xref: /dragonfly/sys/platform/pc64/x86_64/machdep.c (revision 6693db17)
1 /*-
2  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3  * Copyright (c) 1992 Terrence R. Lambert.
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 2008 The DragonFly Project.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
40  * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
41  */
42 
43 #include "use_ether.h"
44 //#include "use_npx.h"
45 #include "use_isa.h"
46 #include "opt_atalk.h"
47 #include "opt_compat.h"
48 #include "opt_cpu.h"
49 #include "opt_ddb.h"
50 #include "opt_directio.h"
51 #include "opt_inet.h"
52 #include "opt_ipx.h"
53 #include "opt_msgbuf.h"
54 #include "opt_swap.h"
55 
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/sysproto.h>
59 #include <sys/signalvar.h>
60 #include <sys/kernel.h>
61 #include <sys/linker.h>
62 #include <sys/malloc.h>
63 #include <sys/proc.h>
64 #include <sys/priv.h>
65 #include <sys/buf.h>
66 #include <sys/reboot.h>
67 #include <sys/mbuf.h>
68 #include <sys/msgbuf.h>
69 #include <sys/sysent.h>
70 #include <sys/sysctl.h>
71 #include <sys/vmmeter.h>
72 #include <sys/bus.h>
73 #include <sys/upcall.h>
74 #include <sys/usched.h>
75 #include <sys/reg.h>
76 
77 #include <vm/vm.h>
78 #include <vm/vm_param.h>
79 #include <sys/lock.h>
80 #include <vm/vm_kern.h>
81 #include <vm/vm_object.h>
82 #include <vm/vm_page.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_pager.h>
85 #include <vm/vm_extern.h>
86 
87 #include <sys/thread2.h>
88 #include <sys/mplock2.h>
89 
90 #include <sys/user.h>
91 #include <sys/exec.h>
92 #include <sys/cons.h>
93 
94 #include <ddb/ddb.h>
95 
96 #include <machine/cpu.h>
97 #include <machine/clock.h>
98 #include <machine/specialreg.h>
99 #if JG
100 #include <machine/bootinfo.h>
101 #endif
102 #include <machine/md_var.h>
103 #include <machine/metadata.h>
104 #include <machine/pc/bios.h>
105 #include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
106 #include <machine/globaldata.h>		/* CPU_prvspace */
107 #include <machine/smp.h>
108 #ifdef PERFMON
109 #include <machine/perfmon.h>
110 #endif
111 #include <machine/cputypes.h>
112 
113 #ifdef OLD_BUS_ARCH
114 #include <bus/isa/isa_device.h>
115 #endif
116 #include <machine_base/isa/intr_machdep.h>
117 #include <bus/isa/rtc.h>
118 #include <sys/random.h>
119 #include <sys/ptrace.h>
120 #include <machine/sigframe.h>
121 
122 #define PHYSMAP_ENTRIES		10
123 
124 extern void init386(int first);
125 extern void dblfault_handler(void);
126 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
127 
128 extern void printcpuinfo(void);	/* XXX header file */
129 extern void identify_cpu(void);
130 #if JG
131 extern void finishidentcpu(void);
132 #endif
133 extern void panicifcpuunsupported(void);
134 
135 static void cpu_startup(void *);
136 #ifndef CPU_DISABLE_SSE
137 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
138 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
139 #endif /* CPU_DISABLE_SSE */
140 #ifdef DIRECTIO
141 extern void ffs_rawread_setup(void);
142 #endif /* DIRECTIO */
143 static void init_locks(void);
144 
145 SYSINIT(cpu, SI_BOOT2_SMP, SI_ORDER_FIRST, cpu_startup, NULL)
146 
147 #ifdef DDB
148 extern vm_offset_t ksym_start, ksym_end;
149 #endif
150 
151 uint64_t KPTphys;
152 uint64_t SMPptpa;
153 pt_entry_t *SMPpt;
154 
155 
156 struct privatespace CPU_prvspace[MAXCPU];
157 
158 int	_udatasel, _ucodesel, _ucode32sel;
159 u_long	atdevbase;
160 #ifdef SMP
161 int64_t tsc_offsets[MAXCPU];
162 #else
163 int64_t tsc_offsets[1];
164 #endif
165 
166 #if defined(SWTCH_OPTIM_STATS)
167 extern int swtch_optim_stats;
168 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
169 	CTLFLAG_RD, &swtch_optim_stats, 0, "");
170 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
171 	CTLFLAG_RD, &tlb_flush_count, 0, "");
172 #endif
173 
174 int physmem = 0;
175 
176 static int
177 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
178 {
179 	int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
180 	return (error);
181 }
182 
183 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
184 	0, 0, sysctl_hw_physmem, "IU", "");
185 
186 static int
187 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
188 {
189 	int error = sysctl_handle_int(oidp, 0,
190 		ctob(physmem - vmstats.v_wire_count), req);
191 	return (error);
192 }
193 
194 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
195 	0, 0, sysctl_hw_usermem, "IU", "");
196 
197 static int
198 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
199 {
200 	int error = sysctl_handle_int(oidp, 0,
201 		x86_64_btop(avail_end - avail_start), req);
202 	return (error);
203 }
204 
205 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
206 	0, 0, sysctl_hw_availpages, "I", "");
207 
208 vm_paddr_t Maxmem = 0;
209 
210 /*
211  * The number of PHYSMAP entries must be one less than the number of
212  * PHYSSEG entries because the PHYSMAP entry that spans the largest
213  * physical address that is accessible by ISA DMA is split into two
214  * PHYSSEG entries.
215  */
216 #define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
217 
218 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
219 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
220 
221 /* must be 2 less so 0 0 can signal end of chunks */
222 #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
223 #define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
224 
225 static vm_offset_t buffer_sva, buffer_eva;
226 vm_offset_t clean_sva, clean_eva;
227 static vm_offset_t pager_sva, pager_eva;
228 static struct trapframe proc0_tf;
229 
230 static void
231 cpu_startup(void *dummy)
232 {
233 	caddr_t v;
234 	vm_size_t size = 0;
235 	vm_offset_t firstaddr;
236 
237 	if (boothowto & RB_VERBOSE)
238 		bootverbose++;
239 
240 	/*
241 	 * Good {morning,afternoon,evening,night}.
242 	 */
243 	kprintf("%s", version);
244 	startrtclock();
245 	printcpuinfo();
246 	panicifcpuunsupported();
247 #ifdef PERFMON
248 	perfmon_init();
249 #endif
250 	kprintf("real memory  = %ju (%juK bytes)\n",
251 		(intmax_t)ptoa(Maxmem),
252 		(intmax_t)ptoa(Maxmem) / 1024);
253 	/*
254 	 * Display any holes after the first chunk of extended memory.
255 	 */
256 	if (bootverbose) {
257 		int indx;
258 
259 		kprintf("Physical memory chunk(s):\n");
260 		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
261 			vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
262 
263 			kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
264 				(intmax_t)phys_avail[indx],
265 				(intmax_t)phys_avail[indx + 1] - 1,
266 				(intmax_t)size1,
267 				(intmax_t)(size1 / PAGE_SIZE));
268 		}
269 	}
270 
271 	/*
272 	 * Allocate space for system data structures.
273 	 * The first available kernel virtual address is in "v".
274 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
275 	 * As pages of memory are allocated and cleared,
276 	 * "firstaddr" is incremented.
277 	 * An index into the kernel page table corresponding to the
278 	 * virtual memory address maintained in "v" is kept in "mapaddr".
279 	 */
280 
281 	/*
282 	 * Make two passes.  The first pass calculates how much memory is
283 	 * needed and allocates it.  The second pass assigns virtual
284 	 * addresses to the various data structures.
285 	 */
286 	firstaddr = 0;
287 again:
288 	v = (caddr_t)firstaddr;
289 
290 #define	valloc(name, type, num) \
291 	    (name) = (type *)v; v = (caddr_t)((name)+(num))
292 #define	valloclim(name, type, num, lim) \
293 	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
294 
295 	/*
296 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
297 	 * For the first 64MB of ram nominally allocate sufficient buffers to
298 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
299 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
300 	 * the buffer cache we limit the eventual kva reservation to
301 	 * maxbcache bytes.
302 	 *
303 	 * factor represents the 1/4 x ram conversion.
304 	 */
305 	if (nbuf == 0) {
306 		int factor = 4 * BKVASIZE / 1024;
307 		int kbytes = physmem * (PAGE_SIZE / 1024);
308 
309 		nbuf = 50;
310 		if (kbytes > 4096)
311 			nbuf += min((kbytes - 4096) / factor, 65536 / factor);
312 		if (kbytes > 65536)
313 			nbuf += (kbytes - 65536) * 2 / (factor * 5);
314 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
315 			nbuf = maxbcache / BKVASIZE;
316 	}
317 
318 	/*
319 	 * Do not allow the buffer_map to be more then 1/2 the size of the
320 	 * kernel_map.
