xref: /dragonfly/sys/platform/pc64/x86_64/machdep.c (revision 65867155)
1 /*-
2  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3  * Copyright (c) 1992 Terrence R. Lambert.
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 2008 The DragonFly Project.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
40  * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
41  */
42 
43 //#include "use_npx.h"
44 #include "use_isa.h"
45 #include "opt_compat.h"
46 #include "opt_cpu.h"
47 #include "opt_ddb.h"
48 #include "opt_directio.h"
49 #include "opt_inet.h"
50 #include "opt_msgbuf.h"
51 #include "opt_swap.h"
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/sysproto.h>
56 #include <sys/signalvar.h>
57 #include <sys/kernel.h>
58 #include <sys/linker.h>
59 #include <sys/malloc.h>
60 #include <sys/proc.h>
61 #include <sys/priv.h>
62 #include <sys/buf.h>
63 #include <sys/reboot.h>
64 #include <sys/mbuf.h>
65 #include <sys/msgbuf.h>
66 #include <sys/sysent.h>
67 #include <sys/sysctl.h>
68 #include <sys/vmmeter.h>
69 #include <sys/bus.h>
70 #include <sys/usched.h>
71 #include <sys/reg.h>
72 #include <sys/sbuf.h>
73 #include <sys/ctype.h>
74 #include <sys/serialize.h>
75 #include <sys/systimer.h>
76 
77 #include <vm/vm.h>
78 #include <vm/vm_param.h>
79 #include <sys/lock.h>
80 #include <vm/vm_kern.h>
81 #include <vm/vm_object.h>
82 #include <vm/vm_page.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_pager.h>
85 #include <vm/vm_extern.h>
86 
87 #include <sys/thread2.h>
88 #include <sys/mplock2.h>
89 #include <sys/mutex2.h>
90 
91 #include <sys/user.h>
92 #include <sys/exec.h>
93 #include <sys/cons.h>
94 
95 #include <sys/efi.h>
96 
97 #include <ddb/ddb.h>
98 
99 #include <machine/cpu.h>
100 #include <machine/clock.h>
101 #include <machine/specialreg.h>
102 #if 0 /* JG */
103 #include <machine/bootinfo.h>
104 #endif
105 #include <machine/md_var.h>
106 #include <machine/metadata.h>
107 #include <machine/pc/bios.h>
108 #include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
109 #include <machine/globaldata.h>		/* CPU_prvspace */
110 #include <machine/smp.h>
111 #ifdef PERFMON
112 #include <machine/perfmon.h>
113 #endif
114 #include <machine/cputypes.h>
115 #include <machine/intr_machdep.h>
116 #include <machine/framebuffer.h>
117 
118 #ifdef OLD_BUS_ARCH
119 #include <bus/isa/isa_device.h>
120 #endif
121 #include <machine_base/isa/isa_intr.h>
122 #include <bus/isa/rtc.h>
123 #include <sys/random.h>
124 #include <sys/ptrace.h>
125 #include <machine/sigframe.h>
126 
127 #include <sys/machintr.h>
128 #include <machine_base/icu/icu_abi.h>
129 #include <machine_base/icu/elcr_var.h>
130 #include <machine_base/apic/lapic.h>
131 #include <machine_base/apic/ioapic.h>
132 #include <machine_base/apic/ioapic_abi.h>
133 #include <machine/mptable.h>
134 
135 #define PHYSMAP_ENTRIES		10
136 
137 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
138 
139 extern void printcpuinfo(void);	/* XXX header file */
140 extern void identify_cpu(void);
141 #if 0 /* JG */
142 extern void finishidentcpu(void);
143 #endif
144 extern void panicifcpuunsupported(void);
145 
146 static void cpu_startup(void *);
147 static void pic_finish(void *);
148 static void cpu_finish(void *);
149 
150 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
151 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
152 #ifdef DIRECTIO
153 extern void ffs_rawread_setup(void);
154 #endif /* DIRECTIO */
155 static void init_locks(void);
156 
157 extern void pcpu_timer_always(struct intrframe *);
158 
159 SYSINIT(cpu, SI_BOOT2_START_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
160 SYSINIT(pic_finish, SI_BOOT2_FINISH_PIC, SI_ORDER_FIRST, pic_finish, NULL);
161 SYSINIT(cpu_finish, SI_BOOT2_FINISH_CPU, SI_ORDER_FIRST, cpu_finish, NULL);
162 
163 #ifdef DDB
164 extern vm_offset_t ksym_start, ksym_end;
165 #endif
166 
167 struct privatespace CPU_prvspace_bsp __aligned(4096);
168 struct privatespace *CPU_prvspace[MAXCPU] = { &CPU_prvspace_bsp };
169 
170 int	_udatasel, _ucodesel, _ucode32sel;
171 u_long	atdevbase;
172 int64_t tsc_offsets[MAXCPU];
173 
174 static int cpu_mwait_halt_global; /* MWAIT hint (EAX) or CPU_MWAIT_HINT_ */
175 
176 #if defined(SWTCH_OPTIM_STATS)
177 extern int swtch_optim_stats;
178 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
179 	CTLFLAG_RD, &swtch_optim_stats, 0, "");
180 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
181 	CTLFLAG_RD, &tlb_flush_count, 0, "");
182 #endif
183 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_halt,
184 	CTLFLAG_RD, &cpu_mwait_halt_global, 0, "");
185 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_spin, CTLFLAG_RD, &cpu_mwait_spin, 0,
186     "monitor/mwait target state");
187 
188 #define CPU_MWAIT_HAS_CX	\
189 	((cpu_feature2 & CPUID2_MON) && \
190 	 (cpu_mwait_feature & CPUID_MWAIT_EXT))
191 
192 #define CPU_MWAIT_CX_NAMELEN	16
193 
194 #define CPU_MWAIT_C1		1
195 #define CPU_MWAIT_C2		2
196 #define CPU_MWAIT_C3		3
197 #define CPU_MWAIT_CX_MAX	8
198 
199 #define CPU_MWAIT_HINT_AUTO	-1	/* C1 and C2 */
200 #define CPU_MWAIT_HINT_AUTODEEP	-2	/* C3+ */
201 
202 SYSCTL_NODE(_machdep, OID_AUTO, mwait, CTLFLAG_RW, 0, "MWAIT features");
203 SYSCTL_NODE(_machdep_mwait, OID_AUTO, CX, CTLFLAG_RW, 0, "MWAIT Cx settings");
204 
205 struct cpu_mwait_cx {
206 	int			subcnt;
207 	char			name[4];
208 	struct sysctl_ctx_list	sysctl_ctx;
209 	struct sysctl_oid	*sysctl_tree;
210 };
211 static struct cpu_mwait_cx	cpu_mwait_cx_info[CPU_MWAIT_CX_MAX];
212 static char			cpu_mwait_cx_supported[256];
213 
214 static int			cpu_mwait_c1_hints_cnt;
215 static int			cpu_mwait_hints_cnt;
216 static int			*cpu_mwait_hints;
217 
218 static int			cpu_mwait_deep_hints_cnt;
219 static int			*cpu_mwait_deep_hints;
220 
221 #define CPU_IDLE_REPEAT_DEFAULT	750
222 
223 static u_int			cpu_idle_repeat = CPU_IDLE_REPEAT_DEFAULT;
224 static u_long			cpu_idle_repeat_max = CPU_IDLE_REPEAT_DEFAULT;
225 static u_int			cpu_mwait_repeat_shift = 1;
226 
227 #define CPU_MWAIT_C3_PREAMBLE_BM_ARB	0x1
228 #define CPU_MWAIT_C3_PREAMBLE_BM_STS	0x2
229 
230 static int			cpu_mwait_c3_preamble =
231 				    CPU_MWAIT_C3_PREAMBLE_BM_ARB |
232 				    CPU_MWAIT_C3_PREAMBLE_BM_STS;
233 
234 SYSCTL_STRING(_machdep_mwait_CX, OID_AUTO, supported, CTLFLAG_RD,
235     cpu_mwait_cx_supported, 0, "MWAIT supported C states");
236 SYSCTL_INT(_machdep_mwait_CX, OID_AUTO, c3_preamble, CTLFLAG_RD,
237     &cpu_mwait_c3_preamble, 0, "C3+ preamble mask");
238 
239 static int	cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS,
240 		    int *, boolean_t);
241 static int	cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS);
242 static int	cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS);
243 static int	cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS);
244 
245 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, idle, CTLTYPE_STRING|CTLFLAG_RW,
246     NULL, 0, cpu_mwait_cx_idle_sysctl, "A", "");
247 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, spin, CTLTYPE_STRING|CTLFLAG_RW,
248     NULL, 0, cpu_mwait_cx_spin_sysctl, "A", "");
249 SYSCTL_UINT(_machdep_mwait_CX, OID_AUTO, repeat_shift, CTLFLAG_RW,
250     &cpu_mwait_repeat_shift, 0, "");
251 
252 long physmem = 0;
253 
254 u_long ebda_addr = 0;
255 
256 int imcr_present = 0;
257 
258 int naps = 0; /* # of Applications processors */
259 
260 u_int base_memory;
261 struct mtx dt_lock;		/* lock for GDT and LDT */
262 
263 static int
264 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
265 {
266 	u_long pmem = ctob(physmem);
267 
268 	int error = sysctl_handle_long(oidp, &pmem, 0, req);
269 	return (error);
270 }
271 
272 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
273 	0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
274 
275 static int
276 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
277 {
278 	int error = sysctl_handle_int(oidp, 0,
279 		ctob(physmem - vmstats.v_wire_count), req);
280 	return (error);
281 }
282 
283 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
284 	0, 0, sysctl_hw_usermem, "IU", "");
285 
286 static int
287 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
288 {
289 	int error = sysctl_handle_int(oidp, 0,
290 		x86_64_btop(avail_end - avail_start), req);
291 	return (error);
292 }
293 
294 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
295 	0, 0, sysctl_hw_availpages, "I", "");
296 
297 vm_paddr_t Maxmem;
298 vm_paddr_t Realmem;
299 
300 /*
301  * The number of PHYSMAP entries must be one less than the number of
302  * PHYSSEG entries because the PHYSMAP entry that spans the largest
303  * physical address that is accessible by ISA DMA is split into two
304  * PHYSSEG entries.
305  */
306 #define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
307 
308 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
309 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
310 
311 /* must be 2 less so 0 0 can signal end of chunks */
312 #define PHYS_AVAIL_ARRAY_END (NELEM(phys_avail) - 2)
313 #define DUMP_AVAIL_ARRAY_END (NELEM(dump_avail) - 2)
314 
315 static vm_offset_t buffer_sva, buffer_eva;
316 vm_offset_t clean_sva, clean_eva;
317 static vm_offset_t pager_sva, pager_eva;
318 static struct trapframe proc0_tf;
319 
320 static void
321 cpu_startup(void *dummy)
322 {
323 	caddr_t v;
324 	vm_size_t size = 0;
325 	vm_offset_t firstaddr;
326 
327 	/*
328 	 * Good {morning,afternoon,evening,night}.
329 	 */
330 	kprintf("%s", version);
331 	startrtclock();
332 	printcpuinfo();
333 	panicifcpuunsupported();
334 #ifdef PERFMON
335 	perfmon_init();
336 #endif
337 	kprintf("real memory  = %ju (%ju MB)\n",
338 		(intmax_t)Realmem,
339 		(intmax_t)Realmem / 1024 / 1024);
340 	/*
341 	 * Display any holes after the first chunk of extended memory.
342 	 */
343 	if (bootverbose) {
344 		int indx;
345 
346 		kprintf("Physical memory chunk(s):\n");
347 		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
348 			vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
349 
350 			kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
351 				(intmax_t)phys_avail[indx],
352 				(intmax_t)phys_avail[indx + 1] - 1,
353 				(intmax_t)size1,
354 				(intmax_t)(size1 / PAGE_SIZE));
355 		}
356 	}
357 
358 	/*
359 	 * Allocate space for system data structures.
360 	 * The first available kernel virtual address is in "v".
361 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
362 	 * As pages of memory are allocated and cleared,
363 	 * "firstaddr" is incremented.
364 	 * An index into the kernel page table corresponding to the
365 	 * virtual memory address maintained in "v" is kept in "mapaddr".
366 	 */
367 
368 	/*
369 	 * Make two passes.  The first pass calculates how much memory is
370 	 * needed and allocates it.  The second pass assigns virtual
371 	 * addresses to the various data structures.
372 	 */
373 	firstaddr = 0;
374 again:
375 	v = (caddr_t)firstaddr;
376 
377 #define	valloc(name, type, num) \
378 	    (name) = (type *)v; v = (caddr_t)((name)+(num))
379 #define	valloclim(name, type, num, lim) \
380 	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
381 
382 	/*
383 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
384 	 * For the first 64MB of ram nominally allocate sufficient buffers to
385 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
386 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
387 	 * the buffer cache we limit the eventual kva reservation to
388 	 * maxbcache bytes.
389 	 *
390 	 * factor represents the 1/4 x ram conversion.
391 	 */
392 	if (nbuf == 0) {
393 		long factor = 4 * BKVASIZE / 1024;
394 		long kbytes = physmem * (PAGE_SIZE / 1024);
395 
396 		nbuf = 50;
397 		if (kbytes > 4096)
398 			nbuf += min((kbytes - 4096) / factor, 65536 / factor);
399 		if (kbytes > 65536)
400 			nbuf += (kbytes - 65536) * 2 / (factor * 5);
401 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
402 			nbuf = maxbcache / BKVASIZE;
403 	}
404 
405 	/*
406 	 * Do not allow the buffer_map to be more then 1/2 the size of the
407 	 * kernel_map.
408 	 */
409 	if (nbuf > (virtual_end - virtual_start +
410 		    virtual2_end - virtual2_start) / (BKVASIZE * 2)) {
411 		nbuf = (virtual_end - virtual_start +
412 			virtual2_end - virtual2_start) / (BKVASIZE * 2);
413 		kprintf("Warning: nbufs capped at %ld due to kvm\n", nbuf);
414 	}
415 
416 	/*
417 	 * Do not allow the buffer_map to use more than 50% of available
418 	 * physical-equivalent memory.  Since the VM pages which back
419 	 * individual buffers are typically wired, having too many bufs
420 	 * can prevent the system from paging properly.
