xref: /dragonfly/sys/platform/pc64/x86_64/machdep.c (revision 56f51086)
1 /*-
2  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3  * Copyright (c) 1992 Terrence R. Lambert.
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 2008 The DragonFly Project.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
40  * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
41  */
42 
43 //#include "use_npx.h"
44 #include "use_isa.h"
45 #include "opt_cpu.h"
46 #include "opt_ddb.h"
47 #include "opt_directio.h"
48 #include "opt_inet.h"
49 #include "opt_msgbuf.h"
50 #include "opt_swap.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/sysproto.h>
55 #include <sys/signalvar.h>
56 #include <sys/kernel.h>
57 #include <sys/linker.h>
58 #include <sys/malloc.h>
59 #include <sys/proc.h>
60 #include <sys/priv.h>
61 #include <sys/buf.h>
62 #include <sys/reboot.h>
63 #include <sys/mbuf.h>
64 #include <sys/msgbuf.h>
65 #include <sys/sysent.h>
66 #include <sys/sysctl.h>
67 #include <sys/vmmeter.h>
68 #include <sys/bus.h>
69 #include <sys/usched.h>
70 #include <sys/reg.h>
71 #include <sys/sbuf.h>
72 #include <sys/ctype.h>
73 #include <sys/serialize.h>
74 #include <sys/systimer.h>
75 
76 #include <vm/vm.h>
77 #include <vm/vm_param.h>
78 #include <sys/lock.h>
79 #include <vm/vm_kern.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_page.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_pager.h>
84 #include <vm/vm_extern.h>
85 
86 #include <sys/thread2.h>
87 #include <sys/mplock2.h>
88 #include <sys/mutex2.h>
89 
90 #include <sys/user.h>
91 #include <sys/exec.h>
92 #include <sys/cons.h>
93 
94 #include <sys/efi.h>
95 
96 #include <ddb/ddb.h>
97 
98 #include <machine/cpu.h>
99 #include <machine/clock.h>
100 #include <machine/specialreg.h>
101 #if 0 /* JG */
102 #include <machine/bootinfo.h>
103 #endif
104 #include <machine/md_var.h>
105 #include <machine/metadata.h>
106 #include <machine/pc/bios.h>
107 #include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
108 #include <machine/globaldata.h>		/* CPU_prvspace */
109 #include <machine/smp.h>
110 #include <machine/cputypes.h>
111 #include <machine/intr_machdep.h>
112 #include <machine/framebuffer.h>
113 
114 #ifdef OLD_BUS_ARCH
115 #include <bus/isa/isa_device.h>
116 #endif
117 #include <machine_base/isa/isa_intr.h>
118 #include <bus/isa/rtc.h>
119 #include <sys/random.h>
120 #include <sys/ptrace.h>
121 #include <machine/sigframe.h>
122 
123 #include <sys/machintr.h>
124 #include <machine_base/icu/icu_abi.h>
125 #include <machine_base/icu/elcr_var.h>
126 #include <machine_base/apic/lapic.h>
127 #include <machine_base/apic/ioapic.h>
128 #include <machine_base/apic/ioapic_abi.h>
129 #include <machine/mptable.h>
130 
131 #define PHYSMAP_ENTRIES		10
132 
133 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
134 
135 extern void printcpuinfo(void);	/* XXX header file */
136 extern void identify_cpu(void);
137 #if 0 /* JG */
138 extern void finishidentcpu(void);
139 #endif
140 extern void panicifcpuunsupported(void);
141 
142 static void cpu_startup(void *);
143 static void pic_finish(void *);
144 static void cpu_finish(void *);
145 
146 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
147 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
148 static void init_locks(void);
149 
150 extern void pcpu_timer_always(struct intrframe *);
151 
152 SYSINIT(cpu, SI_BOOT2_START_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
153 SYSINIT(pic_finish, SI_BOOT2_FINISH_PIC, SI_ORDER_FIRST, pic_finish, NULL);
154 SYSINIT(cpu_finish, SI_BOOT2_FINISH_CPU, SI_ORDER_FIRST, cpu_finish, NULL);
155 
156 #ifdef DDB
157 extern vm_offset_t ksym_start, ksym_end;
158 #endif
159 
160 struct privatespace CPU_prvspace_bsp __aligned(4096);
161 struct privatespace *CPU_prvspace[MAXCPU] = { &CPU_prvspace_bsp };
162 
163 vm_paddr_t efi_systbl_phys;
164 int	_udatasel, _ucodesel, _ucode32sel;
165 u_long	atdevbase;
166 int64_t tsc_offsets[MAXCPU];
167 cpumask_t smp_idleinvl_mask;
168 cpumask_t smp_idleinvl_reqs;
169 
170 static int cpu_mwait_halt_global; /* MWAIT hint (EAX) or CPU_MWAIT_HINT_ */
171 
172 #if defined(SWTCH_OPTIM_STATS)
173 extern int swtch_optim_stats;
174 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
175 	CTLFLAG_RD, &swtch_optim_stats, 0, "");
176 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
177 	CTLFLAG_RD, &tlb_flush_count, 0, "");
178 #endif
179 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_halt,
180 	CTLFLAG_RD, &cpu_mwait_halt_global, 0, "");
181 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_spin, CTLFLAG_RD, &cpu_mwait_spin, 0,
182     "monitor/mwait target state");
183 
184 #define CPU_MWAIT_HAS_CX	\
185 	((cpu_feature2 & CPUID2_MON) && \
186 	 (cpu_mwait_feature & CPUID_MWAIT_EXT))
187 
188 #define CPU_MWAIT_CX_NAMELEN	16
189 
190 #define CPU_MWAIT_C1		1
191 #define CPU_MWAIT_C2		2
192 #define CPU_MWAIT_C3		3
193 #define CPU_MWAIT_CX_MAX	8
194 
195 #define CPU_MWAIT_HINT_AUTO	-1	/* C1 and C2 */
196 #define CPU_MWAIT_HINT_AUTODEEP	-2	/* C3+ */
197 
198 SYSCTL_NODE(_machdep, OID_AUTO, mwait, CTLFLAG_RW, 0, "MWAIT features");
199 SYSCTL_NODE(_machdep_mwait, OID_AUTO, CX, CTLFLAG_RW, 0, "MWAIT Cx settings");
200 
201 struct cpu_mwait_cx {
202 	int			subcnt;
203 	char			name[4];
204 	struct sysctl_ctx_list	sysctl_ctx;
205 	struct sysctl_oid	*sysctl_tree;
206 };
207 static struct cpu_mwait_cx	cpu_mwait_cx_info[CPU_MWAIT_CX_MAX];
208 static char			cpu_mwait_cx_supported[256];
209 
210 static int			cpu_mwait_c1_hints_cnt;
211 static int			cpu_mwait_hints_cnt;
212 static int			*cpu_mwait_hints;
213 
214 static int			cpu_mwait_deep_hints_cnt;
215 static int			*cpu_mwait_deep_hints;
216 
217 #define CPU_IDLE_REPEAT_DEFAULT	750
218 
219 static u_int			cpu_idle_repeat = CPU_IDLE_REPEAT_DEFAULT;
220 static u_long			cpu_idle_repeat_max = CPU_IDLE_REPEAT_DEFAULT;
221 static u_int			cpu_mwait_repeat_shift = 1;
222 
223 #define CPU_MWAIT_C3_PREAMBLE_BM_ARB	0x1
224 #define CPU_MWAIT_C3_PREAMBLE_BM_STS	0x2
225 
226 static int			cpu_mwait_c3_preamble =
227 				    CPU_MWAIT_C3_PREAMBLE_BM_ARB |
228 				    CPU_MWAIT_C3_PREAMBLE_BM_STS;
229 
230 SYSCTL_STRING(_machdep_mwait_CX, OID_AUTO, supported, CTLFLAG_RD,
231     cpu_mwait_cx_supported, 0, "MWAIT supported C states");
232 SYSCTL_INT(_machdep_mwait_CX, OID_AUTO, c3_preamble, CTLFLAG_RD,
233     &cpu_mwait_c3_preamble, 0, "C3+ preamble mask");
234 
235 static int	cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS,
236 		    int *, boolean_t);
237 static int	cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS);
238 static int	cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS);
239 static int	cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS);
240 
241 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, idle, CTLTYPE_STRING|CTLFLAG_RW,
242     NULL, 0, cpu_mwait_cx_idle_sysctl, "A", "");
243 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, spin, CTLTYPE_STRING|CTLFLAG_RW,
244     NULL, 0, cpu_mwait_cx_spin_sysctl, "A", "");
245 SYSCTL_UINT(_machdep_mwait_CX, OID_AUTO, repeat_shift, CTLFLAG_RW,
246     &cpu_mwait_repeat_shift, 0, "");
247 
248 long physmem = 0;
249 
250 u_long ebda_addr = 0;
251 
252 int imcr_present = 0;
253 
254 int naps = 0; /* # of Applications processors */
255 
256 u_int base_memory;
257 struct mtx dt_lock;		/* lock for GDT and LDT */
258 
259 static int
260 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
261 {
262 	u_long pmem = ctob(physmem);
263 
264 	int error = sysctl_handle_long(oidp, &pmem, 0, req);
265 	return (error);
266 }
267 
268 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
269 	0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
270 
271 static int
272 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
273 {
274 	int error = sysctl_handle_int(oidp, 0,
275 		ctob(physmem - vmstats.v_wire_count), req);
276 	return (error);
277 }
278 
279 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
280 	0, 0, sysctl_hw_usermem, "IU", "");
281 
282 static int
283 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
284 {
285 	int error = sysctl_handle_int(oidp, 0,
286 		x86_64_btop(avail_end - avail_start), req);
287 	return (error);
288 }
289 
290 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
291 	0, 0, sysctl_hw_availpages, "I", "");
292 
293 vm_paddr_t Maxmem;
294 vm_paddr_t Realmem;
295 
296 /*
297  * The number of PHYSMAP entries must be one less than the number of
298  * PHYSSEG entries because the PHYSMAP entry that spans the largest
299  * physical address that is accessible by ISA DMA is split into two
300  * PHYSSEG entries.
301  */
302 vm_phystable_t phys_avail[VM_PHYSSEG_MAX + 1];
303 vm_phystable_t dump_avail[VM_PHYSSEG_MAX + 1];
304 
305 /* must be 1 less so 0 0 can signal end of chunks */
306 #define PHYS_AVAIL_ARRAY_END (NELEM(phys_avail) - 1)
307 #define DUMP_AVAIL_ARRAY_END (NELEM(dump_avail) - 1)
308 
309 static vm_offset_t buffer_sva, buffer_eva;
310 vm_offset_t clean_sva, clean_eva;
311 static vm_offset_t pager_sva, pager_eva;
312 static struct trapframe proc0_tf;
313 
314 static void
315 cpu_startup(void *dummy)
316 {
317 	caddr_t v;
318 	vm_size_t size = 0;
319 	vm_offset_t firstaddr;
320 
321 	/*
322 	 * Good {morning,afternoon,evening,night}.
323 	 */
324 	kprintf("%s", version);
325 	startrtclock();
326 	printcpuinfo();
327 	panicifcpuunsupported();
328 	kprintf("real memory  = %ju (%ju MB)\n",
329 		(intmax_t)Realmem,
330 		(intmax_t)Realmem / 1024 / 1024);
331 	/*
332 	 * Display any holes after the first chunk of extended memory.
333 	 */
334 	if (bootverbose) {
335 		int indx;
336 
337 		kprintf("Physical memory chunk(s):\n");
338 		for (indx = 0; phys_avail[indx].phys_end != 0; ++indx) {
339 			vm_paddr_t size1;
340 
341 			size1 = phys_avail[indx].phys_end -
342 				phys_avail[indx].phys_beg;
343 
344 			kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
345 				(intmax_t)phys_avail[indx].phys_beg,
346 				(intmax_t)phys_avail[indx].phys_end - 1,
347 				(intmax_t)size1,
348 				(intmax_t)(size1 / PAGE_SIZE));
349 		}
350 	}
351 
352 	/*
353 	 * Allocate space for system data structures.
354 	 * The first available kernel virtual address is in "v".
355 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
356 	 * As pages of memory are allocated and cleared,
357 	 * "firstaddr" is incremented.
358 	 * An index into the kernel page table corresponding to the
359 	 * virtual memory address maintained in "v" is kept in "mapaddr".
360 	 */
361 
362 	/*
363 	 * Make two passes.  The first pass calculates how much memory is
364 	 * needed and allocates it.  The second pass assigns virtual
365 	 * addresses to the various data structures.
366 	 */
367 	firstaddr = 0;
368 again:
369 	v = (caddr_t)firstaddr;
370 
371 #define	valloc(name, type, num) \
372 	    (name) = (type *)v; v = (caddr_t)((name)+(num))
373 #define	valloclim(name, type, num, lim) \
374 	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
375 
376 	/*
377 	 * The nominal buffer size (and minimum KVA allocation) is MAXBSIZE.
378 	 * For the first 64MB of ram nominally allocate sufficient buffers to
379 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
380 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
381 	 * the buffer cache we limit the eventual kva reservation to
382 	 * maxbcache bytes.
383 	 *
384 	 * factor represents the 1/4 x ram conversion.
385 	 */
386 	if (nbuf == 0) {
387 		long factor = 4 * NBUFCALCSIZE / 1024;
388 		long kbytes = physmem * (PAGE_SIZE / 1024);
389 
390 		nbuf = 50;
391 		if (kbytes > 4096)
392 			nbuf += min((kbytes - 4096) / factor, 65536 / factor);
393 		if (kbytes > 65536)
394 			nbuf += (kbytes - 65536) * 2 / (factor * 5);
395 		if (maxbcache && nbuf > maxbcache / NBUFCALCSIZE)
396 			nbuf = maxbcache / NBUFCALCSIZE;
397 	}
398 
399 	/*
400 	 * Do not allow the buffer_map to be more then 1/2 the size of the
401 	 * kernel_map.
402 	 */
403 	if (nbuf > (virtual_end - virtual_start +
404 		    virtual2_end - virtual2_start) / (MAXBSIZE * 2)) {
405 		nbuf = (virtual_end - virtual_start +
406 			virtual2_end - virtual2_start) / (MAXBSIZE * 2);
407 		kprintf("Warning: nbufs capped at %ld due to kvm\n", nbuf);
408 	}
409 
410 	/*
411 	 * Do not allow the buffer_map to use more than 50% of available
412 	 * physical-equivalent memory.  Since the VM pages which back
413 	 * individual buffers are typically wired, having too many bufs
414 	 * can prevent the system from paging properly.
415 	 */
416 	if (nbuf > physmem * PAGE_SIZE / (NBUFCALCSIZE * 2)) {
417 		nbuf = physmem * PAGE_SIZE / (NBUFCALCSIZE * 2);
418 		kprintf("Warning: nbufs capped at %ld due to physmem\n", nbuf);
419 	}
420 
421 	/*
422 	 * Do not allow the sizeof(struct buf) * nbuf to exceed half of
423 	 * the valloc space which is just the virtual_end - virtual_start
424 	 * section.  We use valloc() to allocate the buf header array.
