xref: /dragonfly/sys/platform/pc64/x86_64/machdep.c (revision 666e46d7)
1 /*-
2  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3  * Copyright (c) 1992 Terrence R. Lambert.
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 2008 The DragonFly Project.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
40  * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
41  */
42 
43 //#include "use_npx.h"
44 #include "use_isa.h"
45 #include "opt_compat.h"
46 #include "opt_cpu.h"
47 #include "opt_ddb.h"
48 #include "opt_directio.h"
49 #include "opt_inet.h"
50 #include "opt_ipx.h"
51 #include "opt_msgbuf.h"
52 #include "opt_swap.h"
53 
54 #include <sys/param.h>
55 #include <sys/systm.h>
56 #include <sys/sysproto.h>
57 #include <sys/signalvar.h>
58 #include <sys/kernel.h>
59 #include <sys/linker.h>
60 #include <sys/malloc.h>
61 #include <sys/proc.h>
62 #include <sys/priv.h>
63 #include <sys/buf.h>
64 #include <sys/reboot.h>
65 #include <sys/mbuf.h>
66 #include <sys/msgbuf.h>
67 #include <sys/sysent.h>
68 #include <sys/sysctl.h>
69 #include <sys/vmmeter.h>
70 #include <sys/bus.h>
71 #include <sys/upcall.h>
72 #include <sys/usched.h>
73 #include <sys/reg.h>
74 
75 #include <vm/vm.h>
76 #include <vm/vm_param.h>
77 #include <sys/lock.h>
78 #include <vm/vm_kern.h>
79 #include <vm/vm_object.h>
80 #include <vm/vm_page.h>
81 #include <vm/vm_map.h>
82 #include <vm/vm_pager.h>
83 #include <vm/vm_extern.h>
84 
85 #include <sys/thread2.h>
86 #include <sys/mplock2.h>
87 #include <sys/mutex2.h>
88 
89 #include <sys/user.h>
90 #include <sys/exec.h>
91 #include <sys/cons.h>
92 
93 #include <ddb/ddb.h>
94 
95 #include <machine/cpu.h>
96 #include <machine/clock.h>
97 #include <machine/specialreg.h>
98 #if JG
99 #include <machine/bootinfo.h>
100 #endif
101 #include <machine/md_var.h>
102 #include <machine/metadata.h>
103 #include <machine/pc/bios.h>
104 #include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
105 #include <machine/globaldata.h>		/* CPU_prvspace */
106 #include <machine/smp.h>
107 #ifdef PERFMON
108 #include <machine/perfmon.h>
109 #endif
110 #include <machine/cputypes.h>
111 #include <machine/intr_machdep.h>
112 
113 #ifdef OLD_BUS_ARCH
114 #include <bus/isa/isa_device.h>
115 #endif
116 #include <machine_base/isa/isa_intr.h>
117 #include <bus/isa/rtc.h>
118 #include <sys/random.h>
119 #include <sys/ptrace.h>
120 #include <machine/sigframe.h>
121 
122 #include <sys/machintr.h>
123 #include <machine_base/icu/icu_abi.h>
124 #include <machine_base/icu/elcr_var.h>
125 #include <machine_base/apic/lapic.h>
126 #include <machine_base/apic/ioapic.h>
127 #include <machine_base/apic/ioapic_abi.h>
128 #include <machine/mptable.h>
129 
130 #define PHYSMAP_ENTRIES		10
131 
132 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
133 
134 extern void printcpuinfo(void);	/* XXX header file */
135 extern void identify_cpu(void);
136 #if JG
137 extern void finishidentcpu(void);
138 #endif
139 extern void panicifcpuunsupported(void);
140 
141 static void cpu_startup(void *);
142 static void pic_finish(void *);
143 static void cpu_finish(void *);
144 
145 #ifndef CPU_DISABLE_SSE
146 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
147 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
148 #endif /* CPU_DISABLE_SSE */
149 #ifdef DIRECTIO
150 extern void ffs_rawread_setup(void);
151 #endif /* DIRECTIO */
152 static void init_locks(void);
153 
154 SYSINIT(cpu, SI_BOOT2_START_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
155 SYSINIT(pic_finish, SI_BOOT2_FINISH_PIC, SI_ORDER_FIRST, pic_finish, NULL)
156 SYSINIT(cpu_finish, SI_BOOT2_FINISH_CPU, SI_ORDER_FIRST, cpu_finish, NULL)
157 
158 #ifdef DDB
159 extern vm_offset_t ksym_start, ksym_end;
160 #endif
161 
162 struct privatespace CPU_prvspace[MAXCPU] __aligned(4096); /* XXX */
163 
164 int	_udatasel, _ucodesel, _ucode32sel;
165 u_long	atdevbase;
166 int64_t tsc_offsets[MAXCPU];
167 
168 #if defined(SWTCH_OPTIM_STATS)
169 extern int swtch_optim_stats;
170 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
171 	CTLFLAG_RD, &swtch_optim_stats, 0, "");
172 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
173 	CTLFLAG_RD, &tlb_flush_count, 0, "");
174 #endif
175 
176 long physmem = 0;
177 
178 u_long ebda_addr = 0;
179 
180 int imcr_present = 0;
181 
182 int naps = 0; /* # of Applications processors */
183 
184 u_int base_memory;
185 struct mtx dt_lock;		/* lock for GDT and LDT */
186 
187 static int
188 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
189 {
190 	u_long pmem = ctob(physmem);
191 
192 	int error = sysctl_handle_long(oidp, &pmem, 0, req);
193 	return (error);
194 }
195 
196 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
197 	0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
198 
199 static int
200 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
201 {
202 	int error = sysctl_handle_int(oidp, 0,
203 		ctob(physmem - vmstats.v_wire_count), req);
204 	return (error);
205 }
206 
207 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
208 	0, 0, sysctl_hw_usermem, "IU", "");
209 
210 static int
211 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
212 {
213 	int error = sysctl_handle_int(oidp, 0,
214 		x86_64_btop(avail_end - avail_start), req);
215 	return (error);
216 }
217 
218 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
219 	0, 0, sysctl_hw_availpages, "I", "");
220 
221 vm_paddr_t Maxmem;
222 vm_paddr_t Realmem;
223 
224 /*
225  * The number of PHYSMAP entries must be one less than the number of
226  * PHYSSEG entries because the PHYSMAP entry that spans the largest
227  * physical address that is accessible by ISA DMA is split into two
228  * PHYSSEG entries.
229  */
230 #define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
231 
232 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
233 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
234 
235 /* must be 2 less so 0 0 can signal end of chunks */
236 #define PHYS_AVAIL_ARRAY_END (NELEM(phys_avail) - 2)
237 #define DUMP_AVAIL_ARRAY_END (NELEM(dump_avail) - 2)
238 
239 static vm_offset_t buffer_sva, buffer_eva;
240 vm_offset_t clean_sva, clean_eva;
241 static vm_offset_t pager_sva, pager_eva;
242 static struct trapframe proc0_tf;
243 
244 static void
245 cpu_startup(void *dummy)
246 {
247 	caddr_t v;
248 	vm_size_t size = 0;
249 	vm_offset_t firstaddr;
250 
251 	/*
252 	 * Good {morning,afternoon,evening,night}.
253 	 */
254 	kprintf("%s", version);
255 	startrtclock();
256 	printcpuinfo();
257 	panicifcpuunsupported();
258 #ifdef PERFMON
259 	perfmon_init();
260 #endif
261 	kprintf("real memory  = %ju (%ju MB)\n",
262 		(intmax_t)Realmem,
263 		(intmax_t)Realmem / 1024 / 1024);
264 	/*
265 	 * Display any holes after the first chunk of extended memory.
266 	 */
267 	if (bootverbose) {
268 		int indx;
269 
270 		kprintf("Physical memory chunk(s):\n");
271 		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
272 			vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
273 
274 			kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
275 				(intmax_t)phys_avail[indx],
276 				(intmax_t)phys_avail[indx + 1] - 1,
277 				(intmax_t)size1,
278 				(intmax_t)(size1 / PAGE_SIZE));
279 		}
280 	}
281 
282 	/*
283 	 * Allocate space for system data structures.
284 	 * The first available kernel virtual address is in "v".
285 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
286 	 * As pages of memory are allocated and cleared,
287 	 * "firstaddr" is incremented.
288 	 * An index into the kernel page table corresponding to the
289 	 * virtual memory address maintained in "v" is kept in "mapaddr".
290 	 */
291 
292 	/*
293 	 * Make two passes.  The first pass calculates how much memory is
294 	 * needed and allocates it.  The second pass assigns virtual
295 	 * addresses to the various data structures.
296 	 */
297 	firstaddr = 0;
298 again:
299 	v = (caddr_t)firstaddr;
300 
301 #define	valloc(name, type, num) \
302 	    (name) = (type *)v; v = (caddr_t)((name)+(num))
303 #define	valloclim(name, type, num, lim) \
304 	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
305 
306 	/*
307 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
308 	 * For the first 64MB of ram nominally allocate sufficient buffers to
309 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
310 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
311 	 * the buffer cache we limit the eventual kva reservation to
312 	 * maxbcache bytes.
313 	 *
314 	 * factor represents the 1/4 x ram conversion.
315 	 */
316 	if (nbuf == 0) {
317 		long factor = 4 * BKVASIZE / 1024;
318 		long kbytes = physmem * (PAGE_SIZE / 1024);
319 
320 		nbuf = 50;
321 		if (kbytes > 4096)
322 			nbuf += min((kbytes - 4096) / factor, 65536 / factor);
323 		if (kbytes > 65536)
324 			nbuf += (kbytes - 65536) * 2 / (factor * 5);
325 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
326 			nbuf = maxbcache / BKVASIZE;
327 	}
328 
329 	/*
330 	 * Do not allow the buffer_map to be more then 1/2 the size of the
331 	 * kernel_map.
332 	 */
333 	if (nbuf > (virtual_end - virtual_start +
334 		    virtual2_end - virtual2_start) / (BKVASIZE * 2)) {
335 		nbuf = (virtual_end - virtual_start +
336 			virtual2_end - virtual2_start) / (BKVASIZE * 2);
337 		kprintf("Warning: nbufs capped at %ld due to kvm\n", nbuf);
338 	}
339 
340 	/*
341 	 * Do not allow the buffer_map to use more than 50% of available
342 	 * physical-equivalent memory.  Since the VM pages which back
343 	 * individual buffers are typically wired, having too many bufs
344 	 * can prevent the system from paging properly.
