xref: /dragonfly/sys/platform/pc64/x86_64/machdep.c (revision 4d0c54c1)
1 /*-
2  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3  * Copyright (c) 1992 Terrence R. Lambert.
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 2008 The DragonFly Project.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
40  * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
41  */
42 
43 //#include "use_npx.h"
44 #include "use_isa.h"
45 #include "opt_compat.h"
46 #include "opt_cpu.h"
47 #include "opt_ddb.h"
48 #include "opt_directio.h"
49 #include "opt_inet.h"
50 #include "opt_ipx.h"
51 #include "opt_msgbuf.h"
52 #include "opt_swap.h"
53 
54 #include <sys/param.h>
55 #include <sys/systm.h>
56 #include <sys/sysproto.h>
57 #include <sys/signalvar.h>
58 #include <sys/kernel.h>
59 #include <sys/linker.h>
60 #include <sys/malloc.h>
61 #include <sys/proc.h>
62 #include <sys/priv.h>
63 #include <sys/buf.h>
64 #include <sys/reboot.h>
65 #include <sys/mbuf.h>
66 #include <sys/msgbuf.h>
67 #include <sys/sysent.h>
68 #include <sys/sysctl.h>
69 #include <sys/vmmeter.h>
70 #include <sys/bus.h>
71 #include <sys/usched.h>
72 #include <sys/reg.h>
73 
74 #include <vm/vm.h>
75 #include <vm/vm_param.h>
76 #include <sys/lock.h>
77 #include <vm/vm_kern.h>
78 #include <vm/vm_object.h>
79 #include <vm/vm_page.h>
80 #include <vm/vm_map.h>
81 #include <vm/vm_pager.h>
82 #include <vm/vm_extern.h>
83 
84 #include <sys/thread2.h>
85 #include <sys/mplock2.h>
86 #include <sys/mutex2.h>
87 
88 #include <sys/user.h>
89 #include <sys/exec.h>
90 #include <sys/cons.h>
91 
92 #include <ddb/ddb.h>
93 
94 #include <machine/cpu.h>
95 #include <machine/clock.h>
96 #include <machine/specialreg.h>
97 #if JG
98 #include <machine/bootinfo.h>
99 #endif
100 #include <machine/md_var.h>
101 #include <machine/metadata.h>
102 #include <machine/pc/bios.h>
103 #include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
104 #include <machine/globaldata.h>		/* CPU_prvspace */
105 #include <machine/smp.h>
106 #ifdef PERFMON
107 #include <machine/perfmon.h>
108 #endif
109 #include <machine/cputypes.h>
110 #include <machine/intr_machdep.h>
111 
112 #ifdef OLD_BUS_ARCH
113 #include <bus/isa/isa_device.h>
114 #endif
115 #include <machine_base/isa/isa_intr.h>
116 #include <bus/isa/rtc.h>
117 #include <sys/random.h>
118 #include <sys/ptrace.h>
119 #include <machine/sigframe.h>
120 
121 #include <sys/machintr.h>
122 #include <machine_base/icu/icu_abi.h>
123 #include <machine_base/icu/elcr_var.h>
124 #include <machine_base/apic/lapic.h>
125 #include <machine_base/apic/ioapic.h>
126 #include <machine_base/apic/ioapic_abi.h>
127 #include <machine/mptable.h>
128 
129 #define PHYSMAP_ENTRIES		10
130 
131 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
132 
133 extern void printcpuinfo(void);	/* XXX header file */
134 extern void identify_cpu(void);
135 #if JG
136 extern void finishidentcpu(void);
137 #endif
138 extern void panicifcpuunsupported(void);
139 
140 static void cpu_startup(void *);
141 static void pic_finish(void *);
142 static void cpu_finish(void *);
143 
144 #ifndef CPU_DISABLE_SSE
145 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
146 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
147 #endif /* CPU_DISABLE_SSE */
148 #ifdef DIRECTIO
149 extern void ffs_rawread_setup(void);
150 #endif /* DIRECTIO */
151 static void init_locks(void);
152 
153 SYSINIT(cpu, SI_BOOT2_START_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
154 SYSINIT(pic_finish, SI_BOOT2_FINISH_PIC, SI_ORDER_FIRST, pic_finish, NULL)
155 SYSINIT(cpu_finish, SI_BOOT2_FINISH_CPU, SI_ORDER_FIRST, cpu_finish, NULL)
156 
157 #ifdef DDB
158 extern vm_offset_t ksym_start, ksym_end;
159 #endif
160 
161 struct privatespace CPU_prvspace[MAXCPU] __aligned(4096); /* XXX */
162 
163 int	_udatasel, _ucodesel, _ucode32sel;
164 u_long	atdevbase;
165 int64_t tsc_offsets[MAXCPU];
166 
167 #if defined(SWTCH_OPTIM_STATS)
168 extern int swtch_optim_stats;
169 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
170 	CTLFLAG_RD, &swtch_optim_stats, 0, "");
171 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
172 	CTLFLAG_RD, &tlb_flush_count, 0, "");
173 #endif
174 
175 long physmem = 0;
176 
177 u_long ebda_addr = 0;
178 
179 int imcr_present = 0;
180 
181 int naps = 0; /* # of Applications processors */
182 
183 u_int base_memory;
184 struct mtx dt_lock;		/* lock for GDT and LDT */
185 
186 static int
187 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
188 {
189 	u_long pmem = ctob(physmem);
190 
191 	int error = sysctl_handle_long(oidp, &pmem, 0, req);
192 	return (error);
193 }
194 
195 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
196 	0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
197 
198 static int
199 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
200 {
201 	int error = sysctl_handle_int(oidp, 0,
202 		ctob(physmem - vmstats.v_wire_count), req);
203 	return (error);
204 }
205 
206 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
207 	0, 0, sysctl_hw_usermem, "IU", "");
208 
209 static int
210 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
211 {
212 	int error = sysctl_handle_int(oidp, 0,
213 		x86_64_btop(avail_end - avail_start), req);
214 	return (error);
215 }
216 
217 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
218 	0, 0, sysctl_hw_availpages, "I", "");
219 
220 vm_paddr_t Maxmem;
221 vm_paddr_t Realmem;
222 
223 /*
224  * The number of PHYSMAP entries must be one less than the number of
225  * PHYSSEG entries because the PHYSMAP entry that spans the largest
226  * physical address that is accessible by ISA DMA is split into two
227  * PHYSSEG entries.
228  */
229 #define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
230 
231 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
232 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
233 
234 /* must be 2 less so 0 0 can signal end of chunks */
235 #define PHYS_AVAIL_ARRAY_END (NELEM(phys_avail) - 2)
236 #define DUMP_AVAIL_ARRAY_END (NELEM(dump_avail) - 2)
237 
238 static vm_offset_t buffer_sva, buffer_eva;
239 vm_offset_t clean_sva, clean_eva;
240 static vm_offset_t pager_sva, pager_eva;
241 static struct trapframe proc0_tf;
242 
243 static void
244 cpu_startup(void *dummy)
245 {
246 	caddr_t v;
247 	vm_size_t size = 0;
248 	vm_offset_t firstaddr;
249 
250 	/*
251 	 * Good {morning,afternoon,evening,night}.
252 	 */
253 	kprintf("%s", version);
254 	startrtclock();
255 	printcpuinfo();
256 	panicifcpuunsupported();
257 #ifdef PERFMON
258 	perfmon_init();
259 #endif
260 	kprintf("real memory  = %ju (%ju MB)\n",
261 		(intmax_t)Realmem,
262 		(intmax_t)Realmem / 1024 / 1024);
263 	/*
264 	 * Display any holes after the first chunk of extended memory.
265 	 */
266 	if (bootverbose) {
267 		int indx;
268 
269 		kprintf("Physical memory chunk(s):\n");
270 		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
271 			vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
272 
273 			kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
274 				(intmax_t)phys_avail[indx],
275 				(intmax_t)phys_avail[indx + 1] - 1,
276 				(intmax_t)size1,
277 				(intmax_t)(size1 / PAGE_SIZE));
278 		}
279 	}
280 
281 	/*
282 	 * Allocate space for system data structures.
283 	 * The first available kernel virtual address is in "v".
284 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
285 	 * As pages of memory are allocated and cleared,
286 	 * "firstaddr" is incremented.
287 	 * An index into the kernel page table corresponding to the
288 	 * virtual memory address maintained in "v" is kept in "mapaddr".
289 	 */
290 
291 	/*
292 	 * Make two passes.  The first pass calculates how much memory is
293 	 * needed and allocates it.  The second pass assigns virtual
294 	 * addresses to the various data structures.
295 	 */
296 	firstaddr = 0;
297 again:
298 	v = (caddr_t)firstaddr;
299 
300 #define	valloc(name, type, num) \
301 	    (name) = (type *)v; v = (caddr_t)((name)+(num))
302 #define	valloclim(name, type, num, lim) \
303 	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
304 
305 	/*
306 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
307 	 * For the first 64MB of ram nominally allocate sufficient buffers to
308 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
309 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
310 	 * the buffer cache we limit the eventual kva reservation to
311 	 * maxbcache bytes.
312 	 *
313 	 * factor represents the 1/4 x ram conversion.
314 	 */
315 	if (nbuf == 0) {
316 		long factor = 4 * BKVASIZE / 1024;
317 		long kbytes = physmem * (PAGE_SIZE / 1024);
318 
319 		nbuf = 50;
320 		if (kbytes > 4096)
321 			nbuf += min((kbytes - 4096) / factor, 65536 / factor);
322 		if (kbytes > 65536)
323 			nbuf += (kbytes - 65536) * 2 / (factor * 5);
324 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
325 			nbuf = maxbcache / BKVASIZE;
326 	}
327 
328 	/*
329 	 * Do not allow the buffer_map to be more then 1/2 the size of the
330 	 * kernel_map.
