xref: /dragonfly/sys/platform/pc64/x86_64/machdep.c (revision 3cc0afc6)
1 /*-
2  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3  * Copyright (c) 1992 Terrence R. Lambert.
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 2008 The DragonFly Project.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
40  * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
41  */
42 
43 //#include "use_npx.h"
44 #include "use_isa.h"
45 #include "opt_compat.h"
46 #include "opt_cpu.h"
47 #include "opt_ddb.h"
48 #include "opt_directio.h"
49 #include "opt_inet.h"
50 #include "opt_msgbuf.h"
51 #include "opt_swap.h"
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/sysproto.h>
56 #include <sys/signalvar.h>
57 #include <sys/kernel.h>
58 #include <sys/linker.h>
59 #include <sys/malloc.h>
60 #include <sys/proc.h>
61 #include <sys/priv.h>
62 #include <sys/buf.h>
63 #include <sys/reboot.h>
64 #include <sys/mbuf.h>
65 #include <sys/msgbuf.h>
66 #include <sys/sysent.h>
67 #include <sys/sysctl.h>
68 #include <sys/vmmeter.h>
69 #include <sys/bus.h>
70 #include <sys/usched.h>
71 #include <sys/reg.h>
72 #include <sys/sbuf.h>
73 #include <sys/ctype.h>
74 #include <sys/serialize.h>
75 #include <sys/systimer.h>
76 
77 #include <vm/vm.h>
78 #include <vm/vm_param.h>
79 #include <sys/lock.h>
80 #include <vm/vm_kern.h>
81 #include <vm/vm_object.h>
82 #include <vm/vm_page.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_pager.h>
85 #include <vm/vm_extern.h>
86 
87 #include <sys/thread2.h>
88 #include <sys/mplock2.h>
89 #include <sys/mutex2.h>
90 
91 #include <sys/user.h>
92 #include <sys/exec.h>
93 #include <sys/cons.h>
94 
95 #include <ddb/ddb.h>
96 
97 #include <machine/cpu.h>
98 #include <machine/clock.h>
99 #include <machine/specialreg.h>
100 #if 0 /* JG */
101 #include <machine/bootinfo.h>
102 #endif
103 #include <machine/md_var.h>
104 #include <machine/metadata.h>
105 #include <machine/pc/bios.h>
106 #include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
107 #include <machine/globaldata.h>		/* CPU_prvspace */
108 #include <machine/smp.h>
109 #ifdef PERFMON
110 #include <machine/perfmon.h>
111 #endif
112 #include <machine/cputypes.h>
113 #include <machine/intr_machdep.h>
114 
115 #ifdef OLD_BUS_ARCH
116 #include <bus/isa/isa_device.h>
117 #endif
118 #include <machine_base/isa/isa_intr.h>
119 #include <bus/isa/rtc.h>
120 #include <sys/random.h>
121 #include <sys/ptrace.h>
122 #include <machine/sigframe.h>
123 
124 #include <sys/machintr.h>
125 #include <machine_base/icu/icu_abi.h>
126 #include <machine_base/icu/elcr_var.h>
127 #include <machine_base/apic/lapic.h>
128 #include <machine_base/apic/ioapic.h>
129 #include <machine_base/apic/ioapic_abi.h>
130 #include <machine/mptable.h>
131 
132 #define PHYSMAP_ENTRIES		10
133 
134 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
135 
136 extern void printcpuinfo(void);	/* XXX header file */
137 extern void identify_cpu(void);
138 #if 0 /* JG */
139 extern void finishidentcpu(void);
140 #endif
141 extern void panicifcpuunsupported(void);
142 
143 static void cpu_startup(void *);
144 static void pic_finish(void *);
145 static void cpu_finish(void *);
146 
147 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
148 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
149 #ifdef DIRECTIO
150 extern void ffs_rawread_setup(void);
151 #endif /* DIRECTIO */
152 static void init_locks(void);
153 
154 SYSINIT(cpu, SI_BOOT2_START_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
155 SYSINIT(pic_finish, SI_BOOT2_FINISH_PIC, SI_ORDER_FIRST, pic_finish, NULL);
156 SYSINIT(cpu_finish, SI_BOOT2_FINISH_CPU, SI_ORDER_FIRST, cpu_finish, NULL);
157 
158 #ifdef DDB
159 extern vm_offset_t ksym_start, ksym_end;
160 #endif
161 
162 struct privatespace CPU_prvspace_bsp __aligned(4096);
163 struct privatespace *CPU_prvspace[MAXCPU] = { &CPU_prvspace_bsp };
164 
165 int	_udatasel, _ucodesel, _ucode32sel;
166 u_long	atdevbase;
167 int64_t tsc_offsets[MAXCPU];
168 
169 static int cpu_mwait_halt_global; /* MWAIT hint (EAX) or CPU_MWAIT_HINT_ */
170 
171 #if defined(SWTCH_OPTIM_STATS)
172 extern int swtch_optim_stats;
173 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
174 	CTLFLAG_RD, &swtch_optim_stats, 0, "");
175 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
176 	CTLFLAG_RD, &tlb_flush_count, 0, "");
177 #endif
178 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_halt,
179 	CTLFLAG_RD, &cpu_mwait_halt_global, 0, "");
180 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_spin, CTLFLAG_RD, &cpu_mwait_spin, 0,
181     "monitor/mwait target state");
182 
183 #define CPU_MWAIT_HAS_CX	\
184 	((cpu_feature2 & CPUID2_MON) && \
185 	 (cpu_mwait_feature & CPUID_MWAIT_EXT))
186 
187 #define CPU_MWAIT_CX_NAMELEN	16
188 
189 #define CPU_MWAIT_C1		1
190 #define CPU_MWAIT_C2		2
191 #define CPU_MWAIT_C3		3
192 #define CPU_MWAIT_CX_MAX	8
193 
194 #define CPU_MWAIT_HINT_AUTO	-1	/* C1 and C2 */
195 #define CPU_MWAIT_HINT_AUTODEEP	-2	/* C3+ */
196 
197 SYSCTL_NODE(_machdep, OID_AUTO, mwait, CTLFLAG_RW, 0, "MWAIT features");
198 SYSCTL_NODE(_machdep_mwait, OID_AUTO, CX, CTLFLAG_RW, 0, "MWAIT Cx settings");
199 
200 struct cpu_mwait_cx {
201 	int			subcnt;
202 	char			name[4];
203 	struct sysctl_ctx_list	sysctl_ctx;
204 	struct sysctl_oid	*sysctl_tree;
205 };
206 static struct cpu_mwait_cx	cpu_mwait_cx_info[CPU_MWAIT_CX_MAX];
207 static char			cpu_mwait_cx_supported[256];
208 
209 static int			cpu_mwait_c1_hints_cnt;
210 static int			cpu_mwait_hints_cnt;
211 static int			*cpu_mwait_hints;
212 
213 static int			cpu_mwait_deep_hints_cnt;
214 static int			*cpu_mwait_deep_hints;
215 
216 #define CPU_IDLE_REPEAT_DEFAULT	750
217 
218 static u_int			cpu_idle_repeat = CPU_IDLE_REPEAT_DEFAULT;
219 static u_long			cpu_idle_repeat_max = CPU_IDLE_REPEAT_DEFAULT;
220 static u_int			cpu_mwait_repeat_shift = 1;
221 
222 #define CPU_MWAIT_C3_PREAMBLE_BM_ARB	0x1
223 #define CPU_MWAIT_C3_PREAMBLE_BM_STS	0x2
224 
225 static int			cpu_mwait_c3_preamble =
226 				    CPU_MWAIT_C3_PREAMBLE_BM_ARB |
227 				    CPU_MWAIT_C3_PREAMBLE_BM_STS;
228 
229 SYSCTL_STRING(_machdep_mwait_CX, OID_AUTO, supported, CTLFLAG_RD,
230     cpu_mwait_cx_supported, 0, "MWAIT supported C states");
231 SYSCTL_INT(_machdep_mwait_CX, OID_AUTO, c3_preamble, CTLFLAG_RD,
232     &cpu_mwait_c3_preamble, 0, "C3+ preamble mask");
233 
234 static int	cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS,
235 		    int *, boolean_t);
236 static int	cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS);
237 static int	cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS);
238 static int	cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS);
239 
240 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, idle, CTLTYPE_STRING|CTLFLAG_RW,
241     NULL, 0, cpu_mwait_cx_idle_sysctl, "A", "");
242 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, spin, CTLTYPE_STRING|CTLFLAG_RW,
243     NULL, 0, cpu_mwait_cx_spin_sysctl, "A", "");
244 SYSCTL_UINT(_machdep_mwait_CX, OID_AUTO, repeat_shift, CTLFLAG_RW,
245     &cpu_mwait_repeat_shift, 0, "");
246 
247 long physmem = 0;
248 
249 u_long ebda_addr = 0;
250 
251 int imcr_present = 0;
252 
253 int naps = 0; /* # of Applications processors */
254 
255 u_int base_memory;
256 struct mtx dt_lock;		/* lock for GDT and LDT */
257 
258 static int
259 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
260 {
261 	u_long pmem = ctob(physmem);
262 
263 	int error = sysctl_handle_long(oidp, &pmem, 0, req);
264 	return (error);
265 }
266 
267 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
268 	0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
269 
270 static int
271 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
272 {
273 	int error = sysctl_handle_int(oidp, 0,
274 		ctob(physmem - vmstats.v_wire_count), req);
275 	return (error);
276 }
277 
278 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
279 	0, 0, sysctl_hw_usermem, "IU", "");
280 
281 static int
282 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
283 {
284 	int error = sysctl_handle_int(oidp, 0,
285 		x86_64_btop(avail_end - avail_start), req);
286 	return (error);
287 }
288 
289 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
290 	0, 0, sysctl_hw_availpages, "I", "");
291 
292 vm_paddr_t Maxmem;
293 vm_paddr_t Realmem;
294 
295 /*
296  * The number of PHYSMAP entries must be one less than the number of
297  * PHYSSEG entries because the PHYSMAP entry that spans the largest
298  * physical address that is accessible by ISA DMA is split into two
299  * PHYSSEG entries.
300  */
301 #define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
302 
303 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
304 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
305 
306 /* must be 2 less so 0 0 can signal end of chunks */
307 #define PHYS_AVAIL_ARRAY_END (NELEM(phys_avail) - 2)
308 #define DUMP_AVAIL_ARRAY_END (NELEM(dump_avail) - 2)
309 
310 static vm_offset_t buffer_sva, buffer_eva;
311 vm_offset_t clean_sva, clean_eva;
312 static vm_offset_t pager_sva, pager_eva;
313 static struct trapframe proc0_tf;
314 
315 static void
316 cpu_startup(void *dummy)
317 {
318 	caddr_t v;
319 	vm_size_t size = 0;
320 	vm_offset_t firstaddr;
321 
322 	/*
323 	 * Good {morning,afternoon,evening,night}.
324 	 */
325 	kprintf("%s", version);
326 	startrtclock();
327 	printcpuinfo();
328 	panicifcpuunsupported();
329 #ifdef PERFMON
330 	perfmon_init();
331 #endif
332 	kprintf("real memory  = %ju (%ju MB)\n",
333 		(intmax_t)Realmem,
334 		(intmax_t)Realmem / 1024 / 1024);
335 	/*
336 	 * Display any holes after the first chunk of extended memory.
337 	 */
338 	if (bootverbose) {
339 		int indx;
340 
341 		kprintf("Physical memory chunk(s):\n");
342 		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
343 			vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
344 
345 			kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
346 				(intmax_t)phys_avail[indx],
347 				(intmax_t)phys_avail[indx + 1] - 1,
348 				(intmax_t)size1,
349 				(intmax_t)(size1 / PAGE_SIZE));
350 		}
351 	}
352 
353 	/*
354 	 * Allocate space for system data structures.
355 	 * The first available kernel virtual address is in "v".
356 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
357 	 * As pages of memory are allocated and cleared,
358 	 * "firstaddr" is incremented.
359 	 * An index into the kernel page table corresponding to the
360 	 * virtual memory address maintained in "v" is kept in "mapaddr".
361 	 */
362 
363 	/*
364 	 * Make two passes.  The first pass calculates how much memory is
365 	 * needed and allocates it.  The second pass assigns virtual
366 	 * addresses to the various data structures.
367 	 */
368 	firstaddr = 0;
369 again:
370 	v = (caddr_t)firstaddr;
371 
372 #define	valloc(name, type, num) \
373 	    (name) = (type *)v; v = (caddr_t)((name)+(num))
374 #define	valloclim(name, type, num, lim) \
375 	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
376 
377 	/*
378 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
379 	 * For the first 64MB of ram nominally allocate sufficient buffers to
380 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
381 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
382 	 * the buffer cache we limit the eventual kva reservation to
383 	 * maxbcache bytes.
384 	 *
385 	 * factor represents the 1/4 x ram conversion.
