xref: /dragonfly/sys/platform/pc64/x86_64/machdep.c (revision 33311965)
1 /*-
2  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3  * Copyright (c) 1992 Terrence R. Lambert.
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 2008 The DragonFly Project.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
40  * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
41  */
42 
43 //#include "use_npx.h"
44 #include "use_isa.h"
45 #include "opt_compat.h"
46 #include "opt_cpu.h"
47 #include "opt_ddb.h"
48 #include "opt_directio.h"
49 #include "opt_inet.h"
50 #include "opt_ipx.h"
51 #include "opt_msgbuf.h"
52 #include "opt_swap.h"
53 
54 #include <sys/param.h>
55 #include <sys/systm.h>
56 #include <sys/sysproto.h>
57 #include <sys/signalvar.h>
58 #include <sys/kernel.h>
59 #include <sys/linker.h>
60 #include <sys/malloc.h>
61 #include <sys/proc.h>
62 #include <sys/priv.h>
63 #include <sys/buf.h>
64 #include <sys/reboot.h>
65 #include <sys/mbuf.h>
66 #include <sys/msgbuf.h>
67 #include <sys/sysent.h>
68 #include <sys/sysctl.h>
69 #include <sys/vmmeter.h>
70 #include <sys/bus.h>
71 #include <sys/usched.h>
72 #include <sys/reg.h>
73 #include <sys/sbuf.h>
74 #include <sys/ctype.h>
75 #include <sys/serialize.h>
76 #include <sys/systimer.h>
77 
78 #include <vm/vm.h>
79 #include <vm/vm_param.h>
80 #include <sys/lock.h>
81 #include <vm/vm_kern.h>
82 #include <vm/vm_object.h>
83 #include <vm/vm_page.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_pager.h>
86 #include <vm/vm_extern.h>
87 
88 #include <sys/thread2.h>
89 #include <sys/mplock2.h>
90 #include <sys/mutex2.h>
91 
92 #include <sys/user.h>
93 #include <sys/exec.h>
94 #include <sys/cons.h>
95 
96 #include <ddb/ddb.h>
97 
98 #include <machine/cpu.h>
99 #include <machine/clock.h>
100 #include <machine/specialreg.h>
101 #if JG
102 #include <machine/bootinfo.h>
103 #endif
104 #include <machine/md_var.h>
105 #include <machine/metadata.h>
106 #include <machine/pc/bios.h>
107 #include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
108 #include <machine/globaldata.h>		/* CPU_prvspace */
109 #include <machine/smp.h>
110 #ifdef PERFMON
111 #include <machine/perfmon.h>
112 #endif
113 #include <machine/cputypes.h>
114 #include <machine/intr_machdep.h>
115 
116 #ifdef OLD_BUS_ARCH
117 #include <bus/isa/isa_device.h>
118 #endif
119 #include <machine_base/isa/isa_intr.h>
120 #include <bus/isa/rtc.h>
121 #include <sys/random.h>
122 #include <sys/ptrace.h>
123 #include <machine/sigframe.h>
124 
125 #include <sys/machintr.h>
126 #include <machine_base/icu/icu_abi.h>
127 #include <machine_base/icu/elcr_var.h>
128 #include <machine_base/apic/lapic.h>
129 #include <machine_base/apic/ioapic.h>
130 #include <machine_base/apic/ioapic_abi.h>
131 #include <machine/mptable.h>
132 
133 #define PHYSMAP_ENTRIES		10
134 
135 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
136 
137 extern void printcpuinfo(void);	/* XXX header file */
138 extern void identify_cpu(void);
139 #if JG
140 extern void finishidentcpu(void);
141 #endif
142 extern void panicifcpuunsupported(void);
143 
144 static void cpu_startup(void *);
145 static void pic_finish(void *);
146 static void cpu_finish(void *);
147 
148 #ifndef CPU_DISABLE_SSE
149 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
150 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
151 #endif /* CPU_DISABLE_SSE */
152 #ifdef DIRECTIO
153 extern void ffs_rawread_setup(void);
154 #endif /* DIRECTIO */
155 static void init_locks(void);
156 
157 SYSINIT(cpu, SI_BOOT2_START_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
158 SYSINIT(pic_finish, SI_BOOT2_FINISH_PIC, SI_ORDER_FIRST, pic_finish, NULL)
159 SYSINIT(cpu_finish, SI_BOOT2_FINISH_CPU, SI_ORDER_FIRST, cpu_finish, NULL)
160 
161 #ifdef DDB
162 extern vm_offset_t ksym_start, ksym_end;
163 #endif
164 
165 struct privatespace CPU_prvspace[MAXCPU] __aligned(4096); /* XXX */
166 
167 int	_udatasel, _ucodesel, _ucode32sel;
168 u_long	atdevbase;
169 int64_t tsc_offsets[MAXCPU];
170 
171 static int cpu_mwait_halt;	/* MWAIT hint (EAX) or CPU_MWAIT_HINT_ */
172 
173 #if defined(SWTCH_OPTIM_STATS)
174 extern int swtch_optim_stats;
175 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
176 	CTLFLAG_RD, &swtch_optim_stats, 0, "");
177 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
178 	CTLFLAG_RD, &tlb_flush_count, 0, "");
179 #endif
180 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_halt,
181 	CTLFLAG_RD, &cpu_mwait_halt, 0, "");
182 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_spin, CTLFLAG_RD, &cpu_mwait_spin, 0,
183     "monitor/mwait target state");
184 
185 #define CPU_MWAIT_C1		1
186 #define CPU_MWAIT_C2		2
187 #define CPU_MWAIT_C3		3
188 #define CPU_MWAIT_CX_MAX	8
189 
190 #define CPU_MWAIT_HINT_AUTO	-1	/* C1 and C2 */
191 #define CPU_MWAIT_HINT_AUTODEEP	-2	/* C3+ */
192 
193 SYSCTL_NODE(_machdep, OID_AUTO, mwait, CTLFLAG_RW, 0, "MWAIT features");
194 SYSCTL_NODE(_machdep_mwait, OID_AUTO, CX, CTLFLAG_RW, 0, "MWAIT Cx settings");
195 
196 struct cpu_mwait_cx {
197 	int			subcnt;
198 	char			name[4];
199 	struct sysctl_ctx_list	sysctl_ctx;
200 	struct sysctl_oid	*sysctl_tree;
201 };
202 static struct cpu_mwait_cx	cpu_mwait_cx_info[CPU_MWAIT_CX_MAX];
203 static char			cpu_mwait_cx_supported[256];
204 
205 static int			cpu_mwait_c1_hints_cnt;
206 static int			cpu_mwait_hints_cnt;
207 static int			*cpu_mwait_hints;
208 
209 static int			cpu_mwait_deep_hints_cnt;
210 static int			*cpu_mwait_deep_hints;
211 
212 #define CPU_IDLE_REPEAT_DEFAULT	750
213 
214 static u_int			cpu_idle_repeat = CPU_IDLE_REPEAT_DEFAULT;
215 static u_long			cpu_idle_repeat_max = CPU_IDLE_REPEAT_DEFAULT;
216 static u_int			cpu_mwait_repeat_shift = 1;
217 
218 #define CPU_MWAIT_C3_PREAMBLE_BM_ARB	0x1
219 #define CPU_MWAIT_C3_PREAMBLE_BM_STS	0x2
220 
221 static int			cpu_mwait_c3_preamble =
222 				    CPU_MWAIT_C3_PREAMBLE_BM_ARB |
223 				    CPU_MWAIT_C3_PREAMBLE_BM_STS;
224 
225 SYSCTL_STRING(_machdep_mwait_CX, OID_AUTO, supported, CTLFLAG_RD,
226     cpu_mwait_cx_supported, 0, "MWAIT supported C states");
227 
228 static struct lwkt_serialize cpu_mwait_cx_slize = LWKT_SERIALIZE_INITIALIZER;
229 static int	cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS,
230 		    int *, boolean_t);
231 static int	cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS);
232 static int	cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS);
233 
234 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, idle, CTLTYPE_STRING|CTLFLAG_RW,
235     NULL, 0, cpu_mwait_cx_idle_sysctl, "A", "");
236 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, spin, CTLTYPE_STRING|CTLFLAG_RW,
237     NULL, 0, cpu_mwait_cx_spin_sysctl, "A", "");
238 SYSCTL_UINT(_machdep_mwait_CX, OID_AUTO, repeat_shift, CTLFLAG_RW,
239     &cpu_mwait_repeat_shift, 0, "");
240 
241 long physmem = 0;
242 
243 u_long ebda_addr = 0;
244 
245 int imcr_present = 0;
246 
247 int naps = 0; /* # of Applications processors */
248 
249 u_int base_memory;
250 struct mtx dt_lock;		/* lock for GDT and LDT */
251 
252 static int
253 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
254 {
255 	u_long pmem = ctob(physmem);
256 
257 	int error = sysctl_handle_long(oidp, &pmem, 0, req);
258 	return (error);
259 }
260 
261 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
262 	0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
263 
264 static int
265 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
266 {
267 	int error = sysctl_handle_int(oidp, 0,
268 		ctob(physmem - vmstats.v_wire_count), req);
269 	return (error);
270 }
271 
272 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
273 	0, 0, sysctl_hw_usermem, "IU", "");
274 
275 static int
276 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
277 {
278 	int error = sysctl_handle_int(oidp, 0,
279 		x86_64_btop(avail_end - avail_start), req);
280 	return (error);
281 }
282 
283 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
284 	0, 0, sysctl_hw_availpages, "I", "");
285 
286 vm_paddr_t Maxmem;
287 vm_paddr_t Realmem;
288 
289 /*
290  * The number of PHYSMAP entries must be one less than the number of
291  * PHYSSEG entries because the PHYSMAP entry that spans the largest
292  * physical address that is accessible by ISA DMA is split into two
293  * PHYSSEG entries.
294  */
295 #define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
296 
297 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
298 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
299 
300 /* must be 2 less so 0 0 can signal end of chunks */
301 #define PHYS_AVAIL_ARRAY_END (NELEM(phys_avail) - 2)
302 #define DUMP_AVAIL_ARRAY_END (NELEM(dump_avail) - 2)
303 
304 static vm_offset_t buffer_sva, buffer_eva;
305 vm_offset_t clean_sva, clean_eva;
306 static vm_offset_t pager_sva, pager_eva;
307 static struct trapframe proc0_tf;
308 
309 static void
310 cpu_startup(void *dummy)
311 {
312 	caddr_t v;
313 	vm_size_t size = 0;
314 	vm_offset_t firstaddr;
315 
316 	/*
317 	 * Good {morning,afternoon,evening,night}.
318 	 */
319 	kprintf("%s", version);
320 	startrtclock();
321 	printcpuinfo();
322 	panicifcpuunsupported();
323 #ifdef PERFMON
324 	perfmon_init();
325 #endif
326 	kprintf("real memory  = %ju (%ju MB)\n",
327 		(intmax_t)Realmem,
328 		(intmax_t)Realmem / 1024 / 1024);
329 	/*
330 	 * Display any holes after the first chunk of extended memory.
331 	 */
332 	if (bootverbose) {
333 		int indx;
334 
335 		kprintf("Physical memory chunk(s):\n");
336 		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
337 			vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
338 
339 			kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
340 				(intmax_t)phys_avail[indx],
341 				(intmax_t)phys_avail[indx + 1] - 1,
342 				(intmax_t)size1,
343 				(intmax_t)(size1 / PAGE_SIZE));
344 		}
345 	}
346 
347 	/*
348 	 * Allocate space for system data structures.
349 	 * The first available kernel virtual address is in "v".
350 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
351 	 * As pages of memory are allocated and cleared,
352 	 * "firstaddr" is incremented.
353 	 * An index into the kernel page table corresponding to the
354 	 * virtual memory address maintained in "v" is kept in "mapaddr".
355 	 */
356 
357 	/*
358 	 * Make two passes.  The first pass calculates how much memory is
359 	 * needed and allocates it.  The second pass assigns virtual
360 	 * addresses to the various data structures.
361 	 */
362 	firstaddr = 0;
363 again:
364 	v = (caddr_t)firstaddr;
365 
366 #define	valloc(name, type, num) \
367 	    (name) = (type *)v; v = (caddr_t)((name)+(num))
368 #define	valloclim(name, type, num, lim) \
369 	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
370 
371 	/*
372 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
373 	 * For the first 64MB of ram nominally allocate sufficient buffers to
374 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
375 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
376 	 * the buffer cache we limit the eventual kva reservation to
377 	 * maxbcache bytes.