321 	 */
322 	if (nbuf > (virtual_end - virtual_start) / (BKVASIZE * 2)) {
323 		nbuf = (virtual_end - virtual_start) / (BKVASIZE * 2);
324 		kprintf("Warning: nbufs capped at %d\n", nbuf);
325 	}
326 
327 	nswbuf = max(min(nbuf/4, 256), 16);
328 #ifdef NSWBUF_MIN
329 	if (nswbuf < NSWBUF_MIN)
330 		nswbuf = NSWBUF_MIN;
331 #endif
332 #ifdef DIRECTIO
333 	ffs_rawread_setup();
334 #endif
335 
336 	valloc(swbuf, struct buf, nswbuf);
337 	valloc(buf, struct buf, nbuf);
338 
339 	/*
340 	 * End of first pass, size has been calculated so allocate memory
341 	 */
342 	if (firstaddr == 0) {
343 		size = (vm_size_t)(v - firstaddr);
344 		firstaddr = kmem_alloc(&kernel_map, round_page(size));
345 		if (firstaddr == 0)
346 			panic("startup: no room for tables");
347 		goto again;
348 	}
349 
350 	/*
351 	 * End of second pass, addresses have been assigned
352 	 */
353 	if ((vm_size_t)(v - firstaddr) != size)
354 		panic("startup: table size inconsistency");
355 
356 	kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
357 		      (nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
358 	kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
359 		      (nbuf*BKVASIZE));
360 	buffer_map.system_map = 1;
361 	kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
362 		      (nswbuf*MAXPHYS) + pager_map_size);
363 	pager_map.system_map = 1;
364 
365 #if defined(USERCONFIG)
366 	userconfig();
367 	cninit();		/* the preferred console may have changed */
368 #endif
369 
370 	kprintf("avail memory = %lu (%luK bytes)\n",
371 		ptoa(vmstats.v_free_count),
372 		ptoa(vmstats.v_free_count) / 1024);
373 
374 	/*
375 	 * Set up buffers, so they can be used to read disk labels.
376 	 */
377 	bufinit();
378 	vm_pager_bufferinit();
379 
380 #ifdef SMP
381 	/*
382 	 * OK, enough kmem_alloc/malloc state should be up, lets get on with it!
383 	 */
384 	mp_start();			/* fire up the APs and APICs */
385 	mp_announce();
386 #endif  /* SMP */
387 	cpu_setregs();
388 }
389 
390 /*
391  * Send an interrupt to process.
392  *
393  * Stack is set up to allow sigcode stored
394  * at top to call routine, followed by kcall
395  * to sigreturn routine below.  After sigreturn
396  * resets the signal mask, the stack, and the
397  * frame pointer, it returns to the user
398  * specified pc, psl.
399  */
400 void
401 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
402 {
403 	struct lwp *lp = curthread->td_lwp;
404 	struct proc *p = lp->lwp_proc;
405 	struct trapframe *regs;
406 	struct sigacts *psp = p->p_sigacts;
407 	struct sigframe sf, *sfp;
408 	int oonstack;
409 	char *sp;
410 
411 	regs = lp->lwp_md.md_regs;
412 	oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
413 
414 	/* Save user context */
415 	bzero(&sf, sizeof(struct sigframe));
416 	sf.sf_uc.uc_sigmask = *mask;
417 	sf.sf_uc.uc_stack = lp->lwp_sigstk;
418 	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
419 	KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
420 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
421 
422 	/* Make the size of the saved context visible to userland */
423 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
424 
425 	/* Save mailbox pending state for syscall interlock semantics */
426 	if (p->p_flag & P_MAILBOX)
427 		sf.sf_uc.uc_mcontext.mc_xflags |= PGEX_MAILBOX;
428 
429 	/* Allocate and validate space for the signal handler context. */
430         if ((lp->lwp_flag & LWP_ALTSTACK) != 0 && !oonstack &&
431 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
432 		sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
433 			      sizeof(struct sigframe));
434 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
435 	} else {
436 		/* We take red zone into account */
437 		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
438 	}
439 
440 	/* Align to 16 bytes */
441 	sfp = (struct sigframe *)((intptr_t)sp & ~0xFUL);
442 
443 	/* Translate the signal is appropriate */
444 	if (p->p_sysent->sv_sigtbl) {
445 		if (sig <= p->p_sysent->sv_sigsize)
446 			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
447 	}
448 
449 	/*
450 	 * Build the argument list for the signal handler.
451 	 *
452 	 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
453 	 */
454 	regs->tf_rdi = sig;				/* argument 1 */
455 	regs->tf_rdx = (register_t)&sfp->sf_uc;		/* argument 3 */
456 
457 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
458 		/*
459 		 * Signal handler installed with SA_SIGINFO.
460 		 *
461 		 * action(signo, siginfo, ucontext)
462 		 */
463 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* argument 2 */
464 		regs->tf_rcx = (register_t)regs->tf_err; /* argument 4 */
465 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
466 
467 		/* fill siginfo structure */
468 		sf.sf_si.si_signo = sig;
469 		sf.sf_si.si_code = code;
470 		sf.sf_si.si_addr = (void *)regs->tf_err;
471 	} else {
472 		/*
473 		 * Old FreeBSD-style arguments.
474 		 *
475 		 * handler (signo, code, [uc], addr)
476 		 */
477 		regs->tf_rsi = (register_t)code;	/* argument 2 */
478 		regs->tf_rcx = (register_t)regs->tf_err; /* argument 4 */
479 		sf.sf_ahu.sf_handler = catcher;
480 	}
481 
482 	/*
483 	 * If we're a vm86 process, we want to save the segment registers.
484 	 * We also change eflags to be our emulated eflags, not the actual
485 	 * eflags.
486 	 */
487 #if JG
488 	if (regs->tf_eflags & PSL_VM) {
489 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
490 		struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
491 
492 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
493 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
494 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
495 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
496 
497 		if (vm86->vm86_has_vme == 0)
498 			sf.sf_uc.uc_mcontext.mc_eflags =
499 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
500 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
501 
502 		/*
503 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
504 		 * syscalls made by the signal handler.  This just avoids
505 		 * wasting time for our lazy fixup of such faults.  PSL_NT
506 		 * does nothing in vm86 mode, but vm86 programs can set it
507 		 * almost legitimately in probes for old cpu types.
508 		 */
509 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
510 	}
511 #endif
512 
513 	/*
514 	 * Save the FPU state and reinit the FP unit
515 	 */
516 	npxpush(&sf.sf_uc.uc_mcontext);
517 
518 	/*
519 	 * Copy the sigframe out to the user's stack.
520 	 */
521 	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
522 		/*
523 		 * Something is wrong with the stack pointer.
524 		 * ...Kill the process.
525 		 */
526 		sigexit(lp, SIGILL);
527 	}
528 
529 	regs->tf_rsp = (register_t)sfp;
530 	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
531 
532 	/*
533 	 * i386 abi specifies that the direction flag must be cleared
534 	 * on function entry
535 	 */
536 	regs->tf_rflags &= ~(PSL_T|PSL_D);
537 
538 	/*
539 	 * 64 bit mode has a code and stack selector but
540 	 * no data or extra selector.  %fs and %gs are not
541 	 * stored in-context.
542 	 */
543 	regs->tf_cs = _ucodesel;
544 	regs->tf_ss = _udatasel;
545 }
546 
547 /*
548  * Sanitize the trapframe for a virtual kernel passing control to a custom
549  * VM context.  Remove any items that would otherwise create a privilage
550  * issue.
551  *
552  * XXX at the moment we allow userland to set the resume flag.  Is this a
553  * bad idea?
554  */
555 int
556 cpu_sanitize_frame(struct trapframe *frame)
557 {
558 	frame->tf_cs = _ucodesel;
559 	frame->tf_ss = _udatasel;
560 	/* XXX VM (8086) mode not supported? */
561 	frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
562 	frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
563 
564 	return(0);
565 }
566 
567 /*
568  * Sanitize the tls so loading the descriptor does not blow up
569  * on us.  For x86_64 we don't have to do anything.
570  */
571 int
572 cpu_sanitize_tls(struct savetls *tls)
573 {
574 	return(0);
575 }
576 
577 /*
578  * sigreturn(ucontext_t *sigcntxp)
579  *
580  * System call to cleanup state after a signal
581  * has been taken.  Reset signal mask and
582  * stack state from context left by sendsig (above).
583  * Return to previous pc and psl as specified by
584  * context left by sendsig. Check carefully to
585  * make sure that the user has not modified the
586  * state to gain improper privileges.
587  *
588  * MPSAFE
589  */
590 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
591 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
592 
593 int
594 sys_sigreturn(struct sigreturn_args *uap)
595 {
596 	struct lwp *lp = curthread->td_lwp;
597 	struct proc *p = lp->lwp_proc;
598 	struct trapframe *regs;
599 	ucontext_t uc;
600 	ucontext_t *ucp;
601 	register_t rflags;
602 	int cs;
603 	int error;
604 
605 	/*
606 	 * We have to copy the information into kernel space so userland
607 	 * can't modify it while we are sniffing it.
608 	 */
609 	regs = lp->lwp_md.md_regs;
610 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
611 	if (error)
612 		return (error);
613 	ucp = &uc;
614 	rflags = ucp->uc_mcontext.mc_rflags;
615 
616 	/* VM (8086) mode not supported */
617 	rflags &= ~PSL_VM_UNSUPP;
618 
619 #if JG
620 	if (eflags & PSL_VM) {
621 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
622 		struct vm86_kernel *vm86;
623 
624 		/*
625 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
626 		 * set up the vm86 area, and we can't enter vm86 mode.
627 		 */
628 		if (lp->lwp_thread->td_pcb->pcb_ext == 0)
629 			return (EINVAL);
630 		vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
631 		if (vm86->vm86_inited == 0)
632 			return (EINVAL);
633 
634 		/* go back to user mode if both flags are set */
635 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
636 			trapsignal(lp, SIGBUS, 0);
637 
638 		if (vm86->vm86_has_vme) {
639 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
640 			    (eflags & VME_USERCHANGE) | PSL_VM;
641 		} else {
642 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
643 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
644 			    (eflags & VM_USERCHANGE) | PSL_VM;
645 		}
646 		bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
647 		tf->tf_eflags = eflags;
648 		tf->tf_vm86_ds = tf->tf_ds;
649 		tf->tf_vm86_es = tf->tf_es;
650 		tf->tf_vm86_fs = tf->tf_fs;
651 		tf->tf_vm86_gs = tf->tf_gs;
652 		tf->tf_ds = _udatasel;
653 		tf->tf_es = _udatasel;
654 		tf->tf_fs = _udatasel;
655 		tf->tf_gs = _udatasel;
656 	} else
657 #endif
658 	{
659 		/*
660 		 * Don't allow users to change privileged or reserved flags.
