xref: /dragonfly/sys/platform/pc64/x86_64/machdep.c (revision 38b5d46c)
1 /*-
2  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3  * Copyright (c) 1992 Terrence R. Lambert.
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 2008 The DragonFly Project.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
40  * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
41  */
42 
43 //#include "use_npx.h"
44 #include "use_isa.h"
45 #include "opt_cpu.h"
46 #include "opt_ddb.h"
47 #include "opt_directio.h"
48 #include "opt_inet.h"
49 #include "opt_msgbuf.h"
50 #include "opt_swap.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/sysproto.h>
55 #include <sys/signalvar.h>
56 #include <sys/kernel.h>
57 #include <sys/linker.h>
58 #include <sys/malloc.h>
59 #include <sys/proc.h>
60 #include <sys/priv.h>
61 #include <sys/buf.h>
62 #include <sys/reboot.h>
63 #include <sys/mbuf.h>
64 #include <sys/msgbuf.h>
65 #include <sys/sysent.h>
66 #include <sys/sysctl.h>
67 #include <sys/vmmeter.h>
68 #include <sys/bus.h>
69 #include <sys/usched.h>
70 #include <sys/reg.h>
71 #include <sys/sbuf.h>
72 #include <sys/ctype.h>
73 #include <sys/serialize.h>
74 #include <sys/systimer.h>
75 
76 #include <vm/vm.h>
77 #include <vm/vm_param.h>
78 #include <sys/lock.h>
79 #include <vm/vm_kern.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_page.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_pager.h>
84 #include <vm/vm_extern.h>
85 
86 #include <sys/thread2.h>
87 #include <sys/mplock2.h>
88 #include <sys/mutex2.h>
89 
90 #include <sys/user.h>
91 #include <sys/exec.h>
92 #include <sys/cons.h>
93 
94 #include <sys/efi.h>
95 
96 #include <ddb/ddb.h>
97 
98 #include <machine/cpu.h>
99 #include <machine/clock.h>
100 #include <machine/specialreg.h>
101 #if 0 /* JG */
102 #include <machine/bootinfo.h>
103 #endif
104 #include <machine/md_var.h>
105 #include <machine/metadata.h>
106 #include <machine/pc/bios.h>
107 #include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
108 #include <machine/globaldata.h>		/* CPU_prvspace */
109 #include <machine/smp.h>
110 #include <machine/cputypes.h>
111 #include <machine/intr_machdep.h>
112 #include <machine/framebuffer.h>
113 
114 #ifdef OLD_BUS_ARCH
115 #include <bus/isa/isa_device.h>
116 #endif
117 #include <machine_base/isa/isa_intr.h>
118 #include <bus/isa/rtc.h>
119 #include <sys/random.h>
120 #include <sys/ptrace.h>
121 #include <machine/sigframe.h>
122 
123 #include <sys/machintr.h>
124 #include <machine_base/icu/icu_abi.h>
125 #include <machine_base/icu/elcr_var.h>
126 #include <machine_base/apic/lapic.h>
127 #include <machine_base/apic/ioapic.h>
128 #include <machine_base/apic/ioapic_abi.h>
129 #include <machine/mptable.h>
130 
131 #define PHYSMAP_ENTRIES		10
132 
133 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
134 
135 extern void printcpuinfo(void);	/* XXX header file */
136 extern void identify_cpu(void);
137 #if 0 /* JG */
138 extern void finishidentcpu(void);
139 #endif
140 extern void panicifcpuunsupported(void);
141 
142 static void cpu_startup(void *);
143 static void pic_finish(void *);
144 static void cpu_finish(void *);
145 
146 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
147 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
148 #ifdef DIRECTIO
149 extern void ffs_rawread_setup(void);
150 #endif /* DIRECTIO */
151 static void init_locks(void);
152 
153 extern void pcpu_timer_always(struct intrframe *);
154 
155 SYSINIT(cpu, SI_BOOT2_START_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
156 SYSINIT(pic_finish, SI_BOOT2_FINISH_PIC, SI_ORDER_FIRST, pic_finish, NULL);
157 SYSINIT(cpu_finish, SI_BOOT2_FINISH_CPU, SI_ORDER_FIRST, cpu_finish, NULL);
158 
159 #ifdef DDB
160 extern vm_offset_t ksym_start, ksym_end;
161 #endif
162 
163 struct privatespace CPU_prvspace_bsp __aligned(4096);
164 struct privatespace *CPU_prvspace[MAXCPU] = { &CPU_prvspace_bsp };
165 
166 vm_paddr_t efi_systbl_phys;
167 int	_udatasel, _ucodesel, _ucode32sel;
168 u_long	atdevbase;
169 int64_t tsc_offsets[MAXCPU];
170 cpumask_t smp_idleinvl_mask;
171 cpumask_t smp_idleinvl_reqs;
172 
173 static int cpu_mwait_halt_global; /* MWAIT hint (EAX) or CPU_MWAIT_HINT_ */
174 
175 #if defined(SWTCH_OPTIM_STATS)
176 extern int swtch_optim_stats;
177 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
178 	CTLFLAG_RD, &swtch_optim_stats, 0, "");
179 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
180 	CTLFLAG_RD, &tlb_flush_count, 0, "");
181 #endif
182 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_halt,
183 	CTLFLAG_RD, &cpu_mwait_halt_global, 0, "");
184 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_spin, CTLFLAG_RD, &cpu_mwait_spin, 0,
185     "monitor/mwait target state");
186 
187 #define CPU_MWAIT_HAS_CX	\
188 	((cpu_feature2 & CPUID2_MON) && \
189 	 (cpu_mwait_feature & CPUID_MWAIT_EXT))
190 
191 #define CPU_MWAIT_CX_NAMELEN	16
192 
193 #define CPU_MWAIT_C1		1
194 #define CPU_MWAIT_C2		2
195 #define CPU_MWAIT_C3		3
196 #define CPU_MWAIT_CX_MAX	8
197 
198 #define CPU_MWAIT_HINT_AUTO	-1	/* C1 and C2 */
199 #define CPU_MWAIT_HINT_AUTODEEP	-2	/* C3+ */
200 
201 SYSCTL_NODE(_machdep, OID_AUTO, mwait, CTLFLAG_RW, 0, "MWAIT features");
202 SYSCTL_NODE(_machdep_mwait, OID_AUTO, CX, CTLFLAG_RW, 0, "MWAIT Cx settings");
203 
204 struct cpu_mwait_cx {
205 	int			subcnt;
206 	char			name[4];
207 	struct sysctl_ctx_list	sysctl_ctx;
208 	struct sysctl_oid	*sysctl_tree;
209 };
210 static struct cpu_mwait_cx	cpu_mwait_cx_info[CPU_MWAIT_CX_MAX];
211 static char			cpu_mwait_cx_supported[256];
212 
213 static int			cpu_mwait_c1_hints_cnt;
214 static int			cpu_mwait_hints_cnt;
215 static int			*cpu_mwait_hints;
216 
217 static int			cpu_mwait_deep_hints_cnt;
218 static int			*cpu_mwait_deep_hints;
219 
220 #define CPU_IDLE_REPEAT_DEFAULT	750
221 
222 static u_int			cpu_idle_repeat = CPU_IDLE_REPEAT_DEFAULT;
223 static u_long			cpu_idle_repeat_max = CPU_IDLE_REPEAT_DEFAULT;
224 static u_int			cpu_mwait_repeat_shift = 1;
225 
226 #define CPU_MWAIT_C3_PREAMBLE_BM_ARB	0x1
227 #define CPU_MWAIT_C3_PREAMBLE_BM_STS	0x2
228 
229 static int			cpu_mwait_c3_preamble =
230 				    CPU_MWAIT_C3_PREAMBLE_BM_ARB |
231 				    CPU_MWAIT_C3_PREAMBLE_BM_STS;
232 
233 SYSCTL_STRING(_machdep_mwait_CX, OID_AUTO, supported, CTLFLAG_RD,
234     cpu_mwait_cx_supported, 0, "MWAIT supported C states");
235 SYSCTL_INT(_machdep_mwait_CX, OID_AUTO, c3_preamble, CTLFLAG_RD,
236     &cpu_mwait_c3_preamble, 0, "C3+ preamble mask");
237 
238 static int	cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS,
239 		    int *, boolean_t);
240 static int	cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS);
241 static int	cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS);
242 static int	cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS);
243 
244 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, idle, CTLTYPE_STRING|CTLFLAG_RW,
245     NULL, 0, cpu_mwait_cx_idle_sysctl, "A", "");
246 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, spin, CTLTYPE_STRING|CTLFLAG_RW,
247     NULL, 0, cpu_mwait_cx_spin_sysctl, "A", "");
248 SYSCTL_UINT(_machdep_mwait_CX, OID_AUTO, repeat_shift, CTLFLAG_RW,
249     &cpu_mwait_repeat_shift, 0, "");
250 
251 long physmem = 0;
252 
253 u_long ebda_addr = 0;
254 
255 int imcr_present = 0;
256 
257 int naps = 0; /* # of Applications processors */
258 
259 u_int base_memory;
260 struct mtx dt_lock;		/* lock for GDT and LDT */
261 
262 static int
263 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
264 {
265 	u_long pmem = ctob(physmem);
266 
267 	int error = sysctl_handle_long(oidp, &pmem, 0, req);
268 	return (error);
269 }
270 
271 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
272 	0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
273 
274 static int
275 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
276 {
277 	int error = sysctl_handle_int(oidp, 0,
278 		ctob(physmem - vmstats.v_wire_count), req);
279 	return (error);
280 }
281 
282 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
283 	0, 0, sysctl_hw_usermem, "IU", "");
284 
285 static int
286 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
287 {
288 	int error = sysctl_handle_int(oidp, 0,
289 		x86_64_btop(avail_end - avail_start), req);
290 	return (error);
291 }
292 
293 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
294 	0, 0, sysctl_hw_availpages, "I", "");
295 
296 vm_paddr_t Maxmem;
297 vm_paddr_t Realmem;
298 
299 /*
300  * The number of PHYSMAP entries must be one less than the number of
301  * PHYSSEG entries because the PHYSMAP entry that spans the largest
302  * physical address that is accessible by ISA DMA is split into two
303  * PHYSSEG entries.
304  */
305 #define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
306 
307 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
308 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
309 
310 /* must be 2 less so 0 0 can signal end of chunks */
311 #define PHYS_AVAIL_ARRAY_END (NELEM(phys_avail) - 2)
312 #define DUMP_AVAIL_ARRAY_END (NELEM(dump_avail) - 2)
313 
314 static vm_offset_t buffer_sva, buffer_eva;
315 vm_offset_t clean_sva, clean_eva;
316 static vm_offset_t pager_sva, pager_eva;
317 static struct trapframe proc0_tf;
318 
319 static void
320 cpu_startup(void *dummy)
321 {
322 	caddr_t v;
323 	vm_size_t size = 0;
324 	vm_offset_t firstaddr;
325 
326 	/*
327 	 * Good {morning,afternoon,evening,night}.
328 	 */
329 	kprintf("%s", version);
330 	startrtclock();
331 	printcpuinfo();
332 	panicifcpuunsupported();
333 	kprintf("real memory  = %ju (%ju MB)\n",
334 		(intmax_t)Realmem,
335 		(intmax_t)Realmem / 1024 / 1024);
336 	/*
337 	 * Display any holes after the first chunk of extended memory.
338 	 */
339 	if (bootverbose) {
340 		int indx;
341 
342 		kprintf("Physical memory chunk(s):\n");
343 		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
344 			vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
345 
346 			kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
347 				(intmax_t)phys_avail[indx],
348 				(intmax_t)phys_avail[indx + 1] - 1,
349 				(intmax_t)size1,
350 				(intmax_t)(size1 / PAGE_SIZE));
351 		}
352 	}
353 
354 	/*
355 	 * Allocate space for system data structures.
356 	 * The first available kernel virtual address is in "v".
357 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
358 	 * As pages of memory are allocated and cleared,
359 	 * "firstaddr" is incremented.
360 	 * An index into the kernel page table corresponding to the
361 	 * virtual memory address maintained in "v" is kept in "mapaddr".
362 	 */
363 
364 	/*
365 	 * Make two passes.  The first pass calculates how much memory is
366 	 * needed and allocates it.  The second pass assigns virtual
367 	 * addresses to the various data structures.
368 	 */
369 	firstaddr = 0;
370 again:
371 	v = (caddr_t)firstaddr;
372 
373 #define	valloc(name, type, num) \
374 	    (name) = (type *)v; v = (caddr_t)((name)+(num))
375 #define	valloclim(name, type, num, lim) \
376 	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
377 
378 	/*
379 	 * The nominal buffer size (and minimum KVA allocation) is MAXBSIZE.
380 	 * For the first 64MB of ram nominally allocate sufficient buffers to
381 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
382 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
383 	 * the buffer cache we limit the eventual kva reservation to
384 	 * maxbcache bytes.
385 	 *
386 	 * factor represents the 1/4 x ram conversion.
387 	 */
388 	if (nbuf == 0) {
389 		long factor = 4 * NBUFCALCSIZE / 1024;
390 		long kbytes = physmem * (PAGE_SIZE / 1024);
391 
392 		nbuf = 50;
393 		if (kbytes > 4096)
394 			nbuf += min((kbytes - 4096) / factor, 65536 / factor);
395 		if (kbytes > 65536)
396 			nbuf += (kbytes - 65536) * 2 / (factor * 5);
397 		if (maxbcache && nbuf > maxbcache / NBUFCALCSIZE)
398 			nbuf = maxbcache / NBUFCALCSIZE;
399 	}
400 
401 	/*
402 	 * Do not allow the buffer_map to be more then 1/2 the size of the
403 	 * kernel_map.
404 	 */
405 	if (nbuf > (virtual_end - virtual_start +
406 		    virtual2_end - virtual2_start) / (MAXBSIZE * 2)) {
407 		nbuf = (virtual_end - virtual_start +
408 			virtual2_end - virtual2_start) / (MAXBSIZE * 2);
409 		kprintf("Warning: nbufs capped at %ld due to kvm\n", nbuf);
410 	}
411 
412 	/*
413 	 * Do not allow the buffer_map to use more than 50% of available
414 	 * physical-equivalent memory.  Since the VM pages which back
415 	 * individual buffers are typically wired, having too many bufs
416 	 * can prevent the system from paging properly.
417 	 */
418 	if (nbuf > physmem * PAGE_SIZE / (NBUFCALCSIZE * 2)) {
419 		nbuf = physmem * PAGE_SIZE / (NBUFCALCSIZE * 2);
420 		kprintf("Warning: nbufs capped at %ld due to physmem\n", nbuf);
421 	}
422 
423 	/*
424 	 * Do not allow the sizeof(struct buf) * nbuf to exceed half of
425 	 * the valloc space which is just the virtual_end - virtual_start
426 	 * section.  We use valloc() to allocate the buf header array.