425 	 */
426 	if (nbuf > (virtual_end - virtual_start) / sizeof(struct buf) / 2) {
427 		nbuf = (virtual_end - virtual_start) /
428 		       sizeof(struct buf) / 2;
429 		kprintf("Warning: nbufs capped at %ld due to valloc "
430 			"considerations\n", nbuf);
431 	}
432 
433 	nswbuf_mem = lmax(lmin(nbuf / 32, 512), 8);
434 #ifdef NSWBUF_MIN
435 	if (nswbuf_mem < NSWBUF_MIN)
436 		nswbuf_mem = NSWBUF_MIN;
437 #endif
438 	nswbuf_kva = lmax(lmin(nbuf / 4, 512), 16);
439 #ifdef NSWBUF_MIN
440 	if (nswbuf_kva < NSWBUF_MIN)
441 		nswbuf_kva = NSWBUF_MIN;
442 #endif
443 
444 	valloc(swbuf_mem, struct buf, nswbuf_mem);
445 	valloc(swbuf_kva, struct buf, nswbuf_kva);
446 	valloc(buf, struct buf, nbuf);
447 
448 	/*
449 	 * End of first pass, size has been calculated so allocate memory
450 	 */
451 	if (firstaddr == 0) {
452 		size = (vm_size_t)(v - firstaddr);
453 		firstaddr = kmem_alloc(&kernel_map, round_page(size),
454 				       VM_SUBSYS_BUF);
455 		if (firstaddr == 0)
456 			panic("startup: no room for tables");
457 		goto again;
458 	}
459 
460 	/*
461 	 * End of second pass, addresses have been assigned
462 	 *
463 	 * nbuf is an int, make sure we don't overflow the field.
464 	 *
465 	 * On 64-bit systems we always reserve maximal allocations for
466 	 * buffer cache buffers and there are no fragmentation issues,
467 	 * so the KVA segment does not have to be excessively oversized.
468 	 */
469 	if ((vm_size_t)(v - firstaddr) != size)
470 		panic("startup: table size inconsistency");
471 
472 	kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
473 		      ((vm_offset_t)(nbuf + 16) * MAXBSIZE) +
474 		      ((nswbuf_mem + nswbuf_kva) * MAXPHYS) + pager_map_size);
475 	kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
476 		      ((vm_offset_t)(nbuf + 16) * MAXBSIZE));
477 	buffer_map.system_map = 1;
478 	kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
479 		      ((vm_offset_t)(nswbuf_mem + nswbuf_kva) * MAXPHYS) +
480 		      pager_map_size);
481 	pager_map.system_map = 1;
482 	kprintf("avail memory = %ju (%ju MB)\n",
483 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages),
484 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages) /
485 		1024 / 1024);
486 }
487 
488 struct cpu_idle_stat {
489 	int	hint;
490 	int	reserved;
491 	u_long	halt;
492 	u_long	spin;
493 	u_long	repeat;
494 	u_long	repeat_last;
495 	u_long	repeat_delta;
496 	u_long	mwait_cx[CPU_MWAIT_CX_MAX];
497 } __cachealign;
498 
499 #define CPU_IDLE_STAT_HALT	-1
500 #define CPU_IDLE_STAT_SPIN	-2
501 
502 static struct cpu_idle_stat	cpu_idle_stats[MAXCPU];
503 
504 static int
505 sysctl_cpu_idle_cnt(SYSCTL_HANDLER_ARGS)
506 {
507 	int idx = arg2, cpu, error;
508 	u_long val = 0;
509 
510 	if (idx == CPU_IDLE_STAT_HALT) {
511 		for (cpu = 0; cpu < ncpus; ++cpu)
512 			val += cpu_idle_stats[cpu].halt;
513 	} else if (idx == CPU_IDLE_STAT_SPIN) {
514 		for (cpu = 0; cpu < ncpus; ++cpu)
515 			val += cpu_idle_stats[cpu].spin;
516 	} else {
517 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
518 		    ("invalid index %d", idx));
519 		for (cpu = 0; cpu < ncpus; ++cpu)
520 			val += cpu_idle_stats[cpu].mwait_cx[idx];
521 	}
522 
523 	error = sysctl_handle_quad(oidp, &val, 0, req);
524         if (error || req->newptr == NULL)
525 	        return error;
526 
527 	if (idx == CPU_IDLE_STAT_HALT) {
528 		for (cpu = 0; cpu < ncpus; ++cpu)
529 			cpu_idle_stats[cpu].halt = 0;
530 		cpu_idle_stats[0].halt = val;
531 	} else if (idx == CPU_IDLE_STAT_SPIN) {
532 		for (cpu = 0; cpu < ncpus; ++cpu)
533 			cpu_idle_stats[cpu].spin = 0;
534 		cpu_idle_stats[0].spin = val;
535 	} else {
536 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
537 		    ("invalid index %d", idx));
538 		for (cpu = 0; cpu < ncpus; ++cpu)
539 			cpu_idle_stats[cpu].mwait_cx[idx] = 0;
540 		cpu_idle_stats[0].mwait_cx[idx] = val;
541 	}
542 	return 0;
543 }
544 
545 static void
546 cpu_mwait_attach(void)
547 {
548 	struct sbuf sb;
549 	int hint_idx, i;
550 
551 	if (!CPU_MWAIT_HAS_CX)
552 		return;
553 
554 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
555 	    (CPUID_TO_FAMILY(cpu_id) > 0xf ||
556 	     (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
557 	      CPUID_TO_MODEL(cpu_id) >= 0xf))) {
558 		int bm_sts = 1;
559 
560 		/*
561 		 * Pentium dual-core, Core 2 and beyond do not need any
562 		 * additional activities to enter deep C-state, i.e. C3(+).
563 		 */
564 		cpu_mwait_cx_no_bmarb();
565 
566 		TUNABLE_INT_FETCH("machdep.cpu.mwait.bm_sts", &bm_sts);
567 		if (!bm_sts)
568 			cpu_mwait_cx_no_bmsts();
569 	}
570 
571 	sbuf_new(&sb, cpu_mwait_cx_supported,
572 	    sizeof(cpu_mwait_cx_supported), SBUF_FIXEDLEN);
573 
574 	for (i = 0; i < CPU_MWAIT_CX_MAX; ++i) {
575 		struct cpu_mwait_cx *cx = &cpu_mwait_cx_info[i];
576 		int sub;
577 
578 		ksnprintf(cx->name, sizeof(cx->name), "C%d", i);
579 
580 		sysctl_ctx_init(&cx->sysctl_ctx);
581 		cx->sysctl_tree = SYSCTL_ADD_NODE(&cx->sysctl_ctx,
582 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait), OID_AUTO,
583 		    cx->name, CTLFLAG_RW, NULL, "Cx control/info");
584 		if (cx->sysctl_tree == NULL)
585 			continue;
586 
587 		cx->subcnt = CPUID_MWAIT_CX_SUBCNT(cpu_mwait_extemu, i);
588 		SYSCTL_ADD_INT(&cx->sysctl_ctx,
589 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
590 		    "subcnt", CTLFLAG_RD, &cx->subcnt, 0,
591 		    "sub-state count");
592 		SYSCTL_ADD_PROC(&cx->sysctl_ctx,
593 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
594 		    "entered", (CTLTYPE_QUAD | CTLFLAG_RW), 0,
595 		    i, sysctl_cpu_idle_cnt, "Q", "# of times entered");
596 
597 		for (sub = 0; sub < cx->subcnt; ++sub)
598 			sbuf_printf(&sb, "C%d/%d ", i, sub);
599 	}
600 	sbuf_trim(&sb);
601 	sbuf_finish(&sb);
602 
603 	/*
604 	 * Non-deep C-states
605 	 */
606 	cpu_mwait_c1_hints_cnt = cpu_mwait_cx_info[CPU_MWAIT_C1].subcnt;
607 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i)
608 		cpu_mwait_hints_cnt += cpu_mwait_cx_info[i].subcnt;
609 	cpu_mwait_hints = kmalloc(sizeof(int) * cpu_mwait_hints_cnt,
610 	    M_DEVBUF, M_WAITOK);
611 
612 	hint_idx = 0;
613 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i) {
614 		int j, subcnt;
615 
616 		subcnt = cpu_mwait_cx_info[i].subcnt;
617 		for (j = 0; j < subcnt; ++j) {
618 			KASSERT(hint_idx < cpu_mwait_hints_cnt,
619 			    ("invalid mwait hint index %d", hint_idx));
620 			cpu_mwait_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
621 			++hint_idx;
622 		}
623 	}
624 	KASSERT(hint_idx == cpu_mwait_hints_cnt,
625 	    ("mwait hint count %d != index %d",
626 	     cpu_mwait_hints_cnt, hint_idx));
627 
628 	if (bootverbose) {
629 		kprintf("MWAIT hints (%d C1 hints):\n", cpu_mwait_c1_hints_cnt);
630 		for (i = 0; i < cpu_mwait_hints_cnt; ++i) {
631 			int hint = cpu_mwait_hints[i];
632 
633 			kprintf("  C%d/%d hint 0x%04x\n",
634 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
635 			    hint);
636 		}
637 	}
638 
639 	/*
640 	 * Deep C-states
641 	 */
642 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i)
643 		cpu_mwait_deep_hints_cnt += cpu_mwait_cx_info[i].subcnt;
644 	cpu_mwait_deep_hints = kmalloc(sizeof(int) * cpu_mwait_deep_hints_cnt,
645 	    M_DEVBUF, M_WAITOK);
646 
647 	hint_idx = 0;
648 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i) {
649 		int j, subcnt;
650 
651 		subcnt = cpu_mwait_cx_info[i].subcnt;
652 		for (j = 0; j < subcnt; ++j) {
653 			KASSERT(hint_idx < cpu_mwait_deep_hints_cnt,
654 			    ("invalid mwait deep hint index %d", hint_idx));
655 			cpu_mwait_deep_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
656 			++hint_idx;
657 		}
658 	}
659 	KASSERT(hint_idx == cpu_mwait_deep_hints_cnt,
660 	    ("mwait deep hint count %d != index %d",
661 	     cpu_mwait_deep_hints_cnt, hint_idx));
662 
663 	if (bootverbose) {
664 		kprintf("MWAIT deep hints:\n");
665 		for (i = 0; i < cpu_mwait_deep_hints_cnt; ++i) {
666 			int hint = cpu_mwait_deep_hints[i];
667 
668 			kprintf("  C%d/%d hint 0x%04x\n",
669 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
670 			    hint);
671 		}
672 	}
673 	cpu_idle_repeat_max = 256 * cpu_mwait_deep_hints_cnt;
674 
675 	for (i = 0; i < ncpus; ++i) {
676 		char name[16];
677 
678 		ksnprintf(name, sizeof(name), "idle%d", i);
679 		SYSCTL_ADD_PROC(NULL,
680 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait_CX), OID_AUTO,
681 		    name, (CTLTYPE_STRING | CTLFLAG_RW), &cpu_idle_stats[i],
682 		    0, cpu_mwait_cx_pcpu_idle_sysctl, "A", "");
683 	}
684 }
685 
686 static void
687 cpu_finish(void *dummy __unused)
688 {
689 	cpu_setregs();
690 	cpu_mwait_attach();
691 }
692 
693 static void
694 pic_finish(void *dummy __unused)
695 {
696 	/* Log ELCR information */
697 	elcr_dump();
698 
699 	/* Log MPTABLE information */
700 	mptable_pci_int_dump();
701 
702 	/* Finalize PCI */
703 	MachIntrABI.finalize();
704 }
705 
706 /*
707  * Send an interrupt to process.
708  *
709  * Stack is set up to allow sigcode stored
710  * at top to call routine, followed by kcall
711  * to sigreturn routine below.  After sigreturn
712  * resets the signal mask, the stack, and the
713  * frame pointer, it returns to the user
714  * specified pc, psl.
715  */
716 void
717 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
718 {
719 	struct lwp *lp = curthread->td_lwp;
720 	struct proc *p = lp->lwp_proc;
721 	struct trapframe *regs;
722 	struct sigacts *psp = p->p_sigacts;
723 	struct sigframe sf, *sfp;
724 	int oonstack;
725 	char *sp;
726 
727 	regs = lp->lwp_md.md_regs;
728 	oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
729 
730 	/* Save user context */
731 	bzero(&sf, sizeof(struct sigframe));
732 	sf.sf_uc.uc_sigmask = *mask;
733 	sf.sf_uc.uc_stack = lp->lwp_sigstk;
734 	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
735 	KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
736 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
737 
738 	/* Make the size of the saved context visible to userland */
739 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
740 
741 	/* Allocate and validate space for the signal handler context. */
742         if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
743 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
744 		sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
745 			      sizeof(struct sigframe));
746 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
747 	} else {
748 		/* We take red zone into account */
749 		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
750 	}
751 
752 	/*
753 	 * XXX AVX needs 64-byte alignment but sigframe has other fields and
754 	 * the embedded ucontext is not at the front, so aligning this won't
755 	 * help us.  Fortunately we bcopy in/out of the sigframe, so the
756 	 * kernel is ok.
757 	 *
758 	 * The problem though is if userland winds up trying to use the
759 	 * context directly.
760 	 */
761 	sfp = (struct sigframe *)((intptr_t)sp & ~(intptr_t)0xF);
762 
763 	/* Translate the signal is appropriate */
764 	if (p->p_sysent->sv_sigtbl) {
765 		if (sig <= p->p_sysent->sv_sigsize)
766 			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
767 	}
768 
769 	/*
770 	 * Build the argument list for the signal handler.
771 	 *
772 	 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
773 	 */
774 	regs->tf_rdi = sig;				/* argument 1 */
775 	regs->tf_rdx = (register_t)&sfp->sf_uc;		/* argument 3 */
776 
777 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
778 		/*
779 		 * Signal handler installed with SA_SIGINFO.
780 		 *
781 		 * action(signo, siginfo, ucontext)
782 		 */
783 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* argument 2 */
784 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
785 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
786 
787 		/* fill siginfo structure */
788 		sf.sf_si.si_signo = sig;
789 		sf.sf_si.si_code = code;
790 		sf.sf_si.si_addr = (void *)regs->tf_addr;
791 	} else {
792 		/*
793 		 * Old FreeBSD-style arguments.
794 		 *
795 		 * handler (signo, code, [uc], addr)
796 		 */
797 		regs->tf_rsi = (register_t)code;	/* argument 2 */
798 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
799 		sf.sf_ahu.sf_handler = catcher;
800 	}
801 
802 	/*
803 	 * If we're a vm86 process, we want to save the segment registers.