331 	 */
332 	if (nbuf > (virtual_end - virtual_start +
333 		    virtual2_end - virtual2_start) / (BKVASIZE * 2)) {
334 		nbuf = (virtual_end - virtual_start +
335 			virtual2_end - virtual2_start) / (BKVASIZE * 2);
336 		kprintf("Warning: nbufs capped at %ld due to kvm\n", nbuf);
337 	}
338 
339 	/*
340 	 * Do not allow the buffer_map to use more than 50% of available
341 	 * physical-equivalent memory.  Since the VM pages which back
342 	 * individual buffers are typically wired, having too many bufs
343 	 * can prevent the system from paging properly.
344 	 */
345 	if (nbuf > physmem * PAGE_SIZE / (BKVASIZE * 2)) {
346 		nbuf = physmem * PAGE_SIZE / (BKVASIZE * 2);
347 		kprintf("Warning: nbufs capped at %ld due to physmem\n", nbuf);
348 	}
349 
350 	/*
351 	 * Do not allow the sizeof(struct buf) * nbuf to exceed half of
352 	 * the valloc space which is just the virtual_end - virtual_start
353 	 * section.  We use valloc() to allocate the buf header array.
354 	 */
355 	if (nbuf > (virtual_end - virtual_start) / sizeof(struct buf) / 2) {
356 		nbuf = (virtual_end - virtual_start) /
357 		       sizeof(struct buf) / 2;
358 		kprintf("Warning: nbufs capped at %ld due to valloc "
359 			"considerations", nbuf);
360 	}
361 
362 	nswbuf = lmax(lmin(nbuf / 4, 256), 16);
363 #ifdef NSWBUF_MIN
364 	if (nswbuf < NSWBUF_MIN)
365 		nswbuf = NSWBUF_MIN;
366 #endif
367 #ifdef DIRECTIO
368 	ffs_rawread_setup();
369 #endif
370 
371 	valloc(swbuf, struct buf, nswbuf);
372 	valloc(buf, struct buf, nbuf);
373 
374 	/*
375 	 * End of first pass, size has been calculated so allocate memory
376 	 */
377 	if (firstaddr == 0) {
378 		size = (vm_size_t)(v - firstaddr);
379 		firstaddr = kmem_alloc(&kernel_map, round_page(size));
380 		if (firstaddr == 0)
381 			panic("startup: no room for tables");
382 		goto again;
383 	}
384 
385 	/*
386 	 * End of second pass, addresses have been assigned
387 	 *
388 	 * nbuf is an int, make sure we don't overflow the field.
389 	 */
390 	if ((vm_size_t)(v - firstaddr) != size)
391 		panic("startup: table size inconsistency");
392 
393 	kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
394 		      ((vm_offset_t)nbuf * BKVASIZE) +
395 		      (nswbuf * MAXPHYS) + pager_map_size);
396 	kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
397 		      ((vm_offset_t)nbuf * BKVASIZE));
398 	buffer_map.system_map = 1;
399 	kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
400 		      ((vm_offset_t)nswbuf * MAXPHYS) + pager_map_size);
401 	pager_map.system_map = 1;
402 
403 #if defined(USERCONFIG)
404 	userconfig();
405 	cninit();		/* the preferred console may have changed */
406 #endif
407 
408 	kprintf("avail memory = %ju (%ju MB)\n",
409 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages),
410 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages) /
411 		1024 / 1024);
412 
413 	/*
414 	 * Set up buffers, so they can be used to read disk labels.
415 	 */
416 	bufinit();
417 	vm_pager_bufferinit();
418 }
419 
420 static void
421 cpu_finish(void *dummy __unused)
422 {
423 	cpu_setregs();
424 }
425 
426 static void
427 pic_finish(void *dummy __unused)
428 {
429 	/* Log ELCR information */
430 	elcr_dump();
431 
432 	/* Log MPTABLE information */
433 	mptable_pci_int_dump();
434 
435 	/* Finalize PCI */
436 	MachIntrABI.finalize();
437 }
438 
439 /*
440  * Send an interrupt to process.
441  *
442  * Stack is set up to allow sigcode stored
443  * at top to call routine, followed by kcall
444  * to sigreturn routine below.  After sigreturn
445  * resets the signal mask, the stack, and the
446  * frame pointer, it returns to the user
447  * specified pc, psl.
448  */
449 void
450 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
451 {
452 	struct lwp *lp = curthread->td_lwp;
453 	struct proc *p = lp->lwp_proc;
454 	struct trapframe *regs;
455 	struct sigacts *psp = p->p_sigacts;
456 	struct sigframe sf, *sfp;
457 	int oonstack;
458 	char *sp;
459 
460 	regs = lp->lwp_md.md_regs;
461 	oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
462 
463 	/* Save user context */
464 	bzero(&sf, sizeof(struct sigframe));
465 	sf.sf_uc.uc_sigmask = *mask;
466 	sf.sf_uc.uc_stack = lp->lwp_sigstk;
467 	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
468 	KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
469 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
470 
471 	/* Make the size of the saved context visible to userland */
472 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
473 
474 	/* Allocate and validate space for the signal handler context. */
475         if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
476 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
477 		sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
478 			      sizeof(struct sigframe));
479 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
480 	} else {
481 		/* We take red zone into account */
482 		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
483 	}
484 
485 	/* Align to 16 bytes */
486 	sfp = (struct sigframe *)((intptr_t)sp & ~(intptr_t)0xF);
487 
488 	/* Translate the signal is appropriate */
489 	if (p->p_sysent->sv_sigtbl) {
490 		if (sig <= p->p_sysent->sv_sigsize)
491 			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
492 	}
493 
494 	/*
495 	 * Build the argument list for the signal handler.
496 	 *
497 	 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
498 	 */
499 	regs->tf_rdi = sig;				/* argument 1 */
500 	regs->tf_rdx = (register_t)&sfp->sf_uc;		/* argument 3 */
501 
502 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
503 		/*
504 		 * Signal handler installed with SA_SIGINFO.
505 		 *
506 		 * action(signo, siginfo, ucontext)
507 		 */
508 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* argument 2 */
509 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
510 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
511 
512 		/* fill siginfo structure */
513 		sf.sf_si.si_signo = sig;
514 		sf.sf_si.si_code = code;
515 		sf.sf_si.si_addr = (void *)regs->tf_addr;
516 	} else {
517 		/*
518 		 * Old FreeBSD-style arguments.
519 		 *
520 		 * handler (signo, code, [uc], addr)
521 		 */
522 		regs->tf_rsi = (register_t)code;	/* argument 2 */
523 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
524 		sf.sf_ahu.sf_handler = catcher;
525 	}
526 
527 	/*
528 	 * If we're a vm86 process, we want to save the segment registers.
529 	 * We also change eflags to be our emulated eflags, not the actual
530 	 * eflags.
531 	 */
532 #if JG
533 	if (regs->tf_eflags & PSL_VM) {
534 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
535 		struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
536 
537 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
538 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
539 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
540 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
541 
542 		if (vm86->vm86_has_vme == 0)
543 			sf.sf_uc.uc_mcontext.mc_eflags =
544 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
545 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
546 
547 		/*
548 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
549 		 * syscalls made by the signal handler.  This just avoids
550 		 * wasting time for our lazy fixup of such faults.  PSL_NT
551 		 * does nothing in vm86 mode, but vm86 programs can set it
552 		 * almost legitimately in probes for old cpu types.
553 		 */
554 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
555 	}
556 #endif
557 
558 	/*
559 	 * Save the FPU state and reinit the FP unit
560 	 */
561 	npxpush(&sf.sf_uc.uc_mcontext);
562 
563 	/*
564 	 * Copy the sigframe out to the user's stack.
565 	 */
566 	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
567 		/*
568 		 * Something is wrong with the stack pointer.
569 		 * ...Kill the process.
570 		 */
571 		sigexit(lp, SIGILL);
572 	}
573 
574 	regs->tf_rsp = (register_t)sfp;
575 	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
576 
577 	/*
578 	 * i386 abi specifies that the direction flag must be cleared
579 	 * on function entry
580 	 */
581 	regs->tf_rflags &= ~(PSL_T|PSL_D);
582 
583 	/*
584 	 * 64 bit mode has a code and stack selector but
585 	 * no data or extra selector.  %fs and %gs are not
586 	 * stored in-context.
587 	 */
588 	regs->tf_cs = _ucodesel;
589 	regs->tf_ss = _udatasel;
590 	clear_quickret();
591 }
592 
593 /*
594  * Sanitize the trapframe for a virtual kernel passing control to a custom
595  * VM context.  Remove any items that would otherwise create a privilage
596  * issue.
597  *
598  * XXX at the moment we allow userland to set the resume flag.  Is this a
599  * bad idea?
600  */
601 int
602 cpu_sanitize_frame(struct trapframe *frame)
603 {
604 	frame->tf_cs = _ucodesel;
605 	frame->tf_ss = _udatasel;
606 	/* XXX VM (8086) mode not supported? */
607 	frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
608 	frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
609 
610 	return(0);
611 }
612 
613 /*
614  * Sanitize the tls so loading the descriptor does not blow up
615  * on us.  For x86_64 we don't have to do anything.
616  */
617 int
618 cpu_sanitize_tls(struct savetls *tls)
619 {
620 	return(0);
621 }
622 
623 /*
624  * sigreturn(ucontext_t *sigcntxp)
625  *
626  * System call to cleanup state after a signal
627  * has been taken.  Reset signal mask and
628  * stack state from context left by sendsig (above).
629  * Return to previous pc and psl as specified by
630  * context left by sendsig. Check carefully to
631  * make sure that the user has not modified the
632  * state to gain improper privileges.
633  *
634  * MPSAFE
635  */
636 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
637 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
638 
639 int
640 sys_sigreturn(struct sigreturn_args *uap)
641 {
642 	struct lwp *lp = curthread->td_lwp;
643 	struct trapframe *regs;
644 	ucontext_t uc;
645 	ucontext_t *ucp;
646 	register_t rflags;
647 	int cs;
648 	int error;
649 
650 	/*
651 	 * We have to copy the information into kernel space so userland
652 	 * can't modify it while we are sniffing it.