421 	 */
422 	if (nbuf > physmem * PAGE_SIZE / (BKVASIZE * 2)) {
423 		nbuf = physmem * PAGE_SIZE / (BKVASIZE * 2);
424 		kprintf("Warning: nbufs capped at %ld due to physmem\n", nbuf);
425 	}
426 
427 	/*
428 	 * Do not allow the sizeof(struct buf) * nbuf to exceed half of
429 	 * the valloc space which is just the virtual_end - virtual_start
430 	 * section.  We use valloc() to allocate the buf header array.
431 	 */
432 	if (nbuf > (virtual_end - virtual_start) / sizeof(struct buf) / 2) {
433 		nbuf = (virtual_end - virtual_start) /
434 		       sizeof(struct buf) / 2;
435 		kprintf("Warning: nbufs capped at %ld due to valloc "
436 			"considerations", nbuf);
437 	}
438 
439 	nswbuf = lmax(lmin(nbuf / 4, 256), 16);
440 #ifdef NSWBUF_MIN
441 	if (nswbuf < NSWBUF_MIN)
442 		nswbuf = NSWBUF_MIN;
443 #endif
444 #ifdef DIRECTIO
445 	ffs_rawread_setup();
446 #endif
447 
448 	valloc(swbuf, struct buf, nswbuf);
449 	valloc(buf, struct buf, nbuf);
450 
451 	/*
452 	 * End of first pass, size has been calculated so allocate memory
453 	 */
454 	if (firstaddr == 0) {
455 		size = (vm_size_t)(v - firstaddr);
456 		firstaddr = kmem_alloc(&kernel_map, round_page(size));
457 		if (firstaddr == 0)
458 			panic("startup: no room for tables");
459 		goto again;
460 	}
461 
462 	/*
463 	 * End of second pass, addresses have been assigned
464 	 *
465 	 * nbuf is an int, make sure we don't overflow the field.
466 	 *
467 	 * On 64-bit systems we always reserve maximal allocations for
468 	 * buffer cache buffers and there are no fragmentation issues,
469 	 * so the KVA segment does not have to be excessively oversized.
470 	 */
471 	if ((vm_size_t)(v - firstaddr) != size)
472 		panic("startup: table size inconsistency");
473 
474 	kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
475 		      ((vm_offset_t)(nbuf + 16) * BKVASIZE) +
476 		      (nswbuf * MAXPHYS) + pager_map_size);
477 	kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
478 		      ((vm_offset_t)(nbuf + 16) * BKVASIZE));
479 	buffer_map.system_map = 1;
480 	kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
481 		      ((vm_offset_t)nswbuf * MAXPHYS) + pager_map_size);
482 	pager_map.system_map = 1;
483 	kprintf("avail memory = %ju (%ju MB)\n",
484 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages),
485 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages) /
486 		1024 / 1024);
487 }
488 
489 struct cpu_idle_stat {
490 	int	hint;
491 	int	reserved;
492 	u_long	halt;
493 	u_long	spin;
494 	u_long	repeat;
495 	u_long	repeat_last;
496 	u_long	repeat_delta;
497 	u_long	mwait_cx[CPU_MWAIT_CX_MAX];
498 } __cachealign;
499 
500 #define CPU_IDLE_STAT_HALT	-1
501 #define CPU_IDLE_STAT_SPIN	-2
502 
503 static struct cpu_idle_stat	cpu_idle_stats[MAXCPU];
504 
505 static int
506 sysctl_cpu_idle_cnt(SYSCTL_HANDLER_ARGS)
507 {
508 	int idx = arg2, cpu, error;
509 	u_long val = 0;
510 
511 	if (idx == CPU_IDLE_STAT_HALT) {
512 		for (cpu = 0; cpu < ncpus; ++cpu)
513 			val += cpu_idle_stats[cpu].halt;
514 	} else if (idx == CPU_IDLE_STAT_SPIN) {
515 		for (cpu = 0; cpu < ncpus; ++cpu)
516 			val += cpu_idle_stats[cpu].spin;
517 	} else {
518 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
519 		    ("invalid index %d", idx));
520 		for (cpu = 0; cpu < ncpus; ++cpu)
521 			val += cpu_idle_stats[cpu].mwait_cx[idx];
522 	}
523 
524 	error = sysctl_handle_quad(oidp, &val, 0, req);
525         if (error || req->newptr == NULL)
526 	        return error;
527 
528 	if (idx == CPU_IDLE_STAT_HALT) {
529 		for (cpu = 0; cpu < ncpus; ++cpu)
530 			cpu_idle_stats[cpu].halt = 0;
531 		cpu_idle_stats[0].halt = val;
532 	} else if (idx == CPU_IDLE_STAT_SPIN) {
533 		for (cpu = 0; cpu < ncpus; ++cpu)
534 			cpu_idle_stats[cpu].spin = 0;
535 		cpu_idle_stats[0].spin = val;
536 	} else {
537 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
538 		    ("invalid index %d", idx));
539 		for (cpu = 0; cpu < ncpus; ++cpu)
540 			cpu_idle_stats[cpu].mwait_cx[idx] = 0;
541 		cpu_idle_stats[0].mwait_cx[idx] = val;
542 	}
543 	return 0;
544 }
545 
546 static void
547 cpu_mwait_attach(void)
548 {
549 	struct sbuf sb;
550 	int hint_idx, i;
551 
552 	if (!CPU_MWAIT_HAS_CX)
553 		return;
554 
555 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
556 	    (CPUID_TO_FAMILY(cpu_id) > 0xf ||
557 	     (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
558 	      CPUID_TO_MODEL(cpu_id) >= 0xf))) {
559 		int bm_sts = 1;
560 
561 		/*
562 		 * Pentium dual-core, Core 2 and beyond do not need any
563 		 * additional activities to enter deep C-state, i.e. C3(+).
564 		 */
565 		cpu_mwait_cx_no_bmarb();
566 
567 		TUNABLE_INT_FETCH("machdep.cpu.mwait.bm_sts", &bm_sts);
568 		if (!bm_sts)
569 			cpu_mwait_cx_no_bmsts();
570 	}
571 
572 	sbuf_new(&sb, cpu_mwait_cx_supported,
573 	    sizeof(cpu_mwait_cx_supported), SBUF_FIXEDLEN);
574 
575 	for (i = 0; i < CPU_MWAIT_CX_MAX; ++i) {
576 		struct cpu_mwait_cx *cx = &cpu_mwait_cx_info[i];
577 		int sub;
578 
579 		ksnprintf(cx->name, sizeof(cx->name), "C%d", i);
580 
581 		sysctl_ctx_init(&cx->sysctl_ctx);
582 		cx->sysctl_tree = SYSCTL_ADD_NODE(&cx->sysctl_ctx,
583 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait), OID_AUTO,
584 		    cx->name, CTLFLAG_RW, NULL, "Cx control/info");
585 		if (cx->sysctl_tree == NULL)
586 			continue;
587 
588 		cx->subcnt = CPUID_MWAIT_CX_SUBCNT(cpu_mwait_extemu, i);
589 		SYSCTL_ADD_INT(&cx->sysctl_ctx,
590 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
591 		    "subcnt", CTLFLAG_RD, &cx->subcnt, 0,
592 		    "sub-state count");
593 		SYSCTL_ADD_PROC(&cx->sysctl_ctx,
594 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
595 		    "entered", (CTLTYPE_QUAD | CTLFLAG_RW), 0,
596 		    i, sysctl_cpu_idle_cnt, "Q", "# of times entered");
597 
598 		for (sub = 0; sub < cx->subcnt; ++sub)
599 			sbuf_printf(&sb, "C%d/%d ", i, sub);
600 	}
601 	sbuf_trim(&sb);
602 	sbuf_finish(&sb);
603 
604 	/*
605 	 * Non-deep C-states
606 	 */
607 	cpu_mwait_c1_hints_cnt = cpu_mwait_cx_info[CPU_MWAIT_C1].subcnt;
608 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i)
609 		cpu_mwait_hints_cnt += cpu_mwait_cx_info[i].subcnt;
610 	cpu_mwait_hints = kmalloc(sizeof(int) * cpu_mwait_hints_cnt,
611 	    M_DEVBUF, M_WAITOK);
612 
613 	hint_idx = 0;
614 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i) {
615 		int j, subcnt;
616 
617 		subcnt = cpu_mwait_cx_info[i].subcnt;
618 		for (j = 0; j < subcnt; ++j) {
619 			KASSERT(hint_idx < cpu_mwait_hints_cnt,
620 			    ("invalid mwait hint index %d", hint_idx));
621 			cpu_mwait_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
622 			++hint_idx;
623 		}
624 	}
625 	KASSERT(hint_idx == cpu_mwait_hints_cnt,
626 	    ("mwait hint count %d != index %d",
627 	     cpu_mwait_hints_cnt, hint_idx));
628 
629 	if (bootverbose) {
630 		kprintf("MWAIT hints (%d C1 hints):\n", cpu_mwait_c1_hints_cnt);
631 		for (i = 0; i < cpu_mwait_hints_cnt; ++i) {
632 			int hint = cpu_mwait_hints[i];
633 
634 			kprintf("  C%d/%d hint 0x%04x\n",
635 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
636 			    hint);
637 		}
638 	}
639 
640 	/*
641 	 * Deep C-states
642 	 */
643 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i)
644 		cpu_mwait_deep_hints_cnt += cpu_mwait_cx_info[i].subcnt;
645 	cpu_mwait_deep_hints = kmalloc(sizeof(int) * cpu_mwait_deep_hints_cnt,
646 	    M_DEVBUF, M_WAITOK);
647 
648 	hint_idx = 0;
649 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i) {
650 		int j, subcnt;
651 
652 		subcnt = cpu_mwait_cx_info[i].subcnt;
653 		for (j = 0; j < subcnt; ++j) {
654 			KASSERT(hint_idx < cpu_mwait_deep_hints_cnt,
655 			    ("invalid mwait deep hint index %d", hint_idx));
656 			cpu_mwait_deep_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
657 			++hint_idx;
658 		}
659 	}
660 	KASSERT(hint_idx == cpu_mwait_deep_hints_cnt,
661 	    ("mwait deep hint count %d != index %d",
662 	     cpu_mwait_deep_hints_cnt, hint_idx));
663 
664 	if (bootverbose) {
665 		kprintf("MWAIT deep hints:\n");
666 		for (i = 0; i < cpu_mwait_deep_hints_cnt; ++i) {
667 			int hint = cpu_mwait_deep_hints[i];
668 
669 			kprintf("  C%d/%d hint 0x%04x\n",
670 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
671 			    hint);
672 		}
673 	}
674 	cpu_idle_repeat_max = 256 * cpu_mwait_deep_hints_cnt;
675 
676 	for (i = 0; i < ncpus; ++i) {
677 		char name[16];
678 
679 		ksnprintf(name, sizeof(name), "idle%d", i);
680 		SYSCTL_ADD_PROC(NULL,
681 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait_CX), OID_AUTO,
682 		    name, (CTLTYPE_STRING | CTLFLAG_RW), &cpu_idle_stats[i],
683 		    0, cpu_mwait_cx_pcpu_idle_sysctl, "A", "");
684 	}
685 }
686 
687 static void
688 cpu_finish(void *dummy __unused)
689 {
690 	cpu_setregs();
691 	cpu_mwait_attach();
692 }
693 
694 static void
695 pic_finish(void *dummy __unused)
696 {
697 	/* Log ELCR information */
698 	elcr_dump();
699 
700 	/* Log MPTABLE information */
701 	mptable_pci_int_dump();
702 
703 	/* Finalize PCI */
704 	MachIntrABI.finalize();
705 }
706 
707 /*
708  * Send an interrupt to process.
709  *
710  * Stack is set up to allow sigcode stored
711  * at top to call routine, followed by kcall
712  * to sigreturn routine below.  After sigreturn
713  * resets the signal mask, the stack, and the
714  * frame pointer, it returns to the user
715  * specified pc, psl.
716  */
717 void
718 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
719 {
720 	struct lwp *lp = curthread->td_lwp;
721 	struct proc *p = lp->lwp_proc;
722 	struct trapframe *regs;
723 	struct sigacts *psp = p->p_sigacts;
724 	struct sigframe sf, *sfp;
725 	int oonstack;
726 	char *sp;
727 
728 	regs = lp->lwp_md.md_regs;
729 	oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
730 
731 	/* Save user context */
732 	bzero(&sf, sizeof(struct sigframe));
733 	sf.sf_uc.uc_sigmask = *mask;
734 	sf.sf_uc.uc_stack = lp->lwp_sigstk;
735 	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
736 	KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
737 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
738 
739 	/* Make the size of the saved context visible to userland */
740 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
741 
742 	/* Allocate and validate space for the signal handler context. */
743         if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
744 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
745 		sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
746 			      sizeof(struct sigframe));
747 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
748 	} else {
749 		/* We take red zone into account */
750 		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
751 	}
752 
753 	/*
754 	 * XXX AVX needs 64-byte alignment but sigframe has other fields and
755 	 * the embedded ucontext is not at the front, so aligning this won't
756 	 * help us.  Fortunately we bcopy in/out of the sigframe, so the
757 	 * kernel is ok.
758 	 *
759 	 * The problem though is if userland winds up trying to use the
760 	 * context directly.
761 	 */
762 	sfp = (struct sigframe *)((intptr_t)sp & ~(intptr_t)0xF);
763 
764 	/* Translate the signal is appropriate */
765 	if (p->p_sysent->sv_sigtbl) {
766 		if (sig <= p->p_sysent->sv_sigsize)
767 			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
768 	}
769 
770 	/*
771 	 * Build the argument list for the signal handler.
772 	 *
773 	 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
774 	 */
775 	regs->tf_rdi = sig;				/* argument 1 */
776 	regs->tf_rdx = (register_t)&sfp->sf_uc;		/* argument 3 */
777 
778 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
779 		/*
780 		 * Signal handler installed with SA_SIGINFO.