804 	 * We also change eflags to be our emulated eflags, not the actual
805 	 * eflags.
806 	 */
807 #if 0 /* JG */
808 	if (regs->tf_eflags & PSL_VM) {
809 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
810 		struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
811 
812 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
813 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
814 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
815 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
816 
817 		if (vm86->vm86_has_vme == 0)
818 			sf.sf_uc.uc_mcontext.mc_eflags =
819 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
820 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
821 
822 		/*
823 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
824 		 * syscalls made by the signal handler.  This just avoids
825 		 * wasting time for our lazy fixup of such faults.  PSL_NT
826 		 * does nothing in vm86 mode, but vm86 programs can set it
827 		 * almost legitimately in probes for old cpu types.
828 		 */
829 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
830 	}
831 #endif
832 
833 	/*
834 	 * Save the FPU state and reinit the FP unit
835 	 */
836 	npxpush(&sf.sf_uc.uc_mcontext);
837 
838 	/*
839 	 * Copy the sigframe out to the user's stack.
840 	 */
841 	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
842 		/*
843 		 * Something is wrong with the stack pointer.
844 		 * ...Kill the process.
845 		 */
846 		sigexit(lp, SIGILL);
847 	}
848 
849 	regs->tf_rsp = (register_t)sfp;
850 	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
851 
852 	/*
853 	 * i386 abi specifies that the direction flag must be cleared
854 	 * on function entry
855 	 */
856 	regs->tf_rflags &= ~(PSL_T|PSL_D);
857 
858 	/*
859 	 * 64 bit mode has a code and stack selector but
860 	 * no data or extra selector.  %fs and %gs are not
861 	 * stored in-context.
862 	 */
863 	regs->tf_cs = _ucodesel;
864 	regs->tf_ss = _udatasel;
865 	clear_quickret();
866 }
867 
868 /*
869  * Sanitize the trapframe for a virtual kernel passing control to a custom
870  * VM context.  Remove any items that would otherwise create a privilage
871  * issue.
872  *
873  * XXX at the moment we allow userland to set the resume flag.  Is this a
874  * bad idea?
875  */
876 int
877 cpu_sanitize_frame(struct trapframe *frame)
878 {
879 	frame->tf_cs = _ucodesel;
880 	frame->tf_ss = _udatasel;
881 	/* XXX VM (8086) mode not supported? */
882 	frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
883 	frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
884 
885 	return(0);
886 }
887 
888 /*
889  * Sanitize the tls so loading the descriptor does not blow up
890  * on us.  For x86_64 we don't have to do anything.
891  */
892 int
893 cpu_sanitize_tls(struct savetls *tls)
894 {
895 	return(0);
896 }
897 
898 /*
899  * sigreturn(ucontext_t *sigcntxp)
900  *
901  * System call to cleanup state after a signal
902  * has been taken.  Reset signal mask and
903  * stack state from context left by sendsig (above).
904  * Return to previous pc and psl as specified by
905  * context left by sendsig. Check carefully to
906  * make sure that the user has not modified the
907  * state to gain improper privileges.
908  *
909  * MPSAFE
910  */
911 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
912 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
913 
914 int
915 sys_sigreturn(struct sigreturn_args *uap)
916 {
917 	struct lwp *lp = curthread->td_lwp;
918 	struct trapframe *regs;
919 	ucontext_t uc;
920 	ucontext_t *ucp;
921 	register_t rflags;
922 	int cs;
923 	int error;
924 
925 	/*
926 	 * We have to copy the information into kernel space so userland
927 	 * can't modify it while we are sniffing it.
928 	 */
929 	regs = lp->lwp_md.md_regs;
930 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
931 	if (error)
932 		return (error);
933 	ucp = &uc;
934 	rflags = ucp->uc_mcontext.mc_rflags;
935 
936 	/* VM (8086) mode not supported */
937 	rflags &= ~PSL_VM_UNSUPP;
938 
939 #if 0 /* JG */
940 	if (eflags & PSL_VM) {
941 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
942 		struct vm86_kernel *vm86;
943 
944 		/*
945 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
946 		 * set up the vm86 area, and we can't enter vm86 mode.
947 		 */
948 		if (lp->lwp_thread->td_pcb->pcb_ext == 0)
949 			return (EINVAL);
950 		vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
951 		if (vm86->vm86_inited == 0)
952 			return (EINVAL);
953 
954 		/* go back to user mode if both flags are set */
955 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
956 			trapsignal(lp, SIGBUS, 0);
957 
958 		if (vm86->vm86_has_vme) {
959 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
960 			    (eflags & VME_USERCHANGE) | PSL_VM;
961 		} else {
962 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
963 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
964 			    (eflags & VM_USERCHANGE) | PSL_VM;
965 		}
966 		bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
967 		tf->tf_eflags = eflags;
968 		tf->tf_vm86_ds = tf->tf_ds;
969 		tf->tf_vm86_es = tf->tf_es;
970 		tf->tf_vm86_fs = tf->tf_fs;
971 		tf->tf_vm86_gs = tf->tf_gs;
972 		tf->tf_ds = _udatasel;
973 		tf->tf_es = _udatasel;
974 		tf->tf_fs = _udatasel;
975 		tf->tf_gs = _udatasel;
976 	} else
977 #endif
978 	{
979 		/*
980 		 * Don't allow users to change privileged or reserved flags.
981 		 */
982 		/*
983 		 * XXX do allow users to change the privileged flag PSL_RF.
984 		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
985 		 * should sometimes set it there too.  tf_eflags is kept in
986 		 * the signal context during signal handling and there is no
987 		 * other place to remember it, so the PSL_RF bit may be
988 		 * corrupted by the signal handler without us knowing.
989 		 * Corruption of the PSL_RF bit at worst causes one more or
990 		 * one less debugger trap, so allowing it is fairly harmless.
991 		 */
992 		if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
993 			kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
994 	    		return(EINVAL);
995 		}
996 
997 		/*
998 		 * Don't allow users to load a valid privileged %cs.  Let the
999 		 * hardware check for invalid selectors, excess privilege in
1000 		 * other selectors, invalid %eip's and invalid %esp's.
1001 		 */
1002 		cs = ucp->uc_mcontext.mc_cs;
1003 		if (!CS_SECURE(cs)) {
1004 			kprintf("sigreturn: cs = 0x%x\n", cs);
1005 			trapsignal(lp, SIGBUS, T_PROTFLT);
1006 			return(EINVAL);
1007 		}
1008 		bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
1009 	}
1010 
1011 	/*
1012 	 * Restore the FPU state from the frame
1013 	 */
1014 	crit_enter();
1015 	npxpop(&ucp->uc_mcontext);
1016 
1017 	if (ucp->uc_mcontext.mc_onstack & 1)
1018 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
1019 	else
1020 		lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
1021 
1022 	lp->lwp_sigmask = ucp->uc_sigmask;
1023 	SIG_CANTMASK(lp->lwp_sigmask);
1024 	clear_quickret();
1025 	crit_exit();
1026 	return(EJUSTRETURN);
1027 }
1028 
1029 /*
1030  * Machine dependent boot() routine
1031  *
1032  * I haven't seen anything to put here yet
1033  * Possibly some stuff might be grafted back here from boot()
1034  */
1035 void
1036 cpu_boot(int howto)
1037 {
1038 }
1039 
1040 /*
1041  * Shutdown the CPU as much as possible
1042  */
1043 void
1044 cpu_halt(void)
1045 {
1046 	for (;;)
1047 		__asm__ __volatile("hlt");
1048 }
1049 
1050 /*
1051  * cpu_idle() represents the idle LWKT.  You cannot return from this function
1052  * (unless you want to blow things up!).  Instead we look for runnable threads
1053  * and loop or halt as appropriate.  Giant is not held on entry to the thread.
1054  *
1055  * The main loop is entered with a critical section held, we must release
1056  * the critical section before doing anything else.  lwkt_switch() will
1057  * check for pending interrupts due to entering and exiting its own
1058  * critical section.
1059  *
1060  * NOTE: On an SMP system we rely on a scheduler IPI to wake a HLTed cpu up.
1061  *	 However, there are cases where the idlethread will be entered with
1062  *	 the possibility that no IPI will occur and in such cases
1063  *	 lwkt_switch() sets TDF_IDLE_NOHLT.
1064  *
1065  * NOTE: cpu_idle_repeat determines how many entries into the idle thread
1066  *	 must occur before it starts using ACPI halt.
1067  *
1068  * NOTE: Value overridden in hammer_time().
1069  */
1070 static int	cpu_idle_hlt = 2;
1071 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
1072     &cpu_idle_hlt, 0, "Idle loop HLT enable");
1073 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_repeat, CTLFLAG_RW,
1074     &cpu_idle_repeat, 0, "Idle entries before acpi hlt");
1075 
1076 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_hltcnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1077     0, CPU_IDLE_STAT_HALT, sysctl_cpu_idle_cnt, "Q", "Idle loop entry halts");
1078 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_spincnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1079     0, CPU_IDLE_STAT_SPIN, sysctl_cpu_idle_cnt, "Q", "Idle loop entry spins");
1080 
1081 static void
1082 cpu_idle_default_hook(void)
1083 {
1084 	/*
1085 	 * We must guarentee that hlt is exactly the instruction
1086 	 * following the sti.
1087 	 */
1088 	__asm __volatile("sti; hlt");
1089 }
1090 
1091 /* Other subsystems (e.g., ACPI) can hook this later. */
1092 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
1093 
1094 static __inline int
1095 cpu_mwait_cx_hint(struct cpu_idle_stat *stat)
1096 {
1097 	int hint, cx_idx;
1098 	u_int idx;
1099 
1100 	hint = stat->hint;
1101 	if (hint >= 0)
1102 		goto done;
1103 
1104 	idx = (stat->repeat + stat->repeat_last + stat->repeat_delta) >>
1105 	    cpu_mwait_repeat_shift;
1106 	if (idx >= cpu_mwait_c1_hints_cnt) {
1107 		/* Step up faster, once we walked through all C1 states */
1108 		stat->repeat_delta += 1 << (cpu_mwait_repeat_shift + 1);
1109 	}
1110 	if (hint == CPU_MWAIT_HINT_AUTODEEP) {
1111 		if (idx >= cpu_mwait_deep_hints_cnt)
1112 			idx = cpu_mwait_deep_hints_cnt - 1;
1113 		hint = cpu_mwait_deep_hints[idx];
1114 	} else {
1115 		if (idx >= cpu_mwait_hints_cnt)
1116 			idx = cpu_mwait_hints_cnt - 1;
1117 		hint = cpu_mwait_hints[idx];
1118 	}
1119 done:
1120 	cx_idx = MWAIT_EAX_TO_CX(hint);
1121 	if (cx_idx >= 0 && cx_idx < CPU_MWAIT_CX_MAX)
1122 		stat->mwait_cx[cx_idx]++;
1123 	return hint;
1124 }
1125 
1126 void
1127 cpu_idle(void)
1128 {
1129 	globaldata_t gd = mycpu;
1130 	struct cpu_idle_stat *stat = &cpu_idle_stats[gd->gd_cpuid];
1131 	struct thread *td __debugvar = gd->gd_curthread;
1132 	int reqflags;
1133 	int quick;
1134 
1135 	stat->repeat = stat->repeat_last = cpu_idle_repeat_max;
1136 
1137 	crit_exit();
1138 	KKASSERT(td->td_critcount == 0);
1139 
1140 	for (;;) {
1141 		/*
1142 		 * See if there are any LWKTs ready to go.
1143 		 */
1144 		lwkt_switch();
1145 
1146 		/*
1147 		 * When halting inside a cli we must check for reqflags
1148 		 * races, particularly [re]schedule requests.  Running
1149 		 * splz() does the job.
1150 		 *
1151 		 * cpu_idle_hlt:
1152 		 *	0	Never halt, just spin
1153 		 *
1154 		 *	1	Always use HLT (or MONITOR/MWAIT if avail).
1155 		 *
1156 		 *		Better default for modern (Haswell+) Intel
1157 		 *		cpus.
1158 		 *
1159 		 *	2	Use HLT/MONITOR/MWAIT up to a point and then
1160 		 *		use the ACPI halt (default).  This is a hybrid
1161 		 *		approach.  See machdep.cpu_idle_repeat.
1162 		 *
1163 		 *		Better default for modern AMD cpus and older
1164 		 *		Intel cpus.
1165 		 *
1166 		 *	3	Always use the ACPI halt.  This typically
1167 		 *		eats the least amount of power but the cpu
1168 		 *		will be slow waking up.  Slows down e.g.
1169 		 *		compiles and other pipe/event oriented stuff.
1170 		 *
1171 		 *	4	Always use HLT.
1172 		 *
1173 		 * NOTE: Interrupts are enabled and we are not in a critical
1174 		 *	 section.
1175 		 *
1176 		 * NOTE: Preemptions do not reset gd_idle_repeat.   Also we
1177 		 *	 don't bother capping gd_idle_repeat, it is ok if
1178 		 *	 it overflows.
1179 		 *
1180 		 * Implement optimized invltlb operations when halted
1181 		 * in idle.  By setting the bit in smp_idleinvl_mask
1182 		 * we inform other cpus that they can set _reqs to
1183 		 * request an invltlb.  Current the code to do that
1184 		 * sets the bits in _reqs anyway, but then check _mask
1185 		 * to determine if they can assume the invltlb will execute.
1186 		 *
1187 		 * A critical section is required to ensure that interrupts
1188 		 * do not fully run until after we've had a chance to execute
1189 		 * the request.
