xref: /dragonfly/sys/platform/pc64/x86_64/machdep.c (revision 97fa55c4)
1 /*-
2  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3  * Copyright (c) 1992 Terrence R. Lambert.
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 2008-2017 The DragonFly Project.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
40  * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
41  */
42 
43 //#include "use_npx.h"
44 #include "use_isa.h"
45 #include "opt_cpu.h"
46 #include "opt_ddb.h"
47 #include "opt_inet.h"
48 #include "opt_msgbuf.h"
49 #include "opt_swap.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/sysproto.h>
54 #include <sys/signalvar.h>
55 #include <sys/kernel.h>
56 #include <sys/linker.h>
57 #include <sys/malloc.h>
58 #include <sys/proc.h>
59 #include <sys/priv.h>
60 #include <sys/buf.h>
61 #include <sys/reboot.h>
62 #include <sys/mbuf.h>
63 #include <sys/msgbuf.h>
64 #include <sys/sysent.h>
65 #include <sys/sysctl.h>
66 #include <sys/vmmeter.h>
67 #include <sys/bus.h>
68 #include <sys/usched.h>
69 #include <sys/reg.h>
70 #include <sys/sbuf.h>
71 #include <sys/ctype.h>
72 #include <sys/serialize.h>
73 #include <sys/systimer.h>
74 
75 #include <vm/vm.h>
76 #include <vm/vm_param.h>
77 #include <sys/lock.h>
78 #include <vm/vm_kern.h>
79 #include <vm/vm_object.h>
80 #include <vm/vm_page.h>
81 #include <vm/vm_map.h>
82 #include <vm/vm_pager.h>
83 #include <vm/vm_extern.h>
84 
85 #include <sys/thread2.h>
86 #include <sys/mplock2.h>
87 #include <sys/mutex2.h>
88 
89 #include <sys/user.h>
90 #include <sys/exec.h>
91 #include <sys/cons.h>
92 
93 #include <sys/efi.h>
94 
95 #include <ddb/ddb.h>
96 
97 #include <machine/cpu.h>
98 #include <machine/clock.h>
99 #include <machine/specialreg.h>
100 #if 0 /* JG */
101 #include <machine/bootinfo.h>
102 #endif
103 #include <machine/md_var.h>
104 #include <machine/metadata.h>
105 #include <machine/pc/bios.h>
106 #include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
107 #include <machine/globaldata.h>		/* CPU_prvspace */
108 #include <machine/smp.h>
109 #include <machine/cputypes.h>
110 #include <machine/intr_machdep.h>
111 #include <machine/framebuffer.h>
112 
113 #ifdef OLD_BUS_ARCH
114 #include <bus/isa/isa_device.h>
115 #endif
116 #include <machine_base/isa/isa_intr.h>
117 #include <bus/isa/rtc.h>
118 #include <sys/random.h>
119 #include <sys/ptrace.h>
120 #include <machine/sigframe.h>
121 
122 #include <sys/machintr.h>
123 #include <machine_base/icu/icu_abi.h>
124 #include <machine_base/icu/elcr_var.h>
125 #include <machine_base/apic/lapic.h>
126 #include <machine_base/apic/ioapic.h>
127 #include <machine_base/apic/ioapic_abi.h>
128 #include <machine/mptable.h>
129 
130 #define PHYSMAP_ENTRIES		10
131 
132 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
133 
134 extern void printcpuinfo(void);	/* XXX header file */
135 extern void identify_cpu(void);
136 extern void panicifcpuunsupported(void);
137 
138 static void cpu_startup(void *);
139 static void pic_finish(void *);
140 static void cpu_finish(void *);
141 
142 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
143 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
144 static void init_locks(void);
145 
