xref: /dragonfly/sys/platform/pc64/x86_64/machdep.c (revision 52cb6762)
1 /*-
2  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3  * Copyright (c) 1992 Terrence R. Lambert.
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 2008 The DragonFly Project.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
40  * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
41  */
42 
43 //#include "use_npx.h"
44 #include "use_isa.h"
45 #include "opt_compat.h"
46 #include "opt_cpu.h"
47 #include "opt_ddb.h"
48 #include "opt_directio.h"
49 #include "opt_inet.h"
50 #include "opt_msgbuf.h"
51 #include "opt_swap.h"
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/sysproto.h>
56 #include <sys/signalvar.h>
57 #include <sys/kernel.h>
58 #include <sys/linker.h>
59 #include <sys/malloc.h>
60 #include <sys/proc.h>
61 #include <sys/priv.h>
62 #include <sys/buf.h>
63 #include <sys/reboot.h>
64 #include <sys/mbuf.h>
65 #include <sys/msgbuf.h>
66 #include <sys/sysent.h>
67 #include <sys/sysctl.h>
68 #include <sys/vmmeter.h>
69 #include <sys/bus.h>
70 #include <sys/usched.h>
71 #include <sys/reg.h>
72 #include <sys/sbuf.h>
73 #include <sys/ctype.h>
74 #include <sys/serialize.h>
75 #include <sys/systimer.h>
76 
77 #include <vm/vm.h>
78 #include <vm/vm_param.h>
79 #include <sys/lock.h>
80 #include <vm/vm_kern.h>
81 #include <vm/vm_object.h>
82 #include <vm/vm_page.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_pager.h>
85 #include <vm/vm_extern.h>
86 
87 #include <sys/thread2.h>
88 #include <sys/mplock2.h>
89 #include <sys/mutex2.h>
90 
91 #include <sys/user.h>
92 #include <sys/exec.h>
93 #include <sys/cons.h>
94 
95 #include <sys/efi.h>
96 
97 #include <ddb/ddb.h>
98 
99 #include <machine/cpu.h>
100 #include <machine/clock.h>
101 #include <machine/specialreg.h>
102 #if 0 /* JG */
103 #include <machine/bootinfo.h>
104 #endif
105 #include <machine/md_var.h>
106 #include <machine/metadata.h>
107 #include <machine/pc/bios.h>
108 #include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
109 #include <machine/globaldata.h>		/* CPU_prvspace */
110 #include <machine/smp.h>
111 #ifdef PERFMON
112 #include <machine/perfmon.h>
113 #endif
114 #include <machine/cputypes.h>
115 #include <machine/intr_machdep.h>
116 #include <machine/framebuffer.h>
117 
118 #ifdef OLD_BUS_ARCH
119 #include <bus/isa/isa_device.h>
120 #endif
121 #include <machine_base/isa/isa_intr.h>
122 #include <bus/isa/rtc.h>
123 #include <sys/random.h>
124 #include <sys/ptrace.h>
125 #include <machine/sigframe.h>
126 
127 #include <sys/machintr.h>
128 #include <machine_base/icu/icu_abi.h>
129 #include <machine_base/icu/elcr_var.h>
130 #include <machine_base/apic/lapic.h>
131 #include <machine_base/apic/ioapic.h>
132 #include <machine_base/apic/ioapic_abi.h>
133 #include <machine/mptable.h>
134 
135 #define PHYSMAP_ENTRIES		10
136 
137 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
138 
139 extern void printcpuinfo(void);	/* XXX header file */
140 extern void identify_cpu(void);
141 #if 0 /* JG */
142 extern void finishidentcpu(void);
143 #endif
144 extern void panicifcpuunsupported(void);
145 
146 static void cpu_startup(void *);
147 static void pic_finish(void *);
148 static void cpu_finish(void *);
149 
150 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
151 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
152 #ifdef DIRECTIO
153 extern void ffs_rawread_setup(void);
154 #endif /* DIRECTIO */
155 static void init_locks(void);
156 
157 extern void pcpu_timer_always(struct intrframe *);
158 
159 SYSINIT(cpu, SI_BOOT2_START_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
160 SYSINIT(pic_finish, SI_BOOT2_FINISH_PIC, SI_ORDER_FIRST, pic_finish, NULL);
161 SYSINIT(cpu_finish, SI_BOOT2_FINISH_CPU, SI_ORDER_FIRST, cpu_finish, NULL);
162 
163 #ifdef DDB
164 extern vm_offset_t ksym_start, ksym_end;
165 #endif
166 
167 struct privatespace CPU_prvspace_bsp __aligned(4096);
168 struct privatespace *CPU_prvspace[MAXCPU] = { &CPU_prvspace_bsp };
169 
170 int	_udatasel, _ucodesel, _ucode32sel;
171 u_long	atdevbase;
172 int64_t tsc_offsets[MAXCPU];
173 cpumask_t smp_idleinvl_mask;
174 cpumask_t smp_idleinvl_reqs;
175 
176 static int cpu_mwait_halt_global; /* MWAIT hint (EAX) or CPU_MWAIT_HINT_ */
177 
178 #if defined(SWTCH_OPTIM_STATS)
179 extern int swtch_optim_stats;
180 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
181 	CTLFLAG_RD, &swtch_optim_stats, 0, "");
182 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
183 	CTLFLAG_RD, &tlb_flush_count, 0, "");
184 #endif
185 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_halt,
186 	CTLFLAG_RD, &cpu_mwait_halt_global, 0, "");
187 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_spin, CTLFLAG_RD, &cpu_mwait_spin, 0,
188     "monitor/mwait target state");
189 
190 #define CPU_MWAIT_HAS_CX	\
191 	((cpu_feature2 & CPUID2_MON) && \
192 	 (cpu_mwait_feature & CPUID_MWAIT_EXT))
193 
194 #define CPU_MWAIT_CX_NAMELEN	16
195 
196 #define CPU_MWAIT_C1		1
197 #define CPU_MWAIT_C2		2
198 #define CPU_MWAIT_C3		3
199 #define CPU_MWAIT_CX_MAX	8
200 
201 #define CPU_MWAIT_HINT_AUTO	-1	/* C1 and C2 */
202 #define CPU_MWAIT_HINT_AUTODEEP	-2	/* C3+ */
203 
204 SYSCTL_NODE(_machdep, OID_AUTO, mwait, CTLFLAG_RW, 0, "MWAIT features");
205 SYSCTL_NODE(_machdep_mwait, OID_AUTO, CX, CTLFLAG_RW, 0, "MWAIT Cx settings");
206 
207 struct cpu_mwait_cx {
208 	int			subcnt;
209 	char			name[4];
210 	struct sysctl_ctx_list	sysctl_ctx;
211 	struct sysctl_oid	*sysctl_tree;
212 };
213 static struct cpu_mwait_cx	cpu_mwait_cx_info[CPU_MWAIT_CX_MAX];
214 static char			cpu_mwait_cx_supported[256];
215 
216 static int			cpu_mwait_c1_hints_cnt;
217 static int			cpu_mwait_hints_cnt;
218 static int			*cpu_mwait_hints;
219 
220 static int			cpu_mwait_deep_hints_cnt;
221 static int			*cpu_mwait_deep_hints;
222 
223 #define CPU_IDLE_REPEAT_DEFAULT	750
224 
225 static u_int			cpu_idle_repeat = CPU_IDLE_REPEAT_DEFAULT;
226 static u_long			cpu_idle_repeat_max = CPU_IDLE_REPEAT_DEFAULT;
227 static u_int			cpu_mwait_repeat_shift = 1;
228 
229 #define CPU_MWAIT_C3_PREAMBLE_BM_ARB	0x1
230 #define CPU_MWAIT_C3_PREAMBLE_BM_STS	0x2
231 
232 static int			cpu_mwait_c3_preamble =
233 				    CPU_MWAIT_C3_PREAMBLE_BM_ARB |
234 				    CPU_MWAIT_C3_PREAMBLE_BM_STS;
235 
236 SYSCTL_STRING(_machdep_mwait_CX, OID_AUTO, supported, CTLFLAG_RD,
237     cpu_mwait_cx_supported, 0, "MWAIT supported C states");
238 SYSCTL_INT(_machdep_mwait_CX, OID_AUTO, c3_preamble, CTLFLAG_RD,
239     &cpu_mwait_c3_preamble, 0, "C3+ preamble mask");
240 
241 static int	cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS,
242 		    int *, boolean_t);
243 static int	cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS);
244 static int	cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS);
245 static int	cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS);
246 
247 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, idle, CTLTYPE_STRING|CTLFLAG_RW,
248     NULL, 0, cpu_mwait_cx_idle_sysctl, "A", "");
249 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, spin, CTLTYPE_STRING|CTLFLAG_RW,
250     NULL, 0, cpu_mwait_cx_spin_sysctl, "A", "");
251 SYSCTL_UINT(_machdep_mwait_CX, OID_AUTO, repeat_shift, CTLFLAG_RW,
252     &cpu_mwait_repeat_shift, 0, "");
253 
254 long physmem = 0;
255 
256 u_long ebda_addr = 0;
257 
258 int imcr_present = 0;
259 
260 int naps = 0; /* # of Applications processors */
261 
262 u_int base_memory;
263 struct mtx dt_lock;		/* lock for GDT and LDT */
264 
265 static int
266 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
267 {
268 	u_long pmem = ctob(physmem);
269 
270 	int error = sysctl_handle_long(oidp, &pmem, 0, req);
271 	return (error);
272 }
273 
274 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
275 	0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
276 
277 static int
278 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
279 {
280 	int error = sysctl_handle_int(oidp, 0,
281 		ctob(physmem - vmstats.v_wire_count), req);
282 	return (error);
283 }
284 
285 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
286 	0, 0, sysctl_hw_usermem, "IU", "");
287 
288 static int
289 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
290 {
291 	int error = sysctl_handle_int(oidp, 0,
292 		x86_64_btop(avail_end - avail_start), req);
293 	return (error);
294 }
295 
296 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
297 	0, 0, sysctl_hw_availpages, "I", "");
298 
299 vm_paddr_t Maxmem;
300 vm_paddr_t Realmem;
301 
302 /*
303  * The number of PHYSMAP entries must be one less than the number of
304  * PHYSSEG entries because the PHYSMAP entry that spans the largest
305  * physical address that is accessible by ISA DMA is split into two
306  * PHYSSEG entries.
307  */
308 #define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
309 
310 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
311 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
312 
313 /* must be 2 less so 0 0 can signal end of chunks */
314 #define PHYS_AVAIL_ARRAY_END (NELEM(phys_avail) - 2)
315 #define DUMP_AVAIL_ARRAY_END (NELEM(dump_avail) - 2)
316 
317 static vm_offset_t buffer_sva, buffer_eva;
318 vm_offset_t clean_sva, clean_eva;
319 static vm_offset_t pager_sva, pager_eva;
320 static struct trapframe proc0_tf;
321 
322 static void
323 cpu_startup(void *dummy)
324 {
325 	caddr_t v;
326 	vm_size_t size = 0;
327 	vm_offset_t firstaddr;
328 
329 	/*
330 	 * Good {morning,afternoon,evening,night}.
331 	 */
332 	kprintf("%s", version);
333 	startrtclock();
334 	printcpuinfo();
335 	panicifcpuunsupported();
336 #ifdef PERFMON
337 	perfmon_init();
338 #endif
339 	kprintf("real memory  = %ju (%ju MB)\n",
340 		(intmax_t)Realmem,
341 		(intmax_t)Realmem / 1024 / 1024);
342 	/*
343 	 * Display any holes after the first chunk of extended memory.
344 	 */
345 	if (bootverbose) {
346 		int indx;
347 
348 		kprintf("Physical memory chunk(s):\n");
349 		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
350 			vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
351 
352 			kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
353 				(intmax_t)phys_avail[indx],
354 				(intmax_t)phys_avail[indx + 1] - 1,
355 				(intmax_t)size1,
356 				(intmax_t)(size1 / PAGE_SIZE));
357 		}
358 	}
359 
360 	/*
361 	 * Allocate space for system data structures.
362 	 * The first available kernel virtual address is in "v".
363 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
364 	 * As pages of memory are allocated and cleared,
365 	 * "firstaddr" is incremented.
366 	 * An index into the kernel page table corresponding to the
367 	 * virtual memory address maintained in "v" is kept in "mapaddr".
368 	 */
369 
370 	/*
371 	 * Make two passes.  The first pass calculates how much memory is
372 	 * needed and allocates it.  The second pass assigns virtual
373 	 * addresses to the various data structures.
374 	 */
375 	firstaddr = 0;
376 again:
377 	v = (caddr_t)firstaddr;
378 
379 #define	valloc(name, type, num) \
380 	    (name) = (type *)v; v = (caddr_t)((name)+(num))
381 #define	valloclim(name, type, num, lim) \
382 	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
383 
384 	/*
385 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
386 	 * For the first 64MB of ram nominally allocate sufficient buffers to
387 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
388 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
389 	 * the buffer cache we limit the eventual kva reservation to
390 	 * maxbcache bytes.
391 	 *
392 	 * factor represents the 1/4 x ram conversion.
393 	 */
394 	if (nbuf == 0) {
395 		long factor = 4 * BKVASIZE / 1024;
396 		long kbytes = physmem * (PAGE_SIZE / 1024);
397 
398 		nbuf = 50;
399 		if (kbytes > 4096)
400 			nbuf += min((kbytes - 4096) / factor, 65536 / factor);
401 		if (kbytes > 65536)
402 			nbuf += (kbytes - 65536) * 2 / (factor * 5);
403 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
404 			nbuf = maxbcache / BKVASIZE;
405 	}
406 
407 	/*
408 	 * Do not allow the buffer_map to be more then 1/2 the size of the
409 	 * kernel_map.
410 	 */
411 	if (nbuf > (virtual_end - virtual_start +
412 		    virtual2_end - virtual2_start) / (BKVASIZE * 2)) {
413 		nbuf = (virtual_end - virtual_start +
414 			virtual2_end - virtual2_start) / (BKVASIZE * 2);
415 		kprintf("Warning: nbufs capped at %ld due to kvm\n", nbuf);
416 	}
417 
418 	/*
419 	 * Do not allow the buffer_map to use more than 50% of available
420 	 * physical-equivalent memory.  Since the VM pages which back
421 	 * individual buffers are typically wired, having too many bufs
422 	 * can prevent the system from paging properly.