653 	 */
654 	regs = lp->lwp_md.md_regs;
655 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
656 	if (error)
657 		return (error);
658 	ucp = &uc;
659 	rflags = ucp->uc_mcontext.mc_rflags;
660 
661 	/* VM (8086) mode not supported */
662 	rflags &= ~PSL_VM_UNSUPP;
663 
664 #if JG
665 	if (eflags & PSL_VM) {
666 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
667 		struct vm86_kernel *vm86;
668 
669 		/*
670 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
671 		 * set up the vm86 area, and we can't enter vm86 mode.
672 		 */
673 		if (lp->lwp_thread->td_pcb->pcb_ext == 0)
674 			return (EINVAL);
675 		vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
676 		if (vm86->vm86_inited == 0)
677 			return (EINVAL);
678 
679 		/* go back to user mode if both flags are set */
680 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
681 			trapsignal(lp, SIGBUS, 0);
682 
683 		if (vm86->vm86_has_vme) {
684 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
685 			    (eflags & VME_USERCHANGE) | PSL_VM;
686 		} else {
687 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
688 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
689 			    (eflags & VM_USERCHANGE) | PSL_VM;
690 		}
691 		bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
692 		tf->tf_eflags = eflags;
693 		tf->tf_vm86_ds = tf->tf_ds;
694 		tf->tf_vm86_es = tf->tf_es;
695 		tf->tf_vm86_fs = tf->tf_fs;
696 		tf->tf_vm86_gs = tf->tf_gs;
697 		tf->tf_ds = _udatasel;
698 		tf->tf_es = _udatasel;
699 		tf->tf_fs = _udatasel;
700 		tf->tf_gs = _udatasel;
701 	} else
702 #endif
703 	{
704 		/*
705 		 * Don't allow users to change privileged or reserved flags.
706 		 */
707 		/*
708 		 * XXX do allow users to change the privileged flag PSL_RF.
709 		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
710 		 * should sometimes set it there too.  tf_eflags is kept in
711 		 * the signal context during signal handling and there is no
712 		 * other place to remember it, so the PSL_RF bit may be
713 		 * corrupted by the signal handler without us knowing.
714 		 * Corruption of the PSL_RF bit at worst causes one more or
715 		 * one less debugger trap, so allowing it is fairly harmless.
716 		 */
717 		if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
718 			kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
719 	    		return(EINVAL);
720 		}
721 
722 		/*
723 		 * Don't allow users to load a valid privileged %cs.  Let the
724 		 * hardware check for invalid selectors, excess privilege in
725 		 * other selectors, invalid %eip's and invalid %esp's.
726 		 */
727 		cs = ucp->uc_mcontext.mc_cs;
728 		if (!CS_SECURE(cs)) {
729 			kprintf("sigreturn: cs = 0x%x\n", cs);
730 			trapsignal(lp, SIGBUS, T_PROTFLT);
731 			return(EINVAL);
732 		}
733 		bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
734 	}
735 
736 	/*
737 	 * Restore the FPU state from the frame
738 	 */
739 	crit_enter();
740 	npxpop(&ucp->uc_mcontext);
741 
742 	if (ucp->uc_mcontext.mc_onstack & 1)
743 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
744 	else
745 		lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
746 
747 	lp->lwp_sigmask = ucp->uc_sigmask;
748 	SIG_CANTMASK(lp->lwp_sigmask);
749 	clear_quickret();
750 	crit_exit();
751 	return(EJUSTRETURN);
752 }
753 
754 /*
755  * Machine dependent boot() routine
756  *
757  * I haven't seen anything to put here yet
758  * Possibly some stuff might be grafted back here from boot()
759  */
760 void
761 cpu_boot(int howto)
762 {
763 }
764 
765 /*
766  * Shutdown the CPU as much as possible
767  */
768 void
769 cpu_halt(void)
770 {
771 	for (;;)
772 		__asm__ __volatile("hlt");
773 }
774 
775 /*
776  * cpu_idle() represents the idle LWKT.  You cannot return from this function
777  * (unless you want to blow things up!).  Instead we look for runnable threads
778  * and loop or halt as appropriate.  Giant is not held on entry to the thread.
779  *
780  * The main loop is entered with a critical section held, we must release
781  * the critical section before doing anything else.  lwkt_switch() will
782  * check for pending interrupts due to entering and exiting its own
783  * critical section.
784  *
785  * NOTE: On an SMP system we rely on a scheduler IPI to wake a HLTed cpu up.
786  *	 However, there are cases where the idlethread will be entered with
787  *	 the possibility that no IPI will occur and in such cases
788  *	 lwkt_switch() sets TDF_IDLE_NOHLT.
789  *
790  * NOTE: cpu_idle_hlt again defaults to 2 (use ACPI sleep states).  Set to
791  *	 1 to just use hlt and for debugging purposes.
792  *
793  * NOTE: cpu_idle_repeat determines how many entries into the idle thread
794  *	 must occur before it starts using ACPI halt.
795  */
796 static int	cpu_idle_hlt = 2;
797 static int	cpu_idle_hltcnt;
798 static int	cpu_idle_spincnt;
799 static u_int	cpu_idle_repeat = 750;
800 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
801     &cpu_idle_hlt, 0, "Idle loop HLT enable");
802 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hltcnt, CTLFLAG_RW,
803     &cpu_idle_hltcnt, 0, "Idle loop entry halts");
804 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_spincnt, CTLFLAG_RW,
805     &cpu_idle_spincnt, 0, "Idle loop entry spins");
806 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_repeat, CTLFLAG_RW,
807     &cpu_idle_repeat, 0, "Idle entries before acpi hlt");
808 
809 static void
810 cpu_idle_default_hook(void)
811 {
812 	/*
813 	 * We must guarentee that hlt is exactly the instruction
814 	 * following the sti.
815 	 */
816 	__asm __volatile("sti; hlt");
817 }
818 
819 /* Other subsystems (e.g., ACPI) can hook this later. */
820 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
821 
822 void
823 cpu_idle(void)
824 {
825 	globaldata_t gd = mycpu;
826 	struct thread *td __debugvar = gd->gd_curthread;
827 	int reqflags;
828 	int quick;
829 
830 	crit_exit();
831 	KKASSERT(td->td_critcount == 0);
832 	for (;;) {
833 		/*
834 		 * See if there are any LWKTs ready to go.
835 		 */
836 		lwkt_switch();
837 
838 		/*
839 		 * When halting inside a cli we must check for reqflags
840 		 * races, particularly [re]schedule requests.  Running
841 		 * splz() does the job.
842 		 *
843 		 * cpu_idle_hlt:
844 		 *	0	Never halt, just spin
845 		 *
846 		 *	1	Always use HLT (or MONITOR/MWAIT if avail).
847 		 *		This typically eats more power than the
848 		 *		ACPI halt.
849 		 *
850 		 *	2	Use HLT/MONITOR/MWAIT up to a point and then
851 		 *		use the ACPI halt (default).  This is a hybrid
852 		 *		approach.  See machdep.cpu_idle_repeat.
853 		 *
854 		 *	3	Always use the ACPI halt.  This typically
855 		 *		eats the least amount of power but the cpu
856 		 *		will be slow waking up.  Slows down e.g.
857 		 *		compiles and other pipe/event oriented stuff.
858 		 *
859 		 * NOTE: Interrupts are enabled and we are not in a critical
860 		 *	 section.
861 		 *
862 		 * NOTE: Preemptions do not reset gd_idle_repeat.   Also we
863 		 *	 don't bother capping gd_idle_repeat, it is ok if
864 		 *	 it overflows.
865 		 */
866 		++gd->gd_idle_repeat;
867 		reqflags = gd->gd_reqflags;
868 		quick = (cpu_idle_hlt == 1) ||
869 			(cpu_idle_hlt < 3 &&
870 			 gd->gd_idle_repeat < cpu_idle_repeat);
871 
872 		if (quick && (cpu_mi_feature & CPU_MI_MONITOR) &&
873 		    (reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
874 			splz(); /* XXX */
875 			cpu_mmw_pause_int(&gd->gd_reqflags, reqflags);
876 			++cpu_idle_hltcnt;
877 		} else if (cpu_idle_hlt) {
878 			__asm __volatile("cli");
879 			splz();
880 			if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
881 				if (quick)
882 					cpu_idle_default_hook();
883 				else
884 					cpu_idle_hook();
885 			}
886 			__asm __volatile("sti");
887 			++cpu_idle_hltcnt;
888 		} else {
889 			splz();
890 			__asm __volatile("sti");
891 			++cpu_idle_spincnt;
892 		}
893 	}
894 }
895 
896 /*
897  * This routine is called if a spinlock has been held through the
898  * exponential backoff period and is seriously contested.  On a real cpu
899  * we let it spin.
900  */
901 void
902 cpu_spinlock_contested(void)
903 {
904 	cpu_pause();
905 }
906 
907 /*
908  * Clear registers on exec
909  */
910 void
911 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
912 {
913 	struct thread *td = curthread;
914 	struct lwp *lp = td->td_lwp;
915 	struct pcb *pcb = td->td_pcb;
916 	struct trapframe *regs = lp->lwp_md.md_regs;
917 
918 	/* was i386_user_cleanup() in NetBSD */
919 	user_ldt_free(pcb);
920 
921 	clear_quickret();
922 	bzero((char *)regs, sizeof(struct trapframe));
923 	regs->tf_rip = entry;
924 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
925 	regs->tf_rdi = stack;		/* argv */
926 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
927 	regs->tf_ss = _udatasel;
928 	regs->tf_cs = _ucodesel;
929 	regs->tf_rbx = ps_strings;
930 
931 	/*
932 	 * Reset the hardware debug registers if they were in use.