345 	 */
346 	if (nbuf > physmem * PAGE_SIZE / (BKVASIZE * 2)) {
347 		nbuf = physmem * PAGE_SIZE / (BKVASIZE * 2);
348 		kprintf("Warning: nbufs capped at %ld due to physmem\n", nbuf);
349 	}
350 
351 	/*
352 	 * Do not allow the sizeof(struct buf) * nbuf to exceed half of
353 	 * the valloc space which is just the virtual_end - virtual_start
354 	 * section.  We use valloc() to allocate the buf header array.
355 	 */
356 	if (nbuf > (virtual_end - virtual_start) / sizeof(struct buf) / 2) {
357 		nbuf = (virtual_end - virtual_start) /
358 		       sizeof(struct buf) / 2;
359 		kprintf("Warning: nbufs capped at %ld due to valloc "
360 			"considerations", nbuf);
361 	}
362 
363 	nswbuf = lmax(lmin(nbuf / 4, 256), 16);
364 #ifdef NSWBUF_MIN
365 	if (nswbuf < NSWBUF_MIN)
366 		nswbuf = NSWBUF_MIN;
367 #endif
368 #ifdef DIRECTIO
369 	ffs_rawread_setup();
370 #endif
371 
372 	valloc(swbuf, struct buf, nswbuf);
373 	valloc(buf, struct buf, nbuf);
374 
375 	/*
376 	 * End of first pass, size has been calculated so allocate memory
377 	 */
378 	if (firstaddr == 0) {
379 		size = (vm_size_t)(v - firstaddr);
380 		firstaddr = kmem_alloc(&kernel_map, round_page(size));
381 		if (firstaddr == 0)
382 			panic("startup: no room for tables");
383 		goto again;
384 	}
385 
386 	/*
387 	 * End of second pass, addresses have been assigned
388 	 *
389 	 * nbuf is an int, make sure we don't overflow the field.
390 	 */
391 	if ((vm_size_t)(v - firstaddr) != size)
392 		panic("startup: table size inconsistency");
393 
394 	kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
395 		      ((vm_offset_t)nbuf * BKVASIZE) +
396 		      (nswbuf * MAXPHYS) + pager_map_size);
397 	kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
398 		      ((vm_offset_t)nbuf * BKVASIZE));
399 	buffer_map.system_map = 1;
400 	kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
401 		      ((vm_offset_t)nswbuf * MAXPHYS) + pager_map_size);
402 	pager_map.system_map = 1;
403 
404 #if defined(USERCONFIG)
405 	userconfig();
406 	cninit();		/* the preferred console may have changed */
407 #endif
408 
409 	kprintf("avail memory = %ju (%ju MB)\n",
410 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages),
411 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages) /
412 		1024 / 1024);
413 
414 	/*
415 	 * Set up buffers, so they can be used to read disk labels.
416 	 */
417 	bufinit();
418 	vm_pager_bufferinit();
419 }
420 
421 static void
422 cpu_finish(void *dummy __unused)
423 {
424 	cpu_setregs();
425 }
426 
427 static void
428 pic_finish(void *dummy __unused)
429 {
430 	/* Log ELCR information */
431 	elcr_dump();
432 
433 	/* Log MPTABLE information */
434 	mptable_pci_int_dump();
435 
436 	/* Finalize PCI */
437 	MachIntrABI.finalize();
438 }
439 
440 /*
441  * Send an interrupt to process.
442  *
443  * Stack is set up to allow sigcode stored
444  * at top to call routine, followed by kcall
445  * to sigreturn routine below.  After sigreturn
446  * resets the signal mask, the stack, and the
447  * frame pointer, it returns to the user
448  * specified pc, psl.
449  */
450 void
451 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
452 {
453 	struct lwp *lp = curthread->td_lwp;
454 	struct proc *p = lp->lwp_proc;
455 	struct trapframe *regs;
456 	struct sigacts *psp = p->p_sigacts;
457 	struct sigframe sf, *sfp;
458 	int oonstack;
459 	char *sp;
460 
461 	regs = lp->lwp_md.md_regs;
462 	oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
463 
464 	/* Save user context */
465 	bzero(&sf, sizeof(struct sigframe));
466 	sf.sf_uc.uc_sigmask = *mask;
467 	sf.sf_uc.uc_stack = lp->lwp_sigstk;
468 	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
469 	KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
470 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
471 
472 	/* Make the size of the saved context visible to userland */
473 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
474 
475 	/* Allocate and validate space for the signal handler context. */
476         if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
477 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
478 		sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
479 			      sizeof(struct sigframe));
480 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
481 	} else {
482 		/* We take red zone into account */
483 		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
484 	}
485 
486 	/* Align to 16 bytes */
487 	sfp = (struct sigframe *)((intptr_t)sp & ~(intptr_t)0xF);
488 
489 	/* Translate the signal is appropriate */
490 	if (p->p_sysent->sv_sigtbl) {
491 		if (sig <= p->p_sysent->sv_sigsize)
492 			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
493 	}
494 
495 	/*
496 	 * Build the argument list for the signal handler.
497 	 *
498 	 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
499 	 */
500 	regs->tf_rdi = sig;				/* argument 1 */
501 	regs->tf_rdx = (register_t)&sfp->sf_uc;		/* argument 3 */
502 
503 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
504 		/*
505 		 * Signal handler installed with SA_SIGINFO.
506 		 *
507 		 * action(signo, siginfo, ucontext)
508 		 */
509 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* argument 2 */
510 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
511 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
512 
513 		/* fill siginfo structure */
514 		sf.sf_si.si_signo = sig;
515 		sf.sf_si.si_code = code;
516 		sf.sf_si.si_addr = (void *)regs->tf_addr;
517 	} else {
518 		/*
519 		 * Old FreeBSD-style arguments.
520 		 *
521 		 * handler (signo, code, [uc], addr)
522 		 */
523 		regs->tf_rsi = (register_t)code;	/* argument 2 */
524 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
525 		sf.sf_ahu.sf_handler = catcher;
526 	}
527 
528 	/*
529 	 * If we're a vm86 process, we want to save the segment registers.
530 	 * We also change eflags to be our emulated eflags, not the actual
531 	 * eflags.
532 	 */
533 #if JG
534 	if (regs->tf_eflags & PSL_VM) {
535 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
536 		struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
537 
538 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
539 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
540 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
541 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
542 
543 		if (vm86->vm86_has_vme == 0)
544 			sf.sf_uc.uc_mcontext.mc_eflags =
545 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
546 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
547 
548 		/*
549 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
550 		 * syscalls made by the signal handler.  This just avoids
551 		 * wasting time for our lazy fixup of such faults.  PSL_NT
552 		 * does nothing in vm86 mode, but vm86 programs can set it
553 		 * almost legitimately in probes for old cpu types.
554 		 */
555 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
556 	}
557 #endif
558 
559 	/*
560 	 * Save the FPU state and reinit the FP unit
561 	 */
562 	npxpush(&sf.sf_uc.uc_mcontext);
563 
564 	/*
565 	 * Copy the sigframe out to the user's stack.
566 	 */
567 	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
568 		/*
569 		 * Something is wrong with the stack pointer.
570 		 * ...Kill the process.
571 		 */
572 		sigexit(lp, SIGILL);
573 	}
574 
575 	regs->tf_rsp = (register_t)sfp;
576 	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
577 
578 	/*
579 	 * i386 abi specifies that the direction flag must be cleared
580 	 * on function entry
581 	 */
582 	regs->tf_rflags &= ~(PSL_T|PSL_D);
583 
584 	/*
585 	 * 64 bit mode has a code and stack selector but
586 	 * no data or extra selector.  %fs and %gs are not
587 	 * stored in-context.
588 	 */
589 	regs->tf_cs = _ucodesel;
590 	regs->tf_ss = _udatasel;
591 	clear_quickret();
592 }
593 
594 /*
595  * Sanitize the trapframe for a virtual kernel passing control to a custom
596  * VM context.  Remove any items that would otherwise create a privilage
597  * issue.
598  *
599  * XXX at the moment we allow userland to set the resume flag.  Is this a
600  * bad idea?
601  */
602 int
603 cpu_sanitize_frame(struct trapframe *frame)
604 {
605 	frame->tf_cs = _ucodesel;
606 	frame->tf_ss = _udatasel;
607 	/* XXX VM (8086) mode not supported? */
608 	frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
609 	frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
610 
611 	return(0);
612 }
613 
614 /*
615  * Sanitize the tls so loading the descriptor does not blow up
616  * on us.  For x86_64 we don't have to do anything.
617  */
618 int
619 cpu_sanitize_tls(struct savetls *tls)
620 {
621 	return(0);
622 }
623 
624 /*
625  * sigreturn(ucontext_t *sigcntxp)
626  *
627  * System call to cleanup state after a signal
628  * has been taken.  Reset signal mask and
629  * stack state from context left by sendsig (above).
630  * Return to previous pc and psl as specified by
631  * context left by sendsig. Check carefully to
632  * make sure that the user has not modified the
633  * state to gain improper privileges.
634  *
635  * MPSAFE
636  */
637 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
638 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
639 
640 int
641 sys_sigreturn(struct sigreturn_args *uap)
642 {
643 	struct lwp *lp = curthread->td_lwp;
644 	struct trapframe *regs;
645 	ucontext_t uc;
646 	ucontext_t *ucp;
647 	register_t rflags;
648 	int cs;
649 	int error;
650 
651 	/*
652 	 * We have to copy the information into kernel space so userland
653 	 * can't modify it while we are sniffing it.
654 	 */
655 	regs = lp->lwp_md.md_regs;
656 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
657 	if (error)
658 		return (error);
659 	ucp = &uc;
660 	rflags = ucp->uc_mcontext.mc_rflags;
661 
662 	/* VM (8086) mode not supported */
663 	rflags &= ~PSL_VM_UNSUPP;
664 
665 #if JG
666 	if (eflags & PSL_VM) {
667 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
668 		struct vm86_kernel *vm86;
669 
670 		/*
671 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
672 		 * set up the vm86 area, and we can't enter vm86 mode.
673 		 */
674 		if (lp->lwp_thread->td_pcb->pcb_ext == 0)
675 			return (EINVAL);
676 		vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
677 		if (vm86->vm86_inited == 0)
678 			return (EINVAL);
679 
680 		/* go back to user mode if both flags are set */
681 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
682 			trapsignal(lp, SIGBUS, 0);
683 
684 		if (vm86->vm86_has_vme) {
685 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
686 			    (eflags & VME_USERCHANGE) | PSL_VM;
687 		} else {
688 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
689 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
690 			    (eflags & VM_USERCHANGE) | PSL_VM;
691 		}
692 		bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
693 		tf->tf_eflags = eflags;
694 		tf->tf_vm86_ds = tf->tf_ds;
695 		tf->tf_vm86_es = tf->tf_es;
696 		tf->tf_vm86_fs = tf->tf_fs;
697 		tf->tf_vm86_gs = tf->tf_gs;
698 		tf->tf_ds = _udatasel;
699 		tf->tf_es = _udatasel;
700 		tf->tf_fs = _udatasel;
701 		tf->tf_gs = _udatasel;
702 	} else
703 #endif
704 	{
705 		/*
706 		 * Don't allow users to change privileged or reserved flags.