423 	 */
424 	if (nbuf > physmem * PAGE_SIZE / (BKVASIZE * 2)) {
425 		nbuf = physmem * PAGE_SIZE / (BKVASIZE * 2);
426 		kprintf("Warning: nbufs capped at %ld due to physmem\n", nbuf);
427 	}
428 
429 	/*
430 	 * Do not allow the sizeof(struct buf) * nbuf to exceed half of
431 	 * the valloc space which is just the virtual_end - virtual_start
432 	 * section.  We use valloc() to allocate the buf header array.
433 	 */
434 	if (nbuf > (virtual_end - virtual_start) / sizeof(struct buf) / 2) {
435 		nbuf = (virtual_end - virtual_start) /
436 		       sizeof(struct buf) / 2;
437 		kprintf("Warning: nbufs capped at %ld due to valloc "
438 			"considerations", nbuf);
439 	}
440 
441 	nswbuf_mem = lmax(lmin(nbuf / 32, 512), 8);
442 #ifdef NSWBUF_MIN
443 	if (nswbuf_mem < NSWBUF_MIN)
444 		nswbuf_mem = NSWBUF_MIN;
445 #endif
446 	nswbuf_kva = lmax(lmin(nbuf / 4, 512), 16);
447 #ifdef NSWBUF_MIN
448 	if (nswbuf_kva < NSWBUF_MIN)
449 		nswbuf_kva = NSWBUF_MIN;
450 #endif
451 #ifdef DIRECTIO
452 	ffs_rawread_setup();
453 #endif
454 
455 	valloc(swbuf_mem, struct buf, nswbuf_mem);
456 	valloc(swbuf_kva, struct buf, nswbuf_kva);
457 	valloc(buf, struct buf, nbuf);
458 
459 	/*
460 	 * End of first pass, size has been calculated so allocate memory
461 	 */
462 	if (firstaddr == 0) {
463 		size = (vm_size_t)(v - firstaddr);
464 		firstaddr = kmem_alloc(&kernel_map, round_page(size));
465 		if (firstaddr == 0)
466 			panic("startup: no room for tables");
467 		goto again;
468 	}
469 
470 	/*
471 	 * End of second pass, addresses have been assigned
472 	 *
473 	 * nbuf is an int, make sure we don't overflow the field.
474 	 *
475 	 * On 64-bit systems we always reserve maximal allocations for
476 	 * buffer cache buffers and there are no fragmentation issues,
477 	 * so the KVA segment does not have to be excessively oversized.
478 	 */
479 	if ((vm_size_t)(v - firstaddr) != size)
480 		panic("startup: table size inconsistency");
481 
482 	kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
483 		      ((vm_offset_t)(nbuf + 16) * BKVASIZE) +
484 		      ((nswbuf_mem + nswbuf_kva) * MAXPHYS) + pager_map_size);
485 	kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
486 		      ((vm_offset_t)(nbuf + 16) * BKVASIZE));
487 	buffer_map.system_map = 1;
488 	kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
489 		      ((vm_offset_t)(nswbuf_mem + nswbuf_kva) * MAXPHYS) +
490 		      pager_map_size);
491 	pager_map.system_map = 1;
492 	kprintf("avail memory = %ju (%ju MB)\n",
493 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages),
494 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages) /
495 		1024 / 1024);
496 }
497 
498 struct cpu_idle_stat {
499 	int	hint;
500 	int	reserved;
501 	u_long	halt;
502 	u_long	spin;
503 	u_long	repeat;
504 	u_long	repeat_last;
505 	u_long	repeat_delta;
506 	u_long	mwait_cx[CPU_MWAIT_CX_MAX];
507 } __cachealign;
508 
509 #define CPU_IDLE_STAT_HALT	-1
510 #define CPU_IDLE_STAT_SPIN	-2
511 
512 static struct cpu_idle_stat	cpu_idle_stats[MAXCPU];
513 
514 static int
515 sysctl_cpu_idle_cnt(SYSCTL_HANDLER_ARGS)
516 {
517 	int idx = arg2, cpu, error;
518 	u_long val = 0;
519 
520 	if (idx == CPU_IDLE_STAT_HALT) {
521 		for (cpu = 0; cpu < ncpus; ++cpu)
522 			val += cpu_idle_stats[cpu].halt;
523 	} else if (idx == CPU_IDLE_STAT_SPIN) {
524 		for (cpu = 0; cpu < ncpus; ++cpu)
525 			val += cpu_idle_stats[cpu].spin;
526 	} else {
527 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
528 		    ("invalid index %d", idx));
529 		for (cpu = 0; cpu < ncpus; ++cpu)
530 			val += cpu_idle_stats[cpu].mwait_cx[idx];
531 	}
532 
533 	error = sysctl_handle_quad(oidp, &val, 0, req);
534         if (error || req->newptr == NULL)
535 	        return error;
536 
537 	if (idx == CPU_IDLE_STAT_HALT) {
538 		for (cpu = 0; cpu < ncpus; ++cpu)
539 			cpu_idle_stats[cpu].halt = 0;
540 		cpu_idle_stats[0].halt = val;
541 	} else if (idx == CPU_IDLE_STAT_SPIN) {
542 		for (cpu = 0; cpu < ncpus; ++cpu)
543 			cpu_idle_stats[cpu].spin = 0;
544 		cpu_idle_stats[0].spin = val;
545 	} else {
546 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
547 		    ("invalid index %d", idx));
548 		for (cpu = 0; cpu < ncpus; ++cpu)
549 			cpu_idle_stats[cpu].mwait_cx[idx] = 0;
550 		cpu_idle_stats[0].mwait_cx[idx] = val;
551 	}
552 	return 0;
553 }
554 
555 static void
556 cpu_mwait_attach(void)
557 {
558 	struct sbuf sb;
559 	int hint_idx, i;
560 
561 	if (!CPU_MWAIT_HAS_CX)
562 		return;
563 
564 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
565 	    (CPUID_TO_FAMILY(cpu_id) > 0xf ||
566 	     (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
567 	      CPUID_TO_MODEL(cpu_id) >= 0xf))) {
568 		int bm_sts = 1;
569 
570 		/*
571 		 * Pentium dual-core, Core 2 and beyond do not need any
572 		 * additional activities to enter deep C-state, i.e. C3(+).
573 		 */
574 		cpu_mwait_cx_no_bmarb();
575 
576 		TUNABLE_INT_FETCH("machdep.cpu.mwait.bm_sts", &bm_sts);
577 		if (!bm_sts)
578 			cpu_mwait_cx_no_bmsts();
579 	}
580 
581 	sbuf_new(&sb, cpu_mwait_cx_supported,
582 	    sizeof(cpu_mwait_cx_supported), SBUF_FIXEDLEN);
583 
584 	for (i = 0; i < CPU_MWAIT_CX_MAX; ++i) {
585 		struct cpu_mwait_cx *cx = &cpu_mwait_cx_info[i];
586 		int sub;
587 
588 		ksnprintf(cx->name, sizeof(cx->name), "C%d", i);
589 
590 		sysctl_ctx_init(&cx->sysctl_ctx);
591 		cx->sysctl_tree = SYSCTL_ADD_NODE(&cx->sysctl_ctx,
592 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait), OID_AUTO,
593 		    cx->name, CTLFLAG_RW, NULL, "Cx control/info");
594 		if (cx->sysctl_tree == NULL)
595 			continue;
596 
597 		cx->subcnt = CPUID_MWAIT_CX_SUBCNT(cpu_mwait_extemu, i);
598 		SYSCTL_ADD_INT(&cx->sysctl_ctx,
599 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
600 		    "subcnt", CTLFLAG_RD, &cx->subcnt, 0,
601 		    "sub-state count");
602 		SYSCTL_ADD_PROC(&cx->sysctl_ctx,
603 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
604 		    "entered", (CTLTYPE_QUAD | CTLFLAG_RW), 0,
605 		    i, sysctl_cpu_idle_cnt, "Q", "# of times entered");
606 
607 		for (sub = 0; sub < cx->subcnt; ++sub)
608 			sbuf_printf(&sb, "C%d/%d ", i, sub);
609 	}
610 	sbuf_trim(&sb);
611 	sbuf_finish(&sb);
612 
613 	/*
614 	 * Non-deep C-states
615 	 */
616 	cpu_mwait_c1_hints_cnt = cpu_mwait_cx_info[CPU_MWAIT_C1].subcnt;
617 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i)
618 		cpu_mwait_hints_cnt += cpu_mwait_cx_info[i].subcnt;
619 	cpu_mwait_hints = kmalloc(sizeof(int) * cpu_mwait_hints_cnt,
620 	    M_DEVBUF, M_WAITOK);
621 
622 	hint_idx = 0;
623 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i) {
624 		int j, subcnt;
625 
626 		subcnt = cpu_mwait_cx_info[i].subcnt;
627 		for (j = 0; j < subcnt; ++j) {
628 			KASSERT(hint_idx < cpu_mwait_hints_cnt,
629 			    ("invalid mwait hint index %d", hint_idx));
630 			cpu_mwait_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
631 			++hint_idx;
632 		}
633 	}
634 	KASSERT(hint_idx == cpu_mwait_hints_cnt,
635 	    ("mwait hint count %d != index %d",
636 	     cpu_mwait_hints_cnt, hint_idx));
637 
638 	if (bootverbose) {
639 		kprintf("MWAIT hints (%d C1 hints):\n", cpu_mwait_c1_hints_cnt);
640 		for (i = 0; i < cpu_mwait_hints_cnt; ++i) {
641 			int hint = cpu_mwait_hints[i];
642 
643 			kprintf("  C%d/%d hint 0x%04x\n",
644 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
645 			    hint);
646 		}
647 	}
648 
649 	/*
650 	 * Deep C-states
651 	 */
652 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i)
653 		cpu_mwait_deep_hints_cnt += cpu_mwait_cx_info[i].subcnt;
654 	cpu_mwait_deep_hints = kmalloc(sizeof(int) * cpu_mwait_deep_hints_cnt,
655 	    M_DEVBUF, M_WAITOK);
656 
657 	hint_idx = 0;
658 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i) {
659 		int j, subcnt;
660 
661 		subcnt = cpu_mwait_cx_info[i].subcnt;
662 		for (j = 0; j < subcnt; ++j) {
663 			KASSERT(hint_idx < cpu_mwait_deep_hints_cnt,
664 			    ("invalid mwait deep hint index %d", hint_idx));
665 			cpu_mwait_deep_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
666 			++hint_idx;
667 		}
668 	}
669 	KASSERT(hint_idx == cpu_mwait_deep_hints_cnt,
670 	    ("mwait deep hint count %d != index %d",
671 	     cpu_mwait_deep_hints_cnt, hint_idx));
672 
673 	if (bootverbose) {
674 		kprintf("MWAIT deep hints:\n");
675 		for (i = 0; i < cpu_mwait_deep_hints_cnt; ++i) {
676 			int hint = cpu_mwait_deep_hints[i];
677 
678 			kprintf("  C%d/%d hint 0x%04x\n",
679 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
680 			    hint);
681 		}
682 	}
683 	cpu_idle_repeat_max = 256 * cpu_mwait_deep_hints_cnt;
684 
685 	for (i = 0; i < ncpus; ++i) {
686 		char name[16];
687 
688 		ksnprintf(name, sizeof(name), "idle%d", i);
689 		SYSCTL_ADD_PROC(NULL,
690 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait_CX), OID_AUTO,
691 		    name, (CTLTYPE_STRING | CTLFLAG_RW), &cpu_idle_stats[i],
692 		    0, cpu_mwait_cx_pcpu_idle_sysctl, "A", "");
693 	}
694 }
695 
696 static void
697 cpu_finish(void *dummy __unused)
698 {
699 	cpu_setregs();
700 	cpu_mwait_attach();
701 }
702 
703 static void
704 pic_finish(void *dummy __unused)
705 {
706 	/* Log ELCR information */
707 	elcr_dump();
708 
709 	/* Log MPTABLE information */
710 	mptable_pci_int_dump();
711 
712 	/* Finalize PCI */
713 	MachIntrABI.finalize();
714 }
715 
716 /*
717  * Send an interrupt to process.
718  *
719  * Stack is set up to allow sigcode stored
720  * at top to call routine, followed by kcall
721  * to sigreturn routine below.  After sigreturn
722  * resets the signal mask, the stack, and the
723  * frame pointer, it returns to the user
724  * specified pc, psl.
725  */
726 void
727 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
728 {
729 	struct lwp *lp = curthread->td_lwp;
730 	struct proc *p = lp->lwp_proc;
731 	struct trapframe *regs;
732 	struct sigacts *psp = p->p_sigacts;
733 	struct sigframe sf, *sfp;
734 	int oonstack;
735 	char *sp;
736 
737 	regs = lp->lwp_md.md_regs;
738 	oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
739 
740 	/* Save user context */
741 	bzero(&sf, sizeof(struct sigframe));
742 	sf.sf_uc.uc_sigmask = *mask;
743 	sf.sf_uc.uc_stack = lp->lwp_sigstk;
744 	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
745 	KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
746 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
747 
748 	/* Make the size of the saved context visible to userland */
749 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
750 
751 	/* Allocate and validate space for the signal handler context. */
752         if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
753 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
754 		sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
755 			      sizeof(struct sigframe));
756 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
757 	} else {
758 		/* We take red zone into account */
759 		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
760 	}
761 
762 	/*
763 	 * XXX AVX needs 64-byte alignment but sigframe has other fields and
764 	 * the embedded ucontext is not at the front, so aligning this won't
765 	 * help us.  Fortunately we bcopy in/out of the sigframe, so the
766 	 * kernel is ok.
767 	 *
768 	 * The problem though is if userland winds up trying to use the
769 	 * context directly.
770 	 */
771 	sfp = (struct sigframe *)((intptr_t)sp & ~(intptr_t)0xF);
772 
773 	/* Translate the signal is appropriate */
774 	if (p->p_sysent->sv_sigtbl) {
775 		if (sig <= p->p_sysent->sv_sigsize)
776 			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
777 	}
778 
779 	/*
780 	 * Build the argument list for the signal handler.
781 	 *
782 	 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
783 	 */
784 	regs->tf_rdi = sig;				/* argument 1 */
785 	regs->tf_rdx = (register_t)&sfp->sf_uc;		/* argument 3 */
786 
787 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
788 		/*
789 		 * Signal handler installed with SA_SIGINFO.