933 	 * They won't have any meaning for the newly exec'd process.
934 	 */
935 	if (pcb->pcb_flags & PCB_DBREGS) {
936 		pcb->pcb_dr0 = 0;
937 		pcb->pcb_dr1 = 0;
938 		pcb->pcb_dr2 = 0;
939 		pcb->pcb_dr3 = 0;
940 		pcb->pcb_dr6 = 0;
941 		pcb->pcb_dr7 = 0; /* JG set bit 10? */
942 		if (pcb == td->td_pcb) {
943 			/*
944 			 * Clear the debug registers on the running
945 			 * CPU, otherwise they will end up affecting
946 			 * the next process we switch to.
947 			 */
948 			reset_dbregs();
949 		}
950 		pcb->pcb_flags &= ~PCB_DBREGS;
951 	}
952 
953 	/*
954 	 * Initialize the math emulator (if any) for the current process.
955 	 * Actually, just clear the bit that says that the emulator has
956 	 * been initialized.  Initialization is delayed until the process
957 	 * traps to the emulator (if it is done at all) mainly because
958 	 * emulators don't provide an entry point for initialization.
959 	 */
960 	pcb->pcb_flags &= ~FP_SOFTFP;
961 
962 	/*
963 	 * NOTE: do not set CR0_TS here.  npxinit() must do it after clearing
964 	 *	 gd_npxthread.  Otherwise a preemptive interrupt thread
965 	 *	 may panic in npxdna().
966 	 */
967 	crit_enter();
968 	load_cr0(rcr0() | CR0_MP);
969 
970 	/*
971 	 * NOTE: The MSR values must be correct so we can return to
972 	 * 	 userland.  gd_user_fs/gs must be correct so the switch
973 	 *	 code knows what the current MSR values are.
974 	 */
975 	pcb->pcb_fsbase = 0;	/* Values loaded from PCB on switch */
976 	pcb->pcb_gsbase = 0;
977 	mdcpu->gd_user_fs = 0;	/* Cache of current MSR values */
978 	mdcpu->gd_user_gs = 0;
979 	wrmsr(MSR_FSBASE, 0);	/* Set MSR values for return to userland */
980 	wrmsr(MSR_KGSBASE, 0);
981 
982 	/* Initialize the npx (if any) for the current process. */
983 	npxinit(__INITIAL_FPUCW__);
984 	crit_exit();
985 
986 	pcb->pcb_ds = _udatasel;
987 	pcb->pcb_es = _udatasel;
988 	pcb->pcb_fs = _udatasel;
989 	pcb->pcb_gs = _udatasel;
990 }
991 
992 void
993 cpu_setregs(void)
994 {
995 	register_t cr0;
996 
997 	cr0 = rcr0();
998 	cr0 |= CR0_NE;			/* Done by npxinit() */
999 	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1000 	cr0 |= CR0_WP | CR0_AM;
1001 	load_cr0(cr0);
1002 	load_gs(_udatasel);
1003 }
1004 
1005 static int
1006 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1007 {
1008 	int error;
1009 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1010 		req);
1011 	if (!error && req->newptr)
1012 		resettodr();
1013 	return (error);
1014 }
1015 
1016 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1017 	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1018 
1019 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1020 	CTLFLAG_RW, &disable_rtc_set, 0, "");
1021 
1022 #if JG
1023 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1024 	CTLFLAG_RD, &bootinfo, bootinfo, "");
1025 #endif
1026 
1027 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1028 	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1029 
1030 extern u_long bootdev;		/* not a cdev_t - encoding is different */
1031 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1032 	CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1033 
1034 /*
1035  * Initialize 386 and configure to run kernel
1036  */
1037 
1038 /*
1039  * Initialize segments & interrupt table
1040  */
1041 
1042 int _default_ldt;
1043 struct user_segment_descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1044 struct gate_descriptor idt_arr[MAXCPU][NIDT];
1045 #if JG
1046 union descriptor ldt[NLDT];		/* local descriptor table */
1047 #endif
1048 
1049 /* table descriptors - used to load tables by cpu */
1050 struct region_descriptor r_gdt;
1051 struct region_descriptor r_idt_arr[MAXCPU];
1052 
1053 /* JG proc0paddr is a virtual address */
1054 void *proc0paddr;
1055 /* JG alignment? */
1056 char proc0paddr_buff[LWKT_THREAD_STACK];
1057 
1058 
1059 /* software prototypes -- in more palatable form */
1060 struct soft_segment_descriptor gdt_segs[] = {
1061 /* GNULL_SEL	0 Null Descriptor */
1062 {	0x0,			/* segment base address  */
1063 	0x0,			/* length */
1064 	0,			/* segment type */
1065 	0,			/* segment descriptor priority level */
1066 	0,			/* segment descriptor present */
1067 	0,			/* long */
1068 	0,			/* default 32 vs 16 bit size */
1069 	0  			/* limit granularity (byte/page units)*/ },
1070 /* GCODE_SEL	1 Code Descriptor for kernel */
1071 {	0x0,			/* segment base address  */
1072 	0xfffff,		/* length - all address space */
1073 	SDT_MEMERA,		/* segment type */
1074 	SEL_KPL,		/* segment descriptor priority level */
1075 	1,			/* segment descriptor present */
1076 	1,			/* long */
1077 	0,			/* default 32 vs 16 bit size */
1078 	1  			/* limit granularity (byte/page units)*/ },
1079 /* GDATA_SEL	2 Data Descriptor for kernel */
1080 {	0x0,			/* segment base address  */
1081 	0xfffff,		/* length - all address space */
1082 	SDT_MEMRWA,		/* segment type */
1083 	SEL_KPL,		/* segment descriptor priority level */
1084 	1,			/* segment descriptor present */
1085 	1,			/* long */
1086 	0,			/* default 32 vs 16 bit size */
1087 	1  			/* limit granularity (byte/page units)*/ },
1088 /* GUCODE32_SEL	3 32 bit Code Descriptor for user */
1089 {	0x0,			/* segment base address  */
1090 	0xfffff,		/* length - all address space */
1091 	SDT_MEMERA,		/* segment type */
1092 	SEL_UPL,		/* segment descriptor priority level */
1093 	1,			/* segment descriptor present */
1094 	0,			/* long */
1095 	1,			/* default 32 vs 16 bit size */
1096 	1  			/* limit granularity (byte/page units)*/ },
1097 /* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
1098 {	0x0,			/* segment base address  */
1099 	0xfffff,		/* length - all address space */
1100 	SDT_MEMRWA,		/* segment type */
1101 	SEL_UPL,		/* segment descriptor priority level */
1102 	1,			/* segment descriptor present */
1103 	0,			/* long */
1104 	1,			/* default 32 vs 16 bit size */
1105 	1  			/* limit granularity (byte/page units)*/ },
1106 /* GUCODE_SEL	5 64 bit Code Descriptor for user */
1107 {	0x0,			/* segment base address  */
1108 	0xfffff,		/* length - all address space */
1109 	SDT_MEMERA,		/* segment type */
1110 	SEL_UPL,		/* segment descriptor priority level */
1111 	1,			/* segment descriptor present */
1112 	1,			/* long */
1113 	0,			/* default 32 vs 16 bit size */
1114 	1  			/* limit granularity (byte/page units)*/ },
1115 /* GPROC0_SEL	6 Proc 0 Tss Descriptor */
1116 {
1117 	0x0,			/* segment base address */
1118 	sizeof(struct x86_64tss)-1,/* length - all address space */
1119 	SDT_SYSTSS,		/* segment type */
1120 	SEL_KPL,		/* segment descriptor priority level */
1121 	1,			/* segment descriptor present */
1122 	0,			/* long */
1123 	0,			/* unused - default 32 vs 16 bit size */
1124 	0  			/* limit granularity (byte/page units)*/ },
1125 /* Actually, the TSS is a system descriptor which is double size */
1126 {	0x0,			/* segment base address  */
1127 	0x0,			/* length */
1128 	0,			/* segment type */
1129 	0,			/* segment descriptor priority level */
1130 	0,			/* segment descriptor present */
1131 	0,			/* long */
1132 	0,			/* default 32 vs 16 bit size */
1133 	0  			/* limit granularity (byte/page units)*/ },
1134 /* GUGS32_SEL	8 32 bit GS Descriptor for user */
1135 {	0x0,			/* segment base address  */
1136 	0xfffff,		/* length - all address space */
1137 	SDT_MEMRWA,		/* segment type */
1138 	SEL_UPL,		/* segment descriptor priority level */
1139 	1,			/* segment descriptor present */
1140 	0,			/* long */
1141 	1,			/* default 32 vs 16 bit size */
1142 	1  			/* limit granularity (byte/page units)*/ },
1143 };
1144 
1145 void
1146 setidt_global(int idx, inthand_t *func, int typ, int dpl, int ist)
1147 {
1148 	int cpu;
1149 
1150 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
1151 		struct gate_descriptor *ip = &idt_arr[cpu][idx];
1152 
1153 		ip->gd_looffset = (uintptr_t)func;
1154 		ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1155 		ip->gd_ist = ist;
1156 		ip->gd_xx = 0;
1157 		ip->gd_type = typ;
1158 		ip->gd_dpl = dpl;
1159 		ip->gd_p = 1;
1160 		ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1161 	}
1162 }
1163 
1164 void
1165 setidt(int idx, inthand_t *func, int typ, int dpl, int ist, int cpu)
1166 {
1167 	struct gate_descriptor *ip;
1168 
1169 	KASSERT(cpu >= 0 && cpu < ncpus, ("invalid cpu %d", cpu));
1170 
1171 	ip = &idt_arr[cpu][idx];
1172 	ip->gd_looffset = (uintptr_t)func;
1173 	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1174 	ip->gd_ist = ist;
1175 	ip->gd_xx = 0;
1176 	ip->gd_type = typ;
1177 	ip->gd_dpl = dpl;
1178 	ip->gd_p = 1;
1179 	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1180 }
1181 
1182 #define	IDTVEC(name)	__CONCAT(X,name)
1183 
1184 extern inthand_t
1185 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1186 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1187 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1188 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1189 	IDTVEC(xmm), IDTVEC(dblfault),
1190 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1191 
1192 #ifdef DEBUG_INTERRUPTS
1193 extern inthand_t *Xrsvdary[256];
1194 #endif
1195 
1196 void
1197 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1198 {
1199 	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1200 	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1201 	ssd->ssd_type  = sd->sd_type;
1202 	ssd->ssd_dpl   = sd->sd_dpl;
1203 	ssd->ssd_p     = sd->sd_p;
1204 	ssd->ssd_def32 = sd->sd_def32;
1205 	ssd->ssd_gran  = sd->sd_gran;
1206 }
1207 
1208 void
1209 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1210 {
1211 
1212 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1213 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1214 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1215 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1216 	sd->sd_type  = ssd->ssd_type;
1217 	sd->sd_dpl   = ssd->ssd_dpl;
1218 	sd->sd_p     = ssd->ssd_p;
1219 	sd->sd_long  = ssd->ssd_long;
1220 	sd->sd_def32 = ssd->ssd_def32;
1221 	sd->sd_gran  = ssd->ssd_gran;
1222 }
1223 
1224 void
1225 ssdtosyssd(struct soft_segment_descriptor *ssd,
1226     struct system_segment_descriptor *sd)
1227 {
1228 
1229 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1230 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1231 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1232 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1233 	sd->sd_type  = ssd->ssd_type;
1234 	sd->sd_dpl   = ssd->ssd_dpl;
1235 	sd->sd_p     = ssd->ssd_p;
1236 	sd->sd_gran  = ssd->ssd_gran;
1237 }
1238 
1239 /*
1240  * Populate the (physmap) array with base/bound pairs describing the
1241  * available physical memory in the system, then test this memory and
1242  * build the phys_avail array describing the actually-available memory.