661 		 */
662 		/*
663 		 * XXX do allow users to change the privileged flag PSL_RF.
664 		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
665 		 * should sometimes set it there too.  tf_eflags is kept in
666 		 * the signal context during signal handling and there is no
667 		 * other place to remember it, so the PSL_RF bit may be
668 		 * corrupted by the signal handler without us knowing.
669 		 * Corruption of the PSL_RF bit at worst causes one more or
670 		 * one less debugger trap, so allowing it is fairly harmless.
671 		 */
672 		if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
673 			kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
674 	    		return(EINVAL);
675 		}
676 
677 		/*
678 		 * Don't allow users to load a valid privileged %cs.  Let the
679 		 * hardware check for invalid selectors, excess privilege in
680 		 * other selectors, invalid %eip's and invalid %esp's.
681 		 */
682 		cs = ucp->uc_mcontext.mc_cs;
683 		if (!CS_SECURE(cs)) {
684 			kprintf("sigreturn: cs = 0x%x\n", cs);
685 			trapsignal(lp, SIGBUS, T_PROTFLT);
686 			return(EINVAL);
687 		}
688 		bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
689 	}
690 
691 	/*
692 	 * Restore the FPU state from the frame
693 	 */
694 	crit_enter();
695 	npxpop(&ucp->uc_mcontext);
696 
697 	/*
698 	 * Merge saved signal mailbox pending flag to maintain interlock
699 	 * semantics against system calls.
700 	 */
701 	if (ucp->uc_mcontext.mc_xflags & PGEX_MAILBOX)
702 		p->p_flag |= P_MAILBOX;
703 
704 	if (ucp->uc_mcontext.mc_onstack & 1)
705 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
706 	else
707 		lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
708 
709 	lp->lwp_sigmask = ucp->uc_sigmask;
710 	SIG_CANTMASK(lp->lwp_sigmask);
711 	crit_exit();
712 	return(EJUSTRETURN);
713 }
714 
715 /*
716  * Stack frame on entry to function.  %rax will contain the function vector,
717  * %rcx will contain the function data.  flags, rcx, and rax will have
718  * already been pushed on the stack.
719  */
720 struct upc_frame {
721 	register_t	rax;
722 	register_t	rcx;
723 	register_t	rdx;
724 	register_t	flags;
725 	register_t	oldip;
726 };
727 
728 void
729 sendupcall(struct vmupcall *vu, int morepending)
730 {
731 	struct lwp *lp = curthread->td_lwp;
732 	struct trapframe *regs;
733 	struct upcall upcall;
734 	struct upc_frame upc_frame;
735 	int	crit_count = 0;
736 
737 	/*
738 	 * If we are a virtual kernel running an emulated user process
739 	 * context, switch back to the virtual kernel context before
740 	 * trying to post the signal.
741 	 */
742 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
743 		lp->lwp_md.md_regs->tf_trapno = 0;
744 		vkernel_trap(lp, lp->lwp_md.md_regs);
745 	}
746 
747 	/*
748 	 * Get the upcall data structure
749 	 */
750 	if (copyin(lp->lwp_upcall, &upcall, sizeof(upcall)) ||
751 	    copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int))
752 	) {
753 		vu->vu_pending = 0;
754 		kprintf("bad upcall address\n");
755 		return;
756 	}
757 
758 	/*
759 	 * If the data structure is already marked pending or has a critical
760 	 * section count, mark the data structure as pending and return
761 	 * without doing an upcall.  vu_pending is left set.
762 	 */
763 	if (upcall.upc_pending || crit_count >= vu->vu_pending) {
764 		if (upcall.upc_pending < vu->vu_pending) {
765 			upcall.upc_pending = vu->vu_pending;
766 			copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
767 				sizeof(upcall.upc_pending));
768 		}
769 		return;
770 	}
771 
772 	/*
773 	 * We can run this upcall now, clear vu_pending.
774 	 *
775 	 * Bump our critical section count and set or clear the
776 	 * user pending flag depending on whether more upcalls are
777 	 * pending.  The user will be responsible for calling
778 	 * upc_dispatch(-1) to process remaining upcalls.
779 	 */
780 	vu->vu_pending = 0;
781 	upcall.upc_pending = morepending;
782 	crit_count += TDPRI_CRIT;
783 	copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
784 		sizeof(upcall.upc_pending));
785 	copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff,
786 		sizeof(int));
787 
788 	/*
789 	 * Construct a stack frame and issue the upcall
790 	 */
791 	regs = lp->lwp_md.md_regs;
792 	upc_frame.rax = regs->tf_rax;
793 	upc_frame.rcx = regs->tf_rcx;
794 	upc_frame.rdx = regs->tf_rdx;
795 	upc_frame.flags = regs->tf_rflags;
796 	upc_frame.oldip = regs->tf_rip;
797 	if (copyout(&upc_frame, (void *)(regs->tf_rsp - sizeof(upc_frame)),
798 	    sizeof(upc_frame)) != 0) {
799 		kprintf("bad stack on upcall\n");
800 	} else {
801 		regs->tf_rax = (register_t)vu->vu_func;
802 		regs->tf_rcx = (register_t)vu->vu_data;
803 		regs->tf_rdx = (register_t)lp->lwp_upcall;
804 		regs->tf_rip = (register_t)vu->vu_ctx;
805 		regs->tf_rsp -= sizeof(upc_frame);
806 	}
807 }
808 
809 /*
810  * fetchupcall occurs in the context of a system call, which means that
811  * we have to return EJUSTRETURN in order to prevent eax and edx from
812  * being overwritten by the syscall return value.
813  *
814  * if vu is not NULL we return the new context in %edx, the new data in %ecx,
815  * and the function pointer in %eax.
816  */
817 int
818 fetchupcall(struct vmupcall *vu, int morepending, void *rsp)
819 {
820 	struct upc_frame upc_frame;
821 	struct lwp *lp = curthread->td_lwp;
822 	struct trapframe *regs;
823 	int error;
824 	struct upcall upcall;
825 	int crit_count;
826 
827 	regs = lp->lwp_md.md_regs;
828 
829 	error = copyout(&morepending, &lp->lwp_upcall->upc_pending, sizeof(int));
830 	if (error == 0) {
831 	    if (vu) {
832 		/*
833 		 * This jumps us to the next ready context.
834 		 */
835 		vu->vu_pending = 0;
836 		error = copyin(lp->lwp_upcall, &upcall, sizeof(upcall));
837 		crit_count = 0;
838 		if (error == 0)
839 			error = copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int));
840 		crit_count += TDPRI_CRIT;
841 		if (error == 0)
842 			error = copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff, sizeof(int));
843 		regs->tf_rax = (register_t)vu->vu_func;
844 		regs->tf_rcx = (register_t)vu->vu_data;
845 		regs->tf_rdx = (register_t)lp->lwp_upcall;
846 		regs->tf_rip = (register_t)vu->vu_ctx;
847 		regs->tf_rsp = (register_t)rsp;
848 	    } else {
849 		/*
850 		 * This returns us to the originally interrupted code.
851 		 */
852 		error = copyin(rsp, &upc_frame, sizeof(upc_frame));
853 		regs->tf_rax = upc_frame.rax;
854 		regs->tf_rcx = upc_frame.rcx;
855 		regs->tf_rdx = upc_frame.rdx;
856 		regs->tf_rflags = (regs->tf_rflags & ~PSL_USERCHANGE) |
857 				(upc_frame.flags & PSL_USERCHANGE);
858 		regs->tf_rip = upc_frame.oldip;
859 		regs->tf_rsp = (register_t)((char *)rsp + sizeof(upc_frame));
860 	    }
861 	}
862 	if (error == 0)
863 		error = EJUSTRETURN;
864 	return(error);
865 }
866 
867 /*
868  * Machine dependent boot() routine
869  *
870  * I haven't seen anything to put here yet
871  * Possibly some stuff might be grafted back here from boot()
872  */
873 void
874 cpu_boot(int howto)
875 {
876 }
877 
878 /*
879  * Shutdown the CPU as much as possible
880  */
881 void
882 cpu_halt(void)
883 {
884 	for (;;)
885 		__asm__ __volatile("hlt");
886 }
887 
888 /*
889  * cpu_idle() represents the idle LWKT.  You cannot return from this function
890  * (unless you want to blow things up!).  Instead we look for runnable threads
891  * and loop or halt as appropriate.  Giant is not held on entry to the thread.
892  *
893  * The main loop is entered with a critical section held, we must release
894  * the critical section before doing anything else.  lwkt_switch() will
895  * check for pending interrupts due to entering and exiting its own
896  * critical section.
897  *
898  * Note on cpu_idle_hlt:  On an SMP system we rely on a scheduler IPI
899  * to wake a HLTed cpu up.  However, there are cases where the idlethread
900  * will be entered with the possibility that no IPI will occur and in such
901  * cases lwkt_switch() sets TDF_IDLE_NOHLT.
902  */
903 static int	cpu_idle_hlt = 1;
904 static int	cpu_idle_hltcnt;
905 static int	cpu_idle_spincnt;
906 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
907     &cpu_idle_hlt, 0, "Idle loop HLT enable");
908 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hltcnt, CTLFLAG_RW,
909     &cpu_idle_hltcnt, 0, "Idle loop entry halts");
910 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_spincnt, CTLFLAG_RW,
911     &cpu_idle_spincnt, 0, "Idle loop entry spins");
912 
913 static void
914 cpu_idle_default_hook(void)
915 {
916 	/*
917 	 * We must guarentee that hlt is exactly the instruction
918 	 * following the sti.
919 	 */
920 	__asm __volatile("sti; hlt");
921 }
922 
923 /* Other subsystems (e.g., ACPI) can hook this later. */
924 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
925 
926 void
927 cpu_idle(void)
928 {
929 	struct thread *td = curthread;
930 
931 	crit_exit();
932 	KKASSERT(td->td_pri < TDPRI_CRIT);
933 	for (;;) {
934 		/*
935 		 * See if there are any LWKTs ready to go.