427 	 */
428 	if (nbuf > (virtual_end - virtual_start) / sizeof(struct buf) / 2) {
429 		nbuf = (virtual_end - virtual_start) /
430 		       sizeof(struct buf) / 2;
431 		kprintf("Warning: nbufs capped at %ld due to valloc "
432 			"considerations\n", nbuf);
433 	}
434 
435 	nswbuf_mem = lmax(lmin(nbuf / 32, 512), 8);
436 #ifdef NSWBUF_MIN
437 	if (nswbuf_mem < NSWBUF_MIN)
438 		nswbuf_mem = NSWBUF_MIN;
439 #endif
440 	nswbuf_kva = lmax(lmin(nbuf / 4, 512), 16);
441 #ifdef NSWBUF_MIN
442 	if (nswbuf_kva < NSWBUF_MIN)
443 		nswbuf_kva = NSWBUF_MIN;
444 #endif
445 #ifdef DIRECTIO
446 	ffs_rawread_setup();
447 #endif
448 
449 	valloc(swbuf_mem, struct buf, nswbuf_mem);
450 	valloc(swbuf_kva, struct buf, nswbuf_kva);
451 	valloc(buf, struct buf, nbuf);
452 
453 	/*
454 	 * End of first pass, size has been calculated so allocate memory
455 	 */
456 	if (firstaddr == 0) {
457 		size = (vm_size_t)(v - firstaddr);
458 		firstaddr = kmem_alloc(&kernel_map, round_page(size),
459 				       VM_SUBSYS_BUF);
460 		if (firstaddr == 0)
461 			panic("startup: no room for tables");
462 		goto again;
463 	}
464 
465 	/*
466 	 * End of second pass, addresses have been assigned
467 	 *
468 	 * nbuf is an int, make sure we don't overflow the field.
469 	 *
470 	 * On 64-bit systems we always reserve maximal allocations for
471 	 * buffer cache buffers and there are no fragmentation issues,
472 	 * so the KVA segment does not have to be excessively oversized.
473 	 */
474 	if ((vm_size_t)(v - firstaddr) != size)
475 		panic("startup: table size inconsistency");
476 
477 	kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
478 		      ((vm_offset_t)(nbuf + 16) * MAXBSIZE) +
479 		      ((nswbuf_mem + nswbuf_kva) * MAXPHYS) + pager_map_size);
480 	kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
481 		      ((vm_offset_t)(nbuf + 16) * MAXBSIZE));
482 	buffer_map.system_map = 1;
483 	kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
484 		      ((vm_offset_t)(nswbuf_mem + nswbuf_kva) * MAXPHYS) +
485 		      pager_map_size);
486 	pager_map.system_map = 1;
487 	kprintf("avail memory = %ju (%ju MB)\n",
488 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages),
489 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages) /
490 		1024 / 1024);
491 }
492 
493 struct cpu_idle_stat {
494 	int	hint;
495 	int	reserved;
496 	u_long	halt;
497 	u_long	spin;
498 	u_long	repeat;
499 	u_long	repeat_last;
500 	u_long	repeat_delta;
501 	u_long	mwait_cx[CPU_MWAIT_CX_MAX];
502 } __cachealign;
503 
504 #define CPU_IDLE_STAT_HALT	-1
505 #define CPU_IDLE_STAT_SPIN	-2
506 
507 static struct cpu_idle_stat	cpu_idle_stats[MAXCPU];
508 
509 static int
510 sysctl_cpu_idle_cnt(SYSCTL_HANDLER_ARGS)
511 {
512 	int idx = arg2, cpu, error;
513 	u_long val = 0;
514 
515 	if (idx == CPU_IDLE_STAT_HALT) {
516 		for (cpu = 0; cpu < ncpus; ++cpu)
517 			val += cpu_idle_stats[cpu].halt;
518 	} else if (idx == CPU_IDLE_STAT_SPIN) {
519 		for (cpu = 0; cpu < ncpus; ++cpu)
520 			val += cpu_idle_stats[cpu].spin;
521 	} else {
522 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
523 		    ("invalid index %d", idx));
524 		for (cpu = 0; cpu < ncpus; ++cpu)
525 			val += cpu_idle_stats[cpu].mwait_cx[idx];
526 	}
527 
528 	error = sysctl_handle_quad(oidp, &val, 0, req);
529         if (error || req->newptr == NULL)
530 	        return error;
531 
532 	if (idx == CPU_IDLE_STAT_HALT) {
533 		for (cpu = 0; cpu < ncpus; ++cpu)
534 			cpu_idle_stats[cpu].halt = 0;
535 		cpu_idle_stats[0].halt = val;
536 	} else if (idx == CPU_IDLE_STAT_SPIN) {
537 		for (cpu = 0; cpu < ncpus; ++cpu)
538 			cpu_idle_stats[cpu].spin = 0;
539 		cpu_idle_stats[0].spin = val;
540 	} else {
541 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
542 		    ("invalid index %d", idx));
543 		for (cpu = 0; cpu < ncpus; ++cpu)
544 			cpu_idle_stats[cpu].mwait_cx[idx] = 0;
545 		cpu_idle_stats[0].mwait_cx[idx] = val;
546 	}
547 	return 0;
548 }
549 
550 static void
551 cpu_mwait_attach(void)
552 {
553 	struct sbuf sb;
554 	int hint_idx, i;
555 
556 	if (!CPU_MWAIT_HAS_CX)
557 		return;
558 
559 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
560 	    (CPUID_TO_FAMILY(cpu_id) > 0xf ||
561 	     (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
562 	      CPUID_TO_MODEL(cpu_id) >= 0xf))) {
563 		int bm_sts = 1;
564 
565 		/*
566 		 * Pentium dual-core, Core 2 and beyond do not need any
567 		 * additional activities to enter deep C-state, i.e. C3(+).
568 		 */
569 		cpu_mwait_cx_no_bmarb();
570 
571 		TUNABLE_INT_FETCH("machdep.cpu.mwait.bm_sts", &bm_sts);
572 		if (!bm_sts)
573 			cpu_mwait_cx_no_bmsts();
574 	}
575 
576 	sbuf_new(&sb, cpu_mwait_cx_supported,
577 	    sizeof(cpu_mwait_cx_supported), SBUF_FIXEDLEN);
578 
579 	for (i = 0; i < CPU_MWAIT_CX_MAX; ++i) {
580 		struct cpu_mwait_cx *cx = &cpu_mwait_cx_info[i];
581 		int sub;
582 
583 		ksnprintf(cx->name, sizeof(cx->name), "C%d", i);
584 
585 		sysctl_ctx_init(&cx->sysctl_ctx);
586 		cx->sysctl_tree = SYSCTL_ADD_NODE(&cx->sysctl_ctx,
587 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait), OID_AUTO,
588 		    cx->name, CTLFLAG_RW, NULL, "Cx control/info");
589 		if (cx->sysctl_tree == NULL)
590 			continue;
591 
592 		cx->subcnt = CPUID_MWAIT_CX_SUBCNT(cpu_mwait_extemu, i);
593 		SYSCTL_ADD_INT(&cx->sysctl_ctx,
594 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
595 		    "subcnt", CTLFLAG_RD, &cx->subcnt, 0,
596 		    "sub-state count");
597 		SYSCTL_ADD_PROC(&cx->sysctl_ctx,
598 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
599 		    "entered", (CTLTYPE_QUAD | CTLFLAG_RW), 0,
600 		    i, sysctl_cpu_idle_cnt, "Q", "# of times entered");
601 
602 		for (sub = 0; sub < cx->subcnt; ++sub)
603 			sbuf_printf(&sb, "C%d/%d ", i, sub);
604 	}
605 	sbuf_trim(&sb);
606 	sbuf_finish(&sb);
607 
608 	/*
609 	 * Non-deep C-states
610 	 */
611 	cpu_mwait_c1_hints_cnt = cpu_mwait_cx_info[CPU_MWAIT_C1].subcnt;
612 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i)
613 		cpu_mwait_hints_cnt += cpu_mwait_cx_info[i].subcnt;
614 	cpu_mwait_hints = kmalloc(sizeof(int) * cpu_mwait_hints_cnt,
615 	    M_DEVBUF, M_WAITOK);
616 
617 	hint_idx = 0;
618 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i) {
619 		int j, subcnt;
620 
621 		subcnt = cpu_mwait_cx_info[i].subcnt;
622 		for (j = 0; j < subcnt; ++j) {
623 			KASSERT(hint_idx < cpu_mwait_hints_cnt,
624 			    ("invalid mwait hint index %d", hint_idx));
625 			cpu_mwait_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
626 			++hint_idx;
627 		}
628 	}
629 	KASSERT(hint_idx == cpu_mwait_hints_cnt,
630 	    ("mwait hint count %d != index %d",
631 	     cpu_mwait_hints_cnt, hint_idx));
632 
633 	if (bootverbose) {
634 		kprintf("MWAIT hints (%d C1 hints):\n", cpu_mwait_c1_hints_cnt);
635 		for (i = 0; i < cpu_mwait_hints_cnt; ++i) {
636 			int hint = cpu_mwait_hints[i];
637 
638 			kprintf("  C%d/%d hint 0x%04x\n",
639 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
640 			    hint);
641 		}
642 	}
643 
644 	/*
645 	 * Deep C-states
646 	 */
647 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i)
648 		cpu_mwait_deep_hints_cnt += cpu_mwait_cx_info[i].subcnt;
649 	cpu_mwait_deep_hints = kmalloc(sizeof(int) * cpu_mwait_deep_hints_cnt,
650 	    M_DEVBUF, M_WAITOK);
651 
652 	hint_idx = 0;
653 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i) {
654 		int j, subcnt;
655 
656 		subcnt = cpu_mwait_cx_info[i].subcnt;
657 		for (j = 0; j < subcnt; ++j) {
658 			KASSERT(hint_idx < cpu_mwait_deep_hints_cnt,
659 			    ("invalid mwait deep hint index %d", hint_idx));
660 			cpu_mwait_deep_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
661 			++hint_idx;
662 		}
663 	}
664 	KASSERT(hint_idx == cpu_mwait_deep_hints_cnt,
665 	    ("mwait deep hint count %d != index %d",
666 	     cpu_mwait_deep_hints_cnt, hint_idx));
667 
668 	if (bootverbose) {
669 		kprintf("MWAIT deep hints:\n");
670 		for (i = 0; i < cpu_mwait_deep_hints_cnt; ++i) {
671 			int hint = cpu_mwait_deep_hints[i];
672 
673 			kprintf("  C%d/%d hint 0x%04x\n",
674 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
675 			    hint);
676 		}
677 	}
678 	cpu_idle_repeat_max = 256 * cpu_mwait_deep_hints_cnt;
679 
680 	for (i = 0; i < ncpus; ++i) {
681 		char name[16];
682 
683 		ksnprintf(name, sizeof(name), "idle%d", i);
684 		SYSCTL_ADD_PROC(NULL,
685 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait_CX), OID_AUTO,
686 		    name, (CTLTYPE_STRING | CTLFLAG_RW), &cpu_idle_stats[i],
687 		    0, cpu_mwait_cx_pcpu_idle_sysctl, "A", "");
688 	}
689 }
690 
691 static void
692 cpu_finish(void *dummy __unused)
693 {
694 	cpu_setregs();
695 	cpu_mwait_attach();
696 }
697 
698 static void
699 pic_finish(void *dummy __unused)
700 {
701 	/* Log ELCR information */
702 	elcr_dump();
703 
704 	/* Log MPTABLE information */
705 	mptable_pci_int_dump();
706 
707 	/* Finalize PCI */
708 	MachIntrABI.finalize();
709 }
710 
711 /*
712  * Send an interrupt to process.
713  *
714  * Stack is set up to allow sigcode stored
715  * at top to call routine, followed by kcall
716  * to sigreturn routine below.  After sigreturn
717  * resets the signal mask, the stack, and the
718  * frame pointer, it returns to the user
719  * specified pc, psl.
720  */
721 void
722 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
723 {
724 	struct lwp *lp = curthread->td_lwp;
725 	struct proc *p = lp->lwp_proc;
726 	struct trapframe *regs;
727 	struct sigacts *psp = p->p_sigacts;
728 	struct sigframe sf, *sfp;
729 	int oonstack;
730 	char *sp;
731 
732 	regs = lp->lwp_md.md_regs;
733 	oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
734 
735 	/* Save user context */
736 	bzero(&sf, sizeof(struct sigframe));
737 	sf.sf_uc.uc_sigmask = *mask;
738 	sf.sf_uc.uc_stack = lp->lwp_sigstk;
739 	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
740 	KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
741 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
742 
743 	/* Make the size of the saved context visible to userland */
744 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
745 
746 	/* Allocate and validate space for the signal handler context. */
747         if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
748 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
749 		sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
750 			      sizeof(struct sigframe));
751 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
752 	} else {
753 		/* We take red zone into account */
754 		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
755 	}
756 
757 	/*
758 	 * XXX AVX needs 64-byte alignment but sigframe has other fields and
759 	 * the embedded ucontext is not at the front, so aligning this won't
760 	 * help us.  Fortunately we bcopy in/out of the sigframe, so the
761 	 * kernel is ok.
762 	 *
763 	 * The problem though is if userland winds up trying to use the
764 	 * context directly.
765 	 */
766 	sfp = (struct sigframe *)((intptr_t)sp & ~(intptr_t)0xF);
767 
768 	/* Translate the signal is appropriate */
769 	if (p->p_sysent->sv_sigtbl) {
770 		if (sig <= p->p_sysent->sv_sigsize)
771 			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
772 	}
773 
774 	/*
775 	 * Build the argument list for the signal handler.
776 	 *
777 	 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
778 	 */
779 	regs->tf_rdi = sig;				/* argument 1 */
780 	regs->tf_rdx = (register_t)&sfp->sf_uc;		/* argument 3 */
781 
782 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
783 		/*
784 		 * Signal handler installed with SA_SIGINFO.
785 		 *
786 		 * action(signo, siginfo, ucontext)
787 		 */
788 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* argument 2 */
789 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
790 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
791 
792 		/* fill siginfo structure */
793 		sf.sf_si.si_signo = sig;
794 		sf.sf_si.si_code = code;
795 		sf.sf_si.si_addr = (void *)regs->tf_addr;
796 	} else {
797 		/*
798 		 * Old FreeBSD-style arguments.
799 		 *
800 		 * handler (signo, code, [uc], addr)
801 		 */
802 		regs->tf_rsi = (register_t)code;	/* argument 2 */
803 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
804 		sf.sf_ahu.sf_handler = catcher;
805 	}
806 
807 	/*
808 	 * If we're a vm86 process, we want to save the segment registers.