386 	 */
387 	if (nbuf == 0) {
388 		long factor = 4 * BKVASIZE / 1024;
389 		long kbytes = physmem * (PAGE_SIZE / 1024);
390 
391 		nbuf = 50;
392 		if (kbytes > 4096)
393 			nbuf += min((kbytes - 4096) / factor, 65536 / factor);
394 		if (kbytes > 65536)
395 			nbuf += (kbytes - 65536) * 2 / (factor * 5);
396 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
397 			nbuf = maxbcache / BKVASIZE;
398 	}
399 
400 	/*
401 	 * Do not allow the buffer_map to be more then 1/2 the size of the
402 	 * kernel_map.
403 	 */
404 	if (nbuf > (virtual_end - virtual_start +
405 		    virtual2_end - virtual2_start) / (BKVASIZE * 2)) {
406 		nbuf = (virtual_end - virtual_start +
407 			virtual2_end - virtual2_start) / (BKVASIZE * 2);
408 		kprintf("Warning: nbufs capped at %ld due to kvm\n", nbuf);
409 	}
410 
411 	/*
412 	 * Do not allow the buffer_map to use more than 50% of available
413 	 * physical-equivalent memory.  Since the VM pages which back
414 	 * individual buffers are typically wired, having too many bufs
415 	 * can prevent the system from paging properly.
416 	 */
417 	if (nbuf > physmem * PAGE_SIZE / (BKVASIZE * 2)) {
418 		nbuf = physmem * PAGE_SIZE / (BKVASIZE * 2);
419 		kprintf("Warning: nbufs capped at %ld due to physmem\n", nbuf);
420 	}
421 
422 	/*
423 	 * Do not allow the sizeof(struct buf) * nbuf to exceed half of
424 	 * the valloc space which is just the virtual_end - virtual_start
425 	 * section.  We use valloc() to allocate the buf header array.
426 	 */
427 	if (nbuf > (virtual_end - virtual_start) / sizeof(struct buf) / 2) {
428 		nbuf = (virtual_end - virtual_start) /
429 		       sizeof(struct buf) / 2;
430 		kprintf("Warning: nbufs capped at %ld due to valloc "
431 			"considerations", nbuf);
432 	}
433 
434 	nswbuf = lmax(lmin(nbuf / 4, 256), 16);
435 #ifdef NSWBUF_MIN
436 	if (nswbuf < NSWBUF_MIN)
437 		nswbuf = NSWBUF_MIN;
438 #endif
439 #ifdef DIRECTIO
440 	ffs_rawread_setup();
441 #endif
442 
443 	valloc(swbuf, struct buf, nswbuf);
444 	valloc(buf, struct buf, nbuf);
445 
446 	/*
447 	 * End of first pass, size has been calculated so allocate memory
448 	 */
449 	if (firstaddr == 0) {
450 		size = (vm_size_t)(v - firstaddr);
451 		firstaddr = kmem_alloc(&kernel_map, round_page(size));
452 		if (firstaddr == 0)
453 			panic("startup: no room for tables");
454 		goto again;
455 	}
456 
457 	/*
458 	 * End of second pass, addresses have been assigned
459 	 *
460 	 * nbuf is an int, make sure we don't overflow the field.
461 	 *
462 	 * On 64-bit systems we always reserve maximal allocations for
463 	 * buffer cache buffers and there are no fragmentation issues,
464 	 * so the KVA segment does not have to be excessively oversized.
465 	 */
466 	if ((vm_size_t)(v - firstaddr) != size)
467 		panic("startup: table size inconsistency");
468 
469 	kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
470 		      ((vm_offset_t)(nbuf + 16) * BKVASIZE) +
471 		      (nswbuf * MAXPHYS) + pager_map_size);
472 	kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
473 		      ((vm_offset_t)(nbuf + 16) * BKVASIZE));
474 	buffer_map.system_map = 1;
475 	kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
476 		      ((vm_offset_t)nswbuf * MAXPHYS) + pager_map_size);
477 	pager_map.system_map = 1;
478 	kprintf("avail memory = %ju (%ju MB)\n",
479 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages),
480 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages) /
481 		1024 / 1024);
482 }
483 
484 struct cpu_idle_stat {
485 	int	hint;
486 	int	reserved;
487 	u_long	halt;
488 	u_long	spin;
489 	u_long	repeat;
490 	u_long	repeat_last;
491 	u_long	repeat_delta;
492 	u_long	mwait_cx[CPU_MWAIT_CX_MAX];
493 } __cachealign;
494 
495 #define CPU_IDLE_STAT_HALT	-1
496 #define CPU_IDLE_STAT_SPIN	-2
497 
498 static struct cpu_idle_stat	cpu_idle_stats[MAXCPU];
499 
500 static int
501 sysctl_cpu_idle_cnt(SYSCTL_HANDLER_ARGS)
502 {
503 	int idx = arg2, cpu, error;
504 	u_long val = 0;
505 
506 	if (idx == CPU_IDLE_STAT_HALT) {
507 		for (cpu = 0; cpu < ncpus; ++cpu)
508 			val += cpu_idle_stats[cpu].halt;
509 	} else if (idx == CPU_IDLE_STAT_SPIN) {
510 		for (cpu = 0; cpu < ncpus; ++cpu)
511 			val += cpu_idle_stats[cpu].spin;
512 	} else {
513 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
514 		    ("invalid index %d", idx));
515 		for (cpu = 0; cpu < ncpus; ++cpu)
516 			val += cpu_idle_stats[cpu].mwait_cx[idx];
517 	}
518 
519 	error = sysctl_handle_quad(oidp, &val, 0, req);
520         if (error || req->newptr == NULL)
521 	        return error;
522 
523 	if (idx == CPU_IDLE_STAT_HALT) {
524 		for (cpu = 0; cpu < ncpus; ++cpu)
525 			cpu_idle_stats[cpu].halt = 0;
526 		cpu_idle_stats[0].halt = val;
527 	} else if (idx == CPU_IDLE_STAT_SPIN) {
528 		for (cpu = 0; cpu < ncpus; ++cpu)
529 			cpu_idle_stats[cpu].spin = 0;
530 		cpu_idle_stats[0].spin = val;
531 	} else {
532 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
533 		    ("invalid index %d", idx));
534 		for (cpu = 0; cpu < ncpus; ++cpu)
535 			cpu_idle_stats[cpu].mwait_cx[idx] = 0;
536 		cpu_idle_stats[0].mwait_cx[idx] = val;
537 	}
538 	return 0;
539 }
540 
541 static void
542 cpu_mwait_attach(void)
543 {
544 	struct sbuf sb;
545 	int hint_idx, i;
546 
547 	if (!CPU_MWAIT_HAS_CX)
548 		return;
549 
550 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
551 	    (CPUID_TO_FAMILY(cpu_id) > 0xf ||
552 	     (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
553 	      CPUID_TO_MODEL(cpu_id) >= 0xf))) {
554 		int bm_sts = 1;
555 
556 		/*
557 		 * Pentium dual-core, Core 2 and beyond do not need any
558 		 * additional activities to enter deep C-state, i.e. C3(+).
559 		 */
560 		cpu_mwait_cx_no_bmarb();
561 
562 		TUNABLE_INT_FETCH("machdep.cpu.mwait.bm_sts", &bm_sts);
563 		if (!bm_sts)
564 			cpu_mwait_cx_no_bmsts();
565 	}
566 
567 	sbuf_new(&sb, cpu_mwait_cx_supported,
568 	    sizeof(cpu_mwait_cx_supported), SBUF_FIXEDLEN);
569 
570 	for (i = 0; i < CPU_MWAIT_CX_MAX; ++i) {
571 		struct cpu_mwait_cx *cx = &cpu_mwait_cx_info[i];
572 		int sub;
573 
574 		ksnprintf(cx->name, sizeof(cx->name), "C%d", i);
575 
576 		sysctl_ctx_init(&cx->sysctl_ctx);
577 		cx->sysctl_tree = SYSCTL_ADD_NODE(&cx->sysctl_ctx,
578 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait), OID_AUTO,
579 		    cx->name, CTLFLAG_RW, NULL, "Cx control/info");
580 		if (cx->sysctl_tree == NULL)
581 			continue;
582 
583 		cx->subcnt = CPUID_MWAIT_CX_SUBCNT(cpu_mwait_extemu, i);
584 		SYSCTL_ADD_INT(&cx->sysctl_ctx,
585 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
586 		    "subcnt", CTLFLAG_RD, &cx->subcnt, 0,
587 		    "sub-state count");
588 		SYSCTL_ADD_PROC(&cx->sysctl_ctx,
589 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
590 		    "entered", (CTLTYPE_QUAD | CTLFLAG_RW), 0,
591 		    i, sysctl_cpu_idle_cnt, "Q", "# of times entered");
592 
593 		for (sub = 0; sub < cx->subcnt; ++sub)
594 			sbuf_printf(&sb, "C%d/%d ", i, sub);
595 	}
596 	sbuf_trim(&sb);
597 	sbuf_finish(&sb);
598 
599 	/*
600 	 * Non-deep C-states
601 	 */
602 	cpu_mwait_c1_hints_cnt = cpu_mwait_cx_info[CPU_MWAIT_C1].subcnt;
603 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i)
604 		cpu_mwait_hints_cnt += cpu_mwait_cx_info[i].subcnt;
605 	cpu_mwait_hints = kmalloc(sizeof(int) * cpu_mwait_hints_cnt,
606 	    M_DEVBUF, M_WAITOK);
607 
608 	hint_idx = 0;
609 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i) {
610 		int j, subcnt;
611 
612 		subcnt = cpu_mwait_cx_info[i].subcnt;
613 		for (j = 0; j < subcnt; ++j) {
614 			KASSERT(hint_idx < cpu_mwait_hints_cnt,
615 			    ("invalid mwait hint index %d", hint_idx));
616 			cpu_mwait_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
617 			++hint_idx;
618 		}
619 	}
620 	KASSERT(hint_idx == cpu_mwait_hints_cnt,
621 	    ("mwait hint count %d != index %d",
622 	     cpu_mwait_hints_cnt, hint_idx));
623 
624 	if (bootverbose) {
625 		kprintf("MWAIT hints (%d C1 hints):\n", cpu_mwait_c1_hints_cnt);
626 		for (i = 0; i < cpu_mwait_hints_cnt; ++i) {
627 			int hint = cpu_mwait_hints[i];
628 
629 			kprintf("  C%d/%d hint 0x%04x\n",
630 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
631 			    hint);
632 		}
633 	}
634 
635 	/*
636 	 * Deep C-states
637 	 */
638 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i)
639 		cpu_mwait_deep_hints_cnt += cpu_mwait_cx_info[i].subcnt;
640 	cpu_mwait_deep_hints = kmalloc(sizeof(int) * cpu_mwait_deep_hints_cnt,
641 	    M_DEVBUF, M_WAITOK);
642 
643 	hint_idx = 0;
644 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i) {
645 		int j, subcnt;
646 
647 		subcnt = cpu_mwait_cx_info[i].subcnt;
648 		for (j = 0; j < subcnt; ++j) {
649 			KASSERT(hint_idx < cpu_mwait_deep_hints_cnt,
650 			    ("invalid mwait deep hint index %d", hint_idx));
651 			cpu_mwait_deep_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
652 			++hint_idx;
653 		}
654 	}
655 	KASSERT(hint_idx == cpu_mwait_deep_hints_cnt,
656 	    ("mwait deep hint count %d != index %d",
657 	     cpu_mwait_deep_hints_cnt, hint_idx));
658 
659 	if (bootverbose) {
660 		kprintf("MWAIT deep hints:\n");
661 		for (i = 0; i < cpu_mwait_deep_hints_cnt; ++i) {
662 			int hint = cpu_mwait_deep_hints[i];
663 
664 			kprintf("  C%d/%d hint 0x%04x\n",
665 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
666 			    hint);
667 		}
668 	}
669 	cpu_idle_repeat_max = 256 * cpu_mwait_deep_hints_cnt;
670 
671 	for (i = 0; i < ncpus; ++i) {
672 		char name[16];
673 
674 		ksnprintf(name, sizeof(name), "idle%d", i);
675 		SYSCTL_ADD_PROC(NULL,
676 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait_CX), OID_AUTO,
677 		    name, (CTLTYPE_STRING | CTLFLAG_RW), &cpu_idle_stats[i],
678 		    0, cpu_mwait_cx_pcpu_idle_sysctl, "A", "");
679 	}
680 }
681 
682 static void
683 cpu_finish(void *dummy __unused)
684 {
685 	cpu_setregs();
686 	cpu_mwait_attach();
687 }
688 
689 static void
690 pic_finish(void *dummy __unused)
691 {
692 	/* Log ELCR information */
693 	elcr_dump();
694 
695 	/* Log MPTABLE information */
696 	mptable_pci_int_dump();
697 
698 	/* Finalize PCI */
699 	MachIntrABI.finalize();
700 }
701 
702 /*
703  * Send an interrupt to process.