1190 		 */
1191 		if (gd->gd_idle_repeat == 0) {
1192 			stat->repeat = (stat->repeat + stat->repeat_last) >> 1;
1193 			if (stat->repeat > cpu_idle_repeat_max)
1194 				stat->repeat = cpu_idle_repeat_max;
1195 			stat->repeat_last = 0;
1196 			stat->repeat_delta = 0;
1197 		}
1198 		++stat->repeat_last;
1199 
1200 		++gd->gd_idle_repeat;
1201 		reqflags = gd->gd_reqflags;
1202 		quick = (cpu_idle_hlt == 1) ||
1203 			(cpu_idle_hlt < 3 &&
1204 			 gd->gd_idle_repeat < cpu_idle_repeat);
1205 
1206 		if (quick && (cpu_mi_feature & CPU_MI_MONITOR) &&
1207 		    (reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1208 			splz(); /* XXX */
1209 			crit_enter_gd(gd);
1210 			ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask, gd->gd_cpuid);
1211 			cpu_mmw_pause_int(&gd->gd_reqflags, reqflags,
1212 			    cpu_mwait_cx_hint(stat), 0);
1213 			stat->halt++;
1214 			ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask, gd->gd_cpuid);
1215 			if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1216 						      gd->gd_cpuid)) {
1217 				cpu_invltlb();
1218 				cpu_mfence();
1219 			}
1220 			crit_exit_gd(gd);
1221 		} else if (cpu_idle_hlt) {
1222 			__asm __volatile("cli");
1223 			splz();
1224 			crit_enter_gd(gd);
1225 			ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask, gd->gd_cpuid);
1226 			if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1227 				if (quick)
1228 					cpu_idle_default_hook();
1229 				else
1230 					cpu_idle_hook();
1231 			}
1232 			__asm __volatile("sti");
1233 			stat->halt++;
1234 			ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask, gd->gd_cpuid);
1235 			if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1236 						      gd->gd_cpuid)) {
1237 				cpu_invltlb();
1238 				cpu_mfence();
1239 			}
1240 			crit_exit_gd(gd);
1241 		} else {
1242 			splz();
1243 			__asm __volatile("sti");
1244 			stat->spin++;
1245 		}
1246 	}
1247 }
1248 
1249 /*
1250  * Called in a loop indirectly via Xcpustop
1251  */
1252 void
1253 cpu_smp_stopped(void)
1254 {
1255 	globaldata_t gd = mycpu;
1256 	volatile __uint64_t *ptr;
1257 	__uint64_t ovalue;
1258 
1259 	ptr = CPUMASK_ADDR(started_cpus, gd->gd_cpuid);
1260 	ovalue = *ptr;
1261 	if ((ovalue & CPUMASK_SIMPLE(gd->gd_cpuid & 63)) == 0) {
1262 		if (cpu_mi_feature & CPU_MI_MONITOR) {
1263 			cpu_mmw_pause_long(__DEVOLATILE(void *, ptr), ovalue,
1264 					   cpu_mwait_hints[CPU_MWAIT_C1], 0);
1265 		} else {
1266 			cpu_halt();	/* depend on lapic timer */
1267 		}
1268 	}
1269 }
1270 
1271 /*
1272  * This routine is called if a spinlock has been held through the
1273  * exponential backoff period and is seriously contested.  On a real cpu
1274  * we let it spin.
1275  */
1276 void
1277 cpu_spinlock_contested(void)
1278 {
1279 	cpu_pause();
1280 }
1281 
1282 /*
1283  * Clear registers on exec
1284  */
1285 void
1286 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
1287 {
1288 	struct thread *td = curthread;
1289 	struct lwp *lp = td->td_lwp;
1290 	struct pcb *pcb = td->td_pcb;
1291 	struct trapframe *regs = lp->lwp_md.md_regs;
1292 
1293 	/* was i386_user_cleanup() in NetBSD */
1294 	user_ldt_free(pcb);
1295 
1296 	clear_quickret();
1297 	bzero((char *)regs, sizeof(struct trapframe));
1298 	regs->tf_rip = entry;
1299 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
1300 	regs->tf_rdi = stack;		/* argv */
1301 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
1302 	regs->tf_ss = _udatasel;
1303 	regs->tf_cs = _ucodesel;
1304 	regs->tf_rbx = ps_strings;
1305 
1306 	/*
1307 	 * Reset the hardware debug registers if they were in use.
1308 	 * They won't have any meaning for the newly exec'd process.
1309 	 */
1310 	if (pcb->pcb_flags & PCB_DBREGS) {
1311 		pcb->pcb_dr0 = 0;
1312 		pcb->pcb_dr1 = 0;
1313 		pcb->pcb_dr2 = 0;
1314 		pcb->pcb_dr3 = 0;
1315 		pcb->pcb_dr6 = 0;
1316 		pcb->pcb_dr7 = 0; /* JG set bit 10? */
1317 		if (pcb == td->td_pcb) {
1318 			/*
1319 			 * Clear the debug registers on the running
1320 			 * CPU, otherwise they will end up affecting
1321 			 * the next process we switch to.
1322 			 */
1323 			reset_dbregs();
1324 		}
1325 		pcb->pcb_flags &= ~PCB_DBREGS;
1326 	}
1327 
1328 	/*
1329 	 * Initialize the math emulator (if any) for the current process.
1330 	 * Actually, just clear the bit that says that the emulator has
1331 	 * been initialized.  Initialization is delayed until the process
1332 	 * traps to the emulator (if it is done at all) mainly because
1333 	 * emulators don't provide an entry point for initialization.
1334 	 */
1335 	pcb->pcb_flags &= ~FP_SOFTFP;
1336 
1337 	/*
1338 	 * NOTE: do not set CR0_TS here.  npxinit() must do it after clearing
1339 	 *	 gd_npxthread.  Otherwise a preemptive interrupt thread
1340 	 *	 may panic in npxdna().
1341 	 */
1342 	crit_enter();
1343 	load_cr0(rcr0() | CR0_MP);
1344 
1345 	/*
1346 	 * NOTE: The MSR values must be correct so we can return to
1347 	 * 	 userland.  gd_user_fs/gs must be correct so the switch
1348 	 *	 code knows what the current MSR values are.
1349 	 */
1350 	pcb->pcb_fsbase = 0;	/* Values loaded from PCB on switch */
1351 	pcb->pcb_gsbase = 0;
1352 	mdcpu->gd_user_fs = 0;	/* Cache of current MSR values */
1353 	mdcpu->gd_user_gs = 0;
1354 	wrmsr(MSR_FSBASE, 0);	/* Set MSR values for return to userland */
1355 	wrmsr(MSR_KGSBASE, 0);
1356 
1357 	/* Initialize the npx (if any) for the current process. */
1358 	npxinit();
1359 	crit_exit();
1360 
1361 	pcb->pcb_ds = _udatasel;
1362 	pcb->pcb_es = _udatasel;
1363 	pcb->pcb_fs = _udatasel;
1364 	pcb->pcb_gs = _udatasel;
1365 }
1366 
1367 void
1368 cpu_setregs(void)
1369 {
1370 	register_t cr0;
1371 
1372 	cr0 = rcr0();
1373 	cr0 |= CR0_NE;			/* Done by npxinit() */
1374 	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1375 	cr0 |= CR0_WP | CR0_AM;
1376 	load_cr0(cr0);
1377 	load_gs(_udatasel);
1378 }
1379 
1380 static int
1381 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1382 {
1383 	int error;
1384 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1385 		req);
1386 	if (!error && req->newptr)
1387 		resettodr();
1388 	return (error);
1389 }
1390 
1391 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1392 	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1393 
1394 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1395 	CTLFLAG_RW, &disable_rtc_set, 0, "");
1396 
1397 #if 0 /* JG */
1398 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1399 	CTLFLAG_RD, &bootinfo, bootinfo, "");
1400 #endif
1401 
1402 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1403 	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1404 
1405 extern u_long bootdev;		/* not a cdev_t - encoding is different */
1406 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1407 	CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1408 
1409 static int
1410 efi_map_sysctl_handler(SYSCTL_HANDLER_ARGS)
1411 {
1412 	struct efi_map_header *efihdr;
1413 	caddr_t kmdp;
1414 	uint32_t efisize;
1415 
1416 	kmdp = preload_search_by_type("elf kernel");
1417 	if (kmdp == NULL)
1418 		kmdp = preload_search_by_type("elf64 kernel");
1419 	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
1420 	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
1421 	if (efihdr == NULL)
1422 		return (0);
1423 	efisize = *((uint32_t *)efihdr - 1);
1424 	return (SYSCTL_OUT(req, efihdr, efisize));
1425 }
1426 SYSCTL_PROC(_machdep, OID_AUTO, efi_map, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
1427     efi_map_sysctl_handler, "S,efi_map_header", "Raw EFI Memory Map");
1428 
1429 /*
1430  * Initialize 386 and configure to run kernel
1431  */
1432 
1433 /*
1434  * Initialize segments & interrupt table
1435  */
1436 
1437 int _default_ldt;
1438 struct user_segment_descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1439 struct gate_descriptor idt_arr[MAXCPU][NIDT];
1440 #if 0 /* JG */
1441 union descriptor ldt[NLDT];		/* local descriptor table */
1442 #endif
1443 
1444 /* table descriptors - used to load tables by cpu */
1445 struct region_descriptor r_gdt;
1446 struct region_descriptor r_idt_arr[MAXCPU];
1447 
1448 /* JG proc0paddr is a virtual address */
1449 void *proc0paddr;
1450 /* JG alignment? */
1451 char proc0paddr_buff[LWKT_THREAD_STACK];
1452 
1453 
1454 /* software prototypes -- in more palatable form */
1455 struct soft_segment_descriptor gdt_segs[] = {
1456 /* GNULL_SEL	0 Null Descriptor */
1457 {	0x0,			/* segment base address  */
1458 	0x0,			/* length */
1459 	0,			/* segment type */
1460 	0,			/* segment descriptor priority level */
1461 	0,			/* segment descriptor present */
1462 	0,			/* long */
1463 	0,			/* default 32 vs 16 bit size */
1464 	0  			/* limit granularity (byte/page units)*/ },
1465 /* GCODE_SEL	1 Code Descriptor for kernel */
1466 {	0x0,			/* segment base address  */
1467 	0xfffff,		/* length - all address space */
1468 	SDT_MEMERA,		/* segment type */
1469 	SEL_KPL,		/* segment descriptor priority level */
1470 	1,			/* segment descriptor present */
1471 	1,			/* long */
1472 	0,			/* default 32 vs 16 bit size */
1473 	1  			/* limit granularity (byte/page units)*/ },
1474 /* GDATA_SEL	2 Data Descriptor for kernel */
1475 {	0x0,			/* segment base address  */
1476 	0xfffff,		/* length - all address space */
1477 	SDT_MEMRWA,		/* segment type */
1478 	SEL_KPL,		/* segment descriptor priority level */
1479 	1,			/* segment descriptor present */
1480 	1,			/* long */
1481 	0,			/* default 32 vs 16 bit size */
1482 	1  			/* limit granularity (byte/page units)*/ },
1483 /* GUCODE32_SEL	3 32 bit Code Descriptor for user */
1484 {	0x0,			/* segment base address  */
1485 	0xfffff,		/* length - all address space */
1486 	SDT_MEMERA,		/* segment type */
1487 	SEL_UPL,		/* segment descriptor priority level */
1488 	1,			/* segment descriptor present */
1489 	0,			/* long */
1490 	1,			/* default 32 vs 16 bit size */
1491 	1  			/* limit granularity (byte/page units)*/ },
1492 /* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
1493 {	0x0,			/* segment base address  */
1494 	0xfffff,		/* length - all address space */
1495 	SDT_MEMRWA,		/* segment type */
1496 	SEL_UPL,		/* segment descriptor priority level */
1497 	1,			/* segment descriptor present */
1498 	0,			/* long */
1499 	1,			/* default 32 vs 16 bit size */
1500 	1  			/* limit granularity (byte/page units)*/ },
1501 /* GUCODE_SEL	5 64 bit Code Descriptor for user */
1502 {	0x0,			/* segment base address  */
1503 	0xfffff,		/* length - all address space */
1504 	SDT_MEMERA,		/* segment type */
1505 	SEL_UPL,		/* segment descriptor priority level */
1506 	1,			/* segment descriptor present */
1507 	1,			/* long */
1508 	0,			/* default 32 vs 16 bit size */
1509 	1  			/* limit granularity (byte/page units)*/ },
1510 /* GPROC0_SEL	6 Proc 0 Tss Descriptor */
1511 {
1512 	0x0,			/* segment base address */
1513 	sizeof(struct x86_64tss)-1,/* length - all address space */
1514 	SDT_SYSTSS,		/* segment type */
1515 	SEL_KPL,		/* segment descriptor priority level */
1516 	1,			/* segment descriptor present */
1517 	0,			/* long */
1518 	0,			/* unused - default 32 vs 16 bit size */
1519 	0  			/* limit granularity (byte/page units)*/ },
1520 /* Actually, the TSS is a system descriptor which is double size */
1521 {	0x0,			/* segment base address  */
1522 	0x0,			/* length */
1523 	0,			/* segment type */
1524 	0,			/* segment descriptor priority level */
1525 	0,			/* segment descriptor present */
1526 	0,			/* long */
1527 	0,			/* default 32 vs 16 bit size */
1528 	0  			/* limit granularity (byte/page units)*/ },
1529 /* GUGS32_SEL	8 32 bit GS Descriptor for user */
1530 {	0x0,			/* segment base address  */
1531 	0xfffff,		/* length - all address space */
1532 	SDT_MEMRWA,		/* segment type */
1533 	SEL_UPL,		/* segment descriptor priority level */
1534 	1,			/* segment descriptor present */
1535 	0,			/* long */
1536 	1,			/* default 32 vs 16 bit size */
1537 	1  			/* limit granularity (byte/page units)*/ },
1538 };
1539 
1540 void
1541 setidt_global(int idx, inthand_t *func, int typ, int dpl, int ist)
1542 {
1543 	int cpu;
1544 
1545 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
1546 		struct gate_descriptor *ip = &idt_arr[cpu][idx];
1547 
1548 		ip->gd_looffset = (uintptr_t)func;
1549 		ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1550 		ip->gd_ist = ist;
1551 		ip->gd_xx = 0;
1552 		ip->gd_type = typ;
1553 		ip->gd_dpl = dpl;
1554 		ip->gd_p = 1;
1555 		ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1556 	}
1557 }
1558 
1559 void
1560 setidt(int idx, inthand_t *func, int typ, int dpl, int ist, int cpu)
1561 {
1562 	struct gate_descriptor *ip;
1563 
1564 	KASSERT(cpu >= 0 && cpu < ncpus, ("invalid cpu %d", cpu));
1565 
1566 	ip = &idt_arr[cpu][idx];
1567 	ip->gd_looffset = (uintptr_t)func;
1568 	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1569 	ip->gd_ist = ist;
1570 	ip->gd_xx = 0;
1571 	ip->gd_type = typ;
1572 	ip->gd_dpl = dpl;
1573 	ip->gd_p = 1;
1574 	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1575 }
1576 
1577 #define	IDTVEC(name)	__CONCAT(X,name)
1578 
1579 extern inthand_t
1580 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1581 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1582 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1583 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1584 	IDTVEC(xmm), IDTVEC(dblfault),
1585 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1586 
1587 void
1588 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1589 {
1590 	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1591 	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1592 	ssd->ssd_type  = sd->sd_type;
1593 	ssd->ssd_dpl   = sd->sd_dpl;
1594 	ssd->ssd_p     = sd->sd_p;
1595 	ssd->ssd_def32 = sd->sd_def32;
1596 	ssd->ssd_gran  = sd->sd_gran;
1597 }
1598 
1599 void
1600 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1601 {
1602 
1603 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1604 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1605 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1606 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1607 	sd->sd_type  = ssd->ssd_type;
1608 	sd->sd_dpl   = ssd->ssd_dpl;
1609 	sd->sd_p     = ssd->ssd_p;
1610 	sd->sd_long  = ssd->ssd_long;
1611 	sd->sd_def32 = ssd->ssd_def32;
1612 	sd->sd_gran  = ssd->ssd_gran;
1613 }
1614 
1615 void
1616 ssdtosyssd(struct soft_segment_descriptor *ssd,
1617     struct system_segment_descriptor *sd)
1618 {
1619 
1620 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1621 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1622 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1623 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1624 	sd->sd_type  = ssd->ssd_type;
1625 	sd->sd_dpl   = ssd->ssd_dpl;
1626 	sd->sd_p     = ssd->ssd_p;
1627 	sd->sd_gran  = ssd->ssd_gran;
1628 }
1629 
1630 /*
1631  * Populate the (physmap) array with base/bound pairs describing the
1632  * available physical memory in the system, then test this memory and
1633  * build the phys_avail array describing the actually-available memory.
