xref: /dragonfly/sys/platform/pc64/x86_64/machdep.c (revision 650094e1)
1 /*-
2  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3  * Copyright (c) 1992 Terrence R. Lambert.
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 2008 The DragonFly Project.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
40  * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
41  */
42 
43 //#include "use_npx.h"
44 #include "use_isa.h"
45 #include "opt_compat.h"
46 #include "opt_cpu.h"
47 #include "opt_ddb.h"
48 #include "opt_directio.h"
49 #include "opt_inet.h"
50 #include "opt_ipx.h"
51 #include "opt_msgbuf.h"
52 #include "opt_swap.h"
53 
54 #include <sys/param.h>
55 #include <sys/systm.h>
56 #include <sys/sysproto.h>
57 #include <sys/signalvar.h>
58 #include <sys/kernel.h>
59 #include <sys/linker.h>
60 #include <sys/malloc.h>
61 #include <sys/proc.h>
62 #include <sys/priv.h>
63 #include <sys/buf.h>
64 #include <sys/reboot.h>
65 #include <sys/mbuf.h>
66 #include <sys/msgbuf.h>
67 #include <sys/sysent.h>
68 #include <sys/sysctl.h>
69 #include <sys/vmmeter.h>
70 #include <sys/bus.h>
71 #include <sys/upcall.h>
72 #include <sys/usched.h>
73 #include <sys/reg.h>
74 
75 #include <vm/vm.h>
76 #include <vm/vm_param.h>
77 #include <sys/lock.h>
78 #include <vm/vm_kern.h>
79 #include <vm/vm_object.h>
80 #include <vm/vm_page.h>
81 #include <vm/vm_map.h>
82 #include <vm/vm_pager.h>
83 #include <vm/vm_extern.h>
84 
85 #include <sys/thread2.h>
86 #include <sys/mplock2.h>
87 #include <sys/mutex2.h>
88 
89 #include <sys/user.h>
90 #include <sys/exec.h>
91 #include <sys/cons.h>
92 
93 #include <ddb/ddb.h>
94 
95 #include <machine/cpu.h>
96 #include <machine/clock.h>
97 #include <machine/specialreg.h>
98 #if JG
99 #include <machine/bootinfo.h>
100 #endif
101 #include <machine/md_var.h>
102 #include <machine/metadata.h>
103 #include <machine/pc/bios.h>
104 #include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
105 #include <machine/globaldata.h>		/* CPU_prvspace */
106 #include <machine/smp.h>
107 #ifdef PERFMON
108 #include <machine/perfmon.h>
109 #endif
110 #include <machine/cputypes.h>
111 #include <machine/intr_machdep.h>
112 
113 #ifdef OLD_BUS_ARCH
114 #include <bus/isa/isa_device.h>
115 #endif
116 #include <machine_base/isa/isa_intr.h>
117 #include <bus/isa/rtc.h>
118 #include <sys/random.h>
119 #include <sys/ptrace.h>
120 #include <machine/sigframe.h>
121 
122 #include <sys/machintr.h>
123 #include <machine_base/icu/icu_abi.h>
124 #include <machine_base/icu/elcr_var.h>
125 #include <machine_base/apic/lapic.h>
126 #include <machine_base/apic/ioapic.h>
127 #include <machine_base/apic/ioapic_abi.h>
128 #include <machine/mptable.h>
129 
130 #define PHYSMAP_ENTRIES		10
131 
132 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
133 
134 extern void printcpuinfo(void);	/* XXX header file */
135 extern void identify_cpu(void);
136 #if JG
137 extern void finishidentcpu(void);
138 #endif
139 extern void panicifcpuunsupported(void);
140 
141 static void cpu_startup(void *);
142 static void pic_finish(void *);
143 static void cpu_finish(void *);
144 
145 #ifndef CPU_DISABLE_SSE
146 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
147 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
148 #endif /* CPU_DISABLE_SSE */
149 #ifdef DIRECTIO
150 extern void ffs_rawread_setup(void);
151 #endif /* DIRECTIO */
152 static void init_locks(void);
153 
154 SYSINIT(cpu, SI_BOOT2_START_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
155 SYSINIT(pic_finish, SI_BOOT2_FINISH_PIC, SI_ORDER_FIRST, pic_finish, NULL)
156 SYSINIT(cpu_finish, SI_BOOT2_FINISH_CPU, SI_ORDER_FIRST, cpu_finish, NULL)
157 
158 #ifdef DDB
159 extern vm_offset_t ksym_start, ksym_end;
160 #endif
161 
162 struct privatespace CPU_prvspace[MAXCPU] __aligned(4096); /* XXX */
163 
164 int	_udatasel, _ucodesel, _ucode32sel;
165 u_long	atdevbase;
166 #ifdef SMP
167 int64_t tsc_offsets[MAXCPU];
168 #else
169 int64_t tsc_offsets[1];
170 #endif
171 
172 #if defined(SWTCH_OPTIM_STATS)
173 extern int swtch_optim_stats;
174 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
175 	CTLFLAG_RD, &swtch_optim_stats, 0, "");
176 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
177 	CTLFLAG_RD, &tlb_flush_count, 0, "");
178 #endif
179 
180 long physmem = 0;
181 
182 u_long ebda_addr = 0;
183 
184 int imcr_present = 0;
185 
186 int naps = 0; /* # of Applications processors */
187 
188 u_int base_memory;
189 struct mtx dt_lock;		/* lock for GDT and LDT */
190 
191 static int
192 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
193 {
194 	u_long pmem = ctob(physmem);
195 
196 	int error = sysctl_handle_long(oidp, &pmem, 0, req);
197 	return (error);
198 }
199 
200 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
201 	0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
202 
203 static int
204 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
205 {
206 	int error = sysctl_handle_int(oidp, 0,
207 		ctob(physmem - vmstats.v_wire_count), req);
208 	return (error);
209 }
210 
211 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
212 	0, 0, sysctl_hw_usermem, "IU", "");
213 
214 static int
215 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
216 {
217 	int error = sysctl_handle_int(oidp, 0,
218 		x86_64_btop(avail_end - avail_start), req);
219 	return (error);
220 }
221 
222 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
223 	0, 0, sysctl_hw_availpages, "I", "");
224 
225 vm_paddr_t Maxmem;
226 vm_paddr_t Realmem;
227 
228 /*
229  * The number of PHYSMAP entries must be one less than the number of
230  * PHYSSEG entries because the PHYSMAP entry that spans the largest
231  * physical address that is accessible by ISA DMA is split into two
232  * PHYSSEG entries.
233  */
234 #define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
235 
236 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
237 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
238 
239 /* must be 2 less so 0 0 can signal end of chunks */
240 #define PHYS_AVAIL_ARRAY_END (NELEM(phys_avail) - 2)
241 #define DUMP_AVAIL_ARRAY_END (NELEM(dump_avail) - 2)
242 
243 static vm_offset_t buffer_sva, buffer_eva;
244 vm_offset_t clean_sva, clean_eva;
245 static vm_offset_t pager_sva, pager_eva;
246 static struct trapframe proc0_tf;
247 
248 static void
249 cpu_startup(void *dummy)
250 {
251 	caddr_t v;
252 	vm_size_t size = 0;
253 	vm_offset_t firstaddr;
254 
255 	/*
256 	 * Good {morning,afternoon,evening,night}.
257 	 */
258 	kprintf("%s", version);
259 	startrtclock();
260 	printcpuinfo();
261 	panicifcpuunsupported();
262 #ifdef PERFMON
263 	perfmon_init();
264 #endif
265 	kprintf("real memory  = %ju (%ju MB)\n",
266 		(intmax_t)Realmem,
267 		(intmax_t)Realmem / 1024 / 1024);
268 	/*
269 	 * Display any holes after the first chunk of extended memory.
270 	 */
271 	if (bootverbose) {
272 		int indx;
273 
274 		kprintf("Physical memory chunk(s):\n");
275 		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
276 			vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
277 
278 			kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
279 				(intmax_t)phys_avail[indx],
280 				(intmax_t)phys_avail[indx + 1] - 1,
281 				(intmax_t)size1,
282 				(intmax_t)(size1 / PAGE_SIZE));
283 		}
284 	}
285 
286 	/*
287 	 * Allocate space for system data structures.
288 	 * The first available kernel virtual address is in "v".
289 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
290 	 * As pages of memory are allocated and cleared,
291 	 * "firstaddr" is incremented.
292 	 * An index into the kernel page table corresponding to the
293 	 * virtual memory address maintained in "v" is kept in "mapaddr".
294 	 */
295 
296 	/*
297 	 * Make two passes.  The first pass calculates how much memory is
298 	 * needed and allocates it.  The second pass assigns virtual
299 	 * addresses to the various data structures.
300 	 */
301 	firstaddr = 0;
302 again:
303 	v = (caddr_t)firstaddr;
304 
305 #define	valloc(name, type, num) \
306 	    (name) = (type *)v; v = (caddr_t)((name)+(num))
307 #define	valloclim(name, type, num, lim) \
308 	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
309 
310 	/*
311 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
312 	 * For the first 64MB of ram nominally allocate sufficient buffers to
313 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
314 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
315 	 * the buffer cache we limit the eventual kva reservation to
316 	 * maxbcache bytes.
317 	 *
318 	 * factor represents the 1/4 x ram conversion.
319 	 */
320 	if (nbuf == 0) {
321 		int factor = 4 * BKVASIZE / 1024;
322 		int kbytes = physmem * (PAGE_SIZE / 1024);
323 
324 		nbuf = 50;
325 		if (kbytes > 4096)
326 			nbuf += min((kbytes - 4096) / factor, 65536 / factor);
327 		if (kbytes > 65536)
328 			nbuf += (kbytes - 65536) * 2 / (factor * 5);
329 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
330 			nbuf = maxbcache / BKVASIZE;
331 	}
332 
333 	/*
334 	 * Do not allow the buffer_map to be more then 1/2 the size of the
335 	 * kernel_map.
