xref: /dragonfly/sys/platform/pc64/x86_64/machdep.c (revision 267c04fd)
1 /*-
2  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3  * Copyright (c) 1992 Terrence R. Lambert.
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 2008 The DragonFly Project.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
40  * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
41  */
42 
43 //#include "use_npx.h"
44 #include "use_isa.h"
45 #include "opt_compat.h"
46 #include "opt_cpu.h"
47 #include "opt_ddb.h"
48 #include "opt_directio.h"
49 #include "opt_inet.h"
50 #include "opt_msgbuf.h"
51 #include "opt_swap.h"
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/sysproto.h>
56 #include <sys/signalvar.h>
57 #include <sys/kernel.h>
58 #include <sys/linker.h>
59 #include <sys/malloc.h>
60 #include <sys/proc.h>
61 #include <sys/priv.h>
62 #include <sys/buf.h>
63 #include <sys/reboot.h>
64 #include <sys/mbuf.h>
65 #include <sys/msgbuf.h>
66 #include <sys/sysent.h>
67 #include <sys/sysctl.h>
68 #include <sys/vmmeter.h>
69 #include <sys/bus.h>
70 #include <sys/usched.h>
71 #include <sys/reg.h>
72 #include <sys/sbuf.h>
73 #include <sys/ctype.h>
74 #include <sys/serialize.h>
75 #include <sys/systimer.h>
76 
77 #include <vm/vm.h>
78 #include <vm/vm_param.h>
79 #include <sys/lock.h>
80 #include <vm/vm_kern.h>
81 #include <vm/vm_object.h>
82 #include <vm/vm_page.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_pager.h>
85 #include <vm/vm_extern.h>
86 
87 #include <sys/thread2.h>
88 #include <sys/mplock2.h>
89 #include <sys/mutex2.h>
90 
91 #include <sys/user.h>
92 #include <sys/exec.h>
93 #include <sys/cons.h>
94 
95 #include <ddb/ddb.h>
96 
97 #include <machine/cpu.h>
98 #include <machine/clock.h>
99 #include <machine/specialreg.h>
100 #if 0 /* JG */
101 #include <machine/bootinfo.h>
102 #endif
103 #include <machine/md_var.h>
104 #include <machine/metadata.h>
105 #include <machine/pc/bios.h>
106 #include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
107 #include <machine/globaldata.h>		/* CPU_prvspace */
108 #include <machine/smp.h>
109 #ifdef PERFMON
110 #include <machine/perfmon.h>
111 #endif
112 #include <machine/cputypes.h>
113 #include <machine/intr_machdep.h>
114 
115 #ifdef OLD_BUS_ARCH
116 #include <bus/isa/isa_device.h>
117 #endif
118 #include <machine_base/isa/isa_intr.h>
119 #include <bus/isa/rtc.h>
120 #include <sys/random.h>
121 #include <sys/ptrace.h>
122 #include <machine/sigframe.h>
123 
124 #include <sys/machintr.h>
125 #include <machine_base/icu/icu_abi.h>
126 #include <machine_base/icu/elcr_var.h>
127 #include <machine_base/apic/lapic.h>
128 #include <machine_base/apic/ioapic.h>
129 #include <machine_base/apic/ioapic_abi.h>
130 #include <machine/mptable.h>
131 
132 #define PHYSMAP_ENTRIES		10
133 
134 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
135 
136 extern void printcpuinfo(void);	/* XXX header file */
137 extern void identify_cpu(void);
138 #if 0 /* JG */
139 extern void finishidentcpu(void);
140 #endif
141 extern void panicifcpuunsupported(void);
142 
143 static void cpu_startup(void *);
144 static void pic_finish(void *);
145 static void cpu_finish(void *);
146 
147 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
148 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
149 #ifdef DIRECTIO
150 extern void ffs_rawread_setup(void);
151 #endif /* DIRECTIO */
152 static void init_locks(void);
153 
154 SYSINIT(cpu, SI_BOOT2_START_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
155 SYSINIT(pic_finish, SI_BOOT2_FINISH_PIC, SI_ORDER_FIRST, pic_finish, NULL);
156 SYSINIT(cpu_finish, SI_BOOT2_FINISH_CPU, SI_ORDER_FIRST, cpu_finish, NULL);
157 
158 #ifdef DDB
159 extern vm_offset_t ksym_start, ksym_end;
160 #endif
161 
162 struct privatespace CPU_prvspace_bsp __aligned(4096);
163 struct privatespace *CPU_prvspace[MAXCPU] = { &CPU_prvspace_bsp };
164 
165 int	_udatasel, _ucodesel, _ucode32sel;
166 u_long	atdevbase;
167 int64_t tsc_offsets[MAXCPU];
168 
169 static int cpu_mwait_halt_global; /* MWAIT hint (EAX) or CPU_MWAIT_HINT_ */
170 
171 #if defined(SWTCH_OPTIM_STATS)
172 extern int swtch_optim_stats;
173 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
174 	CTLFLAG_RD, &swtch_optim_stats, 0, "");
175 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
176 	CTLFLAG_RD, &tlb_flush_count, 0, "");
177 #endif
178 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_halt,
179 	CTLFLAG_RD, &cpu_mwait_halt_global, 0, "");
180 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_spin, CTLFLAG_RD, &cpu_mwait_spin, 0,
181     "monitor/mwait target state");
182 
183 #define CPU_MWAIT_HAS_CX	\
184 	((cpu_feature2 & CPUID2_MON) && \
185 	 (cpu_mwait_feature & CPUID_MWAIT_EXT))
186 
187 #define CPU_MWAIT_CX_NAMELEN	16
188 
189 #define CPU_MWAIT_C1		1
190 #define CPU_MWAIT_C2		2
191 #define CPU_MWAIT_C3		3
192 #define CPU_MWAIT_CX_MAX	8
193 
194 #define CPU_MWAIT_HINT_AUTO	-1	/* C1 and C2 */
195 #define CPU_MWAIT_HINT_AUTODEEP	-2	/* C3+ */
196 
197 SYSCTL_NODE(_machdep, OID_AUTO, mwait, CTLFLAG_RW, 0, "MWAIT features");
198 SYSCTL_NODE(_machdep_mwait, OID_AUTO, CX, CTLFLAG_RW, 0, "MWAIT Cx settings");
199 
200 struct cpu_mwait_cx {
201 	int			subcnt;
202 	char			name[4];
203 	struct sysctl_ctx_list	sysctl_ctx;
204 	struct sysctl_oid	*sysctl_tree;
205 };
206 static struct cpu_mwait_cx	cpu_mwait_cx_info[CPU_MWAIT_CX_MAX];
207 static char			cpu_mwait_cx_supported[256];
208 
209 static int			cpu_mwait_c1_hints_cnt;
210 static int			cpu_mwait_hints_cnt;
211 static int			*cpu_mwait_hints;
212 
213 static int			cpu_mwait_deep_hints_cnt;
214 static int			*cpu_mwait_deep_hints;
215 
216 #define CPU_IDLE_REPEAT_DEFAULT	750
217 
218 static u_int			cpu_idle_repeat = CPU_IDLE_REPEAT_DEFAULT;
219 static u_long			cpu_idle_repeat_max = CPU_IDLE_REPEAT_DEFAULT;
220 static u_int			cpu_mwait_repeat_shift = 1;
221 
222 #define CPU_MWAIT_C3_PREAMBLE_BM_ARB	0x1
223 #define CPU_MWAIT_C3_PREAMBLE_BM_STS	0x2
224 
225 static int			cpu_mwait_c3_preamble =
226 				    CPU_MWAIT_C3_PREAMBLE_BM_ARB |
227 				    CPU_MWAIT_C3_PREAMBLE_BM_STS;
228 
229 SYSCTL_STRING(_machdep_mwait_CX, OID_AUTO, supported, CTLFLAG_RD,
230     cpu_mwait_cx_supported, 0, "MWAIT supported C states");
231 SYSCTL_INT(_machdep_mwait_CX, OID_AUTO, c3_preamble, CTLFLAG_RD,
232     &cpu_mwait_c3_preamble, 0, "C3+ preamble mask");
233 
234 static int	cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS,
235 		    int *, boolean_t);
236 static int	cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS);
237 static int	cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS);
238 static int	cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS);
239 
240 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, idle, CTLTYPE_STRING|CTLFLAG_RW,
241     NULL, 0, cpu_mwait_cx_idle_sysctl, "A", "");
242 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, spin, CTLTYPE_STRING|CTLFLAG_RW,
243     NULL, 0, cpu_mwait_cx_spin_sysctl, "A", "");
244 SYSCTL_UINT(_machdep_mwait_CX, OID_AUTO, repeat_shift, CTLFLAG_RW,
245     &cpu_mwait_repeat_shift, 0, "");
246 
247 long physmem = 0;
248 
249 u_long ebda_addr = 0;
250 
251 int imcr_present = 0;
252 
253 int naps = 0; /* # of Applications processors */
254 
255 u_int base_memory;
256 struct mtx dt_lock;		/* lock for GDT and LDT */
257 
258 static int
259 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
260 {
261 	u_long pmem = ctob(physmem);
262 
263 	int error = sysctl_handle_long(oidp, &pmem, 0, req);
264 	return (error);
265 }
266 
267 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
268 	0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
269 
270 static int
271 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
272 {
273 	int error = sysctl_handle_int(oidp, 0,
274 		ctob(physmem - vmstats.v_wire_count), req);
275 	return (error);
276 }
277 
278 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
279 	0, 0, sysctl_hw_usermem, "IU", "");
280 
281 static int
282 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
283 {
284 	int error = sysctl_handle_int(oidp, 0,
285 		x86_64_btop(avail_end - avail_start), req);
286 	return (error);
287 }
288 
289 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
290 	0, 0, sysctl_hw_availpages, "I", "");
291 
292 vm_paddr_t Maxmem;
293 vm_paddr_t Realmem;
294 
295 /*
296  * The number of PHYSMAP entries must be one less than the number of
297  * PHYSSEG entries because the PHYSMAP entry that spans the largest
298  * physical address that is accessible by ISA DMA is split into two
299  * PHYSSEG entries.
300  */
301 #define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
302 
303 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
304 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
305 
306 /* must be 2 less so 0 0 can signal end of chunks */
307 #define PHYS_AVAIL_ARRAY_END (NELEM(phys_avail) - 2)
308 #define DUMP_AVAIL_ARRAY_END (NELEM(dump_avail) - 2)
309 
310 static vm_offset_t buffer_sva, buffer_eva;
311 vm_offset_t clean_sva, clean_eva;
312 static vm_offset_t pager_sva, pager_eva;
313 static struct trapframe proc0_tf;
314 
315 static void
316 cpu_startup(void *dummy)
317 {
318 	caddr_t v;
319 	vm_size_t size = 0;
320 	vm_offset_t firstaddr;
321 
322 	/*
323 	 * Good {morning,afternoon,evening,night}.
324 	 */
325 	kprintf("%s", version);
326 	startrtclock();
327 	printcpuinfo();
328 	panicifcpuunsupported();
329 #ifdef PERFMON
330 	perfmon_init();
331 #endif
332 	kprintf("real memory  = %ju (%ju MB)\n",
333 		(intmax_t)Realmem,
334 		(intmax_t)Realmem / 1024 / 1024);
335 	/*
336 	 * Display any holes after the first chunk of extended memory.
337 	 */
338 	if (bootverbose) {
339 		int indx;
340 
341 		kprintf("Physical memory chunk(s):\n");
342 		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
343 			vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
344 
345 			kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
346 				(intmax_t)phys_avail[indx],
347 				(intmax_t)phys_avail[indx + 1] - 1,
348 				(intmax_t)size1,
349 				(intmax_t)(size1 / PAGE_SIZE));
350 		}
351 	}
352 
353 	/*
354 	 * Allocate space for system data structures.
355 	 * The first available kernel virtual address is in "v".
356 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
357 	 * As pages of memory are allocated and cleared,
358 	 * "firstaddr" is incremented.
359 	 * An index into the kernel page table corresponding to the
360 	 * virtual memory address maintained in "v" is kept in "mapaddr".
361 	 */
362 
363 	/*
364 	 * Make two passes.  The first pass calculates how much memory is
365 	 * needed and allocates it.  The second pass assigns virtual
366 	 * addresses to the various data structures.
367 	 */
368 	firstaddr = 0;
369 again:
370 	v = (caddr_t)firstaddr;
371 
372 #define	valloc(name, type, num) \
373 	    (name) = (type *)v; v = (caddr_t)((name)+(num))
374 #define	valloclim(name, type, num, lim) \
375 	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
376 
377 	/*
378 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
379 	 * For the first 64MB of ram nominally allocate sufficient buffers to
380 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
381 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
382 	 * the buffer cache we limit the eventual kva reservation to
383 	 * maxbcache bytes.
384 	 *
385 	 * factor represents the 1/4 x ram conversion.