704  *
705  * Stack is set up to allow sigcode stored
706  * at top to call routine, followed by kcall
707  * to sigreturn routine below.  After sigreturn
708  * resets the signal mask, the stack, and the
709  * frame pointer, it returns to the user
710  * specified pc, psl.
711  */
712 void
713 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
714 {
715 	struct lwp *lp = curthread->td_lwp;
716 	struct proc *p = lp->lwp_proc;
717 	struct trapframe *regs;
718 	struct sigacts *psp = p->p_sigacts;
719 	struct sigframe sf, *sfp;
720 	int oonstack;
721 	char *sp;
722 
723 	regs = lp->lwp_md.md_regs;
724 	oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
725 
726 	/* Save user context */
727 	bzero(&sf, sizeof(struct sigframe));
728 	sf.sf_uc.uc_sigmask = *mask;
729 	sf.sf_uc.uc_stack = lp->lwp_sigstk;
730 	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
731 	KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
732 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
733 
734 	/* Make the size of the saved context visible to userland */
735 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
736 
737 	/* Allocate and validate space for the signal handler context. */
738         if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
739 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
740 		sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
741 			      sizeof(struct sigframe));
742 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
743 	} else {
744 		/* We take red zone into account */
745 		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
746 	}
747 
748 	/*
749 	 * XXX AVX needs 64-byte alignment but sigframe has other fields and
750 	 * the embedded ucontext is not at the front, so aligning this won't
751 	 * help us.  Fortunately we bcopy in/out of the sigframe, so the
752 	 * kernel is ok.
753 	 *
754 	 * The problem though is if userland winds up trying to use the
755 	 * context directly.
756 	 */
757 	sfp = (struct sigframe *)((intptr_t)sp & ~(intptr_t)0xF);
758 
759 	/* Translate the signal is appropriate */
760 	if (p->p_sysent->sv_sigtbl) {
761 		if (sig <= p->p_sysent->sv_sigsize)
762 			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
763 	}
764 
765 	/*
766 	 * Build the argument list for the signal handler.
767 	 *
768 	 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
769 	 */
770 	regs->tf_rdi = sig;				/* argument 1 */
771 	regs->tf_rdx = (register_t)&sfp->sf_uc;		/* argument 3 */
772 
773 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
774 		/*
775 		 * Signal handler installed with SA_SIGINFO.
776 		 *
777 		 * action(signo, siginfo, ucontext)
778 		 */
779 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* argument 2 */
780 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
781 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
782 
783 		/* fill siginfo structure */
784 		sf.sf_si.si_signo = sig;
785 		sf.sf_si.si_code = code;
786 		sf.sf_si.si_addr = (void *)regs->tf_addr;
787 	} else {
788 		/*
789 		 * Old FreeBSD-style arguments.
790 		 *
791 		 * handler (signo, code, [uc], addr)
792 		 */
793 		regs->tf_rsi = (register_t)code;	/* argument 2 */
794 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
795 		sf.sf_ahu.sf_handler = catcher;
796 	}
797 
798 	/*
799 	 * If we're a vm86 process, we want to save the segment registers.
800 	 * We also change eflags to be our emulated eflags, not the actual
801 	 * eflags.
802 	 */
803 #if 0 /* JG */
804 	if (regs->tf_eflags & PSL_VM) {
805 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
806 		struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
807 
808 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
809 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
810 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
811 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
812 
813 		if (vm86->vm86_has_vme == 0)
814 			sf.sf_uc.uc_mcontext.mc_eflags =
815 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
816 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
817 
818 		/*
819 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
820 		 * syscalls made by the signal handler.  This just avoids
821 		 * wasting time for our lazy fixup of such faults.  PSL_NT
822 		 * does nothing in vm86 mode, but vm86 programs can set it
823 		 * almost legitimately in probes for old cpu types.
824 		 */
825 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
826 	}
827 #endif
828 
829 	/*
830 	 * Save the FPU state and reinit the FP unit
831 	 */
832 	npxpush(&sf.sf_uc.uc_mcontext);
833 
834 	/*
835 	 * Copy the sigframe out to the user's stack.
836 	 */
837 	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
838 		/*
839 		 * Something is wrong with the stack pointer.
840 		 * ...Kill the process.
841 		 */
842 		sigexit(lp, SIGILL);
843 	}
844 
845 	regs->tf_rsp = (register_t)sfp;
846 	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
847 
848 	/*
849 	 * i386 abi specifies that the direction flag must be cleared
850 	 * on function entry
851 	 */
852 	regs->tf_rflags &= ~(PSL_T|PSL_D);
853 
854 	/*
855 	 * 64 bit mode has a code and stack selector but
856 	 * no data or extra selector.  %fs and %gs are not
857 	 * stored in-context.
858 	 */
859 	regs->tf_cs = _ucodesel;
860 	regs->tf_ss = _udatasel;
861 	clear_quickret();
862 }
863 
864 /*
865  * Sanitize the trapframe for a virtual kernel passing control to a custom
866  * VM context.  Remove any items that would otherwise create a privilage
867  * issue.
868  *
869  * XXX at the moment we allow userland to set the resume flag.  Is this a
870  * bad idea?
871  */
872 int
873 cpu_sanitize_frame(struct trapframe *frame)
874 {
875 	frame->tf_cs = _ucodesel;
876 	frame->tf_ss = _udatasel;
877 	/* XXX VM (8086) mode not supported? */
878 	frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
879 	frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
880 
881 	return(0);
882 }
883 
884 /*
885  * Sanitize the tls so loading the descriptor does not blow up
886  * on us.  For x86_64 we don't have to do anything.
887  */
888 int
889 cpu_sanitize_tls(struct savetls *tls)
890 {
891 	return(0);
892 }
893 
894 /*
895  * sigreturn(ucontext_t *sigcntxp)
896  *
897  * System call to cleanup state after a signal
898  * has been taken.  Reset signal mask and
899  * stack state from context left by sendsig (above).
900  * Return to previous pc and psl as specified by
901  * context left by sendsig. Check carefully to
902  * make sure that the user has not modified the
903  * state to gain improper privileges.
904  *
905  * MPSAFE
906  */
907 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
908 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
909 
910 int
911 sys_sigreturn(struct sigreturn_args *uap)
912 {
913 	struct lwp *lp = curthread->td_lwp;
914 	struct trapframe *regs;
915 	ucontext_t uc;
916 	ucontext_t *ucp;
917 	register_t rflags;
918 	int cs;
919 	int error;
920 
921 	/*
922 	 * We have to copy the information into kernel space so userland
923 	 * can't modify it while we are sniffing it.
924 	 */
925 	regs = lp->lwp_md.md_regs;
926 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
927 	if (error)
928 		return (error);
929 	ucp = &uc;
930 	rflags = ucp->uc_mcontext.mc_rflags;
931 
932 	/* VM (8086) mode not supported */
933 	rflags &= ~PSL_VM_UNSUPP;
934 
935 #if 0 /* JG */
936 	if (eflags & PSL_VM) {
937 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
938 		struct vm86_kernel *vm86;
939 
940 		/*
941 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
942 		 * set up the vm86 area, and we can't enter vm86 mode.
943 		 */
944 		if (lp->lwp_thread->td_pcb->pcb_ext == 0)
945 			return (EINVAL);
946 		vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
947 		if (vm86->vm86_inited == 0)
948 			return (EINVAL);
949 
950 		/* go back to user mode if both flags are set */
951 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
952 			trapsignal(lp, SIGBUS, 0);
953 
954 		if (vm86->vm86_has_vme) {
955 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
956 			    (eflags & VME_USERCHANGE) | PSL_VM;
957 		} else {
958 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
959 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
960 			    (eflags & VM_USERCHANGE) | PSL_VM;
961 		}
962 		bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
963 		tf->tf_eflags = eflags;
964 		tf->tf_vm86_ds = tf->tf_ds;
965 		tf->tf_vm86_es = tf->tf_es;
966 		tf->tf_vm86_fs = tf->tf_fs;
967 		tf->tf_vm86_gs = tf->tf_gs;
968 		tf->tf_ds = _udatasel;
969 		tf->tf_es = _udatasel;
970 		tf->tf_fs = _udatasel;
971 		tf->tf_gs = _udatasel;
972 	} else
973 #endif
974 	{
975 		/*
976 		 * Don't allow users to change privileged or reserved flags.
977 		 */
978 		/*
979 		 * XXX do allow users to change the privileged flag PSL_RF.
980 		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
981 		 * should sometimes set it there too.  tf_eflags is kept in
982 		 * the signal context during signal handling and there is no
983 		 * other place to remember it, so the PSL_RF bit may be
984 		 * corrupted by the signal handler without us knowing.
985 		 * Corruption of the PSL_RF bit at worst causes one more or
986 		 * one less debugger trap, so allowing it is fairly harmless.
987 		 */
988 		if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
989 			kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
990 	    		return(EINVAL);
991 		}
992 
993 		/*
994 		 * Don't allow users to load a valid privileged %cs.  Let the
995 		 * hardware check for invalid selectors, excess privilege in
996 		 * other selectors, invalid %eip's and invalid %esp's.
997 		 */
998 		cs = ucp->uc_mcontext.mc_cs;
999 		if (!CS_SECURE(cs)) {
1000 			kprintf("sigreturn: cs = 0x%x\n", cs);
1001 			trapsignal(lp, SIGBUS, T_PROTFLT);
1002 			return(EINVAL);
1003 		}
1004 		bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
1005 	}
1006 
1007 	/*
1008 	 * Restore the FPU state from the frame
1009 	 */
1010 	crit_enter();
1011 	npxpop(&ucp->uc_mcontext);
1012 
1013 	if (ucp->uc_mcontext.mc_onstack & 1)
1014 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
1015 	else
1016 		lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
1017 
1018 	lp->lwp_sigmask = ucp->uc_sigmask;
1019 	SIG_CANTMASK(lp->lwp_sigmask);
1020 	clear_quickret();
1021 	crit_exit();
1022 	return(EJUSTRETURN);
1023 }
1024 
1025 /*
1026  * Machine dependent boot() routine
1027  *
1028  * I haven't seen anything to put here yet
1029  * Possibly some stuff might be grafted back here from boot()
1030  */
1031 void
1032 cpu_boot(int howto)
1033 {
1034 }
1035 
1036 /*
1037  * Shutdown the CPU as much as possible
1038  */
1039 void
1040 cpu_halt(void)
1041 {
1042 	for (;;)
1043 		__asm__ __volatile("hlt");
1044 }
1045 
1046 /*
1047  * cpu_idle() represents the idle LWKT.  You cannot return from this function
1048  * (unless you want to blow things up!).  Instead we look for runnable threads
1049  * and loop or halt as appropriate.  Giant is not held on entry to the thread.
1050  *
1051  * The main loop is entered with a critical section held, we must release
1052  * the critical section before doing anything else.  lwkt_switch() will
1053  * check for pending interrupts due to entering and exiting its own
1054  * critical section.
1055  *
1056  * NOTE: On an SMP system we rely on a scheduler IPI to wake a HLTed cpu up.
1057  *	 However, there are cases where the idlethread will be entered with
1058  *	 the possibility that no IPI will occur and in such cases
1059  *	 lwkt_switch() sets TDF_IDLE_NOHLT.
1060  *
1061  * NOTE: cpu_idle_repeat determines how many entries into the idle thread
1062  *	 must occur before it starts using ACPI halt.
1063  *
1064  * NOTE: Value overridden in hammer_time().
1065  */
1066 static int	cpu_idle_hlt = 2;
1067 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
1068     &cpu_idle_hlt, 0, "Idle loop HLT enable");
1069 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_repeat, CTLFLAG_RW,
1070     &cpu_idle_repeat, 0, "Idle entries before acpi hlt");
1071 
1072 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_hltcnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1073     0, CPU_IDLE_STAT_HALT, sysctl_cpu_idle_cnt, "Q", "Idle loop entry halts");
1074 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_spincnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1075     0, CPU_IDLE_STAT_SPIN, sysctl_cpu_idle_cnt, "Q", "Idle loop entry spins");
1076 
1077 static void
1078 cpu_idle_default_hook(void)
1079 {
1080 	/*
1081 	 * We must guarentee that hlt is exactly the instruction
1082 	 * following the sti.