146 extern void pcpu_timer_always(struct intrframe *);
147 
148 SYSINIT(cpu, SI_BOOT2_START_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
149 SYSINIT(pic_finish, SI_BOOT2_FINISH_PIC, SI_ORDER_FIRST, pic_finish, NULL);
150 SYSINIT(cpu_finish, SI_BOOT2_FINISH_CPU, SI_ORDER_FIRST, cpu_finish, NULL);
151 
152 #ifdef DDB
153 extern vm_offset_t ksym_start, ksym_end;
154 #endif
155 
156 struct privatespace CPU_prvspace_bsp __aligned(4096);
157 struct privatespace *CPU_prvspace[MAXCPU] = { &CPU_prvspace_bsp };
158 
159 vm_paddr_t efi_systbl_phys;
160 int	_udatasel, _ucodesel, _ucode32sel;
161 u_long	atdevbase;
162 int64_t tsc_offsets[MAXCPU];
163 cpumask_t smp_idleinvl_mask;
164 cpumask_t smp_idleinvl_reqs;
165 
166 static int cpu_mwait_halt_global; /* MWAIT hint (EAX) or CPU_MWAIT_HINT_ */
167 
168 #if defined(SWTCH_OPTIM_STATS)
169 extern int swtch_optim_stats;
170 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
171 	CTLFLAG_RD, &swtch_optim_stats, 0, "");
172 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
173 	CTLFLAG_RD, &tlb_flush_count, 0, "");
174 #endif
175 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_halt,
176 	CTLFLAG_RD, &cpu_mwait_halt_global, 0, "");
177 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_spin,
178 	CTLFLAG_RD, &cpu_mwait_spin, 0, "monitor/mwait target state");
179 
180 #define CPU_MWAIT_HAS_CX	\
181 	((cpu_feature2 & CPUID2_MON) && \
182 	 (cpu_mwait_feature & CPUID_MWAIT_EXT))
183 
184 #define CPU_MWAIT_CX_NAMELEN	16
185 
186 #define CPU_MWAIT_C1		1
187 #define CPU_MWAIT_C2		2
188 #define CPU_MWAIT_C3		3
189 #define CPU_MWAIT_CX_MAX	8
190 
191 #define CPU_MWAIT_HINT_AUTO	-1	/* C1 and C2 */
192 #define CPU_MWAIT_HINT_AUTODEEP	-2	/* C3+ */
193 
194 SYSCTL_NODE(_machdep, OID_AUTO, mwait, CTLFLAG_RW, 0, "MWAIT features");
195 SYSCTL_NODE(_machdep_mwait, OID_AUTO, CX, CTLFLAG_RW, 0, "MWAIT Cx settings");
196 
197 struct cpu_mwait_cx {
198 	int			subcnt;
199 	char			name[4];
200 	struct sysctl_ctx_list	sysctl_ctx;
201 	struct sysctl_oid	*sysctl_tree;
202 };
203 static struct cpu_mwait_cx	cpu_mwait_cx_info[CPU_MWAIT_CX_MAX];
204 static char			cpu_mwait_cx_supported[256];
205 
206 static int			cpu_mwait_c1_hints_cnt;
207 static int			cpu_mwait_hints_cnt;
208 static int			*cpu_mwait_hints;
209 
210 static int			cpu_mwait_deep_hints_cnt;
211 static int			*cpu_mwait_deep_hints;
212 
213 #define CPU_IDLE_REPEAT_DEFAULT	750
214 
215 static u_int			cpu_idle_repeat = CPU_IDLE_REPEAT_DEFAULT;
216 static u_long			cpu_idle_repeat_max = CPU_IDLE_REPEAT_DEFAULT;
217 static u_int			cpu_mwait_repeat_shift = 1;
218 
219 #define CPU_MWAIT_C3_PREAMBLE_BM_ARB	0x1
220 #define CPU_MWAIT_C3_PREAMBLE_BM_STS	0x2
221 
222 static int			cpu_mwait_c3_preamble =
223 				    CPU_MWAIT_C3_PREAMBLE_BM_ARB |
224 				    CPU_MWAIT_C3_PREAMBLE_BM_STS;
225 
226 SYSCTL_STRING(_machdep_mwait_CX, OID_AUTO, supported, CTLFLAG_RD,
227     cpu_mwait_cx_supported, 0, "MWAIT supported C states");
228 SYSCTL_INT(_machdep_mwait_CX, OID_AUTO, c3_preamble, CTLFLAG_RD,
229     &cpu_mwait_c3_preamble, 0, "C3+ preamble mask");
230 
231 static int	cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS,
232 		    int *, boolean_t);