1243  *
1244  * If we cannot accurately determine the physical memory map, then use
1245  * value from the 0xE801 call, and failing that, the RTC.
1246  *
1247  * Total memory size may be set by the kernel environment variable
1248  * hw.physmem or the compile-time define MAXMEM.
1249  *
1250  * Memory is aligned to PHYSMAP_ALIGN which must be a multiple
1251  * of PAGE_SIZE.  This also greatly reduces the memory test time
1252  * which would otherwise be excessive on machines with > 8G of ram.
1253  *
1254  * XXX first should be vm_paddr_t.
1255  */
1256 
1257 #define PHYSMAP_ALIGN		(vm_paddr_t)(128 * 1024)
1258 #define PHYSMAP_ALIGN_MASK	(vm_paddr_t)(PHYSMAP_ALIGN - 1)
1259 
1260 static void
1261 getmemsize(caddr_t kmdp, u_int64_t first)
1262 {
1263 	int off, physmap_idx, pa_indx, da_indx;
1264 	int i, j;
1265 	vm_paddr_t physmap[PHYSMAP_SIZE];
1266 	vm_paddr_t pa;
1267 	vm_paddr_t msgbuf_size;
1268 	u_long physmem_tunable;
1269 	pt_entry_t *pte;
1270 	struct bios_smap *smapbase, *smap, *smapend;
1271 	u_int32_t smapsize;
1272 	quad_t dcons_addr, dcons_size;
1273 
1274 	bzero(physmap, sizeof(physmap));
1275 	physmap_idx = 0;
1276 
1277 	/*
1278 	 * get memory map from INT 15:E820, kindly supplied by the loader.
1279 	 *
1280 	 * subr_module.c says:
1281 	 * "Consumer may safely assume that size value precedes data."
1282 	 * ie: an int32_t immediately precedes smap.
1283 	 */
1284 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1285 	    MODINFO_METADATA | MODINFOMD_SMAP);
1286 	if (smapbase == NULL)
1287 		panic("No BIOS smap info from loader!");
1288 
1289 	smapsize = *((u_int32_t *)smapbase - 1);
1290 	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1291 
1292 	for (smap = smapbase; smap < smapend; smap++) {
1293 		if (boothowto & RB_VERBOSE)
1294 			kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1295 			    smap->type, smap->base, smap->length);
1296 
1297 		if (smap->type != SMAP_TYPE_MEMORY)
1298 			continue;
1299 
1300 		if (smap->length == 0)
1301 			continue;
1302 
1303 		for (i = 0; i <= physmap_idx; i += 2) {
1304 			if (smap->base < physmap[i + 1]) {
1305 				if (boothowto & RB_VERBOSE) {
1306 					kprintf("Overlapping or non-monotonic "
1307 						"memory region, ignoring "
1308 						"second region\n");
1309 				}
1310 				break;
1311 			}
1312 		}
1313 		if (i <= physmap_idx)
1314 			continue;
1315 
1316 		Realmem += smap->length;
1317 
1318 		if (smap->base == physmap[physmap_idx + 1]) {
1319 			physmap[physmap_idx + 1] += smap->length;
1320 			continue;
1321 		}
1322 
1323 		physmap_idx += 2;
1324 		if (physmap_idx == PHYSMAP_SIZE) {
1325 			kprintf("Too many segments in the physical "
1326 				"address map, giving up\n");
1327 			break;
1328 		}
1329 		physmap[physmap_idx] = smap->base;
1330 		physmap[physmap_idx + 1] = smap->base + smap->length;
1331 	}
1332 
1333 	base_memory = physmap[1] / 1024;
1334 	/* make hole for AP bootstrap code */
1335 	physmap[1] = mp_bootaddress(base_memory);
1336 
1337 	/* Save EBDA address, if any */
1338 	ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
1339 	ebda_addr <<= 4;
1340 
1341 	/*
1342 	 * Maxmem isn't the "maximum memory", it's one larger than the
1343 	 * highest page of the physical address space.  It should be
1344 	 * called something like "Maxphyspage".  We may adjust this
1345 	 * based on ``hw.physmem'' and the results of the memory test.
1346 	 */
1347 	Maxmem = atop(physmap[physmap_idx + 1]);
1348 
1349 #ifdef MAXMEM
1350 	Maxmem = MAXMEM / 4;
1351 #endif
1352 
1353 	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1354 		Maxmem = atop(physmem_tunable);
1355 
1356 	/*
1357 	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1358 	 * in the system.
1359 	 */
1360 	if (Maxmem > atop(physmap[physmap_idx + 1]))
1361 		Maxmem = atop(physmap[physmap_idx + 1]);
1362 
1363 	/*
1364 	 * Blowing out the DMAP will blow up the system.
1365 	 */
1366 	if (Maxmem > atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS)) {
1367 		kprintf("Limiting Maxmem due to DMAP size\n");
1368 		Maxmem = atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS);
1369 	}
1370 
1371 	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1372 	    (boothowto & RB_VERBOSE)) {
1373 		kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
1374 	}
1375 
1376 	/*
1377 	 * Call pmap initialization to make new kernel address space
1378 	 *
1379 	 * Mask off page 0.
1380 	 */
1381 	pmap_bootstrap(&first);
1382 	physmap[0] = PAGE_SIZE;
1383 
1384 	/*
1385 	 * Align the physmap to PHYSMAP_ALIGN and cut out anything
1386 	 * exceeding Maxmem.
1387 	 */
1388 	for (i = j = 0; i <= physmap_idx; i += 2) {
1389 		if (physmap[i+1] > ptoa(Maxmem))
1390 			physmap[i+1] = ptoa(Maxmem);
1391 		physmap[i] = (physmap[i] + PHYSMAP_ALIGN_MASK) &
1392 			     ~PHYSMAP_ALIGN_MASK;
1393 		physmap[i+1] = physmap[i+1] & ~PHYSMAP_ALIGN_MASK;
1394 
1395 		physmap[j] = physmap[i];
1396 		physmap[j+1] = physmap[i+1];
1397 
1398 		if (physmap[i] < physmap[i+1])
1399 			j += 2;
1400 	}
1401 	physmap_idx = j - 2;
1402 
1403 	/*
1404 	 * Align anything else used in the validation loop.
1405 	 */
1406 	first = (first + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1407 
1408 	/*
1409 	 * Size up each available chunk of physical memory.
1410 	 */
1411 	pa_indx = 0;
1412 	da_indx = 1;
1413 	phys_avail[pa_indx++] = physmap[0];
1414 	phys_avail[pa_indx] = physmap[0];
1415 	dump_avail[da_indx] = physmap[0];
1416 	pte = CMAP1;
1417 
1418 	/*
1419 	 * Get dcons buffer address
1420 	 */
1421 	if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
1422 	    kgetenv_quad("dcons.size", &dcons_size) == 0)
1423 		dcons_addr = 0;
1424 
1425 	/*
1426 	 * Validate the physical memory.  The physical memory segments
1427 	 * have already been aligned to PHYSMAP_ALIGN which is a multiple
1428 	 * of PAGE_SIZE.
1429 	 */
1430 	for (i = 0; i <= physmap_idx; i += 2) {
1431 		vm_paddr_t end;
1432 
1433 		end = physmap[i + 1];
1434 
1435 		for (pa = physmap[i]; pa < end; pa += PHYSMAP_ALIGN) {
1436 			int tmp, page_bad, full;
1437 			int *ptr = (int *)CADDR1;
1438 
1439 			full = FALSE;
1440 			/*
1441 			 * block out kernel memory as not available.