707 		 */
708 		/*
709 		 * XXX do allow users to change the privileged flag PSL_RF.
710 		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
711 		 * should sometimes set it there too.  tf_eflags is kept in
712 		 * the signal context during signal handling and there is no
713 		 * other place to remember it, so the PSL_RF bit may be
714 		 * corrupted by the signal handler without us knowing.
715 		 * Corruption of the PSL_RF bit at worst causes one more or
716 		 * one less debugger trap, so allowing it is fairly harmless.
717 		 */
718 		if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
719 			kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
720 	    		return(EINVAL);
721 		}
722 
723 		/*
724 		 * Don't allow users to load a valid privileged %cs.  Let the
725 		 * hardware check for invalid selectors, excess privilege in
726 		 * other selectors, invalid %eip's and invalid %esp's.
727 		 */
728 		cs = ucp->uc_mcontext.mc_cs;
729 		if (!CS_SECURE(cs)) {
730 			kprintf("sigreturn: cs = 0x%x\n", cs);
731 			trapsignal(lp, SIGBUS, T_PROTFLT);
732 			return(EINVAL);
733 		}
734 		bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
735 	}
736 
737 	/*
738 	 * Restore the FPU state from the frame
739 	 */
740 	crit_enter();
741 	npxpop(&ucp->uc_mcontext);
742 
743 	if (ucp->uc_mcontext.mc_onstack & 1)
744 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
745 	else
746 		lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
747 
748 	lp->lwp_sigmask = ucp->uc_sigmask;
749 	SIG_CANTMASK(lp->lwp_sigmask);
750 	clear_quickret();
751 	crit_exit();
752 	return(EJUSTRETURN);
753 }
754 
755 /*
756  * Stack frame on entry to function.  %rax will contain the function vector,
757  * %rcx will contain the function data.  flags, rcx, and rax will have
758  * already been pushed on the stack.
759  */
760 struct upc_frame {
761 	register_t	rax;
762 	register_t	rcx;
763 	register_t	rdx;
764 	register_t	flags;
765 	register_t	oldip;
766 };
767 
768 void
769 sendupcall(struct vmupcall *vu, int morepending)
770 {
771 	struct lwp *lp = curthread->td_lwp;
772 	struct trapframe *regs;
773 	struct upcall upcall;
774 	struct upc_frame upc_frame;
775 	int	crit_count = 0;
776 
777 	/*
778 	 * If we are a virtual kernel running an emulated user process
779 	 * context, switch back to the virtual kernel context before
780 	 * trying to post the signal.
781 	 */
782 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
783 		lp->lwp_md.md_regs->tf_trapno = 0;
784 		vkernel_trap(lp, lp->lwp_md.md_regs);
785 	}
786 
787 	/*
788 	 * Get the upcall data structure
789 	 */
790 	if (copyin(lp->lwp_upcall, &upcall, sizeof(upcall)) ||
791 	    copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int))
792 	) {
793 		vu->vu_pending = 0;
794 		kprintf("bad upcall address\n");
795 		return;
796 	}
797 
798 	/*
799 	 * If the data structure is already marked pending or has a critical
800 	 * section count, mark the data structure as pending and return
801 	 * without doing an upcall.  vu_pending is left set.
802 	 */
803 	if (upcall.upc_pending || crit_count >= vu->vu_pending) {
804 		if (upcall.upc_pending < vu->vu_pending) {
805 			upcall.upc_pending = vu->vu_pending;
806 			copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
807 				sizeof(upcall.upc_pending));
808 		}
809 		return;
810 	}
811 
812 	/*
813 	 * We can run this upcall now, clear vu_pending.
814 	 *
815 	 * Bump our critical section count and set or clear the
816 	 * user pending flag depending on whether more upcalls are
817 	 * pending.  The user will be responsible for calling
818 	 * upc_dispatch(-1) to process remaining upcalls.
819 	 */
820 	vu->vu_pending = 0;
821 	upcall.upc_pending = morepending;
822 	++crit_count;
823 	copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
824 		sizeof(upcall.upc_pending));
825 	copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff,
826 		sizeof(int));
827 
828 	/*
829 	 * Construct a stack frame and issue the upcall
830 	 */
831 	regs = lp->lwp_md.md_regs;
832 	upc_frame.rax = regs->tf_rax;
833 	upc_frame.rcx = regs->tf_rcx;
834 	upc_frame.rdx = regs->tf_rdx;
835 	upc_frame.flags = regs->tf_rflags;
836 	upc_frame.oldip = regs->tf_rip;
837 	if (copyout(&upc_frame, (void *)(regs->tf_rsp - sizeof(upc_frame) - 128),
838 	    sizeof(upc_frame)) != 0) {
839 		kprintf("bad stack on upcall\n");
840 	} else {
841 		regs->tf_rax = (register_t)vu->vu_func;
842 		regs->tf_rcx = (register_t)vu->vu_data;
843 		regs->tf_rdx = (register_t)lp->lwp_upcall;
844 		regs->tf_rip = (register_t)vu->vu_ctx;
845 		regs->tf_rsp -= sizeof(upc_frame) + 128;
846 	}
847 }
848 
849 /*
850  * fetchupcall occurs in the context of a system call, which means that
851  * we have to return EJUSTRETURN in order to prevent eax and edx from
852  * being overwritten by the syscall return value.
853  *
854  * if vu is not NULL we return the new context in %edx, the new data in %ecx,
855  * and the function pointer in %eax.
856  */
857 int
858 fetchupcall(struct vmupcall *vu, int morepending, void *rsp)
859 {
860 	struct upc_frame upc_frame;
861 	struct lwp *lp = curthread->td_lwp;
862 	struct trapframe *regs;
863 	int error;
864 	struct upcall upcall;
865 	int crit_count;
866 
867 	regs = lp->lwp_md.md_regs;
868 
869 	error = copyout(&morepending, &lp->lwp_upcall->upc_pending, sizeof(int));
870 	if (error == 0) {
871 	    if (vu) {
872 		/*
873 		 * This jumps us to the next ready context.
874 		 */
875 		vu->vu_pending = 0;
876 		error = copyin(lp->lwp_upcall, &upcall, sizeof(upcall));
877 		crit_count = 0;
878 		if (error == 0)
879 			error = copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int));
880 		++crit_count;
881 		if (error == 0)
882 			error = copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff, sizeof(int));
883 		regs->tf_rax = (register_t)vu->vu_func;
884 		regs->tf_rcx = (register_t)vu->vu_data;
885 		regs->tf_rdx = (register_t)lp->lwp_upcall;
886 		regs->tf_rip = (register_t)vu->vu_ctx;
887 		regs->tf_rsp = (register_t)rsp;
888 	    } else {
889 		/*
890 		 * This returns us to the originally interrupted code.
891 		 */
892 		error = copyin(rsp, &upc_frame, sizeof(upc_frame));
893 		regs->tf_rax = upc_frame.rax;
894 		regs->tf_rcx = upc_frame.rcx;
895 		regs->tf_rdx = upc_frame.rdx;
896 		regs->tf_rflags = (regs->tf_rflags & ~PSL_USERCHANGE) |
897 				(upc_frame.flags & PSL_USERCHANGE);
898 		regs->tf_rip = upc_frame.oldip;
899 		regs->tf_rsp = (register_t)((char *)rsp + sizeof(upc_frame));
900 	    }
901 	}
902 	if (error == 0)
903 		error = EJUSTRETURN;
904 	return(error);
905 }
906 
907 /*
908  * Machine dependent boot() routine
909  *
910  * I haven't seen anything to put here yet
911  * Possibly some stuff might be grafted back here from boot()
912  */
913 void
914 cpu_boot(int howto)
915 {
916 }
917 
918 /*
919  * Shutdown the CPU as much as possible
920  */
921 void
922 cpu_halt(void)
923 {
924 	for (;;)
925 		__asm__ __volatile("hlt");
926 }
927 
928 /*
929  * cpu_idle() represents the idle LWKT.  You cannot return from this function
930  * (unless you want to blow things up!).  Instead we look for runnable threads
931  * and loop or halt as appropriate.  Giant is not held on entry to the thread.
932  *
933  * The main loop is entered with a critical section held, we must release
934  * the critical section before doing anything else.  lwkt_switch() will
935  * check for pending interrupts due to entering and exiting its own
936  * critical section.
937  *
938  * NOTE: On an SMP system we rely on a scheduler IPI to wake a HLTed cpu up.
939  *	 However, there are cases where the idlethread will be entered with
940  *	 the possibility that no IPI will occur and in such cases
941  *	 lwkt_switch() sets TDF_IDLE_NOHLT.
942  *
943  * NOTE: cpu_idle_hlt again defaults to 2 (use ACPI sleep states).  Set to
944  *	 1 to just use hlt and for debugging purposes.
945  *
946  * NOTE: cpu_idle_repeat determines how many entries into the idle thread
947  *	 must occur before it starts using ACPI halt.
948  */
949 static int	cpu_idle_hlt = 2;
950 static int	cpu_idle_hltcnt;
951 static int	cpu_idle_spincnt;
952 static u_int	cpu_idle_repeat = 750;
953 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
954     &cpu_idle_hlt, 0, "Idle loop HLT enable");
955 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hltcnt, CTLFLAG_RW,
956     &cpu_idle_hltcnt, 0, "Idle loop entry halts");
957 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_spincnt, CTLFLAG_RW,
958     &cpu_idle_spincnt, 0, "Idle loop entry spins");
959 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_repeat, CTLFLAG_RW,
960     &cpu_idle_repeat, 0, "Idle entries before acpi hlt");
961 
962 static void
963 cpu_idle_default_hook(void)
964 {
965 	/*
966 	 * We must guarentee that hlt is exactly the instruction
967 	 * following the sti.
968 	 */
969 	__asm __volatile("sti; hlt");
970 }
971 
972 /* Other subsystems (e.g., ACPI) can hook this later. */
973 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
974 
975 void
976 cpu_idle(void)
977 {
978 	globaldata_t gd = mycpu;
979 	struct thread *td __debugvar = gd->gd_curthread;
980 	int reqflags;
981 	int quick;
982 
983 	crit_exit();
984 	KKASSERT(td->td_critcount == 0);
985 	for (;;) {
986 		/*
987 		 * See if there are any LWKTs ready to go.