809 	 * We also change eflags to be our emulated eflags, not the actual
810 	 * eflags.
811 	 */
812 #if 0 /* JG */
813 	if (regs->tf_eflags & PSL_VM) {
814 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
815 		struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
816 
817 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
818 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
819 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
820 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
821 
822 		if (vm86->vm86_has_vme == 0)
823 			sf.sf_uc.uc_mcontext.mc_eflags =
824 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
825 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
826 
827 		/*
828 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
829 		 * syscalls made by the signal handler.  This just avoids
830 		 * wasting time for our lazy fixup of such faults.  PSL_NT
831 		 * does nothing in vm86 mode, but vm86 programs can set it
832 		 * almost legitimately in probes for old cpu types.
833 		 */
834 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
835 	}
836 #endif
837 
838 	/*
839 	 * Save the FPU state and reinit the FP unit
840 	 */
841 	npxpush(&sf.sf_uc.uc_mcontext);
842 
843 	/*
844 	 * Copy the sigframe out to the user's stack.
845 	 */
846 	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
847 		/*
848 		 * Something is wrong with the stack pointer.
849 		 * ...Kill the process.
850 		 */
851 		sigexit(lp, SIGILL);
852 	}
853 
854 	regs->tf_rsp = (register_t)sfp;
855 	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
856 
857 	/*
858 	 * i386 abi specifies that the direction flag must be cleared
859 	 * on function entry
860 	 */
861 	regs->tf_rflags &= ~(PSL_T|PSL_D);
862 
863 	/*
864 	 * 64 bit mode has a code and stack selector but
865 	 * no data or extra selector.  %fs and %gs are not
866 	 * stored in-context.
867 	 */
868 	regs->tf_cs = _ucodesel;
869 	regs->tf_ss = _udatasel;
870 	clear_quickret();
871 }
872 
873 /*
874  * Sanitize the trapframe for a virtual kernel passing control to a custom
875  * VM context.  Remove any items that would otherwise create a privilage
876  * issue.
877  *
878  * XXX at the moment we allow userland to set the resume flag.  Is this a
879  * bad idea?
880  */
881 int
882 cpu_sanitize_frame(struct trapframe *frame)
883 {
884 	frame->tf_cs = _ucodesel;
885 	frame->tf_ss = _udatasel;
886 	/* XXX VM (8086) mode not supported? */
887 	frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
888 	frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
889 
890 	return(0);
891 }
892 
893 /*
894  * Sanitize the tls so loading the descriptor does not blow up
895  * on us.  For x86_64 we don't have to do anything.
896  */
897 int
898 cpu_sanitize_tls(struct savetls *tls)
899 {
900 	return(0);
901 }
902 
903 /*
904  * sigreturn(ucontext_t *sigcntxp)
905  *
906  * System call to cleanup state after a signal
907  * has been taken.  Reset signal mask and
908  * stack state from context left by sendsig (above).
909  * Return to previous pc and psl as specified by
910  * context left by sendsig. Check carefully to
911  * make sure that the user has not modified the
912  * state to gain improper privileges.
913  *
914  * MPSAFE
915  */
916 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
917 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
918 
919 int
920 sys_sigreturn(struct sigreturn_args *uap)
921 {
922 	struct lwp *lp = curthread->td_lwp;
923 	struct trapframe *regs;
924 	ucontext_t uc;
925 	ucontext_t *ucp;
926 	register_t rflags;
927 	int cs;
928 	int error;
929 
930 	/*
931 	 * We have to copy the information into kernel space so userland
932 	 * can't modify it while we are sniffing it.
933 	 */
934 	regs = lp->lwp_md.md_regs;
935 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
936 	if (error)
937 		return (error);
938 	ucp = &uc;
939 	rflags = ucp->uc_mcontext.mc_rflags;
940 
941 	/* VM (8086) mode not supported */
942 	rflags &= ~PSL_VM_UNSUPP;
943 
944 #if 0 /* JG */
945 	if (eflags & PSL_VM) {
946 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
947 		struct vm86_kernel *vm86;
948 
949 		/*
950 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
951 		 * set up the vm86 area, and we can't enter vm86 mode.
952 		 */
953 		if (lp->lwp_thread->td_pcb->pcb_ext == 0)
954 			return (EINVAL);
955 		vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
956 		if (vm86->vm86_inited == 0)
957 			return (EINVAL);
958 
959 		/* go back to user mode if both flags are set */
960 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
961 			trapsignal(lp, SIGBUS, 0);
962 
963 		if (vm86->vm86_has_vme) {
964 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
965 			    (eflags & VME_USERCHANGE) | PSL_VM;
966 		} else {
967 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
968 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
969 			    (eflags & VM_USERCHANGE) | PSL_VM;
970 		}
971 		bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
972 		tf->tf_eflags = eflags;
973 		tf->tf_vm86_ds = tf->tf_ds;
974 		tf->tf_vm86_es = tf->tf_es;
975 		tf->tf_vm86_fs = tf->tf_fs;
976 		tf->tf_vm86_gs = tf->tf_gs;
977 		tf->tf_ds = _udatasel;
978 		tf->tf_es = _udatasel;
979 		tf->tf_fs = _udatasel;
980 		tf->tf_gs = _udatasel;
981 	} else
982 #endif
983 	{
984 		/*
985 		 * Don't allow users to change privileged or reserved flags.
986 		 */
987 		/*
988 		 * XXX do allow users to change the privileged flag PSL_RF.
989 		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
990 		 * should sometimes set it there too.  tf_eflags is kept in
991 		 * the signal context during signal handling and there is no
992 		 * other place to remember it, so the PSL_RF bit may be
993 		 * corrupted by the signal handler without us knowing.
994 		 * Corruption of the PSL_RF bit at worst causes one more or
995 		 * one less debugger trap, so allowing it is fairly harmless.
996 		 */
997 		if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
998 			kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
999 	    		return(EINVAL);
1000 		}
1001 
1002 		/*
1003 		 * Don't allow users to load a valid privileged %cs.  Let the
1004 		 * hardware check for invalid selectors, excess privilege in
1005 		 * other selectors, invalid %eip's and invalid %esp's.
1006 		 */
1007 		cs = ucp->uc_mcontext.mc_cs;
1008 		if (!CS_SECURE(cs)) {
1009 			kprintf("sigreturn: cs = 0x%x\n", cs);
1010 			trapsignal(lp, SIGBUS, T_PROTFLT);
1011 			return(EINVAL);
1012 		}
1013 		bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
1014 	}
1015 
1016 	/*
1017 	 * Restore the FPU state from the frame
1018 	 */
1019 	crit_enter();
1020 	npxpop(&ucp->uc_mcontext);
1021 
1022 	if (ucp->uc_mcontext.mc_onstack & 1)
1023 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
1024 	else
1025 		lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
1026 
1027 	lp->lwp_sigmask = ucp->uc_sigmask;
1028 	SIG_CANTMASK(lp->lwp_sigmask);
1029 	clear_quickret();
1030 	crit_exit();
1031 	return(EJUSTRETURN);
1032 }
1033 
1034 /*
1035  * Machine dependent boot() routine
1036  *
1037  * I haven't seen anything to put here yet
1038  * Possibly some stuff might be grafted back here from boot()
1039  */
1040 void
1041 cpu_boot(int howto)
1042 {
1043 }
1044 
1045 /*
1046  * Shutdown the CPU as much as possible
1047  */
1048 void
1049 cpu_halt(void)
1050 {
1051 	for (;;)
1052 		__asm__ __volatile("hlt");
1053 }
1054 
1055 /*
1056  * cpu_idle() represents the idle LWKT.  You cannot return from this function
1057  * (unless you want to blow things up!).  Instead we look for runnable threads
1058  * and loop or halt as appropriate.  Giant is not held on entry to the thread.
1059  *
1060  * The main loop is entered with a critical section held, we must release
1061  * the critical section before doing anything else.  lwkt_switch() will
1062  * check for pending interrupts due to entering and exiting its own
1063  * critical section.
1064  *
1065  * NOTE: On an SMP system we rely on a scheduler IPI to wake a HLTed cpu up.
1066  *	 However, there are cases where the idlethread will be entered with
1067  *	 the possibility that no IPI will occur and in such cases
1068  *	 lwkt_switch() sets TDF_IDLE_NOHLT.
1069  *
1070  * NOTE: cpu_idle_repeat determines how many entries into the idle thread
1071  *	 must occur before it starts using ACPI halt.
1072  *
1073  * NOTE: Value overridden in hammer_time().
1074  */
1075 static int	cpu_idle_hlt = 2;
1076 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
1077     &cpu_idle_hlt, 0, "Idle loop HLT enable");
1078 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_repeat, CTLFLAG_RW,
1079     &cpu_idle_repeat, 0, "Idle entries before acpi hlt");
1080 
1081 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_hltcnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1082     0, CPU_IDLE_STAT_HALT, sysctl_cpu_idle_cnt, "Q", "Idle loop entry halts");
1083 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_spincnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1084     0, CPU_IDLE_STAT_SPIN, sysctl_cpu_idle_cnt, "Q", "Idle loop entry spins");
1085 
1086 static void
1087 cpu_idle_default_hook(void)
1088 {
1089 	/*
1090 	 * We must guarentee that hlt is exactly the instruction
1091 	 * following the sti.
1092 	 */
1093 	__asm __volatile("sti; hlt");
1094 }
1095 
1096 /* Other subsystems (e.g., ACPI) can hook this later. */
1097 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
1098 
1099 static __inline int
1100 cpu_mwait_cx_hint(struct cpu_idle_stat *stat)
1101 {
1102 	int hint, cx_idx;
1103 	u_int idx;
1104 
1105 	hint = stat->hint;
1106 	if (hint >= 0)
1107 		goto done;
1108 
1109 	idx = (stat->repeat + stat->repeat_last + stat->repeat_delta) >>
1110 	    cpu_mwait_repeat_shift;
1111 	if (idx >= cpu_mwait_c1_hints_cnt) {
1112 		/* Step up faster, once we walked through all C1 states */
1113 		stat->repeat_delta += 1 << (cpu_mwait_repeat_shift + 1);
1114 	}
1115 	if (hint == CPU_MWAIT_HINT_AUTODEEP) {
1116 		if (idx >= cpu_mwait_deep_hints_cnt)
1117 			idx = cpu_mwait_deep_hints_cnt - 1;
1118 		hint = cpu_mwait_deep_hints[idx];
1119 	} else {
1120 		if (idx >= cpu_mwait_hints_cnt)
1121 			idx = cpu_mwait_hints_cnt - 1;
1122 		hint = cpu_mwait_hints[idx];
1123 	}
1124 done:
1125 	cx_idx = MWAIT_EAX_TO_CX(hint);
1126 	if (cx_idx >= 0 && cx_idx < CPU_MWAIT_CX_MAX)
1127 		stat->mwait_cx[cx_idx]++;
1128 	return hint;
1129 }
1130 
1131 void
1132 cpu_idle(void)
1133 {
1134 	globaldata_t gd = mycpu;
1135 	struct cpu_idle_stat *stat = &cpu_idle_stats[gd->gd_cpuid];
1136 	struct thread *td __debugvar = gd->gd_curthread;
1137 	int reqflags;
1138 	int quick;
1139 
1140 	stat->repeat = stat->repeat_last = cpu_idle_repeat_max;
1141 
1142 	crit_exit();
1143 	KKASSERT(td->td_critcount == 0);
1144 
1145 	for (;;) {
1146 		/*
1147 		 * See if there are any LWKTs ready to go.
1148 		 */
1149 		lwkt_switch();
1150 
1151 		/*
1152 		 * When halting inside a cli we must check for reqflags
1153 		 * races, particularly [re]schedule requests.  Running
1154 		 * splz() does the job.
1155 		 *
1156 		 * cpu_idle_hlt:
1157 		 *	0	Never halt, just spin
1158 		 *
1159 		 *	1	Always use HLT (or MONITOR/MWAIT if avail).
1160 		 *
1161 		 *		Better default for modern (Haswell+) Intel
1162 		 *		cpus.
1163 		 *
1164 		 *	2	Use HLT/MONITOR/MWAIT up to a point and then
1165 		 *		use the ACPI halt (default).  This is a hybrid
1166 		 *		approach.  See machdep.cpu_idle_repeat.
1167 		 *
1168 		 *		Better default for modern AMD cpus and older
1169 		 *		Intel cpus.
1170 		 *
1171 		 *	3	Always use the ACPI halt.  This typically
1172 		 *		eats the least amount of power but the cpu
1173 		 *		will be slow waking up.  Slows down e.g.
1174 		 *		compiles and other pipe/event oriented stuff.
1175 		 *
1176 		 *	4	Always use HLT.
1177 		 *
1178 		 * NOTE: Interrupts are enabled and we are not in a critical
1179 		 *	 section.
1180 		 *
1181 		 * NOTE: Preemptions do not reset gd_idle_repeat.   Also we
1182 		 *	 don't bother capping gd_idle_repeat, it is ok if
1183 		 *	 it overflows.
1184 		 *
1185 		 * Implement optimized invltlb operations when halted
1186 		 * in idle.  By setting the bit in smp_idleinvl_mask
1187 		 * we inform other cpus that they can set _reqs to
1188 		 * request an invltlb.  Current the code to do that
1189 		 * sets the bits in _reqs anyway, but then check _mask
1190 		 * to determine if they can assume the invltlb will execute.
1191 		 *
1192 		 * A critical section is required to ensure that interrupts
1193 		 * do not fully run until after we've had a chance to execute
1194 		 * the request.