1083 	 */
1084 	__asm __volatile("sti; hlt");
1085 }
1086 
1087 /* Other subsystems (e.g., ACPI) can hook this later. */
1088 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
1089 
1090 static __inline int
1091 cpu_mwait_cx_hint(struct cpu_idle_stat *stat)
1092 {
1093 	int hint, cx_idx;
1094 	u_int idx;
1095 
1096 	hint = stat->hint;
1097 	if (hint >= 0)
1098 		goto done;
1099 
1100 	idx = (stat->repeat + stat->repeat_last + stat->repeat_delta) >>
1101 	    cpu_mwait_repeat_shift;
1102 	if (idx >= cpu_mwait_c1_hints_cnt) {
1103 		/* Step up faster, once we walked through all C1 states */
1104 		stat->repeat_delta += 1 << (cpu_mwait_repeat_shift + 1);
1105 	}
1106 	if (hint == CPU_MWAIT_HINT_AUTODEEP) {
1107 		if (idx >= cpu_mwait_deep_hints_cnt)
1108 			idx = cpu_mwait_deep_hints_cnt - 1;
1109 		hint = cpu_mwait_deep_hints[idx];
1110 	} else {
1111 		if (idx >= cpu_mwait_hints_cnt)
1112 			idx = cpu_mwait_hints_cnt - 1;
1113 		hint = cpu_mwait_hints[idx];
1114 	}
1115 done:
1116 	cx_idx = MWAIT_EAX_TO_CX(hint);
1117 	if (cx_idx >= 0 && cx_idx < CPU_MWAIT_CX_MAX)
1118 		stat->mwait_cx[cx_idx]++;
1119 	return hint;
1120 }
1121 
1122 void
1123 cpu_idle(void)
1124 {
1125 	globaldata_t gd = mycpu;
1126 	struct cpu_idle_stat *stat = &cpu_idle_stats[gd->gd_cpuid];
1127 	struct thread *td __debugvar = gd->gd_curthread;
1128 	int reqflags;
1129 	int quick;
1130 
1131 	stat->repeat = stat->repeat_last = cpu_idle_repeat_max;
1132 
1133 	crit_exit();
1134 	KKASSERT(td->td_critcount == 0);
1135 
1136 	for (;;) {
1137 		/*
1138 		 * See if there are any LWKTs ready to go.
1139 		 */
1140 		lwkt_switch();
1141 
1142 		/*
1143 		 * When halting inside a cli we must check for reqflags
1144 		 * races, particularly [re]schedule requests.  Running
1145 		 * splz() does the job.
1146 		 *
1147 		 * cpu_idle_hlt:
1148 		 *	0	Never halt, just spin
1149 		 *
1150 		 *	1	Always use HLT (or MONITOR/MWAIT if avail).
1151 		 *
1152 		 *		Better default for modern (Haswell+) Intel
1153 		 *		cpus.
1154 		 *
1155 		 *	2	Use HLT/MONITOR/MWAIT up to a point and then
1156 		 *		use the ACPI halt (default).  This is a hybrid
1157 		 *		approach.  See machdep.cpu_idle_repeat.
1158 		 *
1159 		 *		Better default for modern AMD cpus and older
1160 		 *		Intel cpus.
1161 		 *
1162 		 *	3	Always use the ACPI halt.  This typically
1163 		 *		eats the least amount of power but the cpu
1164 		 *		will be slow waking up.  Slows down e.g.
1165 		 *		compiles and other pipe/event oriented stuff.
1166 		 *
1167 		 *	4	Always use HLT.
1168 		 *
1169 		 * NOTE: Interrupts are enabled and we are not in a critical
1170 		 *	 section.
1171 		 *
1172 		 * NOTE: Preemptions do not reset gd_idle_repeat.   Also we
1173 		 *	 don't bother capping gd_idle_repeat, it is ok if
1174 		 *	 it overflows.
1175 		 */
1176 		if (gd->gd_idle_repeat == 0) {
1177 			stat->repeat = (stat->repeat + stat->repeat_last) >> 1;
1178 			if (stat->repeat > cpu_idle_repeat_max)
1179 				stat->repeat = cpu_idle_repeat_max;
1180 			stat->repeat_last = 0;
1181 			stat->repeat_delta = 0;
1182 		}
1183 		++stat->repeat_last;
1184 
1185 		++gd->gd_idle_repeat;
1186 		reqflags = gd->gd_reqflags;
1187 		quick = (cpu_idle_hlt == 1) ||
1188 			(cpu_idle_hlt < 3 &&
1189 			 gd->gd_idle_repeat < cpu_idle_repeat);
1190 
1191 		if (quick && (cpu_mi_feature & CPU_MI_MONITOR) &&
1192 		    (reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1193 			splz(); /* XXX */
1194 			cpu_mmw_pause_int(&gd->gd_reqflags, reqflags,
1195 			    cpu_mwait_cx_hint(stat), 0);
1196 			stat->halt++;
1197 		} else if (cpu_idle_hlt) {
1198 			__asm __volatile("cli");
1199 			splz();
1200 			if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1201 				if (quick)
1202 					cpu_idle_default_hook();
1203 				else
1204 					cpu_idle_hook();
1205 			}
1206 			__asm __volatile("sti");
1207 			stat->halt++;
1208 		} else {
1209 			splz();
1210 			__asm __volatile("sti");
1211 			stat->spin++;
1212 		}
1213 	}
1214 }
1215 
1216 /*
1217  * This routine is called if a spinlock has been held through the
1218  * exponential backoff period and is seriously contested.  On a real cpu
1219  * we let it spin.
1220  */
1221 void
1222 cpu_spinlock_contested(void)
1223 {
1224 	cpu_pause();
1225 }
1226 
1227 /*
1228  * Clear registers on exec
1229  */
1230 void
1231 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
1232 {
1233 	struct thread *td = curthread;
1234 	struct lwp *lp = td->td_lwp;
1235 	struct pcb *pcb = td->td_pcb;
1236 	struct trapframe *regs = lp->lwp_md.md_regs;
1237 
1238 	/* was i386_user_cleanup() in NetBSD */
1239 	user_ldt_free(pcb);
1240 
1241 	clear_quickret();
1242 	bzero((char *)regs, sizeof(struct trapframe));
1243 	regs->tf_rip = entry;
1244 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
1245 	regs->tf_rdi = stack;		/* argv */
1246 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
1247 	regs->tf_ss = _udatasel;
1248 	regs->tf_cs = _ucodesel;
1249 	regs->tf_rbx = ps_strings;
1250 
1251 	/*
1252 	 * Reset the hardware debug registers if they were in use.
1253 	 * They won't have any meaning for the newly exec'd process.
1254 	 */
1255 	if (pcb->pcb_flags & PCB_DBREGS) {
1256 		pcb->pcb_dr0 = 0;
1257 		pcb->pcb_dr1 = 0;
1258 		pcb->pcb_dr2 = 0;
1259 		pcb->pcb_dr3 = 0;
1260 		pcb->pcb_dr6 = 0;
1261 		pcb->pcb_dr7 = 0; /* JG set bit 10? */
1262 		if (pcb == td->td_pcb) {
1263 			/*
1264 			 * Clear the debug registers on the running
1265 			 * CPU, otherwise they will end up affecting
1266 			 * the next process we switch to.
1267 			 */
1268 			reset_dbregs();
1269 		}
1270 		pcb->pcb_flags &= ~PCB_DBREGS;
1271 	}
1272 
1273 	/*
1274 	 * Initialize the math emulator (if any) for the current process.
1275 	 * Actually, just clear the bit that says that the emulator has
1276 	 * been initialized.  Initialization is delayed until the process
1277 	 * traps to the emulator (if it is done at all) mainly because
1278 	 * emulators don't provide an entry point for initialization.
1279 	 */
1280 	pcb->pcb_flags &= ~FP_SOFTFP;
1281 
1282 	/*
1283 	 * NOTE: do not set CR0_TS here.  npxinit() must do it after clearing
1284 	 *	 gd_npxthread.  Otherwise a preemptive interrupt thread
1285 	 *	 may panic in npxdna().
1286 	 */
1287 	crit_enter();
1288 	load_cr0(rcr0() | CR0_MP);
1289 
1290 	/*
1291 	 * NOTE: The MSR values must be correct so we can return to
1292 	 * 	 userland.  gd_user_fs/gs must be correct so the switch
1293 	 *	 code knows what the current MSR values are.
1294 	 */
1295 	pcb->pcb_fsbase = 0;	/* Values loaded from PCB on switch */
1296 	pcb->pcb_gsbase = 0;
1297 	mdcpu->gd_user_fs = 0;	/* Cache of current MSR values */
1298 	mdcpu->gd_user_gs = 0;
1299 	wrmsr(MSR_FSBASE, 0);	/* Set MSR values for return to userland */
1300 	wrmsr(MSR_KGSBASE, 0);
1301 
1302 	/* Initialize the npx (if any) for the current process. */
1303 	npxinit();
1304 	crit_exit();
1305 
1306 	pcb->pcb_ds = _udatasel;
1307 	pcb->pcb_es = _udatasel;
1308 	pcb->pcb_fs = _udatasel;
1309 	pcb->pcb_gs = _udatasel;
1310 }
1311 
1312 void
1313 cpu_setregs(void)
1314 {
1315 	register_t cr0;
1316 
1317 	cr0 = rcr0();
1318 	cr0 |= CR0_NE;			/* Done by npxinit() */
1319 	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1320 	cr0 |= CR0_WP | CR0_AM;
1321 	load_cr0(cr0);
1322 	load_gs(_udatasel);
1323 }
1324 
1325 static int
1326 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1327 {
1328 	int error;
1329 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1330 		req);
1331 	if (!error && req->newptr)
1332 		resettodr();
1333 	return (error);
1334 }
1335 
1336 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1337 	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1338 
1339 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1340 	CTLFLAG_RW, &disable_rtc_set, 0, "");
1341 
1342 #if 0 /* JG */
1343 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1344 	CTLFLAG_RD, &bootinfo, bootinfo, "");
1345 #endif
1346 
1347 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1348 	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1349 
1350 extern u_long bootdev;		/* not a cdev_t - encoding is different */
1351 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1352 	CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1353 
1354 /*
1355  * Initialize 386 and configure to run kernel
1356  */
1357 
1358 /*
1359  * Initialize segments & interrupt table
1360  */
1361 
1362 int _default_ldt;
1363 struct user_segment_descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1364 struct gate_descriptor idt_arr[MAXCPU][NIDT];
1365 #if 0 /* JG */
1366 union descriptor ldt[NLDT];		/* local descriptor table */
1367 #endif
1368 
1369 /* table descriptors - used to load tables by cpu */
1370 struct region_descriptor r_gdt;
1371 struct region_descriptor r_idt_arr[MAXCPU];
1372 
1373 /* JG proc0paddr is a virtual address */
1374 void *proc0paddr;
1375 /* JG alignment? */
1376 char proc0paddr_buff[LWKT_THREAD_STACK];
1377 
1378 
1379 /* software prototypes -- in more palatable form */
1380 struct soft_segment_descriptor gdt_segs[] = {
1381 /* GNULL_SEL	0 Null Descriptor */
1382 {	0x0,			/* segment base address  */
1383 	0x0,			/* length */
1384 	0,			/* segment type */
1385 	0,			/* segment descriptor priority level */
1386 	0,			/* segment descriptor present */
1387 	0,			/* long */
1388 	0,			/* default 32 vs 16 bit size */
1389 	0  			/* limit granularity (byte/page units)*/ },
1390 /* GCODE_SEL	1 Code Descriptor for kernel */
1391 {	0x0,			/* segment base address  */
1392 	0xfffff,		/* length - all address space */
1393 	SDT_MEMERA,		/* segment type */
1394 	SEL_KPL,		/* segment descriptor priority level */
1395 	1,			/* segment descriptor present */
1396 	1,			/* long */
1397 	0,			/* default 32 vs 16 bit size */
1398 	1  			/* limit granularity (byte/page units)*/ },
1399 /* GDATA_SEL	2 Data Descriptor for kernel */
1400 {	0x0,			/* segment base address  */
1401 	0xfffff,		/* length - all address space */
1402 	SDT_MEMRWA,		/* segment type */
1403 	SEL_KPL,		/* segment descriptor priority level */
1404 	1,			/* segment descriptor present */
1405 	1,			/* long */
1406 	0,			/* default 32 vs 16 bit size */
1407 	1  			/* limit granularity (byte/page units)*/ },
1408 /* GUCODE32_SEL	3 32 bit Code Descriptor for user */
1409 {	0x0,			/* segment base address  */
1410 	0xfffff,		/* length - all address space */
1411 	SDT_MEMERA,		/* segment type */
1412 	SEL_UPL,		/* segment descriptor priority level */
1413 	1,			/* segment descriptor present */
1414 	0,			/* long */
1415 	1,			/* default 32 vs 16 bit size */
1416 	1  			/* limit granularity (byte/page units)*/ },
1417 /* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
1418 {	0x0,			/* segment base address  */
1419 	0xfffff,		/* length - all address space */
1420 	SDT_MEMRWA,		/* segment type */
1421 	SEL_UPL,		/* segment descriptor priority level */
1422 	1,			/* segment descriptor present */
1423 	0,			/* long */
1424 	1,			/* default 32 vs 16 bit size */