936 		 */
937 		lwkt_switch();
938 
939 		/*
940 		 * If we are going to halt call splz unconditionally after
941 		 * CLIing to catch any interrupt races.  Note that we are
942 		 * at SPL0 and interrupts are enabled.
943 		 */
944 		if (cpu_idle_hlt && !lwkt_runnable() &&
945 		    (td->td_flags & TDF_IDLE_NOHLT) == 0) {
946 			__asm __volatile("cli");
947 			splz();
948 			if (!lwkt_runnable())
949 			    cpu_idle_hook();
950 #ifdef SMP
951 			else
952 			    __asm __volatile("pause");
953 #endif
954 			++cpu_idle_hltcnt;
955 		} else {
956 			td->td_flags &= ~TDF_IDLE_NOHLT;
957 			splz();
958 #ifdef SMP
959 			__asm __volatile("sti; pause");
960 #else
961 			__asm __volatile("sti");
962 #endif
963 			++cpu_idle_spincnt;
964 		}
965 	}
966 }
967 
968 #ifdef SMP
969 
970 /*
971  * This routine is called when the only runnable threads require
972  * the MP lock, and the scheduler couldn't get it.  On a real cpu
973  * we let the scheduler spin.
974  */
975 void
976 cpu_mplock_contested(void)
977 {
978 	cpu_pause();
979 }
980 
981 /*
982  * This routine is called if a spinlock has been held through the
983  * exponential backoff period and is seriously contested.  On a real cpu
984  * we let it spin.
985  */
986 void
987 cpu_spinlock_contested(void)
988 {
989 	cpu_pause();
990 }
991 
992 #endif
993 
994 /*
995  * Clear registers on exec
996  */
997 void
998 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
999 {
1000 	struct thread *td = curthread;
1001 	struct lwp *lp = td->td_lwp;
1002 	struct pcb *pcb = td->td_pcb;
1003 	struct trapframe *regs = lp->lwp_md.md_regs;
1004 
1005 	/* was i386_user_cleanup() in NetBSD */
1006 	user_ldt_free(pcb);
1007 
1008 	bzero((char *)regs, sizeof(struct trapframe));
1009 	regs->tf_rip = entry;
1010 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
1011 	regs->tf_rdi = stack;		/* argv */
1012 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
1013 	regs->tf_ss = _udatasel;
1014 	regs->tf_cs = _ucodesel;
1015 	regs->tf_rbx = ps_strings;
1016 
1017 	/*
1018 	 * Reset the hardware debug registers if they were in use.
1019 	 * They won't have any meaning for the newly exec'd process.
1020 	 */
1021 	if (pcb->pcb_flags & PCB_DBREGS) {
1022 		pcb->pcb_dr0 = 0;
1023 		pcb->pcb_dr1 = 0;
1024 		pcb->pcb_dr2 = 0;
1025 		pcb->pcb_dr3 = 0;
1026 		pcb->pcb_dr6 = 0;
1027 		pcb->pcb_dr7 = 0; /* JG set bit 10? */
1028 		if (pcb == td->td_pcb) {
1029 			/*
1030 			 * Clear the debug registers on the running
1031 			 * CPU, otherwise they will end up affecting
1032 			 * the next process we switch to.
1033 			 */
1034 			reset_dbregs();
1035 		}
1036 		pcb->pcb_flags &= ~PCB_DBREGS;
1037 	}
1038 
1039 	/*
1040 	 * Initialize the math emulator (if any) for the current process.
1041 	 * Actually, just clear the bit that says that the emulator has
1042 	 * been initialized.  Initialization is delayed until the process
1043 	 * traps to the emulator (if it is done at all) mainly because
1044 	 * emulators don't provide an entry point for initialization.
1045 	 */
1046 	pcb->pcb_flags &= ~FP_SOFTFP;
1047 
1048 	/*
1049 	 * NOTE: do not set CR0_TS here.  npxinit() must do it after clearing
1050 	 *	 gd_npxthread.  Otherwise a preemptive interrupt thread
1051 	 *	 may panic in npxdna().
1052 	 */
1053 	crit_enter();
1054 	load_cr0(rcr0() | CR0_MP);
1055 
1056 	/*
1057 	 * NOTE: The MSR values must be correct so we can return to
1058 	 * 	 userland.  gd_user_fs/gs must be correct so the switch
1059 	 *	 code knows what the current MSR values are.
1060 	 */
1061 	pcb->pcb_fsbase = 0;	/* Values loaded from PCB on switch */
1062 	pcb->pcb_gsbase = 0;
1063 	mdcpu->gd_user_fs = 0;	/* Cache of current MSR values */
1064 	mdcpu->gd_user_gs = 0;
1065 	wrmsr(MSR_FSBASE, 0);	/* Set MSR values for return to userland */
1066 	wrmsr(MSR_KGSBASE, 0);
1067 
1068 	/* Initialize the npx (if any) for the current process. */
1069 	npxinit(__INITIAL_NPXCW__);
1070 	crit_exit();
1071 
1072 	pcb->pcb_ds = _udatasel;
1073 	pcb->pcb_es = _udatasel;
1074 	pcb->pcb_fs = _udatasel;
1075 	pcb->pcb_gs = _udatasel;
1076 }
1077 
1078 void
1079 cpu_setregs(void)
1080 {
1081 	register_t cr0;
1082 
1083 	cr0 = rcr0();
1084 	cr0 |= CR0_NE;			/* Done by npxinit() */
1085 	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1086 	cr0 |= CR0_WP | CR0_AM;
1087 	load_cr0(cr0);
1088 	load_gs(_udatasel);
1089 }
1090 
1091 static int
1092 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1093 {
1094 	int error;
1095 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1096 		req);
1097 	if (!error && req->newptr)
1098 		resettodr();
1099 	return (error);
1100 }
1101 
1102 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1103 	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1104 
1105 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1106 	CTLFLAG_RW, &disable_rtc_set, 0, "");
1107 
1108 #if JG
1109 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1110 	CTLFLAG_RD, &bootinfo, bootinfo, "");
1111 #endif
1112 
1113 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1114 	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1115 
1116 extern u_long bootdev;		/* not a cdev_t - encoding is different */
1117 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1118 	CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1119 
1120 /*
1121  * Initialize 386 and configure to run kernel
1122  */
1123 
1124 /*
1125  * Initialize segments & interrupt table
1126  */
1127 
1128 int _default_ldt;
1129 struct user_segment_descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1130 static struct gate_descriptor idt0[NIDT];
1131 struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1132 #if JG
1133 union descriptor ldt[NLDT];		/* local descriptor table */
1134 #endif
1135 
1136 /* table descriptors - used to load tables by cpu */
1137 struct region_descriptor r_gdt, r_idt;
1138 
1139 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
1140 extern int has_f00f_bug;
1141 #endif
1142 
1143 static char dblfault_stack[PAGE_SIZE] __aligned(16);
1144 
1145 /* JG proc0paddr is a virtual address */
1146 void *proc0paddr;
1147 /* JG alignment? */
1148 char proc0paddr_buff[LWKT_THREAD_STACK];
1149 
1150 
1151 /* software prototypes -- in more palatable form */
1152 struct soft_segment_descriptor gdt_segs[] = {
1153 /* GNULL_SEL	0 Null Descriptor */
1154 {	0x0,			/* segment base address  */
1155 	0x0,			/* length */
1156 	0,			/* segment type */
1157 	0,			/* segment descriptor priority level */
1158 	0,			/* segment descriptor present */
1159 	0,			/* long */
1160 	0,			/* default 32 vs 16 bit size */
1161 	0  			/* limit granularity (byte/page units)*/ },
1162 /* GCODE_SEL	1 Code Descriptor for kernel */
1163 {	0x0,			/* segment base address  */
1164 	0xfffff,		/* length - all address space */
1165 	SDT_MEMERA,		/* segment type */
1166 	SEL_KPL,		/* segment descriptor priority level */
1167 	1,			/* segment descriptor present */
1168 	1,			/* long */
1169 	0,			/* default 32 vs 16 bit size */
1170 	1  			/* limit granularity (byte/page units)*/ },
1171 /* GDATA_SEL	2 Data Descriptor for kernel */
1172 {	0x0,			/* segment base address  */
1173 	0xfffff,		/* length - all address space */
1174 	SDT_MEMRWA,		/* segment type */
1175 	SEL_KPL,		/* segment descriptor priority level */
1176 	1,			/* segment descriptor present */
1177 	1,			/* long */
1178 	0,			/* default 32 vs 16 bit size */
1179 	1  			/* limit granularity (byte/page units)*/ },
1180 /* GUCODE32_SEL	3 32 bit Code Descriptor for user */
1181 {	0x0,			/* segment base address  */
1182 	0xfffff,		/* length - all address space */
1183 	SDT_MEMERA,		/* segment type */
1184 	SEL_UPL,		/* segment descriptor priority level */
1185 	1,			/* segment descriptor present */
1186 	0,			/* long */
1187 	1,			/* default 32 vs 16 bit size */
1188 	1  			/* limit granularity (byte/page units)*/ },
1189 /* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
1190 {	0x0,			/* segment base address  */
1191 	0xfffff,		/* length - all address space */
1192 	SDT_MEMRWA,		/* segment type */
1193 	SEL_UPL,		/* segment descriptor priority level */
1194 	1,			/* segment descriptor present */
1195 	0,			/* long */
1196 	1,			/* default 32 vs 16 bit size */
1197 	1  			/* limit granularity (byte/page units)*/ },
1198 /* GUCODE_SEL	5 64 bit Code Descriptor for user */
1199 {	0x0,			/* segment base address  */
1200 	0xfffff,		/* length - all address space */
1201 	SDT_MEMERA,		/* segment type */
1202 	SEL_UPL,		/* segment descriptor priority level */
1203 	1,			/* segment descriptor present */
1204 	1,			/* long */
1205 	0,			/* default 32 vs 16 bit size */
1206 	1  			/* limit granularity (byte/page units)*/ },
1207 /* GPROC0_SEL	6 Proc 0 Tss Descriptor */
1208 {