1442 			 */
1443 			if (pa >= 0x200000 && pa < first)
1444 				goto do_dump_avail;
1445 
1446 			/*
1447 			 * block out dcons buffer
1448 			 */
1449 			if (dcons_addr > 0
1450 			    && pa >= trunc_page(dcons_addr)
1451 			    && pa < dcons_addr + dcons_size) {
1452 				goto do_dump_avail;
1453 			}
1454 
1455 			page_bad = FALSE;
1456 
1457 			/*
1458 			 * map page into kernel: valid, read/write,non-cacheable
1459 			 */
1460 			*pte = pa | PG_V | PG_RW | PG_N;
1461 			cpu_invltlb();
1462 
1463 			tmp = *ptr;
1464 			/*
1465 			 * Test for alternating 1's and 0's
1466 			 */
1467 			*(volatile int *)ptr = 0xaaaaaaaa;
1468 			cpu_mfence();
1469 			if (*(volatile int *)ptr != 0xaaaaaaaa)
1470 				page_bad = TRUE;
1471 			/*
1472 			 * Test for alternating 0's and 1's
1473 			 */
1474 			*(volatile int *)ptr = 0x55555555;
1475 			cpu_mfence();
1476 			if (*(volatile int *)ptr != 0x55555555)
1477 				page_bad = TRUE;
1478 			/*
1479 			 * Test for all 1's
1480 			 */
1481 			*(volatile int *)ptr = 0xffffffff;
1482 			cpu_mfence();
1483 			if (*(volatile int *)ptr != 0xffffffff)
1484 				page_bad = TRUE;
1485 			/*
1486 			 * Test for all 0's
1487 			 */
1488 			*(volatile int *)ptr = 0x0;
1489 			cpu_mfence();
1490 			if (*(volatile int *)ptr != 0x0)
1491 				page_bad = TRUE;
1492 			/*
1493 			 * Restore original value.
1494 			 */
1495 			*ptr = tmp;
1496 
1497 			/*
1498 			 * Adjust array of valid/good pages.
1499 			 */
1500 			if (page_bad == TRUE)
1501 				continue;
1502 			/*
1503 			 * If this good page is a continuation of the
1504 			 * previous set of good pages, then just increase
1505 			 * the end pointer. Otherwise start a new chunk.
1506 			 * Note that "end" points one higher than end,
1507 			 * making the range >= start and < end.
1508 			 * If we're also doing a speculative memory
1509 			 * test and we at or past the end, bump up Maxmem
1510 			 * so that we keep going. The first bad page
1511 			 * will terminate the loop.
1512 			 */
1513 			if (phys_avail[pa_indx] == pa) {
1514 				phys_avail[pa_indx] += PHYSMAP_ALIGN;
1515 			} else {
1516 				pa_indx++;
1517 				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1518 					kprintf(
1519 		"Too many holes in the physical address space, giving up\n");
1520 					pa_indx--;
1521 					full = TRUE;
1522 					goto do_dump_avail;
1523 				}
1524 				phys_avail[pa_indx++] = pa;
1525 				phys_avail[pa_indx] = pa + PHYSMAP_ALIGN;
1526 			}
1527 			physmem += PHYSMAP_ALIGN / PAGE_SIZE;
1528 do_dump_avail:
1529 			if (dump_avail[da_indx] == pa) {
1530 				dump_avail[da_indx] += PHYSMAP_ALIGN;
1531 			} else {
1532 				da_indx++;
1533 				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1534 					da_indx--;
1535 					goto do_next;
1536 				}
1537 				dump_avail[da_indx++] = pa;
1538 				dump_avail[da_indx] = pa + PHYSMAP_ALIGN;
1539 			}
1540 do_next:
1541 			if (full)
1542 				break;
1543 		}
1544 	}
1545 	*pte = 0;
1546 	cpu_invltlb();
1547 
1548 	/*
1549 	 * The last chunk must contain at least one page plus the message
1550 	 * buffer to avoid complicating other code (message buffer address
1551 	 * calculation, etc.).
1552 	 */
1553 	msgbuf_size = (MSGBUF_SIZE + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1554 
1555 	while (phys_avail[pa_indx - 1] + PHYSMAP_ALIGN +
1556 	       msgbuf_size >= phys_avail[pa_indx]) {
1557 		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1558 		phys_avail[pa_indx--] = 0;
1559 		phys_avail[pa_indx--] = 0;
1560 	}
1561 
1562 	Maxmem = atop(phys_avail[pa_indx]);
1563 
1564 	/* Trim off space for the message buffer. */
1565 	phys_avail[pa_indx] -= msgbuf_size;
1566 
1567 	avail_end = phys_avail[pa_indx];
1568 
1569 	/* Map the message buffer. */
1570 	for (off = 0; off < msgbuf_size; off += PAGE_SIZE) {
1571 		pmap_kenter((vm_offset_t)msgbufp + off,
1572 			    phys_avail[pa_indx] + off);
1573 	}
1574 }
1575 
1576 struct machintr_abi MachIntrABI;
1577 
1578 /*
1579  * IDT VECTORS:
1580  *	0	Divide by zero
1581  *	1	Debug
1582  *	2	NMI
1583  *	3	BreakPoint
1584  *	4	OverFlow
1585  *	5	Bound-Range
1586  *	6	Invalid OpCode
1587  *	7	Device Not Available (x87)
1588  *	8	Double-Fault
1589  *	9	Coprocessor Segment overrun (unsupported, reserved)
1590  *	10	Invalid-TSS
1591  *	11	Segment not present
1592  *	12	Stack
1593  *	13	General Protection
1594  *	14	Page Fault
1595  *	15	Reserved
1596  *	16	x87 FP Exception pending
1597  *	17	Alignment Check
1598  *	18	Machine Check
1599  *	19	SIMD floating point
1600  *	20-31	reserved
1601  *	32-255	INTn/external sources
1602  */
1603 u_int64_t
1604 hammer_time(u_int64_t modulep, u_int64_t physfree)
1605 {
1606 	caddr_t kmdp;
1607 	int gsel_tss, x, cpu;
1608 #if JG
1609 	int metadata_missing, off;
1610 #endif
1611 	struct mdglobaldata *gd;
1612 	u_int64_t msr;
1613 
1614 	/*
1615 	 * Prevent lowering of the ipl if we call tsleep() early.
1616 	 */
1617 	gd = &CPU_prvspace[0].mdglobaldata;
1618 	bzero(gd, sizeof(*gd));
1619 
1620 	/*
1621 	 * Note: on both UP and SMP curthread must be set non-NULL
1622 	 * early in the boot sequence because the system assumes
1623 	 * that 'curthread' is never NULL.
1624 	 */
1625 
1626 	gd->mi.gd_curthread = &thread0;
1627 	thread0.td_gd = &gd->mi;
1628 
1629 	atdevbase = ISA_HOLE_START + PTOV_OFFSET;
1630 
1631 #if JG
1632 	metadata_missing = 0;
1633 	if (bootinfo.bi_modulep) {
1634 		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1635 		preload_bootstrap_relocate(KERNBASE);
1636 	} else {
1637 		metadata_missing = 1;
1638 	}
1639 	if (bootinfo.bi_envp)
1640 		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1641 #endif
1642 
1643 	preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
1644 	preload_bootstrap_relocate(PTOV_OFFSET);
1645 	kmdp = preload_search_by_type("elf kernel");
1646 	if (kmdp == NULL)
1647 		kmdp = preload_search_by_type("elf64 kernel");
1648 	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1649 	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
1650 #ifdef DDB
1651 	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1652 	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1653 #endif
1654 
1655 	if (boothowto & RB_VERBOSE)
1656 		bootverbose++;
1657 
1658 	/*
1659 	 * Default MachIntrABI to ICU
1660 	 */
1661 	MachIntrABI = MachIntrABI_ICU;
1662 
1663 	/*
1664 	 * start with one cpu.  Note: with one cpu, ncpus2_shift, ncpus2_mask,
1665 	 * and ncpus_fit_mask remain 0.
1666 	 */
1667 	ncpus = 1;
1668 	ncpus2 = 1;
1669 	ncpus_fit = 1;
1670 	/* Init basic tunables, hz etc */
1671 	init_param1();
1672 
1673 	/*
1674 	 * make gdt memory segments
1675 	 */
1676 	gdt_segs[GPROC0_SEL].ssd_base =
1677 		(uintptr_t) &CPU_prvspace[0].mdglobaldata.gd_common_tss;
1678 
1679 	gd->mi.gd_prvspace = &CPU_prvspace[0];
1680 
1681 	for (x = 0; x < NGDT; x++) {
1682 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
1683 			ssdtosd(&gdt_segs[x], &gdt[x]);
1684 	}
1685 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1686 	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1687 
1688 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1689 	r_gdt.rd_base =  (long) gdt;
1690 	lgdt(&r_gdt);
1691 
1692 	wrmsr(MSR_FSBASE, 0);		/* User value */
1693 	wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
1694 	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1695 
1696 	mi_gdinit(&gd->mi, 0);
1697 	cpu_gdinit(gd, 0);
1698 	proc0paddr = proc0paddr_buff;
1699 	mi_proc0init(&gd->mi, proc0paddr);
1700 	safepri = TDPRI_MAX;
1701 
1702 	/* spinlocks and the BGL */
1703 	init_locks();
1704 
1705 	/* exceptions */
1706 	for (x = 0; x < NIDT; x++)
1707 		setidt_global(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1708 	setidt_global(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1709 	setidt_global(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1710 	setidt_global(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 1);
1711  	setidt_global(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1712 	setidt_global(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1713 	setidt_global(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1714 	setidt_global(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1715 	setidt_global(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1716 	setidt_global(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1717 	setidt_global(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1718 	setidt_global(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1719 	setidt_global(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1720 	setidt_global(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1721 	setidt_global(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1722 	setidt_global(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1723 	setidt_global(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1724 	setidt_global(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1725 	setidt_global(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1726 	setidt_global(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1727 
1728 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
1729 		r_idt_arr[cpu].rd_limit = sizeof(idt_arr[cpu]) - 1;
1730 		r_idt_arr[cpu].rd_base = (long) &idt_arr[cpu][0];
1731 	}
1732 
1733 	lidt(&r_idt_arr[0]);
1734 
1735 	/*
1736 	 * Initialize the console before we print anything out.