1425 	1  			/* limit granularity (byte/page units)*/ },
1426 /* GUCODE_SEL	5 64 bit Code Descriptor for user */
1427 {	0x0,			/* segment base address  */
1428 	0xfffff,		/* length - all address space */
1429 	SDT_MEMERA,		/* segment type */
1430 	SEL_UPL,		/* segment descriptor priority level */
1431 	1,			/* segment descriptor present */
1432 	1,			/* long */
1433 	0,			/* default 32 vs 16 bit size */
1434 	1  			/* limit granularity (byte/page units)*/ },
1435 /* GPROC0_SEL	6 Proc 0 Tss Descriptor */
1436 {
1437 	0x0,			/* segment base address */
1438 	sizeof(struct x86_64tss)-1,/* length - all address space */
1439 	SDT_SYSTSS,		/* segment type */
1440 	SEL_KPL,		/* segment descriptor priority level */
1441 	1,			/* segment descriptor present */
1442 	0,			/* long */
1443 	0,			/* unused - default 32 vs 16 bit size */
1444 	0  			/* limit granularity (byte/page units)*/ },
1445 /* Actually, the TSS is a system descriptor which is double size */
1446 {	0x0,			/* segment base address  */
1447 	0x0,			/* length */
1448 	0,			/* segment type */
1449 	0,			/* segment descriptor priority level */
1450 	0,			/* segment descriptor present */
1451 	0,			/* long */
1452 	0,			/* default 32 vs 16 bit size */
1453 	0  			/* limit granularity (byte/page units)*/ },
1454 /* GUGS32_SEL	8 32 bit GS Descriptor for user */
1455 {	0x0,			/* segment base address  */
1456 	0xfffff,		/* length - all address space */
1457 	SDT_MEMRWA,		/* segment type */
1458 	SEL_UPL,		/* segment descriptor priority level */
1459 	1,			/* segment descriptor present */
1460 	0,			/* long */
1461 	1,			/* default 32 vs 16 bit size */
1462 	1  			/* limit granularity (byte/page units)*/ },
1463 };
1464 
1465 void
1466 setidt_global(int idx, inthand_t *func, int typ, int dpl, int ist)
1467 {
1468 	int cpu;
1469 
1470 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
1471 		struct gate_descriptor *ip = &idt_arr[cpu][idx];
1472 
1473 		ip->gd_looffset = (uintptr_t)func;
1474 		ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1475 		ip->gd_ist = ist;
1476 		ip->gd_xx = 0;
1477 		ip->gd_type = typ;
1478 		ip->gd_dpl = dpl;
1479 		ip->gd_p = 1;
1480 		ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1481 	}
1482 }
1483 
1484 void
1485 setidt(int idx, inthand_t *func, int typ, int dpl, int ist, int cpu)
1486 {
1487 	struct gate_descriptor *ip;
1488 
1489 	KASSERT(cpu >= 0 && cpu < ncpus, ("invalid cpu %d", cpu));
1490 
1491 	ip = &idt_arr[cpu][idx];
1492 	ip->gd_looffset = (uintptr_t)func;
1493 	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1494 	ip->gd_ist = ist;
1495 	ip->gd_xx = 0;
1496 	ip->gd_type = typ;
1497 	ip->gd_dpl = dpl;
1498 	ip->gd_p = 1;
1499 	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1500 }
1501 
1502 #define	IDTVEC(name)	__CONCAT(X,name)
1503 
1504 extern inthand_t
1505 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1506 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1507 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1508 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1509 	IDTVEC(xmm), IDTVEC(dblfault),
1510 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1511 
1512 void
1513 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1514 {
1515 	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1516 	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1517 	ssd->ssd_type  = sd->sd_type;
1518 	ssd->ssd_dpl   = sd->sd_dpl;
1519 	ssd->ssd_p     = sd->sd_p;
1520 	ssd->ssd_def32 = sd->sd_def32;
1521 	ssd->ssd_gran  = sd->sd_gran;
1522 }
1523 
1524 void
1525 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1526 {
1527 
1528 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1529 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1530 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1531 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1532 	sd->sd_type  = ssd->ssd_type;
1533 	sd->sd_dpl   = ssd->ssd_dpl;
1534 	sd->sd_p     = ssd->ssd_p;
1535 	sd->sd_long  = ssd->ssd_long;
1536 	sd->sd_def32 = ssd->ssd_def32;
1537 	sd->sd_gran  = ssd->ssd_gran;
1538 }
1539 
1540 void
1541 ssdtosyssd(struct soft_segment_descriptor *ssd,
1542     struct system_segment_descriptor *sd)
1543 {
1544 
1545 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1546 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1547 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1548 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1549 	sd->sd_type  = ssd->ssd_type;
1550 	sd->sd_dpl   = ssd->ssd_dpl;
1551 	sd->sd_p     = ssd->ssd_p;
1552 	sd->sd_gran  = ssd->ssd_gran;
1553 }
1554 
1555 /*
1556  * Populate the (physmap) array with base/bound pairs describing the
1557  * available physical memory in the system, then test this memory and
1558  * build the phys_avail array describing the actually-available memory.
1559  *
1560  * If we cannot accurately determine the physical memory map, then use
1561  * value from the 0xE801 call, and failing that, the RTC.
1562  *
1563  * Total memory size may be set by the kernel environment variable
1564  * hw.physmem or the compile-time define MAXMEM.
1565  *
1566  * Memory is aligned to PHYSMAP_ALIGN which must be a multiple
1567  * of PAGE_SIZE.  This also greatly reduces the memory test time
1568  * which would otherwise be excessive on machines with > 8G of ram.
1569  *
1570  * XXX first should be vm_paddr_t.
1571  */
1572 
1573 #define PHYSMAP_ALIGN		(vm_paddr_t)(128 * 1024)
1574 #define PHYSMAP_ALIGN_MASK	(vm_paddr_t)(PHYSMAP_ALIGN - 1)
1575 	vm_paddr_t physmap[PHYSMAP_SIZE];
1576 	struct bios_smap *smapbase, *smap, *smapend;
1577 	u_int32_t smapsize;
1578 
1579 static void
1580 getmemsize(caddr_t kmdp, u_int64_t first)
1581 {
1582 	int off, physmap_idx, pa_indx, da_indx;
1583 	int i, j;
1584 	vm_paddr_t pa;
1585 	vm_paddr_t msgbuf_size;
1586 	u_long physmem_tunable;
1587 	pt_entry_t *pte;
1588 	quad_t dcons_addr, dcons_size;
1589 
1590 	bzero(physmap, sizeof(physmap));
1591 	physmap_idx = 0;
1592 
1593 	/*
1594 	 * get memory map from INT 15:E820, kindly supplied by the loader.
1595 	 *
1596 	 * subr_module.c says:
1597 	 * "Consumer may safely assume that size value precedes data."
1598 	 * ie: an int32_t immediately precedes smap.
1599 	 */
1600 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1601 	    MODINFO_METADATA | MODINFOMD_SMAP);
1602 	if (smapbase == NULL)
1603 		panic("No BIOS smap info from loader!");
1604 
1605 	smapsize = *((u_int32_t *)smapbase - 1);
1606 	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1607 
1608 	for (smap = smapbase; smap < smapend; smap++) {
1609 		if (boothowto & RB_VERBOSE)
1610 			kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1611 			    smap->type, smap->base, smap->length);
1612 
1613 		if (smap->type != SMAP_TYPE_MEMORY)
1614 			continue;
1615 
1616 		if (smap->length == 0)
1617 			continue;
1618 
1619 		for (i = 0; i <= physmap_idx; i += 2) {
1620 			if (smap->base < physmap[i + 1]) {
1621 				if (boothowto & RB_VERBOSE) {
1622 					kprintf("Overlapping or non-monotonic "
1623 						"memory region, ignoring "
1624 						"second region\n");
1625 				}
1626 				break;
1627 			}
1628 		}
1629 		if (i <= physmap_idx)
1630 			continue;
1631 
1632 		Realmem += smap->length;
1633 
1634 		if (smap->base == physmap[physmap_idx + 1]) {
1635 			physmap[physmap_idx + 1] += smap->length;
1636 			continue;
1637 		}
1638 
1639 		physmap_idx += 2;
1640 		if (physmap_idx == PHYSMAP_SIZE) {
1641 			kprintf("Too many segments in the physical "
1642 				"address map, giving up\n");
1643 			break;
1644 		}
1645 		physmap[physmap_idx] = smap->base;
1646 		physmap[physmap_idx + 1] = smap->base + smap->length;
1647 	}
1648 
1649 	base_memory = physmap[1] / 1024;
1650 	/* make hole for AP bootstrap code */
1651 	physmap[1] = mp_bootaddress(base_memory);
1652 
1653 	/* Save EBDA address, if any */
1654 	ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
1655 	ebda_addr <<= 4;
1656 
1657 	/*
1658 	 * Maxmem isn't the "maximum memory", it's one larger than the
1659 	 * highest page of the physical address space.  It should be
1660 	 * called something like "Maxphyspage".  We may adjust this
1661 	 * based on ``hw.physmem'' and the results of the memory test.
1662 	 */
1663 	Maxmem = atop(physmap[physmap_idx + 1]);
1664 
1665 #ifdef MAXMEM
1666 	Maxmem = MAXMEM / 4;
1667 #endif
1668 
1669 	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1670 		Maxmem = atop(physmem_tunable);
1671 
1672 	/*
1673 	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1674 	 * in the system.
1675 	 */
1676 	if (Maxmem > atop(physmap[physmap_idx + 1]))
1677 		Maxmem = atop(physmap[physmap_idx + 1]);
1678 
1679 	/*
1680 	 * Blowing out the DMAP will blow up the system.
1681 	 */
1682 	if (Maxmem > atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS)) {
1683 		kprintf("Limiting Maxmem due to DMAP size\n");
1684 		Maxmem = atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS);
1685 	}
1686 
1687 	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1688 	    (boothowto & RB_VERBOSE)) {
1689 		kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
1690 	}
1691 
1692 	/*
1693 	 * Call pmap initialization to make new kernel address space
1694 	 *
1695 	 * Mask off page 0.
1696 	 */
1697 	pmap_bootstrap(&first);
1698 	physmap[0] = PAGE_SIZE;
1699 
1700 	/*
1701 	 * Align the physmap to PHYSMAP_ALIGN and cut out anything
1702 	 * exceeding Maxmem.
1703 	 */
1704 	for (i = j = 0; i <= physmap_idx; i += 2) {
1705 		if (physmap[i+1] > ptoa(Maxmem))
1706 			physmap[i+1] = ptoa(Maxmem);
1707 		physmap[i] = (physmap[i] + PHYSMAP_ALIGN_MASK) &
1708 			     ~PHYSMAP_ALIGN_MASK;
1709 		physmap[i+1] = physmap[i+1] & ~PHYSMAP_ALIGN_MASK;
1710 
1711 		physmap[j] = physmap[i];
1712 		physmap[j+1] = physmap[i+1];
1713 
1714 		if (physmap[i] < physmap[i+1])
1715 			j += 2;
1716 	}
1717 	physmap_idx = j - 2;
1718 
1719 	/*
1720 	 * Align anything else used in the validation loop.
1721 	 */
1722 	first = (first + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1723 
1724 	/*
1725 	 * Size up each available chunk of physical memory.
1726 	 */
1727 	pa_indx = 0;
1728 	da_indx = 1;
1729 	phys_avail[pa_indx++] = physmap[0];
1730 	phys_avail[pa_indx] = physmap[0];
1731 	dump_avail[da_indx] = physmap[0];
1732 	pte = CMAP1;
1733 
1734 	/*
1735 	 * Get dcons buffer address
1736 	 */
1737 	if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
1738 	    kgetenv_quad("dcons.size", &dcons_size) == 0)
1739 		dcons_addr = 0;
1740 
1741 	/*
1742 	 * Validate the physical memory.  The physical memory segments
1743 	 * have already been aligned to PHYSMAP_ALIGN which is a multiple
1744 	 * of PAGE_SIZE.
1745 	 */
1746 	for (i = 0; i <= physmap_idx; i += 2) {
1747 		vm_paddr_t end;
1748 
1749 		end = physmap[i + 1];
1750 
1751 		for (pa = physmap[i]; pa < end; pa += PHYSMAP_ALIGN) {
1752 			int tmp, page_bad, full;
1753 			int *ptr = (int *)CADDR1;
1754 
1755 			full = FALSE;
1756 			/*
1757 			 * block out kernel memory as not available.