781 		 *
782 		 * action(signo, siginfo, ucontext)
783 		 */
784 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* argument 2 */
785 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
786 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
787 
788 		/* fill siginfo structure */
789 		sf.sf_si.si_signo = sig;
790 		sf.sf_si.si_code = code;
791 		sf.sf_si.si_addr = (void *)regs->tf_addr;
792 	} else {
793 		/*
794 		 * Old FreeBSD-style arguments.
795 		 *
796 		 * handler (signo, code, [uc], addr)
797 		 */
798 		regs->tf_rsi = (register_t)code;	/* argument 2 */
799 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
800 		sf.sf_ahu.sf_handler = catcher;
801 	}
802 
803 	/*
804 	 * If we're a vm86 process, we want to save the segment registers.
805 	 * We also change eflags to be our emulated eflags, not the actual
806 	 * eflags.
807 	 */
808 #if 0 /* JG */
809 	if (regs->tf_eflags & PSL_VM) {
810 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
811 		struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
812 
813 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
814 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
815 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
816 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
817 
818 		if (vm86->vm86_has_vme == 0)
819 			sf.sf_uc.uc_mcontext.mc_eflags =
820 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
821 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
822 
823 		/*
824 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
825 		 * syscalls made by the signal handler.  This just avoids
826 		 * wasting time for our lazy fixup of such faults.  PSL_NT
827 		 * does nothing in vm86 mode, but vm86 programs can set it
828 		 * almost legitimately in probes for old cpu types.
829 		 */
830 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
831 	}
832 #endif
833 
834 	/*
835 	 * Save the FPU state and reinit the FP unit
836 	 */
837 	npxpush(&sf.sf_uc.uc_mcontext);
838 
839 	/*
840 	 * Copy the sigframe out to the user's stack.
841 	 */
842 	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
843 		/*
844 		 * Something is wrong with the stack pointer.
845 		 * ...Kill the process.
846 		 */
847 		sigexit(lp, SIGILL);
848 	}
849 
850 	regs->tf_rsp = (register_t)sfp;
851 	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
852 
853 	/*
854 	 * i386 abi specifies that the direction flag must be cleared
855 	 * on function entry
856 	 */
857 	regs->tf_rflags &= ~(PSL_T|PSL_D);
858 
859 	/*
860 	 * 64 bit mode has a code and stack selector but
861 	 * no data or extra selector.  %fs and %gs are not
862 	 * stored in-context.
863 	 */
864 	regs->tf_cs = _ucodesel;
865 	regs->tf_ss = _udatasel;
866 	clear_quickret();
867 }
868 
869 /*
870  * Sanitize the trapframe for a virtual kernel passing control to a custom
871  * VM context.  Remove any items that would otherwise create a privilage
872  * issue.
873  *
874  * XXX at the moment we allow userland to set the resume flag.  Is this a
875  * bad idea?
876  */
877 int
878 cpu_sanitize_frame(struct trapframe *frame)
879 {
880 	frame->tf_cs = _ucodesel;
881 	frame->tf_ss = _udatasel;
882 	/* XXX VM (8086) mode not supported? */
883 	frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
884 	frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
885 
886 	return(0);
887 }
888 
889 /*
890  * Sanitize the tls so loading the descriptor does not blow up
891  * on us.  For x86_64 we don't have to do anything.
892  */
893 int
894 cpu_sanitize_tls(struct savetls *tls)
895 {
896 	return(0);
897 }
898 
899 /*
900  * sigreturn(ucontext_t *sigcntxp)
901  *
902  * System call to cleanup state after a signal
903  * has been taken.  Reset signal mask and
904  * stack state from context left by sendsig (above).
905  * Return to previous pc and psl as specified by
906  * context left by sendsig. Check carefully to
907  * make sure that the user has not modified the
908  * state to gain improper privileges.
909  *
910  * MPSAFE
911  */
912 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
913 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
914 
915 int
916 sys_sigreturn(struct sigreturn_args *uap)
917 {
918 	struct lwp *lp = curthread->td_lwp;
919 	struct trapframe *regs;
920 	ucontext_t uc;
921 	ucontext_t *ucp;
922 	register_t rflags;
923 	int cs;
924 	int error;
925 
926 	/*
927 	 * We have to copy the information into kernel space so userland
928 	 * can't modify it while we are sniffing it.
929 	 */
930 	regs = lp->lwp_md.md_regs;
931 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
932 	if (error)
933 		return (error);
934 	ucp = &uc;
935 	rflags = ucp->uc_mcontext.mc_rflags;
936 
937 	/* VM (8086) mode not supported */
938 	rflags &= ~PSL_VM_UNSUPP;
939 
940 #if 0 /* JG */
941 	if (eflags & PSL_VM) {
942 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
943 		struct vm86_kernel *vm86;
944 
945 		/*
946 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
947 		 * set up the vm86 area, and we can't enter vm86 mode.
948 		 */
949 		if (lp->lwp_thread->td_pcb->pcb_ext == 0)
950 			return (EINVAL);
951 		vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
952 		if (vm86->vm86_inited == 0)
953 			return (EINVAL);
954 
955 		/* go back to user mode if both flags are set */
956 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
957 			trapsignal(lp, SIGBUS, 0);
958 
959 		if (vm86->vm86_has_vme) {
960 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
961 			    (eflags & VME_USERCHANGE) | PSL_VM;
962 		} else {
963 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
964 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
965 			    (eflags & VM_USERCHANGE) | PSL_VM;
966 		}
967 		bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
968 		tf->tf_eflags = eflags;
969 		tf->tf_vm86_ds = tf->tf_ds;
970 		tf->tf_vm86_es = tf->tf_es;
971 		tf->tf_vm86_fs = tf->tf_fs;
972 		tf->tf_vm86_gs = tf->tf_gs;
973 		tf->tf_ds = _udatasel;
974 		tf->tf_es = _udatasel;
975 		tf->tf_fs = _udatasel;
976 		tf->tf_gs = _udatasel;
977 	} else
978 #endif
979 	{
980 		/*
981 		 * Don't allow users to change privileged or reserved flags.
982 		 */
983 		/*
984 		 * XXX do allow users to change the privileged flag PSL_RF.
985 		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
986 		 * should sometimes set it there too.  tf_eflags is kept in
987 		 * the signal context during signal handling and there is no
988 		 * other place to remember it, so the PSL_RF bit may be
989 		 * corrupted by the signal handler without us knowing.
990 		 * Corruption of the PSL_RF bit at worst causes one more or
991 		 * one less debugger trap, so allowing it is fairly harmless.
992 		 */
993 		if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
994 			kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
995 	    		return(EINVAL);
996 		}
997 
998 		/*
999 		 * Don't allow users to load a valid privileged %cs.  Let the
1000 		 * hardware check for invalid selectors, excess privilege in
1001 		 * other selectors, invalid %eip's and invalid %esp's.
1002 		 */
1003 		cs = ucp->uc_mcontext.mc_cs;
1004 		if (!CS_SECURE(cs)) {
1005 			kprintf("sigreturn: cs = 0x%x\n", cs);
1006 			trapsignal(lp, SIGBUS, T_PROTFLT);
1007 			return(EINVAL);
1008 		}
1009 		bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
1010 	}
1011 
1012 	/*
1013 	 * Restore the FPU state from the frame
1014 	 */
1015 	crit_enter();
1016 	npxpop(&ucp->uc_mcontext);
1017 
1018 	if (ucp->uc_mcontext.mc_onstack & 1)
1019 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
1020 	else
1021 		lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
1022 
1023 	lp->lwp_sigmask = ucp->uc_sigmask;
1024 	SIG_CANTMASK(lp->lwp_sigmask);
1025 	clear_quickret();
1026 	crit_exit();
1027 	return(EJUSTRETURN);
1028 }
1029 
1030 /*
1031  * Machine dependent boot() routine
1032  *
1033  * I haven't seen anything to put here yet
1034  * Possibly some stuff might be grafted back here from boot()
1035  */
1036 void
1037 cpu_boot(int howto)
1038 {
1039 }
1040 
1041 /*
1042  * Shutdown the CPU as much as possible
1043  */
1044 void
1045 cpu_halt(void)
1046 {
1047 	for (;;)
1048 		__asm__ __volatile("hlt");
1049 }
1050 
1051 /*
1052  * cpu_idle() represents the idle LWKT.  You cannot return from this function
1053  * (unless you want to blow things up!).  Instead we look for runnable threads
1054  * and loop or halt as appropriate.  Giant is not held on entry to the thread.
1055  *
1056  * The main loop is entered with a critical section held, we must release
1057  * the critical section before doing anything else.  lwkt_switch() will
1058  * check for pending interrupts due to entering and exiting its own
1059  * critical section.
1060  *
1061  * NOTE: On an SMP system we rely on a scheduler IPI to wake a HLTed cpu up.
1062  *	 However, there are cases where the idlethread will be entered with
1063  *	 the possibility that no IPI will occur and in such cases
1064  *	 lwkt_switch() sets TDF_IDLE_NOHLT.
1065  *
1066  * NOTE: cpu_idle_repeat determines how many entries into the idle thread
1067  *	 must occur before it starts using ACPI halt.
1068  *
1069  * NOTE: Value overridden in hammer_time().
1070  */
1071 static int	cpu_idle_hlt = 2;
1072 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
1073     &cpu_idle_hlt, 0, "Idle loop HLT enable");
1074 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_repeat, CTLFLAG_RW,
1075     &cpu_idle_repeat, 0, "Idle entries before acpi hlt");
1076 
1077 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_hltcnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1078     0, CPU_IDLE_STAT_HALT, sysctl_cpu_idle_cnt, "Q", "Idle loop entry halts");
1079 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_spincnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1080     0, CPU_IDLE_STAT_SPIN, sysctl_cpu_idle_cnt, "Q", "Idle loop entry spins");
1081 
1082 static void
1083 cpu_idle_default_hook(void)
1084 {
1085 	/*
1086 	 * We must guarentee that hlt is exactly the instruction
1087 	 * following the sti.
1088 	 */
1089 	__asm __volatile("sti; hlt");
1090 }
1091 
1092 /* Other subsystems (e.g., ACPI) can hook this later. */
1093 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
1094 
1095 static __inline int
1096 cpu_mwait_cx_hint(struct cpu_idle_stat *stat)
1097 {
1098 	int hint, cx_idx;
1099 	u_int idx;
1100 
1101 	hint = stat->hint;
1102 	if (hint >= 0)
1103 		goto done;
1104 
1105 	idx = (stat->repeat + stat->repeat_last + stat->repeat_delta) >>
1106 	    cpu_mwait_repeat_shift;
1107 	if (idx >= cpu_mwait_c1_hints_cnt) {
1108 		/* Step up faster, once we walked through all C1 states */
1109 		stat->repeat_delta += 1 << (cpu_mwait_repeat_shift + 1);
1110 	}
1111 	if (hint == CPU_MWAIT_HINT_AUTODEEP) {
1112 		if (idx >= cpu_mwait_deep_hints_cnt)
1113 			idx = cpu_mwait_deep_hints_cnt - 1;
1114 		hint = cpu_mwait_deep_hints[idx];
1115 	} else {
1116 		if (idx >= cpu_mwait_hints_cnt)
1117 			idx = cpu_mwait_hints_cnt - 1;
1118 		hint = cpu_mwait_hints[idx];
1119 	}
1120 done:
1121 	cx_idx = MWAIT_EAX_TO_CX(hint);
1122 	if (cx_idx >= 0 && cx_idx < CPU_MWAIT_CX_MAX)
1123 		stat->mwait_cx[cx_idx]++;
1124 	return hint;
1125 }
1126 
1127 void
1128 cpu_idle(void)
1129 {
1130 	globaldata_t gd = mycpu;
1131 	struct cpu_idle_stat *stat = &cpu_idle_stats[gd->gd_cpuid];
1132 	struct thread *td __debugvar = gd->gd_curthread;
1133 	int reqflags;
1134 	int quick;
1135 
1136 	stat->repeat = stat->repeat_last = cpu_idle_repeat_max;
1137 
1138 	crit_exit();
1139 	KKASSERT(td->td_critcount == 0);
1140 
1141 	for (;;) {
1142 		/*
1143 		 * See if there are any LWKTs ready to go.
1144 		 */
1145 		lwkt_switch();
1146 
1147 		/*
1148 		 * When halting inside a cli we must check for reqflags
1149 		 * races, particularly [re]schedule requests.  Running
1150 		 * splz() does the job.
1151 		 *
1152 		 * cpu_idle_hlt:
1153 		 *	0	Never halt, just spin
1154 		 *
1155 		 *	1	Always use HLT (or MONITOR/MWAIT if avail).
1156 		 *
1157 		 *		Better default for modern (Haswell+) Intel
1158 		 *		cpus.
1159 		 *
1160 		 *	2	Use HLT/MONITOR/MWAIT up to a point and then
1161 		 *		use the ACPI halt (default).  This is a hybrid
1162 		 *		approach.  See machdep.cpu_idle_repeat.
1163 		 *
1164 		 *		Better default for modern AMD cpus and older
1165 		 *		Intel cpus.
1166 		 *
1167 		 *	3	Always use the ACPI halt.  This typically
1168 		 *		eats the least amount of power but the cpu
1169 		 *		will be slow waking up.  Slows down e.g.
1170 		 *		compiles and other pipe/event oriented stuff.
1171 		 *
1172 		 *	4	Always use HLT.
1173 		 *
1174 		 * NOTE: Interrupts are enabled and we are not in a critical
1175 		 *	 section.
1176 		 *
1177 		 * NOTE: Preemptions do not reset gd_idle_repeat.   Also we
1178 		 *	 don't bother capping gd_idle_repeat, it is ok if
1179 		 *	 it overflows.