1209 	0x0,			/* segment base address */
1210 	sizeof(struct x86_64tss)-1,/* length - all address space */
1211 	SDT_SYSTSS,		/* segment type */
1212 	SEL_KPL,		/* segment descriptor priority level */
1213 	1,			/* segment descriptor present */
1214 	0,			/* long */
1215 	0,			/* unused - default 32 vs 16 bit size */
1216 	0  			/* limit granularity (byte/page units)*/ },
1217 /* Actually, the TSS is a system descriptor which is double size */
1218 {	0x0,			/* segment base address  */
1219 	0x0,			/* length */
1220 	0,			/* segment type */
1221 	0,			/* segment descriptor priority level */
1222 	0,			/* segment descriptor present */
1223 	0,			/* long */
1224 	0,			/* default 32 vs 16 bit size */
1225 	0  			/* limit granularity (byte/page units)*/ },
1226 /* GUGS32_SEL	8 32 bit GS Descriptor for user */
1227 {	0x0,			/* segment base address  */
1228 	0xfffff,		/* length - all address space */
1229 	SDT_MEMRWA,		/* segment type */
1230 	SEL_UPL,		/* segment descriptor priority level */
1231 	1,			/* segment descriptor present */
1232 	0,			/* long */
1233 	1,			/* default 32 vs 16 bit size */
1234 	1  			/* limit granularity (byte/page units)*/ },
1235 };
1236 
1237 void
1238 setidt(int idx, inthand_t *func, int typ, int dpl, int ist)
1239 {
1240 	struct gate_descriptor *ip;
1241 
1242 	ip = idt + idx;
1243 	ip->gd_looffset = (uintptr_t)func;
1244 	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1245 	ip->gd_ist = ist;
1246 	ip->gd_xx = 0;
1247 	ip->gd_type = typ;
1248 	ip->gd_dpl = dpl;
1249 	ip->gd_p = 1;
1250 	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1251 }
1252 
1253 #define	IDTVEC(name)	__CONCAT(X,name)
1254 
1255 extern inthand_t
1256 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1257 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1258 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1259 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1260 	IDTVEC(xmm), IDTVEC(dblfault),
1261 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1262 
1263 #ifdef DEBUG_INTERRUPTS
1264 extern inthand_t *Xrsvdary[256];
1265 #endif
1266 
1267 void
1268 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1269 {
1270 	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1271 	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1272 	ssd->ssd_type  = sd->sd_type;
1273 	ssd->ssd_dpl   = sd->sd_dpl;
1274 	ssd->ssd_p     = sd->sd_p;
1275 	ssd->ssd_def32 = sd->sd_def32;
1276 	ssd->ssd_gran  = sd->sd_gran;
1277 }
1278 
1279 void
1280 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1281 {
1282 
1283 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1284 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1285 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1286 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1287 	sd->sd_type  = ssd->ssd_type;
1288 	sd->sd_dpl   = ssd->ssd_dpl;
1289 	sd->sd_p     = ssd->ssd_p;
1290 	sd->sd_long  = ssd->ssd_long;
1291 	sd->sd_def32 = ssd->ssd_def32;
1292 	sd->sd_gran  = ssd->ssd_gran;
1293 }
1294 
1295 void
1296 ssdtosyssd(struct soft_segment_descriptor *ssd,
1297     struct system_segment_descriptor *sd)
1298 {
1299 
1300 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1301 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1302 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1303 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1304 	sd->sd_type  = ssd->ssd_type;
1305 	sd->sd_dpl   = ssd->ssd_dpl;
1306 	sd->sd_p     = ssd->ssd_p;
1307 	sd->sd_gran  = ssd->ssd_gran;
1308 }
1309 
1310 u_int basemem;
1311 
1312 /*
1313  * Populate the (physmap) array with base/bound pairs describing the
1314  * available physical memory in the system, then test this memory and
1315  * build the phys_avail array describing the actually-available memory.
1316  *
1317  * If we cannot accurately determine the physical memory map, then use
1318  * value from the 0xE801 call, and failing that, the RTC.
1319  *
1320  * Total memory size may be set by the kernel environment variable
1321  * hw.physmem or the compile-time define MAXMEM.
1322  *
1323  * XXX first should be vm_paddr_t.
1324  */
1325 static void
1326 getmemsize(caddr_t kmdp, u_int64_t first)
1327 {
1328 	int i, off, physmap_idx, pa_indx, da_indx;
1329 	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1330 	u_long physmem_tunable;
1331 	pt_entry_t *pte;
1332 	struct bios_smap *smapbase, *smap, *smapend;
1333 	u_int32_t smapsize;
1334 	quad_t dcons_addr, dcons_size;
1335 
1336 	bzero(physmap, sizeof(physmap));
1337 	basemem = 0;
1338 	physmap_idx = 0;
1339 
1340 	/*
1341 	 * get memory map from INT 15:E820, kindly supplied by the loader.
1342 	 *
1343 	 * subr_module.c says:
1344 	 * "Consumer may safely assume that size value precedes data."
1345 	 * ie: an int32_t immediately precedes smap.
1346 	 */
1347 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1348 	    MODINFO_METADATA | MODINFOMD_SMAP);
1349 	if (smapbase == NULL)
1350 		panic("No BIOS smap info from loader!");
1351 
1352 	smapsize = *((u_int32_t *)smapbase - 1);
1353 	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1354 
1355 	for (smap = smapbase; smap < smapend; smap++) {
1356 		if (boothowto & RB_VERBOSE)
1357 			kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1358 			    smap->type, smap->base, smap->length);
1359 
1360 		if (smap->type != SMAP_TYPE_MEMORY)
1361 			continue;
1362 
1363 		if (smap->length == 0)
1364 			continue;
1365 
1366 		for (i = 0; i <= physmap_idx; i += 2) {
1367 			if (smap->base < physmap[i + 1]) {
1368 				if (boothowto & RB_VERBOSE)
1369 					kprintf(
1370 	"Overlapping or non-monotonic memory region, ignoring second region\n");
1371 				continue;
1372 			}
1373 		}
1374 
1375 		if (smap->base == physmap[physmap_idx + 1]) {
1376 			physmap[physmap_idx + 1] += smap->length;
1377 			continue;
1378 		}
1379 
1380 		physmap_idx += 2;
1381 		if (physmap_idx == PHYSMAP_SIZE) {
1382 			kprintf(
1383 		"Too many segments in the physical address map, giving up\n");
1384 			break;
1385 		}
1386 		physmap[physmap_idx] = smap->base;
1387 		physmap[physmap_idx + 1] = smap->base + smap->length;
1388 	}
1389 
1390 	/*
1391 	 * Find the 'base memory' segment for SMP
1392 	 */
1393 	basemem = 0;
1394 	for (i = 0; i <= physmap_idx; i += 2) {
1395 		if (physmap[i] == 0x00000000) {
1396 			basemem = physmap[i + 1] / 1024;
1397 			break;
1398 		}
1399 	}
1400 	if (basemem == 0)
1401 		panic("BIOS smap did not include a basemem segment!");
1402 
1403 #ifdef SMP
1404 	/* make hole for AP bootstrap code */
1405 	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1406 
1407 	/* look for the MP hardware - needed for apic addresses */
1408 	mp_probe();
1409 #endif
1410 
1411 	/*
1412 	 * Maxmem isn't the "maximum memory", it's one larger than the
1413 	 * highest page of the physical address space.  It should be
1414 	 * called something like "Maxphyspage".  We may adjust this
1415 	 * based on ``hw.physmem'' and the results of the memory test.
1416 	 */
1417 	Maxmem = atop(physmap[physmap_idx + 1]);
1418 
1419 #ifdef MAXMEM
1420 	Maxmem = MAXMEM / 4;
1421 #endif
1422 
1423 	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1424 		Maxmem = atop(physmem_tunable);
1425 
1426 	/*
1427 	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1428 	 * in the system.
1429 	 */
1430 	if (Maxmem > atop(physmap[physmap_idx + 1]))
1431 		Maxmem = atop(physmap[physmap_idx + 1]);
1432 
1433 	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1434 	    (boothowto & RB_VERBOSE))
1435 		kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
1436 
1437 	/* call pmap initialization to make new kernel address space */
1438 	pmap_bootstrap(&first);
1439 
1440 	/*
1441 	 * Size up each available chunk of physical memory.
1442 	 */
1443 	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1444 	pa_indx = 0;
1445 	da_indx = 1;
1446 	phys_avail[pa_indx++] = physmap[0];
1447 	phys_avail[pa_indx] = physmap[0];
1448 	dump_avail[da_indx] = physmap[0];
1449 	pte = CMAP1;
1450 
1451 	/*
1452 	 * Get dcons buffer address
1453 	 */
1454 	if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
1455 	    kgetenv_quad("dcons.size", &dcons_size) == 0)
1456 		dcons_addr = 0;
1457 
1458 	/*
1459 	 * physmap is in bytes, so when converting to page boundaries,
1460 	 * round up the start address and round down the end address.
1461 	 */
1462 	for (i = 0; i <= physmap_idx; i += 2) {
1463 		vm_paddr_t end;
1464 
1465 		end = ptoa((vm_paddr_t)Maxmem);
1466 		if (physmap[i + 1] < end)
1467 			end = trunc_page(physmap[i + 1]);
1468 		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1469 			int tmp, page_bad, full;
1470 			int *ptr = (int *)CADDR1;
1471 
1472 			full = FALSE;
1473 			/*
1474 			 * block out kernel memory as not available.