1634  *
1635  * If we cannot accurately determine the physical memory map, then use
1636  * value from the 0xE801 call, and failing that, the RTC.
1637  *
1638  * Total memory size may be set by the kernel environment variable
1639  * hw.physmem or the compile-time define MAXMEM.
1640  *
1641  * Memory is aligned to PHYSMAP_ALIGN which must be a multiple
1642  * of PAGE_SIZE.  This also greatly reduces the memory test time
1643  * which would otherwise be excessive on machines with > 8G of ram.
1644  *
1645  * XXX first should be vm_paddr_t.
1646  */
1647 
1648 #define PHYSMAP_ALIGN		(vm_paddr_t)(128 * 1024)
1649 #define PHYSMAP_ALIGN_MASK	(vm_paddr_t)(PHYSMAP_ALIGN - 1)
1650 #define PHYSMAP_SIZE		VM_PHYSSEG_MAX
1651 
1652 vm_paddr_t physmap[PHYSMAP_SIZE];
1653 struct bios_smap *smapbase, *smap, *smapend;
1654 struct efi_map_header *efihdrbase;
1655 u_int32_t smapsize;
1656 
1657 #define PHYSMAP_HANDWAVE	(vm_paddr_t)(2 * 1024 * 1024)
1658 #define PHYSMAP_HANDWAVE_MASK	(PHYSMAP_HANDWAVE - 1)
1659 
1660 static void
1661 add_smap_entries(int *physmap_idx)
1662 {
1663 	int i;
1664 
1665 	smapsize = *((u_int32_t *)smapbase - 1);
1666 	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1667 
1668 	for (smap = smapbase; smap < smapend; smap++) {
1669 		if (boothowto & RB_VERBOSE)
1670 			kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1671 			    smap->type, smap->base, smap->length);
1672 
1673 		if (smap->type != SMAP_TYPE_MEMORY)
1674 			continue;
1675 
1676 		if (smap->length == 0)
1677 			continue;
1678 
1679 		for (i = 0; i <= *physmap_idx; i += 2) {
1680 			if (smap->base < physmap[i + 1]) {
1681 				if (boothowto & RB_VERBOSE) {
1682 					kprintf("Overlapping or non-monotonic "
1683 						"memory region, ignoring "
1684 						"second region\n");
1685 				}
1686 				break;
1687 			}
1688 		}
1689 		if (i <= *physmap_idx)
1690 			continue;
1691 
1692 		Realmem += smap->length;
1693 
1694 		if (smap->base == physmap[*physmap_idx + 1]) {
1695 			physmap[*physmap_idx + 1] += smap->length;
1696 			continue;
1697 		}
1698 
1699 		*physmap_idx += 2;
1700 		if (*physmap_idx == PHYSMAP_SIZE) {
1701 			kprintf("Too many segments in the physical "
1702 				"address map, giving up\n");
1703 			break;
1704 		}
1705 		physmap[*physmap_idx] = smap->base;
1706 		physmap[*physmap_idx + 1] = smap->base + smap->length;
1707 	}
1708 }
1709 
1710 static void
1711 add_efi_map_entries(int *physmap_idx)
1712 {
1713 	 struct efi_md *map, *p;
1714 	 const char *type;
1715 	 size_t efisz;
1716 	 int i, ndesc;
1717 
1718 	static const char *types[] = {
1719 		"Reserved",
1720 		"LoaderCode",
1721 		"LoaderData",
1722 		"BootServicesCode",
1723 		"BootServicesData",
1724 		"RuntimeServicesCode",
1725 		"RuntimeServicesData",
1726 		"ConventionalMemory",
1727 		"UnusableMemory",
1728 		"ACPIReclaimMemory",
1729 		"ACPIMemoryNVS",
1730 		"MemoryMappedIO",
1731 		"MemoryMappedIOPortSpace",
1732 		"PalCode"
1733 	 };
1734 
1735 	/*
1736 	 * Memory map data provided by UEFI via the GetMemoryMap
1737 	 * Boot Services API.
1738 	 */
1739 	efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
1740 	map = (struct efi_md *)((uint8_t *)efihdrbase + efisz);
1741 
1742 	if (efihdrbase->descriptor_size == 0)
1743 		return;
1744 	ndesc = efihdrbase->memory_size / efihdrbase->descriptor_size;
1745 
1746 	if (boothowto & RB_VERBOSE)
1747 		kprintf("%23s %12s %12s %8s %4s\n",
1748 		    "Type", "Physical", "Virtual", "#Pages", "Attr");
1749 
1750 	for (i = 0, p = map; i < ndesc; i++,
1751 	    p = efi_next_descriptor(p, efihdrbase->descriptor_size)) {
1752 		if (boothowto & RB_VERBOSE) {
1753 			if (p->md_type <= EFI_MD_TYPE_PALCODE)
1754 				type = types[p->md_type];
1755 			else
1756 				type = "<INVALID>";
1757 			kprintf("%23s %012lx %12p %08lx ", type, p->md_phys,
1758 			    p->md_virt, p->md_pages);
1759 			if (p->md_attr & EFI_MD_ATTR_UC)
1760 				kprintf("UC ");
1761 			if (p->md_attr & EFI_MD_ATTR_WC)
1762 				kprintf("WC ");
1763 			if (p->md_attr & EFI_MD_ATTR_WT)
1764 				kprintf("WT ");
1765 			if (p->md_attr & EFI_MD_ATTR_WB)
1766 				kprintf("WB ");
1767 			if (p->md_attr & EFI_MD_ATTR_UCE)
1768 				kprintf("UCE ");
1769 			if (p->md_attr & EFI_MD_ATTR_WP)
1770 				kprintf("WP ");
1771 			if (p->md_attr & EFI_MD_ATTR_RP)
1772 				kprintf("RP ");
1773 			if (p->md_attr & EFI_MD_ATTR_XP)
1774 				kprintf("XP ");
1775 			if (p->md_attr & EFI_MD_ATTR_RT)
1776 				kprintf("RUNTIME");
1777 			kprintf("\n");
1778 		}
1779 
1780 		switch (p->md_type) {
1781 		case EFI_MD_TYPE_CODE:
1782 		case EFI_MD_TYPE_DATA:
1783 		case EFI_MD_TYPE_BS_CODE:
1784 		case EFI_MD_TYPE_BS_DATA:
1785 		case EFI_MD_TYPE_FREE:
1786 			/*
1787 			 * We're allowed to use any entry with these types.
1788 			 */
1789 			break;
1790 		default:
1791 			continue;
1792 		}
1793 
1794 		Realmem += p->md_pages * PAGE_SIZE;
1795 
1796 		if (p->md_phys == physmap[*physmap_idx + 1]) {
1797 			physmap[*physmap_idx + 1] += p->md_pages * PAGE_SIZE;
1798 			continue;
1799 		}
1800 
1801 		*physmap_idx += 2;
1802 		if (*physmap_idx == PHYSMAP_SIZE) {
1803 			kprintf("Too many segments in the physical "
1804 				"address map, giving up\n");
1805 			break;
1806 		}
1807 		physmap[*physmap_idx] = p->md_phys;
1808 		physmap[*physmap_idx + 1] = p->md_phys + p->md_pages * PAGE_SIZE;
1809 	 }
1810 }
1811 
1812 struct fb_info efi_fb_info;
1813 static int have_efi_framebuffer = 0;
1814 
1815 static void
1816 efi_fb_init_vaddr(int direct_map)
1817 {
1818 	uint64_t sz;
1819 	vm_offset_t addr, v;
1820 
1821 	v = efi_fb_info.vaddr;
1822 	sz = efi_fb_info.stride * efi_fb_info.height;
1823 
1824 	if (direct_map) {
1825 		addr = PHYS_TO_DMAP(efi_fb_info.paddr);
1826 		if (addr >= DMAP_MIN_ADDRESS && addr + sz < DMAP_MAX_ADDRESS)
1827 			efi_fb_info.vaddr = addr;
1828 	} else {
1829 		efi_fb_info.vaddr = (vm_offset_t)pmap_mapdev_attr(
1830 		    efi_fb_info.paddr, sz, PAT_WRITE_COMBINING);
1831 	}
1832 }
1833 
1834 int
1835 probe_efi_fb(int early)
1836 {
1837 	struct efi_fb	*efifb;
1838 	caddr_t		kmdp;
1839 
1840 	if (have_efi_framebuffer) {
1841 		if (!early &&
1842 		    (efi_fb_info.vaddr == 0 ||
1843 		     efi_fb_info.vaddr == PHYS_TO_DMAP(efi_fb_info.paddr)))
1844 			efi_fb_init_vaddr(0);
1845 		return 0;
1846 	}
1847 
1848 	kmdp = preload_search_by_type("elf kernel");
1849 	if (kmdp == NULL)
1850 		kmdp = preload_search_by_type("elf64 kernel");
1851 	efifb = (struct efi_fb *)preload_search_info(kmdp,
1852 	    MODINFO_METADATA | MODINFOMD_EFI_FB);
1853 	if (efifb == NULL)
1854 		return 1;
1855 
1856 	have_efi_framebuffer = 1;
1857 
1858 	efi_fb_info.is_vga_boot_display = 1;
1859 	efi_fb_info.width = efifb->fb_width;
1860 	efi_fb_info.height = efifb->fb_height;
1861 	efi_fb_info.stride = efifb->fb_stride * 4;
1862 	efi_fb_info.depth = 32;
1863 	efi_fb_info.paddr = efifb->fb_addr;
1864 	if (early) {
1865 		efi_fb_info.vaddr = 0;
1866 	} else {
1867 		efi_fb_init_vaddr(0);
1868 	}
1869 	efi_fb_info.fbops.fb_set_par = NULL;
1870 	efi_fb_info.fbops.fb_blank = NULL;
1871 	efi_fb_info.fbops.fb_debug_enter = NULL;
1872 	efi_fb_info.device = NULL;
1873 
1874 	return 0;
1875 }
1876 
1877 static void
1878 efifb_startup(void *arg)
1879 {
1880 	probe_efi_fb(0);
1881 }
1882 
1883 SYSINIT(efi_fb_info, SI_BOOT1_POST, SI_ORDER_FIRST, efifb_startup, NULL);
1884 
1885 static void
1886 getmemsize(caddr_t kmdp, u_int64_t first)
1887 {
1888 	int off, physmap_idx, pa_indx, da_indx;
1889 	int i, j;
1890 	vm_paddr_t pa;
1891 	vm_paddr_t msgbuf_size;
1892 	u_long physmem_tunable;
1893 	pt_entry_t *pte;
1894 	quad_t dcons_addr, dcons_size;
1895 
1896 	bzero(physmap, sizeof(physmap));
1897 	physmap_idx = 0;
1898 
1899 	/*
1900 	 * get memory map from INT 15:E820, kindly supplied by the loader.
1901 	 *
1902 	 * subr_module.c says:
1903 	 * "Consumer may safely assume that size value precedes data."
1904 	 * ie: an int32_t immediately precedes smap.
1905 	 */
1906 	efihdrbase = (struct efi_map_header *)preload_search_info(kmdp,
1907 		     MODINFO_METADATA | MODINFOMD_EFI_MAP);
1908 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1909 		   MODINFO_METADATA | MODINFOMD_SMAP);
1910 	if (smapbase == NULL && efihdrbase == NULL)
1911 		panic("No BIOS smap or EFI map info from loader!");
1912 
1913 	if (efihdrbase == NULL)
1914 		add_smap_entries(&physmap_idx);
1915 	else
1916 		add_efi_map_entries(&physmap_idx);
1917 
1918 	base_memory = physmap[1] / 1024;
1919 	/* make hole for AP bootstrap code */
1920 	physmap[1] = mp_bootaddress(base_memory);
1921 
1922 	/* Save EBDA address, if any */
1923 	ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
1924 	ebda_addr <<= 4;
1925 
1926 	/*
1927 	 * Maxmem isn't the "maximum memory", it's one larger than the
1928 	 * highest page of the physical address space.  It should be
1929 	 * called something like "Maxphyspage".  We may adjust this
1930 	 * based on ``hw.physmem'' and the results of the memory test.
1931 	 */
1932 	Maxmem = atop(physmap[physmap_idx + 1]);
1933 
1934 #ifdef MAXMEM
1935 	Maxmem = MAXMEM / 4;
1936 #endif
1937 
1938 	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1939 		Maxmem = atop(physmem_tunable);
1940 
1941 	/*
1942 	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1943 	 * in the system.
1944 	 */
1945 	if (Maxmem > atop(physmap[physmap_idx + 1]))
1946 		Maxmem = atop(physmap[physmap_idx + 1]);
1947 
1948 	/*
1949 	 * Blowing out the DMAP will blow up the system.
1950 	 */
1951 	if (Maxmem > atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS)) {
1952 		kprintf("Limiting Maxmem due to DMAP size\n");
1953 		Maxmem = atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS);
1954 	}
1955 
1956 	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1957 	    (boothowto & RB_VERBOSE)) {
1958 		kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
1959 	}
1960 
1961 	/*
1962 	 * Call pmap initialization to make new kernel address space
1963 	 *
1964 	 * Mask off page 0.
1965 	 */
1966 	pmap_bootstrap(&first);
1967 	physmap[0] = PAGE_SIZE;
1968 
1969 	/*
1970 	 * Align the physmap to PHYSMAP_ALIGN and cut out anything
1971 	 * exceeding Maxmem.
1972 	 */
1973 	for (i = j = 0; i <= physmap_idx; i += 2) {
1974 		if (physmap[i+1] > ptoa(Maxmem))
1975 			physmap[i+1] = ptoa(Maxmem);
1976 		physmap[i] = (physmap[i] + PHYSMAP_ALIGN_MASK) &
1977 			     ~PHYSMAP_ALIGN_MASK;
1978 		physmap[i+1] = physmap[i+1] & ~PHYSMAP_ALIGN_MASK;
1979 
1980 		physmap[j] = physmap[i];
1981 		physmap[j+1] = physmap[i+1];
1982 
1983 		if (physmap[i] < physmap[i+1])
1984 			j += 2;
1985 	}
1986 	physmap_idx = j - 2;
1987 
1988 	/*
1989 	 * Align anything else used in the validation loop.