336 	 */
337 	if (nbuf > (virtual_end - virtual_start) / (BKVASIZE * 2)) {
338 		nbuf = (virtual_end - virtual_start) / (BKVASIZE * 2);
339 		kprintf("Warning: nbufs capped at %d\n", nbuf);
340 	}
341 
342 	nswbuf = max(min(nbuf/4, 256), 16);
343 #ifdef NSWBUF_MIN
344 	if (nswbuf < NSWBUF_MIN)
345 		nswbuf = NSWBUF_MIN;
346 #endif
347 #ifdef DIRECTIO
348 	ffs_rawread_setup();
349 #endif
350 
351 	valloc(swbuf, struct buf, nswbuf);
352 	valloc(buf, struct buf, nbuf);
353 
354 	/*
355 	 * End of first pass, size has been calculated so allocate memory
356 	 */
357 	if (firstaddr == 0) {
358 		size = (vm_size_t)(v - firstaddr);
359 		firstaddr = kmem_alloc(&kernel_map, round_page(size));
360 		if (firstaddr == 0)
361 			panic("startup: no room for tables");
362 		goto again;
363 	}
364 
365 	/*
366 	 * End of second pass, addresses have been assigned
367 	 */
368 	if ((vm_size_t)(v - firstaddr) != size)
369 		panic("startup: table size inconsistency");
370 
371 	kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
372 		      (nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
373 	kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
374 		      (nbuf*BKVASIZE));
375 	buffer_map.system_map = 1;
376 	kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
377 		      (nswbuf*MAXPHYS) + pager_map_size);
378 	pager_map.system_map = 1;
379 
380 #if defined(USERCONFIG)
381 	userconfig();
382 	cninit();		/* the preferred console may have changed */
383 #endif
384 
385 	kprintf("avail memory = %ju (%ju MB)\n",
386 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages),
387 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages) /
388 		1024 / 1024);
389 
390 	/*
391 	 * Set up buffers, so they can be used to read disk labels.
392 	 */
393 	bufinit();
394 	vm_pager_bufferinit();
395 }
396 
397 static void
398 cpu_finish(void *dummy __unused)
399 {
400 	cpu_setregs();
401 }
402 
403 static void
404 pic_finish(void *dummy __unused)
405 {
406 	/* Log ELCR information */
407 	elcr_dump();
408 
409 	/* Log MPTABLE information */
410 	mptable_pci_int_dump();
411 
412 	/* Finalize PCI */
413 	MachIntrABI.finalize();
414 }
415 
416 /*
417  * Send an interrupt to process.
418  *
419  * Stack is set up to allow sigcode stored
420  * at top to call routine, followed by kcall
421  * to sigreturn routine below.  After sigreturn
422  * resets the signal mask, the stack, and the
423  * frame pointer, it returns to the user
424  * specified pc, psl.
425  */
426 void
427 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
428 {
429 	struct lwp *lp = curthread->td_lwp;
430 	struct proc *p = lp->lwp_proc;
431 	struct trapframe *regs;
432 	struct sigacts *psp = p->p_sigacts;
433 	struct sigframe sf, *sfp;
434 	int oonstack;
435 	char *sp;
436 
437 	regs = lp->lwp_md.md_regs;
438 	oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
439 
440 	/* Save user context */
441 	bzero(&sf, sizeof(struct sigframe));
442 	sf.sf_uc.uc_sigmask = *mask;
443 	sf.sf_uc.uc_stack = lp->lwp_sigstk;
444 	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
445 	KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
446 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
447 
448 	/* Make the size of the saved context visible to userland */
449 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
450 
451 	/* Allocate and validate space for the signal handler context. */
452         if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
453 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
454 		sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
455 			      sizeof(struct sigframe));
456 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
457 	} else {
458 		/* We take red zone into account */
459 		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
460 	}
461 
462 	/* Align to 16 bytes */
463 	sfp = (struct sigframe *)((intptr_t)sp & ~(intptr_t)0xF);
464 
465 	/* Translate the signal is appropriate */
466 	if (p->p_sysent->sv_sigtbl) {
467 		if (sig <= p->p_sysent->sv_sigsize)
468 			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
469 	}
470 
471 	/*
472 	 * Build the argument list for the signal handler.
473 	 *
474 	 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
475 	 */
476 	regs->tf_rdi = sig;				/* argument 1 */
477 	regs->tf_rdx = (register_t)&sfp->sf_uc;		/* argument 3 */
478 
479 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
480 		/*
481 		 * Signal handler installed with SA_SIGINFO.
482 		 *
483 		 * action(signo, siginfo, ucontext)
484 		 */
485 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* argument 2 */
486 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
487 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
488 
489 		/* fill siginfo structure */
490 		sf.sf_si.si_signo = sig;
491 		sf.sf_si.si_code = code;
492 		sf.sf_si.si_addr = (void *)regs->tf_addr;
493 	} else {
494 		/*
495 		 * Old FreeBSD-style arguments.
496 		 *
497 		 * handler (signo, code, [uc], addr)
498 		 */
499 		regs->tf_rsi = (register_t)code;	/* argument 2 */
500 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
501 		sf.sf_ahu.sf_handler = catcher;
502 	}
503 
504 	/*
505 	 * If we're a vm86 process, we want to save the segment registers.
506 	 * We also change eflags to be our emulated eflags, not the actual
507 	 * eflags.
508 	 */
509 #if JG
510 	if (regs->tf_eflags & PSL_VM) {
511 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
512 		struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
513 
514 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
515 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
516 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
517 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
518 
519 		if (vm86->vm86_has_vme == 0)
520 			sf.sf_uc.uc_mcontext.mc_eflags =
521 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
522 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
523 
524 		/*
525 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
526 		 * syscalls made by the signal handler.  This just avoids
527 		 * wasting time for our lazy fixup of such faults.  PSL_NT
528 		 * does nothing in vm86 mode, but vm86 programs can set it
529 		 * almost legitimately in probes for old cpu types.
530 		 */
531 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
532 	}
533 #endif
534 
535 	/*
536 	 * Save the FPU state and reinit the FP unit
537 	 */
538 	npxpush(&sf.sf_uc.uc_mcontext);
539 
540 	/*
541 	 * Copy the sigframe out to the user's stack.
542 	 */
543 	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
544 		/*
545 		 * Something is wrong with the stack pointer.
546 		 * ...Kill the process.
547 		 */
548 		sigexit(lp, SIGILL);
549 	}
550 
551 	regs->tf_rsp = (register_t)sfp;
552 	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
553 
554 	/*
555 	 * i386 abi specifies that the direction flag must be cleared
556 	 * on function entry
557 	 */
558 	regs->tf_rflags &= ~(PSL_T|PSL_D);
559 
560 	/*
561 	 * 64 bit mode has a code and stack selector but
562 	 * no data or extra selector.  %fs and %gs are not
563 	 * stored in-context.
564 	 */
565 	regs->tf_cs = _ucodesel;
566 	regs->tf_ss = _udatasel;
567 	clear_quickret();
568 }
569 
570 /*
571  * Sanitize the trapframe for a virtual kernel passing control to a custom
572  * VM context.  Remove any items that would otherwise create a privilage
573  * issue.
574  *
575  * XXX at the moment we allow userland to set the resume flag.  Is this a
576  * bad idea?
577  */
578 int
579 cpu_sanitize_frame(struct trapframe *frame)
580 {
581 	frame->tf_cs = _ucodesel;
582 	frame->tf_ss = _udatasel;
583 	/* XXX VM (8086) mode not supported? */
584 	frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
585 	frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
586 
587 	return(0);
588 }
589 
590 /*
591  * Sanitize the tls so loading the descriptor does not blow up
592  * on us.  For x86_64 we don't have to do anything.
593  */
594 int
595 cpu_sanitize_tls(struct savetls *tls)
596 {
597 	return(0);
598 }
599 
600 /*
601  * sigreturn(ucontext_t *sigcntxp)
602  *
603  * System call to cleanup state after a signal
604  * has been taken.  Reset signal mask and
605  * stack state from context left by sendsig (above).
606  * Return to previous pc and psl as specified by
607  * context left by sendsig. Check carefully to
608  * make sure that the user has not modified the
609  * state to gain improper privileges.
610  *
611  * MPSAFE
612  */
613 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
614 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
615 
616 int
617 sys_sigreturn(struct sigreturn_args *uap)
618 {
619 	struct lwp *lp = curthread->td_lwp;
620 	struct trapframe *regs;
621 	ucontext_t uc;
622 	ucontext_t *ucp;
623 	register_t rflags;
624 	int cs;
625 	int error;
626 
627 	/*
628 	 * We have to copy the information into kernel space so userland
629 	 * can't modify it while we are sniffing it.
630 	 */
631 	regs = lp->lwp_md.md_regs;
632 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
633 	if (error)
634 		return (error);
635 	ucp = &uc;
636 	rflags = ucp->uc_mcontext.mc_rflags;
637 
638 	/* VM (8086) mode not supported */
639 	rflags &= ~PSL_VM_UNSUPP;
640 
641 #if JG
642 	if (eflags & PSL_VM) {
643 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
644 		struct vm86_kernel *vm86;
645 
646 		/*
647 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
648 		 * set up the vm86 area, and we can't enter vm86 mode.
649 		 */
650 		if (lp->lwp_thread->td_pcb->pcb_ext == 0)
651 			return (EINVAL);
652 		vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
653 		if (vm86->vm86_inited == 0)
654 			return (EINVAL);
655 
656 		/* go back to user mode if both flags are set */
657 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
658 			trapsignal(lp, SIGBUS, 0);
659 
660 		if (vm86->vm86_has_vme) {
661 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
662 			    (eflags & VME_USERCHANGE) | PSL_VM;
663 		} else {
664 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
665 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
666 			    (eflags & VM_USERCHANGE) | PSL_VM;
667 		}
668 		bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
669 		tf->tf_eflags = eflags;
670 		tf->tf_vm86_ds = tf->tf_ds;
671 		tf->tf_vm86_es = tf->tf_es;
672 		tf->tf_vm86_fs = tf->tf_fs;
673 		tf->tf_vm86_gs = tf->tf_gs;
674 		tf->tf_ds = _udatasel;
675 		tf->tf_es = _udatasel;
676 		tf->tf_fs = _udatasel;
677 		tf->tf_gs = _udatasel;
678 	} else
679 #endif
680 	{
681 		/*
682 		 * Don't allow users to change privileged or reserved flags.
683 		 */
684 		/*
685 		 * XXX do allow users to change the privileged flag PSL_RF.
686 		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
687 		 * should sometimes set it there too.  tf_eflags is kept in
688 		 * the signal context during signal handling and there is no
689 		 * other place to remember it, so the PSL_RF bit may be
690 		 * corrupted by the signal handler without us knowing.
691 		 * Corruption of the PSL_RF bit at worst causes one more or
692 		 * one less debugger trap, so allowing it is fairly harmless.