1180 		 */
1181 		if (gd->gd_idle_repeat == 0) {
1182 			stat->repeat = (stat->repeat + stat->repeat_last) >> 1;
1183 			if (stat->repeat > cpu_idle_repeat_max)
1184 				stat->repeat = cpu_idle_repeat_max;
1185 			stat->repeat_last = 0;
1186 			stat->repeat_delta = 0;
1187 		}
1188 		++stat->repeat_last;
1189 
1190 		++gd->gd_idle_repeat;
1191 		reqflags = gd->gd_reqflags;
1192 		quick = (cpu_idle_hlt == 1) ||
1193 			(cpu_idle_hlt < 3 &&
1194 			 gd->gd_idle_repeat < cpu_idle_repeat);
1195 
1196 		if (quick && (cpu_mi_feature & CPU_MI_MONITOR) &&
1197 		    (reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1198 			splz(); /* XXX */
1199 			cpu_mmw_pause_int(&gd->gd_reqflags, reqflags,
1200 			    cpu_mwait_cx_hint(stat), 0);
1201 			stat->halt++;
1202 		} else if (cpu_idle_hlt) {
1203 			__asm __volatile("cli");
1204 			splz();
1205 			if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1206 				if (quick)
1207 					cpu_idle_default_hook();
1208 				else
1209 					cpu_idle_hook();
1210 			}
1211 			__asm __volatile("sti");
1212 			stat->halt++;
1213 		} else {
1214 			splz();
1215 			__asm __volatile("sti");
1216 			stat->spin++;
1217 		}
1218 	}
1219 }
1220 
1221 /*
1222  * This routine is called if a spinlock has been held through the
1223  * exponential backoff period and is seriously contested.  On a real cpu
1224  * we let it spin.
1225  */
1226 void
1227 cpu_spinlock_contested(void)
1228 {
1229 	cpu_pause();
1230 }
1231 
1232 /*
1233  * Clear registers on exec
1234  */
1235 void
1236 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
1237 {
1238 	struct thread *td = curthread;
1239 	struct lwp *lp = td->td_lwp;
1240 	struct pcb *pcb = td->td_pcb;
1241 	struct trapframe *regs = lp->lwp_md.md_regs;
1242 
1243 	/* was i386_user_cleanup() in NetBSD */
1244 	user_ldt_free(pcb);
1245 
1246 	clear_quickret();
1247 	bzero((char *)regs, sizeof(struct trapframe));
1248 	regs->tf_rip = entry;
1249 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
1250 	regs->tf_rdi = stack;		/* argv */
1251 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
1252 	regs->tf_ss = _udatasel;
1253 	regs->tf_cs = _ucodesel;
1254 	regs->tf_rbx = ps_strings;
1255 
1256 	/*
1257 	 * Reset the hardware debug registers if they were in use.
1258 	 * They won't have any meaning for the newly exec'd process.
1259 	 */
1260 	if (pcb->pcb_flags & PCB_DBREGS) {
1261 		pcb->pcb_dr0 = 0;
1262 		pcb->pcb_dr1 = 0;
1263 		pcb->pcb_dr2 = 0;
1264 		pcb->pcb_dr3 = 0;
1265 		pcb->pcb_dr6 = 0;
1266 		pcb->pcb_dr7 = 0; /* JG set bit 10? */
1267 		if (pcb == td->td_pcb) {
1268 			/*
1269 			 * Clear the debug registers on the running
1270 			 * CPU, otherwise they will end up affecting
1271 			 * the next process we switch to.
1272 			 */
1273 			reset_dbregs();
1274 		}
1275 		pcb->pcb_flags &= ~PCB_DBREGS;
1276 	}
1277 
1278 	/*
1279 	 * Initialize the math emulator (if any) for the current process.
1280 	 * Actually, just clear the bit that says that the emulator has
1281 	 * been initialized.  Initialization is delayed until the process
1282 	 * traps to the emulator (if it is done at all) mainly because
1283 	 * emulators don't provide an entry point for initialization.
1284 	 */
1285 	pcb->pcb_flags &= ~FP_SOFTFP;
1286 
1287 	/*
1288 	 * NOTE: do not set CR0_TS here.  npxinit() must do it after clearing
1289 	 *	 gd_npxthread.  Otherwise a preemptive interrupt thread
1290 	 *	 may panic in npxdna().
1291 	 */
1292 	crit_enter();
1293 	load_cr0(rcr0() | CR0_MP);
1294 
1295 	/*
1296 	 * NOTE: The MSR values must be correct so we can return to
1297 	 * 	 userland.  gd_user_fs/gs must be correct so the switch
1298 	 *	 code knows what the current MSR values are.
1299 	 */
1300 	pcb->pcb_fsbase = 0;	/* Values loaded from PCB on switch */
1301 	pcb->pcb_gsbase = 0;
1302 	mdcpu->gd_user_fs = 0;	/* Cache of current MSR values */
1303 	mdcpu->gd_user_gs = 0;
1304 	wrmsr(MSR_FSBASE, 0);	/* Set MSR values for return to userland */
1305 	wrmsr(MSR_KGSBASE, 0);
1306 
1307 	/* Initialize the npx (if any) for the current process. */
1308 	npxinit();
1309 	crit_exit();
1310 
1311 	pcb->pcb_ds = _udatasel;
1312 	pcb->pcb_es = _udatasel;
1313 	pcb->pcb_fs = _udatasel;
1314 	pcb->pcb_gs = _udatasel;
1315 }
1316 
1317 void
1318 cpu_setregs(void)
1319 {
1320 	register_t cr0;
1321 
1322 	cr0 = rcr0();
1323 	cr0 |= CR0_NE;			/* Done by npxinit() */
1324 	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1325 	cr0 |= CR0_WP | CR0_AM;
1326 	load_cr0(cr0);
1327 	load_gs(_udatasel);
1328 }
1329 
1330 static int
1331 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1332 {
1333 	int error;
1334 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1335 		req);
1336 	if (!error && req->newptr)
1337 		resettodr();
1338 	return (error);
1339 }
1340 
1341 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1342 	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1343 
1344 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1345 	CTLFLAG_RW, &disable_rtc_set, 0, "");
1346 
1347 #if 0 /* JG */
1348 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1349 	CTLFLAG_RD, &bootinfo, bootinfo, "");
1350 #endif
1351 
1352 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1353 	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1354 
1355 extern u_long bootdev;		/* not a cdev_t - encoding is different */
1356 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1357 	CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1358 
1359 /*
1360  * Initialize 386 and configure to run kernel
1361  */
1362 
1363 /*
1364  * Initialize segments & interrupt table
1365  */
1366 
1367 int _default_ldt;
1368 struct user_segment_descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1369 struct gate_descriptor idt_arr[MAXCPU][NIDT];
1370 #if 0 /* JG */
1371 union descriptor ldt[NLDT];		/* local descriptor table */
1372 #endif
1373 
1374 /* table descriptors - used to load tables by cpu */
1375 struct region_descriptor r_gdt;
1376 struct region_descriptor r_idt_arr[MAXCPU];
1377 
1378 /* JG proc0paddr is a virtual address */
1379 void *proc0paddr;
1380 /* JG alignment? */
1381 char proc0paddr_buff[LWKT_THREAD_STACK];
1382 
1383 
1384 /* software prototypes -- in more palatable form */
1385 struct soft_segment_descriptor gdt_segs[] = {
1386 /* GNULL_SEL	0 Null Descriptor */
1387 {	0x0,			/* segment base address  */
1388 	0x0,			/* length */
1389 	0,			/* segment type */
1390 	0,			/* segment descriptor priority level */
1391 	0,			/* segment descriptor present */
1392 	0,			/* long */
1393 	0,			/* default 32 vs 16 bit size */
1394 	0  			/* limit granularity (byte/page units)*/ },
1395 /* GCODE_SEL	1 Code Descriptor for kernel */
1396 {	0x0,			/* segment base address  */
1397 	0xfffff,		/* length - all address space */
1398 	SDT_MEMERA,		/* segment type */
1399 	SEL_KPL,		/* segment descriptor priority level */
1400 	1,			/* segment descriptor present */
1401 	1,			/* long */
1402 	0,			/* default 32 vs 16 bit size */
1403 	1  			/* limit granularity (byte/page units)*/ },
1404 /* GDATA_SEL	2 Data Descriptor for kernel */
1405 {	0x0,			/* segment base address  */
1406 	0xfffff,		/* length - all address space */
1407 	SDT_MEMRWA,		/* segment type */
1408 	SEL_KPL,		/* segment descriptor priority level */
1409 	1,			/* segment descriptor present */
1410 	1,			/* long */
1411 	0,			/* default 32 vs 16 bit size */
1412 	1  			/* limit granularity (byte/page units)*/ },
1413 /* GUCODE32_SEL	3 32 bit Code Descriptor for user */
1414 {	0x0,			/* segment base address  */
1415 	0xfffff,		/* length - all address space */
1416 	SDT_MEMERA,		/* segment type */
1417 	SEL_UPL,		/* segment descriptor priority level */
1418 	1,			/* segment descriptor present */
1419 	0,			/* long */
1420 	1,			/* default 32 vs 16 bit size */
1421 	1  			/* limit granularity (byte/page units)*/ },
1422 /* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
1423 {	0x0,			/* segment base address  */
1424 	0xfffff,		/* length - all address space */
1425 	SDT_MEMRWA,		/* segment type */
1426 	SEL_UPL,		/* segment descriptor priority level */
1427 	1,			/* segment descriptor present */
1428 	0,			/* long */
1429 	1,			/* default 32 vs 16 bit size */
1430 	1  			/* limit granularity (byte/page units)*/ },
1431 /* GUCODE_SEL	5 64 bit Code Descriptor for user */
1432 {	0x0,			/* segment base address  */
1433 	0xfffff,		/* length - all address space */
1434 	SDT_MEMERA,		/* segment type */
1435 	SEL_UPL,		/* segment descriptor priority level */
1436 	1,			/* segment descriptor present */
1437 	1,			/* long */
1438 	0,			/* default 32 vs 16 bit size */
1439 	1  			/* limit granularity (byte/page units)*/ },
1440 /* GPROC0_SEL	6 Proc 0 Tss Descriptor */
1441 {
1442 	0x0,			/* segment base address */
1443 	sizeof(struct x86_64tss)-1,/* length - all address space */
1444 	SDT_SYSTSS,		/* segment type */
1445 	SEL_KPL,		/* segment descriptor priority level */
1446 	1,			/* segment descriptor present */
1447 	0,			/* long */
1448 	0,			/* unused - default 32 vs 16 bit size */
1449 	0  			/* limit granularity (byte/page units)*/ },
1450 /* Actually, the TSS is a system descriptor which is double size */
1451 {	0x0,			/* segment base address  */
1452 	0x0,			/* length */
1453 	0,			/* segment type */
1454 	0,			/* segment descriptor priority level */
1455 	0,			/* segment descriptor present */
1456 	0,			/* long */
1457 	0,			/* default 32 vs 16 bit size */
1458 	0  			/* limit granularity (byte/page units)*/ },
1459 /* GUGS32_SEL	8 32 bit GS Descriptor for user */
1460 {	0x0,			/* segment base address  */
1461 	0xfffff,		/* length - all address space */
1462 	SDT_MEMRWA,		/* segment type */
1463 	SEL_UPL,		/* segment descriptor priority level */
1464 	1,			/* segment descriptor present */
1465 	0,			/* long */
1466 	1,			/* default 32 vs 16 bit size */
1467 	1  			/* limit granularity (byte/page units)*/ },
1468 };
1469 
1470 void
1471 setidt_global(int idx, inthand_t *func, int typ, int dpl, int ist)
1472 {
1473 	int cpu;
1474 
1475 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
1476 		struct gate_descriptor *ip = &idt_arr[cpu][idx];
1477 
1478 		ip->gd_looffset = (uintptr_t)func;
1479 		ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1480 		ip->gd_ist = ist;
1481 		ip->gd_xx = 0;
1482 		ip->gd_type = typ;
1483 		ip->gd_dpl = dpl;
1484 		ip->gd_p = 1;
1485 		ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1486 	}
1487 }
1488 
1489 void
1490 setidt(int idx, inthand_t *func, int typ, int dpl, int ist, int cpu)
1491 {
1492 	struct gate_descriptor *ip;
1493 
1494 	KASSERT(cpu >= 0 && cpu < ncpus, ("invalid cpu %d", cpu));
1495 
1496 	ip = &idt_arr[cpu][idx];
1497 	ip->gd_looffset = (uintptr_t)func;
1498 	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1499 	ip->gd_ist = ist;
1500 	ip->gd_xx = 0;
1501 	ip->gd_type = typ;
1502 	ip->gd_dpl = dpl;
1503 	ip->gd_p = 1;
1504 	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1505 }
1506 
1507 #define	IDTVEC(name)	__CONCAT(X,name)
1508 
1509 extern inthand_t
1510 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1511 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1512 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1513 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1514 	IDTVEC(xmm), IDTVEC(dblfault),
1515 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1516 
1517 void
1518 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1519 {
1520 	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1521 	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1522 	ssd->ssd_type  = sd->sd_type;
1523 	ssd->ssd_dpl   = sd->sd_dpl;
1524 	ssd->ssd_p     = sd->sd_p;
1525 	ssd->ssd_def32 = sd->sd_def32;
1526 	ssd->ssd_gran  = sd->sd_gran;
1527 }
1528 
1529 void
1530 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1531 {
1532 
1533 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1534 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1535 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1536 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1537 	sd->sd_type  = ssd->ssd_type;
1538 	sd->sd_dpl   = ssd->ssd_dpl;
1539 	sd->sd_p     = ssd->ssd_p;
1540 	sd->sd_long  = ssd->ssd_long;
1541 	sd->sd_def32 = ssd->ssd_def32;
1542 	sd->sd_gran  = ssd->ssd_gran;
1543 }
1544 
1545 void
1546 ssdtosyssd(struct soft_segment_descriptor *ssd,
1547     struct system_segment_descriptor *sd)
1548 {
1549 
1550 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1551 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1552 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1553 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1554 	sd->sd_type  = ssd->ssd_type;
1555 	sd->sd_dpl   = ssd->ssd_dpl;
1556 	sd->sd_p     = ssd->ssd_p;
1557 	sd->sd_gran  = ssd->ssd_gran;
1558 }
1559 
1560 /*
1561  * Populate the (physmap) array with base/bound pairs describing the
1562  * available physical memory in the system, then test this memory and
1563  * build the phys_avail array describing the actually-available memory.
1564  *
1565  * If we cannot accurately determine the physical memory map, then use
1566  * value from the 0xE801 call, and failing that, the RTC.