1195 		 */
1196 		if (gd->gd_idle_repeat == 0) {
1197 			stat->repeat = (stat->repeat + stat->repeat_last) >> 1;
1198 			if (stat->repeat > cpu_idle_repeat_max)
1199 				stat->repeat = cpu_idle_repeat_max;
1200 			stat->repeat_last = 0;
1201 			stat->repeat_delta = 0;
1202 		}
1203 		++stat->repeat_last;
1204 
1205 		++gd->gd_idle_repeat;
1206 		reqflags = gd->gd_reqflags;
1207 		quick = (cpu_idle_hlt == 1) ||
1208 			(cpu_idle_hlt < 3 &&
1209 			 gd->gd_idle_repeat < cpu_idle_repeat);
1210 
1211 		if (quick && (cpu_mi_feature & CPU_MI_MONITOR) &&
1212 		    (reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1213 			splz(); /* XXX */
1214 			crit_enter_gd(gd);
1215 			ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask, gd->gd_cpuid);
1216 			cpu_mmw_pause_int(&gd->gd_reqflags, reqflags,
1217 			    cpu_mwait_cx_hint(stat), 0);
1218 			stat->halt++;
1219 			ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask, gd->gd_cpuid);
1220 			if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1221 						      gd->gd_cpuid)) {
1222 				cpu_invltlb();
1223 				cpu_mfence();
1224 			}
1225 			crit_exit_gd(gd);
1226 		} else if (cpu_idle_hlt) {
1227 			__asm __volatile("cli");
1228 			splz();
1229 			crit_enter_gd(gd);
1230 			ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask, gd->gd_cpuid);
1231 			if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1232 				if (quick)
1233 					cpu_idle_default_hook();
1234 				else
1235 					cpu_idle_hook();
1236 			}
1237 			__asm __volatile("sti");
1238 			stat->halt++;
1239 			ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask, gd->gd_cpuid);
1240 			if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1241 						      gd->gd_cpuid)) {
1242 				cpu_invltlb();
1243 				cpu_mfence();
1244 			}
1245 			crit_exit_gd(gd);
1246 		} else {
1247 			splz();
1248 			__asm __volatile("sti");
1249 			stat->spin++;
1250 		}
1251 	}
1252 }
1253 
1254 /*
1255  * Called in a loop indirectly via Xcpustop
1256  */
1257 void
1258 cpu_smp_stopped(void)
1259 {
1260 	globaldata_t gd = mycpu;
1261 	volatile __uint64_t *ptr;
1262 	__uint64_t ovalue;
1263 
1264 	ptr = CPUMASK_ADDR(started_cpus, gd->gd_cpuid);
1265 	ovalue = *ptr;
1266 	if ((ovalue & CPUMASK_SIMPLE(gd->gd_cpuid & 63)) == 0) {
1267 		if (cpu_mi_feature & CPU_MI_MONITOR) {
1268 			cpu_mmw_pause_long(__DEVOLATILE(void *, ptr), ovalue,
1269 					   cpu_mwait_hints[CPU_MWAIT_C1], 0);
1270 		} else {
1271 			cpu_halt();	/* depend on lapic timer */
1272 		}
1273 	}
1274 }
1275 
1276 /*
1277  * This routine is called if a spinlock has been held through the
1278  * exponential backoff period and is seriously contested.  On a real cpu
1279  * we let it spin.
1280  */
1281 void
1282 cpu_spinlock_contested(void)
1283 {
1284 	cpu_pause();
1285 }
1286 
1287 /*
1288  * Clear registers on exec
1289  */
1290 void
1291 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
1292 {
1293 	struct thread *td = curthread;
1294 	struct lwp *lp = td->td_lwp;
1295 	struct pcb *pcb = td->td_pcb;
1296 	struct trapframe *regs = lp->lwp_md.md_regs;
1297 
1298 	/* was i386_user_cleanup() in NetBSD */
1299 	user_ldt_free(pcb);
1300 
1301 	clear_quickret();
1302 	bzero((char *)regs, sizeof(struct trapframe));
1303 	regs->tf_rip = entry;
1304 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
1305 	regs->tf_rdi = stack;		/* argv */
1306 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
1307 	regs->tf_ss = _udatasel;
1308 	regs->tf_cs = _ucodesel;
1309 	regs->tf_rbx = ps_strings;
1310 
1311 	/*
1312 	 * Reset the hardware debug registers if they were in use.
1313 	 * They won't have any meaning for the newly exec'd process.
1314 	 */
1315 	if (pcb->pcb_flags & PCB_DBREGS) {
1316 		pcb->pcb_dr0 = 0;
1317 		pcb->pcb_dr1 = 0;
1318 		pcb->pcb_dr2 = 0;
1319 		pcb->pcb_dr3 = 0;
1320 		pcb->pcb_dr6 = 0;
1321 		pcb->pcb_dr7 = 0; /* JG set bit 10? */
1322 		if (pcb == td->td_pcb) {
1323 			/*
1324 			 * Clear the debug registers on the running
1325 			 * CPU, otherwise they will end up affecting
1326 			 * the next process we switch to.
1327 			 */
1328 			reset_dbregs();
1329 		}
1330 		pcb->pcb_flags &= ~PCB_DBREGS;
1331 	}
1332 
1333 	/*
1334 	 * Initialize the math emulator (if any) for the current process.
1335 	 * Actually, just clear the bit that says that the emulator has
1336 	 * been initialized.  Initialization is delayed until the process
1337 	 * traps to the emulator (if it is done at all) mainly because
1338 	 * emulators don't provide an entry point for initialization.
1339 	 */
1340 	pcb->pcb_flags &= ~FP_SOFTFP;
1341 
1342 	/*
1343 	 * NOTE: do not set CR0_TS here.  npxinit() must do it after clearing
1344 	 *	 gd_npxthread.  Otherwise a preemptive interrupt thread
1345 	 *	 may panic in npxdna().
1346 	 */
1347 	crit_enter();
1348 	load_cr0(rcr0() | CR0_MP);
1349 
1350 	/*
1351 	 * NOTE: The MSR values must be correct so we can return to
1352 	 * 	 userland.  gd_user_fs/gs must be correct so the switch
1353 	 *	 code knows what the current MSR values are.
1354 	 */
1355 	pcb->pcb_fsbase = 0;	/* Values loaded from PCB on switch */
1356 	pcb->pcb_gsbase = 0;
1357 	mdcpu->gd_user_fs = 0;	/* Cache of current MSR values */
1358 	mdcpu->gd_user_gs = 0;
1359 	wrmsr(MSR_FSBASE, 0);	/* Set MSR values for return to userland */
1360 	wrmsr(MSR_KGSBASE, 0);
1361 
1362 	/* Initialize the npx (if any) for the current process. */
1363 	npxinit();
1364 	crit_exit();
1365 
1366 	pcb->pcb_ds = _udatasel;
1367 	pcb->pcb_es = _udatasel;
1368 	pcb->pcb_fs = _udatasel;
1369 	pcb->pcb_gs = _udatasel;
1370 }
1371 
1372 void
1373 cpu_setregs(void)
1374 {
1375 	register_t cr0;
1376 
1377 	cr0 = rcr0();
1378 	cr0 |= CR0_NE;			/* Done by npxinit() */
1379 	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1380 	cr0 |= CR0_WP | CR0_AM;
1381 	load_cr0(cr0);
1382 	load_gs(_udatasel);
1383 }
1384 
1385 static int
1386 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1387 {
1388 	int error;
1389 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1390 		req);
1391 	if (!error && req->newptr)
1392 		resettodr();
1393 	return (error);
1394 }
1395 
1396 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1397 	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1398 
1399 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1400 	CTLFLAG_RW, &disable_rtc_set, 0, "");
1401 
1402 #if 0 /* JG */
1403 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1404 	CTLFLAG_RD, &bootinfo, bootinfo, "");
1405 #endif
1406 
1407 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1408 	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1409 
1410 extern u_long bootdev;		/* not a cdev_t - encoding is different */
1411 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1412 	CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1413 
1414 static int
1415 efi_map_sysctl_handler(SYSCTL_HANDLER_ARGS)
1416 {
1417 	struct efi_map_header *efihdr;
1418 	caddr_t kmdp;
1419 	uint32_t efisize;
1420 
1421 	kmdp = preload_search_by_type("elf kernel");
1422 	if (kmdp == NULL)
1423 		kmdp = preload_search_by_type("elf64 kernel");
1424 	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
1425 	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
1426 	if (efihdr == NULL)
1427 		return (0);
1428 	efisize = *((uint32_t *)efihdr - 1);
1429 	return (SYSCTL_OUT(req, efihdr, efisize));
1430 }
1431 SYSCTL_PROC(_machdep, OID_AUTO, efi_map, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
1432     efi_map_sysctl_handler, "S,efi_map_header", "Raw EFI Memory Map");
1433 
1434 /*
1435  * Initialize 386 and configure to run kernel
1436  */
1437 
1438 /*
1439  * Initialize segments & interrupt table
1440  */
1441 
1442 int _default_ldt;
1443 struct user_segment_descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1444 struct gate_descriptor idt_arr[MAXCPU][NIDT];
1445 #if 0 /* JG */
1446 union descriptor ldt[NLDT];		/* local descriptor table */
1447 #endif
1448 
1449 /* table descriptors - used to load tables by cpu */
1450 struct region_descriptor r_gdt;
1451 struct region_descriptor r_idt_arr[MAXCPU];
1452 
1453 /* JG proc0paddr is a virtual address */
1454 void *proc0paddr;
1455 /* JG alignment? */
1456 char proc0paddr_buff[LWKT_THREAD_STACK];
1457 
1458 
1459 /* software prototypes -- in more palatable form */
1460 struct soft_segment_descriptor gdt_segs[] = {
1461 /* GNULL_SEL	0 Null Descriptor */
1462 {	0x0,			/* segment base address  */
1463 	0x0,			/* length */
1464 	0,			/* segment type */
1465 	0,			/* segment descriptor priority level */
1466 	0,			/* segment descriptor present */
1467 	0,			/* long */
1468 	0,			/* default 32 vs 16 bit size */
1469 	0  			/* limit granularity (byte/page units)*/ },
1470 /* GCODE_SEL	1 Code Descriptor for kernel */
1471 {	0x0,			/* segment base address  */
1472 	0xfffff,		/* length - all address space */
1473 	SDT_MEMERA,		/* segment type */
1474 	SEL_KPL,		/* segment descriptor priority level */
1475 	1,			/* segment descriptor present */
1476 	1,			/* long */
1477 	0,			/* default 32 vs 16 bit size */
1478 	1  			/* limit granularity (byte/page units)*/ },
1479 /* GDATA_SEL	2 Data Descriptor for kernel */
1480 {	0x0,			/* segment base address  */
1481 	0xfffff,		/* length - all address space */
1482 	SDT_MEMRWA,		/* segment type */
1483 	SEL_KPL,		/* segment descriptor priority level */
1484 	1,			/* segment descriptor present */
1485 	1,			/* long */
1486 	0,			/* default 32 vs 16 bit size */
1487 	1  			/* limit granularity (byte/page units)*/ },
1488 /* GUCODE32_SEL	3 32 bit Code Descriptor for user */
1489 {	0x0,			/* segment base address  */
1490 	0xfffff,		/* length - all address space */
1491 	SDT_MEMERA,		/* segment type */
1492 	SEL_UPL,		/* segment descriptor priority level */
1493 	1,			/* segment descriptor present */
1494 	0,			/* long */
1495 	1,			/* default 32 vs 16 bit size */
1496 	1  			/* limit granularity (byte/page units)*/ },
1497 /* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
1498 {	0x0,			/* segment base address  */
1499 	0xfffff,		/* length - all address space */
1500 	SDT_MEMRWA,		/* segment type */
1501 	SEL_UPL,		/* segment descriptor priority level */
1502 	1,			/* segment descriptor present */
1503 	0,			/* long */
1504 	1,			/* default 32 vs 16 bit size */
1505 	1  			/* limit granularity (byte/page units)*/ },
1506 /* GUCODE_SEL	5 64 bit Code Descriptor for user */
1507 {	0x0,			/* segment base address  */
1508 	0xfffff,		/* length - all address space */
1509 	SDT_MEMERA,		/* segment type */
1510 	SEL_UPL,		/* segment descriptor priority level */
1511 	1,			/* segment descriptor present */
1512 	1,			/* long */
1513 	0,			/* default 32 vs 16 bit size */
1514 	1  			/* limit granularity (byte/page units)*/ },
1515 /* GPROC0_SEL	6 Proc 0 Tss Descriptor */
1516 {
1517 	0x0,			/* segment base address */
1518 	sizeof(struct x86_64tss)-1,/* length - all address space */
1519 	SDT_SYSTSS,		/* segment type */
1520 	SEL_KPL,		/* segment descriptor priority level */
1521 	1,			/* segment descriptor present */
1522 	0,			/* long */
1523 	0,			/* unused - default 32 vs 16 bit size */
1524 	0  			/* limit granularity (byte/page units)*/ },
1525 /* Actually, the TSS is a system descriptor which is double size */
1526 {	0x0,			/* segment base address  */
1527 	0x0,			/* length */
1528 	0,			/* segment type */
1529 	0,			/* segment descriptor priority level */
1530 	0,			/* segment descriptor present */
1531 	0,			/* long */
1532 	0,			/* default 32 vs 16 bit size */
1533 	0  			/* limit granularity (byte/page units)*/ },
1534 /* GUGS32_SEL	8 32 bit GS Descriptor for user */
1535 {	0x0,			/* segment base address  */
1536 	0xfffff,		/* length - all address space */
1537 	SDT_MEMRWA,		/* segment type */
1538 	SEL_UPL,		/* segment descriptor priority level */
1539 	1,			/* segment descriptor present */
1540 	0,			/* long */
1541 	1,			/* default 32 vs 16 bit size */
1542 	1  			/* limit granularity (byte/page units)*/ },
1543 };
1544 
1545 void
1546 setidt_global(int idx, inthand_t *func, int typ, int dpl, int ist)
1547 {
1548 	int cpu;
1549 
1550 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
1551 		struct gate_descriptor *ip = &idt_arr[cpu][idx];
1552 
1553 		ip->gd_looffset = (uintptr_t)func;
1554 		ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1555 		ip->gd_ist = ist;
1556 		ip->gd_xx = 0;
1557 		ip->gd_type = typ;
1558 		ip->gd_dpl = dpl;
1559 		ip->gd_p = 1;
1560 		ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1561 	}
1562 }
1563 
1564 void
1565 setidt(int idx, inthand_t *func, int typ, int dpl, int ist, int cpu)
1566 {
1567 	struct gate_descriptor *ip;
1568 
1569 	KASSERT(cpu >= 0 && cpu < ncpus, ("invalid cpu %d", cpu));
1570 
1571 	ip = &idt_arr[cpu][idx];
1572 	ip->gd_looffset = (uintptr_t)func;
1573 	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1574 	ip->gd_ist = ist;
1575 	ip->gd_xx = 0;
1576 	ip->gd_type = typ;
1577 	ip->gd_dpl = dpl;
1578 	ip->gd_p = 1;
1579 	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1580 }
1581 
1582 #define	IDTVEC(name)	__CONCAT(X,name)
1583 
1584 extern inthand_t
1585 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1586 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1587 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1588 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1589 	IDTVEC(xmm), IDTVEC(dblfault),
1590 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1591 
1592 void
1593 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1594 {
1595 	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1596 	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1597 	ssd->ssd_type  = sd->sd_type;
1598 	ssd->ssd_dpl   = sd->sd_dpl;
1599 	ssd->ssd_p     = sd->sd_p;
1600 	ssd->ssd_def32 = sd->sd_def32;
1601 	ssd->ssd_gran  = sd->sd_gran;
1602 }
1603 
1604 void
1605 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1606 {
1607 
1608 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1609 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1610 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1611 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1612 	sd->sd_type  = ssd->ssd_type;
1613 	sd->sd_dpl   = ssd->ssd_dpl;
1614 	sd->sd_p     = ssd->ssd_p;
1615 	sd->sd_long  = ssd->ssd_long;
1616 	sd->sd_def32 = ssd->ssd_def32;
1617 	sd->sd_gran  = ssd->ssd_gran;
1618 }
1619 
1620 void
1621 ssdtosyssd(struct soft_segment_descriptor *ssd,
1622     struct system_segment_descriptor *sd)
1623 {
1624 
1625 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1626 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1627 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1628 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1629 	sd->sd_type  = ssd->ssd_type;
1630 	sd->sd_dpl   = ssd->ssd_dpl;
1631 	sd->sd_p     = ssd->ssd_p;
1632 	sd->sd_gran  = ssd->ssd_gran;
1633 }
1634 
1635 /*
1636  * Populate the (physmap) array with base/bound pairs describing the
1637  * available physical memory in the system, then test this memory and
1638  * build the phys_avail array describing the actually-available memory.