693 		 */
694 		if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
695 			kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
696 	    		return(EINVAL);
697 		}
698 
699 		/*
700 		 * Don't allow users to load a valid privileged %cs.  Let the
701 		 * hardware check for invalid selectors, excess privilege in
702 		 * other selectors, invalid %eip's and invalid %esp's.
703 		 */
704 		cs = ucp->uc_mcontext.mc_cs;
705 		if (!CS_SECURE(cs)) {
706 			kprintf("sigreturn: cs = 0x%x\n", cs);
707 			trapsignal(lp, SIGBUS, T_PROTFLT);
708 			return(EINVAL);
709 		}
710 		bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
711 	}
712 
713 	/*
714 	 * Restore the FPU state from the frame
715 	 */
716 	crit_enter();
717 	npxpop(&ucp->uc_mcontext);
718 
719 	if (ucp->uc_mcontext.mc_onstack & 1)
720 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
721 	else
722 		lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
723 
724 	lp->lwp_sigmask = ucp->uc_sigmask;
725 	SIG_CANTMASK(lp->lwp_sigmask);
726 	clear_quickret();
727 	crit_exit();
728 	return(EJUSTRETURN);
729 }
730 
731 /*
732  * Stack frame on entry to function.  %rax will contain the function vector,
733  * %rcx will contain the function data.  flags, rcx, and rax will have
734  * already been pushed on the stack.
735  */
736 struct upc_frame {
737 	register_t	rax;
738 	register_t	rcx;
739 	register_t	rdx;
740 	register_t	flags;
741 	register_t	oldip;
742 };
743 
744 void
745 sendupcall(struct vmupcall *vu, int morepending)
746 {
747 	struct lwp *lp = curthread->td_lwp;
748 	struct trapframe *regs;
749 	struct upcall upcall;
750 	struct upc_frame upc_frame;
751 	int	crit_count = 0;
752 
753 	/*
754 	 * If we are a virtual kernel running an emulated user process
755 	 * context, switch back to the virtual kernel context before
756 	 * trying to post the signal.
757 	 */
758 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
759 		lp->lwp_md.md_regs->tf_trapno = 0;
760 		vkernel_trap(lp, lp->lwp_md.md_regs);
761 	}
762 
763 	/*
764 	 * Get the upcall data structure
765 	 */
766 	if (copyin(lp->lwp_upcall, &upcall, sizeof(upcall)) ||
767 	    copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int))
768 	) {
769 		vu->vu_pending = 0;
770 		kprintf("bad upcall address\n");
771 		return;
772 	}
773 
774 	/*
775 	 * If the data structure is already marked pending or has a critical
776 	 * section count, mark the data structure as pending and return
777 	 * without doing an upcall.  vu_pending is left set.
778 	 */
779 	if (upcall.upc_pending || crit_count >= vu->vu_pending) {
780 		if (upcall.upc_pending < vu->vu_pending) {
781 			upcall.upc_pending = vu->vu_pending;
782 			copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
783 				sizeof(upcall.upc_pending));
784 		}
785 		return;
786 	}
787 
788 	/*
789 	 * We can run this upcall now, clear vu_pending.
790 	 *
791 	 * Bump our critical section count and set or clear the
792 	 * user pending flag depending on whether more upcalls are
793 	 * pending.  The user will be responsible for calling
794 	 * upc_dispatch(-1) to process remaining upcalls.
795 	 */
796 	vu->vu_pending = 0;
797 	upcall.upc_pending = morepending;
798 	++crit_count;
799 	copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
800 		sizeof(upcall.upc_pending));
801 	copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff,
802 		sizeof(int));
803 
804 	/*
805 	 * Construct a stack frame and issue the upcall
806 	 */
807 	regs = lp->lwp_md.md_regs;
808 	upc_frame.rax = regs->tf_rax;
809 	upc_frame.rcx = regs->tf_rcx;
810 	upc_frame.rdx = regs->tf_rdx;
811 	upc_frame.flags = regs->tf_rflags;
812 	upc_frame.oldip = regs->tf_rip;
813 	if (copyout(&upc_frame, (void *)(regs->tf_rsp - sizeof(upc_frame) - 128),
814 	    sizeof(upc_frame)) != 0) {
815 		kprintf("bad stack on upcall\n");
816 	} else {
817 		regs->tf_rax = (register_t)vu->vu_func;
818 		regs->tf_rcx = (register_t)vu->vu_data;
819 		regs->tf_rdx = (register_t)lp->lwp_upcall;
820 		regs->tf_rip = (register_t)vu->vu_ctx;
821 		regs->tf_rsp -= sizeof(upc_frame) + 128;
822 	}
823 }
824 
825 /*
826  * fetchupcall occurs in the context of a system call, which means that
827  * we have to return EJUSTRETURN in order to prevent eax and edx from
828  * being overwritten by the syscall return value.
829  *
830  * if vu is not NULL we return the new context in %edx, the new data in %ecx,
831  * and the function pointer in %eax.
832  */
833 int
834 fetchupcall(struct vmupcall *vu, int morepending, void *rsp)
835 {
836 	struct upc_frame upc_frame;
837 	struct lwp *lp = curthread->td_lwp;
838 	struct trapframe *regs;
839 	int error;
840 	struct upcall upcall;
841 	int crit_count;
842 
843 	regs = lp->lwp_md.md_regs;
844 
845 	error = copyout(&morepending, &lp->lwp_upcall->upc_pending, sizeof(int));
846 	if (error == 0) {
847 	    if (vu) {
848 		/*
849 		 * This jumps us to the next ready context.
850 		 */
851 		vu->vu_pending = 0;
852 		error = copyin(lp->lwp_upcall, &upcall, sizeof(upcall));
853 		crit_count = 0;
854 		if (error == 0)
855 			error = copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int));
856 		++crit_count;
857 		if (error == 0)
858 			error = copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff, sizeof(int));
859 		regs->tf_rax = (register_t)vu->vu_func;
860 		regs->tf_rcx = (register_t)vu->vu_data;
861 		regs->tf_rdx = (register_t)lp->lwp_upcall;
862 		regs->tf_rip = (register_t)vu->vu_ctx;
863 		regs->tf_rsp = (register_t)rsp;
864 	    } else {
865 		/*
866 		 * This returns us to the originally interrupted code.
867 		 */
868 		error = copyin(rsp, &upc_frame, sizeof(upc_frame));
869 		regs->tf_rax = upc_frame.rax;
870 		regs->tf_rcx = upc_frame.rcx;
871 		regs->tf_rdx = upc_frame.rdx;
872 		regs->tf_rflags = (regs->tf_rflags & ~PSL_USERCHANGE) |
873 				(upc_frame.flags & PSL_USERCHANGE);
874 		regs->tf_rip = upc_frame.oldip;
875 		regs->tf_rsp = (register_t)((char *)rsp + sizeof(upc_frame));
876 	    }
877 	}
878 	if (error == 0)
879 		error = EJUSTRETURN;
880 	return(error);
881 }
882 
883 /*
884  * Machine dependent boot() routine
885  *
886  * I haven't seen anything to put here yet
887  * Possibly some stuff might be grafted back here from boot()
888  */
889 void
890 cpu_boot(int howto)
891 {
892 }
893 
894 /*
895  * Shutdown the CPU as much as possible
896  */
897 void
898 cpu_halt(void)
899 {
900 	for (;;)
901 		__asm__ __volatile("hlt");
902 }
903 
904 /*
905  * cpu_idle() represents the idle LWKT.  You cannot return from this function
906  * (unless you want to blow things up!).  Instead we look for runnable threads
907  * and loop or halt as appropriate.  Giant is not held on entry to the thread.
908  *
909  * The main loop is entered with a critical section held, we must release
910  * the critical section before doing anything else.  lwkt_switch() will
911  * check for pending interrupts due to entering and exiting its own
912  * critical section.
913  *
914  * NOTE: On an SMP system we rely on a scheduler IPI to wake a HLTed cpu up.
915  *	 However, there are cases where the idlethread will be entered with
916  *	 the possibility that no IPI will occur and in such cases
917  *	 lwkt_switch() sets TDF_IDLE_NOHLT.
918  *
919  * NOTE: cpu_idle_hlt again defaults to 2 (use ACPI sleep states).  Set to
920  *	 1 to just use hlt and for debugging purposes.
921  *
922  * NOTE: cpu_idle_repeat determines how many entries into the idle thread
923  *	 must occur before it starts using ACPI halt.
924  */
925 static int	cpu_idle_hlt = 2;
926 static int	cpu_idle_hltcnt;
927 static int	cpu_idle_spincnt;
928 static u_int	cpu_idle_repeat = 4;
929 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
930     &cpu_idle_hlt, 0, "Idle loop HLT enable");
931 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hltcnt, CTLFLAG_RW,
932     &cpu_idle_hltcnt, 0, "Idle loop entry halts");
933 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_spincnt, CTLFLAG_RW,
934     &cpu_idle_spincnt, 0, "Idle loop entry spins");
935 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_repeat, CTLFLAG_RW,
936     &cpu_idle_repeat, 0, "Idle entries before acpi hlt");
937 
938 static void
939 cpu_idle_default_hook(void)
940 {
941 	/*
942 	 * We must guarentee that hlt is exactly the instruction
943 	 * following the sti.
944 	 */
945 	__asm __volatile("sti; hlt");
946 }
947 
948 /* Other subsystems (e.g., ACPI) can hook this later. */
949 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
950 
951 void
952 cpu_idle(void)
953 {
954 	globaldata_t gd = mycpu;
955 	struct thread *td __debugvar = gd->gd_curthread;
956 	int reqflags;
957 	int quick;
958 
959 	crit_exit();
960 	KKASSERT(td->td_critcount == 0);
961 	for (;;) {
962 		/*
963 		 * See if there are any LWKTs ready to go.
964 		 */
965 		lwkt_switch();
966 
967 		/*
968 		 * When halting inside a cli we must check for reqflags
969 		 * races, particularly [re]schedule requests.  Running
970 		 * splz() does the job.
971 		 *
972 		 * cpu_idle_hlt:
973 		 *	0	Never halt, just spin
974 		 *
975 		 *	1	Always use HLT (or MONITOR/MWAIT if avail).
976 		 *		This typically eats more power than the
977 		 *		ACPI halt.