1475 			 */
1476 			if (pa >= 0x100000 && pa < first)
1477 				goto do_dump_avail;
1478 
1479 			/*
1480 			 * block out dcons buffer
1481 			 */
1482 			if (dcons_addr > 0
1483 			    && pa >= trunc_page(dcons_addr)
1484 			    && pa < dcons_addr + dcons_size)
1485 				goto do_dump_avail;
1486 
1487 			page_bad = FALSE;
1488 
1489 			/*
1490 			 * map page into kernel: valid, read/write,non-cacheable
1491 			 */
1492 			*pte = pa | PG_V | PG_RW | PG_N;
1493 			cpu_invltlb();
1494 
1495 			tmp = *(int *)ptr;
1496 			/*
1497 			 * Test for alternating 1's and 0's
1498 			 */
1499 			*(volatile int *)ptr = 0xaaaaaaaa;
1500 			if (*(volatile int *)ptr != 0xaaaaaaaa)
1501 				page_bad = TRUE;
1502 			/*
1503 			 * Test for alternating 0's and 1's
1504 			 */
1505 			*(volatile int *)ptr = 0x55555555;
1506 			if (*(volatile int *)ptr != 0x55555555)
1507 				page_bad = TRUE;
1508 			/*
1509 			 * Test for all 1's
1510 			 */
1511 			*(volatile int *)ptr = 0xffffffff;
1512 			if (*(volatile int *)ptr != 0xffffffff)
1513 				page_bad = TRUE;
1514 			/*
1515 			 * Test for all 0's
1516 			 */
1517 			*(volatile int *)ptr = 0x0;
1518 			if (*(volatile int *)ptr != 0x0)
1519 				page_bad = TRUE;
1520 			/*
1521 			 * Restore original value.
1522 			 */
1523 			*(int *)ptr = tmp;
1524 
1525 			/*
1526 			 * Adjust array of valid/good pages.
1527 			 */
1528 			if (page_bad == TRUE)
1529 				continue;
1530 			/*
1531 			 * If this good page is a continuation of the
1532 			 * previous set of good pages, then just increase
1533 			 * the end pointer. Otherwise start a new chunk.
1534 			 * Note that "end" points one higher than end,
1535 			 * making the range >= start and < end.
1536 			 * If we're also doing a speculative memory
1537 			 * test and we at or past the end, bump up Maxmem
1538 			 * so that we keep going. The first bad page
1539 			 * will terminate the loop.
1540 			 */
1541 			if (phys_avail[pa_indx] == pa) {
1542 				phys_avail[pa_indx] += PAGE_SIZE;
1543 			} else {
1544 				pa_indx++;
1545 				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1546 					kprintf(
1547 		"Too many holes in the physical address space, giving up\n");
1548 					pa_indx--;
1549 					full = TRUE;
1550 					goto do_dump_avail;
1551 				}
1552 				phys_avail[pa_indx++] = pa;	/* start */
1553 				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1554 			}
1555 			physmem++;
1556 do_dump_avail:
1557 			if (dump_avail[da_indx] == pa) {
1558 				dump_avail[da_indx] += PAGE_SIZE;
1559 			} else {
1560 				da_indx++;
1561 				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1562 					da_indx--;
1563 					goto do_next;
1564 				}
1565 				dump_avail[da_indx++] = pa; /* start */
1566 				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1567 			}
1568 do_next:
1569 			if (full)
1570 				break;
1571 		}
1572 	}
1573 	*pte = 0;
1574 	cpu_invltlb();
1575 
1576 	/*
1577 	 * XXX
1578 	 * The last chunk must contain at least one page plus the message
1579 	 * buffer to avoid complicating other code (message buffer address
1580 	 * calculation, etc.).
1581 	 */
1582 	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1583 	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1584 		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1585 		phys_avail[pa_indx--] = 0;
1586 		phys_avail[pa_indx--] = 0;
1587 	}
1588 
1589 	Maxmem = atop(phys_avail[pa_indx]);
1590 
1591 	/* Trim off space for the message buffer. */
1592 	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1593 
1594 	avail_end = phys_avail[pa_indx];
1595 
1596 	/* Map the message buffer. */
1597 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1598 		pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
1599 		    off);
1600 }
1601 
1602 /*
1603  * IDT VECTORS:
1604  *	0	Divide by zero
1605  *	1	Debug
1606  *	2	NMI
1607  *	3	BreakPoint
1608  *	4	OverFlow
1609  *	5	Bound-Range
1610  *	6	Invalid OpCode
1611  *	7	Device Not Available (x87)
1612  *	8	Double-Fault
1613  *	9	Coprocessor Segment overrun (unsupported, reserved)
1614  *	10	Invalid-TSS
1615  *	11	Segment not present
1616  *	12	Stack
1617  *	13	General Protection
1618  *	14	Page Fault
1619  *	15	Reserved
1620  *	16	x87 FP Exception pending
1621  *	17	Alignment Check
1622  *	18	Machine Check
1623  *	19	SIMD floating point
1624  *	20-31	reserved
1625  *	32-255	INTn/external sources
1626  */
1627 u_int64_t
1628 hammer_time(u_int64_t modulep, u_int64_t physfree)
1629 {
1630 	caddr_t kmdp;
1631 	int gsel_tss, x;
1632 #if JG
1633 	int metadata_missing, off;
1634 #endif
1635 	struct mdglobaldata *gd;
1636 	u_int64_t msr;
1637 	char *env;
1638 
1639 #if JG
1640 	/*
1641 	 * This must be done before the first references
1642 	 * to CPU_prvspace[0] are made.
1643 	 */
1644 	init_paging(&physfree);
1645 #endif
1646 
1647 	/*
1648 	 * Prevent lowering of the ipl if we call tsleep() early.
1649 	 */
1650 	gd = &CPU_prvspace[0].mdglobaldata;
1651 	bzero(gd, sizeof(*gd));
1652 
1653 	/*
1654 	 * Note: on both UP and SMP curthread must be set non-NULL
1655 	 * early in the boot sequence because the system assumes
1656 	 * that 'curthread' is never NULL.
1657 	 */
1658 
1659 	gd->mi.gd_curthread = &thread0;
1660 	thread0.td_gd = &gd->mi;
1661 
1662 	atdevbase = ISA_HOLE_START + PTOV_OFFSET;
1663 
1664 #if JG
1665 	metadata_missing = 0;
1666 	if (bootinfo.bi_modulep) {
1667 		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1668 		preload_bootstrap_relocate(KERNBASE);
1669 	} else {
1670 		metadata_missing = 1;
1671 	}
1672 	if (bootinfo.bi_envp)
1673 		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1674 #endif
1675 
1676 	preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
1677 	preload_bootstrap_relocate(PTOV_OFFSET);
1678 	kmdp = preload_search_by_type("elf kernel");
1679 	if (kmdp == NULL)
1680 		kmdp = preload_search_by_type("elf64 kernel");
1681 	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1682 	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
1683 #ifdef DDB
1684 	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1685 	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1686 #endif
1687 
1688 	/*
1689 	 * start with one cpu.  Note: with one cpu, ncpus2_shift, ncpus2_mask,
1690 	 * and ncpus_fit_mask remain 0.
1691 	 */
1692 	ncpus = 1;
1693 	ncpus2 = 1;
1694 	ncpus_fit = 1;
1695 	/* Init basic tunables, hz etc */
1696 	init_param1();
1697 
1698 	/*
1699 	 * make gdt memory segments
1700 	 */
1701 	gdt_segs[GPROC0_SEL].ssd_base =
1702 		(uintptr_t) &CPU_prvspace[0].mdglobaldata.gd_common_tss;
1703 
1704 	gd->mi.gd_prvspace = &CPU_prvspace[0];
1705 
1706 	for (x = 0; x < NGDT; x++) {
1707 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
1708 			ssdtosd(&gdt_segs[x], &gdt[x]);
1709 	}
1710 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1711 	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1712 
1713 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1714 	r_gdt.rd_base =  (long) gdt;
1715 	lgdt(&r_gdt);
1716 
1717 	wrmsr(MSR_FSBASE, 0);		/* User value */
1718 	wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
1719 	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1720 
1721 	mi_gdinit(&gd->mi, 0);
1722 	cpu_gdinit(gd, 0);
1723 	proc0paddr = proc0paddr_buff;
1724 	mi_proc0init(&gd->mi, proc0paddr);
1725 	safepri = TDPRI_MAX;
1726 
1727 	/* spinlocks and the BGL */
1728 	init_locks();
1729 
1730 	/* exceptions */
1731 	for (x = 0; x < NIDT; x++)
1732 		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1733 	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1734 	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1735 	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 1);
1736  	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1737 	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1738 	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1739 	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1740 	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1741 	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1742 	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1743 	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1744 	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1745 	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1746 	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1747 	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1748 	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1749 	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1750 	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1751 	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1752 
1753 	r_idt.rd_limit = sizeof(idt0) - 1;
1754 	r_idt.rd_base = (long) idt;
1755 	lidt(&r_idt);
1756 
1757 	/*
1758 	 * Initialize the console before we print anything out.