233 static int	cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS);
234 static int	cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS);
235 static int	cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS);
236 
237 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, idle, CTLTYPE_STRING|CTLFLAG_RW,
238     NULL, 0, cpu_mwait_cx_idle_sysctl, "A", "");
239 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, spin, CTLTYPE_STRING|CTLFLAG_RW,
240     NULL, 0, cpu_mwait_cx_spin_sysctl, "A", "");
241 SYSCTL_UINT(_machdep_mwait_CX, OID_AUTO, repeat_shift, CTLFLAG_RW,
242     &cpu_mwait_repeat_shift, 0, "");
243 
244 long physmem = 0;
245 
246 u_long ebda_addr = 0;
247 
248 int imcr_present = 0;
249 
250 int naps = 0; /* # of Applications processors */
251 
252 u_int base_memory;
253 
254 static int
255 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
256 {
257 	u_long pmem = ctob(physmem);
258 	int error;
259 
260 	error = sysctl_handle_long(oidp, &pmem, 0, req);
261 
262 	return (error);
263 }
264 
265 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
266 	0, 0, sysctl_hw_physmem, "LU",
267 	"Total system memory in bytes (number of pages * page size)");
268 
269 static int
270 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
271 {
272 	u_long usermem = ctob(physmem - vmstats.v_wire_count);
273 	int error;
274 
275 	error = sysctl_handle_long(oidp, &usermem, 0, req);
276 
277 	return (error);
278 }
279 
280 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_ULONG|CTLFLAG_RD,
281 	0, 0, sysctl_hw_usermem, "LU", "");
282 
283 static int
284 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
285 {
286 	int error;
287 	u_long availpages;
288 
289 	availpages = x86_64_btop(avail_end - avail_start);
290 	error = sysctl_handle_long(oidp, &availpages, 0, req);
291 
292 	return (error);
293 }
294 
295 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_ULONG|CTLFLAG_RD,
296 	0, 0, sysctl_hw_availpages, "LU", "");
297 
298 vm_paddr_t Maxmem;
299 vm_paddr_t Realmem;
300 
301 /*
302  * The number of PHYSMAP entries must be one less than the number of
303  * PHYSSEG entries because the PHYSMAP entry that spans the largest
304  * physical address that is accessible by ISA DMA is split into two
305  * PHYSSEG entries.
306  */
307 vm_phystable_t phys_avail[VM_PHYSSEG_MAX + 1];
308 vm_phystable_t dump_avail[VM_PHYSSEG_MAX + 1];
309 
310 /* must be 1 less so 0 0 can signal end of chunks */
311 #define PHYS_AVAIL_ARRAY_END (NELEM(phys_avail) - 1)
312 #define DUMP_AVAIL_ARRAY_END (NELEM(dump_avail) - 1)
313 
314 static vm_offset_t buffer_sva, buffer_eva;
315 vm_offset_t clean_sva, clean_eva;
316 static vm_offset_t pager_sva, pager_eva;
317 static struct trapframe proc0_tf;
318 
319 static void
320 cpu_startup(void *dummy)
321 {
322 	caddr_t v;
323 	vm_size_t size = 0;
324 	vm_offset_t firstaddr;
325 
326 	/*
327 	 * Good {morning,afternoon,evening,night}.
328 	 */
329 	kprintf("%s", version);
330 	startrtclock();
331 	printcpuinfo();
332 	panicifcpuunsupported();
333 	kprintf("real memory  = %ju (%ju MB)\n",
334 		(intmax_t)Realmem,
335 		(intmax_t)Realmem / 1024 / 1024);
336 	/*
337 	 * Display any holes after the first chunk of extended memory.