378 	 *
379 	 * factor represents the 1/4 x ram conversion.
380 	 */
381 	if (nbuf == 0) {
382 		long factor = 4 * BKVASIZE / 1024;
383 		long kbytes = physmem * (PAGE_SIZE / 1024);
384 
385 		nbuf = 50;
386 		if (kbytes > 4096)
387 			nbuf += min((kbytes - 4096) / factor, 65536 / factor);
388 		if (kbytes > 65536)
389 			nbuf += (kbytes - 65536) * 2 / (factor * 5);
390 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
391 			nbuf = maxbcache / BKVASIZE;
392 	}
393 
394 	/*
395 	 * Do not allow the buffer_map to be more then 1/2 the size of the
396 	 * kernel_map.
397 	 */
398 	if (nbuf > (virtual_end - virtual_start +
399 		    virtual2_end - virtual2_start) / (BKVASIZE * 2)) {
400 		nbuf = (virtual_end - virtual_start +
401 			virtual2_end - virtual2_start) / (BKVASIZE * 2);
402 		kprintf("Warning: nbufs capped at %ld due to kvm\n", nbuf);
403 	}
404 
405 	/*
406 	 * Do not allow the buffer_map to use more than 50% of available
407 	 * physical-equivalent memory.  Since the VM pages which back
408 	 * individual buffers are typically wired, having too many bufs
409 	 * can prevent the system from paging properly.
410 	 */
411 	if (nbuf > physmem * PAGE_SIZE / (BKVASIZE * 2)) {
412 		nbuf = physmem * PAGE_SIZE / (BKVASIZE * 2);
413 		kprintf("Warning: nbufs capped at %ld due to physmem\n", nbuf);
414 	}
415 
416 	/*
417 	 * Do not allow the sizeof(struct buf) * nbuf to exceed half of
418 	 * the valloc space which is just the virtual_end - virtual_start
419 	 * section.  We use valloc() to allocate the buf header array.
420 	 */
421 	if (nbuf > (virtual_end - virtual_start) / sizeof(struct buf) / 2) {
422 		nbuf = (virtual_end - virtual_start) /
423 		       sizeof(struct buf) / 2;
424 		kprintf("Warning: nbufs capped at %ld due to valloc "
425 			"considerations", nbuf);
426 	}
427 
428 	nswbuf = lmax(lmin(nbuf / 4, 256), 16);
429 #ifdef NSWBUF_MIN
430 	if (nswbuf < NSWBUF_MIN)
431 		nswbuf = NSWBUF_MIN;
432 #endif
433 #ifdef DIRECTIO
434 	ffs_rawread_setup();
435 #endif
436 
437 	valloc(swbuf, struct buf, nswbuf);
438 	valloc(buf, struct buf, nbuf);
439 
440 	/*
441 	 * End of first pass, size has been calculated so allocate memory
442 	 */
443 	if (firstaddr == 0) {
444 		size = (vm_size_t)(v - firstaddr);
445 		firstaddr = kmem_alloc(&kernel_map, round_page(size));
446 		if (firstaddr == 0)
447 			panic("startup: no room for tables");
448 		goto again;
449 	}
450 
451 	/*
452 	 * End of second pass, addresses have been assigned
453 	 *
454 	 * nbuf is an int, make sure we don't overflow the field.
455 	 *
456 	 * On 64-bit systems we always reserve maximal allocations for
457 	 * buffer cache buffers and there are no fragmentation issues,
458 	 * so the KVA segment does not have to be excessively oversized.
459 	 */
460 	if ((vm_size_t)(v - firstaddr) != size)
461 		panic("startup: table size inconsistency");
462 
463 	kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
464 		      ((vm_offset_t)(nbuf + 16) * BKVASIZE) +
465 		      (nswbuf * MAXPHYS) + pager_map_size);
466 	kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
467 		      ((vm_offset_t)(nbuf + 16) * BKVASIZE));
468 	buffer_map.system_map = 1;
469 	kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
470 		      ((vm_offset_t)nswbuf * MAXPHYS) + pager_map_size);
471 	pager_map.system_map = 1;
472 
473 #if defined(USERCONFIG)
474 	userconfig();
475 	cninit();		/* the preferred console may have changed */
476 #endif
477 
478 	kprintf("avail memory = %ju (%ju MB)\n",
479 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages),
480 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages) /
481 		1024 / 1024);
482 }
483 
484 struct cpu_idle_stat {
485 	u_long	halt;
486 	u_long	spin;
487 	u_long	repeat;
488 	u_long	repeat_last;
489 	u_long	repeat_delta;
490 	u_long	mwait_cx[CPU_MWAIT_CX_MAX];
491 } __cachealign;
492 
493 #define CPU_IDLE_STAT_HALT	-1
494 #define CPU_IDLE_STAT_SPIN	-2
495 
496 static struct cpu_idle_stat	cpu_idle_stats[MAXCPU];
497 
498 static int
499 sysctl_cpu_idle_cnt(SYSCTL_HANDLER_ARGS)
500 {
501 	int idx = arg2, cpu, error;
502 	u_long val = 0;
503 
504 	if (idx == CPU_IDLE_STAT_HALT) {
505 		for (cpu = 0; cpu < ncpus; ++cpu)
506 			val += cpu_idle_stats[cpu].halt;
507 	} else if (idx == CPU_IDLE_STAT_SPIN) {
508 		for (cpu = 0; cpu < ncpus; ++cpu)
509 			val += cpu_idle_stats[cpu].spin;
510 	} else {
511 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
512 		    ("invalid index %d", idx));
513 		for (cpu = 0; cpu < ncpus; ++cpu)
514 			val += cpu_idle_stats[cpu].mwait_cx[idx];
515 	}
516 
517 	error = sysctl_handle_quad(oidp, &val, 0, req);
518         if (error || req->newptr == NULL)
519 	        return error;
520 
521 	if (idx == CPU_IDLE_STAT_HALT) {
522 		for (cpu = 0; cpu < ncpus; ++cpu)
523 			cpu_idle_stats[cpu].halt = 0;
524 		cpu_idle_stats[0].halt = val;
525 	} else if (idx == CPU_IDLE_STAT_SPIN) {
526 		for (cpu = 0; cpu < ncpus; ++cpu)
527 			cpu_idle_stats[cpu].spin = 0;
528 		cpu_idle_stats[0].spin = val;
529 	} else {
530 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
531 		    ("invalid index %d", idx));
532 		for (cpu = 0; cpu < ncpus; ++cpu)
533 			cpu_idle_stats[cpu].mwait_cx[idx] = 0;
534 		cpu_idle_stats[0].mwait_cx[idx] = val;
535 	}
536 	return 0;
537 }
538 
539 static void
540 cpu_mwait_attach(void)
541 {
542 	struct sbuf sb;
543 	int hint_idx, i;
544 
545 	if ((cpu_feature2 & CPUID2_MON) == 0 ||
546 	    (cpu_mwait_feature & CPUID_MWAIT_EXT) == 0)
547 		return;
548 
549 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
550 	    (CPUID_TO_FAMILY(cpu_id) > 0xf ||
551 	     (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
552 	      CPUID_TO_MODEL(cpu_id) >= 0xf))) {
553 		int bm_sts = 1;
554 
555 		atomic_clear_int(&cpu_mwait_c3_preamble,
556 		    CPU_MWAIT_C3_PREAMBLE_BM_ARB);
557 
558 		TUNABLE_INT_FETCH("machdep.cpu.mwait.bm_sts", &bm_sts);
559 		if (!bm_sts) {
560 			atomic_clear_int(&cpu_mwait_c3_preamble,
561 			    CPU_MWAIT_C3_PREAMBLE_BM_STS);
562 		}
563 	}
564 
565 	sbuf_new(&sb, cpu_mwait_cx_supported,
566 	    sizeof(cpu_mwait_cx_supported), SBUF_FIXEDLEN);
567 
568 	for (i = 0; i < CPU_MWAIT_CX_MAX; ++i) {
569 		struct cpu_mwait_cx *cx = &cpu_mwait_cx_info[i];
570 		int sub;
571 
572 		ksnprintf(cx->name, sizeof(cx->name), "C%d", i);
573 
574 		sysctl_ctx_init(&cx->sysctl_ctx);
575 		cx->sysctl_tree = SYSCTL_ADD_NODE(&cx->sysctl_ctx,
576 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait), OID_AUTO,
577 		    cx->name, CTLFLAG_RW, NULL, "Cx control/info");
578 		if (cx->sysctl_tree == NULL)
579 			continue;
580 
581 		cx->subcnt = CPUID_MWAIT_CX_SUBCNT(cpu_mwait_extemu, i);
582 		SYSCTL_ADD_INT(&cx->sysctl_ctx,
583 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
584 		    "subcnt", CTLFLAG_RD, &cx->subcnt, 0,
585 		    "sub-state count");
586 		SYSCTL_ADD_PROC(&cx->sysctl_ctx,
587 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
588 		    "entered", (CTLTYPE_QUAD | CTLFLAG_RW), 0,
589 		    i, sysctl_cpu_idle_cnt, "Q", "# of times entered");
590 
591 		for (sub = 0; sub < cx->subcnt; ++sub)
592 			sbuf_printf(&sb, "C%d/%d ", i, sub);
593 	}
594 	sbuf_trim(&sb);
595 	sbuf_finish(&sb);
596 
597 	/*
598 	 * Non-deep C-states
599 	 */
600 	cpu_mwait_c1_hints_cnt = cpu_mwait_cx_info[CPU_MWAIT_C1].subcnt;
601 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i)
602 		cpu_mwait_hints_cnt += cpu_mwait_cx_info[i].subcnt;
603 	cpu_mwait_hints = kmalloc(sizeof(int) * cpu_mwait_hints_cnt,
604 	    M_DEVBUF, M_WAITOK);
605 
606 	hint_idx = 0;
607 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i) {
608 		int j, subcnt;
609 
610 		subcnt = cpu_mwait_cx_info[i].subcnt;
611 		for (j = 0; j < subcnt; ++j) {
612 			KASSERT(hint_idx < cpu_mwait_hints_cnt,
613 			    ("invalid mwait hint index %d", hint_idx));
614 			cpu_mwait_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
615 			++hint_idx;
616 		}
617 	}
618 	KASSERT(hint_idx == cpu_mwait_hints_cnt,
619 	    ("mwait hint count %d != index %d",
620 	     cpu_mwait_hints_cnt, hint_idx));
621 
622 	if (bootverbose) {
623 		kprintf("MWAIT hints (%d C1 hints):\n", cpu_mwait_c1_hints_cnt);
624 		for (i = 0; i < cpu_mwait_hints_cnt; ++i) {
625 			int hint = cpu_mwait_hints[i];
626 
627 			kprintf("  C%d/%d hint 0x%04x\n",
628 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
629 			    hint);
630 		}
631 	}
632 
633 	/*
634 	 * Deep C-states
635 	 */
636 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i)
637 		cpu_mwait_deep_hints_cnt += cpu_mwait_cx_info[i].subcnt;
638 	cpu_mwait_deep_hints = kmalloc(sizeof(int) * cpu_mwait_deep_hints_cnt,
639 	    M_DEVBUF, M_WAITOK);
640 
641 	hint_idx = 0;
642 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i) {
643 		int j, subcnt;
644 
645 		subcnt = cpu_mwait_cx_info[i].subcnt;
646 		for (j = 0; j < subcnt; ++j) {
647 			KASSERT(hint_idx < cpu_mwait_deep_hints_cnt,
648 			    ("invalid mwait deep hint index %d", hint_idx));
649 			cpu_mwait_deep_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
650 			++hint_idx;
651 		}
652 	}
653 	KASSERT(hint_idx == cpu_mwait_deep_hints_cnt,
654 	    ("mwait deep hint count %d != index %d",
655 	     cpu_mwait_deep_hints_cnt, hint_idx));
656 
657 	if (bootverbose) {
658 		kprintf("MWAIT deep hints:\n");
659 		for (i = 0; i < cpu_mwait_deep_hints_cnt; ++i) {
660 			int hint = cpu_mwait_deep_hints[i];
661 
662 			kprintf("  C%d/%d hint 0x%04x\n",
663 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
664 			    hint);
665 		}
666 	}
667 	cpu_idle_repeat_max = 256 * cpu_mwait_deep_hints_cnt;
668 }
669 
670 static void
671 cpu_finish(void *dummy __unused)
672 {
673 	cpu_setregs();
674 	cpu_mwait_attach();
675 }
676 
677 static void
678 pic_finish(void *dummy __unused)
679 {
680 	/* Log ELCR information */
681 	elcr_dump();
682 
683 	/* Log MPTABLE information */
684 	mptable_pci_int_dump();
685 
686 	/* Finalize PCI */
687 	MachIntrABI.finalize();
688 }
689 
690 /*
691  * Send an interrupt to process.