790 		 *
791 		 * action(signo, siginfo, ucontext)
792 		 */
793 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* argument 2 */
794 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
795 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
796 
797 		/* fill siginfo structure */
798 		sf.sf_si.si_signo = sig;
799 		sf.sf_si.si_code = code;
800 		sf.sf_si.si_addr = (void *)regs->tf_addr;
801 	} else {
802 		/*
803 		 * Old FreeBSD-style arguments.
804 		 *
805 		 * handler (signo, code, [uc], addr)
806 		 */
807 		regs->tf_rsi = (register_t)code;	/* argument 2 */
808 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
809 		sf.sf_ahu.sf_handler = catcher;
810 	}
811 
812 	/*
813 	 * If we're a vm86 process, we want to save the segment registers.
814 	 * We also change eflags to be our emulated eflags, not the actual
815 	 * eflags.
816 	 */
817 #if 0 /* JG */
818 	if (regs->tf_eflags & PSL_VM) {
819 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
820 		struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
821 
822 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
823 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
824 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
825 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
826 
827 		if (vm86->vm86_has_vme == 0)
828 			sf.sf_uc.uc_mcontext.mc_eflags =
829 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
830 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
831 
832 		/*
833 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
834 		 * syscalls made by the signal handler.  This just avoids
835 		 * wasting time for our lazy fixup of such faults.  PSL_NT
836 		 * does nothing in vm86 mode, but vm86 programs can set it
837 		 * almost legitimately in probes for old cpu types.
838 		 */
839 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
840 	}
841 #endif
842 
843 	/*
844 	 * Save the FPU state and reinit the FP unit
845 	 */
846 	npxpush(&sf.sf_uc.uc_mcontext);
847 
848 	/*
849 	 * Copy the sigframe out to the user's stack.
850 	 */
851 	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
852 		/*
853 		 * Something is wrong with the stack pointer.
854 		 * ...Kill the process.
855 		 */
856 		sigexit(lp, SIGILL);
857 	}
858 
859 	regs->tf_rsp = (register_t)sfp;
860 	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
861 
862 	/*
863 	 * i386 abi specifies that the direction flag must be cleared
864 	 * on function entry
865 	 */
866 	regs->tf_rflags &= ~(PSL_T|PSL_D);
867 
868 	/*
869 	 * 64 bit mode has a code and stack selector but
870 	 * no data or extra selector.  %fs and %gs are not
871 	 * stored in-context.
872 	 */
873 	regs->tf_cs = _ucodesel;
874 	regs->tf_ss = _udatasel;
875 	clear_quickret();
876 }
877 
878 /*
879  * Sanitize the trapframe for a virtual kernel passing control to a custom
880  * VM context.  Remove any items that would otherwise create a privilage
881  * issue.
882  *
883  * XXX at the moment we allow userland to set the resume flag.  Is this a
884  * bad idea?
885  */
886 int
887 cpu_sanitize_frame(struct trapframe *frame)
888 {
889 	frame->tf_cs = _ucodesel;
890 	frame->tf_ss = _udatasel;
891 	/* XXX VM (8086) mode not supported? */
892 	frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
893 	frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
894 
895 	return(0);
896 }
897 
898 /*
899  * Sanitize the tls so loading the descriptor does not blow up
900  * on us.  For x86_64 we don't have to do anything.
901  */
902 int
903 cpu_sanitize_tls(struct savetls *tls)
904 {
905 	return(0);
906 }
907 
908 /*
909  * sigreturn(ucontext_t *sigcntxp)
910  *
911  * System call to cleanup state after a signal
912  * has been taken.  Reset signal mask and
913  * stack state from context left by sendsig (above).
914  * Return to previous pc and psl as specified by
915  * context left by sendsig. Check carefully to
916  * make sure that the user has not modified the
917  * state to gain improper privileges.
918  *
919  * MPSAFE
920  */
921 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
922 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
923 
924 int
925 sys_sigreturn(struct sigreturn_args *uap)
926 {
927 	struct lwp *lp = curthread->td_lwp;
928 	struct trapframe *regs;
929 	ucontext_t uc;
930 	ucontext_t *ucp;
931 	register_t rflags;
932 	int cs;
933 	int error;
934 
935 	/*
936 	 * We have to copy the information into kernel space so userland
937 	 * can't modify it while we are sniffing it.
938 	 */
939 	regs = lp->lwp_md.md_regs;
940 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
941 	if (error)
942 		return (error);
943 	ucp = &uc;
944 	rflags = ucp->uc_mcontext.mc_rflags;
945 
946 	/* VM (8086) mode not supported */
947 	rflags &= ~PSL_VM_UNSUPP;
948 
949 #if 0 /* JG */
950 	if (eflags & PSL_VM) {
951 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
952 		struct vm86_kernel *vm86;
953 
954 		/*
955 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
956 		 * set up the vm86 area, and we can't enter vm86 mode.
957 		 */
958 		if (lp->lwp_thread->td_pcb->pcb_ext == 0)
959 			return (EINVAL);
960 		vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
961 		if (vm86->vm86_inited == 0)
962 			return (EINVAL);
963 
964 		/* go back to user mode if both flags are set */
965 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
966 			trapsignal(lp, SIGBUS, 0);
967 
968 		if (vm86->vm86_has_vme) {
969 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
970 			    (eflags & VME_USERCHANGE) | PSL_VM;
971 		} else {
972 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
973 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
974 			    (eflags & VM_USERCHANGE) | PSL_VM;
975 		}
976 		bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
977 		tf->tf_eflags = eflags;
978 		tf->tf_vm86_ds = tf->tf_ds;
979 		tf->tf_vm86_es = tf->tf_es;
980 		tf->tf_vm86_fs = tf->tf_fs;
981 		tf->tf_vm86_gs = tf->tf_gs;
982 		tf->tf_ds = _udatasel;
983 		tf->tf_es = _udatasel;
984 		tf->tf_fs = _udatasel;
985 		tf->tf_gs = _udatasel;
986 	} else
987 #endif
988 	{
989 		/*
990 		 * Don't allow users to change privileged or reserved flags.
991 		 */
992 		/*
993 		 * XXX do allow users to change the privileged flag PSL_RF.
994 		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
995 		 * should sometimes set it there too.  tf_eflags is kept in
996 		 * the signal context during signal handling and there is no
997 		 * other place to remember it, so the PSL_RF bit may be
998 		 * corrupted by the signal handler without us knowing.
999 		 * Corruption of the PSL_RF bit at worst causes one more or
1000 		 * one less debugger trap, so allowing it is fairly harmless.
1001 		 */
1002 		if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
1003 			kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
1004 	    		return(EINVAL);
1005 		}
1006 
1007 		/*
1008 		 * Don't allow users to load a valid privileged %cs.  Let the
1009 		 * hardware check for invalid selectors, excess privilege in
1010 		 * other selectors, invalid %eip's and invalid %esp's.
1011 		 */
1012 		cs = ucp->uc_mcontext.mc_cs;
1013 		if (!CS_SECURE(cs)) {
1014 			kprintf("sigreturn: cs = 0x%x\n", cs);
1015 			trapsignal(lp, SIGBUS, T_PROTFLT);
1016 			return(EINVAL);
1017 		}
1018 		bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
1019 	}
1020 
1021 	/*
1022 	 * Restore the FPU state from the frame
1023 	 */
1024 	crit_enter();
1025 	npxpop(&ucp->uc_mcontext);
1026 
1027 	if (ucp->uc_mcontext.mc_onstack & 1)
1028 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
1029 	else
1030 		lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
1031 
1032 	lp->lwp_sigmask = ucp->uc_sigmask;
1033 	SIG_CANTMASK(lp->lwp_sigmask);
1034 	clear_quickret();
1035 	crit_exit();
1036 	return(EJUSTRETURN);
1037 }
1038 
1039 /*
1040  * Machine dependent boot() routine
1041  *
1042  * I haven't seen anything to put here yet
1043  * Possibly some stuff might be grafted back here from boot()
1044  */
1045 void
1046 cpu_boot(int howto)
1047 {
1048 }
1049 
1050 /*
1051  * Shutdown the CPU as much as possible
1052  */
1053 void
1054 cpu_halt(void)
1055 {
1056 	for (;;)
1057 		__asm__ __volatile("hlt");
1058 }
1059 
1060 /*
1061  * cpu_idle() represents the idle LWKT.  You cannot return from this function
1062  * (unless you want to blow things up!).  Instead we look for runnable threads
1063  * and loop or halt as appropriate.  Giant is not held on entry to the thread.
1064  *
1065  * The main loop is entered with a critical section held, we must release
1066  * the critical section before doing anything else.  lwkt_switch() will
1067  * check for pending interrupts due to entering and exiting its own
1068  * critical section.
1069  *
1070  * NOTE: On an SMP system we rely on a scheduler IPI to wake a HLTed cpu up.
1071  *	 However, there are cases where the idlethread will be entered with
1072  *	 the possibility that no IPI will occur and in such cases
1073  *	 lwkt_switch() sets TDF_IDLE_NOHLT.
1074  *
1075  * NOTE: cpu_idle_repeat determines how many entries into the idle thread
1076  *	 must occur before it starts using ACPI halt.
1077  *
1078  * NOTE: Value overridden in hammer_time().
1079  */
1080 static int	cpu_idle_hlt = 2;
1081 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
1082     &cpu_idle_hlt, 0, "Idle loop HLT enable");
1083 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_repeat, CTLFLAG_RW,
1084     &cpu_idle_repeat, 0, "Idle entries before acpi hlt");
1085 
1086 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_hltcnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1087     0, CPU_IDLE_STAT_HALT, sysctl_cpu_idle_cnt, "Q", "Idle loop entry halts");
1088 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_spincnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1089     0, CPU_IDLE_STAT_SPIN, sysctl_cpu_idle_cnt, "Q", "Idle loop entry spins");
1090 
1091 static void
1092 cpu_idle_default_hook(void)
1093 {
1094 	/*
1095 	 * We must guarentee that hlt is exactly the instruction
1096 	 * following the sti.
1097 	 */
1098 	__asm __volatile("sti; hlt");
1099 }
1100 
1101 /* Other subsystems (e.g., ACPI) can hook this later. */
1102 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
1103 
1104 static __inline int
1105 cpu_mwait_cx_hint(struct cpu_idle_stat *stat)
1106 {
1107 	int hint, cx_idx;
1108 	u_int idx;
1109 
1110 	hint = stat->hint;
1111 	if (hint >= 0)
1112 		goto done;
1113 
1114 	idx = (stat->repeat + stat->repeat_last + stat->repeat_delta) >>
1115 	    cpu_mwait_repeat_shift;
1116 	if (idx >= cpu_mwait_c1_hints_cnt) {
1117 		/* Step up faster, once we walked through all C1 states */
1118 		stat->repeat_delta += 1 << (cpu_mwait_repeat_shift + 1);
1119 	}
1120 	if (hint == CPU_MWAIT_HINT_AUTODEEP) {
1121 		if (idx >= cpu_mwait_deep_hints_cnt)
1122 			idx = cpu_mwait_deep_hints_cnt - 1;
1123 		hint = cpu_mwait_deep_hints[idx];
1124 	} else {
1125 		if (idx >= cpu_mwait_hints_cnt)
1126 			idx = cpu_mwait_hints_cnt - 1;
1127 		hint = cpu_mwait_hints[idx];
1128 	}
1129 done:
1130 	cx_idx = MWAIT_EAX_TO_CX(hint);
1131 	if (cx_idx >= 0 && cx_idx < CPU_MWAIT_CX_MAX)
1132 		stat->mwait_cx[cx_idx]++;
1133 	return hint;
1134 }
1135 
1136 void
1137 cpu_idle(void)
1138 {
1139 	globaldata_t gd = mycpu;
1140 	struct cpu_idle_stat *stat = &cpu_idle_stats[gd->gd_cpuid];
1141 	struct thread *td __debugvar = gd->gd_curthread;
1142 	int reqflags;
1143 	int quick;
1144 
1145 	stat->repeat = stat->repeat_last = cpu_idle_repeat_max;
1146 
1147 	crit_exit();
1148 	KKASSERT(td->td_critcount == 0);
1149 
1150 	for (;;) {
1151 		/*
1152 		 * See if there are any LWKTs ready to go.
1153 		 */
1154 		lwkt_switch();
1155 
1156 		/*
1157 		 * When halting inside a cli we must check for reqflags
1158 		 * races, particularly [re]schedule requests.  Running
1159 		 * splz() does the job.
1160 		 *
1161 		 * cpu_idle_hlt:
1162 		 *	0	Never halt, just spin
1163 		 *
1164 		 *	1	Always use HLT (or MONITOR/MWAIT if avail).
1165 		 *
1166 		 *		Better default for modern (Haswell+) Intel
1167 		 *		cpus.
1168 		 *
1169 		 *	2	Use HLT/MONITOR/MWAIT up to a point and then
1170 		 *		use the ACPI halt (default).  This is a hybrid
1171 		 *		approach.  See machdep.cpu_idle_repeat.
1172 		 *
1173 		 *		Better default for modern AMD cpus and older
1174 		 *		Intel cpus.
1175 		 *
1176 		 *	3	Always use the ACPI halt.  This typically
1177 		 *		eats the least amount of power but the cpu
1178 		 *		will be slow waking up.  Slows down e.g.
1179 		 *		compiles and other pipe/event oriented stuff.
1180 		 *
1181 		 *	4	Always use HLT.
1182 		 *
1183 		 * NOTE: Interrupts are enabled and we are not in a critical
1184 		 *	 section.
1185 		 *
1186 		 * NOTE: Preemptions do not reset gd_idle_repeat.   Also we
1187 		 *	 don't bother capping gd_idle_repeat, it is ok if
1188 		 *	 it overflows.
1189 		 *
1190 		 * Implement optimized invltlb operations when halted
1191 		 * in idle.  By setting the bit in smp_idleinvl_mask
1192 		 * we inform other cpus that they can set _reqs to
1193 		 * request an invltlb.  Current the code to do that
1194 		 * sets the bits in _reqs anyway, but then check _mask
1195 		 * to determine if they can assume the invltlb will execute.
1196 		 *
1197 		 * A critical section is required to ensure that interrupts
1198 		 * do not fully run until after we've had a chance to execute
1199 		 * the request.