988 		 */
989 		lwkt_switch();
990 
991 		/*
992 		 * When halting inside a cli we must check for reqflags
993 		 * races, particularly [re]schedule requests.  Running
994 		 * splz() does the job.
995 		 *
996 		 * cpu_idle_hlt:
997 		 *	0	Never halt, just spin
998 		 *
999 		 *	1	Always use HLT (or MONITOR/MWAIT if avail).
1000 		 *		This typically eats more power than the
1001 		 *		ACPI halt.
1002 		 *
1003 		 *	2	Use HLT/MONITOR/MWAIT up to a point and then
1004 		 *		use the ACPI halt (default).  This is a hybrid
1005 		 *		approach.  See machdep.cpu_idle_repeat.
1006 		 *
1007 		 *	3	Always use the ACPI halt.  This typically
1008 		 *		eats the least amount of power but the cpu
1009 		 *		will be slow waking up.  Slows down e.g.
1010 		 *		compiles and other pipe/event oriented stuff.
1011 		 *
1012 		 * NOTE: Interrupts are enabled and we are not in a critical
1013 		 *	 section.
1014 		 *
1015 		 * NOTE: Preemptions do not reset gd_idle_repeat.   Also we
1016 		 *	 don't bother capping gd_idle_repeat, it is ok if
1017 		 *	 it overflows.
1018 		 */
1019 		++gd->gd_idle_repeat;
1020 		reqflags = gd->gd_reqflags;
1021 		quick = (cpu_idle_hlt == 1) ||
1022 			(cpu_idle_hlt < 3 &&
1023 			 gd->gd_idle_repeat < cpu_idle_repeat);
1024 
1025 		if (quick && (cpu_mi_feature & CPU_MI_MONITOR) &&
1026 		    (reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1027 			splz(); /* XXX */
1028 			cpu_mmw_pause_int(&gd->gd_reqflags, reqflags);
1029 			++cpu_idle_hltcnt;
1030 		} else if (cpu_idle_hlt) {
1031 			__asm __volatile("cli");
1032 			splz();
1033 			if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1034 				if (quick)
1035 					cpu_idle_default_hook();
1036 				else
1037 					cpu_idle_hook();
1038 			}
1039 			__asm __volatile("sti");
1040 			++cpu_idle_hltcnt;
1041 		} else {
1042 			splz();
1043 			__asm __volatile("sti");
1044 			++cpu_idle_spincnt;
1045 		}
1046 	}
1047 }
1048 
1049 /*
1050  * This routine is called if a spinlock has been held through the
1051  * exponential backoff period and is seriously contested.  On a real cpu
1052  * we let it spin.
1053  */
1054 void
1055 cpu_spinlock_contested(void)
1056 {
1057 	cpu_pause();
1058 }
1059 
1060 /*
1061  * Clear registers on exec
1062  */
1063 void
1064 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
1065 {
1066 	struct thread *td = curthread;
1067 	struct lwp *lp = td->td_lwp;
1068 	struct pcb *pcb = td->td_pcb;
1069 	struct trapframe *regs = lp->lwp_md.md_regs;
1070 
1071 	/* was i386_user_cleanup() in NetBSD */
1072 	user_ldt_free(pcb);
1073 
1074 	clear_quickret();
1075 	bzero((char *)regs, sizeof(struct trapframe));
1076 	regs->tf_rip = entry;
1077 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
1078 	regs->tf_rdi = stack;		/* argv */
1079 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
1080 	regs->tf_ss = _udatasel;
1081 	regs->tf_cs = _ucodesel;
1082 	regs->tf_rbx = ps_strings;
1083 
1084 	/*
1085 	 * Reset the hardware debug registers if they were in use.
1086 	 * They won't have any meaning for the newly exec'd process.
1087 	 */
1088 	if (pcb->pcb_flags & PCB_DBREGS) {
1089 		pcb->pcb_dr0 = 0;
1090 		pcb->pcb_dr1 = 0;
1091 		pcb->pcb_dr2 = 0;
1092 		pcb->pcb_dr3 = 0;
1093 		pcb->pcb_dr6 = 0;
1094 		pcb->pcb_dr7 = 0; /* JG set bit 10? */
1095 		if (pcb == td->td_pcb) {
1096 			/*
1097 			 * Clear the debug registers on the running
1098 			 * CPU, otherwise they will end up affecting
1099 			 * the next process we switch to.
1100 			 */
1101 			reset_dbregs();
1102 		}
1103 		pcb->pcb_flags &= ~PCB_DBREGS;
1104 	}
1105 
1106 	/*
1107 	 * Initialize the math emulator (if any) for the current process.
1108 	 * Actually, just clear the bit that says that the emulator has
1109 	 * been initialized.  Initialization is delayed until the process
1110 	 * traps to the emulator (if it is done at all) mainly because
1111 	 * emulators don't provide an entry point for initialization.
1112 	 */
1113 	pcb->pcb_flags &= ~FP_SOFTFP;
1114 
1115 	/*
1116 	 * NOTE: do not set CR0_TS here.  npxinit() must do it after clearing
1117 	 *	 gd_npxthread.  Otherwise a preemptive interrupt thread
1118 	 *	 may panic in npxdna().
1119 	 */
1120 	crit_enter();
1121 	load_cr0(rcr0() | CR0_MP);
1122 
1123 	/*
1124 	 * NOTE: The MSR values must be correct so we can return to
1125 	 * 	 userland.  gd_user_fs/gs must be correct so the switch
1126 	 *	 code knows what the current MSR values are.
1127 	 */
1128 	pcb->pcb_fsbase = 0;	/* Values loaded from PCB on switch */
1129 	pcb->pcb_gsbase = 0;
1130 	mdcpu->gd_user_fs = 0;	/* Cache of current MSR values */
1131 	mdcpu->gd_user_gs = 0;
1132 	wrmsr(MSR_FSBASE, 0);	/* Set MSR values for return to userland */
1133 	wrmsr(MSR_KGSBASE, 0);
1134 
1135 	/* Initialize the npx (if any) for the current process. */
1136 	npxinit(__INITIAL_FPUCW__);
1137 	crit_exit();
1138 
1139 	pcb->pcb_ds = _udatasel;
1140 	pcb->pcb_es = _udatasel;
1141 	pcb->pcb_fs = _udatasel;
1142 	pcb->pcb_gs = _udatasel;
1143 }
1144 
1145 void
1146 cpu_setregs(void)
1147 {
1148 	register_t cr0;
1149 
1150 	cr0 = rcr0();
1151 	cr0 |= CR0_NE;			/* Done by npxinit() */
1152 	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1153 	cr0 |= CR0_WP | CR0_AM;
1154 	load_cr0(cr0);
1155 	load_gs(_udatasel);
1156 }
1157 
1158 static int
1159 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1160 {
1161 	int error;
1162 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1163 		req);
1164 	if (!error && req->newptr)
1165 		resettodr();
1166 	return (error);
1167 }
1168 
1169 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1170 	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1171 
1172 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1173 	CTLFLAG_RW, &disable_rtc_set, 0, "");
1174 
1175 #if JG
1176 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1177 	CTLFLAG_RD, &bootinfo, bootinfo, "");
1178 #endif
1179 
1180 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1181 	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1182 
1183 extern u_long bootdev;		/* not a cdev_t - encoding is different */
1184 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1185 	CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1186 
1187 /*
1188  * Initialize 386 and configure to run kernel
1189  */
1190 
1191 /*
1192  * Initialize segments & interrupt table
1193  */
1194 
1195 int _default_ldt;
1196 struct user_segment_descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1197 struct gate_descriptor idt_arr[MAXCPU][NIDT];
1198 #if JG
1199 union descriptor ldt[NLDT];		/* local descriptor table */
1200 #endif
1201 
1202 /* table descriptors - used to load tables by cpu */
1203 struct region_descriptor r_gdt;
1204 struct region_descriptor r_idt_arr[MAXCPU];
1205 
1206 /* JG proc0paddr is a virtual address */
1207 void *proc0paddr;
1208 /* JG alignment? */
1209 char proc0paddr_buff[LWKT_THREAD_STACK];
1210 
1211 
1212 /* software prototypes -- in more palatable form */
1213 struct soft_segment_descriptor gdt_segs[] = {
1214 /* GNULL_SEL	0 Null Descriptor */
1215 {	0x0,			/* segment base address  */
1216 	0x0,			/* length */
1217 	0,			/* segment type */
1218 	0,			/* segment descriptor priority level */
1219 	0,			/* segment descriptor present */
1220 	0,			/* long */
1221 	0,			/* default 32 vs 16 bit size */
1222 	0  			/* limit granularity (byte/page units)*/ },
1223 /* GCODE_SEL	1 Code Descriptor for kernel */
1224 {	0x0,			/* segment base address  */
1225 	0xfffff,		/* length - all address space */
1226 	SDT_MEMERA,		/* segment type */
1227 	SEL_KPL,		/* segment descriptor priority level */
1228 	1,			/* segment descriptor present */
1229 	1,			/* long */
1230 	0,			/* default 32 vs 16 bit size */
1231 	1  			/* limit granularity (byte/page units)*/ },
1232 /* GDATA_SEL	2 Data Descriptor for kernel */
1233 {	0x0,			/* segment base address  */
1234 	0xfffff,		/* length - all address space */
1235 	SDT_MEMRWA,		/* segment type */
1236 	SEL_KPL,		/* segment descriptor priority level */
1237 	1,			/* segment descriptor present */
1238 	1,			/* long */
1239 	0,			/* default 32 vs 16 bit size */
1240 	1  			/* limit granularity (byte/page units)*/ },
1241 /* GUCODE32_SEL	3 32 bit Code Descriptor for user */
1242 {	0x0,			/* segment base address  */
1243 	0xfffff,		/* length - all address space */
1244 	SDT_MEMERA,		/* segment type */
1245 	SEL_UPL,		/* segment descriptor priority level */
1246 	1,			/* segment descriptor present */
1247 	0,			/* long */
1248 	1,			/* default 32 vs 16 bit size */
1249 	1  			/* limit granularity (byte/page units)*/ },
1250 /* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
1251 {	0x0,			/* segment base address  */
1252 	0xfffff,		/* length - all address space */
1253 	SDT_MEMRWA,		/* segment type */
1254 	SEL_UPL,		/* segment descriptor priority level */
1255 	1,			/* segment descriptor present */
1256 	0,			/* long */
1257 	1,			/* default 32 vs 16 bit size */
1258 	1  			/* limit granularity (byte/page units)*/ },
1259 /* GUCODE_SEL	5 64 bit Code Descriptor for user */
1260 {	0x0,			/* segment base address  */
1261 	0xfffff,		/* length - all address space */
1262 	SDT_MEMERA,		/* segment type */
1263 	SEL_UPL,		/* segment descriptor priority level */