338 	 */
339 	if (bootverbose) {
340 		int indx;
341 
342 		kprintf("Physical memory chunk(s):\n");
343 		for (indx = 0; phys_avail[indx].phys_end != 0; ++indx) {
344 			vm_paddr_t size1;
345 
346 			size1 = phys_avail[indx].phys_end -
347 				phys_avail[indx].phys_beg;
348 
349 			kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
350 				(intmax_t)phys_avail[indx].phys_beg,
351 				(intmax_t)phys_avail[indx].phys_end - 1,
352 				(intmax_t)size1,
353 				(intmax_t)(size1 / PAGE_SIZE));
354 		}
355 	}
356 
357 	/*
358 	 * Allocate space for system data structures.
359 	 * The first available kernel virtual address is in "v".
360 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
361 	 * As pages of memory are allocated and cleared,
362 	 * "firstaddr" is incremented.
363 	 * An index into the kernel page table corresponding to the
364 	 * virtual memory address maintained in "v" is kept in "mapaddr".
365 	 */
366 
367 	/*
368 	 * Make two passes.  The first pass calculates how much memory is
369 	 * needed and allocates it.  The second pass assigns virtual
370 	 * addresses to the various data structures.
371 	 */
372 	firstaddr = 0;
373 again:
374 	v = (caddr_t)firstaddr;
375 
376 #define	valloc(name, type, num) \
377 	    (name) = (type *)v; v = (caddr_t)((name)+(num))
378 #define	valloclim(name, type, num, lim) \
379 	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
380 
381 	/*
382 	 * The nominal buffer size (and minimum KVA allocation) is MAXBSIZE.
383 	 * For the first 64MB of ram nominally allocate sufficient buffers to
384 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
385 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
386 	 * the buffer cache we limit the eventual kva reservation to
387 	 * maxbcache bytes.
388 	 *
389 	 * factor represents the 1/4 x ram conversion.
390 	 */
391 	if (nbuf == 0) {
392 		long factor = 4 * NBUFCALCSIZE / 1024;
393 		long kbytes = physmem * (PAGE_SIZE / 1024);
394 
395 		nbuf = 50;
396 		if (kbytes > 4096)
397 			nbuf += min((kbytes - 4096) / factor, 65536 / factor);
398 		if (kbytes > 65536)
399 			nbuf += (kbytes - 65536) * 2 / (factor * 5);
400 		if (maxbcache && nbuf > maxbcache / NBUFCALCSIZE)
401 			nbuf = maxbcache / NBUFCALCSIZE;
402 	}
403 
404 	/*
405 	 * Do not allow the buffer_map to be more then 1/2 the size of the
406 	 * kernel_map.
407 	 */
408 	if (nbuf > (virtual_end - virtual_start +
409 		    virtual2_end - virtual2_start) / (MAXBSIZE * 2)) {
410 		nbuf = (virtual_end - virtual_start +
411 			virtual2_end - virtual2_start) / (MAXBSIZE * 2);
412 		kprintf("Warning: nbufs capped at %ld due to kvm\n", nbuf);
413 	}
414 
415 	/*
416 	 * Do not allow the buffer_map to use more than 50% of available
417 	 * physical-equivalent memory.  Since the VM pages which back
418 	 * individual buffers are typically wired, having too many bufs
419 	 * can prevent the system from paging properly.
420 	 */
421 	if (nbuf > physmem * PAGE_SIZE / (NBUFCALCSIZE * 2)) {
422 		nbuf = physmem * PAGE_SIZE / (NBUFCALCSIZE * 2);
423 		kprintf("Warning: nbufs capped at %ld due to physmem\n", nbuf);
424 	}
425 
426 	/*
427 	 * Do not allow the sizeof(struct buf) * nbuf to exceed 1/4 of
428 	 * the valloc space which is just the virtual_end - virtual_start
429 	 * section.  This is typically ~2GB regardless of the amount of
430 	 * memory, so we use 500MB as a metric.
431 	 *
432 	 * This is because we use valloc() to allocate the buf header array.
433 	 *
434 	 * NOTE: buffer space in bytes is limited by vfs.*bufspace sysctls.