1567  *
1568  * Total memory size may be set by the kernel environment variable
1569  * hw.physmem or the compile-time define MAXMEM.
1570  *
1571  * Memory is aligned to PHYSMAP_ALIGN which must be a multiple
1572  * of PAGE_SIZE.  This also greatly reduces the memory test time
1573  * which would otherwise be excessive on machines with > 8G of ram.
1574  *
1575  * XXX first should be vm_paddr_t.
1576  */
1577 
1578 #define PHYSMAP_ALIGN		(vm_paddr_t)(128 * 1024)
1579 #define PHYSMAP_ALIGN_MASK	(vm_paddr_t)(PHYSMAP_ALIGN - 1)
1580 	vm_paddr_t physmap[PHYSMAP_SIZE];
1581 	struct bios_smap *smapbase, *smap, *smapend;
1582 	struct efi_map_header *efihdrbase;
1583 	u_int32_t smapsize;
1584 
1585 static void
1586 add_smap_entries(int *physmap_idx)
1587 {
1588 	int i;
1589 
1590 	smapsize = *((u_int32_t *)smapbase - 1);
1591 	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1592 
1593 	for (smap = smapbase; smap < smapend; smap++) {
1594 		if (boothowto & RB_VERBOSE)
1595 			kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1596 			    smap->type, smap->base, smap->length);
1597 
1598 		if (smap->type != SMAP_TYPE_MEMORY)
1599 			continue;
1600 
1601 		if (smap->length == 0)
1602 			continue;
1603 
1604 		for (i = 0; i <= *physmap_idx; i += 2) {
1605 			if (smap->base < physmap[i + 1]) {
1606 				if (boothowto & RB_VERBOSE) {
1607 					kprintf("Overlapping or non-monotonic "
1608 						"memory region, ignoring "
1609 						"second region\n");
1610 				}
1611 				break;
1612 			}
1613 		}
1614 		if (i <= *physmap_idx)
1615 			continue;
1616 
1617 		Realmem += smap->length;
1618 
1619 		if (smap->base == physmap[*physmap_idx + 1]) {
1620 			physmap[*physmap_idx + 1] += smap->length;
1621 			continue;
1622 		}
1623 
1624 		*physmap_idx += 2;
1625 		if (*physmap_idx == PHYSMAP_SIZE) {
1626 			kprintf("Too many segments in the physical "
1627 				"address map, giving up\n");
1628 			break;
1629 		}
1630 		physmap[*physmap_idx] = smap->base;
1631 		physmap[*physmap_idx + 1] = smap->base + smap->length;
1632 	}
1633 }
1634 
1635 #define efi_next_descriptor(ptr, size) \
1636 	((struct efi_md *)(((uint8_t *) ptr) + size))
1637 
1638 static void
1639 add_efi_map_entries(int *physmap_idx)
1640 {
1641 	 struct efi_md *map, *p;
1642 	 const char *type;
1643 	 size_t efisz;
1644 	 int i, ndesc;
1645 
1646 	static const char *types[] = {
1647 		"Reserved",
1648 		"LoaderCode",
1649 		"LoaderData",
1650 		"BootServicesCode",
1651 		"BootServicesData",
1652 		"RuntimeServicesCode",
1653 		"RuntimeServicesData",
1654 		"ConventionalMemory",
1655 		"UnusableMemory",
1656 		"ACPIReclaimMemory",
1657 		"ACPIMemoryNVS",
1658 		"MemoryMappedIO",
1659 		"MemoryMappedIOPortSpace",
1660 		"PalCode"
1661 	 };
1662 
1663 	/*
1664 	 * Memory map data provided by UEFI via the GetMemoryMap
1665 	 * Boot Services API.
1666 	 */
1667 	efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
1668 	map = (struct efi_md *)((uint8_t *)efihdrbase + efisz);
1669 
1670 	if (efihdrbase->descriptor_size == 0)
1671 		return;
1672 	ndesc = efihdrbase->memory_size / efihdrbase->descriptor_size;
1673 
1674 	if (boothowto & RB_VERBOSE)
1675 		kprintf("%23s %12s %12s %8s %4s\n",
1676 		    "Type", "Physical", "Virtual", "#Pages", "Attr");
1677 
1678 	for (i = 0, p = map; i < ndesc; i++,
1679 	    p = efi_next_descriptor(p, efihdrbase->descriptor_size)) {
1680 		if (boothowto & RB_VERBOSE) {
1681 			if (p->md_type <= EFI_MD_TYPE_PALCODE)
1682 				type = types[p->md_type];
1683 			else
1684 				type = "<INVALID>";
1685 			kprintf("%23s %012lx %12p %08lx ", type, p->md_phys,
1686 			    p->md_virt, p->md_pages);
1687 			if (p->md_attr & EFI_MD_ATTR_UC)
1688 				kprintf("UC ");
1689 			if (p->md_attr & EFI_MD_ATTR_WC)
1690 				kprintf("WC ");
1691 			if (p->md_attr & EFI_MD_ATTR_WT)
1692 				kprintf("WT ");
1693 			if (p->md_attr & EFI_MD_ATTR_WB)
1694 				kprintf("WB ");
1695 			if (p->md_attr & EFI_MD_ATTR_UCE)
1696 				kprintf("UCE ");
1697 			if (p->md_attr & EFI_MD_ATTR_WP)
1698 				kprintf("WP ");
1699 			if (p->md_attr & EFI_MD_ATTR_RP)
1700 				kprintf("RP ");
1701 			if (p->md_attr & EFI_MD_ATTR_XP)
1702 				kprintf("XP ");
1703 			if (p->md_attr & EFI_MD_ATTR_RT)
1704 				kprintf("RUNTIME");
1705 			kprintf("\n");
1706 		}
1707 
1708 		switch (p->md_type) {
1709 		case EFI_MD_TYPE_CODE:
1710 		case EFI_MD_TYPE_DATA:
1711 		case EFI_MD_TYPE_BS_CODE:
1712 		case EFI_MD_TYPE_BS_DATA:
1713 		case EFI_MD_TYPE_FREE:
1714 			/*
1715 			 * We're allowed to use any entry with these types.
1716 			 */
1717 			break;
1718 		default:
1719 			continue;
1720 		}
1721 
1722 		Realmem += p->md_pages * PAGE_SIZE;
1723 
1724 		if (p->md_phys == physmap[*physmap_idx + 1]) {
1725 			physmap[*physmap_idx + 1] += p->md_pages * PAGE_SIZE;
1726 			continue;
1727 		}
1728 
1729 		*physmap_idx += 2;
1730 		if (*physmap_idx == PHYSMAP_SIZE) {
1731 			kprintf("Too many segments in the physical "
1732 				"address map, giving up\n");
1733 			break;
1734 		}
1735 		physmap[*physmap_idx] = p->md_phys;
1736 		physmap[*physmap_idx + 1] = p->md_phys + p->md_pages * PAGE_SIZE;
1737 	 }
1738 }
1739 
1740 struct fb_info efi_fb_info;
1741 static int have_efi_framebuffer = 0;
1742 
1743 static void
1744 efi_fb_init_vaddr(int direct_map)
1745 {
1746 	uint64_t sz;
1747 	vm_offset_t addr, v;
1748 
1749 	v = efi_fb_info.vaddr;
1750 	sz = efi_fb_info.stride * efi_fb_info.height;
1751 
1752 	if (direct_map) {
1753 		addr = PHYS_TO_DMAP(efi_fb_info.paddr);
1754 		if (addr >= DMAP_MIN_ADDRESS && addr + sz < DMAP_MAX_ADDRESS)
1755 			efi_fb_info.vaddr = addr;
1756 	} else {
1757 		efi_fb_info.vaddr = (vm_offset_t)pmap_mapdev_attr(
1758 		    efi_fb_info.paddr, sz, PAT_WRITE_COMBINING);
1759 	}
1760 
1761 	if (v == 0 && efi_fb_info.vaddr != 0)
1762 		memset((void *)efi_fb_info.vaddr, 0x77, sz);
1763 }
1764 
1765 int
1766 probe_efi_fb(int early)
1767 {
1768 	struct efi_fb	*efifb;
1769 	caddr_t		kmdp;
1770 
1771 	if (have_efi_framebuffer) {
1772 		if (!early &&
1773 		    (efi_fb_info.vaddr == 0 ||
1774 		     efi_fb_info.vaddr == PHYS_TO_DMAP(efi_fb_info.paddr)))
1775 			efi_fb_init_vaddr(0);
1776 		return 0;
1777 	}
1778 
1779 	kmdp = preload_search_by_type("elf kernel");
1780 	if (kmdp == NULL)
1781 		kmdp = preload_search_by_type("elf64 kernel");
1782 	efifb = (struct efi_fb *)preload_search_info(kmdp,
1783 	    MODINFO_METADATA | MODINFOMD_EFI_FB);
1784 	if (efifb == NULL)
1785 		return 1;
1786 
1787 	have_efi_framebuffer = 1;
1788 
1789 	efi_fb_info.is_vga_boot_display = 1;
1790 	efi_fb_info.width = efifb->fb_width;
1791 	efi_fb_info.height = efifb->fb_height;
1792 	efi_fb_info.stride = efifb->fb_stride * 4;
1793 	efi_fb_info.depth = 32;
1794 	efi_fb_info.paddr = efifb->fb_addr;
1795 	if (early) {
1796 		efi_fb_info.vaddr = 0;
1797 	} else {
1798 		efi_fb_init_vaddr(0);
1799 	}
1800 	efi_fb_info.restore = NULL;
1801 	efi_fb_info.device = NULL;
1802 
1803 	return 0;
1804 }
1805 
1806 static void
1807 efifb_startup(void *arg)
1808 {
1809 	probe_efi_fb(0);
1810 }
1811 
1812 SYSINIT(efi_fb_info, SI_BOOT1_POST, SI_ORDER_FIRST, efifb_startup, NULL);
1813 
1814 static void
1815 getmemsize(caddr_t kmdp, u_int64_t first)
1816 {
1817 	int off, physmap_idx, pa_indx, da_indx;
1818 	int i, j;
1819 	vm_paddr_t pa;
1820 	vm_paddr_t msgbuf_size;
1821 	u_long physmem_tunable;
1822 	pt_entry_t *pte;
1823 	quad_t dcons_addr, dcons_size;
1824 
1825 	bzero(physmap, sizeof(physmap));
1826 	physmap_idx = 0;
1827 
1828 	/*
1829 	 * get memory map from INT 15:E820, kindly supplied by the loader.
1830 	 *
1831 	 * subr_module.c says:
1832 	 * "Consumer may safely assume that size value precedes data."
1833 	 * ie: an int32_t immediately precedes smap.
1834 	 */
1835 	efihdrbase = (struct efi_map_header *)preload_search_info(kmdp,
1836 	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
1837 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1838 	    MODINFO_METADATA | MODINFOMD_SMAP);
1839 	if (smapbase == NULL && efihdrbase == NULL)
1840 		panic("No BIOS smap or EFI map info from loader!");
1841 
1842 	if (efihdrbase == NULL)
1843 		add_smap_entries(&physmap_idx);
1844 	else
1845 		add_efi_map_entries(&physmap_idx);
1846 
1847 	base_memory = physmap[1] / 1024;
1848 	/* make hole for AP bootstrap code */
1849 	physmap[1] = mp_bootaddress(base_memory);
1850 
1851 	/* Save EBDA address, if any */
1852 	ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
1853 	ebda_addr <<= 4;
1854 
1855 	/*
1856 	 * Maxmem isn't the "maximum memory", it's one larger than the
1857 	 * highest page of the physical address space.  It should be
1858 	 * called something like "Maxphyspage".  We may adjust this
1859 	 * based on ``hw.physmem'' and the results of the memory test.
1860 	 */
1861 	Maxmem = atop(physmap[physmap_idx + 1]);
1862 
1863 #ifdef MAXMEM
1864 	Maxmem = MAXMEM / 4;
1865 #endif
1866 
1867 	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1868 		Maxmem = atop(physmem_tunable);
1869 
1870 	/*
1871 	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1872 	 * in the system.
1873 	 */
1874 	if (Maxmem > atop(physmap[physmap_idx + 1]))
1875 		Maxmem = atop(physmap[physmap_idx + 1]);
1876 
1877 	/*
1878 	 * Blowing out the DMAP will blow up the system.
1879 	 */
1880 	if (Maxmem > atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS)) {
1881 		kprintf("Limiting Maxmem due to DMAP size\n");
1882 		Maxmem = atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS);
1883 	}
1884 
1885 	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1886 	    (boothowto & RB_VERBOSE)) {
1887 		kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
1888 	}
1889 
1890 	/*
1891 	 * Call pmap initialization to make new kernel address space
1892 	 *
1893 	 * Mask off page 0.
1894 	 */
1895 	pmap_bootstrap(&first);
1896 	physmap[0] = PAGE_SIZE;
1897 
1898 	/*
1899 	 * Align the physmap to PHYSMAP_ALIGN and cut out anything
1900 	 * exceeding Maxmem.
1901 	 */
1902 	for (i = j = 0; i <= physmap_idx; i += 2) {
1903 		if (physmap[i+1] > ptoa(Maxmem))
1904 			physmap[i+1] = ptoa(Maxmem);
1905 		physmap[i] = (physmap[i] + PHYSMAP_ALIGN_MASK) &
1906 			     ~PHYSMAP_ALIGN_MASK;
1907 		physmap[i+1] = physmap[i+1] & ~PHYSMAP_ALIGN_MASK;
1908 
1909 		physmap[j] = physmap[i];
1910 		physmap[j+1] = physmap[i+1];
1911 
1912 		if (physmap[i] < physmap[i+1])
1913 			j += 2;
1914 	}
1915 	physmap_idx = j - 2;
1916 
1917 	/*
1918 	 * Align anything else used in the validation loop.
1919 	 */
1920 	first = (first + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1921 
1922 	/*
1923 	 * Size up each available chunk of physical memory.