978 		 *
979 		 *	2	Use HLT/MONITOR/MWAIT up to a point and then
980 		 *		use the ACPI halt (default).  This is a hybrid
981 		 *		approach.  See machdep.cpu_idle_repeat.
982 		 *
983 		 *	3	Always use the ACPI halt.  This typically
984 		 *		eats the least amount of power but the cpu
985 		 *		will be slow waking up.  Slows down e.g.
986 		 *		compiles and other pipe/event oriented stuff.
987 		 *
988 		 * NOTE: Interrupts are enabled and we are not in a critical
989 		 *	 section.
990 		 *
991 		 * NOTE: Preemptions do not reset gd_idle_repeat.   Also we
992 		 *	 don't bother capping gd_idle_repeat, it is ok if
993 		 *	 it overflows.
994 		 */
995 		++gd->gd_idle_repeat;
996 		reqflags = gd->gd_reqflags;
997 		quick = (cpu_idle_hlt == 1) ||
998 			(cpu_idle_hlt < 3 &&
999 			 gd->gd_idle_repeat < cpu_idle_repeat);
1000 
1001 		if (quick && (cpu_mi_feature & CPU_MI_MONITOR) &&
1002 		    (reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1003 			splz(); /* XXX */
1004 			cpu_mmw_pause_int(&gd->gd_reqflags, reqflags);
1005 			++cpu_idle_hltcnt;
1006 		} else if (cpu_idle_hlt) {
1007 			__asm __volatile("cli");
1008 			splz();
1009 			if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1010 				if (quick)
1011 					cpu_idle_default_hook();
1012 				else
1013 					cpu_idle_hook();
1014 			}
1015 			__asm __volatile("sti");
1016 			++cpu_idle_hltcnt;
1017 		} else {
1018 			splz();
1019 			__asm __volatile("sti");
1020 			++cpu_idle_spincnt;
1021 		}
1022 	}
1023 }
1024 
1025 #ifdef SMP
1026 
1027 /*
1028  * This routine is called if a spinlock has been held through the
1029  * exponential backoff period and is seriously contested.  On a real cpu
1030  * we let it spin.
1031  */
1032 void
1033 cpu_spinlock_contested(void)
1034 {
1035 	cpu_pause();
1036 }
1037 
1038 #endif
1039 
1040 /*
1041  * Clear registers on exec
1042  */
1043 void
1044 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
1045 {
1046 	struct thread *td = curthread;
1047 	struct lwp *lp = td->td_lwp;
1048 	struct pcb *pcb = td->td_pcb;
1049 	struct trapframe *regs = lp->lwp_md.md_regs;
1050 
1051 	/* was i386_user_cleanup() in NetBSD */
1052 	user_ldt_free(pcb);
1053 
1054 	clear_quickret();
1055 	bzero((char *)regs, sizeof(struct trapframe));
1056 	regs->tf_rip = entry;
1057 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
1058 	regs->tf_rdi = stack;		/* argv */
1059 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
1060 	regs->tf_ss = _udatasel;
1061 	regs->tf_cs = _ucodesel;
1062 	regs->tf_rbx = ps_strings;
1063 
1064 	/*
1065 	 * Reset the hardware debug registers if they were in use.
1066 	 * They won't have any meaning for the newly exec'd process.
1067 	 */
1068 	if (pcb->pcb_flags & PCB_DBREGS) {
1069 		pcb->pcb_dr0 = 0;
1070 		pcb->pcb_dr1 = 0;
1071 		pcb->pcb_dr2 = 0;
1072 		pcb->pcb_dr3 = 0;
1073 		pcb->pcb_dr6 = 0;
1074 		pcb->pcb_dr7 = 0; /* JG set bit 10? */
1075 		if (pcb == td->td_pcb) {
1076 			/*
1077 			 * Clear the debug registers on the running
1078 			 * CPU, otherwise they will end up affecting
1079 			 * the next process we switch to.
1080 			 */
1081 			reset_dbregs();
1082 		}
1083 		pcb->pcb_flags &= ~PCB_DBREGS;
1084 	}
1085 
1086 	/*
1087 	 * Initialize the math emulator (if any) for the current process.
1088 	 * Actually, just clear the bit that says that the emulator has
1089 	 * been initialized.  Initialization is delayed until the process
1090 	 * traps to the emulator (if it is done at all) mainly because
1091 	 * emulators don't provide an entry point for initialization.
1092 	 */
1093 	pcb->pcb_flags &= ~FP_SOFTFP;
1094 
1095 	/*
1096 	 * NOTE: do not set CR0_TS here.  npxinit() must do it after clearing
1097 	 *	 gd_npxthread.  Otherwise a preemptive interrupt thread
1098 	 *	 may panic in npxdna().
1099 	 */
1100 	crit_enter();
1101 	load_cr0(rcr0() | CR0_MP);
1102 
1103 	/*
1104 	 * NOTE: The MSR values must be correct so we can return to
1105 	 * 	 userland.  gd_user_fs/gs must be correct so the switch
1106 	 *	 code knows what the current MSR values are.
1107 	 */
1108 	pcb->pcb_fsbase = 0;	/* Values loaded from PCB on switch */
1109 	pcb->pcb_gsbase = 0;
1110 	mdcpu->gd_user_fs = 0;	/* Cache of current MSR values */
1111 	mdcpu->gd_user_gs = 0;
1112 	wrmsr(MSR_FSBASE, 0);	/* Set MSR values for return to userland */
1113 	wrmsr(MSR_KGSBASE, 0);
1114 
1115 	/* Initialize the npx (if any) for the current process. */
1116 	npxinit(__INITIAL_NPXCW__);
1117 	crit_exit();
1118 
1119 	pcb->pcb_ds = _udatasel;
1120 	pcb->pcb_es = _udatasel;
1121 	pcb->pcb_fs = _udatasel;
1122 	pcb->pcb_gs = _udatasel;
1123 }
1124 
1125 void
1126 cpu_setregs(void)
1127 {
1128 	register_t cr0;
1129 
1130 	cr0 = rcr0();
1131 	cr0 |= CR0_NE;			/* Done by npxinit() */
1132 	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1133 	cr0 |= CR0_WP | CR0_AM;
1134 	load_cr0(cr0);
1135 	load_gs(_udatasel);
1136 }
1137 
1138 static int
1139 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1140 {
1141 	int error;
1142 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1143 		req);
1144 	if (!error && req->newptr)
1145 		resettodr();
1146 	return (error);
1147 }
1148 
1149 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1150 	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1151 
1152 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1153 	CTLFLAG_RW, &disable_rtc_set, 0, "");
1154 
1155 #if JG
1156 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1157 	CTLFLAG_RD, &bootinfo, bootinfo, "");
1158 #endif
1159 
1160 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1161 	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1162 
1163 extern u_long bootdev;		/* not a cdev_t - encoding is different */
1164 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1165 	CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1166 
1167 /*
1168  * Initialize 386 and configure to run kernel
1169  */
1170 
1171 /*
1172  * Initialize segments & interrupt table
1173  */
1174 
1175 int _default_ldt;
1176 struct user_segment_descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1177 struct gate_descriptor idt_arr[MAXCPU][NIDT];
1178 #if JG
1179 union descriptor ldt[NLDT];		/* local descriptor table */
1180 #endif
1181 
1182 /* table descriptors - used to load tables by cpu */
1183 struct region_descriptor r_gdt;
1184 struct region_descriptor r_idt_arr[MAXCPU];
1185 
1186 /* JG proc0paddr is a virtual address */
1187 void *proc0paddr;
1188 /* JG alignment? */
1189 char proc0paddr_buff[LWKT_THREAD_STACK];
1190 
1191 
1192 /* software prototypes -- in more palatable form */
1193 struct soft_segment_descriptor gdt_segs[] = {
1194 /* GNULL_SEL	0 Null Descriptor */
1195 {	0x0,			/* segment base address  */
1196 	0x0,			/* length */
1197 	0,			/* segment type */
1198 	0,			/* segment descriptor priority level */
1199 	0,			/* segment descriptor present */
1200 	0,			/* long */
1201 	0,			/* default 32 vs 16 bit size */
1202 	0  			/* limit granularity (byte/page units)*/ },
1203 /* GCODE_SEL	1 Code Descriptor for kernel */
1204 {	0x0,			/* segment base address  */
1205 	0xfffff,		/* length - all address space */
1206 	SDT_MEMERA,		/* segment type */
1207 	SEL_KPL,		/* segment descriptor priority level */
1208 	1,			/* segment descriptor present */
1209 	1,			/* long */
1210 	0,			/* default 32 vs 16 bit size */
1211 	1  			/* limit granularity (byte/page units)*/ },
1212 /* GDATA_SEL	2 Data Descriptor for kernel */
1213 {	0x0,			/* segment base address  */
1214 	0xfffff,		/* length - all address space */
1215 	SDT_MEMRWA,		/* segment type */
1216 	SEL_KPL,		/* segment descriptor priority level */
1217 	1,			/* segment descriptor present */
1218 	1,			/* long */
1219 	0,			/* default 32 vs 16 bit size */
1220 	1  			/* limit granularity (byte/page units)*/ },
1221 /* GUCODE32_SEL	3 32 bit Code Descriptor for user */
1222 {	0x0,			/* segment base address  */
1223 	0xfffff,		/* length - all address space */
1224 	SDT_MEMERA,		/* segment type */
1225 	SEL_UPL,		/* segment descriptor priority level */
1226 	1,			/* segment descriptor present */
1227 	0,			/* long */
1228 	1,			/* default 32 vs 16 bit size */
1229 	1  			/* limit granularity (byte/page units)*/ },
1230 /* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
1231 {	0x0,			/* segment base address  */
1232 	0xfffff,		/* length - all address space */
1233 	SDT_MEMRWA,		/* segment type */
1234 	SEL_UPL,		/* segment descriptor priority level */
1235 	1,			/* segment descriptor present */
1236 	0,			/* long */
1237 	1,			/* default 32 vs 16 bit size */
1238 	1  			/* limit granularity (byte/page units)*/ },
1239 /* GUCODE_SEL	5 64 bit Code Descriptor for user */
1240 {	0x0,			/* segment base address  */
1241 	0xfffff,		/* length - all address space */
1242 	SDT_MEMERA,		/* segment type */
1243 	SEL_UPL,		/* segment descriptor priority level */
1244 	1,			/* segment descriptor present */
1245 	1,			/* long */
1246 	0,			/* default 32 vs 16 bit size */
1247 	1  			/* limit granularity (byte/page units)*/ },