692  *
693  * Stack is set up to allow sigcode stored
694  * at top to call routine, followed by kcall
695  * to sigreturn routine below.  After sigreturn
696  * resets the signal mask, the stack, and the
697  * frame pointer, it returns to the user
698  * specified pc, psl.
699  */
700 void
701 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
702 {
703 	struct lwp *lp = curthread->td_lwp;
704 	struct proc *p = lp->lwp_proc;
705 	struct trapframe *regs;
706 	struct sigacts *psp = p->p_sigacts;
707 	struct sigframe sf, *sfp;
708 	int oonstack;
709 	char *sp;
710 
711 	regs = lp->lwp_md.md_regs;
712 	oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
713 
714 	/* Save user context */
715 	bzero(&sf, sizeof(struct sigframe));
716 	sf.sf_uc.uc_sigmask = *mask;
717 	sf.sf_uc.uc_stack = lp->lwp_sigstk;
718 	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
719 	KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
720 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
721 
722 	/* Make the size of the saved context visible to userland */
723 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
724 
725 	/* Allocate and validate space for the signal handler context. */
726         if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
727 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
728 		sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
729 			      sizeof(struct sigframe));
730 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
731 	} else {
732 		/* We take red zone into account */
733 		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
734 	}
735 
736 	/*
737 	 * XXX AVX needs 64-byte alignment but sigframe has other fields and
738 	 * the embedded ucontext is not at the front, so aligning this won't
739 	 * help us.  Fortunately we bcopy in/out of the sigframe, so the
740 	 * kernel is ok.
741 	 *
742 	 * The problem though is if userland winds up trying to use the
743 	 * context directly.
744 	 */
745 	sfp = (struct sigframe *)((intptr_t)sp & ~(intptr_t)0xF);
746 
747 	/* Translate the signal is appropriate */
748 	if (p->p_sysent->sv_sigtbl) {
749 		if (sig <= p->p_sysent->sv_sigsize)
750 			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
751 	}
752 
753 	/*
754 	 * Build the argument list for the signal handler.
755 	 *
756 	 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
757 	 */
758 	regs->tf_rdi = sig;				/* argument 1 */
759 	regs->tf_rdx = (register_t)&sfp->sf_uc;		/* argument 3 */
760 
761 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
762 		/*
763 		 * Signal handler installed with SA_SIGINFO.
764 		 *
765 		 * action(signo, siginfo, ucontext)
766 		 */
767 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* argument 2 */
768 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
769 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
770 
771 		/* fill siginfo structure */
772 		sf.sf_si.si_signo = sig;
773 		sf.sf_si.si_code = code;
774 		sf.sf_si.si_addr = (void *)regs->tf_addr;
775 	} else {
776 		/*
777 		 * Old FreeBSD-style arguments.
778 		 *
779 		 * handler (signo, code, [uc], addr)
780 		 */
781 		regs->tf_rsi = (register_t)code;	/* argument 2 */
782 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
783 		sf.sf_ahu.sf_handler = catcher;
784 	}
785 
786 	/*
787 	 * If we're a vm86 process, we want to save the segment registers.
788 	 * We also change eflags to be our emulated eflags, not the actual
789 	 * eflags.
790 	 */
791 #if JG
792 	if (regs->tf_eflags & PSL_VM) {
793 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
794 		struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
795 
796 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
797 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
798 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
799 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
800 
801 		if (vm86->vm86_has_vme == 0)
802 			sf.sf_uc.uc_mcontext.mc_eflags =
803 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
804 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
805 
806 		/*
807 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
808 		 * syscalls made by the signal handler.  This just avoids
809 		 * wasting time for our lazy fixup of such faults.  PSL_NT
810 		 * does nothing in vm86 mode, but vm86 programs can set it
811 		 * almost legitimately in probes for old cpu types.
812 		 */
813 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
814 	}
815 #endif
816 
817 	/*
818 	 * Save the FPU state and reinit the FP unit
819 	 */
820 	npxpush(&sf.sf_uc.uc_mcontext);
821 
822 	/*
823 	 * Copy the sigframe out to the user's stack.
824 	 */
825 	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
826 		/*
827 		 * Something is wrong with the stack pointer.
828 		 * ...Kill the process.
829 		 */
830 		sigexit(lp, SIGILL);
831 	}
832 
833 	regs->tf_rsp = (register_t)sfp;
834 	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
835 
836 	/*
837 	 * i386 abi specifies that the direction flag must be cleared
838 	 * on function entry
839 	 */
840 	regs->tf_rflags &= ~(PSL_T|PSL_D);
841 
842 	/*
843 	 * 64 bit mode has a code and stack selector but
844 	 * no data or extra selector.  %fs and %gs are not
845 	 * stored in-context.
846 	 */
847 	regs->tf_cs = _ucodesel;
848 	regs->tf_ss = _udatasel;
849 	clear_quickret();
850 }
851 
852 /*
853  * Sanitize the trapframe for a virtual kernel passing control to a custom
854  * VM context.  Remove any items that would otherwise create a privilage
855  * issue.
856  *
857  * XXX at the moment we allow userland to set the resume flag.  Is this a
858  * bad idea?
859  */
860 int
861 cpu_sanitize_frame(struct trapframe *frame)
862 {
863 	frame->tf_cs = _ucodesel;
864 	frame->tf_ss = _udatasel;
865 	/* XXX VM (8086) mode not supported? */
866 	frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
867 	frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
868 
869 	return(0);
870 }
871 
872 /*
873  * Sanitize the tls so loading the descriptor does not blow up
874  * on us.  For x86_64 we don't have to do anything.
875  */
876 int
877 cpu_sanitize_tls(struct savetls *tls)
878 {
879 	return(0);
880 }
881 
882 /*
883  * sigreturn(ucontext_t *sigcntxp)
884  *
885  * System call to cleanup state after a signal
886  * has been taken.  Reset signal mask and
887  * stack state from context left by sendsig (above).
888  * Return to previous pc and psl as specified by
889  * context left by sendsig. Check carefully to
890  * make sure that the user has not modified the
891  * state to gain improper privileges.
892  *
893  * MPSAFE
894  */
895 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
896 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
897 
898 int
899 sys_sigreturn(struct sigreturn_args *uap)
900 {
901 	struct lwp *lp = curthread->td_lwp;
902 	struct trapframe *regs;
903 	ucontext_t uc;
904 	ucontext_t *ucp;
905 	register_t rflags;
906 	int cs;
907 	int error;
908 
909 	/*
910 	 * We have to copy the information into kernel space so userland
911 	 * can't modify it while we are sniffing it.
912 	 */
913 	regs = lp->lwp_md.md_regs;
914 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
915 	if (error)
916 		return (error);
917 	ucp = &uc;
918 	rflags = ucp->uc_mcontext.mc_rflags;
919 
920 	/* VM (8086) mode not supported */
921 	rflags &= ~PSL_VM_UNSUPP;
922 
923 #if JG
924 	if (eflags & PSL_VM) {
925 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
926 		struct vm86_kernel *vm86;
927 
928 		/*
929 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
930 		 * set up the vm86 area, and we can't enter vm86 mode.
931 		 */
932 		if (lp->lwp_thread->td_pcb->pcb_ext == 0)
933 			return (EINVAL);
934 		vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
935 		if (vm86->vm86_inited == 0)
936 			return (EINVAL);
937 
938 		/* go back to user mode if both flags are set */
939 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
940 			trapsignal(lp, SIGBUS, 0);
941 
942 		if (vm86->vm86_has_vme) {
943 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
944 			    (eflags & VME_USERCHANGE) | PSL_VM;
945 		} else {
946 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
947 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
948 			    (eflags & VM_USERCHANGE) | PSL_VM;
949 		}
950 		bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
951 		tf->tf_eflags = eflags;
952 		tf->tf_vm86_ds = tf->tf_ds;
953 		tf->tf_vm86_es = tf->tf_es;
954 		tf->tf_vm86_fs = tf->tf_fs;
955 		tf->tf_vm86_gs = tf->tf_gs;
956 		tf->tf_ds = _udatasel;
957 		tf->tf_es = _udatasel;
958 		tf->tf_fs = _udatasel;
959 		tf->tf_gs = _udatasel;
960 	} else
961 #endif
962 	{
963 		/*
964 		 * Don't allow users to change privileged or reserved flags.
965 		 */
966 		/*
967 		 * XXX do allow users to change the privileged flag PSL_RF.
968 		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
969 		 * should sometimes set it there too.  tf_eflags is kept in
970 		 * the signal context during signal handling and there is no
971 		 * other place to remember it, so the PSL_RF bit may be
972 		 * corrupted by the signal handler without us knowing.
973 		 * Corruption of the PSL_RF bit at worst causes one more or
974 		 * one less debugger trap, so allowing it is fairly harmless.
975 		 */
976 		if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
977 			kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
978 	    		return(EINVAL);
979 		}
980 
981 		/*
982 		 * Don't allow users to load a valid privileged %cs.  Let the
983 		 * hardware check for invalid selectors, excess privilege in
984 		 * other selectors, invalid %eip's and invalid %esp's.
985 		 */
986 		cs = ucp->uc_mcontext.mc_cs;
987 		if (!CS_SECURE(cs)) {
988 			kprintf("sigreturn: cs = 0x%x\n", cs);
989 			trapsignal(lp, SIGBUS, T_PROTFLT);
990 			return(EINVAL);
991 		}
992 		bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
993 	}
994 
995 	/*
996 	 * Restore the FPU state from the frame
997 	 */
998 	crit_enter();
999 	npxpop(&ucp->uc_mcontext);
1000 
1001 	if (ucp->uc_mcontext.mc_onstack & 1)
1002 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
1003 	else
1004 		lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
1005 
1006 	lp->lwp_sigmask = ucp->uc_sigmask;
1007 	SIG_CANTMASK(lp->lwp_sigmask);
1008 	clear_quickret();
1009 	crit_exit();
1010 	return(EJUSTRETURN);
1011 }
1012 
1013 /*
1014  * Machine dependent boot() routine
1015  *
1016  * I haven't seen anything to put here yet
1017  * Possibly some stuff might be grafted back here from boot()
1018  */
1019 void
1020 cpu_boot(int howto)
1021 {
1022 }
1023 
1024 /*
1025  * Shutdown the CPU as much as possible
1026  */
1027 void
1028 cpu_halt(void)
1029 {
1030 	for (;;)
1031 		__asm__ __volatile("hlt");
1032 }
1033 
1034 /*
1035  * cpu_idle() represents the idle LWKT.  You cannot return from this function
1036  * (unless you want to blow things up!).  Instead we look for runnable threads
1037  * and loop or halt as appropriate.  Giant is not held on entry to the thread.
1038  *
1039  * The main loop is entered with a critical section held, we must release
1040  * the critical section before doing anything else.  lwkt_switch() will
1041  * check for pending interrupts due to entering and exiting its own
1042  * critical section.
1043  *
1044  * NOTE: On an SMP system we rely on a scheduler IPI to wake a HLTed cpu up.
1045  *	 However, there are cases where the idlethread will be entered with
1046  *	 the possibility that no IPI will occur and in such cases
1047  *	 lwkt_switch() sets TDF_IDLE_NOHLT.
1048  *
1049  * NOTE: cpu_idle_repeat determines how many entries into the idle thread
1050  *	 must occur before it starts using ACPI halt.
1051  */
1052 static int	cpu_idle_hlt = 2;
1053 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
1054     &cpu_idle_hlt, 0, "Idle loop HLT enable");
1055 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_repeat, CTLFLAG_RW,
1056     &cpu_idle_repeat, 0, "Idle entries before acpi hlt");
1057 
1058 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_hltcnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1059     0, CPU_IDLE_STAT_HALT, sysctl_cpu_idle_cnt, "Q", "Idle loop entry halts");
1060 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_spincnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1061     0, CPU_IDLE_STAT_SPIN, sysctl_cpu_idle_cnt, "Q", "Idle loop entry spins");
1062 
1063 static void
1064 cpu_idle_default_hook(void)
1065 {
1066 	/*
1067 	 * We must guarentee that hlt is exactly the instruction
1068 	 * following the sti.