386 	 */
387 	if (nbuf == 0) {
388 		long factor = 4 * BKVASIZE / 1024;
389 		long kbytes = physmem * (PAGE_SIZE / 1024);
390 
391 		nbuf = 50;
392 		if (kbytes > 4096)
393 			nbuf += min((kbytes - 4096) / factor, 65536 / factor);
394 		if (kbytes > 65536)
395 			nbuf += (kbytes - 65536) * 2 / (factor * 5);
396 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
397 			nbuf = maxbcache / BKVASIZE;
398 	}
399 
400 	/*
401 	 * Do not allow the buffer_map to be more then 1/2 the size of the
402 	 * kernel_map.
403 	 */
404 	if (nbuf > (virtual_end - virtual_start +
405 		    virtual2_end - virtual2_start) / (BKVASIZE * 2)) {
406 		nbuf = (virtual_end - virtual_start +
407 			virtual2_end - virtual2_start) / (BKVASIZE * 2);
408 		kprintf("Warning: nbufs capped at %ld due to kvm\n", nbuf);
409 	}
410 
411 	/*
412 	 * Do not allow the buffer_map to use more than 50% of available
413 	 * physical-equivalent memory.  Since the VM pages which back
414 	 * individual buffers are typically wired, having too many bufs
415 	 * can prevent the system from paging properly.
416 	 */
417 	if (nbuf > physmem * PAGE_SIZE / (BKVASIZE * 2)) {
418 		nbuf = physmem * PAGE_SIZE / (BKVASIZE * 2);
419 		kprintf("Warning: nbufs capped at %ld due to physmem\n", nbuf);
420 	}
421 
422 	/*
423 	 * Do not allow the sizeof(struct buf) * nbuf to exceed half of
424 	 * the valloc space which is just the virtual_end - virtual_start
425 	 * section.  We use valloc() to allocate the buf header array.
426 	 */
427 	if (nbuf > (virtual_end - virtual_start) / sizeof(struct buf) / 2) {
428 		nbuf = (virtual_end - virtual_start) /
429 		       sizeof(struct buf) / 2;
430 		kprintf("Warning: nbufs capped at %ld due to valloc "
431 			"considerations", nbuf);
432 	}
433 
434 	nswbuf = lmax(lmin(nbuf / 4, 256), 16);
435 #ifdef NSWBUF_MIN
436 	if (nswbuf < NSWBUF_MIN)
437 		nswbuf = NSWBUF_MIN;
438 #endif
439 #ifdef DIRECTIO
440 	ffs_rawread_setup();
441 #endif
442 
443 	valloc(swbuf, struct buf, nswbuf);
444 	valloc(buf, struct buf, nbuf);
445 
446 	/*
447 	 * End of first pass, size has been calculated so allocate memory
448 	 */
449 	if (firstaddr == 0) {
450 		size = (vm_size_t)(v - firstaddr);
451 		firstaddr = kmem_alloc(&kernel_map, round_page(size));
452 		if (firstaddr == 0)
453 			panic("startup: no room for tables");
454 		goto again;
455 	}
456 
457 	/*
458 	 * End of second pass, addresses have been assigned
459 	 *
460 	 * nbuf is an int, make sure we don't overflow the field.
461 	 *
462 	 * On 64-bit systems we always reserve maximal allocations for
463 	 * buffer cache buffers and there are no fragmentation issues,
464 	 * so the KVA segment does not have to be excessively oversized.
465 	 */
466 	if ((vm_size_t)(v - firstaddr) != size)
467 		panic("startup: table size inconsistency");
468 
469 	kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
470 		      ((vm_offset_t)(nbuf + 16) * BKVASIZE) +
471 		      (nswbuf * MAXPHYS) + pager_map_size);
472 	kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
473 		      ((vm_offset_t)(nbuf + 16) * BKVASIZE));
474 	buffer_map.system_map = 1;
475 	kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
476 		      ((vm_offset_t)nswbuf * MAXPHYS) + pager_map_size);
477 	pager_map.system_map = 1;
478 
479 #if defined(USERCONFIG)
480 	userconfig();
481 	cninit();		/* the preferred console may have changed */
482 #endif
483 
484 	kprintf("avail memory = %ju (%ju MB)\n",
485 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages),
486 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages) /
487 		1024 / 1024);
488 }
489 
490 struct cpu_idle_stat {
491 	int	hint;
492 	int	reserved;
493 	u_long	halt;
494 	u_long	spin;
495 	u_long	repeat;
496 	u_long	repeat_last;
497 	u_long	repeat_delta;
498 	u_long	mwait_cx[CPU_MWAIT_CX_MAX];
499 } __cachealign;
500 
501 #define CPU_IDLE_STAT_HALT	-1
502 #define CPU_IDLE_STAT_SPIN	-2
503 
504 static struct cpu_idle_stat	cpu_idle_stats[MAXCPU];
505 
506 static int
507 sysctl_cpu_idle_cnt(SYSCTL_HANDLER_ARGS)
508 {
509 	int idx = arg2, cpu, error;
510 	u_long val = 0;
511 
512 	if (idx == CPU_IDLE_STAT_HALT) {
513 		for (cpu = 0; cpu < ncpus; ++cpu)
514 			val += cpu_idle_stats[cpu].halt;
515 	} else if (idx == CPU_IDLE_STAT_SPIN) {
516 		for (cpu = 0; cpu < ncpus; ++cpu)
517 			val += cpu_idle_stats[cpu].spin;
518 	} else {
519 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
520 		    ("invalid index %d", idx));
521 		for (cpu = 0; cpu < ncpus; ++cpu)
522 			val += cpu_idle_stats[cpu].mwait_cx[idx];
523 	}
524 
525 	error = sysctl_handle_quad(oidp, &val, 0, req);
526         if (error || req->newptr == NULL)
527 	        return error;
528 
529 	if (idx == CPU_IDLE_STAT_HALT) {
530 		for (cpu = 0; cpu < ncpus; ++cpu)
531 			cpu_idle_stats[cpu].halt = 0;
532 		cpu_idle_stats[0].halt = val;
533 	} else if (idx == CPU_IDLE_STAT_SPIN) {
534 		for (cpu = 0; cpu < ncpus; ++cpu)
535 			cpu_idle_stats[cpu].spin = 0;
536 		cpu_idle_stats[0].spin = val;
537 	} else {
538 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
539 		    ("invalid index %d", idx));
540 		for (cpu = 0; cpu < ncpus; ++cpu)
541 			cpu_idle_stats[cpu].mwait_cx[idx] = 0;
542 		cpu_idle_stats[0].mwait_cx[idx] = val;
543 	}
544 	return 0;
545 }
546 
547 static void
548 cpu_mwait_attach(void)
549 {
550 	struct sbuf sb;
551 	int hint_idx, i;
552 
553 	if (!CPU_MWAIT_HAS_CX)
554 		return;
555 
556 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
557 	    (CPUID_TO_FAMILY(cpu_id) > 0xf ||
558 	     (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
559 	      CPUID_TO_MODEL(cpu_id) >= 0xf))) {
560 		int bm_sts = 1;
561 
562 		/*
563 		 * Pentium dual-core, Core 2 and beyond do not need any
564 		 * additional activities to enter deep C-state, i.e. C3(+).
565 		 */
566 		cpu_mwait_cx_no_bmarb();
567 
568 		TUNABLE_INT_FETCH("machdep.cpu.mwait.bm_sts", &bm_sts);
569 		if (!bm_sts)
570 			cpu_mwait_cx_no_bmsts();
571 	}
572 
573 	sbuf_new(&sb, cpu_mwait_cx_supported,
574 	    sizeof(cpu_mwait_cx_supported), SBUF_FIXEDLEN);
575 
576 	for (i = 0; i < CPU_MWAIT_CX_MAX; ++i) {
577 		struct cpu_mwait_cx *cx = &cpu_mwait_cx_info[i];
578 		int sub;
579 
580 		ksnprintf(cx->name, sizeof(cx->name), "C%d", i);
581 
582 		sysctl_ctx_init(&cx->sysctl_ctx);
583 		cx->sysctl_tree = SYSCTL_ADD_NODE(&cx->sysctl_ctx,
584 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait), OID_AUTO,
585 		    cx->name, CTLFLAG_RW, NULL, "Cx control/info");
586 		if (cx->sysctl_tree == NULL)
587 			continue;
588 
589 		cx->subcnt = CPUID_MWAIT_CX_SUBCNT(cpu_mwait_extemu, i);
590 		SYSCTL_ADD_INT(&cx->sysctl_ctx,
591 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
592 		    "subcnt", CTLFLAG_RD, &cx->subcnt, 0,
593 		    "sub-state count");
594 		SYSCTL_ADD_PROC(&cx->sysctl_ctx,
595 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
596 		    "entered", (CTLTYPE_QUAD | CTLFLAG_RW), 0,
597 		    i, sysctl_cpu_idle_cnt, "Q", "# of times entered");
598 
599 		for (sub = 0; sub < cx->subcnt; ++sub)
600 			sbuf_printf(&sb, "C%d/%d ", i, sub);
601 	}
602 	sbuf_trim(&sb);
603 	sbuf_finish(&sb);
604 
605 	/*
606 	 * Non-deep C-states
607 	 */
608 	cpu_mwait_c1_hints_cnt = cpu_mwait_cx_info[CPU_MWAIT_C1].subcnt;
609 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i)
610 		cpu_mwait_hints_cnt += cpu_mwait_cx_info[i].subcnt;
611 	cpu_mwait_hints = kmalloc(sizeof(int) * cpu_mwait_hints_cnt,
612 	    M_DEVBUF, M_WAITOK);
613 
614 	hint_idx = 0;
615 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i) {
616 		int j, subcnt;
617 
618 		subcnt = cpu_mwait_cx_info[i].subcnt;
619 		for (j = 0; j < subcnt; ++j) {
620 			KASSERT(hint_idx < cpu_mwait_hints_cnt,
621 			    ("invalid mwait hint index %d", hint_idx));
622 			cpu_mwait_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
623 			++hint_idx;
624 		}
625 	}
626 	KASSERT(hint_idx == cpu_mwait_hints_cnt,
627 	    ("mwait hint count %d != index %d",
628 	     cpu_mwait_hints_cnt, hint_idx));
629 
630 	if (bootverbose) {
631 		kprintf("MWAIT hints (%d C1 hints):\n", cpu_mwait_c1_hints_cnt);
632 		for (i = 0; i < cpu_mwait_hints_cnt; ++i) {
633 			int hint = cpu_mwait_hints[i];
634 
635 			kprintf("  C%d/%d hint 0x%04x\n",
636 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
637 			    hint);
638 		}
639 	}
640 
641 	/*
642 	 * Deep C-states
643 	 */
644 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i)
645 		cpu_mwait_deep_hints_cnt += cpu_mwait_cx_info[i].subcnt;
646 	cpu_mwait_deep_hints = kmalloc(sizeof(int) * cpu_mwait_deep_hints_cnt,
647 	    M_DEVBUF, M_WAITOK);
648 
649 	hint_idx = 0;
650 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i) {
651 		int j, subcnt;
652 
653 		subcnt = cpu_mwait_cx_info[i].subcnt;
654 		for (j = 0; j < subcnt; ++j) {
655 			KASSERT(hint_idx < cpu_mwait_deep_hints_cnt,
656 			    ("invalid mwait deep hint index %d", hint_idx));
657 			cpu_mwait_deep_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
658 			++hint_idx;
659 		}
660 	}
661 	KASSERT(hint_idx == cpu_mwait_deep_hints_cnt,
662 	    ("mwait deep hint count %d != index %d",
663 	     cpu_mwait_deep_hints_cnt, hint_idx));
664 
665 	if (bootverbose) {
666 		kprintf("MWAIT deep hints:\n");
667 		for (i = 0; i < cpu_mwait_deep_hints_cnt; ++i) {
668 			int hint = cpu_mwait_deep_hints[i];
669 
670 			kprintf("  C%d/%d hint 0x%04x\n",
671 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
672 			    hint);
673 		}
674 	}
675 	cpu_idle_repeat_max = 256 * cpu_mwait_deep_hints_cnt;
676 
677 	for (i = 0; i < ncpus; ++i) {
678 		char name[16];
679 
680 		ksnprintf(name, sizeof(name), "idle%d", i);
681 		SYSCTL_ADD_PROC(NULL,
682 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait_CX), OID_AUTO,
683 		    name, (CTLTYPE_STRING | CTLFLAG_RW), &cpu_idle_stats[i],
684 		    0, cpu_mwait_cx_pcpu_idle_sysctl, "A", "");
685 	}
686 }
687 
688 static void
689 cpu_finish(void *dummy __unused)
690 {
691 	cpu_setregs();
692 	cpu_mwait_attach();
693 }
694 
695 static void
696 pic_finish(void *dummy __unused)
697 {
698 	/* Log ELCR information */
699 	elcr_dump();
700 
701 	/* Log MPTABLE information */
702 	mptable_pci_int_dump();
703 
704 	/* Finalize PCI */
705 	MachIntrABI.finalize();
706 }
707 
708 /*
709  * Send an interrupt to process.