1264 	1,			/* segment descriptor present */
1265 	1,			/* long */
1266 	0,			/* default 32 vs 16 bit size */
1267 	1  			/* limit granularity (byte/page units)*/ },
1268 /* GPROC0_SEL	6 Proc 0 Tss Descriptor */
1269 {
1270 	0x0,			/* segment base address */
1271 	sizeof(struct x86_64tss)-1,/* length - all address space */
1272 	SDT_SYSTSS,		/* segment type */
1273 	SEL_KPL,		/* segment descriptor priority level */
1274 	1,			/* segment descriptor present */
1275 	0,			/* long */
1276 	0,			/* unused - default 32 vs 16 bit size */
1277 	0  			/* limit granularity (byte/page units)*/ },
1278 /* Actually, the TSS is a system descriptor which is double size */
1279 {	0x0,			/* segment base address  */
1280 	0x0,			/* length */
1281 	0,			/* segment type */
1282 	0,			/* segment descriptor priority level */
1283 	0,			/* segment descriptor present */
1284 	0,			/* long */
1285 	0,			/* default 32 vs 16 bit size */
1286 	0  			/* limit granularity (byte/page units)*/ },
1287 /* GUGS32_SEL	8 32 bit GS Descriptor for user */
1288 {	0x0,			/* segment base address  */
1289 	0xfffff,		/* length - all address space */
1290 	SDT_MEMRWA,		/* segment type */
1291 	SEL_UPL,		/* segment descriptor priority level */
1292 	1,			/* segment descriptor present */
1293 	0,			/* long */
1294 	1,			/* default 32 vs 16 bit size */
1295 	1  			/* limit granularity (byte/page units)*/ },
1296 };
1297 
1298 void
1299 setidt_global(int idx, inthand_t *func, int typ, int dpl, int ist)
1300 {
1301 	int cpu;
1302 
1303 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
1304 		struct gate_descriptor *ip = &idt_arr[cpu][idx];
1305 
1306 		ip->gd_looffset = (uintptr_t)func;
1307 		ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1308 		ip->gd_ist = ist;
1309 		ip->gd_xx = 0;
1310 		ip->gd_type = typ;
1311 		ip->gd_dpl = dpl;
1312 		ip->gd_p = 1;
1313 		ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1314 	}
1315 }
1316 
1317 void
1318 setidt(int idx, inthand_t *func, int typ, int dpl, int ist, int cpu)
1319 {
1320 	struct gate_descriptor *ip;
1321 
1322 	KASSERT(cpu >= 0 && cpu < ncpus, ("invalid cpu %d", cpu));
1323 
1324 	ip = &idt_arr[cpu][idx];
1325 	ip->gd_looffset = (uintptr_t)func;
1326 	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1327 	ip->gd_ist = ist;
1328 	ip->gd_xx = 0;
1329 	ip->gd_type = typ;
1330 	ip->gd_dpl = dpl;
1331 	ip->gd_p = 1;
1332 	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1333 }
1334 
1335 #define	IDTVEC(name)	__CONCAT(X,name)
1336 
1337 extern inthand_t
1338 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1339 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1340 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1341 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1342 	IDTVEC(xmm), IDTVEC(dblfault),
1343 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1344 
1345 #ifdef DEBUG_INTERRUPTS
1346 extern inthand_t *Xrsvdary[256];
1347 #endif
1348 
1349 void
1350 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1351 {
1352 	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1353 	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1354 	ssd->ssd_type  = sd->sd_type;
1355 	ssd->ssd_dpl   = sd->sd_dpl;
1356 	ssd->ssd_p     = sd->sd_p;
1357 	ssd->ssd_def32 = sd->sd_def32;
1358 	ssd->ssd_gran  = sd->sd_gran;
1359 }
1360 
1361 void
1362 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1363 {
1364 
1365 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1366 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1367 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1368 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1369 	sd->sd_type  = ssd->ssd_type;
1370 	sd->sd_dpl   = ssd->ssd_dpl;
1371 	sd->sd_p     = ssd->ssd_p;
1372 	sd->sd_long  = ssd->ssd_long;
1373 	sd->sd_def32 = ssd->ssd_def32;
1374 	sd->sd_gran  = ssd->ssd_gran;
1375 }
1376 
1377 void
1378 ssdtosyssd(struct soft_segment_descriptor *ssd,
1379     struct system_segment_descriptor *sd)
1380 {
1381 
1382 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1383 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1384 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1385 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1386 	sd->sd_type  = ssd->ssd_type;
1387 	sd->sd_dpl   = ssd->ssd_dpl;
1388 	sd->sd_p     = ssd->ssd_p;
1389 	sd->sd_gran  = ssd->ssd_gran;
1390 }
1391 
1392 /*
1393  * Populate the (physmap) array with base/bound pairs describing the
1394  * available physical memory in the system, then test this memory and
1395  * build the phys_avail array describing the actually-available memory.
1396  *
1397  * If we cannot accurately determine the physical memory map, then use
1398  * value from the 0xE801 call, and failing that, the RTC.
1399  *
1400  * Total memory size may be set by the kernel environment variable
1401  * hw.physmem or the compile-time define MAXMEM.
1402  *
1403  * Memory is aligned to PHYSMAP_ALIGN which must be a multiple
1404  * of PAGE_SIZE.  This also greatly reduces the memory test time
1405  * which would otherwise be excessive on machines with > 8G of ram.
1406  *
1407  * XXX first should be vm_paddr_t.
1408  */
1409 
1410 #define PHYSMAP_ALIGN		(vm_paddr_t)(128 * 1024)
1411 #define PHYSMAP_ALIGN_MASK	(vm_paddr_t)(PHYSMAP_ALIGN - 1)
1412 
1413 static void
1414 getmemsize(caddr_t kmdp, u_int64_t first)
1415 {
1416 	int off, physmap_idx, pa_indx, da_indx;
1417 	int i, j;
1418 	vm_paddr_t physmap[PHYSMAP_SIZE];
1419 	vm_paddr_t pa;
1420 	vm_paddr_t msgbuf_size;
1421 	u_long physmem_tunable;
1422 	pt_entry_t *pte;
1423 	struct bios_smap *smapbase, *smap, *smapend;
1424 	u_int32_t smapsize;
1425 	quad_t dcons_addr, dcons_size;
1426 
1427 	bzero(physmap, sizeof(physmap));
1428 	physmap_idx = 0;
1429 
1430 	/*
1431 	 * get memory map from INT 15:E820, kindly supplied by the loader.
1432 	 *
1433 	 * subr_module.c says:
1434 	 * "Consumer may safely assume that size value precedes data."
1435 	 * ie: an int32_t immediately precedes smap.
1436 	 */
1437 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1438 	    MODINFO_METADATA | MODINFOMD_SMAP);
1439 	if (smapbase == NULL)
1440 		panic("No BIOS smap info from loader!");
1441 
1442 	smapsize = *((u_int32_t *)smapbase - 1);
1443 	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1444 
1445 	for (smap = smapbase; smap < smapend; smap++) {
1446 		if (boothowto & RB_VERBOSE)
1447 			kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1448 			    smap->type, smap->base, smap->length);
1449 
1450 		if (smap->type != SMAP_TYPE_MEMORY)
1451 			continue;
1452 
1453 		if (smap->length == 0)
1454 			continue;
1455 
1456 		for (i = 0; i <= physmap_idx; i += 2) {
1457 			if (smap->base < physmap[i + 1]) {
1458 				if (boothowto & RB_VERBOSE) {
1459 					kprintf("Overlapping or non-monotonic "
1460 						"memory region, ignoring "
1461 						"second region\n");
1462 				}
1463 				break;
1464 			}
1465 		}
1466 		if (i <= physmap_idx)
1467 			continue;
1468 
1469 		Realmem += smap->length;
1470 
1471 		if (smap->base == physmap[physmap_idx + 1]) {
1472 			physmap[physmap_idx + 1] += smap->length;
1473 			continue;
1474 		}
1475 
1476 		physmap_idx += 2;
1477 		if (physmap_idx == PHYSMAP_SIZE) {
1478 			kprintf("Too many segments in the physical "
1479 				"address map, giving up\n");
1480 			break;
1481 		}
1482 		physmap[physmap_idx] = smap->base;
1483 		physmap[physmap_idx + 1] = smap->base + smap->length;
1484 	}
1485 
1486 	base_memory = physmap[1] / 1024;
1487 	/* make hole for AP bootstrap code */
1488 	physmap[1] = mp_bootaddress(base_memory);
1489 
1490 	/* Save EBDA address, if any */
1491 	ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
1492 	ebda_addr <<= 4;
1493 
1494 	/*
1495 	 * Maxmem isn't the "maximum memory", it's one larger than the
1496 	 * highest page of the physical address space.  It should be
1497 	 * called something like "Maxphyspage".  We may adjust this
1498 	 * based on ``hw.physmem'' and the results of the memory test.
1499 	 */
1500 	Maxmem = atop(physmap[physmap_idx + 1]);
1501 
1502 #ifdef MAXMEM
1503 	Maxmem = MAXMEM / 4;
1504 #endif
1505 
1506 	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1507 		Maxmem = atop(physmem_tunable);
1508 
1509 	/*
1510 	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1511 	 * in the system.
1512 	 */
1513 	if (Maxmem > atop(physmap[physmap_idx + 1]))
1514 		Maxmem = atop(physmap[physmap_idx + 1]);
1515 
1516 	/*
1517 	 * Blowing out the DMAP will blow up the system.
1518 	 */
1519 	if (Maxmem > atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS)) {
1520 		kprintf("Limiting Maxmem due to DMAP size\n");
1521 		Maxmem = atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS);
1522 	}
1523 
1524 	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1525 	    (boothowto & RB_VERBOSE)) {
1526 		kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
1527 	}
1528 
1529 	/*
1530 	 * Call pmap initialization to make new kernel address space
1531 	 *
1532 	 * Mask off page 0.
1533 	 */
1534 	pmap_bootstrap(&first);
1535 	physmap[0] = PAGE_SIZE;
1536 
1537 	/*
1538 	 * Align the physmap to PHYSMAP_ALIGN and cut out anything
1539 	 * exceeding Maxmem.