1069 	 */
1070 	__asm __volatile("sti; hlt");
1071 }
1072 
1073 /* Other subsystems (e.g., ACPI) can hook this later. */
1074 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
1075 
1076 static __inline int
1077 cpu_mwait_cx_hint(struct cpu_idle_stat *stat)
1078 {
1079 	int hint, cx_idx;
1080 	u_int idx;
1081 
1082 	if (cpu_mwait_halt >= 0) {
1083 		hint = cpu_mwait_halt;
1084 		goto done;
1085 	}
1086 
1087 	idx = (stat->repeat + stat->repeat_last + stat->repeat_delta) >>
1088 	    cpu_mwait_repeat_shift;
1089 	if (idx >= cpu_mwait_c1_hints_cnt) {
1090 		/* Step up faster, once we walked through all C1 states */
1091 		stat->repeat_delta += 1 << (cpu_mwait_repeat_shift + 1);
1092 	}
1093 	if (cpu_mwait_halt == CPU_MWAIT_HINT_AUTODEEP) {
1094 		if (idx >= cpu_mwait_deep_hints_cnt)
1095 			idx = cpu_mwait_deep_hints_cnt - 1;
1096 		hint = cpu_mwait_deep_hints[idx];
1097 	} else {
1098 		if (idx >= cpu_mwait_hints_cnt)
1099 			idx = cpu_mwait_hints_cnt - 1;
1100 		hint = cpu_mwait_hints[idx];
1101 	}
1102 done:
1103 	cx_idx = MWAIT_EAX_TO_CX(hint);
1104 	if (cx_idx >= 0 && cx_idx < CPU_MWAIT_CX_MAX)
1105 		stat->mwait_cx[cx_idx]++;
1106 	return hint;
1107 }
1108 
1109 void
1110 cpu_idle(void)
1111 {
1112 	globaldata_t gd = mycpu;
1113 	struct cpu_idle_stat *stat = &cpu_idle_stats[gd->gd_cpuid];
1114 	struct thread *td __debugvar = gd->gd_curthread;
1115 	int reqflags;
1116 	int quick;
1117 
1118 	stat->repeat = stat->repeat_last = cpu_idle_repeat_max;
1119 
1120 	crit_exit();
1121 	KKASSERT(td->td_critcount == 0);
1122 	for (;;) {
1123 		/*
1124 		 * See if there are any LWKTs ready to go.
1125 		 */
1126 		lwkt_switch();
1127 
1128 		/*
1129 		 * When halting inside a cli we must check for reqflags
1130 		 * races, particularly [re]schedule requests.  Running
1131 		 * splz() does the job.
1132 		 *
1133 		 * cpu_idle_hlt:
1134 		 *	0	Never halt, just spin
1135 		 *
1136 		 *	1	Always use HLT (or MONITOR/MWAIT if avail).
1137 		 *		This typically eats more power than the
1138 		 *		ACPI halt.
1139 		 *
1140 		 *	2	Use HLT/MONITOR/MWAIT up to a point and then
1141 		 *		use the ACPI halt (default).  This is a hybrid
1142 		 *		approach.  See machdep.cpu_idle_repeat.
1143 		 *
1144 		 *	3	Always use the ACPI halt.  This typically
1145 		 *		eats the least amount of power but the cpu
1146 		 *		will be slow waking up.  Slows down e.g.
1147 		 *		compiles and other pipe/event oriented stuff.
1148 		 *
1149 		 * NOTE: Interrupts are enabled and we are not in a critical
1150 		 *	 section.
1151 		 *
1152 		 * NOTE: Preemptions do not reset gd_idle_repeat.   Also we
1153 		 *	 don't bother capping gd_idle_repeat, it is ok if
1154 		 *	 it overflows.
1155 		 */
1156 		if (gd->gd_idle_repeat == 0) {
1157 			stat->repeat = (stat->repeat + stat->repeat_last) >> 1;
1158 			if (stat->repeat > cpu_idle_repeat_max)
1159 				stat->repeat = cpu_idle_repeat_max;
1160 			stat->repeat_last = 0;
1161 			stat->repeat_delta = 0;
1162 		}
1163 		++stat->repeat_last;
1164 
1165 		++gd->gd_idle_repeat;
1166 		reqflags = gd->gd_reqflags;
1167 		quick = (cpu_idle_hlt == 1) ||
1168 			(cpu_idle_hlt < 3 &&
1169 			 gd->gd_idle_repeat < cpu_idle_repeat);
1170 
1171 		if (quick && (cpu_mi_feature & CPU_MI_MONITOR) &&
1172 		    (reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1173 			splz(); /* XXX */
1174 			cpu_mmw_pause_int(&gd->gd_reqflags, reqflags,
1175 			    cpu_mwait_cx_hint(stat), 0);
1176 			stat->halt++;
1177 		} else if (cpu_idle_hlt) {
1178 			__asm __volatile("cli");
1179 			splz();
1180 			if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1181 				if (quick)
1182 					cpu_idle_default_hook();
1183 				else
1184 					cpu_idle_hook();
1185 			}
1186 			__asm __volatile("sti");
1187 			stat->halt++;
1188 		} else {
1189 			splz();
1190 			__asm __volatile("sti");
1191 			stat->spin++;
1192 		}
1193 	}
1194 }
1195 
1196 /*
1197  * This routine is called if a spinlock has been held through the
1198  * exponential backoff period and is seriously contested.  On a real cpu
1199  * we let it spin.
1200  */
1201 void
1202 cpu_spinlock_contested(void)
1203 {
1204 	cpu_pause();
1205 }
1206 
1207 /*
1208  * Clear registers on exec
1209  */
1210 void
1211 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
1212 {
1213 	struct thread *td = curthread;
1214 	struct lwp *lp = td->td_lwp;
1215 	struct pcb *pcb = td->td_pcb;
1216 	struct trapframe *regs = lp->lwp_md.md_regs;
1217 
1218 	/* was i386_user_cleanup() in NetBSD */
1219 	user_ldt_free(pcb);
1220 
1221 	clear_quickret();
1222 	bzero((char *)regs, sizeof(struct trapframe));
1223 	regs->tf_rip = entry;
1224 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
1225 	regs->tf_rdi = stack;		/* argv */
1226 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
1227 	regs->tf_ss = _udatasel;
1228 	regs->tf_cs = _ucodesel;
1229 	regs->tf_rbx = ps_strings;
1230 
1231 	/*
1232 	 * Reset the hardware debug registers if they were in use.
1233 	 * They won't have any meaning for the newly exec'd process.
1234 	 */
1235 	if (pcb->pcb_flags & PCB_DBREGS) {
1236 		pcb->pcb_dr0 = 0;
1237 		pcb->pcb_dr1 = 0;
1238 		pcb->pcb_dr2 = 0;
1239 		pcb->pcb_dr3 = 0;
1240 		pcb->pcb_dr6 = 0;
1241 		pcb->pcb_dr7 = 0; /* JG set bit 10? */
1242 		if (pcb == td->td_pcb) {
1243 			/*
1244 			 * Clear the debug registers on the running
1245 			 * CPU, otherwise they will end up affecting
1246 			 * the next process we switch to.
1247 			 */
1248 			reset_dbregs();
1249 		}
1250 		pcb->pcb_flags &= ~PCB_DBREGS;
1251 	}
1252 
1253 	/*
1254 	 * Initialize the math emulator (if any) for the current process.
1255 	 * Actually, just clear the bit that says that the emulator has
1256 	 * been initialized.  Initialization is delayed until the process
1257 	 * traps to the emulator (if it is done at all) mainly because
1258 	 * emulators don't provide an entry point for initialization.
1259 	 */
1260 	pcb->pcb_flags &= ~FP_SOFTFP;
1261 
1262 	/*
1263 	 * NOTE: do not set CR0_TS here.  npxinit() must do it after clearing
1264 	 *	 gd_npxthread.  Otherwise a preemptive interrupt thread
1265 	 *	 may panic in npxdna().
1266 	 */
1267 	crit_enter();
1268 	load_cr0(rcr0() | CR0_MP);
1269 
1270 	/*
1271 	 * NOTE: The MSR values must be correct so we can return to
1272 	 * 	 userland.  gd_user_fs/gs must be correct so the switch
1273 	 *	 code knows what the current MSR values are.
1274 	 */
1275 	pcb->pcb_fsbase = 0;	/* Values loaded from PCB on switch */
1276 	pcb->pcb_gsbase = 0;
1277 	mdcpu->gd_user_fs = 0;	/* Cache of current MSR values */
1278 	mdcpu->gd_user_gs = 0;
1279 	wrmsr(MSR_FSBASE, 0);	/* Set MSR values for return to userland */
1280 	wrmsr(MSR_KGSBASE, 0);
1281 
1282 	/* Initialize the npx (if any) for the current process. */
1283 	npxinit(__INITIAL_FPUCW__);
1284 	crit_exit();
1285 
1286 	pcb->pcb_ds = _udatasel;
1287 	pcb->pcb_es = _udatasel;
1288 	pcb->pcb_fs = _udatasel;
1289 	pcb->pcb_gs = _udatasel;
1290 }
1291 
1292 void
1293 cpu_setregs(void)
1294 {
1295 	register_t cr0;
1296 
1297 	cr0 = rcr0();
1298 	cr0 |= CR0_NE;			/* Done by npxinit() */
1299 	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1300 	cr0 |= CR0_WP | CR0_AM;
1301 	load_cr0(cr0);
1302 	load_gs(_udatasel);
1303 }
1304 
1305 static int
1306 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1307 {
1308 	int error;
1309 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1310 		req);
1311 	if (!error && req->newptr)
1312 		resettodr();
1313 	return (error);
1314 }
1315 
1316 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1317 	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1318 
1319 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1320 	CTLFLAG_RW, &disable_rtc_set, 0, "");
1321 
1322 #if JG
1323 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1324 	CTLFLAG_RD, &bootinfo, bootinfo, "");
1325 #endif
1326 
1327 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1328 	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1329 
1330 extern u_long bootdev;		/* not a cdev_t - encoding is different */
1331 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1332 	CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1333 
1334 /*
1335  * Initialize 386 and configure to run kernel
1336  */
1337 
1338 /*
1339  * Initialize segments & interrupt table
1340  */
1341 
1342 int _default_ldt;
1343 struct user_segment_descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1344 struct gate_descriptor idt_arr[MAXCPU][NIDT];
1345 #if JG
1346 union descriptor ldt[NLDT];		/* local descriptor table */
1347 #endif
1348 
1349 /* table descriptors - used to load tables by cpu */
1350 struct region_descriptor r_gdt;
1351 struct region_descriptor r_idt_arr[MAXCPU];
1352 
1353 /* JG proc0paddr is a virtual address */
1354 void *proc0paddr;
1355 /* JG alignment? */
1356 char proc0paddr_buff[LWKT_THREAD_STACK];
1357 
1358 
1359 /* software prototypes -- in more palatable form */
1360 struct soft_segment_descriptor gdt_segs[] = {
1361 /* GNULL_SEL	0 Null Descriptor */
1362 {	0x0,			/* segment base address  */
1363 	0x0,			/* length */
1364 	0,			/* segment type */
1365 	0,			/* segment descriptor priority level */
1366 	0,			/* segment descriptor present */
1367 	0,			/* long */
1368 	0,			/* default 32 vs 16 bit size */
1369 	0  			/* limit granularity (byte/page units)*/ },
1370 /* GCODE_SEL	1 Code Descriptor for kernel */
1371 {	0x0,			/* segment base address  */
1372 	0xfffff,		/* length - all address space */
1373 	SDT_MEMERA,		/* segment type */
1374 	SEL_KPL,		/* segment descriptor priority level */
1375 	1,			/* segment descriptor present */
1376 	1,			/* long */
1377 	0,			/* default 32 vs 16 bit size */
1378 	1  			/* limit granularity (byte/page units)*/ },
1379 /* GDATA_SEL	2 Data Descriptor for kernel */
1380 {	0x0,			/* segment base address  */
1381 	0xfffff,		/* length - all address space */
1382 	SDT_MEMRWA,		/* segment type */
1383 	SEL_KPL,		/* segment descriptor priority level */
1384 	1,			/* segment descriptor present */
1385 	1,			/* long */
1386 	0,			/* default 32 vs 16 bit size */
1387 	1  			/* limit granularity (byte/page units)*/ },
1388 /* GUCODE32_SEL	3 32 bit Code Descriptor for user */
1389 {	0x0,			/* segment base address  */
1390 	0xfffff,		/* length - all address space */
1391 	SDT_MEMERA,		/* segment type */
1392 	SEL_UPL,		/* segment descriptor priority level */
1393 	1,			/* segment descriptor present */
1394 	0,			/* long */