1200 		 */
1201 		if (gd->gd_idle_repeat == 0) {
1202 			stat->repeat = (stat->repeat + stat->repeat_last) >> 1;
1203 			if (stat->repeat > cpu_idle_repeat_max)
1204 				stat->repeat = cpu_idle_repeat_max;
1205 			stat->repeat_last = 0;
1206 			stat->repeat_delta = 0;
1207 		}
1208 		++stat->repeat_last;
1209 
1210 		++gd->gd_idle_repeat;
1211 		reqflags = gd->gd_reqflags;
1212 		quick = (cpu_idle_hlt == 1) ||
1213 			(cpu_idle_hlt < 3 &&
1214 			 gd->gd_idle_repeat < cpu_idle_repeat);
1215 
1216 		if (quick && (cpu_mi_feature & CPU_MI_MONITOR) &&
1217 		    (reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1218 			splz(); /* XXX */
1219 			crit_enter_gd(gd);
1220 			ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask, gd->gd_cpuid);
1221 			cpu_mmw_pause_int(&gd->gd_reqflags, reqflags,
1222 			    cpu_mwait_cx_hint(stat), 0);
1223 			stat->halt++;
1224 			ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask, gd->gd_cpuid);
1225 			if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1226 						      gd->gd_cpuid)) {
1227 				cpu_invltlb();
1228 			}
1229 			crit_exit_gd(gd);
1230 		} else if (cpu_idle_hlt) {
1231 			__asm __volatile("cli");
1232 			splz();
1233 			crit_enter_gd(gd);
1234 			ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask, gd->gd_cpuid);
1235 			if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1236 				if (quick)
1237 					cpu_idle_default_hook();
1238 				else
1239 					cpu_idle_hook();
1240 			}
1241 			__asm __volatile("sti");
1242 			stat->halt++;
1243 			ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask, gd->gd_cpuid);
1244 			if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1245 						      gd->gd_cpuid)) {
1246 				cpu_invltlb();
1247 			}
1248 			crit_exit_gd(gd);
1249 		} else {
1250 			splz();
1251 			__asm __volatile("sti");
1252 			stat->spin++;
1253 		}
1254 	}
1255 }
1256 
1257 /*
1258  * This routine is called if a spinlock has been held through the
1259  * exponential backoff period and is seriously contested.  On a real cpu
1260  * we let it spin.
1261  */
1262 void
1263 cpu_spinlock_contested(void)
1264 {
1265 	cpu_pause();
1266 }
1267 
1268 /*
1269  * Clear registers on exec
1270  */
1271 void
1272 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
1273 {
1274 	struct thread *td = curthread;
1275 	struct lwp *lp = td->td_lwp;
1276 	struct pcb *pcb = td->td_pcb;
1277 	struct trapframe *regs = lp->lwp_md.md_regs;
1278 
1279 	/* was i386_user_cleanup() in NetBSD */
1280 	user_ldt_free(pcb);
1281 
1282 	clear_quickret();
1283 	bzero((char *)regs, sizeof(struct trapframe));
1284 	regs->tf_rip = entry;
1285 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
1286 	regs->tf_rdi = stack;		/* argv */
1287 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
1288 	regs->tf_ss = _udatasel;
1289 	regs->tf_cs = _ucodesel;
1290 	regs->tf_rbx = ps_strings;
1291 
1292 	/*
1293 	 * Reset the hardware debug registers if they were in use.
1294 	 * They won't have any meaning for the newly exec'd process.
1295 	 */
1296 	if (pcb->pcb_flags & PCB_DBREGS) {
1297 		pcb->pcb_dr0 = 0;
1298 		pcb->pcb_dr1 = 0;
1299 		pcb->pcb_dr2 = 0;
1300 		pcb->pcb_dr3 = 0;
1301 		pcb->pcb_dr6 = 0;
1302 		pcb->pcb_dr7 = 0; /* JG set bit 10? */
1303 		if (pcb == td->td_pcb) {
1304 			/*
1305 			 * Clear the debug registers on the running
1306 			 * CPU, otherwise they will end up affecting
1307 			 * the next process we switch to.
1308 			 */
1309 			reset_dbregs();
1310 		}
1311 		pcb->pcb_flags &= ~PCB_DBREGS;
1312 	}
1313 
1314 	/*
1315 	 * Initialize the math emulator (if any) for the current process.
1316 	 * Actually, just clear the bit that says that the emulator has
1317 	 * been initialized.  Initialization is delayed until the process
1318 	 * traps to the emulator (if it is done at all) mainly because
1319 	 * emulators don't provide an entry point for initialization.
1320 	 */
1321 	pcb->pcb_flags &= ~FP_SOFTFP;
1322 
1323 	/*
1324 	 * NOTE: do not set CR0_TS here.  npxinit() must do it after clearing
1325 	 *	 gd_npxthread.  Otherwise a preemptive interrupt thread
1326 	 *	 may panic in npxdna().
1327 	 */
1328 	crit_enter();
1329 	load_cr0(rcr0() | CR0_MP);
1330 
1331 	/*
1332 	 * NOTE: The MSR values must be correct so we can return to
1333 	 * 	 userland.  gd_user_fs/gs must be correct so the switch
1334 	 *	 code knows what the current MSR values are.
1335 	 */
1336 	pcb->pcb_fsbase = 0;	/* Values loaded from PCB on switch */
1337 	pcb->pcb_gsbase = 0;
1338 	mdcpu->gd_user_fs = 0;	/* Cache of current MSR values */
1339 	mdcpu->gd_user_gs = 0;
1340 	wrmsr(MSR_FSBASE, 0);	/* Set MSR values for return to userland */
1341 	wrmsr(MSR_KGSBASE, 0);
1342 
1343 	/* Initialize the npx (if any) for the current process. */
1344 	npxinit();
1345 	crit_exit();
1346 
1347 	pcb->pcb_ds = _udatasel;
1348 	pcb->pcb_es = _udatasel;
1349 	pcb->pcb_fs = _udatasel;
1350 	pcb->pcb_gs = _udatasel;
1351 }
1352 
1353 void
1354 cpu_setregs(void)
1355 {
1356 	register_t cr0;
1357 
1358 	cr0 = rcr0();
1359 	cr0 |= CR0_NE;			/* Done by npxinit() */
1360 	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1361 	cr0 |= CR0_WP | CR0_AM;
1362 	load_cr0(cr0);
1363 	load_gs(_udatasel);
1364 }
1365 
1366 static int
1367 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1368 {
1369 	int error;
1370 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1371 		req);
1372 	if (!error && req->newptr)
1373 		resettodr();
1374 	return (error);
1375 }
1376 
1377 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1378 	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1379 
1380 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1381 	CTLFLAG_RW, &disable_rtc_set, 0, "");
1382 
1383 #if 0 /* JG */
1384 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1385 	CTLFLAG_RD, &bootinfo, bootinfo, "");
1386 #endif
1387 
1388 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1389 	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1390 
1391 extern u_long bootdev;		/* not a cdev_t - encoding is different */
1392 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1393 	CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1394 
1395 /*
1396  * Initialize 386 and configure to run kernel
1397  */
1398 
1399 /*
1400  * Initialize segments & interrupt table
1401  */
1402 
1403 int _default_ldt;
1404 struct user_segment_descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1405 struct gate_descriptor idt_arr[MAXCPU][NIDT];
1406 #if 0 /* JG */
1407 union descriptor ldt[NLDT];		/* local descriptor table */
1408 #endif
1409 
1410 /* table descriptors - used to load tables by cpu */
1411 struct region_descriptor r_gdt;
1412 struct region_descriptor r_idt_arr[MAXCPU];
1413 
1414 /* JG proc0paddr is a virtual address */
1415 void *proc0paddr;
1416 /* JG alignment? */
1417 char proc0paddr_buff[LWKT_THREAD_STACK];
1418 
1419 
1420 /* software prototypes -- in more palatable form */
1421 struct soft_segment_descriptor gdt_segs[] = {
1422 /* GNULL_SEL	0 Null Descriptor */
1423 {	0x0,			/* segment base address  */
1424 	0x0,			/* length */
1425 	0,			/* segment type */
1426 	0,			/* segment descriptor priority level */
1427 	0,			/* segment descriptor present */
1428 	0,			/* long */
1429 	0,			/* default 32 vs 16 bit size */
1430 	0  			/* limit granularity (byte/page units)*/ },
1431 /* GCODE_SEL	1 Code Descriptor for kernel */
1432 {	0x0,			/* segment base address  */
1433 	0xfffff,		/* length - all address space */
1434 	SDT_MEMERA,		/* segment type */
1435 	SEL_KPL,		/* segment descriptor priority level */
1436 	1,			/* segment descriptor present */
1437 	1,			/* long */
1438 	0,			/* default 32 vs 16 bit size */
1439 	1  			/* limit granularity (byte/page units)*/ },
1440 /* GDATA_SEL	2 Data Descriptor for kernel */
1441 {	0x0,			/* segment base address  */
1442 	0xfffff,		/* length - all address space */
1443 	SDT_MEMRWA,		/* segment type */
1444 	SEL_KPL,		/* segment descriptor priority level */
1445 	1,			/* segment descriptor present */
1446 	1,			/* long */
1447 	0,			/* default 32 vs 16 bit size */
1448 	1  			/* limit granularity (byte/page units)*/ },
1449 /* GUCODE32_SEL	3 32 bit Code Descriptor for user */
1450 {	0x0,			/* segment base address  */
1451 	0xfffff,		/* length - all address space */
1452 	SDT_MEMERA,		/* segment type */
1453 	SEL_UPL,		/* segment descriptor priority level */
1454 	1,			/* segment descriptor present */
1455 	0,			/* long */
1456 	1,			/* default 32 vs 16 bit size */
1457 	1  			/* limit granularity (byte/page units)*/ },
1458 /* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
1459 {	0x0,			/* segment base address  */
1460 	0xfffff,		/* length - all address space */
1461 	SDT_MEMRWA,		/* segment type */
1462 	SEL_UPL,		/* segment descriptor priority level */
1463 	1,			/* segment descriptor present */
1464 	0,			/* long */
1465 	1,			/* default 32 vs 16 bit size */
1466 	1  			/* limit granularity (byte/page units)*/ },
1467 /* GUCODE_SEL	5 64 bit Code Descriptor for user */
1468 {	0x0,			/* segment base address  */
1469 	0xfffff,		/* length - all address space */
1470 	SDT_MEMERA,		/* segment type */
1471 	SEL_UPL,		/* segment descriptor priority level */
1472 	1,			/* segment descriptor present */
1473 	1,			/* long */
1474 	0,			/* default 32 vs 16 bit size */
1475 	1  			/* limit granularity (byte/page units)*/ },
1476 /* GPROC0_SEL	6 Proc 0 Tss Descriptor */
1477 {
1478 	0x0,			/* segment base address */
1479 	sizeof(struct x86_64tss)-1,/* length - all address space */
1480 	SDT_SYSTSS,		/* segment type */
1481 	SEL_KPL,		/* segment descriptor priority level */
1482 	1,			/* segment descriptor present */
1483 	0,			/* long */
1484 	0,			/* unused - default 32 vs 16 bit size */
1485 	0  			/* limit granularity (byte/page units)*/ },
1486 /* Actually, the TSS is a system descriptor which is double size */
1487 {	0x0,			/* segment base address  */
1488 	0x0,			/* length */
1489 	0,			/* segment type */
1490 	0,			/* segment descriptor priority level */
1491 	0,			/* segment descriptor present */
1492 	0,			/* long */
1493 	0,			/* default 32 vs 16 bit size */
1494 	0  			/* limit granularity (byte/page units)*/ },
1495 /* GUGS32_SEL	8 32 bit GS Descriptor for user */
1496 {	0x0,			/* segment base address  */
1497 	0xfffff,		/* length - all address space */
1498 	SDT_MEMRWA,		/* segment type */
1499 	SEL_UPL,		/* segment descriptor priority level */
1500 	1,			/* segment descriptor present */
1501 	0,			/* long */
1502 	1,			/* default 32 vs 16 bit size */
1503 	1  			/* limit granularity (byte/page units)*/ },
1504 };
1505 
1506 void
1507 setidt_global(int idx, inthand_t *func, int typ, int dpl, int ist)
1508 {
1509 	int cpu;
1510 
1511 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
1512 		struct gate_descriptor *ip = &idt_arr[cpu][idx];
1513 
1514 		ip->gd_looffset = (uintptr_t)func;
1515 		ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1516 		ip->gd_ist = ist;
1517 		ip->gd_xx = 0;
1518 		ip->gd_type = typ;
1519 		ip->gd_dpl = dpl;
1520 		ip->gd_p = 1;
1521 		ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1522 	}
1523 }
1524 
1525 void
1526 setidt(int idx, inthand_t *func, int typ, int dpl, int ist, int cpu)
1527 {
1528 	struct gate_descriptor *ip;
1529 
1530 	KASSERT(cpu >= 0 && cpu < ncpus, ("invalid cpu %d", cpu));
1531 
1532 	ip = &idt_arr[cpu][idx];
1533 	ip->gd_looffset = (uintptr_t)func;
1534 	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1535 	ip->gd_ist = ist;
1536 	ip->gd_xx = 0;
1537 	ip->gd_type = typ;
1538 	ip->gd_dpl = dpl;
1539 	ip->gd_p = 1;
1540 	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1541 }
1542 
1543 #define	IDTVEC(name)	__CONCAT(X,name)
1544 
1545 extern inthand_t
1546 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1547 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1548 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1549 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1550 	IDTVEC(xmm), IDTVEC(dblfault),
1551 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1552 
1553 void
1554 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1555 {
1556 	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1557 	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1558 	ssd->ssd_type  = sd->sd_type;
1559 	ssd->ssd_dpl   = sd->sd_dpl;
1560 	ssd->ssd_p     = sd->sd_p;
1561 	ssd->ssd_def32 = sd->sd_def32;
1562 	ssd->ssd_gran  = sd->sd_gran;
1563 }
1564 
1565 void
1566 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1567 {
1568 
1569 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1570 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1571 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1572 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1573 	sd->sd_type  = ssd->ssd_type;
1574 	sd->sd_dpl   = ssd->ssd_dpl;
1575 	sd->sd_p     = ssd->ssd_p;
1576 	sd->sd_long  = ssd->ssd_long;
1577 	sd->sd_def32 = ssd->ssd_def32;
1578 	sd->sd_gran  = ssd->ssd_gran;
1579 }
1580 
1581 void
1582 ssdtosyssd(struct soft_segment_descriptor *ssd,
1583     struct system_segment_descriptor *sd)
1584 {
1585 
1586 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1587 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1588 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1589 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1590 	sd->sd_type  = ssd->ssd_type;
1591 	sd->sd_dpl   = ssd->ssd_dpl;
1592 	sd->sd_p     = ssd->ssd_p;
1593 	sd->sd_gran  = ssd->ssd_gran;
1594 }
1595 
1596 /*
1597  * Populate the (physmap) array with base/bound pairs describing the
1598  * available physical memory in the system, then test this memory and
1599  * build the phys_avail array describing the actually-available memory.