1540 	 */
1541 	for (i = j = 0; i <= physmap_idx; i += 2) {
1542 		if (physmap[i+1] > ptoa(Maxmem))
1543 			physmap[i+1] = ptoa(Maxmem);
1544 		physmap[i] = (physmap[i] + PHYSMAP_ALIGN_MASK) &
1545 			     ~PHYSMAP_ALIGN_MASK;
1546 		physmap[i+1] = physmap[i+1] & ~PHYSMAP_ALIGN_MASK;
1547 
1548 		physmap[j] = physmap[i];
1549 		physmap[j+1] = physmap[i+1];
1550 
1551 		if (physmap[i] < physmap[i+1])
1552 			j += 2;
1553 	}
1554 	physmap_idx = j - 2;
1555 
1556 	/*
1557 	 * Align anything else used in the validation loop.
1558 	 */
1559 	first = (first + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1560 
1561 	/*
1562 	 * Size up each available chunk of physical memory.
1563 	 */
1564 	pa_indx = 0;
1565 	da_indx = 1;
1566 	phys_avail[pa_indx++] = physmap[0];
1567 	phys_avail[pa_indx] = physmap[0];
1568 	dump_avail[da_indx] = physmap[0];
1569 	pte = CMAP1;
1570 
1571 	/*
1572 	 * Get dcons buffer address
1573 	 */
1574 	if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
1575 	    kgetenv_quad("dcons.size", &dcons_size) == 0)
1576 		dcons_addr = 0;
1577 
1578 	/*
1579 	 * Validate the physical memory.  The physical memory segments
1580 	 * have already been aligned to PHYSMAP_ALIGN which is a multiple
1581 	 * of PAGE_SIZE.
1582 	 */
1583 	for (i = 0; i <= physmap_idx; i += 2) {
1584 		vm_paddr_t end;
1585 
1586 		end = physmap[i + 1];
1587 
1588 		for (pa = physmap[i]; pa < end; pa += PHYSMAP_ALIGN) {
1589 			int tmp, page_bad, full;
1590 			int *ptr = (int *)CADDR1;
1591 
1592 			full = FALSE;
1593 			/*
1594 			 * block out kernel memory as not available.
1595 			 */
1596 			if (pa >= 0x200000 && pa < first)
1597 				goto do_dump_avail;
1598 
1599 			/*
1600 			 * block out dcons buffer
1601 			 */
1602 			if (dcons_addr > 0
1603 			    && pa >= trunc_page(dcons_addr)
1604 			    && pa < dcons_addr + dcons_size) {
1605 				goto do_dump_avail;
1606 			}
1607 
1608 			page_bad = FALSE;
1609 
1610 			/*
1611 			 * map page into kernel: valid, read/write,non-cacheable
1612 			 */
1613 			*pte = pa | PG_V | PG_RW | PG_N;
1614 			cpu_invltlb();
1615 
1616 			tmp = *ptr;
1617 			/*
1618 			 * Test for alternating 1's and 0's
1619 			 */
1620 			*(volatile int *)ptr = 0xaaaaaaaa;
1621 			cpu_mfence();
1622 			if (*(volatile int *)ptr != 0xaaaaaaaa)
1623 				page_bad = TRUE;
1624 			/*
1625 			 * Test for alternating 0's and 1's
1626 			 */
1627 			*(volatile int *)ptr = 0x55555555;
1628 			cpu_mfence();
1629 			if (*(volatile int *)ptr != 0x55555555)
1630 				page_bad = TRUE;
1631 			/*
1632 			 * Test for all 1's
1633 			 */
1634 			*(volatile int *)ptr = 0xffffffff;
1635 			cpu_mfence();
1636 			if (*(volatile int *)ptr != 0xffffffff)
1637 				page_bad = TRUE;
1638 			/*
1639 			 * Test for all 0's
1640 			 */
1641 			*(volatile int *)ptr = 0x0;
1642 			cpu_mfence();
1643 			if (*(volatile int *)ptr != 0x0)
1644 				page_bad = TRUE;
1645 			/*
1646 			 * Restore original value.
1647 			 */
1648 			*ptr = tmp;
1649 
1650 			/*
1651 			 * Adjust array of valid/good pages.
1652 			 */
1653 			if (page_bad == TRUE)
1654 				continue;
1655 			/*
1656 			 * If this good page is a continuation of the
1657 			 * previous set of good pages, then just increase
1658 			 * the end pointer. Otherwise start a new chunk.
1659 			 * Note that "end" points one higher than end,
1660 			 * making the range >= start and < end.
1661 			 * If we're also doing a speculative memory
1662 			 * test and we at or past the end, bump up Maxmem
1663 			 * so that we keep going. The first bad page
1664 			 * will terminate the loop.
1665 			 */
1666 			if (phys_avail[pa_indx] == pa) {
1667 				phys_avail[pa_indx] += PHYSMAP_ALIGN;
1668 			} else {
1669 				pa_indx++;
1670 				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1671 					kprintf(
1672 		"Too many holes in the physical address space, giving up\n");
1673 					pa_indx--;
1674 					full = TRUE;
1675 					goto do_dump_avail;
1676 				}
1677 				phys_avail[pa_indx++] = pa;
1678 				phys_avail[pa_indx] = pa + PHYSMAP_ALIGN;
1679 			}
1680 			physmem += PHYSMAP_ALIGN / PAGE_SIZE;
1681 do_dump_avail:
1682 			if (dump_avail[da_indx] == pa) {
1683 				dump_avail[da_indx] += PHYSMAP_ALIGN;
1684 			} else {
1685 				da_indx++;
1686 				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1687 					da_indx--;
1688 					goto do_next;
1689 				}
1690 				dump_avail[da_indx++] = pa;
1691 				dump_avail[da_indx] = pa + PHYSMAP_ALIGN;
1692 			}
1693 do_next:
1694 			if (full)
1695 				break;
1696 		}
1697 	}
1698 	*pte = 0;
1699 	cpu_invltlb();
1700 
1701 	/*
1702 	 * The last chunk must contain at least one page plus the message
1703 	 * buffer to avoid complicating other code (message buffer address
1704 	 * calculation, etc.).
1705 	 */
1706 	msgbuf_size = (MSGBUF_SIZE + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1707 
1708 	while (phys_avail[pa_indx - 1] + PHYSMAP_ALIGN +
1709 	       msgbuf_size >= phys_avail[pa_indx]) {
1710 		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1711 		phys_avail[pa_indx--] = 0;
1712 		phys_avail[pa_indx--] = 0;
1713 	}
1714 
1715 	Maxmem = atop(phys_avail[pa_indx]);
1716 
1717 	/* Trim off space for the message buffer. */
1718 	phys_avail[pa_indx] -= msgbuf_size;
1719 
1720 	avail_end = phys_avail[pa_indx];
1721 
1722 	/* Map the message buffer. */
1723 	for (off = 0; off < msgbuf_size; off += PAGE_SIZE) {
1724 		pmap_kenter((vm_offset_t)msgbufp + off,
1725 			    phys_avail[pa_indx] + off);
1726 	}
1727 }
1728 
1729 struct machintr_abi MachIntrABI;
1730 
1731 /*
1732  * IDT VECTORS:
1733  *	0	Divide by zero
1734  *	1	Debug
1735  *	2	NMI
1736  *	3	BreakPoint
1737  *	4	OverFlow
1738  *	5	Bound-Range
1739  *	6	Invalid OpCode
1740  *	7	Device Not Available (x87)
1741  *	8	Double-Fault
1742  *	9	Coprocessor Segment overrun (unsupported, reserved)
1743  *	10	Invalid-TSS
1744  *	11	Segment not present
1745  *	12	Stack
1746  *	13	General Protection
1747  *	14	Page Fault
1748  *	15	Reserved
1749  *	16	x87 FP Exception pending
1750  *	17	Alignment Check
1751  *	18	Machine Check
1752  *	19	SIMD floating point
1753  *	20-31	reserved
1754  *	32-255	INTn/external sources
1755  */
1756 u_int64_t
1757 hammer_time(u_int64_t modulep, u_int64_t physfree)
1758 {
1759 	caddr_t kmdp;
1760 	int gsel_tss, x, cpu;
1761 #if JG
1762 	int metadata_missing, off;
1763 #endif
1764 	struct mdglobaldata *gd;
1765 	u_int64_t msr;
1766 
1767 	/*
1768 	 * Prevent lowering of the ipl if we call tsleep() early.
1769 	 */
1770 	gd = &CPU_prvspace[0].mdglobaldata;
1771 	bzero(gd, sizeof(*gd));
1772 
1773 	/*
1774 	 * Note: on both UP and SMP curthread must be set non-NULL
1775 	 * early in the boot sequence because the system assumes
1776 	 * that 'curthread' is never NULL.
1777 	 */
1778 
1779 	gd->mi.gd_curthread = &thread0;
1780 	thread0.td_gd = &gd->mi;
1781 
1782 	atdevbase = ISA_HOLE_START + PTOV_OFFSET;
1783 
1784 #if JG
1785 	metadata_missing = 0;
1786 	if (bootinfo.bi_modulep) {
1787 		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1788 		preload_bootstrap_relocate(KERNBASE);
1789 	} else {
1790 		metadata_missing = 1;
1791 	}
1792 	if (bootinfo.bi_envp)
1793 		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1794 #endif
1795 
1796 	preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
1797 	preload_bootstrap_relocate(PTOV_OFFSET);
1798 	kmdp = preload_search_by_type("elf kernel");
1799 	if (kmdp == NULL)
1800 		kmdp = preload_search_by_type("elf64 kernel");
1801 	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1802 	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
1803 #ifdef DDB
1804 	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1805 	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1806 #endif
1807 
1808 	if (boothowto & RB_VERBOSE)
1809 		bootverbose++;
1810 
1811 	/*
1812 	 * Default MachIntrABI to ICU
1813 	 */
1814 	MachIntrABI = MachIntrABI_ICU;
1815 
1816 	/*
1817 	 * start with one cpu.  Note: with one cpu, ncpus2_shift, ncpus2_mask,
1818 	 * and ncpus_fit_mask remain 0.