1395 	1,			/* default 32 vs 16 bit size */
1396 	1  			/* limit granularity (byte/page units)*/ },
1397 /* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
1398 {	0x0,			/* segment base address  */
1399 	0xfffff,		/* length - all address space */
1400 	SDT_MEMRWA,		/* segment type */
1401 	SEL_UPL,		/* segment descriptor priority level */
1402 	1,			/* segment descriptor present */
1403 	0,			/* long */
1404 	1,			/* default 32 vs 16 bit size */
1405 	1  			/* limit granularity (byte/page units)*/ },
1406 /* GUCODE_SEL	5 64 bit Code Descriptor for user */
1407 {	0x0,			/* segment base address  */
1408 	0xfffff,		/* length - all address space */
1409 	SDT_MEMERA,		/* segment type */
1410 	SEL_UPL,		/* segment descriptor priority level */
1411 	1,			/* segment descriptor present */
1412 	1,			/* long */
1413 	0,			/* default 32 vs 16 bit size */
1414 	1  			/* limit granularity (byte/page units)*/ },
1415 /* GPROC0_SEL	6 Proc 0 Tss Descriptor */
1416 {
1417 	0x0,			/* segment base address */
1418 	sizeof(struct x86_64tss)-1,/* length - all address space */
1419 	SDT_SYSTSS,		/* segment type */
1420 	SEL_KPL,		/* segment descriptor priority level */
1421 	1,			/* segment descriptor present */
1422 	0,			/* long */
1423 	0,			/* unused - default 32 vs 16 bit size */
1424 	0  			/* limit granularity (byte/page units)*/ },
1425 /* Actually, the TSS is a system descriptor which is double size */
1426 {	0x0,			/* segment base address  */
1427 	0x0,			/* length */
1428 	0,			/* segment type */
1429 	0,			/* segment descriptor priority level */
1430 	0,			/* segment descriptor present */
1431 	0,			/* long */
1432 	0,			/* default 32 vs 16 bit size */
1433 	0  			/* limit granularity (byte/page units)*/ },
1434 /* GUGS32_SEL	8 32 bit GS Descriptor for user */
1435 {	0x0,			/* segment base address  */
1436 	0xfffff,		/* length - all address space */
1437 	SDT_MEMRWA,		/* segment type */
1438 	SEL_UPL,		/* segment descriptor priority level */
1439 	1,			/* segment descriptor present */
1440 	0,			/* long */
1441 	1,			/* default 32 vs 16 bit size */
1442 	1  			/* limit granularity (byte/page units)*/ },
1443 };
1444 
1445 void
1446 setidt_global(int idx, inthand_t *func, int typ, int dpl, int ist)
1447 {
1448 	int cpu;
1449 
1450 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
1451 		struct gate_descriptor *ip = &idt_arr[cpu][idx];
1452 
1453 		ip->gd_looffset = (uintptr_t)func;
1454 		ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1455 		ip->gd_ist = ist;
1456 		ip->gd_xx = 0;
1457 		ip->gd_type = typ;
1458 		ip->gd_dpl = dpl;
1459 		ip->gd_p = 1;
1460 		ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1461 	}
1462 }
1463 
1464 void
1465 setidt(int idx, inthand_t *func, int typ, int dpl, int ist, int cpu)
1466 {
1467 	struct gate_descriptor *ip;
1468 
1469 	KASSERT(cpu >= 0 && cpu < ncpus, ("invalid cpu %d", cpu));
1470 
1471 	ip = &idt_arr[cpu][idx];
1472 	ip->gd_looffset = (uintptr_t)func;
1473 	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1474 	ip->gd_ist = ist;
1475 	ip->gd_xx = 0;
1476 	ip->gd_type = typ;
1477 	ip->gd_dpl = dpl;
1478 	ip->gd_p = 1;
1479 	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1480 }
1481 
1482 #define	IDTVEC(name)	__CONCAT(X,name)
1483 
1484 extern inthand_t
1485 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1486 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1487 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1488 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1489 	IDTVEC(xmm), IDTVEC(dblfault),
1490 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1491 
1492 #ifdef DEBUG_INTERRUPTS
1493 extern inthand_t *Xrsvdary[256];
1494 #endif
1495 
1496 void
1497 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1498 {
1499 	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1500 	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1501 	ssd->ssd_type  = sd->sd_type;
1502 	ssd->ssd_dpl   = sd->sd_dpl;
1503 	ssd->ssd_p     = sd->sd_p;
1504 	ssd->ssd_def32 = sd->sd_def32;
1505 	ssd->ssd_gran  = sd->sd_gran;
1506 }
1507 
1508 void
1509 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1510 {
1511 
1512 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1513 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1514 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1515 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1516 	sd->sd_type  = ssd->ssd_type;
1517 	sd->sd_dpl   = ssd->ssd_dpl;
1518 	sd->sd_p     = ssd->ssd_p;
1519 	sd->sd_long  = ssd->ssd_long;
1520 	sd->sd_def32 = ssd->ssd_def32;
1521 	sd->sd_gran  = ssd->ssd_gran;
1522 }
1523 
1524 void
1525 ssdtosyssd(struct soft_segment_descriptor *ssd,
1526     struct system_segment_descriptor *sd)
1527 {
1528 
1529 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1530 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1531 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1532 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1533 	sd->sd_type  = ssd->ssd_type;
1534 	sd->sd_dpl   = ssd->ssd_dpl;
1535 	sd->sd_p     = ssd->ssd_p;
1536 	sd->sd_gran  = ssd->ssd_gran;
1537 }
1538 
1539 /*
1540  * Populate the (physmap) array with base/bound pairs describing the
1541  * available physical memory in the system, then test this memory and
1542  * build the phys_avail array describing the actually-available memory.
1543  *
1544  * If we cannot accurately determine the physical memory map, then use
1545  * value from the 0xE801 call, and failing that, the RTC.
1546  *
1547  * Total memory size may be set by the kernel environment variable
1548  * hw.physmem or the compile-time define MAXMEM.
1549  *
1550  * Memory is aligned to PHYSMAP_ALIGN which must be a multiple
1551  * of PAGE_SIZE.  This also greatly reduces the memory test time
1552  * which would otherwise be excessive on machines with > 8G of ram.
1553  *
1554  * XXX first should be vm_paddr_t.
1555  */
1556 
1557 #define PHYSMAP_ALIGN		(vm_paddr_t)(128 * 1024)
1558 #define PHYSMAP_ALIGN_MASK	(vm_paddr_t)(PHYSMAP_ALIGN - 1)
1559 
1560 static void
1561 getmemsize(caddr_t kmdp, u_int64_t first)
1562 {
1563 	int off, physmap_idx, pa_indx, da_indx;
1564 	int i, j;
1565 	vm_paddr_t physmap[PHYSMAP_SIZE];
1566 	vm_paddr_t pa;
1567 	vm_paddr_t msgbuf_size;
1568 	u_long physmem_tunable;
1569 	pt_entry_t *pte;
1570 	struct bios_smap *smapbase, *smap, *smapend;
1571 	u_int32_t smapsize;
1572 	quad_t dcons_addr, dcons_size;
1573 
1574 	bzero(physmap, sizeof(physmap));
1575 	physmap_idx = 0;
1576 
1577 	/*
1578 	 * get memory map from INT 15:E820, kindly supplied by the loader.
1579 	 *
1580 	 * subr_module.c says:
1581 	 * "Consumer may safely assume that size value precedes data."
1582 	 * ie: an int32_t immediately precedes smap.
1583 	 */
1584 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1585 	    MODINFO_METADATA | MODINFOMD_SMAP);
1586 	if (smapbase == NULL)
1587 		panic("No BIOS smap info from loader!");
1588 
1589 	smapsize = *((u_int32_t *)smapbase - 1);
1590 	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1591 
1592 	for (smap = smapbase; smap < smapend; smap++) {
1593 		if (boothowto & RB_VERBOSE)
1594 			kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1595 			    smap->type, smap->base, smap->length);
1596 
1597 		if (smap->type != SMAP_TYPE_MEMORY)
1598 			continue;
1599 
1600 		if (smap->length == 0)
1601 			continue;
1602 
1603 		for (i = 0; i <= physmap_idx; i += 2) {
1604 			if (smap->base < physmap[i + 1]) {
1605 				if (boothowto & RB_VERBOSE) {
1606 					kprintf("Overlapping or non-monotonic "
1607 						"memory region, ignoring "
1608 						"second region\n");
1609 				}
1610 				break;
1611 			}
1612 		}
1613 		if (i <= physmap_idx)
1614 			continue;
1615 
1616 		Realmem += smap->length;
1617 
1618 		if (smap->base == physmap[physmap_idx + 1]) {
1619 			physmap[physmap_idx + 1] += smap->length;
1620 			continue;
1621 		}
1622 
1623 		physmap_idx += 2;
1624 		if (physmap_idx == PHYSMAP_SIZE) {
1625 			kprintf("Too many segments in the physical "
1626 				"address map, giving up\n");
1627 			break;
1628 		}
1629 		physmap[physmap_idx] = smap->base;
1630 		physmap[physmap_idx + 1] = smap->base + smap->length;
1631 	}
1632 
1633 	base_memory = physmap[1] / 1024;
1634 	/* make hole for AP bootstrap code */
1635 	physmap[1] = mp_bootaddress(base_memory);
1636 
1637 	/* Save EBDA address, if any */
1638 	ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
1639 	ebda_addr <<= 4;
1640 
1641 	/*
1642 	 * Maxmem isn't the "maximum memory", it's one larger than the
1643 	 * highest page of the physical address space.  It should be
1644 	 * called something like "Maxphyspage".  We may adjust this
1645 	 * based on ``hw.physmem'' and the results of the memory test.
1646 	 */
1647 	Maxmem = atop(physmap[physmap_idx + 1]);
1648 
1649 #ifdef MAXMEM
1650 	Maxmem = MAXMEM / 4;
1651 #endif
1652 
1653 	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1654 		Maxmem = atop(physmem_tunable);
1655 
1656 	/*
1657 	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1658 	 * in the system.
1659 	 */
1660 	if (Maxmem > atop(physmap[physmap_idx + 1]))
1661 		Maxmem = atop(physmap[physmap_idx + 1]);
1662 
1663 	/*
1664 	 * Blowing out the DMAP will blow up the system.
1665 	 */
1666 	if (Maxmem > atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS)) {
1667 		kprintf("Limiting Maxmem due to DMAP size\n");
1668 		Maxmem = atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS);
1669 	}
1670 
1671 	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1672 	    (boothowto & RB_VERBOSE)) {
1673 		kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
1674 	}
1675 
1676 	/*
1677 	 * Call pmap initialization to make new kernel address space
1678 	 *
1679 	 * Mask off page 0.
1680 	 */
1681 	pmap_bootstrap(&first);
1682 	physmap[0] = PAGE_SIZE;
1683 
1684 	/*
1685 	 * Align the physmap to PHYSMAP_ALIGN and cut out anything
1686 	 * exceeding Maxmem.
1687 	 */
1688 	for (i = j = 0; i <= physmap_idx; i += 2) {
1689 		if (physmap[i+1] > ptoa(Maxmem))
1690 			physmap[i+1] = ptoa(Maxmem);
1691 		physmap[i] = (physmap[i] + PHYSMAP_ALIGN_MASK) &
1692 			     ~PHYSMAP_ALIGN_MASK;
1693 		physmap[i+1] = physmap[i+1] & ~PHYSMAP_ALIGN_MASK;
1694 
1695 		physmap[j] = physmap[i];
1696 		physmap[j+1] = physmap[i+1];
1697 
1698 		if (physmap[i] < physmap[i+1])
1699 			j += 2;
1700 	}
1701 	physmap_idx = j - 2;
1702 
1703 	/*
1704 	 * Align anything else used in the validation loop.