1600  *
1601  * If we cannot accurately determine the physical memory map, then use
1602  * value from the 0xE801 call, and failing that, the RTC.
1603  *
1604  * Total memory size may be set by the kernel environment variable
1605  * hw.physmem or the compile-time define MAXMEM.
1606  *
1607  * Memory is aligned to PHYSMAP_ALIGN which must be a multiple
1608  * of PAGE_SIZE.  This also greatly reduces the memory test time
1609  * which would otherwise be excessive on machines with > 8G of ram.
1610  *
1611  * XXX first should be vm_paddr_t.
1612  */
1613 
1614 #define PHYSMAP_ALIGN		(vm_paddr_t)(128 * 1024)
1615 #define PHYSMAP_ALIGN_MASK	(vm_paddr_t)(PHYSMAP_ALIGN - 1)
1616 	vm_paddr_t physmap[PHYSMAP_SIZE];
1617 	struct bios_smap *smapbase, *smap, *smapend;
1618 	struct efi_map_header *efihdrbase;
1619 	u_int32_t smapsize;
1620 
1621 static void
1622 add_smap_entries(int *physmap_idx)
1623 {
1624 	int i;
1625 
1626 	smapsize = *((u_int32_t *)smapbase - 1);
1627 	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1628 
1629 	for (smap = smapbase; smap < smapend; smap++) {
1630 		if (boothowto & RB_VERBOSE)
1631 			kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1632 			    smap->type, smap->base, smap->length);
1633 
1634 		if (smap->type != SMAP_TYPE_MEMORY)
1635 			continue;
1636 
1637 		if (smap->length == 0)
1638 			continue;
1639 
1640 		for (i = 0; i <= *physmap_idx; i += 2) {
1641 			if (smap->base < physmap[i + 1]) {
1642 				if (boothowto & RB_VERBOSE) {
1643 					kprintf("Overlapping or non-monotonic "
1644 						"memory region, ignoring "
1645 						"second region\n");
1646 				}
1647 				break;
1648 			}
1649 		}
1650 		if (i <= *physmap_idx)
1651 			continue;
1652 
1653 		Realmem += smap->length;
1654 
1655 		if (smap->base == physmap[*physmap_idx + 1]) {
1656 			physmap[*physmap_idx + 1] += smap->length;
1657 			continue;
1658 		}
1659 
1660 		*physmap_idx += 2;
1661 		if (*physmap_idx == PHYSMAP_SIZE) {
1662 			kprintf("Too many segments in the physical "
1663 				"address map, giving up\n");
1664 			break;
1665 		}
1666 		physmap[*physmap_idx] = smap->base;
1667 		physmap[*physmap_idx + 1] = smap->base + smap->length;
1668 	}
1669 }
1670 
1671 #define efi_next_descriptor(ptr, size) \
1672 	((struct efi_md *)(((uint8_t *) ptr) + size))
1673 
1674 static void
1675 add_efi_map_entries(int *physmap_idx)
1676 {
1677 	 struct efi_md *map, *p;
1678 	 const char *type;
1679 	 size_t efisz;
1680 	 int i, ndesc;
1681 
1682 	static const char *types[] = {
1683 		"Reserved",
1684 		"LoaderCode",
1685 		"LoaderData",
1686 		"BootServicesCode",
1687 		"BootServicesData",
1688 		"RuntimeServicesCode",
1689 		"RuntimeServicesData",
1690 		"ConventionalMemory",
1691 		"UnusableMemory",
1692 		"ACPIReclaimMemory",
1693 		"ACPIMemoryNVS",
1694 		"MemoryMappedIO",
1695 		"MemoryMappedIOPortSpace",
1696 		"PalCode"
1697 	 };
1698 
1699 	/*
1700 	 * Memory map data provided by UEFI via the GetMemoryMap
1701 	 * Boot Services API.
1702 	 */
1703 	efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
1704 	map = (struct efi_md *)((uint8_t *)efihdrbase + efisz);
1705 
1706 	if (efihdrbase->descriptor_size == 0)
1707 		return;
1708 	ndesc = efihdrbase->memory_size / efihdrbase->descriptor_size;
1709 
1710 	if (boothowto & RB_VERBOSE)
1711 		kprintf("%23s %12s %12s %8s %4s\n",
1712 		    "Type", "Physical", "Virtual", "#Pages", "Attr");
1713 
1714 	for (i = 0, p = map; i < ndesc; i++,
1715 	    p = efi_next_descriptor(p, efihdrbase->descriptor_size)) {
1716 		if (boothowto & RB_VERBOSE) {
1717 			if (p->md_type <= EFI_MD_TYPE_PALCODE)
1718 				type = types[p->md_type];
1719 			else
1720 				type = "<INVALID>";
1721 			kprintf("%23s %012lx %12p %08lx ", type, p->md_phys,
1722 			    p->md_virt, p->md_pages);
1723 			if (p->md_attr & EFI_MD_ATTR_UC)
1724 				kprintf("UC ");
1725 			if (p->md_attr & EFI_MD_ATTR_WC)
1726 				kprintf("WC ");
1727 			if (p->md_attr & EFI_MD_ATTR_WT)
1728 				kprintf("WT ");
1729 			if (p->md_attr & EFI_MD_ATTR_WB)
1730 				kprintf("WB ");
1731 			if (p->md_attr & EFI_MD_ATTR_UCE)
1732 				kprintf("UCE ");
1733 			if (p->md_attr & EFI_MD_ATTR_WP)
1734 				kprintf("WP ");
1735 			if (p->md_attr & EFI_MD_ATTR_RP)
1736 				kprintf("RP ");
1737 			if (p->md_attr & EFI_MD_ATTR_XP)
1738 				kprintf("XP ");
1739 			if (p->md_attr & EFI_MD_ATTR_RT)
1740 				kprintf("RUNTIME");
1741 			kprintf("\n");
1742 		}
1743 
1744 		switch (p->md_type) {
1745 		case EFI_MD_TYPE_CODE:
1746 		case EFI_MD_TYPE_DATA:
1747 		case EFI_MD_TYPE_BS_CODE:
1748 		case EFI_MD_TYPE_BS_DATA:
1749 		case EFI_MD_TYPE_FREE:
1750 			/*
1751 			 * We're allowed to use any entry with these types.
1752 			 */
1753 			break;
1754 		default:
1755 			continue;
1756 		}
1757 
1758 		Realmem += p->md_pages * PAGE_SIZE;
1759 
1760 		if (p->md_phys == physmap[*physmap_idx + 1]) {
1761 			physmap[*physmap_idx + 1] += p->md_pages * PAGE_SIZE;
1762 			continue;
1763 		}
1764 
1765 		*physmap_idx += 2;
1766 		if (*physmap_idx == PHYSMAP_SIZE) {
1767 			kprintf("Too many segments in the physical "
1768 				"address map, giving up\n");
1769 			break;
1770 		}
1771 		physmap[*physmap_idx] = p->md_phys;
1772 		physmap[*physmap_idx + 1] = p->md_phys + p->md_pages * PAGE_SIZE;
1773 	 }
1774 }
1775 
1776 struct fb_info efi_fb_info;
1777 static int have_efi_framebuffer = 0;
1778 
1779 static void
1780 efi_fb_init_vaddr(int direct_map)
1781 {
1782 	uint64_t sz;
1783 	vm_offset_t addr, v;
1784 
1785 	v = efi_fb_info.vaddr;
1786 	sz = efi_fb_info.stride * efi_fb_info.height;
1787 
1788 	if (direct_map) {
1789 		addr = PHYS_TO_DMAP(efi_fb_info.paddr);
1790 		if (addr >= DMAP_MIN_ADDRESS && addr + sz < DMAP_MAX_ADDRESS)
1791 			efi_fb_info.vaddr = addr;
1792 	} else {
1793 		efi_fb_info.vaddr = (vm_offset_t)pmap_mapdev_attr(
1794 		    efi_fb_info.paddr, sz, PAT_WRITE_COMBINING);
1795 	}
1796 
1797 	if (v == 0 && efi_fb_info.vaddr != 0)
1798 		memset((void *)efi_fb_info.vaddr, 0x77, sz);
1799 }
1800 
1801 int
1802 probe_efi_fb(int early)
1803 {
1804 	struct efi_fb	*efifb;
1805 	caddr_t		kmdp;
1806 
1807 	if (have_efi_framebuffer) {
1808 		if (!early &&
1809 		    (efi_fb_info.vaddr == 0 ||
1810 		     efi_fb_info.vaddr == PHYS_TO_DMAP(efi_fb_info.paddr)))
1811 			efi_fb_init_vaddr(0);
1812 		return 0;
1813 	}
1814 
1815 	kmdp = preload_search_by_type("elf kernel");
1816 	if (kmdp == NULL)
1817 		kmdp = preload_search_by_type("elf64 kernel");
1818 	efifb = (struct efi_fb *)preload_search_info(kmdp,
1819 	    MODINFO_METADATA | MODINFOMD_EFI_FB);
1820 	if (efifb == NULL)
1821 		return 1;
1822 
1823 	have_efi_framebuffer = 1;
1824 
1825 	efi_fb_info.is_vga_boot_display = 1;
1826 	efi_fb_info.width = efifb->fb_width;
1827 	efi_fb_info.height = efifb->fb_height;
1828 	efi_fb_info.stride = efifb->fb_stride * 4;
1829 	efi_fb_info.depth = 32;
1830 	efi_fb_info.paddr = efifb->fb_addr;
1831 	if (early) {
1832 		efi_fb_info.vaddr = 0;
1833 	} else {
1834 		efi_fb_init_vaddr(0);
1835 	}
1836 	efi_fb_info.restore = NULL;
1837 	efi_fb_info.device = NULL;
1838 
1839 	return 0;
1840 }
1841 
1842 static void
1843 efifb_startup(void *arg)
1844 {
1845 	probe_efi_fb(0);
1846 }
1847 
1848 SYSINIT(efi_fb_info, SI_BOOT1_POST, SI_ORDER_FIRST, efifb_startup, NULL);
1849 
1850 static void
1851 getmemsize(caddr_t kmdp, u_int64_t first)
1852 {
1853 	int off, physmap_idx, pa_indx, da_indx;
1854 	int i, j;
1855 	vm_paddr_t pa;
1856 	vm_paddr_t msgbuf_size;
1857 	u_long physmem_tunable;
1858 	pt_entry_t *pte;
1859 	quad_t dcons_addr, dcons_size;
1860 
1861 	bzero(physmap, sizeof(physmap));
1862 	physmap_idx = 0;
1863 
1864 	/*
1865 	 * get memory map from INT 15:E820, kindly supplied by the loader.
1866 	 *
1867 	 * subr_module.c says:
1868 	 * "Consumer may safely assume that size value precedes data."
1869 	 * ie: an int32_t immediately precedes smap.
1870 	 */
1871 	efihdrbase = (struct efi_map_header *)preload_search_info(kmdp,
1872 	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
1873 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1874 	    MODINFO_METADATA | MODINFOMD_SMAP);
1875 	if (smapbase == NULL && efihdrbase == NULL)
1876 		panic("No BIOS smap or EFI map info from loader!");
1877 
1878 	if (efihdrbase == NULL)
1879 		add_smap_entries(&physmap_idx);
1880 	else
1881 		add_efi_map_entries(&physmap_idx);
1882 
1883 	base_memory = physmap[1] / 1024;
1884 	/* make hole for AP bootstrap code */
1885 	physmap[1] = mp_bootaddress(base_memory);
1886 
1887 	/* Save EBDA address, if any */
1888 	ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
1889 	ebda_addr <<= 4;
1890 
1891 	/*
1892 	 * Maxmem isn't the "maximum memory", it's one larger than the
1893 	 * highest page of the physical address space.  It should be
1894 	 * called something like "Maxphyspage".  We may adjust this
1895 	 * based on ``hw.physmem'' and the results of the memory test.
1896 	 */
1897 	Maxmem = atop(physmap[physmap_idx + 1]);
1898 
1899 #ifdef MAXMEM
1900 	Maxmem = MAXMEM / 4;
1901 #endif
1902 
1903 	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1904 		Maxmem = atop(physmem_tunable);
1905 
1906 	/*
1907 	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1908 	 * in the system.
1909 	 */
1910 	if (Maxmem > atop(physmap[physmap_idx + 1]))
1911 		Maxmem = atop(physmap[physmap_idx + 1]);
1912 
1913 	/*
1914 	 * Blowing out the DMAP will blow up the system.
1915 	 */
1916 	if (Maxmem > atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS)) {
1917 		kprintf("Limiting Maxmem due to DMAP size\n");
1918 		Maxmem = atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS);
1919 	}
1920 
1921 	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1922 	    (boothowto & RB_VERBOSE)) {
1923 		kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
1924 	}
1925 
1926 	/*
1927 	 * Call pmap initialization to make new kernel address space
1928 	 *
1929 	 * Mask off page 0.
1930 	 */
1931 	pmap_bootstrap(&first);
1932 	physmap[0] = PAGE_SIZE;
1933 
1934 	/*
1935 	 * Align the physmap to PHYSMAP_ALIGN and cut out anything
1936 	 * exceeding Maxmem.
1937 	 */
1938 	for (i = j = 0; i <= physmap_idx; i += 2) {
1939 		if (physmap[i+1] > ptoa(Maxmem))
1940 			physmap[i+1] = ptoa(Maxmem);
1941 		physmap[i] = (physmap[i] + PHYSMAP_ALIGN_MASK) &
1942 			     ~PHYSMAP_ALIGN_MASK;
1943 		physmap[i+1] = physmap[i+1] & ~PHYSMAP_ALIGN_MASK;
1944 
1945 		physmap[j] = physmap[i];
1946 		physmap[j+1] = physmap[i+1];
1947 
1948 		if (physmap[i] < physmap[i+1])
1949 			j += 2;
1950 	}
1951 	physmap_idx = j - 2;
1952 
1953 	/*
1954 	 * Align anything else used in the validation loop.