1759 	 */
1760 	cninit();
1761 
1762 #if JG
1763 	if (metadata_missing)
1764 		kprintf("WARNING: loader(8) metadata is missing!\n");
1765 #endif
1766 
1767 #if	NISA >0
1768 	isa_defaultirq();
1769 #endif
1770 	rand_initialize();
1771 
1772 #ifdef DDB
1773 	kdb_init();
1774 	if (boothowto & RB_KDB)
1775 		Debugger("Boot flags requested debugger");
1776 #endif
1777 
1778 #if JG
1779 	finishidentcpu();	/* Final stage of CPU initialization */
1780 	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1781 	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1782 #endif
1783 	identify_cpu();		/* Final stage of CPU initialization */
1784 	initializecpu();	/* Initialize CPU registers */
1785 
1786 	/* make an initial tss so cpu can get interrupt stack on syscall! */
1787 	gd->gd_common_tss.tss_rsp0 =
1788 		(register_t)(thread0.td_kstack +
1789 			     KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb));
1790 	/* Ensure the stack is aligned to 16 bytes */
1791 	gd->gd_common_tss.tss_rsp0 &= ~0xFul;
1792 	gd->gd_rsp0 = gd->gd_common_tss.tss_rsp0;
1793 
1794 	/* doublefault stack space, runs on ist1 */
1795 	gd->gd_common_tss.tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1796 
1797 	/* Set the IO permission bitmap (empty due to tss seg limit) */
1798 	gd->gd_common_tss.tss_iobase = sizeof(struct x86_64tss);
1799 
1800 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1801 	gd->gd_tss_gdt = &gdt[GPROC0_SEL];
1802 	gd->gd_common_tssd = *gd->gd_tss_gdt;
1803 	ltr(gsel_tss);
1804 
1805 	/* Set up the fast syscall stuff */
1806 	msr = rdmsr(MSR_EFER) | EFER_SCE;
1807 	wrmsr(MSR_EFER, msr);
1808 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1809 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1810 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1811 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1812 	wrmsr(MSR_STAR, msr);
1813 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1814 
1815 	getmemsize(kmdp, physfree);
1816 	init_param2(physmem);
1817 
1818 	/* now running on new page tables, configured,and u/iom is accessible */
1819 
1820 	/* Map the message buffer. */
1821 #if JG
1822 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1823 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
1824 #endif
1825 
1826 	msgbufinit(msgbufp, MSGBUF_SIZE);
1827 
1828 
1829 	/* transfer to user mode */
1830 
1831 	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1832 	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1833 	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1834 
1835 	load_ds(_udatasel);
1836 	load_es(_udatasel);
1837 	load_fs(_udatasel);
1838 
1839 	/* setup proc 0's pcb */
1840 	thread0.td_pcb->pcb_flags = 0;
1841 	thread0.td_pcb->pcb_cr3 = KPML4phys;
1842 	thread0.td_pcb->pcb_ext = 0;
1843 	lwp0.lwp_md.md_regs = &proc0_tf;
1844         env = kgetenv("kernelname");
1845 	if (env != NULL)
1846 		strlcpy(kernelname, env, sizeof(kernelname));
1847 
1848 	/* Location of kernel stack for locore */
1849 	return ((u_int64_t)thread0.td_pcb);
1850 }
1851 
1852 /*
1853  * Initialize machine-dependant portions of the global data structure.
1854  * Note that the global data area and cpu0's idlestack in the private
1855  * data space were allocated in locore.
1856  *
1857  * Note: the idlethread's cpl is 0
1858  *
1859  * WARNING!  Called from early boot, 'mycpu' may not work yet.
1860  */
1861 void
1862 cpu_gdinit(struct mdglobaldata *gd, int cpu)
1863 {
1864 	if (cpu)
1865 		gd->mi.gd_curthread = &gd->mi.gd_idlethread;
1866 
1867 	lwkt_init_thread(&gd->mi.gd_idlethread,
1868 			gd->mi.gd_prvspace->idlestack,
1869 			sizeof(gd->mi.gd_prvspace->idlestack),
1870 			TDF_MPSAFE, &gd->mi);
1871 	lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
1872 	gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
1873 	gd->mi.gd_idlethread.td_sp -= sizeof(void *);
1874 	*(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
1875 }
1876 
1877 int
1878 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
1879 {
1880 	if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
1881 	    eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
1882 		return (TRUE);
1883 	}
1884 	return (FALSE);
1885 }
1886 
1887 struct globaldata *
1888 globaldata_find(int cpu)
1889 {
1890 	KKASSERT(cpu >= 0 && cpu < ncpus);
1891 	return(&CPU_prvspace[cpu].mdglobaldata.mi);
1892 }
1893 
1894 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
1895 static void f00f_hack(void *unused);
1896 SYSINIT(f00f_hack, SI_BOOT2_BIOS, SI_ORDER_ANY, f00f_hack, NULL);
1897 
1898 static void
1899 f00f_hack(void *unused)
1900 {
1901 	struct gate_descriptor *new_idt;
1902 	vm_offset_t tmp;
1903 
1904 	if (!has_f00f_bug)
1905 		return;
1906 
1907 	kprintf("Intel Pentium detected, installing workaround for F00F bug\n");
1908 
1909 	r_idt.rd_limit = sizeof(idt0) - 1;
1910 
1911 	tmp = kmem_alloc(&kernel_map, PAGE_SIZE * 2);
1912 	if (tmp == 0)
1913 		panic("kmem_alloc returned 0");
1914 	if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
1915 		panic("kmem_alloc returned non-page-aligned memory");
1916 	/* Put the first seven entries in the lower page */
1917 	new_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
1918 	bcopy(idt, new_idt, sizeof(idt0));
1919 	r_idt.rd_base = (int)new_idt;
1920 	lidt(&r_idt);
1921 	idt = new_idt;
1922 	if (vm_map_protect(&kernel_map, tmp, tmp + PAGE_SIZE,
1923 			   VM_PROT_READ, FALSE) != KERN_SUCCESS)
1924 		panic("vm_map_protect failed");
1925 	return;
1926 }
1927 #endif /* defined(I586_CPU) && !NO_F00F_HACK */
1928 
1929 int
1930 ptrace_set_pc(struct lwp *lp, unsigned long addr)
1931 {
1932 	lp->lwp_md.md_regs->tf_rip = addr;
1933 	return (0);
1934 }
1935 
1936 int
1937 ptrace_single_step(struct lwp *lp)
1938 {
1939 	lp->lwp_md.md_regs->tf_rflags |= PSL_T;
1940 	return (0);
1941 }
1942 
1943 int
1944 fill_regs(struct lwp *lp, struct reg *regs)
1945 {
1946 	struct pcb *pcb;
1947 	struct trapframe *tp;
1948 
1949 	tp = lp->lwp_md.md_regs;
1950 	bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
1951 
1952 	pcb = lp->lwp_thread->td_pcb;
1953 	return (0);
1954 }
1955 
1956 int
1957 set_regs(struct lwp *lp, struct reg *regs)
1958 {
1959 	struct pcb *pcb;
1960 	struct trapframe *tp;
1961 
1962 	tp = lp->lwp_md.md_regs;
1963 	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
1964 	    !CS_SECURE(regs->r_cs))
1965 		return (EINVAL);
1966 	bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
1967 	pcb = lp->lwp_thread->td_pcb;
1968 	return (0);
1969 }
1970 
1971 #ifndef CPU_DISABLE_SSE
1972 static void
1973 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
1974 {
1975 	struct env87 *penv_87 = &sv_87->sv_env;
1976 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1977 	int i;
1978 
1979 	/* FPU control/status */
1980 	penv_87->en_cw = penv_xmm->en_cw;
1981 	penv_87->en_sw = penv_xmm->en_sw;
1982 	penv_87->en_tw = penv_xmm->en_tw;
1983 	penv_87->en_fip = penv_xmm->en_fip;
1984 	penv_87->en_fcs = penv_xmm->en_fcs;
1985 	penv_87->en_opcode = penv_xmm->en_opcode;
1986 	penv_87->en_foo = penv_xmm->en_foo;
1987 	penv_87->en_fos = penv_xmm->en_fos;
1988 
1989 	/* FPU registers */
1990 	for (i = 0; i < 8; ++i)
1991 		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
1992 
1993 	sv_87->sv_ex_sw = sv_xmm->sv_ex_sw;
1994 }
1995 
1996 static void
1997 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
1998 {
1999 	struct env87 *penv_87 = &sv_87->sv_env;
2000 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2001 	int i;
2002 
2003 	/* FPU control/status */
2004 	penv_xmm->en_cw = penv_87->en_cw;
2005 	penv_xmm->en_sw = penv_87->en_sw;
2006 	penv_xmm->en_tw = penv_87->en_tw;
2007 	penv_xmm->en_fip = penv_87->en_fip;
2008 	penv_xmm->en_fcs = penv_87->en_fcs;
2009 	penv_xmm->en_opcode = penv_87->en_opcode;
2010 	penv_xmm->en_foo = penv_87->en_foo;
2011 	penv_xmm->en_fos = penv_87->en_fos;
2012 
2013 	/* FPU registers */
2014 	for (i = 0; i < 8; ++i)
2015 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2016 
2017 	sv_xmm->sv_ex_sw = sv_87->sv_ex_sw;
2018 }
2019 #endif /* CPU_DISABLE_SSE */
2020 
2021 int
2022 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2023 {
2024 #ifndef CPU_DISABLE_SSE
2025 	if (cpu_fxsr) {
2026 		fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2027 				(struct save87 *)fpregs);
2028 		return (0);
2029 	}
2030 #endif /* CPU_DISABLE_SSE */
2031 	bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2032 	return (0);
2033 }
2034 
2035 int
2036 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2037 {
2038 #ifndef CPU_DISABLE_SSE
2039 	if (cpu_fxsr) {
2040 		set_fpregs_xmm((struct save87 *)fpregs,
2041 			       &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2042 		return (0);
2043 	}
2044 #endif /* CPU_DISABLE_SSE */
2045 	bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2046 	return (0);
2047 }
2048 
2049 int
2050 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2051 {
2052         if (lp == NULL) {
2053                 dbregs->dr[0] = rdr0();
2054                 dbregs->dr[1] = rdr1();
2055                 dbregs->dr[2] = rdr2();
2056                 dbregs->dr[3] = rdr3();
2057                 dbregs->dr[4] = rdr4();
2058                 dbregs->dr[5] = rdr5();
2059                 dbregs->dr[6] = rdr6();
2060                 dbregs->dr[7] = rdr7();
2061         } else {
2062 		struct pcb *pcb;
2063 
2064                 pcb = lp->lwp_thread->td_pcb;
2065                 dbregs->dr[0] = pcb->pcb_dr0;
2066                 dbregs->dr[1] = pcb->pcb_dr1;
2067                 dbregs->dr[2] = pcb->pcb_dr2;
2068                 dbregs->dr[3] = pcb->pcb_dr3;
2069                 dbregs->dr[4] = 0;
2070                 dbregs->dr[5] = 0;
2071                 dbregs->dr[6] = pcb->pcb_dr6;
2072                 dbregs->dr[7] = pcb->pcb_dr7;
2073         }
2074 	return (0);
2075 }
2076 
2077 int
2078 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2079 {
2080 	if (lp == NULL) {
2081 		load_dr0(dbregs->dr[0]);
2082 		load_dr1(dbregs->dr[1]);
2083 		load_dr2(dbregs->dr[2]);
2084 		load_dr3(dbregs->dr[3]);
2085 		load_dr4(dbregs->dr[4]);
2086 		load_dr5(dbregs->dr[5]);
2087 		load_dr6(dbregs->dr[6]);
2088 		load_dr7(dbregs->dr[7]);
2089 	} else {
2090 		struct pcb *pcb;
2091 		struct ucred *ucred;
2092 		int i;
2093 		uint64_t mask1, mask2;
2094 
2095 		/*
2096 		 * Don't let an illegal value for dr7 get set.	Specifically,
2097 		 * check for undefined settings.  Setting these bit patterns
2098 		 * result in undefined behaviour and can lead to an unexpected
2099 		 * TRCTRAP.