1705 	 */
1706 	first = (first + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1707 
1708 	/*
1709 	 * Size up each available chunk of physical memory.
1710 	 */
1711 	pa_indx = 0;
1712 	da_indx = 1;
1713 	phys_avail[pa_indx++] = physmap[0];
1714 	phys_avail[pa_indx] = physmap[0];
1715 	dump_avail[da_indx] = physmap[0];
1716 	pte = CMAP1;
1717 
1718 	/*
1719 	 * Get dcons buffer address
1720 	 */
1721 	if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
1722 	    kgetenv_quad("dcons.size", &dcons_size) == 0)
1723 		dcons_addr = 0;
1724 
1725 	/*
1726 	 * Validate the physical memory.  The physical memory segments
1727 	 * have already been aligned to PHYSMAP_ALIGN which is a multiple
1728 	 * of PAGE_SIZE.
1729 	 */
1730 	for (i = 0; i <= physmap_idx; i += 2) {
1731 		vm_paddr_t end;
1732 
1733 		end = physmap[i + 1];
1734 
1735 		for (pa = physmap[i]; pa < end; pa += PHYSMAP_ALIGN) {
1736 			int tmp, page_bad, full;
1737 			int *ptr = (int *)CADDR1;
1738 
1739 			full = FALSE;
1740 			/*
1741 			 * block out kernel memory as not available.
1742 			 */
1743 			if (pa >= 0x200000 && pa < first)
1744 				goto do_dump_avail;
1745 
1746 			/*
1747 			 * block out dcons buffer
1748 			 */
1749 			if (dcons_addr > 0
1750 			    && pa >= trunc_page(dcons_addr)
1751 			    && pa < dcons_addr + dcons_size) {
1752 				goto do_dump_avail;
1753 			}
1754 
1755 			page_bad = FALSE;
1756 
1757 			/*
1758 			 * map page into kernel: valid, read/write,non-cacheable
1759 			 */
1760 			*pte = pa |
1761 			    kernel_pmap.pmap_bits[PG_V_IDX] |
1762 			    kernel_pmap.pmap_bits[PG_RW_IDX] |
1763 			    kernel_pmap.pmap_bits[PG_N_IDX];
1764 			cpu_invltlb();
1765 
1766 			tmp = *ptr;
1767 			/*
1768 			 * Test for alternating 1's and 0's
1769 			 */
1770 			*(volatile int *)ptr = 0xaaaaaaaa;
1771 			cpu_mfence();
1772 			if (*(volatile int *)ptr != 0xaaaaaaaa)
1773 				page_bad = TRUE;
1774 			/*
1775 			 * Test for alternating 0's and 1's
1776 			 */
1777 			*(volatile int *)ptr = 0x55555555;
1778 			cpu_mfence();
1779 			if (*(volatile int *)ptr != 0x55555555)
1780 				page_bad = TRUE;
1781 			/*
1782 			 * Test for all 1's
1783 			 */
1784 			*(volatile int *)ptr = 0xffffffff;
1785 			cpu_mfence();
1786 			if (*(volatile int *)ptr != 0xffffffff)
1787 				page_bad = TRUE;
1788 			/*
1789 			 * Test for all 0's
1790 			 */
1791 			*(volatile int *)ptr = 0x0;
1792 			cpu_mfence();
1793 			if (*(volatile int *)ptr != 0x0)
1794 				page_bad = TRUE;
1795 			/*
1796 			 * Restore original value.
1797 			 */
1798 			*ptr = tmp;
1799 
1800 			/*
1801 			 * Adjust array of valid/good pages.
1802 			 */
1803 			if (page_bad == TRUE)
1804 				continue;
1805 			/*
1806 			 * If this good page is a continuation of the
1807 			 * previous set of good pages, then just increase
1808 			 * the end pointer. Otherwise start a new chunk.
1809 			 * Note that "end" points one higher than end,
1810 			 * making the range >= start and < end.
1811 			 * If we're also doing a speculative memory
1812 			 * test and we at or past the end, bump up Maxmem
1813 			 * so that we keep going. The first bad page
1814 			 * will terminate the loop.
1815 			 */
1816 			if (phys_avail[pa_indx] == pa) {
1817 				phys_avail[pa_indx] += PHYSMAP_ALIGN;
1818 			} else {
1819 				pa_indx++;
1820 				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1821 					kprintf(
1822 		"Too many holes in the physical address space, giving up\n");
1823 					pa_indx--;
1824 					full = TRUE;
1825 					goto do_dump_avail;
1826 				}
1827 				phys_avail[pa_indx++] = pa;
1828 				phys_avail[pa_indx] = pa + PHYSMAP_ALIGN;
1829 			}
1830 			physmem += PHYSMAP_ALIGN / PAGE_SIZE;
1831 do_dump_avail:
1832 			if (dump_avail[da_indx] == pa) {
1833 				dump_avail[da_indx] += PHYSMAP_ALIGN;
1834 			} else {
1835 				da_indx++;
1836 				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1837 					da_indx--;
1838 					goto do_next;
1839 				}
1840 				dump_avail[da_indx++] = pa;
1841 				dump_avail[da_indx] = pa + PHYSMAP_ALIGN;
1842 			}
1843 do_next:
1844 			if (full)
1845 				break;
1846 		}
1847 	}
1848 	*pte = 0;
1849 	cpu_invltlb();
1850 
1851 	/*
1852 	 * The last chunk must contain at least one page plus the message
1853 	 * buffer to avoid complicating other code (message buffer address
1854 	 * calculation, etc.).
1855 	 */
1856 	msgbuf_size = (MSGBUF_SIZE + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1857 
1858 	while (phys_avail[pa_indx - 1] + PHYSMAP_ALIGN +
1859 	       msgbuf_size >= phys_avail[pa_indx]) {
1860 		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1861 		phys_avail[pa_indx--] = 0;
1862 		phys_avail[pa_indx--] = 0;
1863 	}
1864 
1865 	Maxmem = atop(phys_avail[pa_indx]);
1866 
1867 	/* Trim off space for the message buffer. */
1868 	phys_avail[pa_indx] -= msgbuf_size;
1869 
1870 	avail_end = phys_avail[pa_indx];
1871 
1872 	/* Map the message buffer. */
1873 	for (off = 0; off < msgbuf_size; off += PAGE_SIZE) {
1874 		pmap_kenter((vm_offset_t)msgbufp + off,
1875 			    phys_avail[pa_indx] + off);
1876 	}
1877 }
1878 
1879 struct machintr_abi MachIntrABI;
1880 
1881 /*
1882  * IDT VECTORS:
1883  *	0	Divide by zero
1884  *	1	Debug
1885  *	2	NMI
1886  *	3	BreakPoint
1887  *	4	OverFlow
1888  *	5	Bound-Range
1889  *	6	Invalid OpCode
1890  *	7	Device Not Available (x87)
1891  *	8	Double-Fault
1892  *	9	Coprocessor Segment overrun (unsupported, reserved)
1893  *	10	Invalid-TSS
1894  *	11	Segment not present
1895  *	12	Stack
1896  *	13	General Protection
1897  *	14	Page Fault
1898  *	15	Reserved
1899  *	16	x87 FP Exception pending
1900  *	17	Alignment Check
1901  *	18	Machine Check
1902  *	19	SIMD floating point
1903  *	20-31	reserved
1904  *	32-255	INTn/external sources
1905  */
1906 u_int64_t
1907 hammer_time(u_int64_t modulep, u_int64_t physfree)
1908 {
1909 	caddr_t kmdp;
1910 	int gsel_tss, x, cpu;
1911 #if JG
1912 	int metadata_missing, off;
1913 #endif
1914 	struct mdglobaldata *gd;
1915 	u_int64_t msr;
1916 
1917 	/*
1918 	 * Prevent lowering of the ipl if we call tsleep() early.
1919 	 */
1920 	gd = &CPU_prvspace[0].mdglobaldata;
1921 	bzero(gd, sizeof(*gd));
1922 
1923 	/*
1924 	 * Note: on both UP and SMP curthread must be set non-NULL
1925 	 * early in the boot sequence because the system assumes
1926 	 * that 'curthread' is never NULL.
1927 	 */
1928 
1929 	gd->mi.gd_curthread = &thread0;
1930 	thread0.td_gd = &gd->mi;
1931 
1932 	atdevbase = ISA_HOLE_START + PTOV_OFFSET;
1933 
1934 #if JG
1935 	metadata_missing = 0;
1936 	if (bootinfo.bi_modulep) {
1937 		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1938 		preload_bootstrap_relocate(KERNBASE);
1939 	} else {
1940 		metadata_missing = 1;
1941 	}
1942 	if (bootinfo.bi_envp)
1943 		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1944 #endif
1945 
1946 	preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
1947 	preload_bootstrap_relocate(PTOV_OFFSET);
1948 	kmdp = preload_search_by_type("elf kernel");
1949 	if (kmdp == NULL)
1950 		kmdp = preload_search_by_type("elf64 kernel");
1951 	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1952 	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
1953 #ifdef DDB
1954 	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1955 	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1956 #endif
1957 
1958 	if (boothowto & RB_VERBOSE)
1959 		bootverbose++;
1960 
1961 	/*
1962 	 * Default MachIntrABI to ICU
1963 	 */
1964 	MachIntrABI = MachIntrABI_ICU;
1965 
1966 	/*
1967 	 * start with one cpu.  Note: with one cpu, ncpus2_shift, ncpus2_mask,
1968 	 * and ncpus_fit_mask remain 0.
1969 	 */
1970 	ncpus = 1;
1971 	ncpus2 = 1;
1972 	ncpus_fit = 1;
1973 	/* Init basic tunables, hz etc */
1974 	init_param1();
1975 
1976 	/*
1977 	 * make gdt memory segments
1978 	 */
1979 	gdt_segs[GPROC0_SEL].ssd_base =
1980 		(uintptr_t) &CPU_prvspace[0].mdglobaldata.gd_common_tss;
1981 
1982 	gd->mi.gd_prvspace = &CPU_prvspace[0];
1983 
1984 	for (x = 0; x < NGDT; x++) {
1985 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
1986 			ssdtosd(&gdt_segs[x], &gdt[x]);
1987 	}
1988 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1989 	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1990 
1991 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1992 	r_gdt.rd_base =  (long) gdt;
1993 	lgdt(&r_gdt);
1994 
1995 	wrmsr(MSR_FSBASE, 0);		/* User value */
1996 	wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
1997 	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1998 
1999 	mi_gdinit(&gd->mi, 0);
2000 	cpu_gdinit(gd, 0);
2001 	proc0paddr = proc0paddr_buff;
2002 	mi_proc0init(&gd->mi, proc0paddr);
2003 	safepri = TDPRI_MAX;
2004 
2005 	/* spinlocks and the BGL */
2006 	init_locks();
2007 
2008 	/* exceptions */
2009 	for (x = 0; x < NIDT; x++)
2010 		setidt_global(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
2011 	setidt_global(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
2012 	setidt_global(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
2013 	setidt_global(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 1);
2014  	setidt_global(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
2015 	setidt_global(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
2016 	setidt_global(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
2017 	setidt_global(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
2018 	setidt_global(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
2019 	setidt_global(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
2020 	setidt_global(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
2021 	setidt_global(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
2022 	setidt_global(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
2023 	setidt_global(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
2024 	setidt_global(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
2025 	setidt_global(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
2026 	setidt_global(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
2027 	setidt_global(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
2028 	setidt_global(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
2029 	setidt_global(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
2030 
2031 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
2032 		r_idt_arr[cpu].rd_limit = sizeof(idt_arr[cpu]) - 1;
2033 		r_idt_arr[cpu].rd_base = (long) &idt_arr[cpu][0];
2034 	}
2035 
2036 	lidt(&r_idt_arr[0]);
2037 
2038 	/*
2039 	 * Initialize the console before we print anything out.
