPU_MWAIT_CX_NAMELEN];
3215 
3216 	hint = *hint0;
3217 	old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name),
3218 	    allow_auto);
3219 
3220 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
3221 	if (error != 0 || req->newptr == NULL)
3222 		return error;
3223 
3224 	if (!CPU_MWAIT_HAS_CX)
3225 		return EOPNOTSUPP;
3226 
3227 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, allow_auto);
3228 	if (cx_idx < 0)
3229 		return EINVAL;
3230 
3231 	error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3232 	if (error)
3233 		return error;
3234 
3235 	*hint0 = hint;
3236 	return 0;
3237 }
3238 
3239 static int
3240 cpu_mwait_cx_setname(struct cpu_idle_stat *stat, const char *cx_name)
3241 {
3242 	int error, cx_idx, old_cx_idx, hint;
3243 	char name[CPU_MWAIT_CX_NAMELEN];
3244 
3245 	KASSERT(CPU_MWAIT_HAS_CX, ("cpu does not support mwait CX extension"));
3246 
3247 	hint = stat->hint;
3248 	old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3249 
3250 	strlcpy(name, cx_name, sizeof(name));
3251 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3252 	if (cx_idx < 0)
3253 		return EINVAL;
3254 
3255 	error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3256 	if (error)
3257 		return error;
3258 
3259 	stat->hint = hint;
3260 	return 0;
3261 }
3262 
3263 static int
3264 cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS)
3265 {
3266 	int hint = cpu_mwait_halt_global;
3267 	int error, cx_idx, cpu;
3268 	char name[CPU_MWAIT_CX_NAMELEN], cx_name[CPU_MWAIT_CX_NAMELEN];
3269 
3270 	cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3271 
3272 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
3273 	if (error != 0 || req->newptr == NULL)
3274 		return error;
3275 
3276 	if (!CPU_MWAIT_HAS_CX)
3277 		return EOPNOTSUPP;
3278 
3279 	/* Save name for later per-cpu CX configuration */
3280 	strlcpy(cx_name, name, sizeof(cx_name));
3281 
3282 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3283 	if (cx_idx < 0)
3284 		return EINVAL;
3285 
3286 	/* Change per-cpu CX configuration */
3287 	for (cpu = 0; cpu < ncpus; ++cpu) {
3288 		error = cpu_mwait_cx_setname(&cpu_idle_stats[cpu], cx_name);
3289 		if (error)
3290 			return error;
3291 	}
3292 
3293 	cpu_mwait_halt_global = hint;
3294 	return 0;
3295 }
3296 
3297 static int
3298 cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS)
3299 {
3300 	struct cpu_idle_stat *stat = arg1;
3301 	int error;
3302 
3303 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3304 	    &stat->hint, TRUE);
3305 	return error;
3306 }
3307 
3308 static int
3309 cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS)
3310 {
3311 	int error;
3312 
3313 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3314 	    &cpu_mwait_spin, FALSE);
3315 	return error;
3316 }
3317 
3318 /*
3319  * This manual debugging code is called unconditionally from Xtimer
3320  * (the per-cpu timer interrupt) whether the current thread is in a
3321  * critical section or not) and can be useful in tracking down lockups.
3322  *
3323  * NOTE: MANUAL DEBUG CODE
3324  */
3325 #if 0
3326 static int saveticks[SMP_MAXCPU];
3327 static int savecounts[SMP_MAXCPU];
3328 #endif
3329 
3330 void
3331 pcpu_timer_always(struct intrframe *frame)
3332 {
3333 #if 0
3334 	globaldata_t gd = mycpu;
3335 	int cpu = gd->gd_cpuid;
3336 	char buf[64];
3337 	short *gptr;
3338 	int i;
3339 
3340 	if (cpu <= 20) {
3341 		gptr = (short *)0xFFFFFFFF800b8000 + 80 * cpu;
3342 		*gptr = ((*gptr + 1) & 0x00FF) | 0x0700;
3343 		++gptr;
3344 
3345 		ksnprintf(buf, sizeof(buf), " %p %16s %d %16s ",
3346 		    (void *)frame->if_rip, gd->gd_curthread->td_comm, ticks,
3347 		    gd->gd_infomsg);
3348 		for (i = 0; buf[i]; ++i) {
3349 			gptr[i] = 0x0700 | (unsigned char)buf[i];
3350 		}
3351 	}
3352 #if 0
3353 	if (saveticks[gd->gd_cpuid] != ticks) {
3354 		saveticks[gd->gd_cpuid] = ticks;
3355 		savecounts[gd->gd_cpuid] = 0;
3356 	}
3357 	++savecounts[gd->gd_cpuid];
3358 	if (savecounts[gd->gd_cpuid] > 2000 && panicstr == NULL) {
3359 		panic("cpud %d panicing on ticks failure",
3360 			gd->gd_cpuid);
3361 	}
3362 	for (i = 0; i < ncpus; ++i) {
3363 		int delta;
3364 		if (saveticks[i] && panicstr == NULL) {
3365 			delta = saveticks[i] - ticks;
3366 			if (delta < -10 || delta > 10) {
3367 				panic("cpu %d panicing on cpu %d watchdog",
3368 				      gd->gd_cpuid, i);
3369 			}
3370 		}
3371 	}
3372 #endif
3373 #endif
3374 }
3375