1758 			 */
1759 			if (pa >= 0x200000 && pa < first)
1760 				goto do_dump_avail;
1761 
1762 			/*
1763 			 * block out dcons buffer
1764 			 */
1765 			if (dcons_addr > 0
1766 			    && pa >= trunc_page(dcons_addr)
1767 			    && pa < dcons_addr + dcons_size) {
1768 				goto do_dump_avail;
1769 			}
1770 
1771 			page_bad = FALSE;
1772 
1773 			/*
1774 			 * map page into kernel: valid, read/write,non-cacheable
1775 			 */
1776 			*pte = pa |
1777 			    kernel_pmap.pmap_bits[PG_V_IDX] |
1778 			    kernel_pmap.pmap_bits[PG_RW_IDX] |
1779 			    kernel_pmap.pmap_bits[PG_N_IDX];
1780 			cpu_invltlb();
1781 
1782 			tmp = *ptr;
1783 			/*
1784 			 * Test for alternating 1's and 0's
1785 			 */
1786 			*(volatile int *)ptr = 0xaaaaaaaa;
1787 			cpu_mfence();
1788 			if (*(volatile int *)ptr != 0xaaaaaaaa)
1789 				page_bad = TRUE;
1790 			/*
1791 			 * Test for alternating 0's and 1's
1792 			 */
1793 			*(volatile int *)ptr = 0x55555555;
1794 			cpu_mfence();
1795 			if (*(volatile int *)ptr != 0x55555555)
1796 				page_bad = TRUE;
1797 			/*
1798 			 * Test for all 1's
1799 			 */
1800 			*(volatile int *)ptr = 0xffffffff;
1801 			cpu_mfence();
1802 			if (*(volatile int *)ptr != 0xffffffff)
1803 				page_bad = TRUE;
1804 			/*
1805 			 * Test for all 0's
1806 			 */
1807 			*(volatile int *)ptr = 0x0;
1808 			cpu_mfence();
1809 			if (*(volatile int *)ptr != 0x0)
1810 				page_bad = TRUE;
1811 			/*
1812 			 * Restore original value.
1813 			 */
1814 			*ptr = tmp;
1815 
1816 			/*
1817 			 * Adjust array of valid/good pages.
1818 			 */
1819 			if (page_bad == TRUE)
1820 				continue;
1821 			/*
1822 			 * If this good page is a continuation of the
1823 			 * previous set of good pages, then just increase
1824 			 * the end pointer. Otherwise start a new chunk.
1825 			 * Note that "end" points one higher than end,
1826 			 * making the range >= start and < end.
1827 			 * If we're also doing a speculative memory
1828 			 * test and we at or past the end, bump up Maxmem
1829 			 * so that we keep going. The first bad page
1830 			 * will terminate the loop.
1831 			 */
1832 			if (phys_avail[pa_indx] == pa) {
1833 				phys_avail[pa_indx] += PHYSMAP_ALIGN;
1834 			} else {
1835 				pa_indx++;
1836 				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1837 					kprintf(
1838 		"Too many holes in the physical address space, giving up\n");
1839 					pa_indx--;
1840 					full = TRUE;
1841 					goto do_dump_avail;
1842 				}
1843 				phys_avail[pa_indx++] = pa;
1844 				phys_avail[pa_indx] = pa + PHYSMAP_ALIGN;
1845 			}
1846 			physmem += PHYSMAP_ALIGN / PAGE_SIZE;
1847 do_dump_avail:
1848 			if (dump_avail[da_indx] == pa) {
1849 				dump_avail[da_indx] += PHYSMAP_ALIGN;
1850 			} else {
1851 				da_indx++;
1852 				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1853 					da_indx--;
1854 					goto do_next;
1855 				}
1856 				dump_avail[da_indx++] = pa;
1857 				dump_avail[da_indx] = pa + PHYSMAP_ALIGN;
1858 			}
1859 do_next:
1860 			if (full)
1861 				break;
1862 		}
1863 	}
1864 	*pte = 0;
1865 	cpu_invltlb();
1866 
1867 	/*
1868 	 * The last chunk must contain at least one page plus the message
1869 	 * buffer to avoid complicating other code (message buffer address
1870 	 * calculation, etc.).
1871 	 */
1872 	msgbuf_size = (MSGBUF_SIZE + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1873 
1874 	while (phys_avail[pa_indx - 1] + PHYSMAP_ALIGN +
1875 	       msgbuf_size >= phys_avail[pa_indx]) {
1876 		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1877 		phys_avail[pa_indx--] = 0;
1878 		phys_avail[pa_indx--] = 0;
1879 	}
1880 
1881 	Maxmem = atop(phys_avail[pa_indx]);
1882 
1883 	/* Trim off space for the message buffer. */
1884 	phys_avail[pa_indx] -= msgbuf_size;
1885 
1886 	avail_end = phys_avail[pa_indx];
1887 
1888 	/* Map the message buffer. */
1889 	for (off = 0; off < msgbuf_size; off += PAGE_SIZE) {
1890 		pmap_kenter((vm_offset_t)msgbufp + off,
1891 			    phys_avail[pa_indx] + off);
1892 	}
1893 }
1894 
1895 struct machintr_abi MachIntrABI;
1896 
1897 /*
1898  * IDT VECTORS:
1899  *	0	Divide by zero
1900  *	1	Debug
1901  *	2	NMI
1902  *	3	BreakPoint
1903  *	4	OverFlow
1904  *	5	Bound-Range
1905  *	6	Invalid OpCode
1906  *	7	Device Not Available (x87)
1907  *	8	Double-Fault
1908  *	9	Coprocessor Segment overrun (unsupported, reserved)
1909  *	10	Invalid-TSS
1910  *	11	Segment not present
1911  *	12	Stack
1912  *	13	General Protection
1913  *	14	Page Fault
1914  *	15	Reserved
1915  *	16	x87 FP Exception pending
1916  *	17	Alignment Check
1917  *	18	Machine Check
1918  *	19	SIMD floating point
1919  *	20-31	reserved
1920  *	32-255	INTn/external sources
1921  */
1922 u_int64_t
1923 hammer_time(u_int64_t modulep, u_int64_t physfree)
1924 {
1925 	caddr_t kmdp;
1926 	int gsel_tss, x, cpu;
1927 #if 0 /* JG */
1928 	int metadata_missing, off;
1929 #endif
1930 	struct mdglobaldata *gd;
1931 	u_int64_t msr;
1932 
1933 	/*
1934 	 * Prevent lowering of the ipl if we call tsleep() early.
1935 	 */
1936 	gd = &CPU_prvspace[0]->mdglobaldata;
1937 	bzero(gd, sizeof(*gd));
1938 
1939 	/*
1940 	 * Note: on both UP and SMP curthread must be set non-NULL
1941 	 * early in the boot sequence because the system assumes
1942 	 * that 'curthread' is never NULL.
1943 	 */
1944 
1945 	gd->mi.gd_curthread = &thread0;
1946 	thread0.td_gd = &gd->mi;
1947 
1948 	atdevbase = ISA_HOLE_START + PTOV_OFFSET;
1949 
1950 #if 0 /* JG */
1951 	metadata_missing = 0;
1952 	if (bootinfo.bi_modulep) {
1953 		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1954 		preload_bootstrap_relocate(KERNBASE);
1955 	} else {
1956 		metadata_missing = 1;
1957 	}
1958 	if (bootinfo.bi_envp)
1959 		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1960 #endif
1961 
1962 	preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
1963 	preload_bootstrap_relocate(PTOV_OFFSET);
1964 	kmdp = preload_search_by_type("elf kernel");
1965 	if (kmdp == NULL)
1966 		kmdp = preload_search_by_type("elf64 kernel");
1967 	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1968 	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
1969 #ifdef DDB
1970 	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1971 	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1972 #endif
1973 
1974 	if (boothowto & RB_VERBOSE)
1975 		bootverbose++;
1976 
1977 	/*
1978 	 * Default MachIntrABI to ICU
1979 	 */
1980 	MachIntrABI = MachIntrABI_ICU;
1981 
1982 	/*
1983 	 * start with one cpu.  Note: with one cpu, ncpus2_shift, ncpus2_mask,
1984 	 * and ncpus_fit_mask remain 0.
1985 	 */
1986 	ncpus = 1;
1987 	ncpus2 = 1;
1988 	ncpus_fit = 1;
1989 	/* Init basic tunables, hz etc */
1990 	init_param1();
1991 
1992 	/*
1993 	 * make gdt memory segments
1994 	 */
1995 	gdt_segs[GPROC0_SEL].ssd_base =
1996 		(uintptr_t) &CPU_prvspace[0]->mdglobaldata.gd_common_tss;
1997 
1998 	gd->mi.gd_prvspace = CPU_prvspace[0];
1999 
2000 	for (x = 0; x < NGDT; x++) {
2001 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
2002 			ssdtosd(&gdt_segs[x], &gdt[x]);
2003 	}
2004 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2005 	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
2006 
2007 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
2008 	r_gdt.rd_base =  (long) gdt;
2009 	lgdt(&r_gdt);
2010 
2011 	wrmsr(MSR_FSBASE, 0);		/* User value */
2012 	wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
2013 	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
2014 
2015 	mi_gdinit(&gd->mi, 0);
2016 	cpu_gdinit(gd, 0);
2017 	proc0paddr = proc0paddr_buff;
2018 	mi_proc0init(&gd->mi, proc0paddr);
2019 	safepri = TDPRI_MAX;
2020 
2021 	/* spinlocks and the BGL */
2022 	init_locks();
2023 
2024 	/* exceptions */
2025 	for (x = 0; x < NIDT; x++)
2026 		setidt_global(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
2027 	setidt_global(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
2028 	setidt_global(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
2029 	setidt_global(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 1);
2030  	setidt_global(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
2031 	setidt_global(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
2032 	setidt_global(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
2033 	setidt_global(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
2034 	setidt_global(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
2035 	setidt_global(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
2036 	setidt_global(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
2037 	setidt_global(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
2038 	setidt_global(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
2039 	setidt_global(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
2040 	setidt_global(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
2041 	setidt_global(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
2042 	setidt_global(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
2043 	setidt_global(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
2044 	setidt_global(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
2045 	setidt_global(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
2046 
2047 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
2048 		r_idt_arr[cpu].rd_limit = sizeof(idt_arr[cpu]) - 1;
2049 		r_idt_arr[cpu].rd_base = (long) &idt_arr[cpu][0];
2050 	}
2051 
2052 	lidt(&r_idt_arr[0]);
2053 
2054 	/*
2055 	 * Initialize the console before we print anything out.
2056 	 */
2057 	cninit();
2058 
2059 #if 0 /* JG */
2060 	if (metadata_missing)
2061 		kprintf("WARNING: loader(8) metadata is missing!\n");
2062 #endif
2063 
2064 #if	NISA >0
2065 	elcr_probe();
2066 	isa_defaultirq();
2067 #endif
2068 	rand_initialize();
2069 
2070 	/*
2071 	 * Initialize IRQ mapping
2072 	 *
2073 	 * NOTE:
2074 	 * SHOULD be after elcr_probe()
2075 	 */
2076 	MachIntrABI_ICU.initmap();
2077 	MachIntrABI_IOAPIC.initmap();
2078 
2079 #ifdef DDB
2080 	kdb_init();
2081 	if (boothowto & RB_KDB)
2082 		Debugger("Boot flags requested debugger");
2083 #endif
2084 
2085 #if 0 /* JG */
2086 	finishidentcpu();	/* Final stage of CPU initialization */
2087 	setidt(6, &IDTVEC(ill),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2088 	setidt(13, &IDTVEC(prot),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2089 #endif
2090 	identify_cpu();		/* Final stage of CPU initialization */
2091 	initializecpu(0);	/* Initialize CPU registers */
2092 
2093 	/*
2094 	 * On modern intel cpus, haswell or later, cpu_idle_hlt=1 is better
2095 	 * becaue the cpu does significant power management in HLT
2096 	 * (also suggested is to set sysctl machdep.mwait.CX.idle=AUTODEEP).
2097 	 *
2098 	 * On modern amd cpus or on any older amd or intel cpu,
2099 	 * cpu_idle_hlt=2 is better because ACPI is needed to reduce power
2100 	 * consumption.
2101 	 */
2102 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
2103 	    CPUID_TO_MODEL(cpu_id) >= 0x3C) {	/* Haswell or later */
2104 		cpu_idle_hlt = 1;
2105 	}
2106 
2107 	TUNABLE_INT_FETCH("hw.apic_io_enable", &ioapic_enable); /* for compat */
2108 	TUNABLE_INT_FETCH("hw.ioapic_enable", &ioapic_enable);
2109 	TUNABLE_INT_FETCH("hw.lapic_enable", &lapic_enable);
2110 	TUNABLE_INT_FETCH("machdep.cpu_idle_hlt", &cpu_idle_hlt);
2111 
2112 	/*
2113 	 * Some of the virtual machines do not work w/ I/O APIC
2114 	 * enabled.  If the user does not explicitly enable or
2115 	 * disable the I/O APIC (ioapic_enable < 0), then we
2116 	 * disable I/O APIC on all virtual machines.