2040 	 */
2041 	cninit();
2042 
2043 #if JG
2044 	if (metadata_missing)
2045 		kprintf("WARNING: loader(8) metadata is missing!\n");
2046 #endif
2047 
2048 #if	NISA >0
2049 	elcr_probe();
2050 	isa_defaultirq();
2051 #endif
2052 	rand_initialize();
2053 
2054 	/*
2055 	 * Initialize IRQ mapping
2056 	 *
2057 	 * NOTE:
2058 	 * SHOULD be after elcr_probe()
2059 	 */
2060 	MachIntrABI_ICU.initmap();
2061 	MachIntrABI_IOAPIC.initmap();
2062 
2063 #ifdef DDB
2064 	kdb_init();
2065 	if (boothowto & RB_KDB)
2066 		Debugger("Boot flags requested debugger");
2067 #endif
2068 
2069 #if JG
2070 	finishidentcpu();	/* Final stage of CPU initialization */
2071 	setidt(6, &IDTVEC(ill),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2072 	setidt(13, &IDTVEC(prot),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2073 #endif
2074 	identify_cpu();		/* Final stage of CPU initialization */
2075 	initializecpu(0);	/* Initialize CPU registers */
2076 
2077 	TUNABLE_INT_FETCH("hw.apic_io_enable", &ioapic_enable); /* for compat */
2078 	TUNABLE_INT_FETCH("hw.ioapic_enable", &ioapic_enable);
2079 	TUNABLE_INT_FETCH("hw.lapic_enable", &lapic_enable);
2080 
2081 	/*
2082 	 * Some of the virtual machines do not work w/ I/O APIC
2083 	 * enabled.  If the user does not explicitly enable or
2084 	 * disable the I/O APIC (ioapic_enable < 0), then we
2085 	 * disable I/O APIC on all virtual machines.
2086 	 *
2087 	 * NOTE:
2088 	 * This must be done after identify_cpu(), which sets
2089 	 * 'cpu_feature2'
2090 	 */
2091 	if (ioapic_enable < 0) {
2092 		if (cpu_feature2 & CPUID2_VMM)
2093 			ioapic_enable = 0;
2094 		else
2095 			ioapic_enable = 1;
2096 	}
2097 
2098 	/* make an initial tss so cpu can get interrupt stack on syscall! */
2099 	gd->gd_common_tss.tss_rsp0 =
2100 		(register_t)(thread0.td_kstack +
2101 			     KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb));
2102 	/* Ensure the stack is aligned to 16 bytes */
2103 	gd->gd_common_tss.tss_rsp0 &= ~(register_t)0xF;
2104 
2105 	/* double fault stack */
2106 	gd->gd_common_tss.tss_ist1 =
2107 		(long)&gd->mi.gd_prvspace->idlestack[
2108 			sizeof(gd->mi.gd_prvspace->idlestack)];
2109 
2110 	/* Set the IO permission bitmap (empty due to tss seg limit) */
2111 	gd->gd_common_tss.tss_iobase = sizeof(struct x86_64tss);
2112 
2113 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2114 	gd->gd_tss_gdt = &gdt[GPROC0_SEL];
2115 	gd->gd_common_tssd = *gd->gd_tss_gdt;
2116 	ltr(gsel_tss);
2117 
2118 	/* Set up the fast syscall stuff */
2119 	msr = rdmsr(MSR_EFER) | EFER_SCE;
2120 	wrmsr(MSR_EFER, msr);
2121 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
2122 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
2123 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
2124 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
2125 	wrmsr(MSR_STAR, msr);
2126 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
2127 
2128 	getmemsize(kmdp, physfree);
2129 	init_param2(physmem);
2130 
2131 	/* now running on new page tables, configured,and u/iom is accessible */
2132 
2133 	/* Map the message buffer. */
2134 #if JG
2135 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2136 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2137 #endif
2138 
2139 	msgbufinit(msgbufp, MSGBUF_SIZE);
2140 
2141 
2142 	/* transfer to user mode */
2143 
2144 	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2145 	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2146 	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
2147 
2148 	load_ds(_udatasel);
2149 	load_es(_udatasel);
2150 	load_fs(_udatasel);
2151 
2152 	/* setup proc 0's pcb */
2153 	thread0.td_pcb->pcb_flags = 0;
2154 	thread0.td_pcb->pcb_cr3 = KPML4phys;
2155 	thread0.td_pcb->pcb_ext = NULL;
2156 	lwp0.lwp_md.md_regs = &proc0_tf;	/* XXX needed? */
2157 
2158 	/* Location of kernel stack for locore */
2159 	return ((u_int64_t)thread0.td_pcb);
2160 }
2161 
2162 /*
2163  * Initialize machine-dependant portions of the global data structure.
2164  * Note that the global data area and cpu0's idlestack in the private
2165  * data space were allocated in locore.
2166  *
2167  * Note: the idlethread's cpl is 0
2168  *
2169  * WARNING!  Called from early boot, 'mycpu' may not work yet.
2170  */
2171 void
2172 cpu_gdinit(struct mdglobaldata *gd, int cpu)
2173 {
2174 	if (cpu)
2175 		gd->mi.gd_curthread = &gd->mi.gd_idlethread;
2176 
2177 	lwkt_init_thread(&gd->mi.gd_idlethread,
2178 			gd->mi.gd_prvspace->idlestack,
2179 			sizeof(gd->mi.gd_prvspace->idlestack),
2180 			0, &gd->mi);
2181 	lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
2182 	gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
2183 	gd->mi.gd_idlethread.td_sp -= sizeof(void *);
2184 	*(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
2185 }
2186 
2187 int
2188 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
2189 {
2190 	if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
2191 	    eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
2192 		return (TRUE);
2193 	}
2194 	if (saddr >= DMAP_MIN_ADDRESS && eaddr <= DMAP_MAX_ADDRESS)
2195 		return (TRUE);
2196 	return (FALSE);
2197 }
2198 
2199 struct globaldata *
2200 globaldata_find(int cpu)
2201 {
2202 	KKASSERT(cpu >= 0 && cpu < ncpus);
2203 	return(&CPU_prvspace[cpu].mdglobaldata.mi);
2204 }
2205 
2206 int
2207 ptrace_set_pc(struct lwp *lp, unsigned long addr)
2208 {
2209 	lp->lwp_md.md_regs->tf_rip = addr;
2210 	return (0);
2211 }
2212 
2213 int
2214 ptrace_single_step(struct lwp *lp)
2215 {
2216 	lp->lwp_md.md_regs->tf_rflags |= PSL_T;
2217 	return (0);
2218 }
2219 
2220 int
2221 fill_regs(struct lwp *lp, struct reg *regs)
2222 {
2223 	struct trapframe *tp;
2224 
2225 	if ((tp = lp->lwp_md.md_regs) == NULL)
2226 		return EINVAL;
2227 	bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
2228 	return (0);
2229 }
2230 
2231 int
2232 set_regs(struct lwp *lp, struct reg *regs)
2233 {
2234 	struct trapframe *tp;
2235 
2236 	tp = lp->lwp_md.md_regs;
2237 	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
2238 	    !CS_SECURE(regs->r_cs))
2239 		return (EINVAL);
2240 	bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
2241 	clear_quickret();
2242 	return (0);
2243 }
2244 
2245 #ifndef CPU_DISABLE_SSE
2246 static void
2247 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2248 {
2249 	struct env87 *penv_87 = &sv_87->sv_env;
2250 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2251 	int i;
2252 
2253 	/* FPU control/status */
2254 	penv_87->en_cw = penv_xmm->en_cw;
2255 	penv_87->en_sw = penv_xmm->en_sw;
2256 	penv_87->en_tw = penv_xmm->en_tw;
2257 	penv_87->en_fip = penv_xmm->en_fip;
2258 	penv_87->en_fcs = penv_xmm->en_fcs;
2259 	penv_87->en_opcode = penv_xmm->en_opcode;
2260 	penv_87->en_foo = penv_xmm->en_foo;
2261 	penv_87->en_fos = penv_xmm->en_fos;
2262 
2263 	/* FPU registers */
2264 	for (i = 0; i < 8; ++i)
2265 		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2266 }
2267 
2268 static void
2269 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2270 {
2271 	struct env87 *penv_87 = &sv_87->sv_env;
2272 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2273 	int i;
2274 
2275 	/* FPU control/status */
2276 	penv_xmm->en_cw = penv_87->en_cw;
2277 	penv_xmm->en_sw = penv_87->en_sw;
2278 	penv_xmm->en_tw = penv_87->en_tw;
2279 	penv_xmm->en_fip = penv_87->en_fip;
2280 	penv_xmm->en_fcs = penv_87->en_fcs;
2281 	penv_xmm->en_opcode = penv_87->en_opcode;
2282 	penv_xmm->en_foo = penv_87->en_foo;
2283 	penv_xmm->en_fos = penv_87->en_fos;
2284 
2285 	/* FPU registers */
2286 	for (i = 0; i < 8; ++i)
2287 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2288 }
2289 #endif /* CPU_DISABLE_SSE */
2290 
2291 int
2292 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2293 {
2294 	if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
2295 		return EINVAL;
2296 #ifndef CPU_DISABLE_SSE
2297 	if (cpu_fxsr) {
2298 		fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2299 				(struct save87 *)fpregs);
2300 		return (0);
2301 	}
2302 #endif /* CPU_DISABLE_SSE */
2303 	bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2304 	return (0);
2305 }
2306 
2307 int
2308 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2309 {
2310 #ifndef CPU_DISABLE_SSE
2311 	if (cpu_fxsr) {
2312 		set_fpregs_xmm((struct save87 *)fpregs,
2313 			       &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2314 		return (0);
2315 	}
2316 #endif /* CPU_DISABLE_SSE */
2317 	bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2318 	return (0);
2319 }
2320 
2321 int
2322 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2323 {
2324 	struct pcb *pcb;
2325 
2326         if (lp == NULL) {
2327                 dbregs->dr[0] = rdr0();
2328                 dbregs->dr[1] = rdr1();
2329                 dbregs->dr[2] = rdr2();
2330                 dbregs->dr[3] = rdr3();
2331                 dbregs->dr[4] = rdr4();
2332                 dbregs->dr[5] = rdr5();
2333                 dbregs->dr[6] = rdr6();
2334                 dbregs->dr[7] = rdr7();
2335 		return (0);
2336         }
2337 	if (lp->lwp_thread == NULL || (pcb = lp->lwp_thread->td_pcb) == NULL)
2338 		return EINVAL;
2339 	dbregs->dr[0] = pcb->pcb_dr0;
2340 	dbregs->dr[1] = pcb->pcb_dr1;
2341 	dbregs->dr[2] = pcb->pcb_dr2;
2342 	dbregs->dr[3] = pcb->pcb_dr3;
2343 	dbregs->dr[4] = 0;
2344 	dbregs->dr[5] = 0;
2345 	dbregs->dr[6] = pcb->pcb_dr6;
2346 	dbregs->dr[7] = pcb->pcb_dr7;
2347 	return (0);
2348 }
2349 
2350 int
2351 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2352 {
2353 	if (lp == NULL) {
2354 		load_dr0(dbregs->dr[0]);
2355 		load_dr1(dbregs->dr[1]);
2356 		load_dr2(dbregs->dr[2]);
2357 		load_dr3(dbregs->dr[3]);
2358 		load_dr4(dbregs->dr[4]);
2359 		load_dr5(dbregs->dr[5]);
2360 		load_dr6(dbregs->dr[6]);
2361 		load_dr7(dbregs->dr[7]);
2362 	} else {
2363 		struct pcb *pcb;
2364 		struct ucred *ucred;
2365 		int i;
2366 		uint64_t mask1, mask2;
2367 
2368 		/*
2369 		 * Don't let an illegal value for dr7 get set.	Specifically,
2370 		 * check for undefined settings.  Setting these bit patterns
2371 		 * result in undefined behaviour and can lead to an unexpected
2372 		 * TRCTRAP.
2373 		 */
2374 		/* JG this loop looks unreadable */
2375 		/* Check 4 2-bit fields for invalid patterns.
2376 		 * These fields are R/Wi, for i = 0..3
2377 		 */
2378 		/* Is 10 in LENi allowed when running in compatibility mode? */
2379 		/* Pattern 10 in R/Wi might be used to indicate
2380 		 * breakpoint on I/O. Further analysis should be
2381 		 * carried to decide if it is safe and useful to
2382 		 * provide access to that capability
2383 		 */
2384 		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2385 		     i++, mask1 <<= 4, mask2 <<= 4)
2386 			if ((dbregs->dr[7] & mask1) == mask2)
2387 				return (EINVAL);
2388 
2389 		pcb = lp->lwp_thread->td_pcb;
2390 		ucred = lp->lwp_proc->p_ucred;
2391 
2392 		/*
2393 		 * Don't let a process set a breakpoint that is not within the
2394 		 * process's address space.  If a process could do this, it
2395 		 * could halt the system by setting a breakpoint in the kernel
2396 		 * (if ddb was enabled).  Thus, we need to check to make sure
2397 		 * that no breakpoints are being enabled for addresses outside
2398 		 * process's address space, unless, perhaps, we were called by
2399 		 * uid 0.