710  *
711  * Stack is set up to allow sigcode stored
712  * at top to call routine, followed by kcall
713  * to sigreturn routine below.  After sigreturn
714  * resets the signal mask, the stack, and the
715  * frame pointer, it returns to the user
716  * specified pc, psl.
717  */
718 void
719 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
720 {
721 	struct lwp *lp = curthread->td_lwp;
722 	struct proc *p = lp->lwp_proc;
723 	struct trapframe *regs;
724 	struct sigacts *psp = p->p_sigacts;
725 	struct sigframe sf, *sfp;
726 	int oonstack;
727 	char *sp;
728 
729 	regs = lp->lwp_md.md_regs;
730 	oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
731 
732 	/* Save user context */
733 	bzero(&sf, sizeof(struct sigframe));
734 	sf.sf_uc.uc_sigmask = *mask;
735 	sf.sf_uc.uc_stack = lp->lwp_sigstk;
736 	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
737 	KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
738 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
739 
740 	/* Make the size of the saved context visible to userland */
741 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
742 
743 	/* Allocate and validate space for the signal handler context. */
744         if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
745 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
746 		sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
747 			      sizeof(struct sigframe));
748 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
749 	} else {
750 		/* We take red zone into account */
751 		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
752 	}
753 
754 	/*
755 	 * XXX AVX needs 64-byte alignment but sigframe has other fields and
756 	 * the embedded ucontext is not at the front, so aligning this won't
757 	 * help us.  Fortunately we bcopy in/out of the sigframe, so the
758 	 * kernel is ok.
759 	 *
760 	 * The problem though is if userland winds up trying to use the
761 	 * context directly.
762 	 */
763 	sfp = (struct sigframe *)((intptr_t)sp & ~(intptr_t)0xF);
764 
765 	/* Translate the signal is appropriate */
766 	if (p->p_sysent->sv_sigtbl) {
767 		if (sig <= p->p_sysent->sv_sigsize)
768 			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
769 	}
770 
771 	/*
772 	 * Build the argument list for the signal handler.
773 	 *
774 	 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
775 	 */
776 	regs->tf_rdi = sig;				/* argument 1 */
777 	regs->tf_rdx = (register_t)&sfp->sf_uc;		/* argument 3 */
778 
779 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
780 		/*
781 		 * Signal handler installed with SA_SIGINFO.
782 		 *
783 		 * action(signo, siginfo, ucontext)
784 		 */
785 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* argument 2 */
786 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
787 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
788 
789 		/* fill siginfo structure */
790 		sf.sf_si.si_signo = sig;
791 		sf.sf_si.si_code = code;
792 		sf.sf_si.si_addr = (void *)regs->tf_addr;
793 	} else {
794 		/*
795 		 * Old FreeBSD-style arguments.
796 		 *
797 		 * handler (signo, code, [uc], addr)
798 		 */
799 		regs->tf_rsi = (register_t)code;	/* argument 2 */
800 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
801 		sf.sf_ahu.sf_handler = catcher;
802 	}
803 
804 	/*
805 	 * If we're a vm86 process, we want to save the segment registers.
806 	 * We also change eflags to be our emulated eflags, not the actual
807 	 * eflags.
808 	 */
809 #if 0 /* JG */
810 	if (regs->tf_eflags & PSL_VM) {
811 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
812 		struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
813 
814 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
815 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
816 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
817 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
818 
819 		if (vm86->vm86_has_vme == 0)
820 			sf.sf_uc.uc_mcontext.mc_eflags =
821 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
822 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
823 
824 		/*
825 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
826 		 * syscalls made by the signal handler.  This just avoids
827 		 * wasting time for our lazy fixup of such faults.  PSL_NT
828 		 * does nothing in vm86 mode, but vm86 programs can set it
829 		 * almost legitimately in probes for old cpu types.
830 		 */
831 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
832 	}
833 #endif
834 
835 	/*
836 	 * Save the FPU state and reinit the FP unit
837 	 */
838 	npxpush(&sf.sf_uc.uc_mcontext);
839 
840 	/*
841 	 * Copy the sigframe out to the user's stack.
842 	 */
843 	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
844 		/*
845 		 * Something is wrong with the stack pointer.
846 		 * ...Kill the process.
847 		 */
848 		sigexit(lp, SIGILL);
849 	}
850 
851 	regs->tf_rsp = (register_t)sfp;
852 	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
853 
854 	/*
855 	 * i386 abi specifies that the direction flag must be cleared
856 	 * on function entry
857 	 */
858 	regs->tf_rflags &= ~(PSL_T|PSL_D);
859 
860 	/*
861 	 * 64 bit mode has a code and stack selector but
862 	 * no data or extra selector.  %fs and %gs are not
863 	 * stored in-context.
864 	 */
865 	regs->tf_cs = _ucodesel;
866 	regs->tf_ss = _udatasel;
867 	clear_quickret();
868 }
869 
870 /*
871  * Sanitize the trapframe for a virtual kernel passing control to a custom
872  * VM context.  Remove any items that would otherwise create a privilage
873  * issue.
874  *
875  * XXX at the moment we allow userland to set the resume flag.  Is this a
876  * bad idea?
877  */
878 int
879 cpu_sanitize_frame(struct trapframe *frame)
880 {
881 	frame->tf_cs = _ucodesel;
882 	frame->tf_ss = _udatasel;
883 	/* XXX VM (8086) mode not supported? */
884 	frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
885 	frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
886 
887 	return(0);
888 }
889 
890 /*
891  * Sanitize the tls so loading the descriptor does not blow up
892  * on us.  For x86_64 we don't have to do anything.
893  */
894 int
895 cpu_sanitize_tls(struct savetls *tls)
896 {
897 	return(0);
898 }
899 
900 /*
901  * sigreturn(ucontext_t *sigcntxp)
902  *
903  * System call to cleanup state after a signal
904  * has been taken.  Reset signal mask and
905  * stack state from context left by sendsig (above).
906  * Return to previous pc and psl as specified by
907  * context left by sendsig. Check carefully to
908  * make sure that the user has not modified the
909  * state to gain improper privileges.
910  *
911  * MPSAFE
912  */
913 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
914 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
915 
916 int
917 sys_sigreturn(struct sigreturn_args *uap)
918 {
919 	struct lwp *lp = curthread->td_lwp;
920 	struct trapframe *regs;
921 	ucontext_t uc;
922 	ucontext_t *ucp;
923 	register_t rflags;
924 	int cs;
925 	int error;
926 
927 	/*
928 	 * We have to copy the information into kernel space so userland
929 	 * can't modify it while we are sniffing it.
930 	 */
931 	regs = lp->lwp_md.md_regs;
932 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
933 	if (error)
934 		return (error);
935 	ucp = &uc;
936 	rflags = ucp->uc_mcontext.mc_rflags;
937 
938 	/* VM (8086) mode not supported */
939 	rflags &= ~PSL_VM_UNSUPP;
940 
941 #if 0 /* JG */
942 	if (eflags & PSL_VM) {
943 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
944 		struct vm86_kernel *vm86;
945 
946 		/*
947 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
948 		 * set up the vm86 area, and we can't enter vm86 mode.
949 		 */
950 		if (lp->lwp_thread->td_pcb->pcb_ext == 0)
951 			return (EINVAL);
952 		vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
953 		if (vm86->vm86_inited == 0)
954 			return (EINVAL);
955 
956 		/* go back to user mode if both flags are set */
957 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
958 			trapsignal(lp, SIGBUS, 0);
959 
960 		if (vm86->vm86_has_vme) {
961 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
962 			    (eflags & VME_USERCHANGE) | PSL_VM;
963 		} else {
964 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
965 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
966 			    (eflags & VM_USERCHANGE) | PSL_VM;
967 		}
968 		bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
969 		tf->tf_eflags = eflags;
970 		tf->tf_vm86_ds = tf->tf_ds;
971 		tf->tf_vm86_es = tf->tf_es;
972 		tf->tf_vm86_fs = tf->tf_fs;
973 		tf->tf_vm86_gs = tf->tf_gs;
974 		tf->tf_ds = _udatasel;
975 		tf->tf_es = _udatasel;
976 		tf->tf_fs = _udatasel;
977 		tf->tf_gs = _udatasel;
978 	} else
979 #endif
980 	{
981 		/*
982 		 * Don't allow users to change privileged or reserved flags.
983 		 */
984 		/*
985 		 * XXX do allow users to change the privileged flag PSL_RF.
986 		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
987 		 * should sometimes set it there too.  tf_eflags is kept in
988 		 * the signal context during signal handling and there is no
989 		 * other place to remember it, so the PSL_RF bit may be
990 		 * corrupted by the signal handler without us knowing.
991 		 * Corruption of the PSL_RF bit at worst causes one more or
992 		 * one less debugger trap, so allowing it is fairly harmless.
993 		 */
994 		if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
995 			kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
996 	    		return(EINVAL);
997 		}
998 
999 		/*
1000 		 * Don't allow users to load a valid privileged %cs.  Let the
1001 		 * hardware check for invalid selectors, excess privilege in
1002 		 * other selectors, invalid %eip's and invalid %esp's.
1003 		 */
1004 		cs = ucp->uc_mcontext.mc_cs;
1005 		if (!CS_SECURE(cs)) {
1006 			kprintf("sigreturn: cs = 0x%x\n", cs);
1007 			trapsignal(lp, SIGBUS, T_PROTFLT);
1008 			return(EINVAL);
1009 		}
1010 		bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
1011 	}
1012 
1013 	/*
1014 	 * Restore the FPU state from the frame
1015 	 */
1016 	crit_enter();
1017 	npxpop(&ucp->uc_mcontext);
1018 
1019 	if (ucp->uc_mcontext.mc_onstack & 1)
1020 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
1021 	else
1022 		lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
1023 
1024 	lp->lwp_sigmask = ucp->uc_sigmask;
1025 	SIG_CANTMASK(lp->lwp_sigmask);
1026 	clear_quickret();
1027 	crit_exit();
1028 	return(EJUSTRETURN);
1029 }
1030 
1031 /*
1032  * Machine dependent boot() routine
1033  *
1034  * I haven't seen anything to put here yet
1035  * Possibly some stuff might be grafted back here from boot()
1036  */
1037 void
1038 cpu_boot(int howto)
1039 {
1040 }
1041 
1042 /*
1043  * Shutdown the CPU as much as possible
1044  */
1045 void
1046 cpu_halt(void)
1047 {
1048 	for (;;)
1049 		__asm__ __volatile("hlt");
1050 }
1051 
1052 /*
1053  * cpu_idle() represents the idle LWKT.  You cannot return from this function
1054  * (unless you want to blow things up!).  Instead we look for runnable threads
1055  * and loop or halt as appropriate.  Giant is not held on entry to the thread.
1056  *
1057  * The main loop is entered with a critical section held, we must release
1058  * the critical section before doing anything else.  lwkt_switch() will
1059  * check for pending interrupts due to entering and exiting its own
1060  * critical section.
1061  *
1062  * NOTE: On an SMP system we rely on a scheduler IPI to wake a HLTed cpu up.
1063  *	 However, there are cases where the idlethread will be entered with
1064  *	 the possibility that no IPI will occur and in such cases
1065  *	 lwkt_switch() sets TDF_IDLE_NOHLT.
1066  *
1067  * NOTE: cpu_idle_repeat determines how many entries into the idle thread
1068  *	 must occur before it starts using ACPI halt.
1069  *
1070  * NOTE: Value overridden in hammer_time().
1071  */
1072 static int	cpu_idle_hlt = 2;
1073 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
1074     &cpu_idle_hlt, 0, "Idle loop HLT enable");
1075 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_repeat, CTLFLAG_RW,
1076     &cpu_idle_repeat, 0, "Idle entries before acpi hlt");
1077 
1078 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_hltcnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1079     0, CPU_IDLE_STAT_HALT, sysctl_cpu_idle_cnt, "Q", "Idle loop entry halts");
1080 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_spincnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1081     0, CPU_IDLE_STAT_SPIN, sysctl_cpu_idle_cnt, "Q", "Idle loop entry spins");
1082 
1083 static void
1084 cpu_idle_default_hook(void)
1085 {
1086 	/*
1087 	 * We must guarentee that hlt is exactly the instruction
1088 	 * following the sti.