1819 	 */
1820 	ncpus = 1;
1821 	ncpus2 = 1;
1822 	ncpus_fit = 1;
1823 	/* Init basic tunables, hz etc */
1824 	init_param1();
1825 
1826 	/*
1827 	 * make gdt memory segments
1828 	 */
1829 	gdt_segs[GPROC0_SEL].ssd_base =
1830 		(uintptr_t) &CPU_prvspace[0].mdglobaldata.gd_common_tss;
1831 
1832 	gd->mi.gd_prvspace = &CPU_prvspace[0];
1833 
1834 	for (x = 0; x < NGDT; x++) {
1835 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
1836 			ssdtosd(&gdt_segs[x], &gdt[x]);
1837 	}
1838 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1839 	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1840 
1841 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1842 	r_gdt.rd_base =  (long) gdt;
1843 	lgdt(&r_gdt);
1844 
1845 	wrmsr(MSR_FSBASE, 0);		/* User value */
1846 	wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
1847 	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1848 
1849 	mi_gdinit(&gd->mi, 0);
1850 	cpu_gdinit(gd, 0);
1851 	proc0paddr = proc0paddr_buff;
1852 	mi_proc0init(&gd->mi, proc0paddr);
1853 	safepri = TDPRI_MAX;
1854 
1855 	/* spinlocks and the BGL */
1856 	init_locks();
1857 
1858 	/* exceptions */
1859 	for (x = 0; x < NIDT; x++)
1860 		setidt_global(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1861 	setidt_global(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1862 	setidt_global(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1863 	setidt_global(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 1);
1864  	setidt_global(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1865 	setidt_global(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1866 	setidt_global(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1867 	setidt_global(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1868 	setidt_global(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1869 	setidt_global(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1870 	setidt_global(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1871 	setidt_global(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1872 	setidt_global(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1873 	setidt_global(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1874 	setidt_global(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1875 	setidt_global(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1876 	setidt_global(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1877 	setidt_global(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1878 	setidt_global(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1879 	setidt_global(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1880 
1881 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
1882 		r_idt_arr[cpu].rd_limit = sizeof(idt_arr[cpu]) - 1;
1883 		r_idt_arr[cpu].rd_base = (long) &idt_arr[cpu][0];
1884 	}
1885 
1886 	lidt(&r_idt_arr[0]);
1887 
1888 	/*
1889 	 * Initialize the console before we print anything out.
1890 	 */
1891 	cninit();
1892 
1893 #if JG
1894 	if (metadata_missing)
1895 		kprintf("WARNING: loader(8) metadata is missing!\n");
1896 #endif
1897 
1898 #if	NISA >0
1899 	elcr_probe();
1900 	isa_defaultirq();
1901 #endif
1902 	rand_initialize();
1903 
1904 	/*
1905 	 * Initialize IRQ mapping
1906 	 *
1907 	 * NOTE:
1908 	 * SHOULD be after elcr_probe()
1909 	 */
1910 	MachIntrABI_ICU.initmap();
1911 	MachIntrABI_IOAPIC.initmap();
1912 
1913 #ifdef DDB
1914 	kdb_init();
1915 	if (boothowto & RB_KDB)
1916 		Debugger("Boot flags requested debugger");
1917 #endif
1918 
1919 #if JG
1920 	finishidentcpu();	/* Final stage of CPU initialization */
1921 	setidt(6, &IDTVEC(ill),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1922 	setidt(13, &IDTVEC(prot),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1923 #endif
1924 	identify_cpu();		/* Final stage of CPU initialization */
1925 	initializecpu();	/* Initialize CPU registers */
1926 
1927 	TUNABLE_INT_FETCH("hw.apic_io_enable", &ioapic_enable); /* for compat */
1928 	TUNABLE_INT_FETCH("hw.ioapic_enable", &ioapic_enable);
1929 	TUNABLE_INT_FETCH("hw.lapic_enable", &lapic_enable);
1930 
1931 	/*
1932 	 * Some of the virtual machines do not work w/ I/O APIC
1933 	 * enabled.  If the user does not explicitly enable or
1934 	 * disable the I/O APIC (ioapic_enable < 0), then we
1935 	 * disable I/O APIC on all virtual machines.
1936 	 *
1937 	 * NOTE:
1938 	 * This must be done after identify_cpu(), which sets
1939 	 * 'cpu_feature2'
1940 	 */
1941 	if (ioapic_enable < 0) {
1942 		if (cpu_feature2 & CPUID2_VMM)
1943 			ioapic_enable = 0;
1944 		else
1945 			ioapic_enable = 1;
1946 	}
1947 
1948 	/* make an initial tss so cpu can get interrupt stack on syscall! */
1949 	gd->gd_common_tss.tss_rsp0 =
1950 		(register_t)(thread0.td_kstack +
1951 			     KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb));
1952 	/* Ensure the stack is aligned to 16 bytes */
1953 	gd->gd_common_tss.tss_rsp0 &= ~(register_t)0xF;
1954 
1955 	/* double fault stack */
1956 	gd->gd_common_tss.tss_ist1 =
1957 		(long)&gd->mi.gd_prvspace->idlestack[
1958 			sizeof(gd->mi.gd_prvspace->idlestack)];
1959 
1960 	/* Set the IO permission bitmap (empty due to tss seg limit) */
1961 	gd->gd_common_tss.tss_iobase = sizeof(struct x86_64tss);
1962 
1963 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1964 	gd->gd_tss_gdt = &gdt[GPROC0_SEL];
1965 	gd->gd_common_tssd = *gd->gd_tss_gdt;
1966 	ltr(gsel_tss);
1967 
1968 	/* Set up the fast syscall stuff */
1969 	msr = rdmsr(MSR_EFER) | EFER_SCE;
1970 	wrmsr(MSR_EFER, msr);
1971 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1972 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1973 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1974 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1975 	wrmsr(MSR_STAR, msr);
1976 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
1977 
1978 	getmemsize(kmdp, physfree);
1979 	init_param2(physmem);
1980 
1981 	/* now running on new page tables, configured,and u/iom is accessible */
1982 
1983 	/* Map the message buffer. */
1984 #if JG
1985 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1986 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
1987 #endif
1988 
1989 	msgbufinit(msgbufp, MSGBUF_SIZE);
1990 
1991 
1992 	/* transfer to user mode */
1993 
1994 	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1995 	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1996 	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1997 
1998 	load_ds(_udatasel);
1999 	load_es(_udatasel);
2000 	load_fs(_udatasel);
2001 
2002 	/* setup proc 0's pcb */
2003 	thread0.td_pcb->pcb_flags = 0;
2004 	thread0.td_pcb->pcb_cr3 = KPML4phys;
2005 	thread0.td_pcb->pcb_ext = NULL;
2006 	lwp0.lwp_md.md_regs = &proc0_tf;	/* XXX needed? */
2007 
2008 	/* Location of kernel stack for locore */
2009 	return ((u_int64_t)thread0.td_pcb);
2010 }
2011 
2012 /*
2013  * Initialize machine-dependant portions of the global data structure.
2014  * Note that the global data area and cpu0's idlestack in the private
2015  * data space were allocated in locore.
2016  *
2017  * Note: the idlethread's cpl is 0
2018  *
2019  * WARNING!  Called from early boot, 'mycpu' may not work yet.
2020  */
2021 void
2022 cpu_gdinit(struct mdglobaldata *gd, int cpu)
2023 {
2024 	if (cpu)
2025 		gd->mi.gd_curthread = &gd->mi.gd_idlethread;
2026 
2027 	lwkt_init_thread(&gd->mi.gd_idlethread,
2028 			gd->mi.gd_prvspace->idlestack,
2029 			sizeof(gd->mi.gd_prvspace->idlestack),
2030 			0, &gd->mi);
2031 	lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
2032 	gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
2033 	gd->mi.gd_idlethread.td_sp -= sizeof(void *);
2034 	*(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
2035 }
2036 
2037 int
2038 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
2039 {
2040 	if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
2041 	    eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
2042 		return (TRUE);
2043 	}
2044 	if (saddr >= DMAP_MIN_ADDRESS && eaddr <= DMAP_MAX_ADDRESS)
2045 		return (TRUE);
2046 	return (FALSE);
2047 }
2048 
2049 struct globaldata *
2050 globaldata_find(int cpu)
2051 {
2052 	KKASSERT(cpu >= 0 && cpu < ncpus);
2053 	return(&CPU_prvspace[cpu].mdglobaldata.mi);
2054 }
2055 
2056 int
2057 ptrace_set_pc(struct lwp *lp, unsigned long addr)
2058 {
2059 	lp->lwp_md.md_regs->tf_rip = addr;
2060 	return (0);
2061 }
2062 
2063 int
2064 ptrace_single_step(struct lwp *lp)
2065 {
2066 	lp->lwp_md.md_regs->tf_rflags |= PSL_T;
2067 	return (0);
2068 }
2069 
2070 int
2071 fill_regs(struct lwp *lp, struct reg *regs)
2072 {
2073 	struct trapframe *tp;
2074 
2075 	if ((tp = lp->lwp_md.md_regs) == NULL)
2076 		return EINVAL;
2077 	bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
2078 	return (0);
2079 }
2080 
2081 int
2082 set_regs(struct lwp *lp, struct reg *regs)
2083 {
2084 	struct trapframe *tp;
2085 
2086 	tp = lp->lwp_md.md_regs;
2087 	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
2088 	    !CS_SECURE(regs->r_cs))
2089 		return (EINVAL);
2090 	bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
2091 	clear_quickret();
2092 	return (0);
2093 }
2094 
2095 #ifndef CPU_DISABLE_SSE
2096 static void
2097 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2098 {
2099 	struct env87 *penv_87 = &sv_87->sv_env;
2100 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2101 	int i;
2102 
2103 	/* FPU control/status */
2104 	penv_87->en_cw = penv_xmm->en_cw;
2105 	penv_87->en_sw = penv_xmm->en_sw;
2106 	penv_87->en_tw = penv_xmm->en_tw;
2107 	penv_87->en_fip = penv_xmm->en_fip;
2108 	penv_87->en_fcs = penv_xmm->en_fcs;
2109 	penv_87->en_opcode = penv_xmm->en_opcode;
2110 	penv_87->en_foo = penv_xmm->en_foo;
2111 	penv_87->en_fos = penv_xmm->en_fos;
2112 
2113 	/* FPU registers */
2114 	for (i = 0; i < 8; ++i)
2115 		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2116 }
2117 
2118 static void
2119 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2120 {
2121 	struct env87 *penv_87 = &sv_87->sv_env;
2122 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2123 	int i;
2124 
2125 	/* FPU control/status */
2126 	penv_xmm->en_cw = penv_87->en_cw;
2127 	penv_xmm->en_sw = penv_87->en_sw;
2128 	penv_xmm->en_tw = penv_87->en_tw;
2129 	penv_xmm->en_fip = penv_87->en_fip;
2130 	penv_xmm->en_fcs = penv_87->en_fcs;
2131 	penv_xmm->en_opcode = penv_87->en_opcode;
2132 	penv_xmm->en_foo = penv_87->en_foo;
2133 	penv_xmm->en_fos = penv_87->en_fos;
2134 
2135 	/* FPU registers */
2136 	for (i = 0; i < 8; ++i)
2137 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2138 }
2139 #endif /* CPU_DISABLE_SSE */
2140 
2141 int
2142 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2143 {
2144 	if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
2145 		return EINVAL;
2146 #ifndef CPU_DISABLE_SSE
2147 	if (cpu_fxsr) {
2148 		fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2149 				(struct save87 *)fpregs);
2150 		return (0);
2151 	}
2152 #endif /* CPU_DISABLE_SSE */
2153 	bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2154 	return (0);
2155 }
2156 
2157 int
2158 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2159 {
2160 #ifndef CPU_DISABLE_SSE
2161 	if (cpu_fxsr) {
2162 		set_fpregs_xmm((struct save87 *)fpregs,
2163 			       &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2164 		return (0);
2165 	}
2166 #endif /* CPU_DISABLE_SSE */
2167 	bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2168 	return (0);
2169 }
2170 
2171 int
2172 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2173 {
2174 	struct pcb *pcb;
2175 
2176         if (lp == NULL) {
2177                 dbregs->dr[0] = rdr0();
2178                 dbregs->dr[1] = rdr1();
2179                 dbregs->dr[2] = rdr2();
2180                 dbregs->dr[3] = rdr3();
2181                 dbregs->dr[4] = rdr4();
2182                 dbregs->dr[5] = rdr5();
2183                 dbregs->dr[6] = rdr6();
2184                 dbregs->dr[7] = rdr7();
2185 		return (0);
2186         }
2187 	if (lp->lwp_thread == NULL || (pcb = lp->lwp_thread->td_pcb) == NULL)
2188 		return EINVAL;
2189 	dbregs->dr[0] = pcb->pcb_dr0;
2190 	dbregs->dr[1] = pcb->pcb_dr1;
2191 	dbregs->dr[2] = pcb->pcb_dr2;
2192 	dbregs->dr[3] = pcb->pcb_dr3;
2193 	dbregs->dr[4] = 0;
2194 	dbregs->dr[5] = 0;
2195 	dbregs->dr[6] = pcb->pcb_dr6;
2196 	dbregs->dr[7] = pcb->pcb_dr7;
2197 	return (0);
2198 }
2199 
2200 int
2201 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2202 {
2203 	if (lp == NULL) {
2204 		load_dr0(dbregs->dr[0]);
2205 		load_dr1(dbregs->dr[1]);
2206 		load_dr2(dbregs->dr[2]);
2207 		load_dr3(dbregs->dr[3]);
2208 		load_dr4(dbregs->dr[4]);
2209 		load_dr5(dbregs->dr[5]);
2210 		load_dr6(dbregs->dr[6]);
2211 		load_dr7(dbregs->dr[7]);
2212 	} else {
2213 		struct pcb *pcb;
2214 		struct ucred *ucred;
2215 		int i;
2216 		uint64_t mask1, mask2;
2217 
2218 		/*
2219 		 * Don't let an illegal value for dr7 get set.	Specifically,
2220 		 * check for undefined settings.  Setting these bit patterns
2221 		 * result in undefined behaviour and can lead to an unexpected
2222 		 * TRCTRAP.