2400 		 *
2401 		 * XXX - what about when the watched area of the user's
2402 		 * address space is written into from within the kernel
2403 		 * ... wouldn't that still cause a breakpoint to be generated
2404 		 * from within kernel mode?
2405 		 */
2406 
2407 		if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2408 			if (dbregs->dr[7] & 0x3) {
2409 				/* dr0 is enabled */
2410 				if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2411 					return (EINVAL);
2412 			}
2413 
2414 			if (dbregs->dr[7] & (0x3<<2)) {
2415 				/* dr1 is enabled */
2416 				if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2417 					return (EINVAL);
2418 			}
2419 
2420 			if (dbregs->dr[7] & (0x3<<4)) {
2421 				/* dr2 is enabled */
2422 				if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2423 					return (EINVAL);
2424 			}
2425 
2426 			if (dbregs->dr[7] & (0x3<<6)) {
2427 				/* dr3 is enabled */
2428 				if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2429 					return (EINVAL);
2430 			}
2431 		}
2432 
2433 		pcb->pcb_dr0 = dbregs->dr[0];
2434 		pcb->pcb_dr1 = dbregs->dr[1];
2435 		pcb->pcb_dr2 = dbregs->dr[2];
2436 		pcb->pcb_dr3 = dbregs->dr[3];
2437 		pcb->pcb_dr6 = dbregs->dr[6];
2438 		pcb->pcb_dr7 = dbregs->dr[7];
2439 
2440 		pcb->pcb_flags |= PCB_DBREGS;
2441 	}
2442 
2443 	return (0);
2444 }
2445 
2446 /*
2447  * Return > 0 if a hardware breakpoint has been hit, and the
2448  * breakpoint was in user space.  Return 0, otherwise.
2449  */
2450 int
2451 user_dbreg_trap(void)
2452 {
2453         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2454         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2455         int nbp;            /* number of breakpoints that triggered */
2456         caddr_t addr[4];    /* breakpoint addresses */
2457         int i;
2458 
2459         dr7 = rdr7();
2460         if ((dr7 & 0xff) == 0) {
2461                 /*
2462                  * all GE and LE bits in the dr7 register are zero,
2463                  * thus the trap couldn't have been caused by the
2464                  * hardware debug registers
2465                  */
2466                 return 0;
2467         }
2468 
2469         nbp = 0;
2470         dr6 = rdr6();
2471         bp = dr6 & 0xf;
2472 
2473         if (bp == 0) {
2474                 /*
2475                  * None of the breakpoint bits are set meaning this
2476                  * trap was not caused by any of the debug registers
2477                  */
2478                 return 0;
2479         }
2480 
2481         /*
2482          * at least one of the breakpoints were hit, check to see
2483          * which ones and if any of them are user space addresses
2484          */
2485 
2486         if (bp & 0x01) {
2487                 addr[nbp++] = (caddr_t)rdr0();
2488         }
2489         if (bp & 0x02) {
2490                 addr[nbp++] = (caddr_t)rdr1();
2491         }
2492         if (bp & 0x04) {
2493                 addr[nbp++] = (caddr_t)rdr2();
2494         }
2495         if (bp & 0x08) {
2496                 addr[nbp++] = (caddr_t)rdr3();
2497         }
2498 
2499         for (i=0; i<nbp; i++) {
2500                 if (addr[i] <
2501                     (caddr_t)VM_MAX_USER_ADDRESS) {
2502                         /*
2503                          * addr[i] is in user space
2504                          */
2505                         return nbp;
2506                 }
2507         }
2508 
2509         /*
2510          * None of the breakpoints are in user space.
2511          */
2512         return 0;
2513 }
2514 
2515 
2516 #ifndef DDB
2517 void
2518 Debugger(const char *msg)
2519 {
2520 	kprintf("Debugger(\"%s\") called.\n", msg);
2521 }
2522 #endif /* no DDB */
2523 
2524 #ifdef DDB
2525 
2526 /*
2527  * Provide inb() and outb() as functions.  They are normally only
2528  * available as macros calling inlined functions, thus cannot be
2529  * called inside DDB.
2530  *
2531  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2532  */
2533 
2534 #undef inb
2535 #undef outb
2536 
2537 /* silence compiler warnings */
2538 u_char inb(u_int);
2539 void outb(u_int, u_char);
2540 
2541 u_char
2542 inb(u_int port)
2543 {
2544 	u_char	data;
2545 	/*
2546 	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2547 	 * %edx, while gcc generates inferior code (movw instead of movl)
2548 	 * if we tell it to load (u_short) port.
2549 	 */
2550 	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2551 	return (data);
2552 }
2553 
2554 void
2555 outb(u_int port, u_char data)
2556 {
2557 	u_char	al;
2558 	/*
2559 	 * Use an unnecessary assignment to help gcc's register allocator.
2560 	 * This make a large difference for gcc-1.40 and a tiny difference
2561 	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2562 	 * best results.  gcc-2.6.0 can't handle this.
2563 	 */
2564 	al = data;
2565 	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2566 }
2567 
2568 #endif /* DDB */
2569 
2570 
2571 
2572 /*
2573  * initialize all the SMP locks
2574  */
2575 
2576 /* critical region when masking or unmasking interupts */
2577 struct spinlock_deprecated imen_spinlock;
2578 
2579 /* critical region for old style disable_intr/enable_intr */
2580 struct spinlock_deprecated mpintr_spinlock;
2581 
2582 /* critical region around INTR() routines */
2583 struct spinlock_deprecated intr_spinlock;
2584 
2585 /* lock region used by kernel profiling */
2586 struct spinlock_deprecated mcount_spinlock;
2587 
2588 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2589 struct spinlock_deprecated com_spinlock;
2590 
2591 /* lock regions around the clock hardware */
2592 struct spinlock_deprecated clock_spinlock;
2593 
2594 static void
2595 init_locks(void)
2596 {
2597 	/*
2598 	 * Get the initial mplock with a count of 1 for the BSP.
2599 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
2600 	 */
2601 	cpu_get_initial_mplock();
2602 	/* DEPRECATED */
2603 	spin_lock_init(&mcount_spinlock);
2604 	spin_lock_init(&intr_spinlock);
2605 	spin_lock_init(&mpintr_spinlock);
2606 	spin_lock_init(&imen_spinlock);
2607 	spin_lock_init(&com_spinlock);
2608 	spin_lock_init(&clock_spinlock);
2609 
2610 	/* our token pool needs to work early */
2611 	lwkt_token_pool_init();
2612 }
2613 
2614 boolean_t
2615 cpu_mwait_hint_valid(uint32_t hint)
2616 {
2617 	int cx_idx, sub;
2618 
2619 	cx_idx = MWAIT_EAX_TO_CX(hint);
2620 	if (cx_idx >= CPU_MWAIT_CX_MAX)
2621 		return FALSE;
2622 
2623 	sub = MWAIT_EAX_TO_CX_SUB(hint);
2624 	if (sub >= cpu_mwait_cx_info[cx_idx].subcnt)
2625 		return FALSE;
2626 
2627 	return TRUE;
2628 }
2629 
2630 void
2631 cpu_mwait_cx_no_bmsts(void)
2632 {
2633 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_STS);
2634 }
2635 
2636 static int
2637 cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS, int *hint0,
2638     boolean_t allow_auto)
2639 {
2640 	int error, cx_idx, old_cx_idx, sub = 0, hint;
2641 	char name[16], *ptr, *start;
2642 
2643 	hint = *hint0;
2644 	if (hint >= 0) {
2645 		old_cx_idx = MWAIT_EAX_TO_CX(hint);
2646 		sub = MWAIT_EAX_TO_CX_SUB(hint);
2647 	} else if (hint == CPU_MWAIT_HINT_AUTO) {
2648 		old_cx_idx = allow_auto ? CPU_MWAIT_C2 : CPU_MWAIT_CX_MAX;
2649 	} else if (hint == CPU_MWAIT_HINT_AUTODEEP) {
2650 		old_cx_idx = allow_auto ? CPU_MWAIT_C3 : CPU_MWAIT_CX_MAX;
2651 	} else {
2652 		old_cx_idx = CPU_MWAIT_CX_MAX;
2653 	}
2654 
2655 	if ((cpu_feature2 & CPUID2_MON) == 0 ||
2656 	    (cpu_mwait_feature & CPUID_MWAIT_EXT) == 0)
2657 		strlcpy(name, "NONE", sizeof(name));
2658 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTO)
2659 		strlcpy(name, "AUTO", sizeof(name));
2660 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTODEEP)
2661 		strlcpy(name, "AUTODEEP", sizeof(name));
2662 	else if (old_cx_idx >= CPU_MWAIT_CX_MAX ||
2663 	    sub >= cpu_mwait_cx_info[old_cx_idx].subcnt)
2664 		strlcpy(name, "INVALID", sizeof(name));
2665 	else
2666 		ksnprintf(name, sizeof(name), "C%d/%d", old_cx_idx, sub);
2667 
2668 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
2669 	if (error != 0 || req->newptr == NULL)
2670 		return error;
2671 
2672 	if ((cpu_feature2 & CPUID2_MON) == 0 ||
2673 	    (cpu_mwait_feature & CPUID_MWAIT_EXT) == 0)
2674 		return EOPNOTSUPP;
2675 
2676 	if (allow_auto && strcmp(name, "AUTO") == 0) {
2677 		hint = CPU_MWAIT_HINT_AUTO;
2678 		cx_idx = CPU_MWAIT_C2;
2679 		goto done;
2680 	}
2681 	if (allow_auto && strcmp(name, "AUTODEEP") == 0) {
2682 		hint = CPU_MWAIT_HINT_AUTODEEP;
2683 		cx_idx = CPU_MWAIT_C3;
2684 		goto done;
2685 	}
2686 
2687 	if (strlen(name) < 4 || toupper(name[0]) != 'C')
2688 		return EINVAL;
2689 	start = &name[1];
2690 	ptr = NULL;
2691 
2692 	cx_idx = strtol(start, &ptr, 10);
2693 	if (ptr == start || *ptr != '/')
2694 		return EINVAL;
2695 	if (cx_idx < 0 || cx_idx >= CPU_MWAIT_CX_MAX)
2696 		return EINVAL;
2697 
2698 	start = ptr + 1;
2699 	ptr = NULL;
2700 
2701 	sub = strtol(start, &ptr, 10);
2702 	if (*ptr != '\0')
2703 		return EINVAL;
2704 	if (sub < 0 || sub >= cpu_mwait_cx_info[cx_idx].subcnt)
2705 		return EINVAL;
2706 
2707 	hint = MWAIT_EAX_HINT(cx_idx, sub);
2708 done:
2709 	if (cx_idx >= CPU_MWAIT_C3 && cpu_mwait_c3_preamble)
2710 		return EOPNOTSUPP;
2711 	if (old_cx_idx < CPU_MWAIT_C3 && cx_idx >= CPU_MWAIT_C3) {
2712 		error = cputimer_intr_powersave_addreq();
2713 		if (error)
2714 			return error;
2715 	} else if (old_cx_idx >= CPU_MWAIT_C3 && cx_idx < CPU_MWAIT_C3) {
2716 		cputimer_intr_powersave_remreq();
2717 	}
2718 
2719 	*hint0 = hint;
2720 	return 0;
2721 }
2722 
2723 static int
2724 cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS)
2725 {
2726 	int error;
2727 
2728 	lwkt_serialize_enter(&cpu_mwait_cx_slize);
2729 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
2730 	    &cpu_mwait_halt, TRUE);
2731 	lwkt_serialize_exit(&cpu_mwait_cx_slize);
2732 	return error;
2733 }
2734 
2735 static int
2736 cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS)
2737 {
2738 	int error;
2739 
2740 	lwkt_serialize_enter(&cpu_mwait_cx_slize);
2741 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
2742 	    &cpu_mwait_spin, FALSE);
2743 	lwkt_serialize_exit(&cpu_mwait_cx_slize);
2744 	return error;
2745 }
2746