2117 	 *
2118 	 * NOTE:
2119 	 * This must be done after identify_cpu(), which sets
2120 	 * 'cpu_feature2'
2121 	 */
2122 	if (ioapic_enable < 0) {
2123 		if (cpu_feature2 & CPUID2_VMM)
2124 			ioapic_enable = 0;
2125 		else
2126 			ioapic_enable = 1;
2127 	}
2128 
2129 	/* make an initial tss so cpu can get interrupt stack on syscall! */
2130 	gd->gd_common_tss.tss_rsp0 =
2131 		(register_t)(thread0.td_kstack +
2132 			     KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb));
2133 	/* Ensure the stack is aligned to 16 bytes */
2134 	gd->gd_common_tss.tss_rsp0 &= ~(register_t)0xF;
2135 
2136 	/* double fault stack */
2137 	gd->gd_common_tss.tss_ist1 =
2138 		(long)&gd->mi.gd_prvspace->idlestack[
2139 			sizeof(gd->mi.gd_prvspace->idlestack)];
2140 
2141 	/* Set the IO permission bitmap (empty due to tss seg limit) */
2142 	gd->gd_common_tss.tss_iobase = sizeof(struct x86_64tss);
2143 
2144 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2145 	gd->gd_tss_gdt = &gdt[GPROC0_SEL];
2146 	gd->gd_common_tssd = *gd->gd_tss_gdt;
2147 	ltr(gsel_tss);
2148 
2149 	/* Set up the fast syscall stuff */
2150 	msr = rdmsr(MSR_EFER) | EFER_SCE;
2151 	wrmsr(MSR_EFER, msr);
2152 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
2153 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
2154 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
2155 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
2156 	wrmsr(MSR_STAR, msr);
2157 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
2158 
2159 	getmemsize(kmdp, physfree);
2160 	init_param2(physmem);
2161 
2162 	/* now running on new page tables, configured,and u/iom is accessible */
2163 
2164 	/* Map the message buffer. */
2165 #if 0 /* JG */
2166 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2167 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2168 #endif
2169 
2170 	msgbufinit(msgbufp, MSGBUF_SIZE);
2171 
2172 
2173 	/* transfer to user mode */
2174 
2175 	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2176 	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2177 	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
2178 
2179 	load_ds(_udatasel);
2180 	load_es(_udatasel);
2181 	load_fs(_udatasel);
2182 
2183 	/* setup proc 0's pcb */
2184 	thread0.td_pcb->pcb_flags = 0;
2185 	thread0.td_pcb->pcb_cr3 = KPML4phys;
2186 	thread0.td_pcb->pcb_ext = NULL;
2187 	lwp0.lwp_md.md_regs = &proc0_tf;	/* XXX needed? */
2188 
2189 	/* Location of kernel stack for locore */
2190 	return ((u_int64_t)thread0.td_pcb);
2191 }
2192 
2193 /*
2194  * Initialize machine-dependant portions of the global data structure.
2195  * Note that the global data area and cpu0's idlestack in the private
2196  * data space were allocated in locore.
2197  *
2198  * Note: the idlethread's cpl is 0
2199  *
2200  * WARNING!  Called from early boot, 'mycpu' may not work yet.
2201  */
2202 void
2203 cpu_gdinit(struct mdglobaldata *gd, int cpu)
2204 {
2205 	if (cpu)
2206 		gd->mi.gd_curthread = &gd->mi.gd_idlethread;
2207 
2208 	lwkt_init_thread(&gd->mi.gd_idlethread,
2209 			gd->mi.gd_prvspace->idlestack,
2210 			sizeof(gd->mi.gd_prvspace->idlestack),
2211 			0, &gd->mi);
2212 	lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
2213 	gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
2214 	gd->mi.gd_idlethread.td_sp -= sizeof(void *);
2215 	*(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
2216 }
2217 
2218 /*
2219  * We only have to check for DMAP bounds, the globaldata space is
2220  * actually part of the kernel_map so we don't have to waste time
2221  * checking CPU_prvspace[*].
2222  */
2223 int
2224 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
2225 {
2226 #if 0
2227 	if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
2228 	    eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
2229 		return (TRUE);
2230 	}
2231 #endif
2232 	if (saddr >= DMAP_MIN_ADDRESS && eaddr <= DMAP_MAX_ADDRESS)
2233 		return (TRUE);
2234 	return (FALSE);
2235 }
2236 
2237 struct globaldata *
2238 globaldata_find(int cpu)
2239 {
2240 	KKASSERT(cpu >= 0 && cpu < ncpus);
2241 	return(&CPU_prvspace[cpu]->mdglobaldata.mi);
2242 }
2243 
2244 /*
2245  * This path should be safe from the SYSRET issue because only stopped threads
2246  * can have their %rip adjusted this way (and all heavy weight thread switches
2247  * clear QUICKREF and thus do not use SYSRET).  However, the code path is
2248  * convoluted so add a safety by forcing %rip to be cannonical.
2249  */
2250 int
2251 ptrace_set_pc(struct lwp *lp, unsigned long addr)
2252 {
2253 	if (addr & 0x0000800000000000LLU)
2254 		lp->lwp_md.md_regs->tf_rip = addr | 0xFFFF000000000000LLU;
2255 	else
2256 		lp->lwp_md.md_regs->tf_rip = addr & 0x0000FFFFFFFFFFFFLLU;
2257 	return (0);
2258 }
2259 
2260 int
2261 ptrace_single_step(struct lwp *lp)
2262 {
2263 	lp->lwp_md.md_regs->tf_rflags |= PSL_T;
2264 	return (0);
2265 }
2266 
2267 int
2268 fill_regs(struct lwp *lp, struct reg *regs)
2269 {
2270 	struct trapframe *tp;
2271 
2272 	if ((tp = lp->lwp_md.md_regs) == NULL)
2273 		return EINVAL;
2274 	bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
2275 	return (0);
2276 }
2277 
2278 int
2279 set_regs(struct lwp *lp, struct reg *regs)
2280 {
2281 	struct trapframe *tp;
2282 
2283 	tp = lp->lwp_md.md_regs;
2284 	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
2285 	    !CS_SECURE(regs->r_cs))
2286 		return (EINVAL);
2287 	bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
2288 	clear_quickret();
2289 	return (0);
2290 }
2291 
2292 static void
2293 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2294 {
2295 	struct env87 *penv_87 = &sv_87->sv_env;
2296 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2297 	int i;
2298 
2299 	/* FPU control/status */
2300 	penv_87->en_cw = penv_xmm->en_cw;
2301 	penv_87->en_sw = penv_xmm->en_sw;
2302 	penv_87->en_tw = penv_xmm->en_tw;
2303 	penv_87->en_fip = penv_xmm->en_fip;
2304 	penv_87->en_fcs = penv_xmm->en_fcs;
2305 	penv_87->en_opcode = penv_xmm->en_opcode;
2306 	penv_87->en_foo = penv_xmm->en_foo;
2307 	penv_87->en_fos = penv_xmm->en_fos;
2308 
2309 	/* FPU registers */
2310 	for (i = 0; i < 8; ++i)
2311 		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2312 }
2313 
2314 static void
2315 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2316 {
2317 	struct env87 *penv_87 = &sv_87->sv_env;
2318 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2319 	int i;
2320 
2321 	/* FPU control/status */
2322 	penv_xmm->en_cw = penv_87->en_cw;
2323 	penv_xmm->en_sw = penv_87->en_sw;
2324 	penv_xmm->en_tw = penv_87->en_tw;
2325 	penv_xmm->en_fip = penv_87->en_fip;
2326 	penv_xmm->en_fcs = penv_87->en_fcs;
2327 	penv_xmm->en_opcode = penv_87->en_opcode;
2328 	penv_xmm->en_foo = penv_87->en_foo;
2329 	penv_xmm->en_fos = penv_87->en_fos;
2330 
2331 	/* FPU registers */
2332 	for (i = 0; i < 8; ++i)
2333 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2334 }
2335 
2336 int
2337 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2338 {
2339 	if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
2340 		return EINVAL;
2341 	if (cpu_fxsr) {
2342 		fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2343 				(struct save87 *)fpregs);
2344 		return (0);
2345 	}
2346 	bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2347 	return (0);
2348 }
2349 
2350 int
2351 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2352 {
2353 	if (cpu_fxsr) {
2354 		set_fpregs_xmm((struct save87 *)fpregs,
2355 			       &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2356 		return (0);
2357 	}
2358 	bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2359 	return (0);
2360 }
2361 
2362 int
2363 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2364 {
2365 	struct pcb *pcb;
2366 
2367         if (lp == NULL) {
2368                 dbregs->dr[0] = rdr0();
2369                 dbregs->dr[1] = rdr1();
2370                 dbregs->dr[2] = rdr2();
2371                 dbregs->dr[3] = rdr3();
2372                 dbregs->dr[4] = rdr4();
2373                 dbregs->dr[5] = rdr5();
2374                 dbregs->dr[6] = rdr6();
2375                 dbregs->dr[7] = rdr7();
2376 		return (0);
2377         }
2378 	if (lp->lwp_thread == NULL || (pcb = lp->lwp_thread->td_pcb) == NULL)
2379 		return EINVAL;
2380 	dbregs->dr[0] = pcb->pcb_dr0;
2381 	dbregs->dr[1] = pcb->pcb_dr1;
2382 	dbregs->dr[2] = pcb->pcb_dr2;
2383 	dbregs->dr[3] = pcb->pcb_dr3;
2384 	dbregs->dr[4] = 0;
2385 	dbregs->dr[5] = 0;
2386 	dbregs->dr[6] = pcb->pcb_dr6;
2387 	dbregs->dr[7] = pcb->pcb_dr7;
2388 	return (0);
2389 }
2390 
2391 int
2392 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2393 {
2394 	if (lp == NULL) {
2395 		load_dr0(dbregs->dr[0]);
2396 		load_dr1(dbregs->dr[1]);
2397 		load_dr2(dbregs->dr[2]);
2398 		load_dr3(dbregs->dr[3]);
2399 		load_dr4(dbregs->dr[4]);
2400 		load_dr5(dbregs->dr[5]);
2401 		load_dr6(dbregs->dr[6]);
2402 		load_dr7(dbregs->dr[7]);
2403 	} else {
2404 		struct pcb *pcb;
2405 		struct ucred *ucred;
2406 		int i;
2407 		uint64_t mask1, mask2;
2408 
2409 		/*
2410 		 * Don't let an illegal value for dr7 get set.	Specifically,
2411 		 * check for undefined settings.  Setting these bit patterns
2412 		 * result in undefined behaviour and can lead to an unexpected
2413 		 * TRCTRAP.
2414 		 */
2415 		/* JG this loop looks unreadable */
2416 		/* Check 4 2-bit fields for invalid patterns.
2417 		 * These fields are R/Wi, for i = 0..3
2418 		 */
2419 		/* Is 10 in LENi allowed when running in compatibility mode? */
2420 		/* Pattern 10 in R/Wi might be used to indicate
2421 		 * breakpoint on I/O. Further analysis should be
2422 		 * carried to decide if it is safe and useful to
2423 		 * provide access to that capability
2424 		 */
2425 		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2426 		     i++, mask1 <<= 4, mask2 <<= 4)
2427 			if ((dbregs->dr[7] & mask1) == mask2)
2428 				return (EINVAL);
2429 
2430 		pcb = lp->lwp_thread->td_pcb;
2431 		ucred = lp->lwp_proc->p_ucred;
2432 
2433 		/*
2434 		 * Don't let a process set a breakpoint that is not within the
2435 		 * process's address space.  If a process could do this, it
2436 		 * could halt the system by setting a breakpoint in the kernel
2437 		 * (if ddb was enabled).  Thus, we need to check to make sure
2438 		 * that no breakpoints are being enabled for addresses outside
2439 		 * process's address space, unless, perhaps, we were called by
2440 		 * uid 0.
2441 		 *
2442 		 * XXX - what about when the watched area of the user's
2443 		 * address space is written into from within the kernel
2444 		 * ... wouldn't that still cause a breakpoint to be generated
2445 		 * from within kernel mode?
2446 		 */
2447 
2448 		if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2449 			if (dbregs->dr[7] & 0x3) {
2450 				/* dr0 is enabled */
2451 				if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2452 					return (EINVAL);
2453 			}
2454 
2455 			if (dbregs->dr[7] & (0x3<<2)) {
2456 				/* dr1 is enabled */
2457 				if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2458 					return (EINVAL);
2459 			}
2460 
2461 			if (dbregs->dr[7] & (0x3<<4)) {
2462 				/* dr2 is enabled */
2463 				if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2464 					return (EINVAL);
2465 			}
2466 
2467 			if (dbregs->dr[7] & (0x3<<6)) {
2468 				/* dr3 is enabled */
2469 				if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2470 					return (EINVAL);
2471 			}
2472 		}
2473 
2474 		pcb->pcb_dr0 = dbregs->dr[0];
2475 		pcb->pcb_dr1 = dbregs->dr[1];
2476 		pcb->pcb_dr2 = dbregs->dr[2];
2477 		pcb->pcb_dr3 = dbregs->dr[3];
2478 		pcb->pcb_dr6 = dbregs->dr[6];
2479 		pcb->pcb_dr7 = dbregs->dr[7];
2480 
2481 		pcb->pcb_flags |= PCB_DBREGS;
2482 	}
2483 
2484 	return (0);
2485 }
2486 
2487 /*
2488  * Return > 0 if a hardware breakpoint has been hit, and the
2489  * breakpoint was in user space.  Return 0, otherwise.