1990 	 */
1991 	first = (first + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1992 
1993 	/*
1994 	 * Size up each available chunk of physical memory.
1995 	 */
1996 	pa_indx = 0;
1997 	da_indx = 0;
1998 	phys_avail[pa_indx].phys_beg = physmap[0];
1999 	phys_avail[pa_indx].phys_end = physmap[0];
2000 	dump_avail[da_indx].phys_beg = 0;
2001 	dump_avail[da_indx].phys_end = physmap[0];
2002 	pte = CMAP1;
2003 
2004 	/*
2005 	 * Get dcons buffer address
2006 	 */
2007 	if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
2008 	    kgetenv_quad("dcons.size", &dcons_size) == 0)
2009 		dcons_addr = 0;
2010 
2011 	/*
2012 	 * Validate the physical memory.  The physical memory segments
2013 	 * have already been aligned to PHYSMAP_ALIGN which is a multiple
2014 	 * of PAGE_SIZE.
2015 	 */
2016 	for (i = 0; i <= physmap_idx; i += 2) {
2017 		vm_paddr_t end;
2018 		vm_paddr_t incr = PHYSMAP_ALIGN;
2019 
2020 		end = physmap[i + 1];
2021 
2022 		for (pa = physmap[i]; pa < end; pa += incr) {
2023 			int page_bad, full;
2024 			volatile uint64_t *ptr = (uint64_t *)CADDR1;
2025 			uint64_t tmp;
2026 
2027 			incr = PHYSMAP_ALIGN;
2028 			full = FALSE;
2029 
2030 			/*
2031 			 * block out kernel memory as not available.
2032 			 */
2033 			if (pa >= 0x200000 && pa < first)
2034 				goto do_dump_avail;
2035 
2036 			/*
2037 			 * block out dcons buffer
2038 			 */
2039 			if (dcons_addr > 0
2040 			    && pa >= trunc_page(dcons_addr)
2041 			    && pa < dcons_addr + dcons_size) {
2042 				goto do_dump_avail;
2043 			}
2044 
2045 			page_bad = FALSE;
2046 
2047 			/*
2048 			 * Always test the first and last block supplied in
2049 			 * the map entry, but it just takes too long to run
2050 			 * the test these days and we already have to skip
2051 			 * pages.  Handwave it on PHYSMAP_HANDWAVE boundaries.
2052 			 */
2053 			if (pa != physmap[i]) {
2054 				vm_paddr_t bytes = end - pa;
2055 				if ((pa & PHYSMAP_HANDWAVE_MASK) == 0 &&
2056 				    bytes >= PHYSMAP_HANDWAVE + PHYSMAP_ALIGN) {
2057 					incr = PHYSMAP_HANDWAVE;
2058 					goto handwaved;
2059 				}
2060 			}
2061 
2062 			/*
2063 			 * map page into kernel: valid, read/write,non-cacheable
2064 			 */
2065 			*pte = pa |
2066 			    kernel_pmap.pmap_bits[PG_V_IDX] |
2067 			    kernel_pmap.pmap_bits[PG_RW_IDX] |
2068 			    kernel_pmap.pmap_bits[PG_N_IDX];
2069 			cpu_invlpg(__DEVOLATILE(void *, ptr));
2070 			cpu_mfence();
2071 
2072 			tmp = *ptr;
2073 			/*
2074 			 * Test for alternating 1's and 0's
2075 			 */
2076 			*ptr = 0xaaaaaaaaaaaaaaaaLLU;
2077 			cpu_mfence();
2078 			if (*ptr != 0xaaaaaaaaaaaaaaaaLLU)
2079 				page_bad = TRUE;
2080 			/*
2081 			 * Test for alternating 0's and 1's
2082 			 */
2083 			*ptr = 0x5555555555555555LLU;
2084 			cpu_mfence();
2085 			if (*ptr != 0x5555555555555555LLU)
2086 				page_bad = TRUE;
2087 			/*
2088 			 * Test for all 1's
2089 			 */
2090 			*ptr = 0xffffffffffffffffLLU;
2091 			cpu_mfence();
2092 			if (*ptr != 0xffffffffffffffffLLU)
2093 				page_bad = TRUE;
2094 			/*
2095 			 * Test for all 0's
2096 			 */
2097 			*ptr = 0x0;
2098 			cpu_mfence();
2099 			if (*ptr != 0x0)
2100 				page_bad = TRUE;
2101 			/*
2102 			 * Restore original value.
2103 			 */
2104 			*ptr = tmp;
2105 handwaved:
2106 
2107 			/*
2108 			 * Adjust array of valid/good pages.
2109 			 */
2110 			if (page_bad == TRUE)
2111 				continue;
2112 
2113 			/*
2114 			 * If this good page is a continuation of the
2115 			 * previous set of good pages, then just increase
2116 			 * the end pointer. Otherwise start a new chunk.
2117 			 * Note that "end" points one higher than end,
2118 			 * making the range >= start and < end.
2119 			 * If we're also doing a speculative memory
2120 			 * test and we at or past the end, bump up Maxmem
2121 			 * so that we keep going. The first bad page
2122 			 * will terminate the loop.
2123 			 */
2124 			if (phys_avail[pa_indx].phys_end == pa) {
2125 				phys_avail[pa_indx].phys_end += incr;
2126 			} else {
2127 				++pa_indx;
2128 				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
2129 					kprintf(
2130 		"Too many holes in the physical address space, giving up\n");
2131 					--pa_indx;
2132 					full = TRUE;
2133 					goto do_dump_avail;
2134 				}
2135 				phys_avail[pa_indx].phys_beg = pa;
2136 				phys_avail[pa_indx].phys_end = pa + incr;
2137 			}
2138 			physmem += incr / PAGE_SIZE;
2139 do_dump_avail:
2140 			if (dump_avail[da_indx].phys_end == pa) {
2141 				dump_avail[da_indx].phys_end += incr;
2142 			} else {
2143 				++da_indx;
2144 				if (da_indx == DUMP_AVAIL_ARRAY_END) {
2145 					--da_indx;
2146 					goto do_next;
2147 				}
2148 				dump_avail[da_indx].phys_beg = pa;
2149 				dump_avail[da_indx].phys_end = pa + incr;
2150 			}
2151 do_next:
2152 			if (full)
2153 				break;
2154 		}
2155 	}
2156 	*pte = 0;
2157 	cpu_invltlb();
2158 	cpu_mfence();
2159 
2160 	/*
2161 	 * The last chunk must contain at least one page plus the message
2162 	 * buffer to avoid complicating other code (message buffer address
2163 	 * calculation, etc.).
2164 	 */
2165 	msgbuf_size = (MSGBUF_SIZE + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
2166 
2167 	while (phys_avail[pa_indx].phys_beg + PHYSMAP_ALIGN + msgbuf_size >=
2168 	       phys_avail[pa_indx].phys_end) {
2169 		physmem -= atop(phys_avail[pa_indx].phys_end -
2170 				phys_avail[pa_indx].phys_beg);
2171 		phys_avail[pa_indx].phys_beg = 0;
2172 		phys_avail[pa_indx].phys_end = 0;
2173 		--pa_indx;
2174 	}
2175 
2176 	Maxmem = atop(phys_avail[pa_indx].phys_end);
2177 
2178 	/* Trim off space for the message buffer. */
2179 	phys_avail[pa_indx].phys_end -= msgbuf_size;
2180 
2181 	avail_end = phys_avail[pa_indx].phys_end;
2182 
2183 	/* Map the message buffer. */
2184 	for (off = 0; off < msgbuf_size; off += PAGE_SIZE) {
2185 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2186 	}
2187 	/* Try to get EFI framebuffer working as early as possible */
2188 	if (have_efi_framebuffer)
2189 		efi_fb_init_vaddr(1);
2190 }
2191 
2192 struct machintr_abi MachIntrABI;
2193 
2194 /*
2195  * IDT VECTORS:
2196  *	0	Divide by zero
2197  *	1	Debug
2198  *	2	NMI
2199  *	3	BreakPoint
2200  *	4	OverFlow
2201  *	5	Bound-Range
2202  *	6	Invalid OpCode
2203  *	7	Device Not Available (x87)
2204  *	8	Double-Fault
2205  *	9	Coprocessor Segment overrun (unsupported, reserved)
2206  *	10	Invalid-TSS
2207  *	11	Segment not present
2208  *	12	Stack
2209  *	13	General Protection
2210  *	14	Page Fault
2211  *	15	Reserved
2212  *	16	x87 FP Exception pending
2213  *	17	Alignment Check
2214  *	18	Machine Check
2215  *	19	SIMD floating point
2216  *	20-31	reserved
2217  *	32-255	INTn/external sources
2218  */
2219 u_int64_t
2220 hammer_time(u_int64_t modulep, u_int64_t physfree)
2221 {
2222 	caddr_t kmdp;
2223 	int gsel_tss, x, cpu;
2224 #if 0 /* JG */
2225 	int metadata_missing, off;
2226 #endif
2227 	struct mdglobaldata *gd;
2228 	u_int64_t msr;
2229 
2230 	/*
2231 	 * Prevent lowering of the ipl if we call tsleep() early.
2232 	 */
2233 	gd = &CPU_prvspace[0]->mdglobaldata;
2234 	bzero(gd, sizeof(*gd));
2235 
2236 	/*
2237 	 * Note: on both UP and SMP curthread must be set non-NULL
2238 	 * early in the boot sequence because the system assumes
2239 	 * that 'curthread' is never NULL.
2240 	 */
2241 
2242 	gd->mi.gd_curthread = &thread0;
2243 	thread0.td_gd = &gd->mi;
2244 
2245 	atdevbase = ISA_HOLE_START + PTOV_OFFSET;
2246 
2247 #if 0 /* JG */
2248 	metadata_missing = 0;
2249 	if (bootinfo.bi_modulep) {
2250 		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
2251 		preload_bootstrap_relocate(KERNBASE);
2252 	} else {
2253 		metadata_missing = 1;
2254 	}
2255 	if (bootinfo.bi_envp)
2256 		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
2257 #endif
2258 
2259 	preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
2260 	preload_bootstrap_relocate(PTOV_OFFSET);
2261 	kmdp = preload_search_by_type("elf kernel");
2262 	if (kmdp == NULL)
2263 		kmdp = preload_search_by_type("elf64 kernel");
2264 	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
2265 	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
2266 #ifdef DDB
2267 	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
2268 	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
2269 #endif
2270 	efi_systbl_phys = MD_FETCH(kmdp, MODINFOMD_FW_HANDLE, vm_paddr_t);
2271 
2272 	if (boothowto & RB_VERBOSE)
2273 		bootverbose++;
2274 
2275 	/*
2276 	 * Default MachIntrABI to ICU
2277 	 */
2278 	MachIntrABI = MachIntrABI_ICU;
2279 
2280 	/*
2281 	 * start with one cpu.  Note: with one cpu, ncpus2_shift, ncpus2_mask,
2282 	 * and ncpus_fit_mask remain 0.
2283 	 */
2284 	ncpus = 1;
2285 	ncpus2 = 1;
2286 	ncpus_fit = 1;
2287 	/* Init basic tunables, hz etc */
2288 	init_param1();
2289 
2290 	/*
2291 	 * make gdt memory segments
2292 	 */
2293 	gdt_segs[GPROC0_SEL].ssd_base =
2294 		(uintptr_t) &CPU_prvspace[0]->mdglobaldata.gd_common_tss;
2295 
2296 	gd->mi.gd_prvspace = CPU_prvspace[0];
2297 
2298 	for (x = 0; x < NGDT; x++) {
2299 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
2300 			ssdtosd(&gdt_segs[x], &gdt[x]);
2301 	}
2302 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2303 	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
2304 
2305 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
2306 	r_gdt.rd_base =  (long) gdt;
2307 	lgdt(&r_gdt);
2308 
2309 	wrmsr(MSR_FSBASE, 0);		/* User value */
2310 	wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
2311 	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
2312 
2313 	mi_gdinit(&gd->mi, 0);
2314 	cpu_gdinit(gd, 0);
2315 	proc0paddr = proc0paddr_buff;
2316 	mi_proc0init(&gd->mi, proc0paddr);
2317 	safepri = TDPRI_MAX;
2318 
2319 	/* spinlocks and the BGL */
2320 	init_locks();
2321 
2322 	/* exceptions */
2323 	for (x = 0; x < NIDT; x++)
2324 		setidt_global(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
2325 	setidt_global(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
2326 	setidt_global(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
2327 	setidt_global(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 1);
2328  	setidt_global(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
2329 	setidt_global(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
2330 	setidt_global(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
2331 	setidt_global(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
2332 	setidt_global(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
2333 	setidt_global(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
2334 	setidt_global(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
2335 	setidt_global(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
2336 	setidt_global(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
2337 	setidt_global(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
2338 	setidt_global(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
2339 	setidt_global(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
2340 	setidt_global(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
2341 	setidt_global(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
2342 	setidt_global(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
2343 	setidt_global(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
2344 
2345 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
2346 		r_idt_arr[cpu].rd_limit = sizeof(idt_arr[cpu]) - 1;
2347 		r_idt_arr[cpu].rd_base = (long) &idt_arr[cpu][0];
2348 	}
2349 
2350 	lidt(&r_idt_arr[0]);
2351 
2352 	/*
2353 	 * Initialize the console before we print anything out.
2354 	 */
2355 	cninit();
2356 
2357 #if 0 /* JG */
2358 	if (metadata_missing)
2359 		kprintf("WARNING: loader(8) metadata is missing!\n");
2360 #endif
2361 
2362 #if	NISA >0
2363 	elcr_probe();
2364 	isa_defaultirq();
2365 #endif
2366 	rand_initialize();
2367 
2368 	/*
2369 	 * Initialize IRQ mapping
2370 	 *
2371 	 * NOTE:
2372 	 * SHOULD be after elcr_probe()
2373 	 */
2374 	MachIntrABI_ICU.initmap();
2375 	MachIntrABI_IOAPIC.initmap();
2376 
2377 #ifdef DDB
2378 	kdb_init();
2379 	if (boothowto & RB_KDB)
2380 		Debugger("Boot flags requested debugger");
2381 #endif
2382 
2383 #if 0 /* JG */
2384 	finishidentcpu();	/* Final stage of CPU initialization */
2385 	setidt(6, &IDTVEC(ill),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2386 	setidt(13, &IDTVEC(prot),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2387 #endif
2388 	identify_cpu();		/* Final stage of CPU initialization */
2389 	initializecpu(0);	/* Initialize CPU registers */
2390 
2391 	/*
2392 	 * On modern intel cpus, haswell or later, cpu_idle_hlt=1 is better
2393 	 * because the cpu does significant power management in MWAIT
2394 	 * (also suggested is to set sysctl machdep.mwait.CX.idle=AUTODEEP).