2223 		 */
2224 		/* JG this loop looks unreadable */
2225 		/* Check 4 2-bit fields for invalid patterns.
2226 		 * These fields are R/Wi, for i = 0..3
2227 		 */
2228 		/* Is 10 in LENi allowed when running in compatibility mode? */
2229 		/* Pattern 10 in R/Wi might be used to indicate
2230 		 * breakpoint on I/O. Further analysis should be
2231 		 * carried to decide if it is safe and useful to
2232 		 * provide access to that capability
2233 		 */
2234 		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2235 		     i++, mask1 <<= 4, mask2 <<= 4)
2236 			if ((dbregs->dr[7] & mask1) == mask2)
2237 				return (EINVAL);
2238 
2239 		pcb = lp->lwp_thread->td_pcb;
2240 		ucred = lp->lwp_proc->p_ucred;
2241 
2242 		/*
2243 		 * Don't let a process set a breakpoint that is not within the
2244 		 * process's address space.  If a process could do this, it
2245 		 * could halt the system by setting a breakpoint in the kernel
2246 		 * (if ddb was enabled).  Thus, we need to check to make sure
2247 		 * that no breakpoints are being enabled for addresses outside
2248 		 * process's address space, unless, perhaps, we were called by
2249 		 * uid 0.
2250 		 *
2251 		 * XXX - what about when the watched area of the user's
2252 		 * address space is written into from within the kernel
2253 		 * ... wouldn't that still cause a breakpoint to be generated
2254 		 * from within kernel mode?
2255 		 */
2256 
2257 		if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2258 			if (dbregs->dr[7] & 0x3) {
2259 				/* dr0 is enabled */
2260 				if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2261 					return (EINVAL);
2262 			}
2263 
2264 			if (dbregs->dr[7] & (0x3<<2)) {
2265 				/* dr1 is enabled */
2266 				if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2267 					return (EINVAL);
2268 			}
2269 
2270 			if (dbregs->dr[7] & (0x3<<4)) {
2271 				/* dr2 is enabled */
2272 				if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2273 					return (EINVAL);
2274 			}
2275 
2276 			if (dbregs->dr[7] & (0x3<<6)) {
2277 				/* dr3 is enabled */
2278 				if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2279 					return (EINVAL);
2280 			}
2281 		}
2282 
2283 		pcb->pcb_dr0 = dbregs->dr[0];
2284 		pcb->pcb_dr1 = dbregs->dr[1];
2285 		pcb->pcb_dr2 = dbregs->dr[2];
2286 		pcb->pcb_dr3 = dbregs->dr[3];
2287 		pcb->pcb_dr6 = dbregs->dr[6];
2288 		pcb->pcb_dr7 = dbregs->dr[7];
2289 
2290 		pcb->pcb_flags |= PCB_DBREGS;
2291 	}
2292 
2293 	return (0);
2294 }
2295 
2296 /*
2297  * Return > 0 if a hardware breakpoint has been hit, and the
2298  * breakpoint was in user space.  Return 0, otherwise.
2299  */
2300 int
2301 user_dbreg_trap(void)
2302 {
2303         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2304         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2305         int nbp;            /* number of breakpoints that triggered */
2306         caddr_t addr[4];    /* breakpoint addresses */
2307         int i;
2308 
2309         dr7 = rdr7();
2310         if ((dr7 & 0xff) == 0) {
2311                 /*
2312                  * all GE and LE bits in the dr7 register are zero,
2313                  * thus the trap couldn't have been caused by the
2314                  * hardware debug registers
2315                  */
2316                 return 0;
2317         }
2318 
2319         nbp = 0;
2320         dr6 = rdr6();
2321         bp = dr6 & 0xf;
2322 
2323         if (bp == 0) {
2324                 /*
2325                  * None of the breakpoint bits are set meaning this
2326                  * trap was not caused by any of the debug registers
2327                  */
2328                 return 0;
2329         }
2330 
2331         /*
2332          * at least one of the breakpoints were hit, check to see
2333          * which ones and if any of them are user space addresses
2334          */
2335 
2336         if (bp & 0x01) {
2337                 addr[nbp++] = (caddr_t)rdr0();
2338         }
2339         if (bp & 0x02) {
2340                 addr[nbp++] = (caddr_t)rdr1();
2341         }
2342         if (bp & 0x04) {
2343                 addr[nbp++] = (caddr_t)rdr2();
2344         }
2345         if (bp & 0x08) {
2346                 addr[nbp++] = (caddr_t)rdr3();
2347         }
2348 
2349         for (i=0; i<nbp; i++) {
2350                 if (addr[i] <
2351                     (caddr_t)VM_MAX_USER_ADDRESS) {
2352                         /*
2353                          * addr[i] is in user space
2354                          */
2355                         return nbp;
2356                 }
2357         }
2358 
2359         /*
2360          * None of the breakpoints are in user space.
2361          */
2362         return 0;
2363 }
2364 
2365 
2366 #ifndef DDB
2367 void
2368 Debugger(const char *msg)
2369 {
2370 	kprintf("Debugger(\"%s\") called.\n", msg);
2371 }
2372 #endif /* no DDB */
2373 
2374 #ifdef DDB
2375 
2376 /*
2377  * Provide inb() and outb() as functions.  They are normally only
2378  * available as macros calling inlined functions, thus cannot be
2379  * called inside DDB.
2380  *
2381  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2382  */
2383 
2384 #undef inb
2385 #undef outb
2386 
2387 /* silence compiler warnings */
2388 u_char inb(u_int);
2389 void outb(u_int, u_char);
2390 
2391 u_char
2392 inb(u_int port)
2393 {
2394 	u_char	data;
2395 	/*
2396 	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2397 	 * %edx, while gcc generates inferior code (movw instead of movl)
2398 	 * if we tell it to load (u_short) port.
2399 	 */
2400 	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2401 	return (data);
2402 }
2403 
2404 void
2405 outb(u_int port, u_char data)
2406 {
2407 	u_char	al;
2408 	/*
2409 	 * Use an unnecessary assignment to help gcc's register allocator.
2410 	 * This make a large difference for gcc-1.40 and a tiny difference
2411 	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2412 	 * best results.  gcc-2.6.0 can't handle this.
2413 	 */
2414 	al = data;
2415 	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2416 }
2417 
2418 #endif /* DDB */
2419 
2420 
2421 
2422 #include "opt_cpu.h"
2423 
2424 
2425 /*
2426  * initialize all the SMP locks
2427  */
2428 
2429 /* critical region when masking or unmasking interupts */
2430 struct spinlock_deprecated imen_spinlock;
2431 
2432 /* critical region for old style disable_intr/enable_intr */
2433 struct spinlock_deprecated mpintr_spinlock;
2434 
2435 /* critical region around INTR() routines */
2436 struct spinlock_deprecated intr_spinlock;
2437 
2438 /* lock region used by kernel profiling */
2439 struct spinlock_deprecated mcount_spinlock;
2440 
2441 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2442 struct spinlock_deprecated com_spinlock;
2443 
2444 /* lock regions around the clock hardware */
2445 struct spinlock_deprecated clock_spinlock;
2446 
2447 static void
2448 init_locks(void)
2449 {
2450 	/*
2451 	 * Get the initial mplock with a count of 1 for the BSP.
2452 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
2453 	 */
2454 	cpu_get_initial_mplock();
2455 	/* DEPRECATED */
2456 	spin_lock_init(&mcount_spinlock);
2457 	spin_lock_init(&intr_spinlock);
2458 	spin_lock_init(&mpintr_spinlock);
2459 	spin_lock_init(&imen_spinlock);
2460 	spin_lock_init(&com_spinlock);
2461 	spin_lock_init(&clock_spinlock);
2462 
2463 	/* our token pool needs to work early */
2464 	lwkt_token_pool_init();
2465 }
2466 
2467