1248 /* GPROC0_SEL	6 Proc 0 Tss Descriptor */
1249 {
1250 	0x0,			/* segment base address */
1251 	sizeof(struct x86_64tss)-1,/* length - all address space */
1252 	SDT_SYSTSS,		/* segment type */
1253 	SEL_KPL,		/* segment descriptor priority level */
1254 	1,			/* segment descriptor present */
1255 	0,			/* long */
1256 	0,			/* unused - default 32 vs 16 bit size */
1257 	0  			/* limit granularity (byte/page units)*/ },
1258 /* Actually, the TSS is a system descriptor which is double size */
1259 {	0x0,			/* segment base address  */
1260 	0x0,			/* length */
1261 	0,			/* segment type */
1262 	0,			/* segment descriptor priority level */
1263 	0,			/* segment descriptor present */
1264 	0,			/* long */
1265 	0,			/* default 32 vs 16 bit size */
1266 	0  			/* limit granularity (byte/page units)*/ },
1267 /* GUGS32_SEL	8 32 bit GS Descriptor for user */
1268 {	0x0,			/* segment base address  */
1269 	0xfffff,		/* length - all address space */
1270 	SDT_MEMRWA,		/* segment type */
1271 	SEL_UPL,		/* segment descriptor priority level */
1272 	1,			/* segment descriptor present */
1273 	0,			/* long */
1274 	1,			/* default 32 vs 16 bit size */
1275 	1  			/* limit granularity (byte/page units)*/ },
1276 };
1277 
1278 void
1279 setidt_global(int idx, inthand_t *func, int typ, int dpl, int ist)
1280 {
1281 	int cpu;
1282 
1283 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
1284 		struct gate_descriptor *ip = &idt_arr[cpu][idx];
1285 
1286 		ip->gd_looffset = (uintptr_t)func;
1287 		ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1288 		ip->gd_ist = ist;
1289 		ip->gd_xx = 0;
1290 		ip->gd_type = typ;
1291 		ip->gd_dpl = dpl;
1292 		ip->gd_p = 1;
1293 		ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1294 	}
1295 }
1296 
1297 void
1298 setidt(int idx, inthand_t *func, int typ, int dpl, int ist, int cpu)
1299 {
1300 	struct gate_descriptor *ip;
1301 
1302 	KASSERT(cpu >= 0 && cpu < ncpus, ("invalid cpu %d\n", cpu));
1303 
1304 	ip = &idt_arr[cpu][idx];
1305 	ip->gd_looffset = (uintptr_t)func;
1306 	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1307 	ip->gd_ist = ist;
1308 	ip->gd_xx = 0;
1309 	ip->gd_type = typ;
1310 	ip->gd_dpl = dpl;
1311 	ip->gd_p = 1;
1312 	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1313 }
1314 
1315 #define	IDTVEC(name)	__CONCAT(X,name)
1316 
1317 extern inthand_t
1318 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1319 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1320 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1321 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1322 	IDTVEC(xmm), IDTVEC(dblfault),
1323 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1324 
1325 #ifdef DEBUG_INTERRUPTS
1326 extern inthand_t *Xrsvdary[256];
1327 #endif
1328 
1329 void
1330 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1331 {
1332 	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1333 	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1334 	ssd->ssd_type  = sd->sd_type;
1335 	ssd->ssd_dpl   = sd->sd_dpl;
1336 	ssd->ssd_p     = sd->sd_p;
1337 	ssd->ssd_def32 = sd->sd_def32;
1338 	ssd->ssd_gran  = sd->sd_gran;
1339 }
1340 
1341 void
1342 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1343 {
1344 
1345 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1346 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1347 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1348 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1349 	sd->sd_type  = ssd->ssd_type;
1350 	sd->sd_dpl   = ssd->ssd_dpl;
1351 	sd->sd_p     = ssd->ssd_p;
1352 	sd->sd_long  = ssd->ssd_long;
1353 	sd->sd_def32 = ssd->ssd_def32;
1354 	sd->sd_gran  = ssd->ssd_gran;
1355 }
1356 
1357 void
1358 ssdtosyssd(struct soft_segment_descriptor *ssd,
1359     struct system_segment_descriptor *sd)
1360 {
1361 
1362 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1363 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1364 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1365 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1366 	sd->sd_type  = ssd->ssd_type;
1367 	sd->sd_dpl   = ssd->ssd_dpl;
1368 	sd->sd_p     = ssd->ssd_p;
1369 	sd->sd_gran  = ssd->ssd_gran;
1370 }
1371 
1372 /*
1373  * Populate the (physmap) array with base/bound pairs describing the
1374  * available physical memory in the system, then test this memory and
1375  * build the phys_avail array describing the actually-available memory.
1376  *
1377  * If we cannot accurately determine the physical memory map, then use
1378  * value from the 0xE801 call, and failing that, the RTC.
1379  *
1380  * Total memory size may be set by the kernel environment variable
1381  * hw.physmem or the compile-time define MAXMEM.
1382  *
1383  * Memory is aligned to PHYSMAP_ALIGN which must be a multiple
1384  * of PAGE_SIZE.  This also greatly reduces the memory test time
1385  * which would otherwise be excessive on machines with > 8G of ram.
1386  *
1387  * XXX first should be vm_paddr_t.
1388  */
1389 
1390 #define PHYSMAP_ALIGN		(vm_paddr_t)(128 * 1024)
1391 #define PHYSMAP_ALIGN_MASK	(vm_paddr_t)(PHYSMAP_ALIGN - 1)
1392 
1393 static void
1394 getmemsize(caddr_t kmdp, u_int64_t first)
1395 {
1396 	int off, physmap_idx, pa_indx, da_indx;
1397 	int i, j;
1398 	vm_paddr_t physmap[PHYSMAP_SIZE];
1399 	vm_paddr_t pa;
1400 	vm_paddr_t msgbuf_size;
1401 	u_long physmem_tunable;
1402 	pt_entry_t *pte;
1403 	struct bios_smap *smapbase, *smap, *smapend;
1404 	u_int32_t smapsize;
1405 	quad_t dcons_addr, dcons_size;
1406 
1407 	bzero(physmap, sizeof(physmap));
1408 	physmap_idx = 0;
1409 
1410 	/*
1411 	 * get memory map from INT 15:E820, kindly supplied by the loader.
1412 	 *
1413 	 * subr_module.c says:
1414 	 * "Consumer may safely assume that size value precedes data."
1415 	 * ie: an int32_t immediately precedes smap.
1416 	 */
1417 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1418 	    MODINFO_METADATA | MODINFOMD_SMAP);
1419 	if (smapbase == NULL)
1420 		panic("No BIOS smap info from loader!");
1421 
1422 	smapsize = *((u_int32_t *)smapbase - 1);
1423 	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1424 
1425 	for (smap = smapbase; smap < smapend; smap++) {
1426 		if (boothowto & RB_VERBOSE)
1427 			kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1428 			    smap->type, smap->base, smap->length);
1429 
1430 		if (smap->type != SMAP_TYPE_MEMORY)
1431 			continue;
1432 
1433 		if (smap->length == 0)
1434 			continue;
1435 
1436 		for (i = 0; i <= physmap_idx; i += 2) {
1437 			if (smap->base < physmap[i + 1]) {
1438 				if (boothowto & RB_VERBOSE) {
1439 					kprintf("Overlapping or non-monotonic "
1440 						"memory region, ignoring "
1441 						"second region\n");
1442 				}
1443 				break;
1444 			}
1445 		}
1446 		if (i <= physmap_idx)
1447 			continue;
1448 
1449 		Realmem += smap->length;
1450 
1451 		if (smap->base == physmap[physmap_idx + 1]) {
1452 			physmap[physmap_idx + 1] += smap->length;
1453 			continue;
1454 		}
1455 
1456 		physmap_idx += 2;
1457 		if (physmap_idx == PHYSMAP_SIZE) {
1458 			kprintf("Too many segments in the physical "
1459 				"address map, giving up\n");
1460 			break;
1461 		}
1462 		physmap[physmap_idx] = smap->base;
1463 		physmap[physmap_idx + 1] = smap->base + smap->length;
1464 	}
1465 
1466 	base_memory = physmap[1] / 1024;
1467 #ifdef SMP
1468 	/* make hole for AP bootstrap code */
1469 	physmap[1] = mp_bootaddress(base_memory);
1470 #endif
1471 
1472 	/* Save EBDA address, if any */
1473 	ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
1474 	ebda_addr <<= 4;
1475 
1476 	/*
1477 	 * Maxmem isn't the "maximum memory", it's one larger than the
1478 	 * highest page of the physical address space.  It should be
1479 	 * called something like "Maxphyspage".  We may adjust this
1480 	 * based on ``hw.physmem'' and the results of the memory test.
1481 	 */
1482 	Maxmem = atop(physmap[physmap_idx + 1]);
1483 
1484 #ifdef MAXMEM
1485 	Maxmem = MAXMEM / 4;
1486 #endif
1487 
1488 	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1489 		Maxmem = atop(physmem_tunable);
1490 
1491 	/*
1492 	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1493 	 * in the system.
1494 	 */
1495 	if (Maxmem > atop(physmap[physmap_idx + 1]))
1496 		Maxmem = atop(physmap[physmap_idx + 1]);
1497 
1498 	/*
1499 	 * Blowing out the DMAP will blow up the system.
1500 	 */
1501 	if (Maxmem > atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS)) {
1502 		kprintf("Limiting Maxmem due to DMAP size\n");
1503 		Maxmem = atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS);
1504 	}
1505 
1506 	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1507 	    (boothowto & RB_VERBOSE)) {
1508 		kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
1509 	}
1510 
1511 	/*
1512 	 * Call pmap initialization to make new kernel address space
1513 	 *
1514 	 * Mask off page 0.
1515 	 */
1516 	pmap_bootstrap(&first);
1517 	physmap[0] = PAGE_SIZE;
1518 
1519 	/*
1520 	 * Align the physmap to PHYSMAP_ALIGN and cut out anything
1521 	 * exceeding Maxmem.