2395 	 *
2396 	 * On modern amd cpus cpu_idle_hlt=3 is better, because the cpu does
2397 	 * significant power management in HLT or ACPI (but cpu_idle_hlt=1
2398 	 * would try to use MWAIT).
2399 	 *
2400 	 * On older amd or intel cpus, cpu_idle_hlt=2 is better because ACPI
2401 	 * is needed to reduce power consumption, but wakeup times are often
2402 	 * longer.
2403 	 */
2404 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
2405 	    CPUID_TO_MODEL(cpu_id) >= 0x3C) {	/* Haswell or later */
2406 		cpu_idle_hlt = 1;
2407 	}
2408 	if (cpu_vendor_id == CPU_VENDOR_AMD &&
2409 	    CPUID_TO_FAMILY(cpu_id) >= 0x14) {	/* Bobcat or later */
2410 		cpu_idle_hlt = 3;
2411 	}
2412 
2413 	TUNABLE_INT_FETCH("hw.apic_io_enable", &ioapic_enable); /* for compat */
2414 	TUNABLE_INT_FETCH("hw.ioapic_enable", &ioapic_enable);
2415 	TUNABLE_INT_FETCH("hw.lapic_enable", &lapic_enable);
2416 	TUNABLE_INT_FETCH("machdep.cpu_idle_hlt", &cpu_idle_hlt);
2417 
2418 	/*
2419 	 * Some of the virtual machines do not work w/ I/O APIC
2420 	 * enabled.  If the user does not explicitly enable or
2421 	 * disable the I/O APIC (ioapic_enable < 0), then we
2422 	 * disable I/O APIC on all virtual machines.
2423 	 *
2424 	 * NOTE:
2425 	 * This must be done after identify_cpu(), which sets
2426 	 * 'cpu_feature2'
2427 	 */
2428 	if (ioapic_enable < 0) {
2429 		if (cpu_feature2 & CPUID2_VMM)
2430 			ioapic_enable = 0;
2431 		else
2432 			ioapic_enable = 1;
2433 	}
2434 
2435 	/* make an initial tss so cpu can get interrupt stack on syscall! */
2436 	gd->gd_common_tss.tss_rsp0 =
2437 		(register_t)(thread0.td_kstack +
2438 			     KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb));
2439 	/* Ensure the stack is aligned to 16 bytes */
2440 	gd->gd_common_tss.tss_rsp0 &= ~(register_t)0xF;
2441 
2442 	/* double fault stack */
2443 	gd->gd_common_tss.tss_ist1 =
2444 		(long)&gd->mi.gd_prvspace->idlestack[
2445 			sizeof(gd->mi.gd_prvspace->idlestack)];
2446 
2447 	/* Set the IO permission bitmap (empty due to tss seg limit) */
2448 	gd->gd_common_tss.tss_iobase = sizeof(struct x86_64tss);
2449 
2450 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2451 	gd->gd_tss_gdt = &gdt[GPROC0_SEL];
2452 	gd->gd_common_tssd = *gd->gd_tss_gdt;
2453 	ltr(gsel_tss);
2454 
2455 	/* Set up the fast syscall stuff */
2456 	msr = rdmsr(MSR_EFER) | EFER_SCE;
2457 	wrmsr(MSR_EFER, msr);
2458 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
2459 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
2460 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
2461 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
2462 	wrmsr(MSR_STAR, msr);
2463 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
2464 
2465 	getmemsize(kmdp, physfree);
2466 	init_param2(physmem);
2467 
2468 	/* now running on new page tables, configured,and u/iom is accessible */
2469 
2470 	/* Map the message buffer. */
2471 #if 0 /* JG */
2472 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2473 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2474 #endif
2475 
2476 	msgbufinit(msgbufp, MSGBUF_SIZE);
2477 
2478 
2479 	/* transfer to user mode */
2480 
2481 	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2482 	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2483 	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
2484 
2485 	load_ds(_udatasel);
2486 	load_es(_udatasel);
2487 	load_fs(_udatasel);
2488 
2489 	/* setup proc 0's pcb */
2490 	thread0.td_pcb->pcb_flags = 0;
2491 	thread0.td_pcb->pcb_cr3 = KPML4phys;
2492 	thread0.td_pcb->pcb_ext = NULL;
2493 	lwp0.lwp_md.md_regs = &proc0_tf;	/* XXX needed? */
2494 
2495 	/* Location of kernel stack for locore */
2496 	return ((u_int64_t)thread0.td_pcb);
2497 }
2498 
2499 /*
2500  * Initialize machine-dependant portions of the global data structure.
2501  * Note that the global data area and cpu0's idlestack in the private
2502  * data space were allocated in locore.
2503  *
2504  * Note: the idlethread's cpl is 0
2505  *
2506  * WARNING!  Called from early boot, 'mycpu' may not work yet.
2507  */
2508 void
2509 cpu_gdinit(struct mdglobaldata *gd, int cpu)
2510 {
2511 	if (cpu)
2512 		gd->mi.gd_curthread = &gd->mi.gd_idlethread;
2513 
2514 	lwkt_init_thread(&gd->mi.gd_idlethread,
2515 			gd->mi.gd_prvspace->idlestack,
2516 			sizeof(gd->mi.gd_prvspace->idlestack),
2517 			0, &gd->mi);
2518 	lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
2519 	gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
2520 	gd->mi.gd_idlethread.td_sp -= sizeof(void *);
2521 	*(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
2522 }
2523 
2524 /*
2525  * We only have to check for DMAP bounds, the globaldata space is
2526  * actually part of the kernel_map so we don't have to waste time
2527  * checking CPU_prvspace[*].
2528  */
2529 int
2530 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
2531 {
2532 #if 0
2533 	if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
2534 	    eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
2535 		return (TRUE);
2536 	}
2537 #endif
2538 	if (saddr >= DMAP_MIN_ADDRESS && eaddr <= DMAP_MAX_ADDRESS)
2539 		return (TRUE);
2540 	return (FALSE);
2541 }
2542 
2543 struct globaldata *
2544 globaldata_find(int cpu)
2545 {
2546 	KKASSERT(cpu >= 0 && cpu < ncpus);
2547 	return(&CPU_prvspace[cpu]->mdglobaldata.mi);
2548 }
2549 
2550 /*
2551  * This path should be safe from the SYSRET issue because only stopped threads
2552  * can have their %rip adjusted this way (and all heavy weight thread switches
2553  * clear QUICKREF and thus do not use SYSRET).  However, the code path is
2554  * convoluted so add a safety by forcing %rip to be cannonical.
2555  */
2556 int
2557 ptrace_set_pc(struct lwp *lp, unsigned long addr)
2558 {
2559 	if (addr & 0x0000800000000000LLU)
2560 		lp->lwp_md.md_regs->tf_rip = addr | 0xFFFF000000000000LLU;
2561 	else
2562 		lp->lwp_md.md_regs->tf_rip = addr & 0x0000FFFFFFFFFFFFLLU;
2563 	return (0);
2564 }
2565 
2566 int
2567 ptrace_single_step(struct lwp *lp)
2568 {
2569 	lp->lwp_md.md_regs->tf_rflags |= PSL_T;
2570 	return (0);
2571 }
2572 
2573 int
2574 fill_regs(struct lwp *lp, struct reg *regs)
2575 {
2576 	struct trapframe *tp;
2577 
2578 	if ((tp = lp->lwp_md.md_regs) == NULL)
2579 		return EINVAL;
2580 	bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
2581 	return (0);
2582 }
2583 
2584 int
2585 set_regs(struct lwp *lp, struct reg *regs)
2586 {
2587 	struct trapframe *tp;
2588 
2589 	tp = lp->lwp_md.md_regs;
2590 	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
2591 	    !CS_SECURE(regs->r_cs))
2592 		return (EINVAL);
2593 	bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
2594 	clear_quickret();
2595 	return (0);
2596 }
2597 
2598 static void
2599 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2600 {
2601 	struct env87 *penv_87 = &sv_87->sv_env;
2602 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2603 	int i;
2604 
2605 	/* FPU control/status */
2606 	penv_87->en_cw = penv_xmm->en_cw;
2607 	penv_87->en_sw = penv_xmm->en_sw;
2608 	penv_87->en_tw = penv_xmm->en_tw;
2609 	penv_87->en_fip = penv_xmm->en_fip;
2610 	penv_87->en_fcs = penv_xmm->en_fcs;
2611 	penv_87->en_opcode = penv_xmm->en_opcode;
2612 	penv_87->en_foo = penv_xmm->en_foo;
2613 	penv_87->en_fos = penv_xmm->en_fos;
2614 
2615 	/* FPU registers */
2616 	for (i = 0; i < 8; ++i)
2617 		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2618 }
2619 
2620 static void
2621 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2622 {
2623 	struct env87 *penv_87 = &sv_87->sv_env;
2624 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2625 	int i;
2626 
2627 	/* FPU control/status */
2628 	penv_xmm->en_cw = penv_87->en_cw;
2629 	penv_xmm->en_sw = penv_87->en_sw;
2630 	penv_xmm->en_tw = penv_87->en_tw;
2631 	penv_xmm->en_fip = penv_87->en_fip;
2632 	penv_xmm->en_fcs = penv_87->en_fcs;
2633 	penv_xmm->en_opcode = penv_87->en_opcode;
2634 	penv_xmm->en_foo = penv_87->en_foo;
2635 	penv_xmm->en_fos = penv_87->en_fos;
2636 
2637 	/* FPU registers */
2638 	for (i = 0; i < 8; ++i)
2639 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2640 }
2641 
2642 int
2643 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2644 {
2645 	if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
2646 		return EINVAL;
2647 	if (cpu_fxsr) {
2648 		fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2649 				(struct save87 *)fpregs);
2650 		return (0);
2651 	}
2652 	bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2653 	return (0);
2654 }
2655 
2656 int
2657 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2658 {
2659 	if (cpu_fxsr) {
2660 		set_fpregs_xmm((struct save87 *)fpregs,
2661 			       &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2662 		return (0);
2663 	}
2664 	bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2665 	return (0);
2666 }
2667 
2668 int
2669 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2670 {
2671 	struct pcb *pcb;
2672 
2673         if (lp == NULL) {
2674                 dbregs->dr[0] = rdr0();
2675                 dbregs->dr[1] = rdr1();
2676                 dbregs->dr[2] = rdr2();
2677                 dbregs->dr[3] = rdr3();
2678                 dbregs->dr[4] = rdr4();
2679                 dbregs->dr[5] = rdr5();
2680                 dbregs->dr[6] = rdr6();
2681                 dbregs->dr[7] = rdr7();
2682 		return (0);
2683         }
2684 	if (lp->lwp_thread == NULL || (pcb = lp->lwp_thread->td_pcb) == NULL)
2685 		return EINVAL;
2686 	dbregs->dr[0] = pcb->pcb_dr0;
2687 	dbregs->dr[1] = pcb->pcb_dr1;
2688 	dbregs->dr[2] = pcb->pcb_dr2;
2689 	dbregs->dr[3] = pcb->pcb_dr3;
2690 	dbregs->dr[4] = 0;
2691 	dbregs->dr[5] = 0;
2692 	dbregs->dr[6] = pcb->pcb_dr6;
2693 	dbregs->dr[7] = pcb->pcb_dr7;
2694 	return (0);
2695 }
2696 
2697 int
2698 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2699 {
2700 	if (lp == NULL) {
2701 		load_dr0(dbregs->dr[0]);
2702 		load_dr1(dbregs->dr[1]);
2703 		load_dr2(dbregs->dr[2]);
2704 		load_dr3(dbregs->dr[3]);
2705 		load_dr4(dbregs->dr[4]);
2706 		load_dr5(dbregs->dr[5]);
2707 		load_dr6(dbregs->dr[6]);
2708 		load_dr7(dbregs->dr[7]);
2709 	} else {
2710 		struct pcb *pcb;
2711 		struct ucred *ucred;
2712 		int i;
2713 		uint64_t mask1, mask2;
2714 
2715 		/*
2716 		 * Don't let an illegal value for dr7 get set.	Specifically,
2717 		 * check for undefined settings.  Setting these bit patterns
2718 		 * result in undefined behaviour and can lead to an unexpected
2719 		 * TRCTRAP.
2720 		 */
2721 		/* JG this loop looks unreadable */
2722 		/* Check 4 2-bit fields for invalid patterns.
2723 		 * These fields are R/Wi, for i = 0..3
2724 		 */
2725 		/* Is 10 in LENi allowed when running in compatibility mode? */
2726 		/* Pattern 10 in R/Wi might be used to indicate
2727 		 * breakpoint on I/O. Further analysis should be
2728 		 * carried to decide if it is safe and useful to
2729 		 * provide access to that capability
2730 		 */
2731 		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2732 		     i++, mask1 <<= 4, mask2 <<= 4)
2733 			if ((dbregs->dr[7] & mask1) == mask2)
2734 				return (EINVAL);
2735 
2736 		pcb = lp->lwp_thread->td_pcb;
2737 		ucred = lp->lwp_proc->p_ucred;
2738 
2739 		/*
2740 		 * Don't let a process set a breakpoint that is not within the
2741 		 * process's address space.  If a process could do this, it
2742 		 * could halt the system by setting a breakpoint in the kernel
2743 		 * (if ddb was enabled).  Thus, we need to check to make sure
2744 		 * that no breakpoints are being enabled for addresses outside
2745 		 * process's address space, unless, perhaps, we were called by
2746 		 * uid 0.
2747 		 *
2748 		 * XXX - what about when the watched area of the user's
2749 		 * address space is written into from within the kernel
2750 		 * ... wouldn't that still cause a breakpoint to be generated
2751 		 * from within kernel mode?
2752 		 */
2753 
2754 		if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2755 			if (dbregs->dr[7] & 0x3) {
2756 				/* dr0 is enabled */
2757 				if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2758 					return (EINVAL);
2759 			}
2760 
2761 			if (dbregs->dr[7] & (0x3<<2)) {
2762 				/* dr1 is enabled */
2763 				if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2764 					return (EINVAL);
2765 			}
2766 
2767 			if (dbregs->dr[7] & (0x3<<4)) {
2768 				/* dr2 is enabled */
2769 				if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2770 					return (EINVAL);
2771 			}
2772 
2773 			if (dbregs->dr[7] & (0x3<<6)) {
2774 				/* dr3 is enabled */
2775 				if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2776 					return (EINVAL);
2777 			}
2778 		}
2779 
2780 		pcb->pcb_dr0 = dbregs->dr[0];
2781 		pcb->pcb_dr1 = dbregs->dr[1];
2782 		pcb->pcb_dr2 = dbregs->dr[2];
2783 		pcb->pcb_dr3 = dbregs->dr[3];
2784 		pcb->pcb_dr6 = dbregs->dr[6];
2785 		pcb->pcb_dr7 = dbregs->dr[7];
2786 
2787 		pcb->pcb_flags |= PCB_DBREGS;
2788 	}
2789 
2790 	return (0);
2791 }
2792 
2793 /*
2794  * Return > 0 if a hardware breakpoint has been hit, and the
2795  * breakpoint was in user space.  Return 0, otherwise.