1639  *
1640  * If we cannot accurately determine the physical memory map, then use
1641  * value from the 0xE801 call, and failing that, the RTC.
1642  *
1643  * Total memory size may be set by the kernel environment variable
1644  * hw.physmem or the compile-time define MAXMEM.
1645  *
1646  * Memory is aligned to PHYSMAP_ALIGN which must be a multiple
1647  * of PAGE_SIZE.  This also greatly reduces the memory test time
1648  * which would otherwise be excessive on machines with > 8G of ram.
1649  *
1650  * XXX first should be vm_paddr_t.
1651  */
1652 
1653 #define PHYSMAP_ALIGN		(vm_paddr_t)(128 * 1024)
1654 #define PHYSMAP_ALIGN_MASK	(vm_paddr_t)(PHYSMAP_ALIGN - 1)
1655 	vm_paddr_t physmap[PHYSMAP_SIZE];
1656 	struct bios_smap *smapbase, *smap, *smapend;
1657 	struct efi_map_header *efihdrbase;
1658 	u_int32_t smapsize;
1659 #define PHYSMAP_HANDWAVE	(vm_paddr_t)(2 * 1024 * 1024)
1660 #define PHYSMAP_HANDWAVE_MASK	(PHYSMAP_HANDWAVE - 1)
1661 
1662 static void
1663 add_smap_entries(int *physmap_idx)
1664 {
1665 	int i;
1666 
1667 	smapsize = *((u_int32_t *)smapbase - 1);
1668 	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1669 
1670 	for (smap = smapbase; smap < smapend; smap++) {
1671 		if (boothowto & RB_VERBOSE)
1672 			kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1673 			    smap->type, smap->base, smap->length);
1674 
1675 		if (smap->type != SMAP_TYPE_MEMORY)
1676 			continue;
1677 
1678 		if (smap->length == 0)
1679 			continue;
1680 
1681 		for (i = 0; i <= *physmap_idx; i += 2) {
1682 			if (smap->base < physmap[i + 1]) {
1683 				if (boothowto & RB_VERBOSE) {
1684 					kprintf("Overlapping or non-monotonic "
1685 						"memory region, ignoring "
1686 						"second region\n");
1687 				}
1688 				break;
1689 			}
1690 		}
1691 		if (i <= *physmap_idx)
1692 			continue;
1693 
1694 		Realmem += smap->length;
1695 
1696 		if (smap->base == physmap[*physmap_idx + 1]) {
1697 			physmap[*physmap_idx + 1] += smap->length;
1698 			continue;
1699 		}
1700 
1701 		*physmap_idx += 2;
1702 		if (*physmap_idx == PHYSMAP_SIZE) {
1703 			kprintf("Too many segments in the physical "
1704 				"address map, giving up\n");
1705 			break;
1706 		}
1707 		physmap[*physmap_idx] = smap->base;
1708 		physmap[*physmap_idx + 1] = smap->base + smap->length;
1709 	}
1710 }
1711 
1712 static void
1713 add_efi_map_entries(int *physmap_idx)
1714 {
1715 	 struct efi_md *map, *p;
1716 	 const char *type;
1717 	 size_t efisz;
1718 	 int i, ndesc;
1719 
1720 	static const char *types[] = {
1721 		"Reserved",
1722 		"LoaderCode",
1723 		"LoaderData",
1724 		"BootServicesCode",
1725 		"BootServicesData",
1726 		"RuntimeServicesCode",
1727 		"RuntimeServicesData",
1728 		"ConventionalMemory",
1729 		"UnusableMemory",
1730 		"ACPIReclaimMemory",
1731 		"ACPIMemoryNVS",
1732 		"MemoryMappedIO",
1733 		"MemoryMappedIOPortSpace",
1734 		"PalCode"
1735 	 };
1736 
1737 	/*
1738 	 * Memory map data provided by UEFI via the GetMemoryMap
1739 	 * Boot Services API.
1740 	 */
1741 	efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
1742 	map = (struct efi_md *)((uint8_t *)efihdrbase + efisz);
1743 
1744 	if (efihdrbase->descriptor_size == 0)
1745 		return;
1746 	ndesc = efihdrbase->memory_size / efihdrbase->descriptor_size;
1747 
1748 	if (boothowto & RB_VERBOSE)
1749 		kprintf("%23s %12s %12s %8s %4s\n",
1750 		    "Type", "Physical", "Virtual", "#Pages", "Attr");
1751 
1752 	for (i = 0, p = map; i < ndesc; i++,
1753 	    p = efi_next_descriptor(p, efihdrbase->descriptor_size)) {
1754 		if (boothowto & RB_VERBOSE) {
1755 			if (p->md_type <= EFI_MD_TYPE_PALCODE)
1756 				type = types[p->md_type];
1757 			else
1758 				type = "<INVALID>";
1759 			kprintf("%23s %012lx %12p %08lx ", type, p->md_phys,
1760 			    p->md_virt, p->md_pages);
1761 			if (p->md_attr & EFI_MD_ATTR_UC)
1762 				kprintf("UC ");
1763 			if (p->md_attr & EFI_MD_ATTR_WC)
1764 				kprintf("WC ");
1765 			if (p->md_attr & EFI_MD_ATTR_WT)
1766 				kprintf("WT ");
1767 			if (p->md_attr & EFI_MD_ATTR_WB)
1768 				kprintf("WB ");
1769 			if (p->md_attr & EFI_MD_ATTR_UCE)
1770 				kprintf("UCE ");
1771 			if (p->md_attr & EFI_MD_ATTR_WP)
1772 				kprintf("WP ");
1773 			if (p->md_attr & EFI_MD_ATTR_RP)
1774 				kprintf("RP ");
1775 			if (p->md_attr & EFI_MD_ATTR_XP)
1776 				kprintf("XP ");
1777 			if (p->md_attr & EFI_MD_ATTR_RT)
1778 				kprintf("RUNTIME");
1779 			kprintf("\n");
1780 		}
1781 
1782 		switch (p->md_type) {
1783 		case EFI_MD_TYPE_CODE:
1784 		case EFI_MD_TYPE_DATA:
1785 		case EFI_MD_TYPE_BS_CODE:
1786 		case EFI_MD_TYPE_BS_DATA:
1787 		case EFI_MD_TYPE_FREE:
1788 			/*
1789 			 * We're allowed to use any entry with these types.
1790 			 */
1791 			break;
1792 		default:
1793 			continue;
1794 		}
1795 
1796 		Realmem += p->md_pages * PAGE_SIZE;
1797 
1798 		if (p->md_phys == physmap[*physmap_idx + 1]) {
1799 			physmap[*physmap_idx + 1] += p->md_pages * PAGE_SIZE;
1800 			continue;
1801 		}
1802 
1803 		*physmap_idx += 2;
1804 		if (*physmap_idx == PHYSMAP_SIZE) {
1805 			kprintf("Too many segments in the physical "
1806 				"address map, giving up\n");
1807 			break;
1808 		}
1809 		physmap[*physmap_idx] = p->md_phys;
1810 		physmap[*physmap_idx + 1] = p->md_phys + p->md_pages * PAGE_SIZE;
1811 	 }
1812 }
1813 
1814 struct fb_info efi_fb_info;
1815 static int have_efi_framebuffer = 0;
1816 
1817 static void
1818 efi_fb_init_vaddr(int direct_map)
1819 {
1820 	uint64_t sz;
1821 	vm_offset_t addr, v;
1822 
1823 	v = efi_fb_info.vaddr;
1824 	sz = efi_fb_info.stride * efi_fb_info.height;
1825 
1826 	if (direct_map) {
1827 		addr = PHYS_TO_DMAP(efi_fb_info.paddr);
1828 		if (addr >= DMAP_MIN_ADDRESS && addr + sz < DMAP_MAX_ADDRESS)
1829 			efi_fb_info.vaddr = addr;
1830 	} else {
1831 		efi_fb_info.vaddr = (vm_offset_t)pmap_mapdev_attr(
1832 		    efi_fb_info.paddr, sz, PAT_WRITE_COMBINING);
1833 	}
1834 }
1835 
1836 int
1837 probe_efi_fb(int early)
1838 {
1839 	struct efi_fb	*efifb;
1840 	caddr_t		kmdp;
1841 
1842 	if (have_efi_framebuffer) {
1843 		if (!early &&
1844 		    (efi_fb_info.vaddr == 0 ||
1845 		     efi_fb_info.vaddr == PHYS_TO_DMAP(efi_fb_info.paddr)))
1846 			efi_fb_init_vaddr(0);
1847 		return 0;
1848 	}
1849 
1850 	kmdp = preload_search_by_type("elf kernel");
1851 	if (kmdp == NULL)
1852 		kmdp = preload_search_by_type("elf64 kernel");
1853 	efifb = (struct efi_fb *)preload_search_info(kmdp,
1854 	    MODINFO_METADATA | MODINFOMD_EFI_FB);
1855 	if (efifb == NULL)
1856 		return 1;
1857 
1858 	have_efi_framebuffer = 1;
1859 
1860 	efi_fb_info.is_vga_boot_display = 1;
1861 	efi_fb_info.width = efifb->fb_width;
1862 	efi_fb_info.height = efifb->fb_height;
1863 	efi_fb_info.stride = efifb->fb_stride * 4;
1864 	efi_fb_info.depth = 32;
1865 	efi_fb_info.paddr = efifb->fb_addr;
1866 	if (early) {
1867 		efi_fb_info.vaddr = 0;
1868 	} else {
1869 		efi_fb_init_vaddr(0);
1870 	}
1871 	efi_fb_info.fbops.fb_set_par = NULL;
1872 	efi_fb_info.fbops.fb_blank = NULL;
1873 	efi_fb_info.fbops.fb_debug_enter = NULL;
1874 	efi_fb_info.device = NULL;
1875 
1876 	return 0;
1877 }
1878 
1879 static void
1880 efifb_startup(void *arg)
1881 {
1882 	probe_efi_fb(0);
1883 }
1884 
1885 SYSINIT(efi_fb_info, SI_BOOT1_POST, SI_ORDER_FIRST, efifb_startup, NULL);
1886 
1887 static void
1888 getmemsize(caddr_t kmdp, u_int64_t first)
1889 {
1890 	int off, physmap_idx, pa_indx, da_indx;
1891 	int i, j;
1892 	vm_paddr_t pa;
1893 	vm_paddr_t msgbuf_size;
1894 	u_long physmem_tunable;
1895 	pt_entry_t *pte;
1896 	quad_t dcons_addr, dcons_size;
1897 
1898 	bzero(physmap, sizeof(physmap));
1899 	physmap_idx = 0;
1900 
1901 	/*
1902 	 * get memory map from INT 15:E820, kindly supplied by the loader.
1903 	 *
1904 	 * subr_module.c says:
1905 	 * "Consumer may safely assume that size value precedes data."
1906 	 * ie: an int32_t immediately precedes smap.
1907 	 */
1908 	efihdrbase = (struct efi_map_header *)preload_search_info(kmdp,
1909 	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
1910 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1911 	    MODINFO_METADATA | MODINFOMD_SMAP);
1912 	if (smapbase == NULL && efihdrbase == NULL)
1913 		panic("No BIOS smap or EFI map info from loader!");
1914 
1915 	if (efihdrbase == NULL)
1916 		add_smap_entries(&physmap_idx);
1917 	else
1918 		add_efi_map_entries(&physmap_idx);
1919 
1920 	base_memory = physmap[1] / 1024;
1921 	/* make hole for AP bootstrap code */
1922 	physmap[1] = mp_bootaddress(base_memory);
1923 
1924 	/* Save EBDA address, if any */
1925 	ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
1926 	ebda_addr <<= 4;
1927 
1928 	/*
1929 	 * Maxmem isn't the "maximum memory", it's one larger than the
1930 	 * highest page of the physical address space.  It should be
1931 	 * called something like "Maxphyspage".  We may adjust this
1932 	 * based on ``hw.physmem'' and the results of the memory test.
1933 	 */
1934 	Maxmem = atop(physmap[physmap_idx + 1]);
1935 
1936 #ifdef MAXMEM
1937 	Maxmem = MAXMEM / 4;
1938 #endif
1939 
1940 	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1941 		Maxmem = atop(physmem_tunable);
1942 
1943 	/*
1944 	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1945 	 * in the system.
1946 	 */
1947 	if (Maxmem > atop(physmap[physmap_idx + 1]))
1948 		Maxmem = atop(physmap[physmap_idx + 1]);
1949 
1950 	/*
1951 	 * Blowing out the DMAP will blow up the system.
1952 	 */
1953 	if (Maxmem > atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS)) {
1954 		kprintf("Limiting Maxmem due to DMAP size\n");
1955 		Maxmem = atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS);
1956 	}
1957 
1958 	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1959 	    (boothowto & RB_VERBOSE)) {
1960 		kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
1961 	}
1962 
1963 	/*
1964 	 * Call pmap initialization to make new kernel address space
1965 	 *
1966 	 * Mask off page 0.
1967 	 */
1968 	pmap_bootstrap(&first);
1969 	physmap[0] = PAGE_SIZE;
1970 
1971 	/*
1972 	 * Align the physmap to PHYSMAP_ALIGN and cut out anything
1973 	 * exceeding Maxmem.
1974 	 */
1975 	for (i = j = 0; i <= physmap_idx; i += 2) {
1976 		if (physmap[i+1] > ptoa(Maxmem))
1977 			physmap[i+1] = ptoa(Maxmem);
1978 		physmap[i] = (physmap[i] + PHYSMAP_ALIGN_MASK) &
1979 			     ~PHYSMAP_ALIGN_MASK;
1980 		physmap[i+1] = physmap[i+1] & ~PHYSMAP_ALIGN_MASK;
1981 
1982 		physmap[j] = physmap[i];
1983 		physmap[j+1] = physmap[i+1];
1984 
1985 		if (physmap[i] < physmap[i+1])
1986 			j += 2;
1987 	}
1988 	physmap_idx = j - 2;
1989 
1990 	/*
1991 	 * Align anything else used in the validation loop.