1955 	 */
1956 	first = (first + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1957 
1958 	/*
1959 	 * Size up each available chunk of physical memory.
1960 	 */
1961 	pa_indx = 0;
1962 	da_indx = 1;
1963 	phys_avail[pa_indx++] = physmap[0];
1964 	phys_avail[pa_indx] = physmap[0];
1965 	dump_avail[da_indx] = physmap[0];
1966 	pte = CMAP1;
1967 
1968 	/*
1969 	 * Get dcons buffer address
1970 	 */
1971 	if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
1972 	    kgetenv_quad("dcons.size", &dcons_size) == 0)
1973 		dcons_addr = 0;
1974 
1975 	/*
1976 	 * Validate the physical memory.  The physical memory segments
1977 	 * have already been aligned to PHYSMAP_ALIGN which is a multiple
1978 	 * of PAGE_SIZE.
1979 	 */
1980 	for (i = 0; i <= physmap_idx; i += 2) {
1981 		vm_paddr_t end;
1982 
1983 		end = physmap[i + 1];
1984 
1985 		for (pa = physmap[i]; pa < end; pa += PHYSMAP_ALIGN) {
1986 			int tmp, page_bad, full;
1987 			int *ptr = (int *)CADDR1;
1988 
1989 			full = FALSE;
1990 			/*
1991 			 * block out kernel memory as not available.
1992 			 */
1993 			if (pa >= 0x200000 && pa < first)
1994 				goto do_dump_avail;
1995 
1996 			/*
1997 			 * block out dcons buffer
1998 			 */
1999 			if (dcons_addr > 0
2000 			    && pa >= trunc_page(dcons_addr)
2001 			    && pa < dcons_addr + dcons_size) {
2002 				goto do_dump_avail;
2003 			}
2004 
2005 			page_bad = FALSE;
2006 
2007 			/*
2008 			 * map page into kernel: valid, read/write,non-cacheable
2009 			 */
2010 			*pte = pa |
2011 			    kernel_pmap.pmap_bits[PG_V_IDX] |
2012 			    kernel_pmap.pmap_bits[PG_RW_IDX] |
2013 			    kernel_pmap.pmap_bits[PG_N_IDX];
2014 			cpu_invltlb();
2015 
2016 			tmp = *ptr;
2017 			/*
2018 			 * Test for alternating 1's and 0's
2019 			 */
2020 			*(volatile int *)ptr = 0xaaaaaaaa;
2021 			cpu_mfence();
2022 			if (*(volatile int *)ptr != 0xaaaaaaaa)
2023 				page_bad = TRUE;
2024 			/*
2025 			 * Test for alternating 0's and 1's
2026 			 */
2027 			*(volatile int *)ptr = 0x55555555;
2028 			cpu_mfence();
2029 			if (*(volatile int *)ptr != 0x55555555)
2030 				page_bad = TRUE;
2031 			/*
2032 			 * Test for all 1's
2033 			 */
2034 			*(volatile int *)ptr = 0xffffffff;
2035 			cpu_mfence();
2036 			if (*(volatile int *)ptr != 0xffffffff)
2037 				page_bad = TRUE;
2038 			/*
2039 			 * Test for all 0's
2040 			 */
2041 			*(volatile int *)ptr = 0x0;
2042 			cpu_mfence();
2043 			if (*(volatile int *)ptr != 0x0)
2044 				page_bad = TRUE;
2045 			/*
2046 			 * Restore original value.
2047 			 */
2048 			*ptr = tmp;
2049 
2050 			/*
2051 			 * Adjust array of valid/good pages.
2052 			 */
2053 			if (page_bad == TRUE)
2054 				continue;
2055 			/*
2056 			 * If this good page is a continuation of the
2057 			 * previous set of good pages, then just increase
2058 			 * the end pointer. Otherwise start a new chunk.
2059 			 * Note that "end" points one higher than end,
2060 			 * making the range >= start and < end.
2061 			 * If we're also doing a speculative memory
2062 			 * test and we at or past the end, bump up Maxmem
2063 			 * so that we keep going. The first bad page
2064 			 * will terminate the loop.
2065 			 */
2066 			if (phys_avail[pa_indx] == pa) {
2067 				phys_avail[pa_indx] += PHYSMAP_ALIGN;
2068 			} else {
2069 				pa_indx++;
2070 				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
2071 					kprintf(
2072 		"Too many holes in the physical address space, giving up\n");
2073 					pa_indx--;
2074 					full = TRUE;
2075 					goto do_dump_avail;
2076 				}
2077 				phys_avail[pa_indx++] = pa;
2078 				phys_avail[pa_indx] = pa + PHYSMAP_ALIGN;
2079 			}
2080 			physmem += PHYSMAP_ALIGN / PAGE_SIZE;
2081 do_dump_avail:
2082 			if (dump_avail[da_indx] == pa) {
2083 				dump_avail[da_indx] += PHYSMAP_ALIGN;
2084 			} else {
2085 				da_indx++;
2086 				if (da_indx == DUMP_AVAIL_ARRAY_END) {
2087 					da_indx--;
2088 					goto do_next;
2089 				}
2090 				dump_avail[da_indx++] = pa;
2091 				dump_avail[da_indx] = pa + PHYSMAP_ALIGN;
2092 			}
2093 do_next:
2094 			if (full)
2095 				break;
2096 		}
2097 	}
2098 	*pte = 0;
2099 	cpu_invltlb();
2100 
2101 	/*
2102 	 * The last chunk must contain at least one page plus the message
2103 	 * buffer to avoid complicating other code (message buffer address
2104 	 * calculation, etc.).
2105 	 */
2106 	msgbuf_size = (MSGBUF_SIZE + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
2107 
2108 	while (phys_avail[pa_indx - 1] + PHYSMAP_ALIGN +
2109 	       msgbuf_size >= phys_avail[pa_indx]) {
2110 		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
2111 		phys_avail[pa_indx--] = 0;
2112 		phys_avail[pa_indx--] = 0;
2113 	}
2114 
2115 	Maxmem = atop(phys_avail[pa_indx]);
2116 
2117 	/* Trim off space for the message buffer. */
2118 	phys_avail[pa_indx] -= msgbuf_size;
2119 
2120 	avail_end = phys_avail[pa_indx];
2121 
2122 	/* Map the message buffer. */
2123 	for (off = 0; off < msgbuf_size; off += PAGE_SIZE) {
2124 		pmap_kenter((vm_offset_t)msgbufp + off,
2125 			    phys_avail[pa_indx] + off);
2126 	}
2127 	/* Try to get EFI framebuffer working as early as possible */
2128 	if (have_efi_framebuffer)
2129 		efi_fb_init_vaddr(1);
2130 }
2131 
2132 struct machintr_abi MachIntrABI;
2133 
2134 /*
2135  * IDT VECTORS:
2136  *	0	Divide by zero
2137  *	1	Debug
2138  *	2	NMI
2139  *	3	BreakPoint
2140  *	4	OverFlow
2141  *	5	Bound-Range
2142  *	6	Invalid OpCode
2143  *	7	Device Not Available (x87)
2144  *	8	Double-Fault
2145  *	9	Coprocessor Segment overrun (unsupported, reserved)
2146  *	10	Invalid-TSS
2147  *	11	Segment not present
2148  *	12	Stack
2149  *	13	General Protection
2150  *	14	Page Fault
2151  *	15	Reserved
2152  *	16	x87 FP Exception pending
2153  *	17	Alignment Check
2154  *	18	Machine Check
2155  *	19	SIMD floating point
2156  *	20-31	reserved
2157  *	32-255	INTn/external sources
2158  */
2159 u_int64_t
2160 hammer_time(u_int64_t modulep, u_int64_t physfree)
2161 {
2162 	caddr_t kmdp;
2163 	int gsel_tss, x, cpu;
2164 #if 0 /* JG */
2165 	int metadata_missing, off;
2166 #endif
2167 	struct mdglobaldata *gd;
2168 	u_int64_t msr;
2169 
2170 	/*
2171 	 * Prevent lowering of the ipl if we call tsleep() early.
2172 	 */
2173 	gd = &CPU_prvspace[0]->mdglobaldata;
2174 	bzero(gd, sizeof(*gd));
2175 
2176 	/*
2177 	 * Note: on both UP and SMP curthread must be set non-NULL
2178 	 * early in the boot sequence because the system assumes
2179 	 * that 'curthread' is never NULL.
2180 	 */
2181 
2182 	gd->mi.gd_curthread = &thread0;
2183 	thread0.td_gd = &gd->mi;
2184 
2185 	atdevbase = ISA_HOLE_START + PTOV_OFFSET;
2186 
2187 #if 0 /* JG */
2188 	metadata_missing = 0;
2189 	if (bootinfo.bi_modulep) {
2190 		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
2191 		preload_bootstrap_relocate(KERNBASE);
2192 	} else {
2193 		metadata_missing = 1;
2194 	}
2195 	if (bootinfo.bi_envp)
2196 		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
2197 #endif
2198 
2199 	preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
2200 	preload_bootstrap_relocate(PTOV_OFFSET);
2201 	kmdp = preload_search_by_type("elf kernel");
2202 	if (kmdp == NULL)
2203 		kmdp = preload_search_by_type("elf64 kernel");
2204 	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
2205 	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
2206 #ifdef DDB
2207 	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
2208 	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
2209 #endif
2210 
2211 	if (boothowto & RB_VERBOSE)
2212 		bootverbose++;
2213 
2214 	/*
2215 	 * Default MachIntrABI to ICU
2216 	 */
2217 	MachIntrABI = MachIntrABI_ICU;
2218 
2219 	/*
2220 	 * start with one cpu.  Note: with one cpu, ncpus2_shift, ncpus2_mask,
2221 	 * and ncpus_fit_mask remain 0.
2222 	 */
2223 	ncpus = 1;
2224 	ncpus2 = 1;
2225 	ncpus_fit = 1;
2226 	/* Init basic tunables, hz etc */
2227 	init_param1();
2228 
2229 	/*
2230 	 * make gdt memory segments
2231 	 */
2232 	gdt_segs[GPROC0_SEL].ssd_base =
2233 		(uintptr_t) &CPU_prvspace[0]->mdglobaldata.gd_common_tss;
2234 
2235 	gd->mi.gd_prvspace = CPU_prvspace[0];
2236 
2237 	for (x = 0; x < NGDT; x++) {
2238 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
2239 			ssdtosd(&gdt_segs[x], &gdt[x]);
2240 	}
2241 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2242 	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
2243 
2244 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
2245 	r_gdt.rd_base =  (long) gdt;
2246 	lgdt(&r_gdt);
2247 
2248 	wrmsr(MSR_FSBASE, 0);		/* User value */
2249 	wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
2250 	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
2251 
2252 	mi_gdinit(&gd->mi, 0);
2253 	cpu_gdinit(gd, 0);
2254 	proc0paddr = proc0paddr_buff;
2255 	mi_proc0init(&gd->mi, proc0paddr);
2256 	safepri = TDPRI_MAX;
2257 
2258 	/* spinlocks and the BGL */
2259 	init_locks();
2260 
2261 	/* exceptions */
2262 	for (x = 0; x < NIDT; x++)
2263 		setidt_global(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
2264 	setidt_global(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
2265 	setidt_global(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
2266 	setidt_global(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 1);
2267  	setidt_global(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
2268 	setidt_global(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
2269 	setidt_global(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
2270 	setidt_global(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
2271 	setidt_global(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
2272 	setidt_global(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
2273 	setidt_global(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
2274 	setidt_global(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
2275 	setidt_global(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
2276 	setidt_global(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
2277 	setidt_global(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
2278 	setidt_global(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
2279 	setidt_global(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
2280 	setidt_global(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
2281 	setidt_global(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
2282 	setidt_global(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
2283 
2284 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
2285 		r_idt_arr[cpu].rd_limit = sizeof(idt_arr[cpu]) - 1;
2286 		r_idt_arr[cpu].rd_base = (long) &idt_arr[cpu][0];
2287 	}
2288 
2289 	lidt(&r_idt_arr[0]);
2290 
2291 	/*
2292 	 * Initialize the console before we print anything out.
2293 	 */
2294 	cninit();
2295 
2296 #if 0 /* JG */
2297 	if (metadata_missing)
2298 		kprintf("WARNING: loader(8) metadata is missing!\n");
2299 #endif
2300 
2301 #if	NISA >0
2302 	elcr_probe();
2303 	isa_defaultirq();
2304 #endif
2305 	rand_initialize();
2306 
2307 	/*
2308 	 * Initialize IRQ mapping
2309 	 *
2310 	 * NOTE:
2311 	 * SHOULD be after elcr_probe()
2312 	 */
2313 	MachIntrABI_ICU.initmap();
2314 	MachIntrABI_IOAPIC.initmap();
2315 
2316 #ifdef DDB
2317 	kdb_init();
2318 	if (boothowto & RB_KDB)
2319 		Debugger("Boot flags requested debugger");
2320 #endif
2321 
2322 #if 0 /* JG */
2323 	finishidentcpu();	/* Final stage of CPU initialization */
2324 	setidt(6, &IDTVEC(ill),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2325 	setidt(13, &IDTVEC(prot),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2326 #endif
2327 	identify_cpu();		/* Final stage of CPU initialization */
2328 	initializecpu(0);	/* Initialize CPU registers */
2329 
2330 	/*
2331 	 * On modern intel cpus, haswell or later, cpu_idle_hlt=1 is better
2332 	 * because the cpu does significant power management in MWAIT
2333 	 * (also suggested is to set sysctl machdep.mwait.CX.idle=AUTODEEP).
2334 	 *
2335 	 * On modern amd cpus cpu_idle_hlt=3 is better, because the cpu does
2336 	 * significant power management in HLT or ACPI (but cpu_idle_hlt=1
2337 	 * would try to use MWAIT).
2338 	 *
2339 	 * On older amd or intel cpus, cpu_idle_hlt=2 is better because ACPI
2340 	 * is needed to reduce power consumption, but wakeup times are often
2341 	 * longer.