1737 	 */
1738 	cninit();
1739 
1740 #if JG
1741 	if (metadata_missing)
1742 		kprintf("WARNING: loader(8) metadata is missing!\n");
1743 #endif
1744 
1745 #if	NISA >0
1746 	elcr_probe();
1747 	isa_defaultirq();
1748 #endif
1749 	rand_initialize();
1750 
1751 	/*
1752 	 * Initialize IRQ mapping
1753 	 *
1754 	 * NOTE:
1755 	 * SHOULD be after elcr_probe()
1756 	 */
1757 	MachIntrABI_ICU.initmap();
1758 	MachIntrABI_IOAPIC.initmap();
1759 
1760 #ifdef DDB
1761 	kdb_init();
1762 	if (boothowto & RB_KDB)
1763 		Debugger("Boot flags requested debugger");
1764 #endif
1765 
1766 #if JG
1767 	finishidentcpu();	/* Final stage of CPU initialization */
1768 	setidt(6, &IDTVEC(ill),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1769 	setidt(13, &IDTVEC(prot),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1770 #endif
1771 	identify_cpu();		/* Final stage of CPU initialization */
1772 	initializecpu();	/* Initialize CPU registers */
1773 
1774 	TUNABLE_INT_FETCH("hw.apic_io_enable", &ioapic_enable); /* for compat */
1775 	TUNABLE_INT_FETCH("hw.ioapic_enable", &ioapic_enable);
1776 	TUNABLE_INT_FETCH("hw.lapic_enable", &lapic_enable);
1777 
1778 	/*
1779 	 * Some of the virtual machines do not work w/ I/O APIC
1780 	 * enabled.  If the user does not explicitly enable or
1781 	 * disable the I/O APIC (ioapic_enable < 0), then we
1782 	 * disable I/O APIC on all virtual machines.
1783 	 *
1784 	 * NOTE:
1785 	 * This must be done after identify_cpu(), which sets
1786 	 * 'cpu_feature2'
1787 	 */
1788 	if (ioapic_enable < 0) {
1789 		if (cpu_feature2 & CPUID2_VMM)
1790 			ioapic_enable = 0;
1791 		else
1792 			ioapic_enable = 1;
1793 	}
1794 
1795 	/* make an initial tss so cpu can get interrupt stack on syscall! */
1796 	gd->gd_common_tss.tss_rsp0 =
1797 		(register_t)(thread0.td_kstack +
1798 			     KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb));
1799 	/* Ensure the stack is aligned to 16 bytes */
1800 	gd->gd_common_tss.tss_rsp0 &= ~(register_t)0xF;
1801 
1802 	/* double fault stack */
1803 	gd->gd_common_tss.tss_ist1 =
1804 		(long)&gd->mi.gd_prvspace->idlestack[
1805 			sizeof(gd->mi.gd_prvspace->idlestack)];
1806 
1807 	/* Set the IO permission bitmap (empty due to tss seg limit) */
1808 	gd->gd_common_tss.tss_iobase = sizeof(struct x86_64tss);
1809 
1810 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1811 	gd->gd_tss_gdt = &gdt[GPROC0_SEL];
1812 	gd->gd_common_tssd = *gd->gd_tss_gdt;
1813 	ltr(gsel_tss);
1814 
1815 	/* Set up the fast syscall stuff */
1816 	msr = rdmsr(MSR_EFER) | EFER_SCE;
1817 	wrmsr(MSR_EFER, msr);
1818 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1819 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1820 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1821 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1822 	wrmsr(MSR_STAR, msr);
1823 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
1824 
1825 	getmemsize(kmdp, physfree);
1826 	init_param2(physmem);
1827 
1828 	/* now running on new page tables, configured,and u/iom is accessible */
1829 
1830 	/* Map the message buffer. */
1831 #if JG
1832 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1833 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
1834 #endif
1835 
1836 	msgbufinit(msgbufp, MSGBUF_SIZE);
1837 
1838 
1839 	/* transfer to user mode */
1840 
1841 	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1842 	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1843 	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1844 
1845 	load_ds(_udatasel);
1846 	load_es(_udatasel);
1847 	load_fs(_udatasel);
1848 
1849 	/* setup proc 0's pcb */
1850 	thread0.td_pcb->pcb_flags = 0;
1851 	thread0.td_pcb->pcb_cr3 = KPML4phys;
1852 	thread0.td_pcb->pcb_ext = NULL;
1853 	lwp0.lwp_md.md_regs = &proc0_tf;	/* XXX needed? */
1854 
1855 	/* Location of kernel stack for locore */
1856 	return ((u_int64_t)thread0.td_pcb);
1857 }
1858 
1859 /*
1860  * Initialize machine-dependant portions of the global data structure.
1861  * Note that the global data area and cpu0's idlestack in the private
1862  * data space were allocated in locore.
1863  *
1864  * Note: the idlethread's cpl is 0
1865  *
1866  * WARNING!  Called from early boot, 'mycpu' may not work yet.
1867  */
1868 void
1869 cpu_gdinit(struct mdglobaldata *gd, int cpu)
1870 {
1871 	if (cpu)
1872 		gd->mi.gd_curthread = &gd->mi.gd_idlethread;
1873 
1874 	lwkt_init_thread(&gd->mi.gd_idlethread,
1875 			gd->mi.gd_prvspace->idlestack,
1876 			sizeof(gd->mi.gd_prvspace->idlestack),
1877 			0, &gd->mi);
1878 	lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
1879 	gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
1880 	gd->mi.gd_idlethread.td_sp -= sizeof(void *);
1881 	*(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
1882 }
1883 
1884 int
1885 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
1886 {
1887 	if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
1888 	    eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
1889 		return (TRUE);
1890 	}
1891 	if (saddr >= DMAP_MIN_ADDRESS && eaddr <= DMAP_MAX_ADDRESS)
1892 		return (TRUE);
1893 	return (FALSE);
1894 }
1895 
1896 struct globaldata *
1897 globaldata_find(int cpu)
1898 {
1899 	KKASSERT(cpu >= 0 && cpu < ncpus);
1900 	return(&CPU_prvspace[cpu].mdglobaldata.mi);
1901 }
1902 
1903 int
1904 ptrace_set_pc(struct lwp *lp, unsigned long addr)
1905 {
1906 	lp->lwp_md.md_regs->tf_rip = addr;
1907 	return (0);
1908 }
1909 
1910 int
1911 ptrace_single_step(struct lwp *lp)
1912 {
1913 	lp->lwp_md.md_regs->tf_rflags |= PSL_T;
1914 	return (0);
1915 }
1916 
1917 int
1918 fill_regs(struct lwp *lp, struct reg *regs)
1919 {
1920 	struct trapframe *tp;
1921 
1922 	if ((tp = lp->lwp_md.md_regs) == NULL)
1923 		return EINVAL;
1924 	bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
1925 	return (0);
1926 }
1927 
1928 int
1929 set_regs(struct lwp *lp, struct reg *regs)
1930 {
1931 	struct trapframe *tp;
1932 
1933 	tp = lp->lwp_md.md_regs;
1934 	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
1935 	    !CS_SECURE(regs->r_cs))
1936 		return (EINVAL);
1937 	bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
1938 	clear_quickret();
1939 	return (0);
1940 }
1941 
1942 #ifndef CPU_DISABLE_SSE
1943 static void
1944 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
1945 {
1946 	struct env87 *penv_87 = &sv_87->sv_env;
1947 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1948 	int i;
1949 
1950 	/* FPU control/status */
1951 	penv_87->en_cw = penv_xmm->en_cw;
1952 	penv_87->en_sw = penv_xmm->en_sw;
1953 	penv_87->en_tw = penv_xmm->en_tw;
1954 	penv_87->en_fip = penv_xmm->en_fip;
1955 	penv_87->en_fcs = penv_xmm->en_fcs;
1956 	penv_87->en_opcode = penv_xmm->en_opcode;
1957 	penv_87->en_foo = penv_xmm->en_foo;
1958 	penv_87->en_fos = penv_xmm->en_fos;
1959 
1960 	/* FPU registers */
1961 	for (i = 0; i < 8; ++i)
1962 		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
1963 }
1964 
1965 static void
1966 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
1967 {
1968 	struct env87 *penv_87 = &sv_87->sv_env;
1969 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1970 	int i;
1971 
1972 	/* FPU control/status */
1973 	penv_xmm->en_cw = penv_87->en_cw;
1974 	penv_xmm->en_sw = penv_87->en_sw;
1975 	penv_xmm->en_tw = penv_87->en_tw;
1976 	penv_xmm->en_fip = penv_87->en_fip;
1977 	penv_xmm->en_fcs = penv_87->en_fcs;
1978 	penv_xmm->en_opcode = penv_87->en_opcode;
1979 	penv_xmm->en_foo = penv_87->en_foo;
1980 	penv_xmm->en_fos = penv_87->en_fos;
1981 
1982 	/* FPU registers */
1983 	for (i = 0; i < 8; ++i)
1984 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
1985 }
1986 #endif /* CPU_DISABLE_SSE */
1987 
1988 int
1989 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
1990 {
1991 	if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
1992 		return EINVAL;
1993 #ifndef CPU_DISABLE_SSE
1994 	if (cpu_fxsr) {
1995 		fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
1996 				(struct save87 *)fpregs);
1997 		return (0);
1998 	}
1999 #endif /* CPU_DISABLE_SSE */
2000 	bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2001 	return (0);
2002 }
2003 
2004 int
2005 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2006 {
2007 #ifndef CPU_DISABLE_SSE
2008 	if (cpu_fxsr) {
2009 		set_fpregs_xmm((struct save87 *)fpregs,
2010 			       &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2011 		return (0);
2012 	}
2013 #endif /* CPU_DISABLE_SSE */
2014 	bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2015 	return (0);
2016 }
2017 
2018 int
2019 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2020 {
2021 	struct pcb *pcb;
2022 
2023         if (lp == NULL) {
2024                 dbregs->dr[0] = rdr0();
2025                 dbregs->dr[1] = rdr1();
2026                 dbregs->dr[2] = rdr2();
2027                 dbregs->dr[3] = rdr3();
2028                 dbregs->dr[4] = rdr4();
2029                 dbregs->dr[5] = rdr5();
2030                 dbregs->dr[6] = rdr6();
2031                 dbregs->dr[7] = rdr7();
2032 		return (0);
2033         }
2034 	if (lp->lwp_thread == NULL || (pcb = lp->lwp_thread->td_pcb) == NULL)
2035 		return EINVAL;
2036 	dbregs->dr[0] = pcb->pcb_dr0;
2037 	dbregs->dr[1] = pcb->pcb_dr1;
2038 	dbregs->dr[2] = pcb->pcb_dr2;
2039 	dbregs->dr[3] = pcb->pcb_dr3;
2040 	dbregs->dr[4] = 0;
2041 	dbregs->dr[5] = 0;
2042 	dbregs->dr[6] = pcb->pcb_dr6;
2043 	dbregs->dr[7] = pcb->pcb_dr7;
2044 	return (0);
2045 }
2046 
2047 int
2048 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2049 {
2050 	if (lp == NULL) {
2051 		load_dr0(dbregs->dr[0]);
2052 		load_dr1(dbregs->dr[1]);
2053 		load_dr2(dbregs->dr[2]);
2054 		load_dr3(dbregs->dr[3]);
2055 		load_dr4(dbregs->dr[4]);
2056 		load_dr5(dbregs->dr[5]);
2057 		load_dr6(dbregs->dr[6]);
2058 		load_dr7(dbregs->dr[7]);
2059 	} else {
2060 		struct pcb *pcb;
2061 		struct ucred *ucred;
2062 		int i;
2063 		uint64_t mask1, mask2;
2064 
2065 		/*
2066 		 * Don't let an illegal value for dr7 get set.	Specifically,
2067 		 * check for undefined settings.  Setting these bit patterns
2068 		 * result in undefined behaviour and can lead to an unexpected
2069 		 * TRCTRAP.