1522 	 */
1523 	for (i = j = 0; i <= physmap_idx; i += 2) {
1524 		if (physmap[i+1] > ptoa((vm_paddr_t)Maxmem))
1525 			physmap[i+1] = ptoa((vm_paddr_t)Maxmem);
1526 		physmap[i] = (physmap[i] + PHYSMAP_ALIGN_MASK) &
1527 			     ~PHYSMAP_ALIGN_MASK;
1528 		physmap[i+1] = physmap[i+1] & ~PHYSMAP_ALIGN_MASK;
1529 
1530 		physmap[j] = physmap[i];
1531 		physmap[j+1] = physmap[i+1];
1532 
1533 		if (physmap[i] < physmap[i+1])
1534 			j += 2;
1535 	}
1536 	physmap_idx = j - 2;
1537 
1538 	/*
1539 	 * Align anything else used in the validation loop.
1540 	 */
1541 	first = (first + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1542 
1543 	/*
1544 	 * Size up each available chunk of physical memory.
1545 	 */
1546 	pa_indx = 0;
1547 	da_indx = 1;
1548 	phys_avail[pa_indx++] = physmap[0];
1549 	phys_avail[pa_indx] = physmap[0];
1550 	dump_avail[da_indx] = physmap[0];
1551 	pte = CMAP1;
1552 
1553 	/*
1554 	 * Get dcons buffer address
1555 	 */
1556 	if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
1557 	    kgetenv_quad("dcons.size", &dcons_size) == 0)
1558 		dcons_addr = 0;
1559 
1560 	/*
1561 	 * Validate the physical memory.  The physical memory segments
1562 	 * have already been aligned to PHYSMAP_ALIGN which is a multiple
1563 	 * of PAGE_SIZE.
1564 	 */
1565 	for (i = 0; i <= physmap_idx; i += 2) {
1566 		vm_paddr_t end;
1567 
1568 		end = physmap[i + 1];
1569 
1570 		for (pa = physmap[i]; pa < end; pa += PHYSMAP_ALIGN) {
1571 			int tmp, page_bad, full;
1572 			int *ptr = (int *)CADDR1;
1573 
1574 			full = FALSE;
1575 			/*
1576 			 * block out kernel memory as not available.
1577 			 */
1578 			if (pa >= 0x100000 && pa < first)
1579 				goto do_dump_avail;
1580 
1581 			/*
1582 			 * block out dcons buffer
1583 			 */
1584 			if (dcons_addr > 0
1585 			    && pa >= trunc_page(dcons_addr)
1586 			    && pa < dcons_addr + dcons_size) {
1587 				goto do_dump_avail;
1588 			}
1589 
1590 			page_bad = FALSE;
1591 
1592 			/*
1593 			 * map page into kernel: valid, read/write,non-cacheable
1594 			 */
1595 			*pte = pa | PG_V | PG_RW | PG_N;
1596 			cpu_invltlb();
1597 
1598 			tmp = *(int *)ptr;
1599 			/*
1600 			 * Test for alternating 1's and 0's
1601 			 */
1602 			*(volatile int *)ptr = 0xaaaaaaaa;
1603 			cpu_mfence();
1604 			if (*(volatile int *)ptr != 0xaaaaaaaa)
1605 				page_bad = TRUE;
1606 			/*
1607 			 * Test for alternating 0's and 1's
1608 			 */
1609 			*(volatile int *)ptr = 0x55555555;
1610 			cpu_mfence();
1611 			if (*(volatile int *)ptr != 0x55555555)
1612 				page_bad = TRUE;
1613 			/*
1614 			 * Test for all 1's
1615 			 */
1616 			*(volatile int *)ptr = 0xffffffff;
1617 			cpu_mfence();
1618 			if (*(volatile int *)ptr != 0xffffffff)
1619 				page_bad = TRUE;
1620 			/*
1621 			 * Test for all 0's
1622 			 */
1623 			*(volatile int *)ptr = 0x0;
1624 			cpu_mfence();
1625 			if (*(volatile int *)ptr != 0x0)
1626 				page_bad = TRUE;
1627 			/*
1628 			 * Restore original value.
1629 			 */
1630 			*(int *)ptr = tmp;
1631 
1632 			/*
1633 			 * Adjust array of valid/good pages.
1634 			 */
1635 			if (page_bad == TRUE)
1636 				continue;
1637 			/*
1638 			 * If this good page is a continuation of the
1639 			 * previous set of good pages, then just increase
1640 			 * the end pointer. Otherwise start a new chunk.
1641 			 * Note that "end" points one higher than end,
1642 			 * making the range >= start and < end.
1643 			 * If we're also doing a speculative memory
1644 			 * test and we at or past the end, bump up Maxmem
1645 			 * so that we keep going. The first bad page
1646 			 * will terminate the loop.
1647 			 */
1648 			if (phys_avail[pa_indx] == pa) {
1649 				phys_avail[pa_indx] += PHYSMAP_ALIGN;
1650 			} else {
1651 				pa_indx++;
1652 				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1653 					kprintf(
1654 		"Too many holes in the physical address space, giving up\n");
1655 					pa_indx--;
1656 					full = TRUE;
1657 					goto do_dump_avail;
1658 				}
1659 				phys_avail[pa_indx++] = pa;
1660 				phys_avail[pa_indx] = pa + PHYSMAP_ALIGN;
1661 			}
1662 			physmem += PHYSMAP_ALIGN / PAGE_SIZE;
1663 do_dump_avail:
1664 			if (dump_avail[da_indx] == pa) {
1665 				dump_avail[da_indx] += PHYSMAP_ALIGN;
1666 			} else {
1667 				da_indx++;
1668 				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1669 					da_indx--;
1670 					goto do_next;
1671 				}
1672 				dump_avail[da_indx++] = pa;
1673 				dump_avail[da_indx] = pa + PHYSMAP_ALIGN;
1674 			}
1675 do_next:
1676 			if (full)
1677 				break;
1678 		}
1679 	}
1680 	*pte = 0;
1681 	cpu_invltlb();
1682 
1683 	/*
1684 	 * The last chunk must contain at least one page plus the message
1685 	 * buffer to avoid complicating other code (message buffer address
1686 	 * calculation, etc.).
1687 	 */
1688 	msgbuf_size = (MSGBUF_SIZE + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1689 
1690 	while (phys_avail[pa_indx - 1] + PHYSMAP_ALIGN +
1691 	       msgbuf_size >= phys_avail[pa_indx]) {
1692 		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1693 		phys_avail[pa_indx--] = 0;
1694 		phys_avail[pa_indx--] = 0;
1695 	}
1696 
1697 	Maxmem = atop(phys_avail[pa_indx]);
1698 
1699 	/* Trim off space for the message buffer. */
1700 	phys_avail[pa_indx] -= msgbuf_size;
1701 
1702 	avail_end = phys_avail[pa_indx];
1703 
1704 	/* Map the message buffer. */
1705 	for (off = 0; off < msgbuf_size; off += PAGE_SIZE) {
1706 		pmap_kenter((vm_offset_t)msgbufp + off,
1707 			    phys_avail[pa_indx] + off);
1708 	}
1709 }
1710 
1711 struct machintr_abi MachIntrABI;
1712 
1713 /*
1714  * IDT VECTORS:
1715  *	0	Divide by zero
1716  *	1	Debug
1717  *	2	NMI
1718  *	3	BreakPoint
1719  *	4	OverFlow
1720  *	5	Bound-Range
1721  *	6	Invalid OpCode
1722  *	7	Device Not Available (x87)
1723  *	8	Double-Fault
1724  *	9	Coprocessor Segment overrun (unsupported, reserved)
1725  *	10	Invalid-TSS
1726  *	11	Segment not present
1727  *	12	Stack
1728  *	13	General Protection
1729  *	14	Page Fault
1730  *	15	Reserved
1731  *	16	x87 FP Exception pending
1732  *	17	Alignment Check
1733  *	18	Machine Check
1734  *	19	SIMD floating point
1735  *	20-31	reserved
1736  *	32-255	INTn/external sources
1737  */
1738 u_int64_t
1739 hammer_time(u_int64_t modulep, u_int64_t physfree)
1740 {
1741 	caddr_t kmdp;
1742 	int gsel_tss, x, cpu;
1743 #if JG
1744 	int metadata_missing, off;
1745 #endif
1746 	struct mdglobaldata *gd;
1747 	u_int64_t msr;
1748 
1749 	/*
1750 	 * Prevent lowering of the ipl if we call tsleep() early.
1751 	 */
1752 	gd = &CPU_prvspace[0].mdglobaldata;
1753 	bzero(gd, sizeof(*gd));
1754 
1755 	/*
1756 	 * Note: on both UP and SMP curthread must be set non-NULL
1757 	 * early in the boot sequence because the system assumes
1758 	 * that 'curthread' is never NULL.
1759 	 */
1760 
1761 	gd->mi.gd_curthread = &thread0;
1762 	thread0.td_gd = &gd->mi;
1763 
1764 	atdevbase = ISA_HOLE_START + PTOV_OFFSET;
1765 
1766 #if JG
1767 	metadata_missing = 0;
1768 	if (bootinfo.bi_modulep) {
1769 		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1770 		preload_bootstrap_relocate(KERNBASE);
1771 	} else {
1772 		metadata_missing = 1;
1773 	}
1774 	if (bootinfo.bi_envp)
1775 		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1776 #endif
1777 
1778 	preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
1779 	preload_bootstrap_relocate(PTOV_OFFSET);
1780 	kmdp = preload_search_by_type("elf kernel");
1781 	if (kmdp == NULL)
1782 		kmdp = preload_search_by_type("elf64 kernel");
1783 	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1784 	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
1785 #ifdef DDB
1786 	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1787 	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1788 #endif
1789 
1790 	if (boothowto & RB_VERBOSE)
1791 		bootverbose++;
1792 
1793 	/*
1794 	 * Default MachIntrABI to ICU
1795 	 */
1796 	MachIntrABI = MachIntrABI_ICU;
1797 
1798 	TUNABLE_INT_FETCH("hw.apic_io_enable", &ioapic_enable); /* for compat */
1799 	TUNABLE_INT_FETCH("hw.ioapic_enable", &ioapic_enable);
1800 	TUNABLE_INT_FETCH("hw.lapic_enable", &lapic_enable);
1801 
1802 	/*
1803 	 * start with one cpu.  Note: with one cpu, ncpus2_shift, ncpus2_mask,
1804 	 * and ncpus_fit_mask remain 0.