2342 	 */
2343 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
2344 	    CPUID_TO_MODEL(cpu_id) >= 0x3C) {	/* Haswell or later */
2345 		cpu_idle_hlt = 1;
2346 	}
2347 	if (cpu_vendor_id == CPU_VENDOR_AMD &&
2348 	    CPUID_TO_FAMILY(cpu_id) >= 0x14) {	/* Bobcat or later */
2349 		cpu_idle_hlt = 3;
2350 	}
2351 
2352 	TUNABLE_INT_FETCH("hw.apic_io_enable", &ioapic_enable); /* for compat */
2353 	TUNABLE_INT_FETCH("hw.ioapic_enable", &ioapic_enable);
2354 	TUNABLE_INT_FETCH("hw.lapic_enable", &lapic_enable);
2355 	TUNABLE_INT_FETCH("machdep.cpu_idle_hlt", &cpu_idle_hlt);
2356 
2357 	/*
2358 	 * Some of the virtual machines do not work w/ I/O APIC
2359 	 * enabled.  If the user does not explicitly enable or
2360 	 * disable the I/O APIC (ioapic_enable < 0), then we
2361 	 * disable I/O APIC on all virtual machines.
2362 	 *
2363 	 * NOTE:
2364 	 * This must be done after identify_cpu(), which sets
2365 	 * 'cpu_feature2'
2366 	 */
2367 	if (ioapic_enable < 0) {
2368 		if (cpu_feature2 & CPUID2_VMM)
2369 			ioapic_enable = 0;
2370 		else
2371 			ioapic_enable = 1;
2372 	}
2373 
2374 	/* make an initial tss so cpu can get interrupt stack on syscall! */
2375 	gd->gd_common_tss.tss_rsp0 =
2376 		(register_t)(thread0.td_kstack +
2377 			     KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb));
2378 	/* Ensure the stack is aligned to 16 bytes */
2379 	gd->gd_common_tss.tss_rsp0 &= ~(register_t)0xF;
2380 
2381 	/* double fault stack */
2382 	gd->gd_common_tss.tss_ist1 =
2383 		(long)&gd->mi.gd_prvspace->idlestack[
2384 			sizeof(gd->mi.gd_prvspace->idlestack)];
2385 
2386 	/* Set the IO permission bitmap (empty due to tss seg limit) */
2387 	gd->gd_common_tss.tss_iobase = sizeof(struct x86_64tss);
2388 
2389 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2390 	gd->gd_tss_gdt = &gdt[GPROC0_SEL];
2391 	gd->gd_common_tssd = *gd->gd_tss_gdt;
2392 	ltr(gsel_tss);
2393 
2394 	/* Set up the fast syscall stuff */
2395 	msr = rdmsr(MSR_EFER) | EFER_SCE;
2396 	wrmsr(MSR_EFER, msr);
2397 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
2398 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
2399 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
2400 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
2401 	wrmsr(MSR_STAR, msr);
2402 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
2403 
2404 	getmemsize(kmdp, physfree);
2405 	init_param2(physmem);
2406 
2407 	/* now running on new page tables, configured,and u/iom is accessible */
2408 
2409 	/* Map the message buffer. */
2410 #if 0 /* JG */
2411 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2412 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2413 #endif
2414 
2415 	msgbufinit(msgbufp, MSGBUF_SIZE);
2416 
2417 
2418 	/* transfer to user mode */
2419 
2420 	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2421 	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2422 	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
2423 
2424 	load_ds(_udatasel);
2425 	load_es(_udatasel);
2426 	load_fs(_udatasel);
2427 
2428 	/* setup proc 0's pcb */
2429 	thread0.td_pcb->pcb_flags = 0;
2430 	thread0.td_pcb->pcb_cr3 = KPML4phys;
2431 	thread0.td_pcb->pcb_ext = NULL;
2432 	lwp0.lwp_md.md_regs = &proc0_tf;	/* XXX needed? */
2433 
2434 	/* Location of kernel stack for locore */
2435 	return ((u_int64_t)thread0.td_pcb);
2436 }
2437 
2438 /*
2439  * Initialize machine-dependant portions of the global data structure.
2440  * Note that the global data area and cpu0's idlestack in the private
2441  * data space were allocated in locore.
2442  *
2443  * Note: the idlethread's cpl is 0
2444  *
2445  * WARNING!  Called from early boot, 'mycpu' may not work yet.
2446  */
2447 void
2448 cpu_gdinit(struct mdglobaldata *gd, int cpu)
2449 {
2450 	if (cpu)
2451 		gd->mi.gd_curthread = &gd->mi.gd_idlethread;
2452 
2453 	lwkt_init_thread(&gd->mi.gd_idlethread,
2454 			gd->mi.gd_prvspace->idlestack,
2455 			sizeof(gd->mi.gd_prvspace->idlestack),
2456 			0, &gd->mi);
2457 	lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
2458 	gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
2459 	gd->mi.gd_idlethread.td_sp -= sizeof(void *);
2460 	*(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
2461 }
2462 
2463 /*
2464  * We only have to check for DMAP bounds, the globaldata space is
2465  * actually part of the kernel_map so we don't have to waste time
2466  * checking CPU_prvspace[*].
2467  */
2468 int
2469 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
2470 {
2471 #if 0
2472 	if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
2473 	    eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
2474 		return (TRUE);
2475 	}
2476 #endif
2477 	if (saddr >= DMAP_MIN_ADDRESS && eaddr <= DMAP_MAX_ADDRESS)
2478 		return (TRUE);
2479 	return (FALSE);
2480 }
2481 
2482 struct globaldata *
2483 globaldata_find(int cpu)
2484 {
2485 	KKASSERT(cpu >= 0 && cpu < ncpus);
2486 	return(&CPU_prvspace[cpu]->mdglobaldata.mi);
2487 }
2488 
2489 /*
2490  * This path should be safe from the SYSRET issue because only stopped threads
2491  * can have their %rip adjusted this way (and all heavy weight thread switches
2492  * clear QUICKREF and thus do not use SYSRET).  However, the code path is
2493  * convoluted so add a safety by forcing %rip to be cannonical.
2494  */
2495 int
2496 ptrace_set_pc(struct lwp *lp, unsigned long addr)
2497 {
2498 	if (addr & 0x0000800000000000LLU)
2499 		lp->lwp_md.md_regs->tf_rip = addr | 0xFFFF000000000000LLU;
2500 	else
2501 		lp->lwp_md.md_regs->tf_rip = addr & 0x0000FFFFFFFFFFFFLLU;
2502 	return (0);
2503 }
2504 
2505 int
2506 ptrace_single_step(struct lwp *lp)
2507 {
2508 	lp->lwp_md.md_regs->tf_rflags |= PSL_T;
2509 	return (0);
2510 }
2511 
2512 int
2513 fill_regs(struct lwp *lp, struct reg *regs)
2514 {
2515 	struct trapframe *tp;
2516 
2517 	if ((tp = lp->lwp_md.md_regs) == NULL)
2518 		return EINVAL;
2519 	bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
2520 	return (0);
2521 }
2522 
2523 int
2524 set_regs(struct lwp *lp, struct reg *regs)
2525 {
2526 	struct trapframe *tp;
2527 
2528 	tp = lp->lwp_md.md_regs;
2529 	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
2530 	    !CS_SECURE(regs->r_cs))
2531 		return (EINVAL);
2532 	bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
2533 	clear_quickret();
2534 	return (0);
2535 }
2536 
2537 static void
2538 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2539 {
2540 	struct env87 *penv_87 = &sv_87->sv_env;
2541 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2542 	int i;
2543 
2544 	/* FPU control/status */
2545 	penv_87->en_cw = penv_xmm->en_cw;
2546 	penv_87->en_sw = penv_xmm->en_sw;
2547 	penv_87->en_tw = penv_xmm->en_tw;
2548 	penv_87->en_fip = penv_xmm->en_fip;
2549 	penv_87->en_fcs = penv_xmm->en_fcs;
2550 	penv_87->en_opcode = penv_xmm->en_opcode;
2551 	penv_87->en_foo = penv_xmm->en_foo;
2552 	penv_87->en_fos = penv_xmm->en_fos;
2553 
2554 	/* FPU registers */
2555 	for (i = 0; i < 8; ++i)
2556 		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2557 }
2558 
2559 static void
2560 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2561 {
2562 	struct env87 *penv_87 = &sv_87->sv_env;
2563 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2564 	int i;
2565 
2566 	/* FPU control/status */
2567 	penv_xmm->en_cw = penv_87->en_cw;
2568 	penv_xmm->en_sw = penv_87->en_sw;
2569 	penv_xmm->en_tw = penv_87->en_tw;
2570 	penv_xmm->en_fip = penv_87->en_fip;
2571 	penv_xmm->en_fcs = penv_87->en_fcs;
2572 	penv_xmm->en_opcode = penv_87->en_opcode;
2573 	penv_xmm->en_foo = penv_87->en_foo;
2574 	penv_xmm->en_fos = penv_87->en_fos;
2575 
2576 	/* FPU registers */
2577 	for (i = 0; i < 8; ++i)
2578 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2579 }
2580 
2581 int
2582 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2583 {
2584 	if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
2585 		return EINVAL;
2586 	if (cpu_fxsr) {
2587 		fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2588 				(struct save87 *)fpregs);
2589 		return (0);
2590 	}
2591 	bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2592 	return (0);
2593 }
2594 
2595 int
2596 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2597 {
2598 	if (cpu_fxsr) {
2599 		set_fpregs_xmm((struct save87 *)fpregs,
2600 			       &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2601 		return (0);
2602 	}
2603 	bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2604 	return (0);
2605 }
2606 
2607 int
2608 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2609 {
2610 	struct pcb *pcb;
2611 
2612         if (lp == NULL) {
2613                 dbregs->dr[0] = rdr0();
2614                 dbregs->dr[1] = rdr1();
2615                 dbregs->dr[2] = rdr2();
2616                 dbregs->dr[3] = rdr3();
2617                 dbregs->dr[4] = rdr4();
2618                 dbregs->dr[5] = rdr5();
2619                 dbregs->dr[6] = rdr6();
2620                 dbregs->dr[7] = rdr7();
2621 		return (0);
2622         }
2623 	if (lp->lwp_thread == NULL || (pcb = lp->lwp_thread->td_pcb) == NULL)
2624 		return EINVAL;
2625 	dbregs->dr[0] = pcb->pcb_dr0;
2626 	dbregs->dr[1] = pcb->pcb_dr1;
2627 	dbregs->dr[2] = pcb->pcb_dr2;
2628 	dbregs->dr[3] = pcb->pcb_dr3;
2629 	dbregs->dr[4] = 0;
2630 	dbregs->dr[5] = 0;
2631 	dbregs->dr[6] = pcb->pcb_dr6;
2632 	dbregs->dr[7] = pcb->pcb_dr7;
2633 	return (0);
2634 }
2635 
2636 int
2637 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2638 {
2639 	if (lp == NULL) {
2640 		load_dr0(dbregs->dr[0]);
2641 		load_dr1(dbregs->dr[1]);
2642 		load_dr2(dbregs->dr[2]);
2643 		load_dr3(dbregs->dr[3]);
2644 		load_dr4(dbregs->dr[4]);
2645 		load_dr5(dbregs->dr[5]);
2646 		load_dr6(dbregs->dr[6]);
2647 		load_dr7(dbregs->dr[7]);
2648 	} else {
2649 		struct pcb *pcb;
2650 		struct ucred *ucred;
2651 		int i;
2652 		uint64_t mask1, mask2;
2653 
2654 		/*
2655 		 * Don't let an illegal value for dr7 get set.	Specifically,
2656 		 * check for undefined settings.  Setting these bit patterns
2657 		 * result in undefined behaviour and can lead to an unexpected
2658 		 * TRCTRAP.
2659 		 */
2660 		/* JG this loop looks unreadable */
2661 		/* Check 4 2-bit fields for invalid patterns.
2662 		 * These fields are R/Wi, for i = 0..3
2663 		 */
2664 		/* Is 10 in LENi allowed when running in compatibility mode? */
2665 		/* Pattern 10 in R/Wi might be used to indicate
2666 		 * breakpoint on I/O. Further analysis should be
2667 		 * carried to decide if it is safe and useful to
2668 		 * provide access to that capability
2669 		 */
2670 		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2671 		     i++, mask1 <<= 4, mask2 <<= 4)
2672 			if ((dbregs->dr[7] & mask1) == mask2)
2673 				return (EINVAL);
2674 
2675 		pcb = lp->lwp_thread->td_pcb;
2676 		ucred = lp->lwp_proc->p_ucred;
2677 
2678 		/*
2679 		 * Don't let a process set a breakpoint that is not within the
2680 		 * process's address space.  If a process could do this, it
2681 		 * could halt the system by setting a breakpoint in the kernel
2682 		 * (if ddb was enabled).  Thus, we need to check to make sure
2683 		 * that no breakpoints are being enabled for addresses outside
2684 		 * process's address space, unless, perhaps, we were called by
2685 		 * uid 0.
2686 		 *
2687 		 * XXX - what about when the watched area of the user's
2688 		 * address space is written into from within the kernel
2689 		 * ... wouldn't that still cause a breakpoint to be generated
2690 		 * from within kernel mode?
2691 		 */
2692 
2693 		if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2694 			if (dbregs->dr[7] & 0x3) {
2695 				/* dr0 is enabled */
2696 				if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2697 					return (EINVAL);
2698 			}
2699 
2700 			if (dbregs->dr[7] & (0x3<<2)) {
2701 				/* dr1 is enabled */
2702 				if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2703 					return (EINVAL);
2704 			}
2705 
2706 			if (dbregs->dr[7] & (0x3<<4)) {
2707 				/* dr2 is enabled */
2708 				if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2709 					return (EINVAL);
2710 			}
2711 
2712 			if (dbregs->dr[7] & (0x3<<6)) {
2713 				/* dr3 is enabled */
2714 				if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2715 					return (EINVAL);
2716 			}
2717 		}
2718 
2719 		pcb->pcb_dr0 = dbregs->dr[0];
2720 		pcb->pcb_dr1 = dbregs->dr[1];
2721 		pcb->pcb_dr2 = dbregs->dr[2];
2722 		pcb->pcb_dr3 = dbregs->dr[3];
2723 		pcb->pcb_dr6 = dbregs->dr[6];
2724 		pcb->pcb_dr7 = dbregs->dr[7];
2725 
2726 		pcb->pcb_flags |= PCB_DBREGS;
2727 	}
2728 
2729 	return (0);
2730 }
2731 
2732 /*
2733  * Return > 0 if a hardware breakpoint has been hit, and the
2734  * breakpoint was in user space.  Return 0, otherwise.