1089 	 */
1090 	__asm __volatile("sti; hlt");
1091 }
1092 
1093 /* Other subsystems (e.g., ACPI) can hook this later. */
1094 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
1095 
1096 static __inline int
1097 cpu_mwait_cx_hint(struct cpu_idle_stat *stat)
1098 {
1099 	int hint, cx_idx;
1100 	u_int idx;
1101 
1102 	hint = stat->hint;
1103 	if (hint >= 0)
1104 		goto done;
1105 
1106 	idx = (stat->repeat + stat->repeat_last + stat->repeat_delta) >>
1107 	    cpu_mwait_repeat_shift;
1108 	if (idx >= cpu_mwait_c1_hints_cnt) {
1109 		/* Step up faster, once we walked through all C1 states */
1110 		stat->repeat_delta += 1 << (cpu_mwait_repeat_shift + 1);
1111 	}
1112 	if (hint == CPU_MWAIT_HINT_AUTODEEP) {
1113 		if (idx >= cpu_mwait_deep_hints_cnt)
1114 			idx = cpu_mwait_deep_hints_cnt - 1;
1115 		hint = cpu_mwait_deep_hints[idx];
1116 	} else {
1117 		if (idx >= cpu_mwait_hints_cnt)
1118 			idx = cpu_mwait_hints_cnt - 1;
1119 		hint = cpu_mwait_hints[idx];
1120 	}
1121 done:
1122 	cx_idx = MWAIT_EAX_TO_CX(hint);
1123 	if (cx_idx >= 0 && cx_idx < CPU_MWAIT_CX_MAX)
1124 		stat->mwait_cx[cx_idx]++;
1125 	return hint;
1126 }
1127 
1128 void
1129 cpu_idle(void)
1130 {
1131 	globaldata_t gd = mycpu;
1132 	struct cpu_idle_stat *stat = &cpu_idle_stats[gd->gd_cpuid];
1133 	struct thread *td __debugvar = gd->gd_curthread;
1134 	int reqflags;
1135 	int quick;
1136 
1137 	stat->repeat = stat->repeat_last = cpu_idle_repeat_max;
1138 
1139 	crit_exit();
1140 	KKASSERT(td->td_critcount == 0);
1141 
1142 	for (;;) {
1143 		/*
1144 		 * See if there are any LWKTs ready to go.
1145 		 */
1146 		lwkt_switch();
1147 
1148 		/*
1149 		 * When halting inside a cli we must check for reqflags
1150 		 * races, particularly [re]schedule requests.  Running
1151 		 * splz() does the job.
1152 		 *
1153 		 * cpu_idle_hlt:
1154 		 *	0	Never halt, just spin
1155 		 *
1156 		 *	1	Always use HLT (or MONITOR/MWAIT if avail).
1157 		 *
1158 		 *		Better default for modern (Haswell+) Intel
1159 		 *		cpus.
1160 		 *
1161 		 *	2	Use HLT/MONITOR/MWAIT up to a point and then
1162 		 *		use the ACPI halt (default).  This is a hybrid
1163 		 *		approach.  See machdep.cpu_idle_repeat.
1164 		 *
1165 		 *		Better default for modern AMD cpus and older
1166 		 *		Intel cpus.
1167 		 *
1168 		 *	3	Always use the ACPI halt.  This typically
1169 		 *		eats the least amount of power but the cpu
1170 		 *		will be slow waking up.  Slows down e.g.
1171 		 *		compiles and other pipe/event oriented stuff.
1172 		 *
1173 		 *	4	Always use HLT.
1174 		 *
1175 		 * NOTE: Interrupts are enabled and we are not in a critical
1176 		 *	 section.
1177 		 *
1178 		 * NOTE: Preemptions do not reset gd_idle_repeat.   Also we
1179 		 *	 don't bother capping gd_idle_repeat, it is ok if
1180 		 *	 it overflows.
1181 		 */
1182 		if (gd->gd_idle_repeat == 0) {
1183 			stat->repeat = (stat->repeat + stat->repeat_last) >> 1;
1184 			if (stat->repeat > cpu_idle_repeat_max)
1185 				stat->repeat = cpu_idle_repeat_max;
1186 			stat->repeat_last = 0;
1187 			stat->repeat_delta = 0;
1188 		}
1189 		++stat->repeat_last;
1190 
1191 		++gd->gd_idle_repeat;
1192 		reqflags = gd->gd_reqflags;
1193 		quick = (cpu_idle_hlt == 1) ||
1194 			(cpu_idle_hlt < 3 &&
1195 			 gd->gd_idle_repeat < cpu_idle_repeat);
1196 
1197 		if (quick && (cpu_mi_feature & CPU_MI_MONITOR) &&
1198 		    (reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1199 			splz(); /* XXX */
1200 			cpu_mmw_pause_int(&gd->gd_reqflags, reqflags,
1201 			    cpu_mwait_cx_hint(stat), 0);
1202 			stat->halt++;
1203 		} else if (cpu_idle_hlt) {
1204 			__asm __volatile("cli");
1205 			splz();
1206 			if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1207 				if (quick)
1208 					cpu_idle_default_hook();
1209 				else
1210 					cpu_idle_hook();
1211 			}
1212 			__asm __volatile("sti");
1213 			stat->halt++;
1214 		} else {
1215 			splz();
1216 			__asm __volatile("sti");
1217 			stat->spin++;
1218 		}
1219 	}
1220 }
1221 
1222 /*
1223  * This routine is called if a spinlock has been held through the
1224  * exponential backoff period and is seriously contested.  On a real cpu
1225  * we let it spin.
1226  */
1227 void
1228 cpu_spinlock_contested(void)
1229 {
1230 	cpu_pause();
1231 }
1232 
1233 /*
1234  * Clear registers on exec
1235  */
1236 void
1237 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
1238 {
1239 	struct thread *td = curthread;
1240 	struct lwp *lp = td->td_lwp;
1241 	struct pcb *pcb = td->td_pcb;
1242 	struct trapframe *regs = lp->lwp_md.md_regs;
1243 
1244 	/* was i386_user_cleanup() in NetBSD */
1245 	user_ldt_free(pcb);
1246 
1247 	clear_quickret();
1248 	bzero((char *)regs, sizeof(struct trapframe));
1249 	regs->tf_rip = entry;
1250 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
1251 	regs->tf_rdi = stack;		/* argv */
1252 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
1253 	regs->tf_ss = _udatasel;
1254 	regs->tf_cs = _ucodesel;
1255 	regs->tf_rbx = ps_strings;
1256 
1257 	/*
1258 	 * Reset the hardware debug registers if they were in use.
1259 	 * They won't have any meaning for the newly exec'd process.
1260 	 */
1261 	if (pcb->pcb_flags & PCB_DBREGS) {
1262 		pcb->pcb_dr0 = 0;
1263 		pcb->pcb_dr1 = 0;
1264 		pcb->pcb_dr2 = 0;
1265 		pcb->pcb_dr3 = 0;
1266 		pcb->pcb_dr6 = 0;
1267 		pcb->pcb_dr7 = 0; /* JG set bit 10? */
1268 		if (pcb == td->td_pcb) {
1269 			/*
1270 			 * Clear the debug registers on the running
1271 			 * CPU, otherwise they will end up affecting
1272 			 * the next process we switch to.
1273 			 */
1274 			reset_dbregs();
1275 		}
1276 		pcb->pcb_flags &= ~PCB_DBREGS;
1277 	}
1278 
1279 	/*
1280 	 * Initialize the math emulator (if any) for the current process.
1281 	 * Actually, just clear the bit that says that the emulator has
1282 	 * been initialized.  Initialization is delayed until the process
1283 	 * traps to the emulator (if it is done at all) mainly because
1284 	 * emulators don't provide an entry point for initialization.
1285 	 */
1286 	pcb->pcb_flags &= ~FP_SOFTFP;
1287 
1288 	/*
1289 	 * NOTE: do not set CR0_TS here.  npxinit() must do it after clearing
1290 	 *	 gd_npxthread.  Otherwise a preemptive interrupt thread
1291 	 *	 may panic in npxdna().
1292 	 */
1293 	crit_enter();
1294 	load_cr0(rcr0() | CR0_MP);
1295 
1296 	/*
1297 	 * NOTE: The MSR values must be correct so we can return to
1298 	 * 	 userland.  gd_user_fs/gs must be correct so the switch
1299 	 *	 code knows what the current MSR values are.
1300 	 */
1301 	pcb->pcb_fsbase = 0;	/* Values loaded from PCB on switch */
1302 	pcb->pcb_gsbase = 0;
1303 	mdcpu->gd_user_fs = 0;	/* Cache of current MSR values */
1304 	mdcpu->gd_user_gs = 0;
1305 	wrmsr(MSR_FSBASE, 0);	/* Set MSR values for return to userland */
1306 	wrmsr(MSR_KGSBASE, 0);
1307 
1308 	/* Initialize the npx (if any) for the current process. */
1309 	npxinit();
1310 	crit_exit();
1311 
1312 	pcb->pcb_ds = _udatasel;
1313 	pcb->pcb_es = _udatasel;
1314 	pcb->pcb_fs = _udatasel;
1315 	pcb->pcb_gs = _udatasel;
1316 }
1317 
1318 void
1319 cpu_setregs(void)
1320 {
1321 	register_t cr0;
1322 
1323 	cr0 = rcr0();
1324 	cr0 |= CR0_NE;			/* Done by npxinit() */
1325 	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1326 	cr0 |= CR0_WP | CR0_AM;
1327 	load_cr0(cr0);
1328 	load_gs(_udatasel);
1329 }
1330 
1331 static int
1332 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1333 {
1334 	int error;
1335 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1336 		req);
1337 	if (!error && req->newptr)
1338 		resettodr();
1339 	return (error);
1340 }
1341 
1342 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1343 	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1344 
1345 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1346 	CTLFLAG_RW, &disable_rtc_set, 0, "");
1347 
1348 #if 0 /* JG */
1349 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1350 	CTLFLAG_RD, &bootinfo, bootinfo, "");
1351 #endif
1352 
1353 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1354 	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1355 
1356 extern u_long bootdev;		/* not a cdev_t - encoding is different */
1357 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1358 	CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1359 
1360 /*
1361  * Initialize 386 and configure to run kernel
1362  */
1363 
1364 /*
1365  * Initialize segments & interrupt table
1366  */
1367 
1368 int _default_ldt;
1369 struct user_segment_descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1370 struct gate_descriptor idt_arr[MAXCPU][NIDT];
1371 #if 0 /* JG */
1372 union descriptor ldt[NLDT];		/* local descriptor table */
1373 #endif
1374 
1375 /* table descriptors - used to load tables by cpu */
1376 struct region_descriptor r_gdt;
1377 struct region_descriptor r_idt_arr[MAXCPU];
1378 
1379 /* JG proc0paddr is a virtual address */
1380 void *proc0paddr;
1381 /* JG alignment? */
1382 char proc0paddr_buff[LWKT_THREAD_STACK];
1383 
1384 
1385 /* software prototypes -- in more palatable form */
1386 struct soft_segment_descriptor gdt_segs[] = {
1387 /* GNULL_SEL	0 Null Descriptor */
1388 {	0x0,			/* segment base address  */
1389 	0x0,			/* length */
1390 	0,			/* segment type */
1391 	0,			/* segment descriptor priority level */
1392 	0,			/* segment descriptor present */
1393 	0,			/* long */
1394 	0,			/* default 32 vs 16 bit size */
1395 	0  			/* limit granularity (byte/page units)*/ },
1396 /* GCODE_SEL	1 Code Descriptor for kernel */
1397 {	0x0,			/* segment base address  */
1398 	0xfffff,		/* length - all address space */
1399 	SDT_MEMERA,		/* segment type */
1400 	SEL_KPL,		/* segment descriptor priority level */
1401 	1,			/* segment descriptor present */
1402 	1,			/* long */
1403 	0,			/* default 32 vs 16 bit size */
1404 	1  			/* limit granularity (byte/page units)*/ },
1405 /* GDATA_SEL	2 Data Descriptor for kernel */
1406 {	0x0,			/* segment base address  */
1407 	0xfffff,		/* length - all address space */
1408 	SDT_MEMRWA,		/* segment type */
1409 	SEL_KPL,		/* segment descriptor priority level */
1410 	1,			/* segment descriptor present */
1411 	1,			/* long */
1412 	0,			/* default 32 vs 16 bit size */
1413 	1  			/* limit granularity (byte/page units)*/ },
1414 /* GUCODE32_SEL	3 32 bit Code Descriptor for user */
1415 {	0x0,			/* segment base address  */
1416 	0xfffff,		/* length - all address space */
1417 	SDT_MEMERA,		/* segment type */
1418 	SEL_UPL,		/* segment descriptor priority level */
1419 	1,			/* segment descriptor present */
1420 	0,			/* long */
1421 	1,			/* default 32 vs 16 bit size */
1422 	1  			/* limit granularity (byte/page units)*/ },
1423 /* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
1424 {	0x0,			/* segment base address  */
1425 	0xfffff,		/* length - all address space */
1426 	SDT_MEMRWA,		/* segment type */
1427 	SEL_UPL,		/* segment descriptor priority level */
1428 	1,			/* segment descriptor present */
1429 	0,			/* long */
1430 	1,			/* default 32 vs 16 bit size */
1431 	1  			/* limit granularity (byte/page units)*/ },