2796  */
2797 int
2798 user_dbreg_trap(void)
2799 {
2800         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2801         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2802         int nbp;            /* number of breakpoints that triggered */
2803         caddr_t addr[4];    /* breakpoint addresses */
2804         int i;
2805 
2806         dr7 = rdr7();
2807         if ((dr7 & 0xff) == 0) {
2808                 /*
2809                  * all GE and LE bits in the dr7 register are zero,
2810                  * thus the trap couldn't have been caused by the
2811                  * hardware debug registers
2812                  */
2813                 return 0;
2814         }
2815 
2816         nbp = 0;
2817         dr6 = rdr6();
2818         bp = dr6 & 0xf;
2819 
2820         if (bp == 0) {
2821                 /*
2822                  * None of the breakpoint bits are set meaning this
2823                  * trap was not caused by any of the debug registers
2824                  */
2825                 return 0;
2826         }
2827 
2828         /*
2829          * at least one of the breakpoints were hit, check to see
2830          * which ones and if any of them are user space addresses
2831          */
2832 
2833         if (bp & 0x01) {
2834                 addr[nbp++] = (caddr_t)rdr0();
2835         }
2836         if (bp & 0x02) {
2837                 addr[nbp++] = (caddr_t)rdr1();
2838         }
2839         if (bp & 0x04) {
2840                 addr[nbp++] = (caddr_t)rdr2();
2841         }
2842         if (bp & 0x08) {
2843                 addr[nbp++] = (caddr_t)rdr3();
2844         }
2845 
2846         for (i=0; i<nbp; i++) {
2847                 if (addr[i] <
2848                     (caddr_t)VM_MAX_USER_ADDRESS) {
2849                         /*
2850                          * addr[i] is in user space
2851                          */
2852                         return nbp;
2853                 }
2854         }
2855 
2856         /*
2857          * None of the breakpoints are in user space.
2858          */
2859         return 0;
2860 }
2861 
2862 
2863 #ifndef DDB
2864 void
2865 Debugger(const char *msg)
2866 {
2867 	kprintf("Debugger(\"%s\") called.\n", msg);
2868 }
2869 #endif /* no DDB */
2870 
2871 #ifdef DDB
2872 
2873 /*
2874  * Provide inb() and outb() as functions.  They are normally only
2875  * available as macros calling inlined functions, thus cannot be
2876  * called inside DDB.
2877  *
2878  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2879  */
2880 
2881 #undef inb
2882 #undef outb
2883 
2884 /* silence compiler warnings */
2885 u_char inb(u_int);
2886 void outb(u_int, u_char);
2887 
2888 u_char
2889 inb(u_int port)
2890 {
2891 	u_char	data;
2892 	/*
2893 	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2894 	 * %edx, while gcc generates inferior code (movw instead of movl)
2895 	 * if we tell it to load (u_short) port.
2896 	 */
2897 	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2898 	return (data);
2899 }
2900 
2901 void
2902 outb(u_int port, u_char data)
2903 {
2904 	u_char	al;
2905 	/*
2906 	 * Use an unnecessary assignment to help gcc's register allocator.
2907 	 * This make a large difference for gcc-1.40 and a tiny difference
2908 	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2909 	 * best results.  gcc-2.6.0 can't handle this.
2910 	 */
2911 	al = data;
2912 	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2913 }
2914 
2915 #endif /* DDB */
2916 
2917 
2918 
2919 /*
2920  * initialize all the SMP locks
2921  */
2922 
2923 /* critical region when masking or unmasking interupts */
2924 struct spinlock_deprecated imen_spinlock;
2925 
2926 /* lock region used by kernel profiling */
2927 struct spinlock_deprecated mcount_spinlock;
2928 
2929 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2930 struct spinlock_deprecated com_spinlock;
2931 
2932 /* lock regions around the clock hardware */
2933 struct spinlock_deprecated clock_spinlock;
2934 
2935 static void
2936 init_locks(void)
2937 {
2938 	/*
2939 	 * Get the initial mplock with a count of 1 for the BSP.
2940 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
2941 	 */
2942 	cpu_get_initial_mplock();
2943 	/* DEPRECATED */
2944 	spin_init_deprecated(&mcount_spinlock);
2945 	spin_init_deprecated(&imen_spinlock);
2946 	spin_init_deprecated(&com_spinlock);
2947 	spin_init_deprecated(&clock_spinlock);
2948 
2949 	/* our token pool needs to work early */
2950 	lwkt_token_pool_init();
2951 }
2952 
2953 boolean_t
2954 cpu_mwait_hint_valid(uint32_t hint)
2955 {
2956 	int cx_idx, sub;
2957 
2958 	cx_idx = MWAIT_EAX_TO_CX(hint);
2959 	if (cx_idx >= CPU_MWAIT_CX_MAX)
2960 		return FALSE;
2961 
2962 	sub = MWAIT_EAX_TO_CX_SUB(hint);
2963 	if (sub >= cpu_mwait_cx_info[cx_idx].subcnt)
2964 		return FALSE;
2965 
2966 	return TRUE;
2967 }
2968 
2969 void
2970 cpu_mwait_cx_no_bmsts(void)
2971 {
2972 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_STS);
2973 }
2974 
2975 void
2976 cpu_mwait_cx_no_bmarb(void)
2977 {
2978 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_ARB);
2979 }
2980 
2981 static int
2982 cpu_mwait_cx_hint2name(int hint, char *name, int namelen, boolean_t allow_auto)
2983 {
2984 	int old_cx_idx, sub = 0;
2985 
2986 	if (hint >= 0) {
2987 		old_cx_idx = MWAIT_EAX_TO_CX(hint);
2988 		sub = MWAIT_EAX_TO_CX_SUB(hint);
2989 	} else if (hint == CPU_MWAIT_HINT_AUTO) {
2990 		old_cx_idx = allow_auto ? CPU_MWAIT_C2 : CPU_MWAIT_CX_MAX;
2991 	} else if (hint == CPU_MWAIT_HINT_AUTODEEP) {
2992 		old_cx_idx = allow_auto ? CPU_MWAIT_C3 : CPU_MWAIT_CX_MAX;
2993 	} else {
2994 		old_cx_idx = CPU_MWAIT_CX_MAX;
2995 	}
2996 
2997 	if (!CPU_MWAIT_HAS_CX)
2998 		strlcpy(name, "NONE", namelen);
2999 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTO)
3000 		strlcpy(name, "AUTO", namelen);
3001 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTODEEP)
3002 		strlcpy(name, "AUTODEEP", namelen);
3003 	else if (old_cx_idx >= CPU_MWAIT_CX_MAX ||
3004 	    sub >= cpu_mwait_cx_info[old_cx_idx].subcnt)
3005 		strlcpy(name, "INVALID", namelen);
3006 	else
3007 		ksnprintf(name, namelen, "C%d/%d", old_cx_idx, sub);
3008 
3009 	return old_cx_idx;
3010 }
3011 
3012 static int
3013 cpu_mwait_cx_name2hint(char *name, int *hint0, boolean_t allow_auto)
3014 {
3015 	int cx_idx, sub, hint;
3016 	char *ptr, *start;
3017 
3018 	if (allow_auto && strcmp(name, "AUTO") == 0) {
3019 		hint = CPU_MWAIT_HINT_AUTO;
3020 		cx_idx = CPU_MWAIT_C2;
3021 		goto done;
3022 	}
3023 	if (allow_auto && strcmp(name, "AUTODEEP") == 0) {
3024 		hint = CPU_MWAIT_HINT_AUTODEEP;
3025 		cx_idx = CPU_MWAIT_C3;
3026 		goto done;
3027 	}
3028 
3029 	if (strlen(name) < 4 || toupper(name[0]) != 'C')
3030 		return -1;
3031 	start = &name[1];
3032 	ptr = NULL;
3033 
3034 	cx_idx = strtol(start, &ptr, 10);
3035 	if (ptr == start || *ptr != '/')
3036 		return -1;
3037 	if (cx_idx < 0 || cx_idx >= CPU_MWAIT_CX_MAX)
3038 		return -1;
3039 
3040 	start = ptr + 1;
3041 	ptr = NULL;
3042 
3043 	sub = strtol(start, &ptr, 10);
3044 	if (*ptr != '\0')
3045 		return -1;
3046 	if (sub < 0 || sub >= cpu_mwait_cx_info[cx_idx].subcnt)
3047 		return -1;
3048 
3049 	hint = MWAIT_EAX_HINT(cx_idx, sub);
3050 done:
3051 	*hint0 = hint;
3052 	return cx_idx;
3053 }
3054 
3055 static int
3056 cpu_mwait_cx_transit(int old_cx_idx, int cx_idx)
3057 {
3058 	if (cx_idx >= CPU_MWAIT_C3 && cpu_mwait_c3_preamble)
3059 		return EOPNOTSUPP;
3060 	if (old_cx_idx < CPU_MWAIT_C3 && cx_idx >= CPU_MWAIT_C3) {
3061 		int error;
3062 
3063 		error = cputimer_intr_powersave_addreq();
3064 		if (error)
3065 			return error;
3066 	} else if (old_cx_idx >= CPU_MWAIT_C3 && cx_idx < CPU_MWAIT_C3) {
3067 		cputimer_intr_powersave_remreq();
3068 	}
3069 	return 0;
3070 }
3071 
3072 static int
3073 cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS, int *hint0,
3074     boolean_t allow_auto)
3075 {
3076 	int error, cx_idx, old_cx_idx, hint;
3077 	char name[CPU_MWAIT_CX_NAMELEN];
3078 
3079 	hint = *hint0;
3080 	old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name),
3081 	    allow_auto);
3082 
3083 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
3084 	if (error != 0 || req->newptr == NULL)
3085 		return error;
3086 
3087 	if (!CPU_MWAIT_HAS_CX)
3088 		return EOPNOTSUPP;
3089 
3090 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, allow_auto);
3091 	if (cx_idx < 0)
3092 		return EINVAL;
3093 
3094 	error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3095 	if (error)
3096 		return error;
3097 
3098 	*hint0 = hint;
3099 	return 0;
3100 }
3101 
3102 static int
3103 cpu_mwait_cx_setname(struct cpu_idle_stat *stat, const char *cx_name)
3104 {
3105 	int error, cx_idx, old_cx_idx, hint;
3106 	char name[CPU_MWAIT_CX_NAMELEN];
3107 
3108 	KASSERT(CPU_MWAIT_HAS_CX, ("cpu does not support mwait CX extension"));
3109 
3110 	hint = stat->hint;
3111 	old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3112 
3113 	strlcpy(name, cx_name, sizeof(name));
3114 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3115 	if (cx_idx < 0)
3116 		return EINVAL;
3117 
3118 	error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3119 	if (error)
3120 		return error;
3121 
3122 	stat->hint = hint;
3123 	return 0;
3124 }
3125 
3126 static int
3127 cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS)
3128 {
3129 	int hint = cpu_mwait_halt_global;
3130 	int error, cx_idx, cpu;
3131 	char name[CPU_MWAIT_CX_NAMELEN], cx_name[CPU_MWAIT_CX_NAMELEN];
3132 
3133 	cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3134 
3135 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
3136 	if (error != 0 || req->newptr == NULL)
3137 		return error;
3138 
3139 	if (!CPU_MWAIT_HAS_CX)
3140 		return EOPNOTSUPP;
3141 
3142 	/* Save name for later per-cpu CX configuration */
3143 	strlcpy(cx_name, name, sizeof(cx_name));
3144 
3145 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3146 	if (cx_idx < 0)
3147 		return EINVAL;
3148 
3149 	/* Change per-cpu CX configuration */
3150 	for (cpu = 0; cpu < ncpus; ++cpu) {
3151 		error = cpu_mwait_cx_setname(&cpu_idle_stats[cpu], cx_name);
3152 		if (error)
3153 			return error;
3154 	}
3155 
3156 	cpu_mwait_halt_global = hint;
3157 	return 0;
3158 }
3159 
3160 static int
3161 cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS)
3162 {
3163 	struct cpu_idle_stat *stat = arg1;
3164 	int error;
3165 
3166 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3167 	    &stat->hint, TRUE);
3168 	return error;
3169 }
3170 
3171 static int
3172 cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS)
3173 {
3174 	int error;
3175 
3176 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3177 	    &cpu_mwait_spin, FALSE);
3178 	return error;
3179 }
3180 
3181 /*
3182  * This manual debugging code is called unconditionally from Xtimer
3183  * (the per-cpu timer interrupt) whether the current thread is in a
3184  * critical section or not) and can be useful in tracking down lockups.
3185  *
3186  * NOTE: MANUAL DEBUG CODE
3187  */
3188 #if 0
3189 static int saveticks[SMP_MAXCPU];
3190 static int savecounts[SMP_MAXCPU];
3191 #endif
3192 
3193 void
3194 pcpu_timer_always(struct intrframe *frame)
3195 {
3196 #if 0
3197 	globaldata_t gd = mycpu;
3198 	int cpu = gd->gd_cpuid;
3199 	char buf[64];
3200 	short *gptr;
3201 	int i;
3202 
3203 	if (cpu <= 20) {
3204 		gptr = (short *)0xFFFFFFFF800b8000 + 80 * cpu;
3205 		*gptr = ((*gptr + 1) & 0x00FF) | 0x0700;
3206 		++gptr;
3207 
3208 		ksnprintf(buf, sizeof(buf), " %p %16s %d %16s ",
3209 		    (void *)frame->if_rip, gd->gd_curthread->td_comm, ticks,
3210 		    gd->gd_infomsg);
3211 		for (i = 0; buf[i]; ++i) {
3212 			gptr[i] = 0x0700 | (unsigned char)buf[i];
3213 		}
3214 	}
3215 #if 0
3216 	if (saveticks[gd->gd_cpuid] != ticks) {
3217 		saveticks[gd->gd_cpuid] = ticks;
3218 		savecounts[gd->gd_cpuid] = 0;
3219 	}
3220 	++savecounts[gd->gd_cpuid];
3221 	if (savecounts[gd->gd_cpuid] > 2000 && panicstr == NULL) {
3222 		panic("cpud %d panicing on ticks failure",
3223 			gd->gd_cpuid);
3224 	}
3225 	for (i = 0; i < ncpus; ++i) {
3226 		int delta;
3227 		if (saveticks[i] && panicstr == NULL) {
3228 			delta = saveticks[i] - ticks;
3229 			if (delta < -10 || delta > 10) {
3230 				panic("cpu %d panicing on cpu %d watchdog",
3231 				      gd->gd_cpuid, i);
3232 			}
3233 		}
3234 	}
3235 #endif
3236 #endif
3237 }
3238