2100 		 */
2101 		/* JG this loop looks unreadable */
2102 		/* Check 4 2-bit fields for invalid patterns.
2103 		 * These fields are R/Wi, for i = 0..3
2104 		 */
2105 		/* Is 10 in LENi allowed when running in compatibility mode? */
2106 		/* Pattern 10 in R/Wi might be used to indicate
2107 		 * breakpoint on I/O. Further analysis should be
2108 		 * carried to decide if it is safe and useful to
2109 		 * provide access to that capability
2110 		 */
2111 		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2112 		     i++, mask1 <<= 4, mask2 <<= 4)
2113 			if ((dbregs->dr[7] & mask1) == mask2)
2114 				return (EINVAL);
2115 
2116 		pcb = lp->lwp_thread->td_pcb;
2117 		ucred = lp->lwp_proc->p_ucred;
2118 
2119 		/*
2120 		 * Don't let a process set a breakpoint that is not within the
2121 		 * process's address space.  If a process could do this, it
2122 		 * could halt the system by setting a breakpoint in the kernel
2123 		 * (if ddb was enabled).  Thus, we need to check to make sure
2124 		 * that no breakpoints are being enabled for addresses outside
2125 		 * process's address space, unless, perhaps, we were called by
2126 		 * uid 0.
2127 		 *
2128 		 * XXX - what about when the watched area of the user's
2129 		 * address space is written into from within the kernel
2130 		 * ... wouldn't that still cause a breakpoint to be generated
2131 		 * from within kernel mode?
2132 		 */
2133 
2134 		if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2135 			if (dbregs->dr[7] & 0x3) {
2136 				/* dr0 is enabled */
2137 				if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2138 					return (EINVAL);
2139 			}
2140 
2141 			if (dbregs->dr[7] & (0x3<<2)) {
2142 				/* dr1 is enabled */
2143 				if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2144 					return (EINVAL);
2145 			}
2146 
2147 			if (dbregs->dr[7] & (0x3<<4)) {
2148 				/* dr2 is enabled */
2149 				if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2150 					return (EINVAL);
2151 			}
2152 
2153 			if (dbregs->dr[7] & (0x3<<6)) {
2154 				/* dr3 is enabled */
2155 				if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2156 					return (EINVAL);
2157 			}
2158 		}
2159 
2160 		pcb->pcb_dr0 = dbregs->dr[0];
2161 		pcb->pcb_dr1 = dbregs->dr[1];
2162 		pcb->pcb_dr2 = dbregs->dr[2];
2163 		pcb->pcb_dr3 = dbregs->dr[3];
2164 		pcb->pcb_dr6 = dbregs->dr[6];
2165 		pcb->pcb_dr7 = dbregs->dr[7];
2166 
2167 		pcb->pcb_flags |= PCB_DBREGS;
2168 	}
2169 
2170 	return (0);
2171 }
2172 
2173 /*
2174  * Return > 0 if a hardware breakpoint has been hit, and the
2175  * breakpoint was in user space.  Return 0, otherwise.
2176  */
2177 int
2178 user_dbreg_trap(void)
2179 {
2180         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2181         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2182         int nbp;            /* number of breakpoints that triggered */
2183         caddr_t addr[4];    /* breakpoint addresses */
2184         int i;
2185 
2186         dr7 = rdr7();
2187         if ((dr7 & 0xff) == 0) {
2188                 /*
2189                  * all GE and LE bits in the dr7 register are zero,
2190                  * thus the trap couldn't have been caused by the
2191                  * hardware debug registers
2192                  */
2193                 return 0;
2194         }
2195 
2196         nbp = 0;
2197         dr6 = rdr6();
2198         bp = dr6 & 0xf;
2199 
2200         if (bp == 0) {
2201                 /*
2202                  * None of the breakpoint bits are set meaning this
2203                  * trap was not caused by any of the debug registers
2204                  */
2205                 return 0;
2206         }
2207 
2208         /*
2209          * at least one of the breakpoints were hit, check to see
2210          * which ones and if any of them are user space addresses
2211          */
2212 
2213         if (bp & 0x01) {
2214                 addr[nbp++] = (caddr_t)rdr0();
2215         }
2216         if (bp & 0x02) {
2217                 addr[nbp++] = (caddr_t)rdr1();
2218         }
2219         if (bp & 0x04) {
2220                 addr[nbp++] = (caddr_t)rdr2();
2221         }
2222         if (bp & 0x08) {
2223                 addr[nbp++] = (caddr_t)rdr3();
2224         }
2225 
2226         for (i=0; i<nbp; i++) {
2227                 if (addr[i] <
2228                     (caddr_t)VM_MAX_USER_ADDRESS) {
2229                         /*
2230                          * addr[i] is in user space
2231                          */
2232                         return nbp;
2233                 }
2234         }
2235 
2236         /*
2237          * None of the breakpoints are in user space.
2238          */
2239         return 0;
2240 }
2241 
2242 
2243 #ifndef DDB
2244 void
2245 Debugger(const char *msg)
2246 {
2247 	kprintf("Debugger(\"%s\") called.\n", msg);
2248 }
2249 #endif /* no DDB */
2250 
2251 #ifdef DDB
2252 
2253 /*
2254  * Provide inb() and outb() as functions.  They are normally only
2255  * available as macros calling inlined functions, thus cannot be
2256  * called inside DDB.
2257  *
2258  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2259  */
2260 
2261 #undef inb
2262 #undef outb
2263 
2264 /* silence compiler warnings */
2265 u_char inb(u_int);
2266 void outb(u_int, u_char);
2267 
2268 u_char
2269 inb(u_int port)
2270 {
2271 	u_char	data;
2272 	/*
2273 	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2274 	 * %edx, while gcc generates inferior code (movw instead of movl)
2275 	 * if we tell it to load (u_short) port.
2276 	 */
2277 	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2278 	return (data);
2279 }
2280 
2281 void
2282 outb(u_int port, u_char data)
2283 {
2284 	u_char	al;
2285 	/*
2286 	 * Use an unnecessary assignment to help gcc's register allocator.
2287 	 * This make a large difference for gcc-1.40 and a tiny difference
2288 	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2289 	 * best results.  gcc-2.6.0 can't handle this.
2290 	 */
2291 	al = data;
2292 	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2293 }
2294 
2295 #endif /* DDB */
2296 
2297 
2298 
2299 #include "opt_cpu.h"
2300 
2301 
2302 /*
2303  * initialize all the SMP locks
2304  */
2305 
2306 /* critical region when masking or unmasking interupts */
2307 struct spinlock_deprecated imen_spinlock;
2308 
2309 /* Make FAST_INTR() routines sequential */
2310 struct spinlock_deprecated fast_intr_spinlock;
2311 
2312 /* critical region for old style disable_intr/enable_intr */
2313 struct spinlock_deprecated mpintr_spinlock;
2314 
2315 /* critical region around INTR() routines */
2316 struct spinlock_deprecated intr_spinlock;
2317 
2318 /* lock region used by kernel profiling */
2319 struct spinlock_deprecated mcount_spinlock;
2320 
2321 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2322 struct spinlock_deprecated com_spinlock;
2323 
2324 /* locks kernel kprintfs */
2325 struct spinlock_deprecated cons_spinlock;
2326 
2327 /* lock regions around the clock hardware */
2328 struct spinlock_deprecated clock_spinlock;
2329 
2330 /* lock around the MP rendezvous */
2331 struct spinlock_deprecated smp_rv_spinlock;
2332 
2333 static void
2334 init_locks(void)
2335 {
2336 	/*
2337 	 * mp_lock = 0;	BSP already owns the MP lock
2338 	 */
2339 	/*
2340 	 * Get the initial mp_lock with a count of 1 for the BSP.
2341 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
2342 	 */
2343 #ifdef SMP
2344 	cpu_get_initial_mplock();
2345 #endif
2346 	/* DEPRECATED */
2347 	spin_lock_init(&mcount_spinlock);
2348 	spin_lock_init(&fast_intr_spinlock);
2349 	spin_lock_init(&intr_spinlock);
2350 	spin_lock_init(&mpintr_spinlock);
2351 	spin_lock_init(&imen_spinlock);
2352 	spin_lock_init(&smp_rv_spinlock);
2353 	spin_lock_init(&com_spinlock);
2354 	spin_lock_init(&clock_spinlock);
2355 	spin_lock_init(&cons_spinlock);
2356 
2357 	/* our token pool needs to work early */
2358 	lwkt_token_pool_init();
2359 }
2360 
2361