1432 /* GUCODE_SEL	5 64 bit Code Descriptor for user */
1433 {	0x0,			/* segment base address  */
1434 	0xfffff,		/* length - all address space */
1435 	SDT_MEMERA,		/* segment type */
1436 	SEL_UPL,		/* segment descriptor priority level */
1437 	1,			/* segment descriptor present */
1438 	1,			/* long */
1439 	0,			/* default 32 vs 16 bit size */
1440 	1  			/* limit granularity (byte/page units)*/ },
1441 /* GPROC0_SEL	6 Proc 0 Tss Descriptor */
1442 {
1443 	0x0,			/* segment base address */
1444 	sizeof(struct x86_64tss)-1,/* length - all address space */
1445 	SDT_SYSTSS,		/* segment type */
1446 	SEL_KPL,		/* segment descriptor priority level */
1447 	1,			/* segment descriptor present */
1448 	0,			/* long */
1449 	0,			/* unused - default 32 vs 16 bit size */
1450 	0  			/* limit granularity (byte/page units)*/ },
1451 /* Actually, the TSS is a system descriptor which is double size */
1452 {	0x0,			/* segment base address  */
1453 	0x0,			/* length */
1454 	0,			/* segment type */
1455 	0,			/* segment descriptor priority level */
1456 	0,			/* segment descriptor present */
1457 	0,			/* long */
1458 	0,			/* default 32 vs 16 bit size */
1459 	0  			/* limit granularity (byte/page units)*/ },
1460 /* GUGS32_SEL	8 32 bit GS Descriptor for user */
1461 {	0x0,			/* segment base address  */
1462 	0xfffff,		/* length - all address space */
1463 	SDT_MEMRWA,		/* segment type */
1464 	SEL_UPL,		/* segment descriptor priority level */
1465 	1,			/* segment descriptor present */
1466 	0,			/* long */
1467 	1,			/* default 32 vs 16 bit size */
1468 	1  			/* limit granularity (byte/page units)*/ },
1469 };
1470 
1471 void
1472 setidt_global(int idx, inthand_t *func, int typ, int dpl, int ist)
1473 {
1474 	int cpu;
1475 
1476 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
1477 		struct gate_descriptor *ip = &idt_arr[cpu][idx];
1478 
1479 		ip->gd_looffset = (uintptr_t)func;
1480 		ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1481 		ip->gd_ist = ist;
1482 		ip->gd_xx = 0;
1483 		ip->gd_type = typ;
1484 		ip->gd_dpl = dpl;
1485 		ip->gd_p = 1;
1486 		ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1487 	}
1488 }
1489 
1490 void
1491 setidt(int idx, inthand_t *func, int typ, int dpl, int ist, int cpu)
1492 {
1493 	struct gate_descriptor *ip;
1494 
1495 	KASSERT(cpu >= 0 && cpu < ncpus, ("invalid cpu %d", cpu));
1496 
1497 	ip = &idt_arr[cpu][idx];
1498 	ip->gd_looffset = (uintptr_t)func;
1499 	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1500 	ip->gd_ist = ist;
1501 	ip->gd_xx = 0;
1502 	ip->gd_type = typ;
1503 	ip->gd_dpl = dpl;
1504 	ip->gd_p = 1;
1505 	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1506 }
1507 
1508 #define	IDTVEC(name)	__CONCAT(X,name)
1509 
1510 extern inthand_t
1511 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1512 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1513 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1514 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1515 	IDTVEC(xmm), IDTVEC(dblfault),
1516 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1517 
1518 #ifdef DEBUG_INTERRUPTS
1519 extern inthand_t *Xrsvdary[256];
1520 #endif
1521 
1522 void
1523 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1524 {
1525 	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1526 	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1527 	ssd->ssd_type  = sd->sd_type;
1528 	ssd->ssd_dpl   = sd->sd_dpl;
1529 	ssd->ssd_p     = sd->sd_p;
1530 	ssd->ssd_def32 = sd->sd_def32;
1531 	ssd->ssd_gran  = sd->sd_gran;
1532 }
1533 
1534 void
1535 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1536 {
1537 
1538 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1539 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1540 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1541 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1542 	sd->sd_type  = ssd->ssd_type;
1543 	sd->sd_dpl   = ssd->ssd_dpl;
1544 	sd->sd_p     = ssd->ssd_p;
1545 	sd->sd_long  = ssd->ssd_long;
1546 	sd->sd_def32 = ssd->ssd_def32;
1547 	sd->sd_gran  = ssd->ssd_gran;
1548 }
1549 
1550 void
1551 ssdtosyssd(struct soft_segment_descriptor *ssd,
1552     struct system_segment_descriptor *sd)
1553 {
1554 
1555 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1556 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1557 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1558 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1559 	sd->sd_type  = ssd->ssd_type;
1560 	sd->sd_dpl   = ssd->ssd_dpl;
1561 	sd->sd_p     = ssd->ssd_p;
1562 	sd->sd_gran  = ssd->ssd_gran;
1563 }
1564 
1565 /*
1566  * Populate the (physmap) array with base/bound pairs describing the
1567  * available physical memory in the system, then test this memory and
1568  * build the phys_avail array describing the actually-available memory.
1569  *
1570  * If we cannot accurately determine the physical memory map, then use
1571  * value from the 0xE801 call, and failing that, the RTC.
1572  *
1573  * Total memory size may be set by the kernel environment variable
1574  * hw.physmem or the compile-time define MAXMEM.
1575  *
1576  * Memory is aligned to PHYSMAP_ALIGN which must be a multiple
1577  * of PAGE_SIZE.  This also greatly reduces the memory test time
1578  * which would otherwise be excessive on machines with > 8G of ram.
1579  *
1580  * XXX first should be vm_paddr_t.
1581  */
1582 
1583 #define PHYSMAP_ALIGN		(vm_paddr_t)(128 * 1024)
1584 #define PHYSMAP_ALIGN_MASK	(vm_paddr_t)(PHYSMAP_ALIGN - 1)
1585 	vm_paddr_t physmap[PHYSMAP_SIZE];
1586 	struct bios_smap *smapbase, *smap, *smapend;
1587 	u_int32_t smapsize;
1588 
1589 static void
1590 getmemsize(caddr_t kmdp, u_int64_t first)
1591 {
1592 	int off, physmap_idx, pa_indx, da_indx;
1593 	int i, j;
1594 	vm_paddr_t pa;
1595 	vm_paddr_t msgbuf_size;
1596 	u_long physmem_tunable;
1597 	pt_entry_t *pte;
1598 	quad_t dcons_addr, dcons_size;
1599 
1600 	bzero(physmap, sizeof(physmap));
1601 	physmap_idx = 0;
1602 
1603 	/*
1604 	 * get memory map from INT 15:E820, kindly supplied by the loader.
1605 	 *
1606 	 * subr_module.c says:
1607 	 * "Consumer may safely assume that size value precedes data."
1608 	 * ie: an int32_t immediately precedes smap.
1609 	 */
1610 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1611 	    MODINFO_METADATA | MODINFOMD_SMAP);
1612 	if (smapbase == NULL)
1613 		panic("No BIOS smap info from loader!");
1614 
1615 	smapsize = *((u_int32_t *)smapbase - 1);
1616 	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1617 
1618 	for (smap = smapbase; smap < smapend; smap++) {
1619 		if (boothowto & RB_VERBOSE)
1620 			kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1621 			    smap->type, smap->base, smap->length);
1622 
1623 		if (smap->type != SMAP_TYPE_MEMORY)
1624 			continue;
1625 
1626 		if (smap->length == 0)
1627 			continue;
1628 
1629 		for (i = 0; i <= physmap_idx; i += 2) {
1630 			if (smap->base < physmap[i + 1]) {
1631 				if (boothowto & RB_VERBOSE) {
1632 					kprintf("Overlapping or non-monotonic "
1633 						"memory region, ignoring "
1634 						"second region\n");
1635 				}
1636 				break;
1637 			}
1638 		}
1639 		if (i <= physmap_idx)
1640 			continue;
1641 
1642 		Realmem += smap->length;
1643 
1644 		if (smap->base == physmap[physmap_idx + 1]) {
1645 			physmap[physmap_idx + 1] += smap->length;
1646 			continue;
1647 		}
1648 
1649 		physmap_idx += 2;
1650 		if (physmap_idx == PHYSMAP_SIZE) {
1651 			kprintf("Too many segments in the physical "
1652 				"address map, giving up\n");
1653 			break;
1654 		}
1655 		physmap[physmap_idx] = smap->base;
1656 		physmap[physmap_idx + 1] = smap->base + smap->length;
1657 	}
1658 
1659 	base_memory = physmap[1] / 1024;
1660 	/* make hole for AP bootstrap code */
1661 	physmap[1] = mp_bootaddress(base_memory);
1662 
1663 	/* Save EBDA address, if any */
1664 	ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
1665 	ebda_addr <<= 4;
1666 
1667 	/*
1668 	 * Maxmem isn't the "maximum memory", it's one larger than the
1669 	 * highest page of the physical address space.  It should be
1670 	 * called something like "Maxphyspage".  We may adjust this
1671 	 * based on ``hw.physmem'' and the results of the memory test.
1672 	 */
1673 	Maxmem = atop(physmap[physmap_idx + 1]);
1674 
1675 #ifdef MAXMEM
1676 	Maxmem = MAXMEM / 4;
1677 #endif
1678 
1679 	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1680 		Maxmem = atop(physmem_tunable);
1681 
1682 	/*
1683 	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1684 	 * in the system.
1685 	 */
1686 	if (Maxmem > atop(physmap[physmap_idx + 1]))
1687 		Maxmem = atop(physmap[physmap_idx + 1]);
1688 
1689 	/*
1690 	 * Blowing out the DMAP will blow up the system.
1691 	 */
1692 	if (Maxmem > atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS)) {
1693 		kprintf("Limiting Maxmem due to DMAP size\n");
1694 		Maxmem = atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS);
1695 	}
1696 
1697 	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1698 	    (boothowto & RB_VERBOSE)) {
1699 		kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
1700 	}
1701 
1702 	/*
1703 	 * Call pmap initialization to make new kernel address space
1704 	 *
1705 	 * Mask off page 0.
1706 	 */
1707 	pmap_bootstrap(&first);
1708 	physmap[0] = PAGE_SIZE;
1709 
1710 	/*
1711 	 * Align the physmap to PHYSMAP_ALIGN and cut out anything
1712 	 * exceeding Maxmem.
1713 	 */
1714 	for (i = j = 0; i <= physmap_idx; i += 2) {
1715 		if (physmap[i+1] > ptoa(Maxmem))
1716 			physmap[i+1] = ptoa(Maxmem);
1717 		physmap[i] = (physmap[i] + PHYSMAP_ALIGN_MASK) &
1718 			     ~PHYSMAP_ALIGN_MASK;
1719 		physmap[i+1] = physmap[i+1] & ~PHYSMAP_ALIGN_MASK;
1720 
1721 		physmap[j] = physmap[i];
1722 		physmap[j+1] = physmap[i+1];
1723 
1724 		if (physmap[i] < physmap[i+1])
1725 			j += 2;
1726 	}
1727 	physmap_idx = j - 2;
1728 
1729 	/*
1730 	 * Align anything else used in the validation loop.
1731 	 */
1732 	first = (first + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1733 
1734 	/*
1735 	 * Size up each available chunk of physical memory.
1736 	 */
1737 	pa_indx = 0;
1738 	da_indx = 1;
1739 	phys_avail[pa_indx++] = physmap[0];
1740 	phys_avail[pa_indx] = physmap[0];
1741 	dump_avail[da_indx] = physmap[0];
1742 	pte = CMAP1;
1743 
1744 	/*
1745 	 * Get dcons buffer address
1746 	 */
1747 	if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
1748 	    kgetenv_quad("dcons.size", &dcons_size) == 0)
1749 		dcons_addr = 0;
1750 
1751 	/*
1752 	 * Validate the physical memory.  The physical memory segments
1753 	 * have already been aligned to PHYSMAP_ALIGN which is a multiple
1754 	 * of PAGE_SIZE.
1755 	 */
1756 	for (i = 0; i <= physmap_idx; i += 2) {
1757 		vm_paddr_t end;
1758 
1759 		end = physmap[i + 1];
1760 
1761 		for (pa = physmap[i]; pa < end; pa += PHYSMAP_ALIGN) {
1762 			int tmp, page_bad, full;
1763 			int *ptr = (int *)CADDR1;
1764 
1765 			full = FALSE;
1766 			/*
1767 			 * block out kernel memory as not available.