1805 	 */
1806 	ncpus = 1;
1807 	ncpus2 = 1;
1808 	ncpus_fit = 1;
1809 	/* Init basic tunables, hz etc */
1810 	init_param1();
1811 
1812 	/*
1813 	 * make gdt memory segments
1814 	 */
1815 	gdt_segs[GPROC0_SEL].ssd_base =
1816 		(uintptr_t) &CPU_prvspace[0].mdglobaldata.gd_common_tss;
1817 
1818 	gd->mi.gd_prvspace = &CPU_prvspace[0];
1819 
1820 	for (x = 0; x < NGDT; x++) {
1821 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
1822 			ssdtosd(&gdt_segs[x], &gdt[x]);
1823 	}
1824 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1825 	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1826 
1827 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1828 	r_gdt.rd_base =  (long) gdt;
1829 	lgdt(&r_gdt);
1830 
1831 	wrmsr(MSR_FSBASE, 0);		/* User value */
1832 	wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
1833 	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1834 
1835 	mi_gdinit(&gd->mi, 0);
1836 	cpu_gdinit(gd, 0);
1837 	proc0paddr = proc0paddr_buff;
1838 	mi_proc0init(&gd->mi, proc0paddr);
1839 	safepri = TDPRI_MAX;
1840 
1841 	/* spinlocks and the BGL */
1842 	init_locks();
1843 
1844 	/* exceptions */
1845 	for (x = 0; x < NIDT; x++)
1846 		setidt_global(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1847 	setidt_global(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1848 	setidt_global(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1849 	setidt_global(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 1);
1850  	setidt_global(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1851 	setidt_global(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1852 	setidt_global(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1853 	setidt_global(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1854 	setidt_global(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1855 	setidt_global(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1856 	setidt_global(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1857 	setidt_global(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1858 	setidt_global(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1859 	setidt_global(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1860 	setidt_global(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1861 	setidt_global(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1862 	setidt_global(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1863 	setidt_global(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1864 	setidt_global(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1865 	setidt_global(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1866 
1867 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
1868 		r_idt_arr[cpu].rd_limit = sizeof(idt_arr[cpu]) - 1;
1869 		r_idt_arr[cpu].rd_base = (long) &idt_arr[cpu][0];
1870 	}
1871 
1872 	lidt(&r_idt_arr[0]);
1873 
1874 	/*
1875 	 * Initialize the console before we print anything out.
1876 	 */
1877 	cninit();
1878 
1879 #if JG
1880 	if (metadata_missing)
1881 		kprintf("WARNING: loader(8) metadata is missing!\n");
1882 #endif
1883 
1884 #if	NISA >0
1885 	elcr_probe();
1886 	isa_defaultirq();
1887 #endif
1888 	rand_initialize();
1889 
1890 	/*
1891 	 * Initialize IRQ mapping
1892 	 *
1893 	 * NOTE:
1894 	 * SHOULD be after elcr_probe()
1895 	 */
1896 	MachIntrABI_ICU.initmap();
1897 	MachIntrABI_IOAPIC.initmap();
1898 
1899 #ifdef DDB
1900 	kdb_init();
1901 	if (boothowto & RB_KDB)
1902 		Debugger("Boot flags requested debugger");
1903 #endif
1904 
1905 #if JG
1906 	finishidentcpu();	/* Final stage of CPU initialization */
1907 	setidt(6, &IDTVEC(ill),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1908 	setidt(13, &IDTVEC(prot),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1909 #endif
1910 	identify_cpu();		/* Final stage of CPU initialization */
1911 	initializecpu();	/* Initialize CPU registers */
1912 
1913 	/* make an initial tss so cpu can get interrupt stack on syscall! */
1914 	gd->gd_common_tss.tss_rsp0 =
1915 		(register_t)(thread0.td_kstack +
1916 			     KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb));
1917 	/* Ensure the stack is aligned to 16 bytes */
1918 	gd->gd_common_tss.tss_rsp0 &= ~(register_t)0xF;
1919 
1920 	/* double fault stack */
1921 	gd->gd_common_tss.tss_ist1 =
1922 		(long)&gd->mi.gd_prvspace->idlestack[
1923 			sizeof(gd->mi.gd_prvspace->idlestack)];
1924 
1925 	/* Set the IO permission bitmap (empty due to tss seg limit) */
1926 	gd->gd_common_tss.tss_iobase = sizeof(struct x86_64tss);
1927 
1928 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1929 	gd->gd_tss_gdt = &gdt[GPROC0_SEL];
1930 	gd->gd_common_tssd = *gd->gd_tss_gdt;
1931 	ltr(gsel_tss);
1932 
1933 	/* Set up the fast syscall stuff */
1934 	msr = rdmsr(MSR_EFER) | EFER_SCE;
1935 	wrmsr(MSR_EFER, msr);
1936 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1937 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1938 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1939 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1940 	wrmsr(MSR_STAR, msr);
1941 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
1942 
1943 	getmemsize(kmdp, physfree);
1944 	init_param2(physmem);
1945 
1946 	/* now running on new page tables, configured,and u/iom is accessible */
1947 
1948 	/* Map the message buffer. */
1949 #if JG
1950 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1951 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
1952 #endif
1953 
1954 	msgbufinit(msgbufp, MSGBUF_SIZE);
1955 
1956 
1957 	/* transfer to user mode */
1958 
1959 	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1960 	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1961 	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1962 
1963 	load_ds(_udatasel);
1964 	load_es(_udatasel);
1965 	load_fs(_udatasel);
1966 
1967 	/* setup proc 0's pcb */
1968 	thread0.td_pcb->pcb_flags = 0;
1969 	thread0.td_pcb->pcb_cr3 = KPML4phys;
1970 	thread0.td_pcb->pcb_ext = 0;
1971 	lwp0.lwp_md.md_regs = &proc0_tf;	/* XXX needed? */
1972 
1973 	/* Location of kernel stack for locore */
1974 	return ((u_int64_t)thread0.td_pcb);
1975 }
1976 
1977 /*
1978  * Initialize machine-dependant portions of the global data structure.
1979  * Note that the global data area and cpu0's idlestack in the private
1980  * data space were allocated in locore.
1981  *
1982  * Note: the idlethread's cpl is 0
1983  *
1984  * WARNING!  Called from early boot, 'mycpu' may not work yet.
1985  */
1986 void
1987 cpu_gdinit(struct mdglobaldata *gd, int cpu)
1988 {
1989 	if (cpu)
1990 		gd->mi.gd_curthread = &gd->mi.gd_idlethread;
1991 
1992 	lwkt_init_thread(&gd->mi.gd_idlethread,
1993 			gd->mi.gd_prvspace->idlestack,
1994 			sizeof(gd->mi.gd_prvspace->idlestack),
1995 			0, &gd->mi);
1996 	lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
1997 	gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
1998 	gd->mi.gd_idlethread.td_sp -= sizeof(void *);
1999 	*(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
2000 }
2001 
2002 int
2003 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
2004 {
2005 	if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
2006 	    eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
2007 		return (TRUE);
2008 	}
2009 	if (saddr >= DMAP_MIN_ADDRESS && eaddr <= DMAP_MAX_ADDRESS)
2010 		return (TRUE);
2011 	return (FALSE);
2012 }
2013 
2014 struct globaldata *
2015 globaldata_find(int cpu)
2016 {
2017 	KKASSERT(cpu >= 0 && cpu < ncpus);
2018 	return(&CPU_prvspace[cpu].mdglobaldata.mi);
2019 }
2020 
2021 int
2022 ptrace_set_pc(struct lwp *lp, unsigned long addr)
2023 {
2024 	lp->lwp_md.md_regs->tf_rip = addr;
2025 	return (0);
2026 }
2027 
2028 int
2029 ptrace_single_step(struct lwp *lp)
2030 {
2031 	lp->lwp_md.md_regs->tf_rflags |= PSL_T;
2032 	return (0);
2033 }
2034 
2035 int
2036 fill_regs(struct lwp *lp, struct reg *regs)
2037 {
2038 	struct trapframe *tp;
2039 
2040 	if ((tp = lp->lwp_md.md_regs) == NULL)
2041 		return EINVAL;
2042 	bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
2043 	return (0);
2044 }
2045 
2046 int
2047 set_regs(struct lwp *lp, struct reg *regs)
2048 {
2049 	struct trapframe *tp;
2050 
2051 	tp = lp->lwp_md.md_regs;
2052 	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
2053 	    !CS_SECURE(regs->r_cs))
2054 		return (EINVAL);
2055 	bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
2056 	clear_quickret();
2057 	return (0);
2058 }
2059 
2060 #ifndef CPU_DISABLE_SSE
2061 static void
2062 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2063 {
2064 	struct env87 *penv_87 = &sv_87->sv_env;
2065 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2066 	int i;
2067 
2068 	/* FPU control/status */
2069 	penv_87->en_cw = penv_xmm->en_cw;
2070 	penv_87->en_sw = penv_xmm->en_sw;
2071 	penv_87->en_tw = penv_xmm->en_tw;
2072 	penv_87->en_fip = penv_xmm->en_fip;
2073 	penv_87->en_fcs = penv_xmm->en_fcs;
2074 	penv_87->en_opcode = penv_xmm->en_opcode;
2075 	penv_87->en_foo = penv_xmm->en_foo;
2076 	penv_87->en_fos = penv_xmm->en_fos;
2077 
2078 	/* FPU registers */
2079 	for (i = 0; i < 8; ++i)
2080 		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2081 }
2082 
2083 static void
2084 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2085 {
2086 	struct env87 *penv_87 = &sv_87->sv_env;
2087 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2088 	int i;
2089 
2090 	/* FPU control/status */
2091 	penv_xmm->en_cw = penv_87->en_cw;
2092 	penv_xmm->en_sw = penv_87->en_sw;
2093 	penv_xmm->en_tw = penv_87->en_tw;
2094 	penv_xmm->en_fip = penv_87->en_fip;
2095 	penv_xmm->en_fcs = penv_87->en_fcs;
2096 	penv_xmm->en_opcode = penv_87->en_opcode;
2097 	penv_xmm->en_foo = penv_87->en_foo;
2098 	penv_xmm->en_fos = penv_87->en_fos;
2099 
2100 	/* FPU registers */
2101 	for (i = 0; i < 8; ++i)
2102 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2103 }
2104 #endif /* CPU_DISABLE_SSE */
2105 
2106 int
2107 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2108 {
2109 	if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
2110 		return EINVAL;
2111 #ifndef CPU_DISABLE_SSE
2112 	if (cpu_fxsr) {
2113 		fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2114 				(struct save87 *)fpregs);
2115 		return (0);
2116 	}
2117 #endif /* CPU_DISABLE_SSE */
2118 	bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2119 	return (0);
2120 }
2121 
2122 int
2123 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2124 {
2125 #ifndef CPU_DISABLE_SSE
2126 	if (cpu_fxsr) {
2127 		set_fpregs_xmm((struct save87 *)fpregs,
2128 			       &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2129 		return (0);
2130 	}
2131 #endif /* CPU_DISABLE_SSE */
2132 	bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2133 	return (0);
2134 }
2135 
2136 int
2137 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2138 {
2139 	struct pcb *pcb;
2140 
2141         if (lp == NULL) {
2142                 dbregs->dr[0] = rdr0();
2143                 dbregs->dr[1] = rdr1();
2144                 dbregs->dr[2] = rdr2();
2145                 dbregs->dr[3] = rdr3();
2146                 dbregs->dr[4] = rdr4();
2147                 dbregs->dr[5] = rdr5();
2148                 dbregs->dr[6] = rdr6();
2149                 dbregs->dr[7] = rdr7();
2150 		return (0);
2151         }
2152 	if (lp->lwp_thread == NULL || (pcb = lp->lwp_thread->td_pcb) == NULL)
2153 		return EINVAL;
2154 	dbregs->dr[0] = pcb->pcb_dr0;
2155 	dbregs->dr[1] = pcb->pcb_dr1;
2156 	dbregs->dr[2] = pcb->pcb_dr2;
2157 	dbregs->dr[3] = pcb->pcb_dr3;
2158 	dbregs->dr[4] = 0;
2159 	dbregs->dr[5] = 0;
2160 	dbregs->dr[6] = pcb->pcb_dr6;
2161 	dbregs->dr[7] = pcb->pcb_dr7;
2162 	return (0);
2163 }
2164 
2165 int
2166 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2167 {
2168 	if (lp == NULL) {
2169 		load_dr0(dbregs->dr[0]);
2170 		load_dr1(dbregs->dr[1]);
2171 		load_dr2(dbregs->dr[2]);
2172 		load_dr3(dbregs->dr[3]);
2173 		load_dr4(dbregs->dr[4]);
2174 		load_dr5(dbregs->dr[5]);
2175 		load_dr6(dbregs->dr[6]);
2176 		load_dr7(dbregs->dr[7]);
2177 	} else {
2178 		struct pcb *pcb;
2179 		struct ucred *ucred;
2180 		int i;
2181 		uint64_t mask1, mask2;
2182 
2183 		/*
2184 		 * Don't let an illegal value for dr7 get set.	Specifically,
2185 		 * check for undefined settings.  Setting these bit patterns
2186 		 * result in undefined behaviour and can lead to an unexpected
2187 		 * TRCTRAP.