435 	 */
436 	if (nbuf > (virtual_end - virtual_start) / sizeof(struct buf) / 4) {
437 		nbuf = (virtual_end - virtual_start) /
438 		       sizeof(struct buf) / 2;
439 		kprintf("Warning: nbufs capped at %ld due to "
440 			"valloc considerations\n",
441 			nbuf);
442 	}
443 
444 	nswbuf_mem = lmax(lmin(nbuf / 32, 512), 8);
445 #ifdef NSWBUF_MIN
446 	if (nswbuf_mem < NSWBUF_MIN)
447 		nswbuf_mem = NSWBUF_MIN;
448 #endif
449 	nswbuf_kva = lmax(lmin(nbuf / 4, 512), 16);
450 #ifdef NSWBUF_MIN
451 	if (nswbuf_kva < NSWBUF_MIN)
452 		nswbuf_kva = NSWBUF_MIN;
453 #endif
454 
455 	valloc(swbuf_mem, struct buf, nswbuf_mem);
456 	valloc(swbuf_kva, struct buf, nswbuf_kva);
457 	valloc(buf, struct buf, nbuf);
458 
459 	/*
460 	 * End of first pass, size has been calculated so allocate memory
461 	 */
462 	if (firstaddr == 0) {
463 		size = (vm_size_t)(v - firstaddr);
464 		firstaddr = kmem_alloc(&kernel_map, round_page(size),
465 				       VM_SUBSYS_BUF);
466 		if (firstaddr == 0)
467 			panic("startup: no room for tables");
468 		goto again;
469 	}
470 
471 	/*
472 	 * End of second pass, addresses have been assigned
473 	 *
474 	 * nbuf is an int, make sure we don't overflow the field.
475 	 *
476 	 * On 64-bit systems we always reserve maximal allocations for
477 	 * buffer cache buffers and there are no fragmentation issues,
478 	 * so the KVA segment does not have to be excessively oversized.
479 	 */
480 	if ((vm_size_t)(v - firstaddr) != size)
481 		panic("startup: table size inconsistency");
482 
483 	kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
484 		      ((vm_offset_t)(nbuf + 16) * MAXBSIZE) +
485 		      ((nswbuf_mem + nswbuf_kva) * MAXPHYS) + pager_map_size);
486 	kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
487 		      ((vm_offset_t)(nbuf + 16) * MAXBSIZE));
488 	buffer_map.system_map = 1;
489 	kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
490 		      ((vm_offset_t)(nswbuf_mem + nswbuf_kva) * MAXPHYS) +
491 		      pager_map_size);
492 	pager_map.system_map = 1;
493 	kprintf("avail memory = %ju (%ju MB)\n",
494 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages),
495 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages) /
496 		1024 / 1024);
497 }
498 
499 struct cpu_idle_stat {
500 	int	hint;
501 	int	reserved;
502 	u_long	halt;
503 	u_long	spin;
504 	u_long	repeat;
505 	u_long	repeat_last;
506 	u_long	repeat_delta;
507 	u_long	mwait_cx[CPU_MWAIT_CX_MAX];
508 } __cachealign;
509 
510 #define CPU_IDLE_STAT_HALT	-1
511 #define CPU_IDLE_STAT_SPIN	-2
512 
513 static struct cpu_idle_stat	cpu_idle_stats[MAXCPU];
514 
515 static int
516 sysctl_cpu_idle_cnt(SYSCTL_HANDLER_ARGS)
517 {
518 	int idx = arg2, cpu, error;
519 	u_long val = 0;
520 
521 	if (idx == CPU_IDLE_STAT_HALT) {
522 		for (cpu = 0; cpu < ncpus; ++cpu)
523 			val += cpu_idle_stats[cpu].halt;
524 	} else if (idx == CPU_IDLE_STAT_SPIN) {
525 		for (cpu = 0; cpu < ncpus; ++cpu)
526 			val += cpu_idle_stats[cpu].spin;
527 	} else {
528 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