1768 			 */
1769 			if (pa >= 0x200000 && pa < first)
1770 				goto do_dump_avail;
1771 
1772 			/*
1773 			 * block out dcons buffer
1774 			 */
1775 			if (dcons_addr > 0
1776 			    && pa >= trunc_page(dcons_addr)
1777 			    && pa < dcons_addr + dcons_size) {
1778 				goto do_dump_avail;
1779 			}
1780 
1781 			page_bad = FALSE;
1782 
1783 			/*
1784 			 * map page into kernel: valid, read/write,non-cacheable
1785 			 */
1786 			*pte = pa |
1787 			    kernel_pmap.pmap_bits[PG_V_IDX] |
1788 			    kernel_pmap.pmap_bits[PG_RW_IDX] |
1789 			    kernel_pmap.pmap_bits[PG_N_IDX];
1790 			cpu_invltlb();
1791 
1792 			tmp = *ptr;
1793 			/*
1794 			 * Test for alternating 1's and 0's
1795 			 */
1796 			*(volatile int *)ptr = 0xaaaaaaaa;
1797 			cpu_mfence();
1798 			if (*(volatile int *)ptr != 0xaaaaaaaa)
1799 				page_bad = TRUE;
1800 			/*
1801 			 * Test for alternating 0's and 1's
1802 			 */
1803 			*(volatile int *)ptr = 0x55555555;
1804 			cpu_mfence();
1805 			if (*(volatile int *)ptr != 0x55555555)
1806 				page_bad = TRUE;
1807 			/*
1808 			 * Test for all 1's
1809 			 */
1810 			*(volatile int *)ptr = 0xffffffff;
1811 			cpu_mfence();
1812 			if (*(volatile int *)ptr != 0xffffffff)
1813 				page_bad = TRUE;
1814 			/*
1815 			 * Test for all 0's
1816 			 */
1817 			*(volatile int *)ptr = 0x0;
1818 			cpu_mfence();
1819 			if (*(volatile int *)ptr != 0x0)
1820 				page_bad = TRUE;
1821 			/*
1822 			 * Restore original value.
1823 			 */
1824 			*ptr = tmp;
1825 
1826 			/*
1827 			 * Adjust array of valid/good pages.
1828 			 */
1829 			if (page_bad == TRUE)
1830 				continue;
1831 			/*
1832 			 * If this good page is a continuation of the
1833 			 * previous set of good pages, then just increase
1834 			 * the end pointer. Otherwise start a new chunk.
1835 			 * Note that "end" points one higher than end,
1836 			 * making the range >= start and < end.
1837 			 * If we're also doing a speculative memory
1838 			 * test and we at or past the end, bump up Maxmem
1839 			 * so that we keep going. The first bad page
1840 			 * will terminate the loop.
1841 			 */
1842 			if (phys_avail[pa_indx] == pa) {
1843 				phys_avail[pa_indx] += PHYSMAP_ALIGN;
1844 			} else {
1845 				pa_indx++;
1846 				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1847 					kprintf(
1848 		"Too many holes in the physical address space, giving up\n");
1849 					pa_indx--;
1850 					full = TRUE;
1851 					goto do_dump_avail;
1852 				}
1853 				phys_avail[pa_indx++] = pa;
1854 				phys_avail[pa_indx] = pa + PHYSMAP_ALIGN;
1855 			}
1856 			physmem += PHYSMAP_ALIGN / PAGE_SIZE;
1857 do_dump_avail:
1858 			if (dump_avail[da_indx] == pa) {
1859 				dump_avail[da_indx] += PHYSMAP_ALIGN;
1860 			} else {
1861 				da_indx++;
1862 				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1863 					da_indx--;
1864 					goto do_next;
1865 				}
1866 				dump_avail[da_indx++] = pa;
1867 				dump_avail[da_indx] = pa + PHYSMAP_ALIGN;
1868 			}
1869 do_next:
1870 			if (full)
1871 				break;
1872 		}
1873 	}
1874 	*pte = 0;
1875 	cpu_invltlb();
1876 
1877 	/*
1878 	 * The last chunk must contain at least one page plus the message
1879 	 * buffer to avoid complicating other code (message buffer address
1880 	 * calculation, etc.).
1881 	 */
1882 	msgbuf_size = (MSGBUF_SIZE + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1883 
1884 	while (phys_avail[pa_indx - 1] + PHYSMAP_ALIGN +
1885 	       msgbuf_size >= phys_avail[pa_indx]) {
1886 		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1887 		phys_avail[pa_indx--] = 0;
1888 		phys_avail[pa_indx--] = 0;
1889 	}
1890 
1891 	Maxmem = atop(phys_avail[pa_indx]);
1892 
1893 	/* Trim off space for the message buffer. */
1894 	phys_avail[pa_indx] -= msgbuf_size;
1895 
1896 	avail_end = phys_avail[pa_indx];
1897 
1898 	/* Map the message buffer. */
1899 	for (off = 0; off < msgbuf_size; off += PAGE_SIZE) {
1900 		pmap_kenter((vm_offset_t)msgbufp + off,
1901 			    phys_avail[pa_indx] + off);
1902 	}
1903 }
1904 
1905 struct machintr_abi MachIntrABI;
1906 
1907 /*
1908  * IDT VECTORS:
1909  *	0	Divide by zero
1910  *	1	Debug
1911  *	2	NMI
1912  *	3	BreakPoint
1913  *	4	OverFlow
1914  *	5	Bound-Range
1915  *	6	Invalid OpCode
1916  *	7	Device Not Available (x87)
1917  *	8	Double-Fault
1918  *	9	Coprocessor Segment overrun (unsupported, reserved)
1919  *	10	Invalid-TSS
1920  *	11	Segment not present
1921  *	12	Stack
1922  *	13	General Protection
1923  *	14	Page Fault
1924  *	15	Reserved
1925  *	16	x87 FP Exception pending
1926  *	17	Alignment Check
1927  *	18	Machine Check
1928  *	19	SIMD floating point
1929  *	20-31	reserved
1930  *	32-255	INTn/external sources
1931  */
1932 u_int64_t
1933 hammer_time(u_int64_t modulep, u_int64_t physfree)
1934 {
1935 	caddr_t kmdp;
1936 	int gsel_tss, x, cpu;
1937 #if 0 /* JG */
1938 	int metadata_missing, off;
1939 #endif
1940 	struct mdglobaldata *gd;
1941 	u_int64_t msr;
1942 
1943 	/*
1944 	 * Prevent lowering of the ipl if we call tsleep() early.
1945 	 */
1946 	gd = &CPU_prvspace[0]->mdglobaldata;
1947 	bzero(gd, sizeof(*gd));
1948 
1949 	/*
1950 	 * Note: on both UP and SMP curthread must be set non-NULL
1951 	 * early in the boot sequence because the system assumes
1952 	 * that 'curthread' is never NULL.
1953 	 */
1954 
1955 	gd->mi.gd_curthread = &thread0;
1956 	thread0.td_gd = &gd->mi;
1957 
1958 	atdevbase = ISA_HOLE_START + PTOV_OFFSET;
1959 
1960 #if 0 /* JG */
1961 	metadata_missing = 0;
1962 	if (bootinfo.bi_modulep) {
1963 		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1964 		preload_bootstrap_relocate(KERNBASE);
1965 	} else {
1966 		metadata_missing = 1;
1967 	}
1968 	if (bootinfo.bi_envp)
1969 		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1970 #endif
1971 
1972 	preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
1973 	preload_bootstrap_relocate(PTOV_OFFSET);
1974 	kmdp = preload_search_by_type("elf kernel");
1975 	if (kmdp == NULL)
1976 		kmdp = preload_search_by_type("elf64 kernel");
1977 	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1978 	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
1979 #ifdef DDB
1980 	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1981 	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1982 #endif
1983 
1984 	if (boothowto & RB_VERBOSE)
1985 		bootverbose++;
1986 
1987 	/*
1988 	 * Default MachIntrABI to ICU
1989 	 */
1990 	MachIntrABI = MachIntrABI_ICU;
1991 
1992 	/*
1993 	 * start with one cpu.  Note: with one cpu, ncpus2_shift, ncpus2_mask,
1994 	 * and ncpus_fit_mask remain 0.
1995 	 */
1996 	ncpus = 1;
1997 	ncpus2 = 1;
1998 	ncpus_fit = 1;
1999 	/* Init basic tunables, hz etc */
2000 	init_param1();
2001 
2002 	/*
2003 	 * make gdt memory segments
2004 	 */
2005 	gdt_segs[GPROC0_SEL].ssd_base =
2006 		(uintptr_t) &CPU_prvspace[0]->mdglobaldata.gd_common_tss;
2007 
2008 	gd->mi.gd_prvspace = CPU_prvspace[0];
2009 
2010 	for (x = 0; x < NGDT; x++) {
2011 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
2012 			ssdtosd(&gdt_segs[x], &gdt[x]);
2013 	}
2014 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2015 	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
2016 
2017 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
2018 	r_gdt.rd_base =  (long) gdt;
2019 	lgdt(&r_gdt);
2020 
2021 	wrmsr(MSR_FSBASE, 0);		/* User value */
2022 	wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
2023 	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
2024 
2025 	mi_gdinit(&gd->mi, 0);
2026 	cpu_gdinit(gd, 0);
2027 	proc0paddr = proc0paddr_buff;
2028 	mi_proc0init(&gd->mi, proc0paddr);
2029 	safepri = TDPRI_MAX;
2030 
2031 	/* spinlocks and the BGL */
2032 	init_locks();
2033 
2034 	/* exceptions */
2035 	for (x = 0; x < NIDT; x++)
2036 		setidt_global(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
2037 	setidt_global(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
2038 	setidt_global(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
2039 	setidt_global(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 1);
2040  	setidt_global(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
2041 	setidt_global(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
2042 	setidt_global(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
2043 	setidt_global(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
2044 	setidt_global(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
2045 	setidt_global(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
2046 	setidt_global(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
2047 	setidt_global(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
2048 	setidt_global(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
2049 	setidt_global(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
2050 	setidt_global(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
2051 	setidt_global(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
2052 	setidt_global(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
2053 	setidt_global(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
2054 	setidt_global(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
2055 	setidt_global(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
2056 
2057 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
2058 		r_idt_arr[cpu].rd_limit = sizeof(idt_arr[cpu]) - 1;
2059 		r_idt_arr[cpu].rd_base = (long) &idt_arr[cpu][0];
2060 	}
2061 
2062 	lidt(&r_idt_arr[0]);
2063 
2064 	/*
2065 	 * Initialize the console before we print anything out.
2066 	 */
2067 	cninit();
2068 
2069 #if 0 /* JG */
2070 	if (metadata_missing)
2071 		kprintf("WARNING: loader(8) metadata is missing!\n");
2072 #endif
2073 
2074 #if	NISA >0
2075 	elcr_probe();
2076 	isa_defaultirq();
2077 #endif
2078 	rand_initialize();
2079 
2080 	/*
2081 	 * Initialize IRQ mapping
2082 	 *
2083 	 * NOTE:
2084 	 * SHOULD be after elcr_probe()
2085 	 */
2086 	MachIntrABI_ICU.initmap();
2087 	MachIntrABI_IOAPIC.initmap();
2088 
2089 #ifdef DDB
2090 	kdb_init();
2091 	if (boothowto & RB_KDB)
2092 		Debugger("Boot flags requested debugger");
2093 #endif
2094 
2095 #if 0 /* JG */
2096 	finishidentcpu();	/* Final stage of CPU initialization */
2097 	setidt(6, &IDTVEC(ill),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2098 	setidt(13, &IDTVEC(prot),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2099 #endif
2100 	identify_cpu();		/* Final stage of CPU initialization */
2101 	initializecpu(0);	/* Initialize CPU registers */
2102 
2103 	/*
2104 	 * On modern intel cpus, haswell or later, cpu_idle_hlt=1 is better
2105 	 * becaue the cpu does significant power management in HLT
2106 	 * (also suggested is to set sysctl machdep.mwait.CX.idle=AUTODEEP).
2107 	 *
2108 	 * On modern amd cpus or on any older amd or intel cpu,
2109 	 * cpu_idle_hlt=2 is better because ACPI is needed to reduce power
2110 	 * consumption.
2111 	 */
2112 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
2113 	    CPUID_TO_MODEL(cpu_id) >= 0x3C) {	/* Haswell or later */
2114 		cpu_idle_hlt = 1;
2115 	}
2116 
2117 	TUNABLE_INT_FETCH("hw.apic_io_enable", &ioapic_enable); /* for compat */
2118 	TUNABLE_INT_FETCH("hw.ioapic_enable", &ioapic_enable);
2119 	TUNABLE_INT_FETCH("hw.lapic_enable", &lapic_enable);
2120 	TUNABLE_INT_FETCH("machdep.cpu_idle_hlt", &cpu_idle_hlt);
2121 
2122 	/*
2123 	 * Some of the virtual machines do not work w/ I/O APIC
2124 	 * enabled.  If the user does not explicitly enable or
2125 	 * disable the I/O APIC (ioapic_enable < 0), then we
2126 	 * disable I/O APIC on all virtual machines.