2070 		 */
2071 		/* JG this loop looks unreadable */
2072 		/* Check 4 2-bit fields for invalid patterns.
2073 		 * These fields are R/Wi, for i = 0..3
2074 		 */
2075 		/* Is 10 in LENi allowed when running in compatibility mode? */
2076 		/* Pattern 10 in R/Wi might be used to indicate
2077 		 * breakpoint on I/O. Further analysis should be
2078 		 * carried to decide if it is safe and useful to
2079 		 * provide access to that capability
2080 		 */
2081 		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2082 		     i++, mask1 <<= 4, mask2 <<= 4)
2083 			if ((dbregs->dr[7] & mask1) == mask2)
2084 				return (EINVAL);
2085 
2086 		pcb = lp->lwp_thread->td_pcb;
2087 		ucred = lp->lwp_proc->p_ucred;
2088 
2089 		/*
2090 		 * Don't let a process set a breakpoint that is not within the
2091 		 * process's address space.  If a process could do this, it
2092 		 * could halt the system by setting a breakpoint in the kernel
2093 		 * (if ddb was enabled).  Thus, we need to check to make sure
2094 		 * that no breakpoints are being enabled for addresses outside
2095 		 * process's address space, unless, perhaps, we were called by
2096 		 * uid 0.
2097 		 *
2098 		 * XXX - what about when the watched area of the user's
2099 		 * address space is written into from within the kernel
2100 		 * ... wouldn't that still cause a breakpoint to be generated
2101 		 * from within kernel mode?
2102 		 */
2103 
2104 		if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2105 			if (dbregs->dr[7] & 0x3) {
2106 				/* dr0 is enabled */
2107 				if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2108 					return (EINVAL);
2109 			}
2110 
2111 			if (dbregs->dr[7] & (0x3<<2)) {
2112 				/* dr1 is enabled */
2113 				if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2114 					return (EINVAL);
2115 			}
2116 
2117 			if (dbregs->dr[7] & (0x3<<4)) {
2118 				/* dr2 is enabled */
2119 				if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2120 					return (EINVAL);
2121 			}
2122 
2123 			if (dbregs->dr[7] & (0x3<<6)) {
2124 				/* dr3 is enabled */
2125 				if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2126 					return (EINVAL);
2127 			}
2128 		}
2129 
2130 		pcb->pcb_dr0 = dbregs->dr[0];
2131 		pcb->pcb_dr1 = dbregs->dr[1];
2132 		pcb->pcb_dr2 = dbregs->dr[2];
2133 		pcb->pcb_dr3 = dbregs->dr[3];
2134 		pcb->pcb_dr6 = dbregs->dr[6];
2135 		pcb->pcb_dr7 = dbregs->dr[7];
2136 
2137 		pcb->pcb_flags |= PCB_DBREGS;
2138 	}
2139 
2140 	return (0);
2141 }
2142 
2143 /*
2144  * Return > 0 if a hardware breakpoint has been hit, and the
2145  * breakpoint was in user space.  Return 0, otherwise.
2146  */
2147 int
2148 user_dbreg_trap(void)
2149 {
2150         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2151         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2152         int nbp;            /* number of breakpoints that triggered */
2153         caddr_t addr[4];    /* breakpoint addresses */
2154         int i;
2155 
2156         dr7 = rdr7();
2157         if ((dr7 & 0xff) == 0) {
2158                 /*
2159                  * all GE and LE bits in the dr7 register are zero,
2160                  * thus the trap couldn't have been caused by the
2161                  * hardware debug registers
2162                  */
2163                 return 0;
2164         }
2165 
2166         nbp = 0;
2167         dr6 = rdr6();
2168         bp = dr6 & 0xf;
2169 
2170         if (bp == 0) {
2171                 /*
2172                  * None of the breakpoint bits are set meaning this
2173                  * trap was not caused by any of the debug registers
2174                  */
2175                 return 0;
2176         }
2177 
2178         /*
2179          * at least one of the breakpoints were hit, check to see
2180          * which ones and if any of them are user space addresses
2181          */
2182 
2183         if (bp & 0x01) {
2184                 addr[nbp++] = (caddr_t)rdr0();
2185         }
2186         if (bp & 0x02) {
2187                 addr[nbp++] = (caddr_t)rdr1();
2188         }
2189         if (bp & 0x04) {
2190                 addr[nbp++] = (caddr_t)rdr2();
2191         }
2192         if (bp & 0x08) {
2193                 addr[nbp++] = (caddr_t)rdr3();
2194         }
2195 
2196         for (i=0; i<nbp; i++) {
2197                 if (addr[i] <
2198                     (caddr_t)VM_MAX_USER_ADDRESS) {
2199                         /*
2200                          * addr[i] is in user space
2201                          */
2202                         return nbp;
2203                 }
2204         }
2205 
2206         /*
2207          * None of the breakpoints are in user space.
2208          */
2209         return 0;
2210 }
2211 
2212 
2213 #ifndef DDB
2214 void
2215 Debugger(const char *msg)
2216 {
2217 	kprintf("Debugger(\"%s\") called.\n", msg);
2218 }
2219 #endif /* no DDB */
2220 
2221 #ifdef DDB
2222 
2223 /*
2224  * Provide inb() and outb() as functions.  They are normally only
2225  * available as macros calling inlined functions, thus cannot be
2226  * called inside DDB.
2227  *
2228  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2229  */
2230 
2231 #undef inb
2232 #undef outb
2233 
2234 /* silence compiler warnings */
2235 u_char inb(u_int);
2236 void outb(u_int, u_char);
2237 
2238 u_char
2239 inb(u_int port)
2240 {
2241 	u_char	data;
2242 	/*
2243 	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2244 	 * %edx, while gcc generates inferior code (movw instead of movl)
2245 	 * if we tell it to load (u_short) port.
2246 	 */
2247 	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2248 	return (data);
2249 }
2250 
2251 void
2252 outb(u_int port, u_char data)
2253 {
2254 	u_char	al;
2255 	/*
2256 	 * Use an unnecessary assignment to help gcc's register allocator.
2257 	 * This make a large difference for gcc-1.40 and a tiny difference
2258 	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2259 	 * best results.  gcc-2.6.0 can't handle this.
2260 	 */
2261 	al = data;
2262 	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2263 }
2264 
2265 #endif /* DDB */
2266 
2267 
2268 
2269 #include "opt_cpu.h"
2270 
2271 
2272 /*
2273  * initialize all the SMP locks
2274  */
2275 
2276 /* critical region when masking or unmasking interupts */
2277 struct spinlock_deprecated imen_spinlock;
2278 
2279 /* critical region for old style disable_intr/enable_intr */
2280 struct spinlock_deprecated mpintr_spinlock;
2281 
2282 /* critical region around INTR() routines */
2283 struct spinlock_deprecated intr_spinlock;
2284 
2285 /* lock region used by kernel profiling */
2286 struct spinlock_deprecated mcount_spinlock;
2287 
2288 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2289 struct spinlock_deprecated com_spinlock;
2290 
2291 /* lock regions around the clock hardware */
2292 struct spinlock_deprecated clock_spinlock;
2293 
2294 static void
2295 init_locks(void)
2296 {
2297 	/*
2298 	 * Get the initial mplock with a count of 1 for the BSP.
2299 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
2300 	 */
2301 	cpu_get_initial_mplock();
2302 	/* DEPRECATED */
2303 	spin_lock_init(&mcount_spinlock);
2304 	spin_lock_init(&intr_spinlock);
2305 	spin_lock_init(&mpintr_spinlock);
2306 	spin_lock_init(&imen_spinlock);
2307 	spin_lock_init(&com_spinlock);
2308 	spin_lock_init(&clock_spinlock);
2309 
2310 	/* our token pool needs to work early */
2311 	lwkt_token_pool_init();
2312 }
2313 
2314