1924 	 */
1925 	pa_indx = 0;
1926 	da_indx = 1;
1927 	phys_avail[pa_indx++] = physmap[0];
1928 	phys_avail[pa_indx] = physmap[0];
1929 	dump_avail[da_indx] = physmap[0];
1930 	pte = CMAP1;
1931 
1932 	/*
1933 	 * Get dcons buffer address
1934 	 */
1935 	if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
1936 	    kgetenv_quad("dcons.size", &dcons_size) == 0)
1937 		dcons_addr = 0;
1938 
1939 	/*
1940 	 * Validate the physical memory.  The physical memory segments
1941 	 * have already been aligned to PHYSMAP_ALIGN which is a multiple
1942 	 * of PAGE_SIZE.
1943 	 */
1944 	for (i = 0; i <= physmap_idx; i += 2) {
1945 		vm_paddr_t end;
1946 
1947 		end = physmap[i + 1];
1948 
1949 		for (pa = physmap[i]; pa < end; pa += PHYSMAP_ALIGN) {
1950 			int tmp, page_bad, full;
1951 			int *ptr = (int *)CADDR1;
1952 
1953 			full = FALSE;
1954 			/*
1955 			 * block out kernel memory as not available.
1956 			 */
1957 			if (pa >= 0x200000 && pa < first)
1958 				goto do_dump_avail;
1959 
1960 			/*
1961 			 * block out dcons buffer
1962 			 */
1963 			if (dcons_addr > 0
1964 			    && pa >= trunc_page(dcons_addr)
1965 			    && pa < dcons_addr + dcons_size) {
1966 				goto do_dump_avail;
1967 			}
1968 
1969 			page_bad = FALSE;
1970 
1971 			/*
1972 			 * map page into kernel: valid, read/write,non-cacheable
1973 			 */
1974 			*pte = pa |
1975 			    kernel_pmap.pmap_bits[PG_V_IDX] |
1976 			    kernel_pmap.pmap_bits[PG_RW_IDX] |
1977 			    kernel_pmap.pmap_bits[PG_N_IDX];
1978 			cpu_invltlb();
1979 
1980 			tmp = *ptr;
1981 			/*
1982 			 * Test for alternating 1's and 0's
1983 			 */
1984 			*(volatile int *)ptr = 0xaaaaaaaa;
1985 			cpu_mfence();
1986 			if (*(volatile int *)ptr != 0xaaaaaaaa)
1987 				page_bad = TRUE;
1988 			/*
1989 			 * Test for alternating 0's and 1's
1990 			 */
1991 			*(volatile int *)ptr = 0x55555555;
1992 			cpu_mfence();
1993 			if (*(volatile int *)ptr != 0x55555555)
1994 				page_bad = TRUE;
1995 			/*
1996 			 * Test for all 1's
1997 			 */
1998 			*(volatile int *)ptr = 0xffffffff;
1999 			cpu_mfence();
2000 			if (*(volatile int *)ptr != 0xffffffff)
2001 				page_bad = TRUE;
2002 			/*
2003 			 * Test for all 0's
2004 			 */
2005 			*(volatile int *)ptr = 0x0;
2006 			cpu_mfence();
2007 			if (*(volatile int *)ptr != 0x0)
2008 				page_bad = TRUE;
2009 			/*
2010 			 * Restore original value.
2011 			 */
2012 			*ptr = tmp;
2013 
2014 			/*
2015 			 * Adjust array of valid/good pages.
2016 			 */
2017 			if (page_bad == TRUE)
2018 				continue;
2019 			/*
2020 			 * If this good page is a continuation of the
2021 			 * previous set of good pages, then just increase
2022 			 * the end pointer. Otherwise start a new chunk.
2023 			 * Note that "end" points one higher than end,
2024 			 * making the range >= start and < end.
2025 			 * If we're also doing a speculative memory
2026 			 * test and we at or past the end, bump up Maxmem
2027 			 * so that we keep going. The first bad page
2028 			 * will terminate the loop.
2029 			 */
2030 			if (phys_avail[pa_indx] == pa) {
2031 				phys_avail[pa_indx] += PHYSMAP_ALIGN;
2032 			} else {
2033 				pa_indx++;
2034 				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
2035 					kprintf(
2036 		"Too many holes in the physical address space, giving up\n");
2037 					pa_indx--;
2038 					full = TRUE;
2039 					goto do_dump_avail;
2040 				}
2041 				phys_avail[pa_indx++] = pa;
2042 				phys_avail[pa_indx] = pa + PHYSMAP_ALIGN;
2043 			}
2044 			physmem += PHYSMAP_ALIGN / PAGE_SIZE;
2045 do_dump_avail:
2046 			if (dump_avail[da_indx] == pa) {
2047 				dump_avail[da_indx] += PHYSMAP_ALIGN;
2048 			} else {
2049 				da_indx++;
2050 				if (da_indx == DUMP_AVAIL_ARRAY_END) {
2051 					da_indx--;
2052 					goto do_next;
2053 				}
2054 				dump_avail[da_indx++] = pa;
2055 				dump_avail[da_indx] = pa + PHYSMAP_ALIGN;
2056 			}
2057 do_next:
2058 			if (full)
2059 				break;
2060 		}
2061 	}
2062 	*pte = 0;
2063 	cpu_invltlb();
2064 
2065 	/*
2066 	 * The last chunk must contain at least one page plus the message
2067 	 * buffer to avoid complicating other code (message buffer address
2068 	 * calculation, etc.).
2069 	 */
2070 	msgbuf_size = (MSGBUF_SIZE + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
2071 
2072 	while (phys_avail[pa_indx - 1] + PHYSMAP_ALIGN +
2073 	       msgbuf_size >= phys_avail[pa_indx]) {
2074 		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
2075 		phys_avail[pa_indx--] = 0;
2076 		phys_avail[pa_indx--] = 0;
2077 	}
2078 
2079 	Maxmem = atop(phys_avail[pa_indx]);
2080 
2081 	/* Trim off space for the message buffer. */
2082 	phys_avail[pa_indx] -= msgbuf_size;
2083 
2084 	avail_end = phys_avail[pa_indx];
2085 
2086 	/* Map the message buffer. */
2087 	for (off = 0; off < msgbuf_size; off += PAGE_SIZE) {
2088 		pmap_kenter((vm_offset_t)msgbufp + off,
2089 			    phys_avail[pa_indx] + off);
2090 	}
2091 	/* Try to get EFI framebuffer working as early as possible */
2092 	if (have_efi_framebuffer)
2093 		efi_fb_init_vaddr(1);
2094 }
2095 
2096 struct machintr_abi MachIntrABI;
2097 
2098 /*
2099  * IDT VECTORS:
2100  *	0	Divide by zero
2101  *	1	Debug
2102  *	2	NMI
2103  *	3	BreakPoint
2104  *	4	OverFlow
2105  *	5	Bound-Range
2106  *	6	Invalid OpCode
2107  *	7	Device Not Available (x87)
2108  *	8	Double-Fault
2109  *	9	Coprocessor Segment overrun (unsupported, reserved)
2110  *	10	Invalid-TSS
2111  *	11	Segment not present
2112  *	12	Stack
2113  *	13	General Protection
2114  *	14	Page Fault
2115  *	15	Reserved
2116  *	16	x87 FP Exception pending
2117  *	17	Alignment Check
2118  *	18	Machine Check
2119  *	19	SIMD floating point
2120  *	20-31	reserved
2121  *	32-255	INTn/external sources
2122  */
2123 u_int64_t
2124 hammer_time(u_int64_t modulep, u_int64_t physfree)
2125 {
2126 	caddr_t kmdp;
2127 	int gsel_tss, x, cpu;
2128 #if 0 /* JG */
2129 	int metadata_missing, off;
2130 #endif
2131 	struct mdglobaldata *gd;
2132 	u_int64_t msr;
2133 
2134 	/*
2135 	 * Prevent lowering of the ipl if we call tsleep() early.
2136 	 */
2137 	gd = &CPU_prvspace[0]->mdglobaldata;
2138 	bzero(gd, sizeof(*gd));
2139 
2140 	/*
2141 	 * Note: on both UP and SMP curthread must be set non-NULL
2142 	 * early in the boot sequence because the system assumes
2143 	 * that 'curthread' is never NULL.
2144 	 */
2145 
2146 	gd->mi.gd_curthread = &thread0;
2147 	thread0.td_gd = &gd->mi;
2148 
2149 	atdevbase = ISA_HOLE_START + PTOV_OFFSET;
2150 
2151 #if 0 /* JG */
2152 	metadata_missing = 0;
2153 	if (bootinfo.bi_modulep) {
2154 		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
2155 		preload_bootstrap_relocate(KERNBASE);
2156 	} else {
2157 		metadata_missing = 1;
2158 	}
2159 	if (bootinfo.bi_envp)
2160 		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
2161 #endif
2162 
2163 	preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
2164 	preload_bootstrap_relocate(PTOV_OFFSET);
2165 	kmdp = preload_search_by_type("elf kernel");
2166 	if (kmdp == NULL)
2167 		kmdp = preload_search_by_type("elf64 kernel");
2168 	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
2169 	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
2170 #ifdef DDB
2171 	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
2172 	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
2173 #endif
2174 
2175 	if (boothowto & RB_VERBOSE)
2176 		bootverbose++;
2177 
2178 	/*
2179 	 * Default MachIntrABI to ICU
2180 	 */
2181 	MachIntrABI = MachIntrABI_ICU;
2182 
2183 	/*
2184 	 * start with one cpu.  Note: with one cpu, ncpus2_shift, ncpus2_mask,
2185 	 * and ncpus_fit_mask remain 0.
2186 	 */
2187 	ncpus = 1;
2188 	ncpus2 = 1;
2189 	ncpus_fit = 1;
2190 	/* Init basic tunables, hz etc */
2191 	init_param1();
2192 
2193 	/*
2194 	 * make gdt memory segments
2195 	 */
2196 	gdt_segs[GPROC0_SEL].ssd_base =
2197 		(uintptr_t) &CPU_prvspace[0]->mdglobaldata.gd_common_tss;
2198 
2199 	gd->mi.gd_prvspace = CPU_prvspace[0];
2200 
2201 	for (x = 0; x < NGDT; x++) {
2202 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
2203 			ssdtosd(&gdt_segs[x], &gdt[x]);
2204 	}
2205 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2206 	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
2207 
2208 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
2209 	r_gdt.rd_base =  (long) gdt;
2210 	lgdt(&r_gdt);
2211 
2212 	wrmsr(MSR_FSBASE, 0);		/* User value */
2213 	wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
2214 	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
2215 
2216 	mi_gdinit(&gd->mi, 0);
2217 	cpu_gdinit(gd, 0);
2218 	proc0paddr = proc0paddr_buff;
2219 	mi_proc0init(&gd->mi, proc0paddr);
2220 	safepri = TDPRI_MAX;
2221 
2222 	/* spinlocks and the BGL */
2223 	init_locks();
2224 
2225 	/* exceptions */
2226 	for (x = 0; x < NIDT; x++)
2227 		setidt_global(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
2228 	setidt_global(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
2229 	setidt_global(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
2230 	setidt_global(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 1);
2231  	setidt_global(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
2232 	setidt_global(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
2233 	setidt_global(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
2234 	setidt_global(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
2235 	setidt_global(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
2236 	setidt_global(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
2237 	setidt_global(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
2238 	setidt_global(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
2239 	setidt_global(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
2240 	setidt_global(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
2241 	setidt_global(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
2242 	setidt_global(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
2243 	setidt_global(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
2244 	setidt_global(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
2245 	setidt_global(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
2246 	setidt_global(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
2247 
2248 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
2249 		r_idt_arr[cpu].rd_limit = sizeof(idt_arr[cpu]) - 1;
2250 		r_idt_arr[cpu].rd_base = (long) &idt_arr[cpu][0];
2251 	}
2252 
2253 	lidt(&r_idt_arr[0]);
2254 
2255 	/*
2256 	 * Initialize the console before we print anything out.
2257 	 */
2258 	cninit();
2259 
2260 #if 0 /* JG */
2261 	if (metadata_missing)
2262 		kprintf("WARNING: loader(8) metadata is missing!\n");
2263 #endif
2264 
2265 #if	NISA >0
2266 	elcr_probe();
2267 	isa_defaultirq();
2268 #endif
2269 	rand_initialize();
2270 
2271 	/*
2272 	 * Initialize IRQ mapping
2273 	 *
2274 	 * NOTE:
2275 	 * SHOULD be after elcr_probe()
2276 	 */
2277 	MachIntrABI_ICU.initmap();
2278 	MachIntrABI_IOAPIC.initmap();
2279 
2280 #ifdef DDB
2281 	kdb_init();
2282 	if (boothowto & RB_KDB)
2283 		Debugger("Boot flags requested debugger");
2284 #endif
2285 
2286 #if 0 /* JG */
2287 	finishidentcpu();	/* Final stage of CPU initialization */
2288 	setidt(6, &IDTVEC(ill),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2289 	setidt(13, &IDTVEC(prot),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2290 #endif
2291 	identify_cpu();		/* Final stage of CPU initialization */
2292 	initializecpu(0);	/* Initialize CPU registers */
2293 
2294 	/*
2295 	 * On modern intel cpus, haswell or later, cpu_idle_hlt=1 is better
2296 	 * becaue the cpu does significant power management in HLT
2297 	 * (also suggested is to set sysctl machdep.mwait.CX.idle=AUTODEEP).
2298 	 *
2299 	 * On modern amd cpus or on any older amd or intel cpu,
2300 	 * cpu_idle_hlt=2 is better because ACPI is needed to reduce power
2301 	 * consumption.
2302 	 */
2303 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
2304 	    CPUID_TO_MODEL(cpu_id) >= 0x3C) {	/* Haswell or later */
2305 		cpu_idle_hlt = 1;
2306 	}
2307 
2308 	TUNABLE_INT_FETCH("hw.apic_io_enable", &ioapic_enable); /* for compat */
2309 	TUNABLE_INT_FETCH("hw.ioapic_enable", &ioapic_enable);
2310 	TUNABLE_INT_FETCH("hw.lapic_enable", &lapic_enable);
2311 	TUNABLE_INT_FETCH("machdep.cpu_idle_hlt", &cpu_idle_hlt);
2312 
2313 	/*
2314 	 * Some of the virtual machines do not work w/ I/O APIC
2315 	 * enabled.  If the user does not explicitly enable or
2316 	 * disable the I/O APIC (ioapic_enable < 0), then we
2317 	 * disable I/O APIC on all virtual machines.