529 		    ("invalid index %d", idx));
530 		for (cpu = 0; cpu < ncpus; ++cpu)
531 			val += cpu_idle_stats[cpu].mwait_cx[idx];
532 	}
533 
534 	error = sysctl_handle_quad(oidp, &val, 0, req);
535         if (error || req->newptr == NULL)
536 	        return error;
537 
538 	if (idx == CPU_IDLE_STAT_HALT) {
539 		for (cpu = 0; cpu < ncpus; ++cpu)
540 			cpu_idle_stats[cpu].halt = 0;
541 		cpu_idle_stats[0].halt = val;
542 	} else if (idx == CPU_IDLE_STAT_SPIN) {
543 		for (cpu = 0; cpu < ncpus; ++cpu)
544 			cpu_idle_stats[cpu].spin = 0;
545 		cpu_idle_stats[0].spin = val;
546 	} else {
547 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
548 		    ("invalid index %d", idx));
549 		for (cpu = 0; cpu < ncpus; ++cpu)
550 			cpu_idle_stats[cpu].mwait_cx[idx] = 0;
551 		cpu_idle_stats[0].mwait_cx[idx] = val;
552 	}
553 	return 0;
554 }
555 
556 static void
557 cpu_mwait_attach(void)
558 {
559 	struct sbuf sb;
560 	int hint_idx, i;
561 
562 	if (!CPU_MWAIT_HAS_CX)
563 		return;
564 
565 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
566 	    (CPUID_TO_FAMILY(cpu_id) > 0xf ||
567 	     (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
568 	      CPUID_TO_MODEL(cpu_id) >= 0xf))) {
569 		int bm_sts = 1;
570 
571 		/*
572 		 * Pentium dual-core, Core 2 and beyond do not need any
573 		 * additional activities to enter deep C-state, i.e. C3(+).
574 		 */
575 		cpu_mwait_cx_no_bmarb();
576 
577 		TUNABLE_INT_FETCH("machdep.cpu.mwait.bm_sts", &bm_sts);
578 		if (!bm_sts)
579 			cpu_mwait_cx_no_bmsts();
580 	}
581 
582 	sbuf_new(&sb, cpu_mwait_cx_supported,
583 	    sizeof(cpu_mwait_cx_supported), SBUF_FIXEDLEN);
584 
585 	for (i = 0; i < CPU_MWAIT_CX_MAX; ++i) {
586 		struct cpu_mwait_cx *cx = &cpu_mwait_cx_info[i];
587 		int sub;
588 
589 		ksnprintf(cx->name, sizeof(cx->name), "C%d", i);
590 
591 		sysctl_ctx_init(&cx->sysctl_ctx);
592 		cx->sysctl_tree = SYSCTL_ADD_NODE(&cx->sysctl_ctx,
593 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait), OID_AUTO,
594 		    cx->name, CTLFLAG_RW, NULL, "Cx control/info");
595 		if (cx->sysctl_tree == NULL)
596 			continue;
597 
598 		cx->subcnt = CPUID_MWAIT_CX_SUBCNT(cpu_mwait_extemu, i);
599 		SYSCTL_ADD_INT(&cx->sysctl_ctx,
600 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
601 		    "subcnt", CTLFLAG_RD, &cx->subcnt, 0,
602 		    "sub-state count");
603 		SYSCTL_ADD_PROC(&cx->sysctl_ctx,
604 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
605 		    "entered", (CTLTYPE_QUAD | CTLFLAG_RW), 0,
606 		    i, sysctl_cpu_idle_cnt, "Q", "# of times entered");
607 
608 		for (sub = 0; sub < cx->subcnt; ++sub)
609 			sbuf_printf(&sb, "C%d/%d ", i, sub);
610 	}
611 	sbuf_trim(&sb);
612 	sbuf_finish(&sb);
613 
614 	/*
615 	 * Non-deep C-states
616 	 */
617 	cpu_mwait_c1_hints_cnt = cpu_mwait_cx_info[CPU_MWAIT_C1].subcnt;
618 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i)
619 		cpu_mwait_hints_cnt += cpu_mwait_cx_info[i].subcnt;
620 	cpu_mwait_hints = kmalloc(sizeof(int) * cpu_mwait_hints_cnt,
621 				  M_DEVBUF, M_WAITOK);
622 
623 	hint_idx = 0;