2127 	 *
2128 	 * NOTE:
2129 	 * This must be done after identify_cpu(), which sets
2130 	 * 'cpu_feature2'
2131 	 */
2132 	if (ioapic_enable < 0) {
2133 		if (cpu_feature2 & CPUID2_VMM)
2134 			ioapic_enable = 0;
2135 		else
2136 			ioapic_enable = 1;
2137 	}
2138 
2139 	/* make an initial tss so cpu can get interrupt stack on syscall! */
2140 	gd->gd_common_tss.tss_rsp0 =
2141 		(register_t)(thread0.td_kstack +
2142 			     KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb));
2143 	/* Ensure the stack is aligned to 16 bytes */
2144 	gd->gd_common_tss.tss_rsp0 &= ~(register_t)0xF;
2145 
2146 	/* double fault stack */
2147 	gd->gd_common_tss.tss_ist1 =
2148 		(long)&gd->mi.gd_prvspace->idlestack[
2149 			sizeof(gd->mi.gd_prvspace->idlestack)];
2150 
2151 	/* Set the IO permission bitmap (empty due to tss seg limit) */
2152 	gd->gd_common_tss.tss_iobase = sizeof(struct x86_64tss);
2153 
2154 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2155 	gd->gd_tss_gdt = &gdt[GPROC0_SEL];
2156 	gd->gd_common_tssd = *gd->gd_tss_gdt;
2157 	ltr(gsel_tss);
2158 
2159 	/* Set up the fast syscall stuff */
2160 	msr = rdmsr(MSR_EFER) | EFER_SCE;
2161 	wrmsr(MSR_EFER, msr);
2162 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
2163 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
2164 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
2165 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
2166 	wrmsr(MSR_STAR, msr);
2167 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
2168 
2169 	getmemsize(kmdp, physfree);
2170 	init_param2(physmem);
2171 
2172 	/* now running on new page tables, configured,and u/iom is accessible */
2173 
2174 	/* Map the message buffer. */
2175 #if 0 /* JG */
2176 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2177 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2178 #endif
2179 
2180 	msgbufinit(msgbufp, MSGBUF_SIZE);
2181 
2182 
2183 	/* transfer to user mode */
2184 
2185 	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2186 	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2187 	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
2188 
2189 	load_ds(_udatasel);
2190 	load_es(_udatasel);
2191 	load_fs(_udatasel);
2192 
2193 	/* setup proc 0's pcb */
2194 	thread0.td_pcb->pcb_flags = 0;
2195 	thread0.td_pcb->pcb_cr3 = KPML4phys;
2196 	thread0.td_pcb->pcb_ext = NULL;
2197 	lwp0.lwp_md.md_regs = &proc0_tf;	/* XXX needed? */
2198 
2199 	/* Location of kernel stack for locore */
2200 	return ((u_int64_t)thread0.td_pcb);
2201 }
2202 
2203 /*
2204  * Initialize machine-dependant portions of the global data structure.
2205  * Note that the global data area and cpu0's idlestack in the private
2206  * data space were allocated in locore.
2207  *
2208  * Note: the idlethread's cpl is 0
2209  *
2210  * WARNING!  Called from early boot, 'mycpu' may not work yet.
2211  */
2212 void
2213 cpu_gdinit(struct mdglobaldata *gd, int cpu)
2214 {
2215 	if (cpu)
2216 		gd->mi.gd_curthread = &gd->mi.gd_idlethread;
2217 
2218 	lwkt_init_thread(&gd->mi.gd_idlethread,
2219 			gd->mi.gd_prvspace->idlestack,
2220 			sizeof(gd->mi.gd_prvspace->idlestack),
2221 			0, &gd->mi);
2222 	lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
2223 	gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
2224 	gd->mi.gd_idlethread.td_sp -= sizeof(void *);
2225 	*(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
2226 }
2227 
2228 /*
2229  * We only have to check for DMAP bounds, the globaldata space is
2230  * actually part of the kernel_map so we don't have to waste time
2231  * checking CPU_prvspace[*].
2232  */
2233 int
2234 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
2235 {
2236 #if 0
2237 	if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
2238 	    eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
2239 		return (TRUE);
2240 	}
2241 #endif
2242 	if (saddr >= DMAP_MIN_ADDRESS && eaddr <= DMAP_MAX_ADDRESS)
2243 		return (TRUE);
2244 	return (FALSE);
2245 }
2246 
2247 struct globaldata *
2248 globaldata_find(int cpu)
2249 {
2250 	KKASSERT(cpu >= 0 && cpu < ncpus);
2251 	return(&CPU_prvspace[cpu]->mdglobaldata.mi);
2252 }
2253 
2254 /*
2255  * This path should be safe from the SYSRET issue because only stopped threads
2256  * can have their %rip adjusted this way (and all heavy weight thread switches
2257  * clear QUICKREF and thus do not use SYSRET).  However, the code path is
2258  * convoluted so add a safety by forcing %rip to be cannonical.
2259  */
2260 int
2261 ptrace_set_pc(struct lwp *lp, unsigned long addr)
2262 {
2263 	if (addr & 0x0000800000000000LLU)
2264 		lp->lwp_md.md_regs->tf_rip = addr | 0xFFFF000000000000LLU;
2265 	else
2266 		lp->lwp_md.md_regs->tf_rip = addr & 0x0000FFFFFFFFFFFFLLU;
2267 	return (0);
2268 }
2269 
2270 int
2271 ptrace_single_step(struct lwp *lp)
2272 {
2273 	lp->lwp_md.md_regs->tf_rflags |= PSL_T;
2274 	return (0);
2275 }
2276 
2277 int
2278 fill_regs(struct lwp *lp, struct reg *regs)
2279 {
2280 	struct trapframe *tp;
2281 
2282 	if ((tp = lp->lwp_md.md_regs) == NULL)
2283 		return EINVAL;
2284 	bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
2285 	return (0);
2286 }
2287 
2288 int
2289 set_regs(struct lwp *lp, struct reg *regs)
2290 {
2291 	struct trapframe *tp;
2292 
2293 	tp = lp->lwp_md.md_regs;
2294 	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
2295 	    !CS_SECURE(regs->r_cs))
2296 		return (EINVAL);
2297 	bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
2298 	clear_quickret();
2299 	return (0);
2300 }
2301 
2302 static void
2303 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2304 {
2305 	struct env87 *penv_87 = &sv_87->sv_env;
2306 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2307 	int i;
2308 
2309 	/* FPU control/status */
2310 	penv_87->en_cw = penv_xmm->en_cw;
2311 	penv_87->en_sw = penv_xmm->en_sw;
2312 	penv_87->en_tw = penv_xmm->en_tw;
2313 	penv_87->en_fip = penv_xmm->en_fip;
2314 	penv_87->en_fcs = penv_xmm->en_fcs;
2315 	penv_87->en_opcode = penv_xmm->en_opcode;
2316 	penv_87->en_foo = penv_xmm->en_foo;
2317 	penv_87->en_fos = penv_xmm->en_fos;
2318 
2319 	/* FPU registers */
2320 	for (i = 0; i < 8; ++i)
2321 		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2322 }
2323 
2324 static void
2325 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2326 {
2327 	struct env87 *penv_87 = &sv_87->sv_env;
2328 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2329 	int i;
2330 
2331 	/* FPU control/status */
2332 	penv_xmm->en_cw = penv_87->en_cw;
2333 	penv_xmm->en_sw = penv_87->en_sw;
2334 	penv_xmm->en_tw = penv_87->en_tw;
2335 	penv_xmm->en_fip = penv_87->en_fip;
2336 	penv_xmm->en_fcs = penv_87->en_fcs;
2337 	penv_xmm->en_opcode = penv_87->en_opcode;
2338 	penv_xmm->en_foo = penv_87->en_foo;
2339 	penv_xmm->en_fos = penv_87->en_fos;
2340 
2341 	/* FPU registers */
2342 	for (i = 0; i < 8; ++i)
2343 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2344 }
2345 
2346 int
2347 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2348 {
2349 	if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
2350 		return EINVAL;
2351 	if (cpu_fxsr) {
2352 		fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2353 				(struct save87 *)fpregs);
2354 		return (0);
2355 	}
2356 	bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2357 	return (0);
2358 }
2359 
2360 int
2361 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2362 {
2363 	if (cpu_fxsr) {
2364 		set_fpregs_xmm((struct save87 *)fpregs,
2365 			       &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2366 		return (0);
2367 	}
2368 	bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2369 	return (0);
2370 }
2371 
2372 int
2373 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2374 {
2375 	struct pcb *pcb;
2376 
2377         if (lp == NULL) {
2378                 dbregs->dr[0] = rdr0();
2379                 dbregs->dr[1] = rdr1();
2380                 dbregs->dr[2] = rdr2();
2381                 dbregs->dr[3] = rdr3();
2382                 dbregs->dr[4] = rdr4();
2383                 dbregs->dr[5] = rdr5();
2384                 dbregs->dr[6] = rdr6();
2385                 dbregs->dr[7] = rdr7();
2386 		return (0);
2387         }
2388 	if (lp->lwp_thread == NULL || (pcb = lp->lwp_thread->td_pcb) == NULL)
2389 		return EINVAL;
2390 	dbregs->dr[0] = pcb->pcb_dr0;
2391 	dbregs->dr[1] = pcb->pcb_dr1;
2392 	dbregs->dr[2] = pcb->pcb_dr2;
2393 	dbregs->dr[3] = pcb->pcb_dr3;
2394 	dbregs->dr[4] = 0;
2395 	dbregs->dr[5] = 0;
2396 	dbregs->dr[6] = pcb->pcb_dr6;
2397 	dbregs->dr[7] = pcb->pcb_dr7;
2398 	return (0);
2399 }
2400 
2401 int
2402 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2403 {
2404 	if (lp == NULL) {
2405 		load_dr0(dbregs->dr[0]);
2406 		load_dr1(dbregs->dr[1]);
2407 		load_dr2(dbregs->dr[2]);
2408 		load_dr3(dbregs->dr[3]);
2409 		load_dr4(dbregs->dr[4]);
2410 		load_dr5(dbregs->dr[5]);
2411 		load_dr6(dbregs->dr[6]);
2412 		load_dr7(dbregs->dr[7]);
2413 	} else {
2414 		struct pcb *pcb;
2415 		struct ucred *ucred;
2416 		int i;
2417 		uint64_t mask1, mask2;
2418 
2419 		/*
2420 		 * Don't let an illegal value for dr7 get set.	Specifically,
2421 		 * check for undefined settings.  Setting these bit patterns
2422 		 * result in undefined behaviour and can lead to an unexpected
2423 		 * TRCTRAP.
2424 		 */
2425 		/* JG this loop looks unreadable */
2426 		/* Check 4 2-bit fields for invalid patterns.
2427 		 * These fields are R/Wi, for i = 0..3
2428 		 */
2429 		/* Is 10 in LENi allowed when running in compatibility mode? */
2430 		/* Pattern 10 in R/Wi might be used to indicate
2431 		 * breakpoint on I/O. Further analysis should be
2432 		 * carried to decide if it is safe and useful to
2433 		 * provide access to that capability
2434 		 */
2435 		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2436 		     i++, mask1 <<= 4, mask2 <<= 4)
2437 			if ((dbregs->dr[7] & mask1) == mask2)
2438 				return (EINVAL);
2439 
2440 		pcb = lp->lwp_thread->td_pcb;
2441 		ucred = lp->lwp_proc->p_ucred;
2442 
2443 		/*
2444 		 * Don't let a process set a breakpoint that is not within the
2445 		 * process's address space.  If a process could do this, it
2446 		 * could halt the system by setting a breakpoint in the kernel
2447 		 * (if ddb was enabled).  Thus, we need to check to make sure
2448 		 * that no breakpoints are being enabled for addresses outside
2449 		 * process's address space, unless, perhaps, we were called by
2450 		 * uid 0.
2451 		 *
2452 		 * XXX - what about when the watched area of the user's
2453 		 * address space is written into from within the kernel
2454 		 * ... wouldn't that still cause a breakpoint to be generated
2455 		 * from within kernel mode?
2456 		 */
2457 
2458 		if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2459 			if (dbregs->dr[7] & 0x3) {
2460 				/* dr0 is enabled */
2461 				if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2462 					return (EINVAL);
2463 			}
2464 
2465 			if (dbregs->dr[7] & (0x3<<2)) {
2466 				/* dr1 is enabled */
2467 				if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2468 					return (EINVAL);
2469 			}
2470 
2471 			if (dbregs->dr[7] & (0x3<<4)) {
2472 				/* dr2 is enabled */
2473 				if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2474 					return (EINVAL);
2475 			}
2476 
2477 			if (dbregs->dr[7] & (0x3<<6)) {
2478 				/* dr3 is enabled */
2479 				if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2480 					return (EINVAL);
2481 			}
2482 		}
2483 
2484 		pcb->pcb_dr0 = dbregs->dr[0];
2485 		pcb->pcb_dr1 = dbregs->dr[1];
2486 		pcb->pcb_dr2 = dbregs->dr[2];
2487 		pcb->pcb_dr3 = dbregs->dr[3];
2488 		pcb->pcb_dr6 = dbregs->dr[6];
2489 		pcb->pcb_dr7 = dbregs->dr[7];
2490 
2491 		pcb->pcb_flags |= PCB_DBREGS;
2492 	}
2493 
2494 	return (0);
2495 }
2496 
2497 /*
2498  * Return > 0 if a hardware breakpoint has been hit, and the
2499  * breakpoint was in user space.  Return 0, otherwise.