2490  */
2491 int
2492 user_dbreg_trap(void)
2493 {
2494         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2495         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2496         int nbp;            /* number of breakpoints that triggered */
2497         caddr_t addr[4];    /* breakpoint addresses */
2498         int i;
2499 
2500         dr7 = rdr7();
2501         if ((dr7 & 0xff) == 0) {
2502                 /*
2503                  * all GE and LE bits in the dr7 register are zero,
2504                  * thus the trap couldn't have been caused by the
2505                  * hardware debug registers
2506                  */
2507                 return 0;
2508         }
2509 
2510         nbp = 0;
2511         dr6 = rdr6();
2512         bp = dr6 & 0xf;
2513 
2514         if (bp == 0) {
2515                 /*
2516                  * None of the breakpoint bits are set meaning this
2517                  * trap was not caused by any of the debug registers
2518                  */
2519                 return 0;
2520         }
2521 
2522         /*
2523          * at least one of the breakpoints were hit, check to see
2524          * which ones and if any of them are user space addresses
2525          */
2526 
2527         if (bp & 0x01) {
2528                 addr[nbp++] = (caddr_t)rdr0();
2529         }
2530         if (bp & 0x02) {
2531                 addr[nbp++] = (caddr_t)rdr1();
2532         }
2533         if (bp & 0x04) {
2534                 addr[nbp++] = (caddr_t)rdr2();
2535         }
2536         if (bp & 0x08) {
2537                 addr[nbp++] = (caddr_t)rdr3();
2538         }
2539 
2540         for (i=0; i<nbp; i++) {
2541                 if (addr[i] <
2542                     (caddr_t)VM_MAX_USER_ADDRESS) {
2543                         /*
2544                          * addr[i] is in user space
2545                          */
2546                         return nbp;
2547                 }
2548         }
2549 
2550         /*
2551          * None of the breakpoints are in user space.
2552          */
2553         return 0;
2554 }
2555 
2556 
2557 #ifndef DDB
2558 void
2559 Debugger(const char *msg)
2560 {
2561 	kprintf("Debugger(\"%s\") called.\n", msg);
2562 }
2563 #endif /* no DDB */
2564 
2565 #ifdef DDB
2566 
2567 /*
2568  * Provide inb() and outb() as functions.  They are normally only
2569  * available as macros calling inlined functions, thus cannot be
2570  * called inside DDB.
2571  *
2572  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2573  */
2574 
2575 #undef inb
2576 #undef outb
2577 
2578 /* silence compiler warnings */
2579 u_char inb(u_int);
2580 void outb(u_int, u_char);
2581 
2582 u_char
2583 inb(u_int port)
2584 {
2585 	u_char	data;
2586 	/*
2587 	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2588 	 * %edx, while gcc generates inferior code (movw instead of movl)
2589 	 * if we tell it to load (u_short) port.
2590 	 */
2591 	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2592 	return (data);
2593 }
2594 
2595 void
2596 outb(u_int port, u_char data)
2597 {
2598 	u_char	al;
2599 	/*
2600 	 * Use an unnecessary assignment to help gcc's register allocator.
2601 	 * This make a large difference for gcc-1.40 and a tiny difference
2602 	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2603 	 * best results.  gcc-2.6.0 can't handle this.
2604 	 */
2605 	al = data;
2606 	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2607 }
2608 
2609 #endif /* DDB */
2610 
2611 
2612 
2613 /*
2614  * initialize all the SMP locks
2615  */
2616 
2617 /* critical region when masking or unmasking interupts */
2618 struct spinlock_deprecated imen_spinlock;
2619 
2620 /* critical region for old style disable_intr/enable_intr */
2621 struct spinlock_deprecated mpintr_spinlock;
2622 
2623 /* critical region around INTR() routines */
2624 struct spinlock_deprecated intr_spinlock;
2625 
2626 /* lock region used by kernel profiling */
2627 struct spinlock_deprecated mcount_spinlock;
2628 
2629 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2630 struct spinlock_deprecated com_spinlock;
2631 
2632 /* lock regions around the clock hardware */
2633 struct spinlock_deprecated clock_spinlock;
2634 
2635 static void
2636 init_locks(void)
2637 {
2638 	/*
2639 	 * Get the initial mplock with a count of 1 for the BSP.
2640 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
2641 	 */
2642 	cpu_get_initial_mplock();
2643 	/* DEPRECATED */
2644 	spin_lock_init(&mcount_spinlock);
2645 	spin_lock_init(&intr_spinlock);
2646 	spin_lock_init(&mpintr_spinlock);
2647 	spin_lock_init(&imen_spinlock);
2648 	spin_lock_init(&com_spinlock);
2649 	spin_lock_init(&clock_spinlock);
2650 
2651 	/* our token pool needs to work early */
2652 	lwkt_token_pool_init();
2653 }
2654 
2655 boolean_t
2656 cpu_mwait_hint_valid(uint32_t hint)
2657 {
2658 	int cx_idx, sub;
2659 
2660 	cx_idx = MWAIT_EAX_TO_CX(hint);
2661 	if (cx_idx >= CPU_MWAIT_CX_MAX)
2662 		return FALSE;
2663 
2664 	sub = MWAIT_EAX_TO_CX_SUB(hint);
2665 	if (sub >= cpu_mwait_cx_info[cx_idx].subcnt)
2666 		return FALSE;
2667 
2668 	return TRUE;
2669 }
2670 
2671 void
2672 cpu_mwait_cx_no_bmsts(void)
2673 {
2674 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_STS);
2675 }
2676 
2677 void
2678 cpu_mwait_cx_no_bmarb(void)
2679 {
2680 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_ARB);
2681 }
2682 
2683 static int
2684 cpu_mwait_cx_hint2name(int hint, char *name, int namelen, boolean_t allow_auto)
2685 {
2686 	int old_cx_idx, sub = 0;
2687 
2688 	if (hint >= 0) {
2689 		old_cx_idx = MWAIT_EAX_TO_CX(hint);
2690 		sub = MWAIT_EAX_TO_CX_SUB(hint);
2691 	} else if (hint == CPU_MWAIT_HINT_AUTO) {
2692 		old_cx_idx = allow_auto ? CPU_MWAIT_C2 : CPU_MWAIT_CX_MAX;
2693 	} else if (hint == CPU_MWAIT_HINT_AUTODEEP) {
2694 		old_cx_idx = allow_auto ? CPU_MWAIT_C3 : CPU_MWAIT_CX_MAX;
2695 	} else {
2696 		old_cx_idx = CPU_MWAIT_CX_MAX;
2697 	}
2698 
2699 	if (!CPU_MWAIT_HAS_CX)
2700 		strlcpy(name, "NONE", namelen);
2701 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTO)
2702 		strlcpy(name, "AUTO", namelen);
2703 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTODEEP)
2704 		strlcpy(name, "AUTODEEP", namelen);
2705 	else if (old_cx_idx >= CPU_MWAIT_CX_MAX ||
2706 	    sub >= cpu_mwait_cx_info[old_cx_idx].subcnt)
2707 		strlcpy(name, "INVALID", namelen);
2708 	else
2709 		ksnprintf(name, namelen, "C%d/%d", old_cx_idx, sub);
2710 
2711 	return old_cx_idx;
2712 }
2713 
2714 static int
2715 cpu_mwait_cx_name2hint(char *name, int *hint0, boolean_t allow_auto)
2716 {
2717 	int cx_idx, sub, hint;
2718 	char *ptr, *start;
2719 
2720 	if (allow_auto && strcmp(name, "AUTO") == 0) {
2721 		hint = CPU_MWAIT_HINT_AUTO;
2722 		cx_idx = CPU_MWAIT_C2;
2723 		goto done;
2724 	}
2725 	if (allow_auto && strcmp(name, "AUTODEEP") == 0) {
2726 		hint = CPU_MWAIT_HINT_AUTODEEP;
2727 		cx_idx = CPU_MWAIT_C3;
2728 		goto done;
2729 	}
2730 
2731 	if (strlen(name) < 4 || toupper(name[0]) != 'C')
2732 		return -1;
2733 	start = &name[1];
2734 	ptr = NULL;
2735 
2736 	cx_idx = strtol(start, &ptr, 10);
2737 	if (ptr == start || *ptr != '/')
2738 		return -1;
2739 	if (cx_idx < 0 || cx_idx >= CPU_MWAIT_CX_MAX)
2740 		return -1;
2741 
2742 	start = ptr + 1;
2743 	ptr = NULL;
2744 
2745 	sub = strtol(start, &ptr, 10);
2746 	if (*ptr != '\0')
2747 		return -1;
2748 	if (sub < 0 || sub >= cpu_mwait_cx_info[cx_idx].subcnt)
2749 		return -1;
2750 
2751 	hint = MWAIT_EAX_HINT(cx_idx, sub);
2752 done:
2753 	*hint0 = hint;
2754 	return cx_idx;
2755 }
2756 
2757 static int
2758 cpu_mwait_cx_transit(int old_cx_idx, int cx_idx)
2759 {
2760 	if (cx_idx >= CPU_MWAIT_C3 && cpu_mwait_c3_preamble)
2761 		return EOPNOTSUPP;
2762 	if (old_cx_idx < CPU_MWAIT_C3 && cx_idx >= CPU_MWAIT_C3) {
2763 		int error;
2764 
2765 		error = cputimer_intr_powersave_addreq();
2766 		if (error)
2767 			return error;
2768 	} else if (old_cx_idx >= CPU_MWAIT_C3 && cx_idx < CPU_MWAIT_C3) {
2769 		cputimer_intr_powersave_remreq();
2770 	}
2771 	return 0;
2772 }
2773 
2774 static int
2775 cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS, int *hint0,
2776     boolean_t allow_auto)
2777 {
2778 	int error, cx_idx, old_cx_idx, hint;
2779 	char name[CPU_MWAIT_CX_NAMELEN];
2780 
2781 	hint = *hint0;
2782 	old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name),
2783 	    allow_auto);
2784 
2785 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
2786 	if (error != 0 || req->newptr == NULL)
2787 		return error;
2788 
2789 	if (!CPU_MWAIT_HAS_CX)
2790 		return EOPNOTSUPP;
2791 
2792 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, allow_auto);
2793 	if (cx_idx < 0)
2794 		return EINVAL;
2795 
2796 	error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
2797 	if (error)
2798 		return error;
2799 
2800 	*hint0 = hint;
2801 	return 0;
2802 }
2803 
2804 static int
2805 cpu_mwait_cx_setname(struct cpu_idle_stat *stat, const char *cx_name)
2806 {
2807 	int error, cx_idx, old_cx_idx, hint;
2808 	char name[CPU_MWAIT_CX_NAMELEN];
2809 
2810 	KASSERT(CPU_MWAIT_HAS_CX, ("cpu does not support mwait CX extension"));
2811 
2812 	hint = stat->hint;
2813 	old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
2814 
2815 	strlcpy(name, cx_name, sizeof(name));
2816 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
2817 	if (cx_idx < 0)
2818 		return EINVAL;
2819 
2820 	error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
2821 	if (error)
2822 		return error;
2823 
2824 	stat->hint = hint;
2825 	return 0;
2826 }
2827 
2828 static int
2829 cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS)
2830 {
2831 	int hint = cpu_mwait_halt_global;
2832 	int error, cx_idx, cpu;
2833 	char name[CPU_MWAIT_CX_NAMELEN], cx_name[CPU_MWAIT_CX_NAMELEN];
2834 
2835 	cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
2836 
2837 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
2838 	if (error != 0 || req->newptr == NULL)
2839 		return error;
2840 
2841 	if (!CPU_MWAIT_HAS_CX)
2842 		return EOPNOTSUPP;
2843 
2844 	/* Save name for later per-cpu CX configuration */
2845 	strlcpy(cx_name, name, sizeof(cx_name));
2846 
2847 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
2848 	if (cx_idx < 0)
2849 		return EINVAL;
2850 
2851 	/* Change per-cpu CX configuration */
2852 	for (cpu = 0; cpu < ncpus; ++cpu) {
2853 		error = cpu_mwait_cx_setname(&cpu_idle_stats[cpu], cx_name);
2854 		if (error)
2855 			return error;
2856 	}
2857 
2858 	cpu_mwait_halt_global = hint;
2859 	return 0;
2860 }
2861 
2862 static int
2863 cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS)
2864 {
2865 	struct cpu_idle_stat *stat = arg1;
2866 	int error;
2867 
2868 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
2869 	    &stat->hint, TRUE);
2870 	return error;
2871 }
2872 
2873 static int
2874 cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS)
2875 {
2876 	int error;
2877 
2878 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
2879 	    &cpu_mwait_spin, FALSE);
2880 	return error;
2881 }
2882