624 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i) {
625 		int j, subcnt;
626 
627 		subcnt = cpu_mwait_cx_info[i].subcnt;
628 		for (j = 0; j < subcnt; ++j) {
629 			KASSERT(hint_idx < cpu_mwait_hints_cnt,
630 			    ("invalid mwait hint index %d", hint_idx));
631 			cpu_mwait_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
632 			++hint_idx;
633 		}
634 	}
635 	KASSERT(hint_idx == cpu_mwait_hints_cnt,
636 	    ("mwait hint count %d != index %d",
637 	     cpu_mwait_hints_cnt, hint_idx));
638 
639 	if (bootverbose) {
640 		kprintf("MWAIT hints (%d C1 hints):\n", cpu_mwait_c1_hints_cnt);
641 		for (i = 0; i < cpu_mwait_hints_cnt; ++i) {
642 			int hint = cpu_mwait_hints[i];
643 
644 			kprintf("  C%d/%d hint 0x%04x\n",
645 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
646 			    hint);
647 		}
648 	}
649 
650 	/*
651 	 * Deep C-states
652 	 */
653 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i)
654 		cpu_mwait_deep_hints_cnt += cpu_mwait_cx_info[i].subcnt;
655 	cpu_mwait_deep_hints = kmalloc(sizeof(int) * cpu_mwait_deep_hints_cnt,
656 	    M_DEVBUF, M_WAITOK);
657 
658 	hint_idx = 0;
659 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i) {
660 		int j, subcnt;
661 
662 		subcnt = cpu_mwait_cx_info[i].subcnt;
663 		for (j = 0; j < subcnt; ++j) {
664 			KASSERT(hint_idx < cpu_mwait_deep_hints_cnt,
665 			    ("invalid mwait deep hint index %d", hint_idx));
666 			cpu_mwait_deep_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
667 			++hint_idx;
668 		}
669 	}
670 	KASSERT(hint_idx == cpu_mwait_deep_hints_cnt,
671 	    ("mwait deep hint count %d != index %d",
672 	     cpu_mwait_deep_hints_cnt, hint_idx));
673 
674 	if (bootverbose) {
675 		kprintf("MWAIT deep hints:\n");
676 		for (i = 0; i < cpu_mwait_deep_hints_cnt; ++i) {
677 			int hint = cpu_mwait_deep_hints[i];
678 
679 			kprintf("  C%d/%d hint 0x%04x\n",
680 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
681 			    hint);
682 		}
683 	}
684 	cpu_idle_repeat_max = 256 * cpu_mwait_deep_hints_cnt;
685 
686 	for (i = 0; i < ncpus; ++i) {
687 		char name[16];
688 
689 		ksnprintf(name, sizeof(name), "idle%d", i);
690 		SYSCTL_ADD_PROC(NULL,
691 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait_CX), OID_AUTO,
692 		    name, (CTLTYPE_STRING | CTLFLAG_RW), &cpu_idle_stats[i],
693 		    0, cpu_mwait_cx_pcpu_idle_sysctl, "A", "");
694 	}
695 }
696 
697 static void
698 cpu_finish(void *dummy __unused)
699 {
700 	cpu_setregs();
701 	cpu_mwait_attach();
702 }
703 
704 static void
705 pic_finish(void *dummy __unused)
706 {
707 	/* Log ELCR information */
708 	elcr_dump();
709 
710 	/* Log MPTABLE information */
711 	mptable_pci_int_dump();
712 
713 	/* Finalize PCI */
714 	MachIntrABI.finalize();
715 }
716 
717 /*
718  * Send an interrupt to process.
719  *
720  * Stack is set up to allow sigcode stored
721  * at top to call routine, followed by kcall
722  * to sigreturn routine below.  After sigreturn
723  * resets the signal mask, the stack, and the
724  * frame pointer, it returns to the user
725  * specified pc, psl.