2318 	 *
2319 	 * NOTE:
2320 	 * This must be done after identify_cpu(), which sets
2321 	 * 'cpu_feature2'
2322 	 */
2323 	if (ioapic_enable < 0) {
2324 		if (cpu_feature2 & CPUID2_VMM)
2325 			ioapic_enable = 0;
2326 		else
2327 			ioapic_enable = 1;
2328 	}
2329 
2330 	/* make an initial tss so cpu can get interrupt stack on syscall! */
2331 	gd->gd_common_tss.tss_rsp0 =
2332 		(register_t)(thread0.td_kstack +
2333 			     KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb));
2334 	/* Ensure the stack is aligned to 16 bytes */
2335 	gd->gd_common_tss.tss_rsp0 &= ~(register_t)0xF;
2336 
2337 	/* double fault stack */
2338 	gd->gd_common_tss.tss_ist1 =
2339 		(long)&gd->mi.gd_prvspace->idlestack[
2340 			sizeof(gd->mi.gd_prvspace->idlestack)];
2341 
2342 	/* Set the IO permission bitmap (empty due to tss seg limit) */
2343 	gd->gd_common_tss.tss_iobase = sizeof(struct x86_64tss);
2344 
2345 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2346 	gd->gd_tss_gdt = &gdt[GPROC0_SEL];
2347 	gd->gd_common_tssd = *gd->gd_tss_gdt;
2348 	ltr(gsel_tss);
2349 
2350 	/* Set up the fast syscall stuff */
2351 	msr = rdmsr(MSR_EFER) | EFER_SCE;
2352 	wrmsr(MSR_EFER, msr);
2353 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
2354 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
2355 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
2356 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
2357 	wrmsr(MSR_STAR, msr);
2358 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
2359 
2360 	getmemsize(kmdp, physfree);
2361 	init_param2(physmem);
2362 
2363 	/* now running on new page tables, configured,and u/iom is accessible */
2364 
2365 	/* Map the message buffer. */
2366 #if 0 /* JG */
2367 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2368 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2369 #endif
2370 
2371 	msgbufinit(msgbufp, MSGBUF_SIZE);
2372 
2373 
2374 	/* transfer to user mode */
2375 
2376 	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2377 	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2378 	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
2379 
2380 	load_ds(_udatasel);
2381 	load_es(_udatasel);
2382 	load_fs(_udatasel);
2383 
2384 	/* setup proc 0's pcb */
2385 	thread0.td_pcb->pcb_flags = 0;
2386 	thread0.td_pcb->pcb_cr3 = KPML4phys;
2387 	thread0.td_pcb->pcb_ext = NULL;
2388 	lwp0.lwp_md.md_regs = &proc0_tf;	/* XXX needed? */
2389 
2390 	/* Location of kernel stack for locore */
2391 	return ((u_int64_t)thread0.td_pcb);
2392 }
2393 
2394 /*
2395  * Initialize machine-dependant portions of the global data structure.
2396  * Note that the global data area and cpu0's idlestack in the private
2397  * data space were allocated in locore.
2398  *
2399  * Note: the idlethread's cpl is 0
2400  *
2401  * WARNING!  Called from early boot, 'mycpu' may not work yet.
2402  */
2403 void
2404 cpu_gdinit(struct mdglobaldata *gd, int cpu)
2405 {
2406 	if (cpu)
2407 		gd->mi.gd_curthread = &gd->mi.gd_idlethread;
2408 
2409 	lwkt_init_thread(&gd->mi.gd_idlethread,
2410 			gd->mi.gd_prvspace->idlestack,
2411 			sizeof(gd->mi.gd_prvspace->idlestack),
2412 			0, &gd->mi);
2413 	lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
2414 	gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
2415 	gd->mi.gd_idlethread.td_sp -= sizeof(void *);
2416 	*(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
2417 }
2418 
2419 /*
2420  * We only have to check for DMAP bounds, the globaldata space is
2421  * actually part of the kernel_map so we don't have to waste time
2422  * checking CPU_prvspace[*].
2423  */
2424 int
2425 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
2426 {
2427 #if 0
2428 	if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
2429 	    eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
2430 		return (TRUE);
2431 	}
2432 #endif
2433 	if (saddr >= DMAP_MIN_ADDRESS && eaddr <= DMAP_MAX_ADDRESS)
2434 		return (TRUE);
2435 	return (FALSE);
2436 }
2437 
2438 struct globaldata *
2439 globaldata_find(int cpu)
2440 {
2441 	KKASSERT(cpu >= 0 && cpu < ncpus);
2442 	return(&CPU_prvspace[cpu]->mdglobaldata.mi);
2443 }
2444 
2445 /*
2446  * This path should be safe from the SYSRET issue because only stopped threads
2447  * can have their %rip adjusted this way (and all heavy weight thread switches
2448  * clear QUICKREF and thus do not use SYSRET).  However, the code path is
2449  * convoluted so add a safety by forcing %rip to be cannonical.
2450  */
2451 int
2452 ptrace_set_pc(struct lwp *lp, unsigned long addr)
2453 {
2454 	if (addr & 0x0000800000000000LLU)
2455 		lp->lwp_md.md_regs->tf_rip = addr | 0xFFFF000000000000LLU;
2456 	else
2457 		lp->lwp_md.md_regs->tf_rip = addr & 0x0000FFFFFFFFFFFFLLU;
2458 	return (0);
2459 }
2460 
2461 int
2462 ptrace_single_step(struct lwp *lp)
2463 {
2464 	lp->lwp_md.md_regs->tf_rflags |= PSL_T;
2465 	return (0);
2466 }
2467 
2468 int
2469 fill_regs(struct lwp *lp, struct reg *regs)
2470 {
2471 	struct trapframe *tp;
2472 
2473 	if ((tp = lp->lwp_md.md_regs) == NULL)
2474 		return EINVAL;
2475 	bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
2476 	return (0);
2477 }
2478 
2479 int
2480 set_regs(struct lwp *lp, struct reg *regs)
2481 {
2482 	struct trapframe *tp;
2483 
2484 	tp = lp->lwp_md.md_regs;
2485 	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
2486 	    !CS_SECURE(regs->r_cs))
2487 		return (EINVAL);
2488 	bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
2489 	clear_quickret();
2490 	return (0);
2491 }
2492 
2493 static void
2494 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2495 {
2496 	struct env87 *penv_87 = &sv_87->sv_env;
2497 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2498 	int i;
2499 
2500 	/* FPU control/status */
2501 	penv_87->en_cw = penv_xmm->en_cw;
2502 	penv_87->en_sw = penv_xmm->en_sw;
2503 	penv_87->en_tw = penv_xmm->en_tw;
2504 	penv_87->en_fip = penv_xmm->en_fip;
2505 	penv_87->en_fcs = penv_xmm->en_fcs;
2506 	penv_87->en_opcode = penv_xmm->en_opcode;
2507 	penv_87->en_foo = penv_xmm->en_foo;
2508 	penv_87->en_fos = penv_xmm->en_fos;
2509 
2510 	/* FPU registers */
2511 	for (i = 0; i < 8; ++i)
2512 		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2513 }
2514 
2515 static void
2516 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2517 {
2518 	struct env87 *penv_87 = &sv_87->sv_env;
2519 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2520 	int i;
2521 
2522 	/* FPU control/status */
2523 	penv_xmm->en_cw = penv_87->en_cw;
2524 	penv_xmm->en_sw = penv_87->en_sw;
2525 	penv_xmm->en_tw = penv_87->en_tw;
2526 	penv_xmm->en_fip = penv_87->en_fip;
2527 	penv_xmm->en_fcs = penv_87->en_fcs;
2528 	penv_xmm->en_opcode = penv_87->en_opcode;
2529 	penv_xmm->en_foo = penv_87->en_foo;
2530 	penv_xmm->en_fos = penv_87->en_fos;
2531 
2532 	/* FPU registers */
2533 	for (i = 0; i < 8; ++i)
2534 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2535 }
2536 
2537 int
2538 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2539 {
2540 	if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
2541 		return EINVAL;
2542 	if (cpu_fxsr) {
2543 		fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2544 				(struct save87 *)fpregs);
2545 		return (0);
2546 	}
2547 	bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2548 	return (0);
2549 }
2550 
2551 int
2552 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2553 {
2554 	if (cpu_fxsr) {
2555 		set_fpregs_xmm((struct save87 *)fpregs,
2556 			       &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2557 		return (0);
2558 	}
2559 	bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2560 	return (0);
2561 }
2562 
2563 int
2564 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2565 {
2566 	struct pcb *pcb;
2567 
2568         if (lp == NULL) {
2569                 dbregs->dr[0] = rdr0();
2570                 dbregs->dr[1] = rdr1();
2571                 dbregs->dr[2] = rdr2();
2572                 dbregs->dr[3] = rdr3();
2573                 dbregs->dr[4] = rdr4();
2574                 dbregs->dr[5] = rdr5();
2575                 dbregs->dr[6] = rdr6();
2576                 dbregs->dr[7] = rdr7();
2577 		return (0);
2578         }
2579 	if (lp->lwp_thread == NULL || (pcb = lp->lwp_thread->td_pcb) == NULL)
2580 		return EINVAL;
2581 	dbregs->dr[0] = pcb->pcb_dr0;
2582 	dbregs->dr[1] = pcb->pcb_dr1;
2583 	dbregs->dr[2] = pcb->pcb_dr2;
2584 	dbregs->dr[3] = pcb->pcb_dr3;
2585 	dbregs->dr[4] = 0;
2586 	dbregs->dr[5] = 0;
2587 	dbregs->dr[6] = pcb->pcb_dr6;
2588 	dbregs->dr[7] = pcb->pcb_dr7;
2589 	return (0);
2590 }
2591 
2592 int
2593 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2594 {
2595 	if (lp == NULL) {
2596 		load_dr0(dbregs->dr[0]);
2597 		load_dr1(dbregs->dr[1]);
2598 		load_dr2(dbregs->dr[2]);
2599 		load_dr3(dbregs->dr[3]);
2600 		load_dr4(dbregs->dr[4]);
2601 		load_dr5(dbregs->dr[5]);
2602 		load_dr6(dbregs->dr[6]);
2603 		load_dr7(dbregs->dr[7]);
2604 	} else {
2605 		struct pcb *pcb;
2606 		struct ucred *ucred;
2607 		int i;
2608 		uint64_t mask1, mask2;
2609 
2610 		/*
2611 		 * Don't let an illegal value for dr7 get set.	Specifically,
2612 		 * check for undefined settings.  Setting these bit patterns
2613 		 * result in undefined behaviour and can lead to an unexpected
2614 		 * TRCTRAP.
2615 		 */
2616 		/* JG this loop looks unreadable */
2617 		/* Check 4 2-bit fields for invalid patterns.
2618 		 * These fields are R/Wi, for i = 0..3
2619 		 */
2620 		/* Is 10 in LENi allowed when running in compatibility mode? */
2621 		/* Pattern 10 in R/Wi might be used to indicate
2622 		 * breakpoint on I/O. Further analysis should be
2623 		 * carried to decide if it is safe and useful to
2624 		 * provide access to that capability
2625 		 */
2626 		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2627 		     i++, mask1 <<= 4, mask2 <<= 4)
2628 			if ((dbregs->dr[7] & mask1) == mask2)
2629 				return (EINVAL);
2630 
2631 		pcb = lp->lwp_thread->td_pcb;
2632 		ucred = lp->lwp_proc->p_ucred;
2633 
2634 		/*
2635 		 * Don't let a process set a breakpoint that is not within the
2636 		 * process's address space.  If a process could do this, it
2637 		 * could halt the system by setting a breakpoint in the kernel
2638 		 * (if ddb was enabled).  Thus, we need to check to make sure
2639 		 * that no breakpoints are being enabled for addresses outside
2640 		 * process's address space, unless, perhaps, we were called by
2641 		 * uid 0.
2642 		 *
2643 		 * XXX - what about when the watched area of the user's
2644 		 * address space is written into from within the kernel
2645 		 * ... wouldn't that still cause a breakpoint to be generated
2646 		 * from within kernel mode?
2647 		 */
2648 
2649 		if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2650 			if (dbregs->dr[7] & 0x3) {
2651 				/* dr0 is enabled */
2652 				if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2653 					return (EINVAL);
2654 			}
2655 
2656 			if (dbregs->dr[7] & (0x3<<2)) {
2657 				/* dr1 is enabled */
2658 				if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2659 					return (EINVAL);
2660 			}
2661 
2662 			if (dbregs->dr[7] & (0x3<<4)) {
2663 				/* dr2 is enabled */
2664 				if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2665 					return (EINVAL);
2666 			}
2667 
2668 			if (dbregs->dr[7] & (0x3<<6)) {
2669 				/* dr3 is enabled */
2670 				if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2671 					return (EINVAL);
2672 			}
2673 		}
2674 
2675 		pcb->pcb_dr0 = dbregs->dr[0];
2676 		pcb->pcb_dr1 = dbregs->dr[1];
2677 		pcb->pcb_dr2 = dbregs->dr[2];
2678 		pcb->pcb_dr3 = dbregs->dr[3];
2679 		pcb->pcb_dr6 = dbregs->dr[6];
2680 		pcb->pcb_dr7 = dbregs->dr[7];
2681 
2682 		pcb->pcb_flags |= PCB_DBREGS;
2683 	}
2684 
2685 	return (0);
2686 }
2687 
2688 /*
2689  * Return > 0 if a hardware breakpoint has been hit, and the
2690  * breakpoint was in user space.  Return 0, otherwise.