2500  */
2501 int
2502 user_dbreg_trap(void)
2503 {
2504         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2505         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2506         int nbp;            /* number of breakpoints that triggered */
2507         caddr_t addr[4];    /* breakpoint addresses */
2508         int i;
2509 
2510         dr7 = rdr7();
2511         if ((dr7 & 0xff) == 0) {
2512                 /*
2513                  * all GE and LE bits in the dr7 register are zero,
2514                  * thus the trap couldn't have been caused by the
2515                  * hardware debug registers
2516                  */
2517                 return 0;
2518         }
2519 
2520         nbp = 0;
2521         dr6 = rdr6();
2522         bp = dr6 & 0xf;
2523 
2524         if (bp == 0) {
2525                 /*
2526                  * None of the breakpoint bits are set meaning this
2527                  * trap was not caused by any of the debug registers
2528                  */
2529                 return 0;
2530         }
2531 
2532         /*
2533          * at least one of the breakpoints were hit, check to see
2534          * which ones and if any of them are user space addresses
2535          */
2536 
2537         if (bp & 0x01) {
2538                 addr[nbp++] = (caddr_t)rdr0();
2539         }
2540         if (bp & 0x02) {
2541                 addr[nbp++] = (caddr_t)rdr1();
2542         }
2543         if (bp & 0x04) {
2544                 addr[nbp++] = (caddr_t)rdr2();
2545         }
2546         if (bp & 0x08) {
2547                 addr[nbp++] = (caddr_t)rdr3();
2548         }
2549 
2550         for (i=0; i<nbp; i++) {
2551                 if (addr[i] <
2552                     (caddr_t)VM_MAX_USER_ADDRESS) {
2553                         /*
2554                          * addr[i] is in user space
2555                          */
2556                         return nbp;
2557                 }
2558         }
2559 
2560         /*
2561          * None of the breakpoints are in user space.
2562          */
2563         return 0;
2564 }
2565 
2566 
2567 #ifndef DDB
2568 void
2569 Debugger(const char *msg)
2570 {
2571 	kprintf("Debugger(\"%s\") called.\n", msg);
2572 }
2573 #endif /* no DDB */
2574 
2575 #ifdef DDB
2576 
2577 /*
2578  * Provide inb() and outb() as functions.  They are normally only
2579  * available as macros calling inlined functions, thus cannot be
2580  * called inside DDB.
2581  *
2582  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2583  */
2584 
2585 #undef inb
2586 #undef outb
2587 
2588 /* silence compiler warnings */
2589 u_char inb(u_int);
2590 void outb(u_int, u_char);
2591 
2592 u_char
2593 inb(u_int port)
2594 {
2595 	u_char	data;
2596 	/*
2597 	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2598 	 * %edx, while gcc generates inferior code (movw instead of movl)
2599 	 * if we tell it to load (u_short) port.
2600 	 */
2601 	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2602 	return (data);
2603 }
2604 
2605 void
2606 outb(u_int port, u_char data)
2607 {
2608 	u_char	al;
2609 	/*
2610 	 * Use an unnecessary assignment to help gcc's register allocator.
2611 	 * This make a large difference for gcc-1.40 and a tiny difference
2612 	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2613 	 * best results.  gcc-2.6.0 can't handle this.
2614 	 */
2615 	al = data;
2616 	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2617 }
2618 
2619 #endif /* DDB */
2620 
2621 
2622 
2623 /*
2624  * initialize all the SMP locks
2625  */
2626 
2627 /* critical region when masking or unmasking interupts */
2628 struct spinlock_deprecated imen_spinlock;
2629 
2630 /* critical region for old style disable_intr/enable_intr */
2631 struct spinlock_deprecated mpintr_spinlock;
2632 
2633 /* critical region around INTR() routines */
2634 struct spinlock_deprecated intr_spinlock;
2635 
2636 /* lock region used by kernel profiling */
2637 struct spinlock_deprecated mcount_spinlock;
2638 
2639 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2640 struct spinlock_deprecated com_spinlock;
2641 
2642 /* lock regions around the clock hardware */
2643 struct spinlock_deprecated clock_spinlock;
2644 
2645 static void
2646 init_locks(void)
2647 {
2648 	/*
2649 	 * Get the initial mplock with a count of 1 for the BSP.
2650 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
2651 	 */
2652 	cpu_get_initial_mplock();
2653 	/* DEPRECATED */
2654 	spin_lock_init(&mcount_spinlock);
2655 	spin_lock_init(&intr_spinlock);
2656 	spin_lock_init(&mpintr_spinlock);
2657 	spin_lock_init(&imen_spinlock);
2658 	spin_lock_init(&com_spinlock);
2659 	spin_lock_init(&clock_spinlock);
2660 
2661 	/* our token pool needs to work early */
2662 	lwkt_token_pool_init();
2663 }
2664 
2665 boolean_t
2666 cpu_mwait_hint_valid(uint32_t hint)
2667 {
2668 	int cx_idx, sub;
2669 
2670 	cx_idx = MWAIT_EAX_TO_CX(hint);
2671 	if (cx_idx >= CPU_MWAIT_CX_MAX)
2672 		return FALSE;
2673 
2674 	sub = MWAIT_EAX_TO_CX_SUB(hint);
2675 	if (sub >= cpu_mwait_cx_info[cx_idx].subcnt)
2676 		return FALSE;
2677 
2678 	return TRUE;
2679 }
2680 
2681 void
2682 cpu_mwait_cx_no_bmsts(void)
2683 {
2684 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_STS);
2685 }
2686 
2687 void
2688 cpu_mwait_cx_no_bmarb(void)
2689 {
2690 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_ARB);
2691 }
2692 
2693 static int
2694 cpu_mwait_cx_hint2name(int hint, char *name, int namelen, boolean_t allow_auto)
2695 {
2696 	int old_cx_idx, sub = 0;
2697 
2698 	if (hint >= 0) {
2699 		old_cx_idx = MWAIT_EAX_TO_CX(hint);
2700 		sub = MWAIT_EAX_TO_CX_SUB(hint);
2701 	} else if (hint == CPU_MWAIT_HINT_AUTO) {
2702 		old_cx_idx = allow_auto ? CPU_MWAIT_C2 : CPU_MWAIT_CX_MAX;
2703 	} else if (hint == CPU_MWAIT_HINT_AUTODEEP) {
2704 		old_cx_idx = allow_auto ? CPU_MWAIT_C3 : CPU_MWAIT_CX_MAX;
2705 	} else {
2706 		old_cx_idx = CPU_MWAIT_CX_MAX;
2707 	}
2708 
2709 	if (!CPU_MWAIT_HAS_CX)
2710 		strlcpy(name, "NONE", namelen);
2711 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTO)
2712 		strlcpy(name, "AUTO", namelen);
2713 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTODEEP)
2714 		strlcpy(name, "AUTODEEP", namelen);
2715 	else if (old_cx_idx >= CPU_MWAIT_CX_MAX ||
2716 	    sub >= cpu_mwait_cx_info[old_cx_idx].subcnt)
2717 		strlcpy(name, "INVALID", namelen);
2718 	else
2719 		ksnprintf(name, namelen, "C%d/%d", old_cx_idx, sub);
2720 
2721 	return old_cx_idx;
2722 }
2723 
2724 static int
2725 cpu_mwait_cx_name2hint(char *name, int *hint0, boolean_t allow_auto)
2726 {
2727 	int cx_idx, sub, hint;
2728 	char *ptr, *start;
2729 
2730 	if (allow_auto && strcmp(name, "AUTO") == 0) {
2731 		hint = CPU_MWAIT_HINT_AUTO;
2732 		cx_idx = CPU_MWAIT_C2;
2733 		goto done;
2734 	}
2735 	if (allow_auto && strcmp(name, "AUTODEEP") == 0) {
2736 		hint = CPU_MWAIT_HINT_AUTODEEP;
2737 		cx_idx = CPU_MWAIT_C3;
2738 		goto done;
2739 	}
2740 
2741 	if (strlen(name) < 4 || toupper(name[0]) != 'C')
2742 		return -1;
2743 	start = &name[1];
2744 	ptr = NULL;
2745 
2746 	cx_idx = strtol(start, &ptr, 10);
2747 	if (ptr == start || *ptr != '/')
2748 		return -1;
2749 	if (cx_idx < 0 || cx_idx >= CPU_MWAIT_CX_MAX)
2750 		return -1;
2751 
2752 	start = ptr + 1;
2753 	ptr = NULL;
2754 
2755 	sub = strtol(start, &ptr, 10);
2756 	if (*ptr != '\0')
2757 		return -1;
2758 	if (sub < 0 || sub >= cpu_mwait_cx_info[cx_idx].subcnt)
2759 		return -1;
2760 
2761 	hint = MWAIT_EAX_HINT(cx_idx, sub);
2762 done:
2763 	*hint0 = hint;
2764 	return cx_idx;
2765 }
2766 
2767 static int
2768 cpu_mwait_cx_transit(int old_cx_idx, int cx_idx)
2769 {
2770 	if (cx_idx >= CPU_MWAIT_C3 && cpu_mwait_c3_preamble)
2771 		return EOPNOTSUPP;
2772 	if (old_cx_idx < CPU_MWAIT_C3 && cx_idx >= CPU_MWAIT_C3) {
2773 		int error;
2774 
2775 		error = cputimer_intr_powersave_addreq();
2776 		if (error)
2777 			return error;
2778 	} else if (old_cx_idx >= CPU_MWAIT_C3 && cx_idx < CPU_MWAIT_C3) {
2779 		cputimer_intr_powersave_remreq();
2780 	}
2781 	return 0;
2782 }
2783 
2784 static int
2785 cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS, int *hint0,
2786     boolean_t allow_auto)
2787 {
2788 	int error, cx_idx, old_cx_idx, hint;
2789 	char name[CPU_MWAIT_CX_NAMELEN];
2790 
2791 	hint = *hint0;
2792 	old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name),
2793 	    allow_auto);
2794 
2795 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
2796 	if (error != 0 || req->newptr == NULL)
2797 		return error;
2798 
2799 	if (!CPU_MWAIT_HAS_CX)
2800 		return EOPNOTSUPP;
2801 
2802 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, allow_auto);
2803 	if (cx_idx < 0)
2804 		return EINVAL;
2805 
2806 	error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
2807 	if (error)
2808 		return error;
2809 
2810 	*hint0 = hint;
2811 	return 0;
2812 }
2813 
2814 static int
2815 cpu_mwait_cx_setname(struct cpu_idle_stat *stat, const char *cx_name)
2816 {
2817 	int error, cx_idx, old_cx_idx, hint;
2818 	char name[CPU_MWAIT_CX_NAMELEN];
2819 
2820 	KASSERT(CPU_MWAIT_HAS_CX, ("cpu does not support mwait CX extension"));
2821 
2822 	hint = stat->hint;
2823 	old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
2824 
2825 	strlcpy(name, cx_name, sizeof(name));
2826 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
2827 	if (cx_idx < 0)
2828 		return EINVAL;
2829 
2830 	error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
2831 	if (error)
2832 		return error;
2833 
2834 	stat->hint = hint;
2835 	return 0;
2836 }
2837 
2838 static int
2839 cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS)
2840 {
2841 	int hint = cpu_mwait_halt_global;
2842 	int error, cx_idx, cpu;
2843 	char name[CPU_MWAIT_CX_NAMELEN], cx_name[CPU_MWAIT_CX_NAMELEN];
2844 
2845 	cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
2846 
2847 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
2848 	if (error != 0 || req->newptr == NULL)
2849 		return error;
2850 
2851 	if (!CPU_MWAIT_HAS_CX)
2852 		return EOPNOTSUPP;
2853 
2854 	/* Save name for later per-cpu CX configuration */
2855 	strlcpy(cx_name, name, sizeof(cx_name));
2856 
2857 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
2858 	if (cx_idx < 0)
2859 		return EINVAL;
2860 
2861 	/* Change per-cpu CX configuration */
2862 	for (cpu = 0; cpu < ncpus; ++cpu) {
2863 		error = cpu_mwait_cx_setname(&cpu_idle_stats[cpu], cx_name);
2864 		if (error)
2865 			return error;
2866 	}
2867 
2868 	cpu_mwait_halt_global = hint;
2869 	return 0;
2870 }
2871 
2872 static int
2873 cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS)
2874 {
2875 	struct cpu_idle_stat *stat = arg1;
2876 	int error;
2877 
2878 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
2879 	    &stat->hint, TRUE);
2880 	return error;
2881 }
2882 
2883 static int
2884 cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS)
2885 {
2886 	int error;
2887 
2888 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
2889 	    &cpu_mwait_spin, FALSE);
2890 	return error;
2891 }
2892