1992 	 */
1993 	first = (first + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1994 
1995 	/*
1996 	 * Size up each available chunk of physical memory.
1997 	 */
1998 	pa_indx = 0;
1999 	da_indx = 1;
2000 	phys_avail[pa_indx++] = physmap[0];
2001 	phys_avail[pa_indx] = physmap[0];
2002 	dump_avail[da_indx] = physmap[0];
2003 	pte = CMAP1;
2004 
2005 	/*
2006 	 * Get dcons buffer address
2007 	 */
2008 	if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
2009 	    kgetenv_quad("dcons.size", &dcons_size) == 0)
2010 		dcons_addr = 0;
2011 
2012 	/*
2013 	 * Validate the physical memory.  The physical memory segments
2014 	 * have already been aligned to PHYSMAP_ALIGN which is a multiple
2015 	 * of PAGE_SIZE.
2016 	 */
2017 	for (i = 0; i <= physmap_idx; i += 2) {
2018 		vm_paddr_t end;
2019 		vm_paddr_t incr = PHYSMAP_ALIGN;
2020 
2021 		end = physmap[i + 1];
2022 
2023 		for (pa = physmap[i]; pa < end; pa += incr) {
2024 			int page_bad, full;
2025 			volatile uint64_t *ptr = (uint64_t *)CADDR1;
2026 			uint64_t tmp;
2027 
2028 			incr = PHYSMAP_ALIGN;
2029 			full = FALSE;
2030 
2031 			/*
2032 			 * block out kernel memory as not available.
2033 			 */
2034 			if (pa >= 0x200000 && pa < first)
2035 				goto do_dump_avail;
2036 
2037 			/*
2038 			 * block out dcons buffer
2039 			 */
2040 			if (dcons_addr > 0
2041 			    && pa >= trunc_page(dcons_addr)
2042 			    && pa < dcons_addr + dcons_size) {
2043 				goto do_dump_avail;
2044 			}
2045 
2046 			page_bad = FALSE;
2047 
2048 			/*
2049 			 * Always test the first and last block supplied in
2050 			 * the map entry, but it just takes too long to run
2051 			 * the test these days and we already have to skip
2052 			 * pages.  Handwave it on PHYSMAP_HANDWAVE boundaries.
2053 			 */
2054 			if (pa != physmap[i]) {
2055 				vm_paddr_t bytes = end - pa;
2056 				if ((pa & PHYSMAP_HANDWAVE_MASK) == 0 &&
2057 				    bytes >= PHYSMAP_HANDWAVE + PHYSMAP_ALIGN) {
2058 					incr = PHYSMAP_HANDWAVE;
2059 					goto handwaved;
2060 				}
2061 			}
2062 
2063 			/*
2064 			 * map page into kernel: valid, read/write,non-cacheable
2065 			 */
2066 			*pte = pa |
2067 			    kernel_pmap.pmap_bits[PG_V_IDX] |
2068 			    kernel_pmap.pmap_bits[PG_RW_IDX] |
2069 			    kernel_pmap.pmap_bits[PG_N_IDX];
2070 			cpu_invlpg(__DEVOLATILE(void *, ptr));
2071 			cpu_mfence();
2072 
2073 			tmp = *ptr;
2074 			/*
2075 			 * Test for alternating 1's and 0's
2076 			 */
2077 			*ptr = 0xaaaaaaaaaaaaaaaaLLU;
2078 			cpu_mfence();
2079 			if (*ptr != 0xaaaaaaaaaaaaaaaaLLU)
2080 				page_bad = TRUE;
2081 			/*
2082 			 * Test for alternating 0's and 1's
2083 			 */
2084 			*ptr = 0x5555555555555555LLU;
2085 			cpu_mfence();
2086 			if (*ptr != 0x5555555555555555LLU)
2087 				page_bad = TRUE;
2088 			/*
2089 			 * Test for all 1's
2090 			 */
2091 			*ptr = 0xffffffffffffffffLLU;
2092 			cpu_mfence();
2093 			if (*ptr != 0xffffffffffffffffLLU)
2094 				page_bad = TRUE;
2095 			/*
2096 			 * Test for all 0's
2097 			 */
2098 			*ptr = 0x0;
2099 			cpu_mfence();
2100 			if (*ptr != 0x0)
2101 				page_bad = TRUE;
2102 			/*
2103 			 * Restore original value.
2104 			 */
2105 			*ptr = tmp;
2106 handwaved:
2107 
2108 			/*
2109 			 * Adjust array of valid/good pages.
2110 			 */
2111 			if (page_bad == TRUE)
2112 				continue;
2113 
2114 			/*
2115 			 * If this good page is a continuation of the
2116 			 * previous set of good pages, then just increase
2117 			 * the end pointer. Otherwise start a new chunk.
2118 			 * Note that "end" points one higher than end,
2119 			 * making the range >= start and < end.
2120 			 * If we're also doing a speculative memory
2121 			 * test and we at or past the end, bump up Maxmem
2122 			 * so that we keep going. The first bad page
2123 			 * will terminate the loop.
2124 			 */
2125 			if (phys_avail[pa_indx] == pa) {
2126 				phys_avail[pa_indx] += incr;
2127 			} else {
2128 				pa_indx++;
2129 				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
2130 					kprintf(
2131 		"Too many holes in the physical address space, giving up\n");
2132 					pa_indx--;
2133 					full = TRUE;
2134 					goto do_dump_avail;
2135 				}
2136 				phys_avail[pa_indx++] = pa;
2137 				phys_avail[pa_indx] = pa + incr;
2138 			}
2139 			physmem += incr / PAGE_SIZE;
2140 do_dump_avail:
2141 			if (dump_avail[da_indx] == pa) {
2142 				dump_avail[da_indx] += incr;
2143 			} else {
2144 				da_indx++;
2145 				if (da_indx == DUMP_AVAIL_ARRAY_END) {
2146 					da_indx--;
2147 					goto do_next;
2148 				}
2149 				dump_avail[da_indx++] = pa;
2150 				dump_avail[da_indx] = pa + incr;
2151 			}
2152 do_next:
2153 			if (full)
2154 				break;
2155 		}
2156 	}
2157 	*pte = 0;
2158 	cpu_invltlb();
2159 	cpu_mfence();
2160 
2161 	/*
2162 	 * The last chunk must contain at least one page plus the message
2163 	 * buffer to avoid complicating other code (message buffer address
2164 	 * calculation, etc.).
2165 	 */
2166 	msgbuf_size = (MSGBUF_SIZE + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
2167 
2168 	while (phys_avail[pa_indx - 1] + PHYSMAP_ALIGN +
2169 	       msgbuf_size >= phys_avail[pa_indx]) {
2170 		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
2171 		phys_avail[pa_indx--] = 0;
2172 		phys_avail[pa_indx--] = 0;
2173 	}
2174 
2175 	Maxmem = atop(phys_avail[pa_indx]);
2176 
2177 	/* Trim off space for the message buffer. */
2178 	phys_avail[pa_indx] -= msgbuf_size;
2179 
2180 	avail_end = phys_avail[pa_indx];
2181 
2182 	/* Map the message buffer. */
2183 	for (off = 0; off < msgbuf_size; off += PAGE_SIZE) {
2184 		pmap_kenter((vm_offset_t)msgbufp + off,
2185 			    phys_avail[pa_indx] + off);
2186 	}
2187 	/* Try to get EFI framebuffer working as early as possible */
2188 	if (have_efi_framebuffer)
2189 		efi_fb_init_vaddr(1);
2190 }
2191 
2192 struct machintr_abi MachIntrABI;
2193 
2194 /*
2195  * IDT VECTORS:
2196  *	0	Divide by zero
2197  *	1	Debug
2198  *	2	NMI
2199  *	3	BreakPoint
2200  *	4	OverFlow
2201  *	5	Bound-Range
2202  *	6	Invalid OpCode
2203  *	7	Device Not Available (x87)
2204  *	8	Double-Fault
2205  *	9	Coprocessor Segment overrun (unsupported, reserved)
2206  *	10	Invalid-TSS
2207  *	11	Segment not present
2208  *	12	Stack
2209  *	13	General Protection
2210  *	14	Page Fault
2211  *	15	Reserved
2212  *	16	x87 FP Exception pending
2213  *	17	Alignment Check
2214  *	18	Machine Check
2215  *	19	SIMD floating point
2216  *	20-31	reserved
2217  *	32-255	INTn/external sources
2218  */
2219 u_int64_t
2220 hammer_time(u_int64_t modulep, u_int64_t physfree)
2221 {
2222 	caddr_t kmdp;
2223 	int gsel_tss, x, cpu;
2224 #if 0 /* JG */
2225 	int metadata_missing, off;
2226 #endif
2227 	struct mdglobaldata *gd;
2228 	u_int64_t msr;
2229 
2230 	/*
2231 	 * Prevent lowering of the ipl if we call tsleep() early.
2232 	 */
2233 	gd = &CPU_prvspace[0]->mdglobaldata;
2234 	bzero(gd, sizeof(*gd));
2235 
2236 	/*
2237 	 * Note: on both UP and SMP curthread must be set non-NULL
2238 	 * early in the boot sequence because the system assumes
2239 	 * that 'curthread' is never NULL.
2240 	 */
2241 
2242 	gd->mi.gd_curthread = &thread0;
2243 	thread0.td_gd = &gd->mi;
2244 
2245 	atdevbase = ISA_HOLE_START + PTOV_OFFSET;
2246 
2247 #if 0 /* JG */
2248 	metadata_missing = 0;
2249 	if (bootinfo.bi_modulep) {
2250 		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
2251 		preload_bootstrap_relocate(KERNBASE);
2252 	} else {
2253 		metadata_missing = 1;
2254 	}
2255 	if (bootinfo.bi_envp)
2256 		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
2257 #endif
2258 
2259 	preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
2260 	preload_bootstrap_relocate(PTOV_OFFSET);
2261 	kmdp = preload_search_by_type("elf kernel");
2262 	if (kmdp == NULL)
2263 		kmdp = preload_search_by_type("elf64 kernel");
2264 	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
2265 	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
2266 #ifdef DDB
2267 	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
2268 	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
2269 #endif
2270 	efi_systbl_phys = MD_FETCH(kmdp, MODINFOMD_FW_HANDLE, vm_paddr_t);
2271 
2272 	if (boothowto & RB_VERBOSE)
2273 		bootverbose++;
2274 
2275 	/*
2276 	 * Default MachIntrABI to ICU
2277 	 */
2278 	MachIntrABI = MachIntrABI_ICU;
2279 
2280 	/*
2281 	 * start with one cpu.  Note: with one cpu, ncpus2_shift, ncpus2_mask,
2282 	 * and ncpus_fit_mask remain 0.
2283 	 */
2284 	ncpus = 1;
2285 	ncpus2 = 1;
2286 	ncpus_fit = 1;
2287 	/* Init basic tunables, hz etc */
2288 	init_param1();
2289 
2290 	/*
2291 	 * make gdt memory segments
2292 	 */
2293 	gdt_segs[GPROC0_SEL].ssd_base =
2294 		(uintptr_t) &CPU_prvspace[0]->mdglobaldata.gd_common_tss;
2295 
2296 	gd->mi.gd_prvspace = CPU_prvspace[0];
2297 
2298 	for (x = 0; x < NGDT; x++) {
2299 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
2300 			ssdtosd(&gdt_segs[x], &gdt[x]);
2301 	}
2302 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2303 	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
2304 
2305 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
2306 	r_gdt.rd_base =  (long) gdt;
2307 	lgdt(&r_gdt);
2308 
2309 	wrmsr(MSR_FSBASE, 0);		/* User value */
2310 	wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
2311 	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
2312 
2313 	mi_gdinit(&gd->mi, 0);
2314 	cpu_gdinit(gd, 0);
2315 	proc0paddr = proc0paddr_buff;
2316 	mi_proc0init(&gd->mi, proc0paddr);
2317 	safepri = TDPRI_MAX;
2318 
2319 	/* spinlocks and the BGL */
2320 	init_locks();
2321 
2322 	/* exceptions */
2323 	for (x = 0; x < NIDT; x++)
2324 		setidt_global(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
2325 	setidt_global(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
2326 	setidt_global(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
2327 	setidt_global(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 1);
2328  	setidt_global(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
2329 	setidt_global(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
2330 	setidt_global(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
2331 	setidt_global(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
2332 	setidt_global(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
2333 	setidt_global(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
2334 	setidt_global(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
2335 	setidt_global(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
2336 	setidt_global(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
2337 	setidt_global(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
2338 	setidt_global(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
2339 	setidt_global(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
2340 	setidt_global(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
2341 	setidt_global(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
2342 	setidt_global(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
2343 	setidt_global(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
2344 
2345 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
2346 		r_idt_arr[cpu].rd_limit = sizeof(idt_arr[cpu]) - 1;
2347 		r_idt_arr[cpu].rd_base = (long) &idt_arr[cpu][0];
2348 	}
2349 
2350 	lidt(&r_idt_arr[0]);
2351 
2352 	/*
2353 	 * Initialize the console before we print anything out.
2354 	 */
2355 	cninit();
2356 
2357 #if 0 /* JG */
2358 	if (metadata_missing)
2359 		kprintf("WARNING: loader(8) metadata is missing!\n");
2360 #endif
2361 
2362 #if	NISA >0
2363 	elcr_probe();
2364 	isa_defaultirq();
2365 #endif
2366 	rand_initialize();
2367 
2368 	/*
2369 	 * Initialize IRQ mapping
2370 	 *
2371 	 * NOTE:
2372 	 * SHOULD be after elcr_probe()
2373 	 */
2374 	MachIntrABI_ICU.initmap();
2375 	MachIntrABI_IOAPIC.initmap();
2376 
2377 #ifdef DDB
2378 	kdb_init();
2379 	if (boothowto & RB_KDB)
2380 		Debugger("Boot flags requested debugger");
2381 #endif
2382 
2383 #if 0 /* JG */
2384 	finishidentcpu();	/* Final stage of CPU initialization */
2385 	setidt(6, &IDTVEC(ill),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2386 	setidt(13, &IDTVEC(prot),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2387 #endif
2388 	identify_cpu();		/* Final stage of CPU initialization */
2389 	initializecpu(0);	/* Initialize CPU registers */
2390 
2391 	/*
2392 	 * On modern intel cpus, haswell or later, cpu_idle_hlt=1 is better
2393 	 * because the cpu does significant power management in MWAIT
2394 	 * (also suggested is to set sysctl machdep.mwait.CX.idle=AUTODEEP).
2395 	 *
2396 	 * On modern amd cpus cpu_idle_hlt=3 is better, because the cpu does
2397 	 * significant power management in HLT or ACPI (but cpu_idle_hlt=1
2398 	 * would try to use MWAIT).