2735  */
2736 int
2737 user_dbreg_trap(void)
2738 {
2739         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2740         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2741         int nbp;            /* number of breakpoints that triggered */
2742         caddr_t addr[4];    /* breakpoint addresses */
2743         int i;
2744 
2745         dr7 = rdr7();
2746         if ((dr7 & 0xff) == 0) {
2747                 /*
2748                  * all GE and LE bits in the dr7 register are zero,
2749                  * thus the trap couldn't have been caused by the
2750                  * hardware debug registers
2751                  */
2752                 return 0;
2753         }
2754 
2755         nbp = 0;
2756         dr6 = rdr6();
2757         bp = dr6 & 0xf;
2758 
2759         if (bp == 0) {
2760                 /*
2761                  * None of the breakpoint bits are set meaning this
2762                  * trap was not caused by any of the debug registers
2763                  */
2764                 return 0;
2765         }
2766 
2767         /*
2768          * at least one of the breakpoints were hit, check to see
2769          * which ones and if any of them are user space addresses
2770          */
2771 
2772         if (bp & 0x01) {
2773                 addr[nbp++] = (caddr_t)rdr0();
2774         }
2775         if (bp & 0x02) {
2776                 addr[nbp++] = (caddr_t)rdr1();
2777         }
2778         if (bp & 0x04) {
2779                 addr[nbp++] = (caddr_t)rdr2();
2780         }
2781         if (bp & 0x08) {
2782                 addr[nbp++] = (caddr_t)rdr3();
2783         }
2784 
2785         for (i=0; i<nbp; i++) {
2786                 if (addr[i] <
2787                     (caddr_t)VM_MAX_USER_ADDRESS) {
2788                         /*
2789                          * addr[i] is in user space
2790                          */
2791                         return nbp;
2792                 }
2793         }
2794 
2795         /*
2796          * None of the breakpoints are in user space.
2797          */
2798         return 0;
2799 }
2800 
2801 
2802 #ifndef DDB
2803 void
2804 Debugger(const char *msg)
2805 {
2806 	kprintf("Debugger(\"%s\") called.\n", msg);
2807 }
2808 #endif /* no DDB */
2809 
2810 #ifdef DDB
2811 
2812 /*
2813  * Provide inb() and outb() as functions.  They are normally only
2814  * available as macros calling inlined functions, thus cannot be
2815  * called inside DDB.
2816  *
2817  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2818  */
2819 
2820 #undef inb
2821 #undef outb
2822 
2823 /* silence compiler warnings */
2824 u_char inb(u_int);
2825 void outb(u_int, u_char);
2826 
2827 u_char
2828 inb(u_int port)
2829 {
2830 	u_char	data;
2831 	/*
2832 	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2833 	 * %edx, while gcc generates inferior code (movw instead of movl)
2834 	 * if we tell it to load (u_short) port.
2835 	 */
2836 	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2837 	return (data);
2838 }
2839 
2840 void
2841 outb(u_int port, u_char data)
2842 {
2843 	u_char	al;
2844 	/*
2845 	 * Use an unnecessary assignment to help gcc's register allocator.
2846 	 * This make a large difference for gcc-1.40 and a tiny difference
2847 	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2848 	 * best results.  gcc-2.6.0 can't handle this.
2849 	 */
2850 	al = data;
2851 	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2852 }
2853 
2854 #endif /* DDB */
2855 
2856 
2857 
2858 /*
2859  * initialize all the SMP locks
2860  */
2861 
2862 /* critical region when masking or unmasking interupts */
2863 struct spinlock_deprecated imen_spinlock;
2864 
2865 /* lock region used by kernel profiling */
2866 struct spinlock_deprecated mcount_spinlock;
2867 
2868 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2869 struct spinlock_deprecated com_spinlock;
2870 
2871 /* lock regions around the clock hardware */
2872 struct spinlock_deprecated clock_spinlock;
2873 
2874 static void
2875 init_locks(void)
2876 {
2877 	/*
2878 	 * Get the initial mplock with a count of 1 for the BSP.
2879 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
2880 	 */
2881 	cpu_get_initial_mplock();
2882 	/* DEPRECATED */
2883 	spin_init_deprecated(&mcount_spinlock);
2884 	spin_init_deprecated(&imen_spinlock);
2885 	spin_init_deprecated(&com_spinlock);
2886 	spin_init_deprecated(&clock_spinlock);
2887 
2888 	/* our token pool needs to work early */
2889 	lwkt_token_pool_init();
2890 }
2891 
2892 boolean_t
2893 cpu_mwait_hint_valid(uint32_t hint)
2894 {
2895 	int cx_idx, sub;
2896 
2897 	cx_idx = MWAIT_EAX_TO_CX(hint);
2898 	if (cx_idx >= CPU_MWAIT_CX_MAX)
2899 		return FALSE;
2900 
2901 	sub = MWAIT_EAX_TO_CX_SUB(hint);
2902 	if (sub >= cpu_mwait_cx_info[cx_idx].subcnt)
2903 		return FALSE;
2904 
2905 	return TRUE;
2906 }
2907 
2908 void
2909 cpu_mwait_cx_no_bmsts(void)
2910 {
2911 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_STS);
2912 }
2913 
2914 void
2915 cpu_mwait_cx_no_bmarb(void)
2916 {
2917 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_ARB);
2918 }
2919 
2920 static int
2921 cpu_mwait_cx_hint2name(int hint, char *name, int namelen, boolean_t allow_auto)
2922 {
2923 	int old_cx_idx, sub = 0;
2924 
2925 	if (hint >= 0) {
2926 		old_cx_idx = MWAIT_EAX_TO_CX(hint);
2927 		sub = MWAIT_EAX_TO_CX_SUB(hint);
2928 	} else if (hint == CPU_MWAIT_HINT_AUTO) {
2929 		old_cx_idx = allow_auto ? CPU_MWAIT_C2 : CPU_MWAIT_CX_MAX;
2930 	} else if (hint == CPU_MWAIT_HINT_AUTODEEP) {
2931 		old_cx_idx = allow_auto ? CPU_MWAIT_C3 : CPU_MWAIT_CX_MAX;
2932 	} else {
2933 		old_cx_idx = CPU_MWAIT_CX_MAX;
2934 	}
2935 
2936 	if (!CPU_MWAIT_HAS_CX)
2937 		strlcpy(name, "NONE", namelen);
2938 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTO)
2939 		strlcpy(name, "AUTO", namelen);
2940 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTODEEP)
2941 		strlcpy(name, "AUTODEEP", namelen);
2942 	else if (old_cx_idx >= CPU_MWAIT_CX_MAX ||
2943 	    sub >= cpu_mwait_cx_info[old_cx_idx].subcnt)
2944 		strlcpy(name, "INVALID", namelen);
2945 	else
2946 		ksnprintf(name, namelen, "C%d/%d", old_cx_idx, sub);
2947 
2948 	return old_cx_idx;
2949 }
2950 
2951 static int
2952 cpu_mwait_cx_name2hint(char *name, int *hint0, boolean_t allow_auto)
2953 {
2954 	int cx_idx, sub, hint;
2955 	char *ptr, *start;
2956 
2957 	if (allow_auto && strcmp(name, "AUTO") == 0) {
2958 		hint = CPU_MWAIT_HINT_AUTO;
2959 		cx_idx = CPU_MWAIT_C2;
2960 		goto done;
2961 	}
2962 	if (allow_auto && strcmp(name, "AUTODEEP") == 0) {
2963 		hint = CPU_MWAIT_HINT_AUTODEEP;
2964 		cx_idx = CPU_MWAIT_C3;
2965 		goto done;
2966 	}
2967 
2968 	if (strlen(name) < 4 || toupper(name[0]) != 'C')
2969 		return -1;
2970 	start = &name[1];
2971 	ptr = NULL;
2972 
2973 	cx_idx = strtol(start, &ptr, 10);
2974 	if (ptr == start || *ptr != '/')
2975 		return -1;
2976 	if (cx_idx < 0 || cx_idx >= CPU_MWAIT_CX_MAX)
2977 		return -1;
2978 
2979 	start = ptr + 1;
2980 	ptr = NULL;
2981 
2982 	sub = strtol(start, &ptr, 10);
2983 	if (*ptr != '\0')
2984 		return -1;
2985 	if (sub < 0 || sub >= cpu_mwait_cx_info[cx_idx].subcnt)
2986 		return -1;
2987 
2988 	hint = MWAIT_EAX_HINT(cx_idx, sub);
2989 done:
2990 	*hint0 = hint;
2991 	return cx_idx;
2992 }
2993 
2994 static int
2995 cpu_mwait_cx_transit(int old_cx_idx, int cx_idx)
2996 {
2997 	if (cx_idx >= CPU_MWAIT_C3 && cpu_mwait_c3_preamble)
2998 		return EOPNOTSUPP;
2999 	if (old_cx_idx < CPU_MWAIT_C3 && cx_idx >= CPU_MWAIT_C3) {
3000 		int error;
3001 
3002 		error = cputimer_intr_powersave_addreq();
3003 		if (error)
3004 			return error;
3005 	} else if (old_cx_idx >= CPU_MWAIT_C3 && cx_idx < CPU_MWAIT_C3) {
3006 		cputimer_intr_powersave_remreq();
3007 	}
3008 	return 0;
3009 }
3010 
3011 static int
3012 cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS, int *hint0,
3013     boolean_t allow_auto)
3014 {
3015 	int error, cx_idx, old_cx_idx, hint;
3016 	char name[CPU_MWAIT_CX_NAMELEN];
3017 
3018 	hint = *hint0;
3019 	old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name),
3020 	    allow_auto);
3021 
3022 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
3023 	if (error != 0 || req->newptr == NULL)
3024 		return error;
3025 
3026 	if (!CPU_MWAIT_HAS_CX)
3027 		return EOPNOTSUPP;
3028 
3029 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, allow_auto);
3030 	if (cx_idx < 0)
3031 		return EINVAL;
3032 
3033 	error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3034 	if (error)
3035 		return error;
3036 
3037 	*hint0 = hint;
3038 	return 0;
3039 }
3040 
3041 static int
3042 cpu_mwait_cx_setname(struct cpu_idle_stat *stat, const char *cx_name)
3043 {
3044 	int error, cx_idx, old_cx_idx, hint;
3045 	char name[CPU_MWAIT_CX_NAMELEN];
3046 
3047 	KASSERT(CPU_MWAIT_HAS_CX, ("cpu does not support mwait CX extension"));
3048 
3049 	hint = stat->hint;
3050 	old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3051 
3052 	strlcpy(name, cx_name, sizeof(name));
3053 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3054 	if (cx_idx < 0)
3055 		return EINVAL;
3056 
3057 	error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3058 	if (error)
3059 		return error;
3060 
3061 	stat->hint = hint;
3062 	return 0;
3063 }
3064 
3065 static int
3066 cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS)
3067 {
3068 	int hint = cpu_mwait_halt_global;
3069 	int error, cx_idx, cpu;
3070 	char name[CPU_MWAIT_CX_NAMELEN], cx_name[CPU_MWAIT_CX_NAMELEN];
3071 
3072 	cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3073 
3074 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
3075 	if (error != 0 || req->newptr == NULL)
3076 		return error;
3077 
3078 	if (!CPU_MWAIT_HAS_CX)
3079 		return EOPNOTSUPP;
3080 
3081 	/* Save name for later per-cpu CX configuration */
3082 	strlcpy(cx_name, name, sizeof(cx_name));
3083 
3084 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3085 	if (cx_idx < 0)
3086 		return EINVAL;
3087 
3088 	/* Change per-cpu CX configuration */
3089 	for (cpu = 0; cpu < ncpus; ++cpu) {
3090 		error = cpu_mwait_cx_setname(&cpu_idle_stats[cpu], cx_name);
3091 		if (error)
3092 			return error;
3093 	}
3094 
3095 	cpu_mwait_halt_global = hint;
3096 	return 0;
3097 }
3098 
3099 static int
3100 cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS)
3101 {
3102 	struct cpu_idle_stat *stat = arg1;
3103 	int error;
3104 
3105 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3106 	    &stat->hint, TRUE);
3107 	return error;
3108 }
3109 
3110 static int
3111 cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS)
3112 {
3113 	int error;
3114 
3115 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3116 	    &cpu_mwait_spin, FALSE);
3117 	return error;
3118 }
3119 
3120 /*
3121  * This manual debugging code is called unconditionally from Xtimer
3122  * (the per-cpu timer interrupt) whether the current thread is in a
3123  * critical section or not) and can be useful in tracking down lockups.
3124  *
3125  * NOTE: MANUAL DEBUG CODE
3126  */
3127 #if 0
3128 static int saveticks[SMP_MAXCPU];
3129 static int savecounts[SMP_MAXCPU];
3130 #endif
3131 
3132 void
3133 pcpu_timer_always(struct intrframe *frame)
3134 {
3135 #if 0
3136 	globaldata_t gd = mycpu;
3137 	int cpu = gd->gd_cpuid;
3138 	char buf[64];
3139 	short *gptr;
3140 	int i;
3141 
3142 	if (cpu <= 20) {
3143 		gptr = (short *)0xFFFFFFFF800b8000 + 80 * cpu;
3144 		*gptr = ((*gptr + 1) & 0x00FF) | 0x0700;
3145 		++gptr;
3146 
3147 		ksnprintf(buf, sizeof(buf), " %p %16s %d %16s ",
3148 		    (void *)frame->if_rip, gd->gd_curthread->td_comm, ticks,
3149 		    gd->gd_infomsg);
3150 		for (i = 0; buf[i]; ++i) {
3151 			gptr[i] = 0x0700 | (unsigned char)buf[i];
3152 		}
3153 	}
3154 #if 0
3155 	if (saveticks[gd->gd_cpuid] != ticks) {
3156 		saveticks[gd->gd_cpuid] = ticks;
3157 		savecounts[gd->gd_cpuid] = 0;
3158 	}
3159 	++savecounts[gd->gd_cpuid];
3160 	if (savecounts[gd->gd_cpuid] > 2000 && panicstr == NULL) {
3161 		panic("cpud %d panicing on ticks failure",
3162 			gd->gd_cpuid);
3163 	}
3164 	for (i = 0; i < ncpus; ++i) {
3165 		int delta;
3166 		if (saveticks[i] && panicstr == NULL) {
3167 			delta = saveticks[i] - ticks;
3168 			if (delta < -10 || delta > 10) {
3169 				panic("cpu %d panicing on cpu %d watchdog",
3170 				      gd->gd_cpuid, i);
3171 			}
3172 		}
3173 	}
3174 #endif
3175 #endif
3176 }
3177