2691  */
2692 int
2693 user_dbreg_trap(void)
2694 {
2695         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2696         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2697         int nbp;            /* number of breakpoints that triggered */
2698         caddr_t addr[4];    /* breakpoint addresses */
2699         int i;
2700 
2701         dr7 = rdr7();
2702         if ((dr7 & 0xff) == 0) {
2703                 /*
2704                  * all GE and LE bits in the dr7 register are zero,
2705                  * thus the trap couldn't have been caused by the
2706                  * hardware debug registers
2707                  */
2708                 return 0;
2709         }
2710 
2711         nbp = 0;
2712         dr6 = rdr6();
2713         bp = dr6 & 0xf;
2714 
2715         if (bp == 0) {
2716                 /*
2717                  * None of the breakpoint bits are set meaning this
2718                  * trap was not caused by any of the debug registers
2719                  */
2720                 return 0;
2721         }
2722 
2723         /*
2724          * at least one of the breakpoints were hit, check to see
2725          * which ones and if any of them are user space addresses
2726          */
2727 
2728         if (bp & 0x01) {
2729                 addr[nbp++] = (caddr_t)rdr0();
2730         }
2731         if (bp & 0x02) {
2732                 addr[nbp++] = (caddr_t)rdr1();
2733         }
2734         if (bp & 0x04) {
2735                 addr[nbp++] = (caddr_t)rdr2();
2736         }
2737         if (bp & 0x08) {
2738                 addr[nbp++] = (caddr_t)rdr3();
2739         }
2740 
2741         for (i=0; i<nbp; i++) {
2742                 if (addr[i] <
2743                     (caddr_t)VM_MAX_USER_ADDRESS) {
2744                         /*
2745                          * addr[i] is in user space
2746                          */
2747                         return nbp;
2748                 }
2749         }
2750 
2751         /*
2752          * None of the breakpoints are in user space.
2753          */
2754         return 0;
2755 }
2756 
2757 
2758 #ifndef DDB
2759 void
2760 Debugger(const char *msg)
2761 {
2762 	kprintf("Debugger(\"%s\") called.\n", msg);
2763 }
2764 #endif /* no DDB */
2765 
2766 #ifdef DDB
2767 
2768 /*
2769  * Provide inb() and outb() as functions.  They are normally only
2770  * available as macros calling inlined functions, thus cannot be
2771  * called inside DDB.
2772  *
2773  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2774  */
2775 
2776 #undef inb
2777 #undef outb
2778 
2779 /* silence compiler warnings */
2780 u_char inb(u_int);
2781 void outb(u_int, u_char);
2782 
2783 u_char
2784 inb(u_int port)
2785 {
2786 	u_char	data;
2787 	/*
2788 	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2789 	 * %edx, while gcc generates inferior code (movw instead of movl)
2790 	 * if we tell it to load (u_short) port.
2791 	 */
2792 	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2793 	return (data);
2794 }
2795 
2796 void
2797 outb(u_int port, u_char data)
2798 {
2799 	u_char	al;
2800 	/*
2801 	 * Use an unnecessary assignment to help gcc's register allocator.
2802 	 * This make a large difference for gcc-1.40 and a tiny difference
2803 	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2804 	 * best results.  gcc-2.6.0 can't handle this.
2805 	 */
2806 	al = data;
2807 	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2808 }
2809 
2810 #endif /* DDB */
2811 
2812 
2813 
2814 /*
2815  * initialize all the SMP locks
2816  */
2817 
2818 /* critical region when masking or unmasking interupts */
2819 struct spinlock_deprecated imen_spinlock;
2820 
2821 /* lock region used by kernel profiling */
2822 struct spinlock_deprecated mcount_spinlock;
2823 
2824 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2825 struct spinlock_deprecated com_spinlock;
2826 
2827 /* lock regions around the clock hardware */
2828 struct spinlock_deprecated clock_spinlock;
2829 
2830 static void
2831 init_locks(void)
2832 {
2833 	/*
2834 	 * Get the initial mplock with a count of 1 for the BSP.
2835 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
2836 	 */
2837 	cpu_get_initial_mplock();
2838 	/* DEPRECATED */
2839 	spin_init_deprecated(&mcount_spinlock);
2840 	spin_init_deprecated(&imen_spinlock);
2841 	spin_init_deprecated(&com_spinlock);
2842 	spin_init_deprecated(&clock_spinlock);
2843 
2844 	/* our token pool needs to work early */
2845 	lwkt_token_pool_init();
2846 }
2847 
2848 boolean_t
2849 cpu_mwait_hint_valid(uint32_t hint)
2850 {
2851 	int cx_idx, sub;
2852 
2853 	cx_idx = MWAIT_EAX_TO_CX(hint);
2854 	if (cx_idx >= CPU_MWAIT_CX_MAX)
2855 		return FALSE;
2856 
2857 	sub = MWAIT_EAX_TO_CX_SUB(hint);
2858 	if (sub >= cpu_mwait_cx_info[cx_idx].subcnt)
2859 		return FALSE;
2860 
2861 	return TRUE;
2862 }
2863 
2864 void
2865 cpu_mwait_cx_no_bmsts(void)
2866 {
2867 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_STS);
2868 }
2869 
2870 void
2871 cpu_mwait_cx_no_bmarb(void)
2872 {
2873 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_ARB);
2874 }
2875 
2876 static int
2877 cpu_mwait_cx_hint2name(int hint, char *name, int namelen, boolean_t allow_auto)
2878 {
2879 	int old_cx_idx, sub = 0;
2880 
2881 	if (hint >= 0) {
2882 		old_cx_idx = MWAIT_EAX_TO_CX(hint);
2883 		sub = MWAIT_EAX_TO_CX_SUB(hint);
2884 	} else if (hint == CPU_MWAIT_HINT_AUTO) {
2885 		old_cx_idx = allow_auto ? CPU_MWAIT_C2 : CPU_MWAIT_CX_MAX;
2886 	} else if (hint == CPU_MWAIT_HINT_AUTODEEP) {
2887 		old_cx_idx = allow_auto ? CPU_MWAIT_C3 : CPU_MWAIT_CX_MAX;
2888 	} else {
2889 		old_cx_idx = CPU_MWAIT_CX_MAX;
2890 	}
2891 
2892 	if (!CPU_MWAIT_HAS_CX)
2893 		strlcpy(name, "NONE", namelen);
2894 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTO)
2895 		strlcpy(name, "AUTO", namelen);
2896 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTODEEP)
2897 		strlcpy(name, "AUTODEEP", namelen);
2898 	else if (old_cx_idx >= CPU_MWAIT_CX_MAX ||
2899 	    sub >= cpu_mwait_cx_info[old_cx_idx].subcnt)
2900 		strlcpy(name, "INVALID", namelen);
2901 	else
2902 		ksnprintf(name, namelen, "C%d/%d", old_cx_idx, sub);
2903 
2904 	return old_cx_idx;
2905 }
2906 
2907 static int
2908 cpu_mwait_cx_name2hint(char *name, int *hint0, boolean_t allow_auto)
2909 {
2910 	int cx_idx, sub, hint;
2911 	char *ptr, *start;
2912 
2913 	if (allow_auto && strcmp(name, "AUTO") == 0) {
2914 		hint = CPU_MWAIT_HINT_AUTO;
2915 		cx_idx = CPU_MWAIT_C2;
2916 		goto done;
2917 	}
2918 	if (allow_auto && strcmp(name, "AUTODEEP") == 0) {
2919 		hint = CPU_MWAIT_HINT_AUTODEEP;
2920 		cx_idx = CPU_MWAIT_C3;
2921 		goto done;
2922 	}
2923 
2924 	if (strlen(name) < 4 || toupper(name[0]) != 'C')
2925 		return -1;
2926 	start = &name[1];
2927 	ptr = NULL;
2928 
2929 	cx_idx = strtol(start, &ptr, 10);
2930 	if (ptr == start || *ptr != '/')
2931 		return -1;
2932 	if (cx_idx < 0 || cx_idx >= CPU_MWAIT_CX_MAX)
2933 		return -1;
2934 
2935 	start = ptr + 1;
2936 	ptr = NULL;
2937 
2938 	sub = strtol(start, &ptr, 10);
2939 	if (*ptr != '\0')
2940 		return -1;
2941 	if (sub < 0 || sub >= cpu_mwait_cx_info[cx_idx].subcnt)
2942 		return -1;
2943 
2944 	hint = MWAIT_EAX_HINT(cx_idx, sub);
2945 done:
2946 	*hint0 = hint;
2947 	return cx_idx;
2948 }
2949 
2950 static int
2951 cpu_mwait_cx_transit(int old_cx_idx, int cx_idx)
2952 {
2953 	if (cx_idx >= CPU_MWAIT_C3 && cpu_mwait_c3_preamble)
2954 		return EOPNOTSUPP;
2955 	if (old_cx_idx < CPU_MWAIT_C3 && cx_idx >= CPU_MWAIT_C3) {
2956 		int error;
2957 
2958 		error = cputimer_intr_powersave_addreq();
2959 		if (error)
2960 			return error;
2961 	} else if (old_cx_idx >= CPU_MWAIT_C3 && cx_idx < CPU_MWAIT_C3) {
2962 		cputimer_intr_powersave_remreq();
2963 	}
2964 	return 0;
2965 }
2966 
2967 static int
2968 cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS, int *hint0,
2969     boolean_t allow_auto)
2970 {
2971 	int error, cx_idx, old_cx_idx, hint;
2972 	char name[CPU_MWAIT_CX_NAMELEN];
2973 
2974 	hint = *hint0;
2975 	old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name),
2976 	    allow_auto);
2977 
2978 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
2979 	if (error != 0 || req->newptr == NULL)
2980 		return error;
2981 
2982 	if (!CPU_MWAIT_HAS_CX)
2983 		return EOPNOTSUPP;
2984 
2985 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, allow_auto);
2986 	if (cx_idx < 0)
2987 		return EINVAL;
2988 
2989 	error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
2990 	if (error)
2991 		return error;
2992 
2993 	*hint0 = hint;
2994 	return 0;
2995 }
2996 
2997 static int
2998 cpu_mwait_cx_setname(struct cpu_idle_stat *stat, const char *cx_name)
2999 {
3000 	int error, cx_idx, old_cx_idx, hint;
3001 	char name[CPU_MWAIT_CX_NAMELEN];
3002 
3003 	KASSERT(CPU_MWAIT_HAS_CX, ("cpu does not support mwait CX extension"));
3004 
3005 	hint = stat->hint;
3006 	old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3007 
3008 	strlcpy(name, cx_name, sizeof(name));
3009 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3010 	if (cx_idx < 0)
3011 		return EINVAL;
3012 
3013 	error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3014 	if (error)
3015 		return error;
3016 
3017 	stat->hint = hint;
3018 	return 0;
3019 }
3020 
3021 static int
3022 cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS)
3023 {
3024 	int hint = cpu_mwait_halt_global;
3025 	int error, cx_idx, cpu;
3026 	char name[CPU_MWAIT_CX_NAMELEN], cx_name[CPU_MWAIT_CX_NAMELEN];
3027 
3028 	cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3029 
3030 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
3031 	if (error != 0 || req->newptr == NULL)
3032 		return error;
3033 
3034 	if (!CPU_MWAIT_HAS_CX)
3035 		return EOPNOTSUPP;
3036 
3037 	/* Save name for later per-cpu CX configuration */
3038 	strlcpy(cx_name, name, sizeof(cx_name));
3039 
3040 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3041 	if (cx_idx < 0)
3042 		return EINVAL;
3043 
3044 	/* Change per-cpu CX configuration */
3045 	for (cpu = 0; cpu < ncpus; ++cpu) {
3046 		error = cpu_mwait_cx_setname(&cpu_idle_stats[cpu], cx_name);
3047 		if (error)
3048 			return error;
3049 	}
3050 
3051 	cpu_mwait_halt_global = hint;
3052 	return 0;
3053 }
3054 
3055 static int
3056 cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS)
3057 {
3058 	struct cpu_idle_stat *stat = arg1;
3059 	int error;
3060 
3061 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3062 	    &stat->hint, TRUE);
3063 	return error;
3064 }
3065 
3066 static int
3067 cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS)
3068 {
3069 	int error;
3070 
3071 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3072 	    &cpu_mwait_spin, FALSE);
3073 	return error;
3074 }
3075 
3076 /*
3077  * This manual debugging code is called unconditionally from Xtimer
3078  * (the per-cpu timer interrupt) whether the current thread is in a
3079  * critical section or not) and can be useful in tracking down lockups.
3080  *
3081  * NOTE: MANUAL DEBUG CODE
3082  */
3083 #if 0
3084 static int saveticks[SMP_MAXCPU];
3085 static int savecounts[SMP_MAXCPU];
3086 #endif
3087 
3088 void
3089 pcpu_timer_always(struct intrframe *frame)
3090 {
3091 #if 0
3092 	globaldata_t gd = mycpu;
3093 	int cpu = gd->gd_cpuid;
3094 	char buf[64];
3095 	short *gptr;
3096 	int i;
3097 
3098 	if (cpu <= 20) {
3099 		gptr = (short *)0xFFFFFFFF800b8000 + 80 * cpu;
3100 		*gptr = ((*gptr + 1) & 0x00FF) | 0x0700;
3101 		++gptr;
3102 
3103 		ksnprintf(buf, sizeof(buf), " %p %16s %d %16s ",
3104 		    (void *)frame->if_rip, gd->gd_curthread->td_comm, ticks,
3105 		    gd->gd_infomsg);
3106 		for (i = 0; buf[i]; ++i) {
3107 			gptr[i] = 0x0700 | (unsigned char)buf[i];
3108 		}
3109 	}
3110 #if 0
3111 	if (saveticks[gd->gd_cpuid] != ticks) {
3112 		saveticks[gd->gd_cpuid] = ticks;
3113 		savecounts[gd->gd_cpuid] = 0;
3114 	}
3115 	++savecounts[gd->gd_cpuid];
3116 	if (savecounts[gd->gd_cpuid] > 2000 && panicstr == NULL) {
3117 		panic("cpud %d panicing on ticks failure",
3118 			gd->gd_cpuid);
3119 	}
3120 	for (i = 0; i < ncpus; ++i) {
3121 		int delta;
3122 		if (saveticks[i] && panicstr == NULL) {
3123 			delta = saveticks[i] - ticks;
3124 			if (delta < -10 || delta > 10) {
3125 				panic("cpu %d panicing on cpu %d watchdog",
3126 				      gd->gd_cpuid, i);
3127 			}
3128 		}
3129 	}
3130 #endif
3131 #endif
3132 }
3133