2399 	 *
2400 	 * On older amd or intel cpus, cpu_idle_hlt=2 is better because ACPI
2401 	 * is needed to reduce power consumption, but wakeup times are often
2402 	 * longer.
2403 	 */
2404 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
2405 	    CPUID_TO_MODEL(cpu_id) >= 0x3C) {	/* Haswell or later */
2406 		cpu_idle_hlt = 1;
2407 	}
2408 	if (cpu_vendor_id == CPU_VENDOR_AMD &&
2409 	    CPUID_TO_FAMILY(cpu_id) >= 0x14) {	/* Bobcat or later */
2410 		cpu_idle_hlt = 3;
2411 	}
2412 
2413 	TUNABLE_INT_FETCH("hw.apic_io_enable", &ioapic_enable); /* for compat */
2414 	TUNABLE_INT_FETCH("hw.ioapic_enable", &ioapic_enable);
2415 	TUNABLE_INT_FETCH("hw.lapic_enable", &lapic_enable);
2416 	TUNABLE_INT_FETCH("machdep.cpu_idle_hlt", &cpu_idle_hlt);
2417 
2418 	/*
2419 	 * Some of the virtual machines do not work w/ I/O APIC
2420 	 * enabled.  If the user does not explicitly enable or
2421 	 * disable the I/O APIC (ioapic_enable < 0), then we
2422 	 * disable I/O APIC on all virtual machines.
2423 	 *
2424 	 * NOTE:
2425 	 * This must be done after identify_cpu(), which sets
2426 	 * 'cpu_feature2'
2427 	 */
2428 	if (ioapic_enable < 0) {
2429 		if (cpu_feature2 & CPUID2_VMM)
2430 			ioapic_enable = 0;
2431 		else
2432 			ioapic_enable = 1;
2433 	}
2434 
2435 	/* make an initial tss so cpu can get interrupt stack on syscall! */
2436 	gd->gd_common_tss.tss_rsp0 =
2437 		(register_t)(thread0.td_kstack +
2438 			     KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb));
2439 	/* Ensure the stack is aligned to 16 bytes */
2440 	gd->gd_common_tss.tss_rsp0 &= ~(register_t)0xF;
2441 
2442 	/* double fault stack */
2443 	gd->gd_common_tss.tss_ist1 =
2444 		(long)&gd->mi.gd_prvspace->idlestack[
2445 			sizeof(gd->mi.gd_prvspace->idlestack)];
2446 
2447 	/* Set the IO permission bitmap (empty due to tss seg limit) */
2448 	gd->gd_common_tss.tss_iobase = sizeof(struct x86_64tss);
2449 
2450 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2451 	gd->gd_tss_gdt = &gdt[GPROC0_SEL];
2452 	gd->gd_common_tssd = *gd->gd_tss_gdt;
2453 	ltr(gsel_tss);
2454 
2455 	/* Set up the fast syscall stuff */
2456 	msr = rdmsr(MSR_EFER) | EFER_SCE;
2457 	wrmsr(MSR_EFER, msr);
2458 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
2459 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
2460 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
2461 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
2462 	wrmsr(MSR_STAR, msr);
2463 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
2464 
2465 	getmemsize(kmdp, physfree);
2466 	init_param2(physmem);
2467 
2468 	/* now running on new page tables, configured,and u/iom is accessible */
2469 
2470 	/* Map the message buffer. */
2471 #if 0 /* JG */
2472 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2473 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2474 #endif
2475 
2476 	msgbufinit(msgbufp, MSGBUF_SIZE);
2477 
2478 
2479 	/* transfer to user mode */
2480 
2481 	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2482 	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2483 	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
2484 
2485 	load_ds(_udatasel);
2486 	load_es(_udatasel);
2487 	load_fs(_udatasel);
2488 
2489 	/* setup proc 0's pcb */
2490 	thread0.td_pcb->pcb_flags = 0;
2491 	thread0.td_pcb->pcb_cr3 = KPML4phys;
2492 	thread0.td_pcb->pcb_ext = NULL;
2493 	lwp0.lwp_md.md_regs = &proc0_tf;	/* XXX needed? */
2494 
2495 	/* Location of kernel stack for locore */
2496 	return ((u_int64_t)thread0.td_pcb);
2497 }
2498 
2499 /*
2500  * Initialize machine-dependant portions of the global data structure.
2501  * Note that the global data area and cpu0's idlestack in the private
2502  * data space were allocated in locore.
2503  *
2504  * Note: the idlethread's cpl is 0
2505  *
2506  * WARNING!  Called from early boot, 'mycpu' may not work yet.
2507  */
2508 void
2509 cpu_gdinit(struct mdglobaldata *gd, int cpu)
2510 {
2511 	if (cpu)
2512 		gd->mi.gd_curthread = &gd->mi.gd_idlethread;
2513 
2514 	lwkt_init_thread(&gd->mi.gd_idlethread,
2515 			gd->mi.gd_prvspace->idlestack,
2516 			sizeof(gd->mi.gd_prvspace->idlestack),
2517 			0, &gd->mi);
2518 	lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
2519 	gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
2520 	gd->mi.gd_idlethread.td_sp -= sizeof(void *);
2521 	*(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
2522 }
2523 
2524 /*
2525  * We only have to check for DMAP bounds, the globaldata space is
2526  * actually part of the kernel_map so we don't have to waste time
2527  * checking CPU_prvspace[*].
2528  */
2529 int
2530 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
2531 {
2532 #if 0
2533 	if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
2534 	    eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
2535 		return (TRUE);
2536 	}
2537 #endif
2538 	if (saddr >= DMAP_MIN_ADDRESS && eaddr <= DMAP_MAX_ADDRESS)
2539 		return (TRUE);
2540 	return (FALSE);
2541 }
2542 
2543 struct globaldata *
2544 globaldata_find(int cpu)
2545 {
2546 	KKASSERT(cpu >= 0 && cpu < ncpus);
2547 	return(&CPU_prvspace[cpu]->mdglobaldata.mi);
2548 }
2549 
2550 /*
2551  * This path should be safe from the SYSRET issue because only stopped threads
2552  * can have their %rip adjusted this way (and all heavy weight thread switches
2553  * clear QUICKREF and thus do not use SYSRET).  However, the code path is
2554  * convoluted so add a safety by forcing %rip to be cannonical.
2555  */
2556 int
2557 ptrace_set_pc(struct lwp *lp, unsigned long addr)
2558 {
2559 	if (addr & 0x0000800000000000LLU)
2560 		lp->lwp_md.md_regs->tf_rip = addr | 0xFFFF000000000000LLU;
2561 	else
2562 		lp->lwp_md.md_regs->tf_rip = addr & 0x0000FFFFFFFFFFFFLLU;
2563 	return (0);
2564 }
2565 
2566 int
2567 ptrace_single_step(struct lwp *lp)
2568 {
2569 	lp->lwp_md.md_regs->tf_rflags |= PSL_T;
2570 	return (0);
2571 }
2572 
2573 int
2574 fill_regs(struct lwp *lp, struct reg *regs)
2575 {
2576 	struct trapframe *tp;
2577 
2578 	if ((tp = lp->lwp_md.md_regs) == NULL)
2579 		return EINVAL;
2580 	bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
2581 	return (0);
2582 }
2583 
2584 int
2585 set_regs(struct lwp *lp, struct reg *regs)
2586 {
2587 	struct trapframe *tp;
2588 
2589 	tp = lp->lwp_md.md_regs;
2590 	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
2591 	    !CS_SECURE(regs->r_cs))
2592 		return (EINVAL);
2593 	bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
2594 	clear_quickret();
2595 	return (0);
2596 }
2597 
2598 static void
2599 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2600 {
2601 	struct env87 *penv_87 = &sv_87->sv_env;
2602 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2603 	int i;
2604 
2605 	/* FPU control/status */
2606 	penv_87->en_cw = penv_xmm->en_cw;
2607 	penv_87->en_sw = penv_xmm->en_sw;
2608 	penv_87->en_tw = penv_xmm->en_tw;
2609 	penv_87->en_fip = penv_xmm->en_fip;
2610 	penv_87->en_fcs = penv_xmm->en_fcs;
2611 	penv_87->en_opcode = penv_xmm->en_opcode;
2612 	penv_87->en_foo = penv_xmm->en_foo;
2613 	penv_87->en_fos = penv_xmm->en_fos;
2614 
2615 	/* FPU registers */
2616 	for (i = 0; i < 8; ++i)
2617 		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2618 }
2619 
2620 static void
2621 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2622 {
2623 	struct env87 *penv_87 = &sv_87->sv_env;
2624 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2625 	int i;
2626 
2627 	/* FPU control/status */
2628 	penv_xmm->en_cw = penv_87->en_cw;
2629 	penv_xmm->en_sw = penv_87->en_sw;
2630 	penv_xmm->en_tw = penv_87->en_tw;
2631 	penv_xmm->en_fip = penv_87->en_fip;
2632 	penv_xmm->en_fcs = penv_87->en_fcs;
2633 	penv_xmm->en_opcode = penv_87->en_opcode;
2634 	penv_xmm->en_foo = penv_87->en_foo;
2635 	penv_xmm->en_fos = penv_87->en_fos;
2636 
2637 	/* FPU registers */
2638 	for (i = 0; i < 8; ++i)
2639 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2640 }
2641 
2642 int
2643 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2644 {
2645 	if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
2646 		return EINVAL;
2647 	if (cpu_fxsr) {
2648 		fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2649 				(struct save87 *)fpregs);
2650 		return (0);
2651 	}
2652 	bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2653 	return (0);
2654 }
2655 
2656 int
2657 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2658 {
2659 	if (cpu_fxsr) {
2660 		set_fpregs_xmm((struct save87 *)fpregs,
2661 			       &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2662 		return (0);
2663 	}
2664 	bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2665 	return (0);
2666 }
2667 
2668 int
2669 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2670 {
2671 	struct pcb *pcb;
2672 
2673         if (lp == NULL) {
2674                 dbregs->dr[0] = rdr0();
2675                 dbregs->dr[1] = rdr1();
2676                 dbregs->dr[2] = rdr2();
2677                 dbregs->dr[3] = rdr3();
2678                 dbregs->dr[4] = rdr4();
2679                 dbregs->dr[5] = rdr5();
2680                 dbregs->dr[6] = rdr6();
2681                 dbregs->dr[7] = rdr7();
2682 		return (0);
2683         }
2684 	if (lp->lwp_thread == NULL || (pcb = lp->lwp_thread->td_pcb) == NULL)
2685 		return EINVAL;
2686 	dbregs->dr[0] = pcb->pcb_dr0;
2687 	dbregs->dr[1] = pcb->pcb_dr1;
2688 	dbregs->dr[2] = pcb->pcb_dr2;
2689 	dbregs->dr[3] = pcb->pcb_dr3;
2690 	dbregs->dr[4] = 0;
2691 	dbregs->dr[5] = 0;
2692 	dbregs->dr[6] = pcb->pcb_dr6;
2693 	dbregs->dr[7] = pcb->pcb_dr7;
2694 	return (0);
2695 }
2696 
2697 int
2698 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2699 {
2700 	if (lp == NULL) {
2701 		load_dr0(dbregs->dr[0]);
2702 		load_dr1(dbregs->dr[1]);
2703 		load_dr2(dbregs->dr[2]);
2704 		load_dr3(dbregs->dr[3]);
2705 		load_dr4(dbregs->dr[4]);
2706 		load_dr5(dbregs->dr[5]);
2707 		load_dr6(dbregs->dr[6]);
2708 		load_dr7(dbregs->dr[7]);
2709 	} else {
2710 		struct pcb *pcb;
2711 		struct ucred *ucred;
2712 		int i;
2713 		uint64_t mask1, mask2;
2714 
2715 		/*
2716 		 * Don't let an illegal value for dr7 get set.	Specifically,
2717 		 * check for undefined settings.  Setting these bit patterns
2718 		 * result in undefined behaviour and can lead to an unexpected
2719 		 * TRCTRAP.
2720 		 */
2721 		/* JG this loop looks unreadable */
2722 		/* Check 4 2-bit fields for invalid patterns.
2723 		 * These fields are R/Wi, for i = 0..3
2724 		 */
2725 		/* Is 10 in LENi allowed when running in compatibility mode? */
2726 		/* Pattern 10 in R/Wi might be used to indicate
2727 		 * breakpoint on I/O. Further analysis should be
2728 		 * carried to decide if it is safe and useful to
2729 		 * provide access to that capability
2730 		 */
2731 		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2732 		     i++, mask1 <<= 4, mask2 <<= 4)
2733 			if ((dbregs->dr[7] & mask1) == mask2)
2734 				return (EINVAL);
2735 
2736 		pcb = lp->lwp_thread->td_pcb;
2737 		ucred = lp->lwp_proc->p_ucred;
2738 
2739 		/*
2740 		 * Don't let a process set a breakpoint that is not within the
2741 		 * process's address space.  If a process could do this, it
2742 		 * could halt the system by setting a breakpoint in the kernel
2743 		 * (if ddb was enabled).  Thus, we need to check to make sure
2744 		 * that no breakpoints are being enabled for addresses outside
2745 		 * process's address space, unless, perhaps, we were called by
2746 		 * uid 0.
2747 		 *
2748 		 * XXX - what about when the watched area of the user's
2749 		 * address space is written into from within the kernel
2750 		 * ... wouldn't that still cause a breakpoint to be generated
2751 		 * from within kernel mode?
2752 		 */
2753 
2754 		if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2755 			if (dbregs->dr[7] & 0x3) {
2756 				/* dr0 is enabled */
2757 				if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2758 					return (EINVAL);
2759 			}
2760 
2761 			if (dbregs->dr[7] & (0x3<<2)) {
2762 				/* dr1 is enabled */
2763 				if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2764 					return (EINVAL);
2765 			}
2766 
2767 			if (dbregs->dr[7] & (0x3<<4)) {
2768 				/* dr2 is enabled */
2769 				if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2770 					return (EINVAL);
2771 			}
2772 
2773 			if (dbregs->dr[7] & (0x3<<6)) {
2774 				/* dr3 is enabled */
2775 				if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2776 					return (EINVAL);
2777 			}
2778 		}
2779 
2780 		pcb->pcb_dr0 = dbregs->dr[0];
2781 		pcb->pcb_dr1 = dbregs->dr[1];
2782 		pcb->pcb_dr2 = dbregs->dr[2];
2783 		pcb->pcb_dr3 = dbregs->dr[3];
2784 		pcb->pcb_dr6 = dbregs->dr[6];
2785 		pcb->pcb_dr7 = dbregs->dr[7];
2786 
2787 		pcb->pcb_flags |= PCB_DBREGS;
2788 	}
2789 
2790 	return (0);
2791 }
2792 
2793 /*
2794  * Return > 0 if a hardware breakpoint has been hit, and the
2795  * breakpoint was in user space.  Return 0, otherwise.