2188 		 */
2189 		/* JG this loop looks unreadable */
2190 		/* Check 4 2-bit fields for invalid patterns.
2191 		 * These fields are R/Wi, for i = 0..3
2192 		 */
2193 		/* Is 10 in LENi allowed when running in compatibility mode? */
2194 		/* Pattern 10 in R/Wi might be used to indicate
2195 		 * breakpoint on I/O. Further analysis should be
2196 		 * carried to decide if it is safe and useful to
2197 		 * provide access to that capability
2198 		 */
2199 		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2200 		     i++, mask1 <<= 4, mask2 <<= 4)
2201 			if ((dbregs->dr[7] & mask1) == mask2)
2202 				return (EINVAL);
2203 
2204 		pcb = lp->lwp_thread->td_pcb;
2205 		ucred = lp->lwp_proc->p_ucred;
2206 
2207 		/*
2208 		 * Don't let a process set a breakpoint that is not within the
2209 		 * process's address space.  If a process could do this, it
2210 		 * could halt the system by setting a breakpoint in the kernel
2211 		 * (if ddb was enabled).  Thus, we need to check to make sure
2212 		 * that no breakpoints are being enabled for addresses outside
2213 		 * process's address space, unless, perhaps, we were called by
2214 		 * uid 0.
2215 		 *
2216 		 * XXX - what about when the watched area of the user's
2217 		 * address space is written into from within the kernel
2218 		 * ... wouldn't that still cause a breakpoint to be generated
2219 		 * from within kernel mode?
2220 		 */
2221 
2222 		if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2223 			if (dbregs->dr[7] & 0x3) {
2224 				/* dr0 is enabled */
2225 				if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2226 					return (EINVAL);
2227 			}
2228 
2229 			if (dbregs->dr[7] & (0x3<<2)) {
2230 				/* dr1 is enabled */
2231 				if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2232 					return (EINVAL);
2233 			}
2234 
2235 			if (dbregs->dr[7] & (0x3<<4)) {
2236 				/* dr2 is enabled */
2237 				if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2238 					return (EINVAL);
2239 			}
2240 
2241 			if (dbregs->dr[7] & (0x3<<6)) {
2242 				/* dr3 is enabled */
2243 				if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2244 					return (EINVAL);
2245 			}
2246 		}
2247 
2248 		pcb->pcb_dr0 = dbregs->dr[0];
2249 		pcb->pcb_dr1 = dbregs->dr[1];
2250 		pcb->pcb_dr2 = dbregs->dr[2];
2251 		pcb->pcb_dr3 = dbregs->dr[3];
2252 		pcb->pcb_dr6 = dbregs->dr[6];
2253 		pcb->pcb_dr7 = dbregs->dr[7];
2254 
2255 		pcb->pcb_flags |= PCB_DBREGS;
2256 	}
2257 
2258 	return (0);
2259 }
2260 
2261 /*
2262  * Return > 0 if a hardware breakpoint has been hit, and the
2263  * breakpoint was in user space.  Return 0, otherwise.
2264  */
2265 int
2266 user_dbreg_trap(void)
2267 {
2268         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2269         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2270         int nbp;            /* number of breakpoints that triggered */
2271         caddr_t addr[4];    /* breakpoint addresses */
2272         int i;
2273 
2274         dr7 = rdr7();
2275         if ((dr7 & 0xff) == 0) {
2276                 /*
2277                  * all GE and LE bits in the dr7 register are zero,
2278                  * thus the trap couldn't have been caused by the
2279                  * hardware debug registers
2280                  */
2281                 return 0;
2282         }
2283 
2284         nbp = 0;
2285         dr6 = rdr6();
2286         bp = dr6 & 0xf;
2287 
2288         if (bp == 0) {
2289                 /*
2290                  * None of the breakpoint bits are set meaning this
2291                  * trap was not caused by any of the debug registers
2292                  */
2293                 return 0;
2294         }
2295 
2296         /*
2297          * at least one of the breakpoints were hit, check to see
2298          * which ones and if any of them are user space addresses
2299          */
2300 
2301         if (bp & 0x01) {
2302                 addr[nbp++] = (caddr_t)rdr0();
2303         }
2304         if (bp & 0x02) {
2305                 addr[nbp++] = (caddr_t)rdr1();
2306         }
2307         if (bp & 0x04) {
2308                 addr[nbp++] = (caddr_t)rdr2();
2309         }
2310         if (bp & 0x08) {
2311                 addr[nbp++] = (caddr_t)rdr3();
2312         }
2313 
2314         for (i=0; i<nbp; i++) {
2315                 if (addr[i] <
2316                     (caddr_t)VM_MAX_USER_ADDRESS) {
2317                         /*
2318                          * addr[i] is in user space
2319                          */
2320                         return nbp;
2321                 }
2322         }
2323 
2324         /*
2325          * None of the breakpoints are in user space.
2326          */
2327         return 0;
2328 }
2329 
2330 
2331 #ifndef DDB
2332 void
2333 Debugger(const char *msg)
2334 {
2335 	kprintf("Debugger(\"%s\") called.\n", msg);
2336 }
2337 #endif /* no DDB */
2338 
2339 #ifdef DDB
2340 
2341 /*
2342  * Provide inb() and outb() as functions.  They are normally only
2343  * available as macros calling inlined functions, thus cannot be
2344  * called inside DDB.
2345  *
2346  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2347  */
2348 
2349 #undef inb
2350 #undef outb
2351 
2352 /* silence compiler warnings */
2353 u_char inb(u_int);
2354 void outb(u_int, u_char);
2355 
2356 u_char
2357 inb(u_int port)
2358 {
2359 	u_char	data;
2360 	/*
2361 	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2362 	 * %edx, while gcc generates inferior code (movw instead of movl)
2363 	 * if we tell it to load (u_short) port.
2364 	 */
2365 	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2366 	return (data);
2367 }
2368 
2369 void
2370 outb(u_int port, u_char data)
2371 {
2372 	u_char	al;
2373 	/*
2374 	 * Use an unnecessary assignment to help gcc's register allocator.
2375 	 * This make a large difference for gcc-1.40 and a tiny difference
2376 	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2377 	 * best results.  gcc-2.6.0 can't handle this.
2378 	 */
2379 	al = data;
2380 	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2381 }
2382 
2383 #endif /* DDB */
2384 
2385 
2386 
2387 #include "opt_cpu.h"
2388 
2389 
2390 /*
2391  * initialize all the SMP locks
2392  */
2393 
2394 /* critical region when masking or unmasking interupts */
2395 struct spinlock_deprecated imen_spinlock;
2396 
2397 /* critical region for old style disable_intr/enable_intr */
2398 struct spinlock_deprecated mpintr_spinlock;
2399 
2400 /* critical region around INTR() routines */
2401 struct spinlock_deprecated intr_spinlock;
2402 
2403 /* lock region used by kernel profiling */
2404 struct spinlock_deprecated mcount_spinlock;
2405 
2406 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2407 struct spinlock_deprecated com_spinlock;
2408 
2409 /* lock regions around the clock hardware */
2410 struct spinlock_deprecated clock_spinlock;
2411 
2412 static void
2413 init_locks(void)
2414 {
2415 #ifdef SMP
2416 	/*
2417 	 * Get the initial mplock with a count of 1 for the BSP.
2418 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
2419 	 */
2420 	cpu_get_initial_mplock();
2421 #endif
2422 	/* DEPRECATED */
2423 	spin_lock_init(&mcount_spinlock);
2424 	spin_lock_init(&intr_spinlock);
2425 	spin_lock_init(&mpintr_spinlock);
2426 	spin_lock_init(&imen_spinlock);
2427 	spin_lock_init(&com_spinlock);
2428 	spin_lock_init(&clock_spinlock);
2429 
2430 	/* our token pool needs to work early */
2431 	lwkt_token_pool_init();
2432 }
2433 
2434