2796  */
2797 int
2798 user_dbreg_trap(void)
2799 {
2800         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2801         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2802         int nbp;            /* number of breakpoints that triggered */
2803         caddr_t addr[4];    /* breakpoint addresses */
2804         int i;
2805 
2806         dr7 = rdr7();
2807         if ((dr7 & 0xff) == 0) {
2808                 /*
2809                  * all GE and LE bits in the dr7 register are zero,
2810                  * thus the trap couldn't have been caused by the
2811                  * hardware debug registers
2812                  */
2813                 return 0;
2814         }
2815 
2816         nbp = 0;
2817         dr6 = rdr6();
2818         bp = dr6 & 0xf;
2819 
2820         if (bp == 0) {
2821                 /*
2822                  * None of the breakpoint bits are set meaning this
2823                  * trap was not caused by any of the debug registers
2824                  */
2825                 return 0;
2826         }
2827 
2828         /*
2829          * at least one of the breakpoints were hit, check to see
2830          * which ones and if any of them are user space addresses
2831          */
2832 
2833         if (bp & 0x01) {
2834                 addr[nbp++] = (caddr_t)rdr0();
2835         }
2836         if (bp & 0x02) {
2837                 addr[nbp++] = (caddr_t)rdr1();
2838         }
2839         if (bp & 0x04) {
2840                 addr[nbp++] = (caddr_t)rdr2();
2841         }
2842         if (bp & 0x08) {
2843                 addr[nbp++] = (caddr_t)rdr3();
2844         }
2845 
2846         for (i=0; i<nbp; i++) {
2847                 if (addr[i] <
2848                     (caddr_t)VM_MAX_USER_ADDRESS) {
2849                         /*
2850                          * addr[i] is in user space
2851                          */
2852                         return nbp;
2853                 }
2854         }
2855 
2856         /*
2857          * None of the breakpoints are in user space.
2858          */
2859         return 0;
2860 }
2861 
2862 
2863 #ifndef DDB
2864 void
2865 Debugger(const char *msg)
2866 {
2867 	kprintf("Debugger(\"%s\") called.\n", msg);
2868 }
2869 #endif /* no DDB */
2870 
2871 #ifdef DDB
2872 
2873 /*
2874  * Provide inb() and outb() as functions.  They are normally only
2875  * available as macros calling inlined functions, thus cannot be
2876  * called inside DDB.
2877  *
2878  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2879  */
2880 
2881 #undef inb
2882 #undef outb
2883 
2884 /* silence compiler warnings */
2885 u_char inb(u_int);
2886 void outb(u_int, u_char);
2887 
2888 u_char
2889 inb(u_int port)
2890 {
2891 	u_char	data;
2892 	/*
2893 	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2894 	 * %edx, while gcc generates inferior code (movw instead of movl)
2895 	 * if we tell it to load (u_short) port.
2896 	 */
2897 	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2898 	return (data);
2899 }
2900 
2901 void
2902 outb(u_int port, u_char data)
2903 {
2904 	u_char	al;
2905 	/*
2906 	 * Use an unnecessary assignment to help gcc's register allocator.
2907 	 * This make a large difference for gcc-1.40 and a tiny difference
2908 	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2909 	 * best results.  gcc-2.6.0 can't handle this.
2910 	 */
2911 	al = data;
2912 	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2913 }
2914 
2915 #endif /* DDB */
2916 
2917 
2918 
2919 /*
2920  * initialize all the SMP locks
2921  */
2922 
2923 /* critical region when masking or unmasking interupts */
2924 struct spinlock_deprecated imen_spinlock;
2925 
2926 /* lock region used by kernel profiling */
2927 struct spinlock_deprecated mcount_spinlock;
2928 
2929 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2930 struct spinlock_deprecated com_spinlock;
2931 
2932 /* lock regions around the clock hardware */
2933 struct spinlock_deprecated clock_spinlock;
2934 
2935 static void
2936 init_locks(void)
2937 {
2938 	/*
2939 	 * Get the initial mplock with a count of 1 for the BSP.
2940 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
2941 	 */
2942 	cpu_get_initial_mplock();
2943 	/* DEPRECATED */
2944 	spin_init_deprecated(&mcount_spinlock);
2945 	spin_init_deprecated(&imen_spinlock);
2946 	spin_init_deprecated(&com_spinlock);
2947 	spin_init_deprecated(&clock_spinlock);
2948 
2949 	/* our token pool needs to work early */
2950 	lwkt_token_pool_init();
2951 }
2952 
2953 boolean_t
2954 cpu_mwait_hint_valid(uint32_t hint)
2955 {
2956 	int cx_idx, sub;
2957 
2958 	cx_idx = MWAIT_EAX_TO_CX(hint);
2959 	if (cx_idx >= CPU_MWAIT_CX_MAX)
2960 		return FALSE;
2961 
2962 	sub = MWAIT_EAX_TO_CX_SUB(hint);
2963 	if (sub >= cpu_mwait_cx_info[cx_idx].subcnt)
2964 		return FALSE;
2965 
2966 	return TRUE;
2967 }
2968 
2969 void
2970 cpu_mwait_cx_no_bmsts(void)
2971 {
2972 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_STS);
2973 }
2974 
2975 void
2976 cpu_mwait_cx_no_bmarb(void)
2977 {
2978 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_ARB);
2979 }
2980 
2981 static int
2982 cpu_mwait_cx_hint2name(int hint, char *name, int namelen, boolean_t allow_auto)
2983 {
2984 	int old_cx_idx, sub = 0;
2985 
2986 	if (hint >= 0) {
2987 		old_cx_idx = MWAIT_EAX_TO_CX(hint);
2988 		sub = MWAIT_EAX_TO_CX_SUB(hint);
2989 	} else if (hint == CPU_MWAIT_HINT_AUTO) {
2990 		old_cx_idx = allow_auto ? CPU_MWAIT_C2 : CPU_MWAIT_CX_MAX;
2991 	} else if (hint == CPU_MWAIT_HINT_AUTODEEP) {
2992 		old_cx_idx = allow_auto ? CPU_MWAIT_C3 : CPU_MWAIT_CX_MAX;
2993 	} else {
2994 		old_cx_idx = CPU_MWAIT_CX_MAX;
2995 	}
2996 
2997 	if (!CPU_MWAIT_HAS_CX)
2998 		strlcpy(name, "NONE", namelen);
2999 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTO)
3000 		strlcpy(name, "AUTO", namelen);
3001 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTODEEP)
3002 		strlcpy(name, "AUTODEEP", namelen);
3003 	else if (old_cx_idx >= CPU_MWAIT_CX_MAX ||
3004 	    sub >= cpu_mwait_cx_info[old_cx_idx].subcnt)
3005 		strlcpy(name, "INVALID", namelen);
3006 	else
3007 		ksnprintf(name, namelen, "C%d/%d", old_cx_idx, sub);
3008 
3009 	return old_cx_idx;
3010 }
3011 
3012 static int
3013 cpu_mwait_cx_name2hint(char *name, int *hint0, boolean_t allow_auto)
3014 {
3015 	int cx_idx, sub, hint;
3016 	char *ptr, *start;
3017 
3018 	if (allow_auto && strcmp(name, "AUTO") == 0) {
3019 		hint = CPU_MWAIT_HINT_AUTO;
3020 		cx_idx = CPU_MWAIT_C2;
3021 		goto done;
3022 	}
3023 	if (allow_auto && strcmp(name, "AUTODEEP") == 0) {
3024 		hint = CPU_MWAIT_HINT_AUTODEEP;
3025 		cx_idx = CPU_MWAIT_C3;
3026 		goto done;
3027 	}
3028 
3029 	if (strlen(name) < 4 || toupper(name[0]) != 'C')
3030 		return -1;
3031 	start = &name[1];
3032 	ptr = NULL;
3033 
3034 	cx_idx = strtol(start, &ptr, 10);
3035 	if (ptr == start || *ptr != '/')
3036 		return -1;
3037 	if (cx_idx < 0 || cx_idx >= CPU_MWAIT_CX_MAX)
3038 		return -1;
3039 
3040 	start = ptr + 1;
3041 	ptr = NULL;
3042 
3043 	sub = strtol(start, &ptr, 10);
3044 	if (*ptr != '\0')
3045 		return -1;
3046 	if (sub < 0 || sub >= cpu_mwait_cx_info[cx_idx].subcnt)
3047 		return -1;
3048 
3049 	hint = MWAIT_EAX_HINT(cx_idx, sub);
3050 done:
3051 	*hint0 = hint;
3052 	return cx_idx;
3053 }
3054 
3055 static int
3056 cpu_mwait_cx_transit(int old_cx_idx, int cx_idx)
3057 {
3058 	if (cx_idx >= CPU_MWAIT_C3 && cpu_mwait_c3_preamble)
3059 		return EOPNOTSUPP;
3060 	if (old_cx_idx < CPU_MWAIT_C3 && cx_idx >= CPU_MWAIT_C3) {
3061 		int error;
3062 
3063 		error = cputimer_intr_powersave_addreq();
3064 		if (error)
3065 			return error;
3066 	} else if (old_cx_idx >= CPU_MWAIT_C3 && cx_idx < CPU_MWAIT_C3) {
3067 		cputimer_intr_powersave_remreq();
3068 	}
3069 	return 0;
3070 }
3071 
3072 static int
3073 cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS, int *hint0,
3074     boolean_t allow_auto)
3075 {
3076 	int error, cx_idx, old_cx_idx, hint;
3077 	char name[CPU_MWAIT_CX_NAMELEN];
3078 
3079 	hint = *hint0;
3080 	old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name),
3081 	    allow_auto);
3082 
3083 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
3084 	if (error != 0 || req->newptr == NULL)
3085 		return error;
3086 
3087 	if (!CPU_MWAIT_HAS_CX)
3088 		return EOPNOTSUPP;
3089 
3090 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, allow_auto);
3091 	if (cx_idx < 0)
3092 		return EINVAL;
3093 
3094 	error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3095 	if (error)
3096 		return error;
3097 
3098 	*hint0 = hint;
3099 	return 0;
3100 }
3101 
3102 static int
3103 cpu_mwait_cx_setname(struct cpu_idle_stat *stat, const char *cx_name)
3104 {
3105 	int error, cx_idx, old_cx_idx, hint;
3106 	char name[CPU_MWAIT_CX_NAMELEN];
3107 
3108 	KASSERT(CPU_MWAIT_HAS_CX, ("cpu does not support mwait CX extension"));
3109 
3110 	hint = stat->hint;
3111 	old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3112 
3113 	strlcpy(name, cx_name, sizeof(name));
3114 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3115 	if (cx_idx < 0)
3116 		return EINVAL;
3117 
3118 	error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3119 	if (error)
3120 		return error;
3121 
3122 	stat->hint = hint;
3123 	return 0;
3124 }
3125 
3126 static int
3127 cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS)
3128 {
3129 	int hint = cpu_mwait_halt_global;
3130 	int error, cx_idx, cpu;
3131 	char name[CPU_MWAIT_CX_NAMELEN], cx_name[CPU_MWAIT_CX_NAMELEN];
3132 
3133 	cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3134 
3135 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
3136 	if (error != 0 || req->newptr == NULL)
3137 		return error;
3138 
3139 	if (!CPU_MWAIT_HAS_CX)
3140 		return EOPNOTSUPP;
3141 
3142 	/* Save name for later per-cpu CX configuration */
3143 	strlcpy(cx_name, name, sizeof(cx_name));
3144 
3145 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3146 	if (cx_idx < 0)
3147 		return EINVAL;
3148 
3149 	/* Change per-cpu CX configuration */
3150 	for (cpu = 0; cpu < ncpus; ++cpu) {
3151 		error = cpu_mwait_cx_setname(&cpu_idle_stats[cpu], cx_name);
3152 		if (error)
3153 			return error;
3154 	}
3155 
3156 	cpu_mwait_halt_global = hint;
3157 	return 0;
3158 }
3159 
3160 static int
3161 cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS)
3162 {
3163 	struct cpu_idle_stat *stat = arg1;
3164 	int error;
3165 
3166 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3167 	    &stat->hint, TRUE);
3168 	return error;
3169 }
3170 
3171 static int
3172 cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS)
3173 {
3174 	int error;
3175 
3176 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3177 	    &cpu_mwait_spin, FALSE);
3178 	return error;
3179 }
3180 
3181 /*
3182  * This manual debugging code is called unconditionally from Xtimer
3183  * (the per-cpu timer interrupt) whether the current thread is in a
3184  * critical section or not) and can be useful in tracking down lockups.
3185  *
3186  * NOTE: MANUAL DEBUG CODE
3187  */
3188 #if 0
3189 static int saveticks[SMP_MAXCPU];
3190 static int savecounts[SMP_MAXCPU];
3191 #endif
3192 
3193 void
3194 pcpu_timer_always(struct intrframe *frame)
3195 {
3196 #if 0
3197 	globaldata_t gd = mycpu;
3198 	int cpu = gd->gd_cpuid;
3199 	char buf[64];
3200 	short *gptr;
3201 	int i;
3202 
3203 	if (cpu <= 20) {
3204 		gptr = (short *)0xFFFFFFFF800b8000 + 80 * cpu;
3205 		*gptr = ((*gptr + 1) & 0x00FF) | 0x0700;
3206 		++gptr;
3207 
3208 		ksnprintf(buf, sizeof(buf), " %p %16s %d %16s ",
3209 		    (void *)frame->if_rip, gd->gd_curthread->td_comm, ticks,
3210 		    gd->gd_infomsg);
3211 		for (i = 0; buf[i]; ++i) {
3212 			gptr[i] = 0x0700 | (unsigned char)buf[i];
3213 		}
3214 	}
3215 #if 0
3216 	if (saveticks[gd->gd_cpuid] != ticks) {
3217 		saveticks[gd->gd_cpuid] = ticks;
3218 		savecounts[gd->gd_cpuid] = 0;
3219 	}
3220 	++savecounts[gd->gd_cpuid];
3221 	if (savecounts[gd->gd_cpuid] > 2000 && panicstr == NULL) {
3222 		panic("cpud %d panicing on ticks failure",
3223 			gd->gd_cpuid);
3224 	}
3225 	for (i = 0; i < ncpus; ++i) {
3226 		int delta;
3227 		if (saveticks[i] && panicstr == NULL) {
3228 			delta = saveticks[i] - ticks;
3229 			if (delta < -10 || delta > 10) {
3230 				panic("cpu %d panicing on cpu %d watchdog",
3231 				      gd->gd_cpuid, i);
3232 			}
3233 		}
3234 	}
3235 #endif
3236 #endif
3237 }
3238