726  */
727 void
728 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
729 {
730 	struct lwp *lp = curthread->td_lwp;
731 	struct proc *p = lp->lwp_proc;
732 	struct trapframe *regs;
733 	struct sigacts *psp = p->p_sigacts;
734 	struct sigframe sf, *sfp;
735 	int oonstack;
736 	char *sp;
737 
738 	regs = lp->lwp_md.md_regs;
739 	oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
740 
741 	/* Save user context */
742 	bzero(&sf, sizeof(struct sigframe));
743 	sf.sf_uc.uc_sigmask = *mask;
744 	sf.sf_uc.uc_stack = lp->lwp_sigstk;
745 	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
746 	KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
747 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
748 
749 	/* Make the size of the saved context visible to userland */
750 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
751 
752 	/* Allocate and validate space for the signal handler context. */
753         if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
754 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
755 		sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
756 			      sizeof(struct sigframe));
757 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
758 	} else {
759 		/* We take red zone into account */
760 		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
761 	}
762 
763 	/*
764 	 * XXX AVX needs 64-byte alignment but sigframe has other fields and
765 	 * the embedded ucontext is not at the front, so aligning this won't
766 	 * help us.  Fortunately we bcopy in/out of the sigframe, so the
767 	 * kernel is ok.
768 	 *
769 	 * The problem though is if userland winds up trying to use the
770 	 * context directly.
771 	 */
772 	sfp = (struct sigframe *)((intptr_t)sp & ~(intptr_t)0xF);
773 
774 	/* Translate the signal is appropriate */
775 	if (p->p_sysent->sv_sigtbl) {
776 		if (sig <= p->p_sysent->sv_sigsize)
777 			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
778 	}
779 
780 	/*
781 	 * Build the argument list for the signal handler.
782 	 *
783 	 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
784 	 */
785 	regs->tf_rdi = sig;				/* argument 1 */
786 	regs->tf_rdx = (register_t)&sfp->sf_uc;		/* argument 3 */
787 
788 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
789 		/*
790 		 * Signal handler installed with SA_SIGINFO.
791 		 *
792 		 * action(signo, siginfo, ucontext)
793 		 */
794 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* argument 2 */
795 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
796 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
797 
798 		/* fill siginfo structure */
799 		sf.sf_si.si_signo = sig;
800 		sf.sf_si.si_code = code;
801 		sf.sf_si.si_addr = (void *)regs->tf_addr;
802 	} else {
803 		/*
804 		 * Old FreeBSD-style arguments.
805 		 *
806 		 * handler (signo, code, [uc], addr)
807 		 */
808 		regs->tf_rsi = (register_t)code;	/* argument 2 */
809 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
810 		sf.sf_ahu.sf_handler = catcher;
811 	}
812 
813 	/*
814 	 * If we're a vm86 process, we want to save the segment registers.
815 	 * We also change eflags to be our emulated eflags, not the actual
816 	 * eflags.
817 	 */
818 #if 0 /* JG */
819 	if (regs->tf_eflags & PSL_VM) {
820 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
821 		struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
822 
823 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
824 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
825 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
826 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
827 
828 		if (vm86->vm86_has_vme == 0)
829 			sf.sf_uc.uc_mcontext.mc_eflags =
830 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
831 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
832 
833 		/*
834 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
835 		 * syscalls made by the signal handler.  This just avoids
836 		 * wasting time for our lazy fixup of such faults.  PSL_NT
837 		 * does nothing in vm86 mode, but vm86 programs can set it
838 		 * almost legitimately in probes for old cpu types.
839 		 */
840 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
841 	}
842 #endif
843 
844 	/*
845 	 * Save the FPU state and reinit the FP unit
846 	 */
847 	npxpush(&sf.sf_uc.uc_mcontext);
848 
849 	/*
850 	 * Copy the sigframe out to the user's stack.
851 	 */
852 	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
853 		/*
854 		 * Something is wrong with the stack pointer.
855 		 * ...Kill the process.
856 		 */
857 		sigexit(lp, SIGILL);
858 	}
859 
860 	regs->tf_rsp = (register_t)sfp;
861 	regs->tf_rip = trunc_page64(PS_STRINGS - *(p->p_sysent->sv_szsigcode));
862 	regs->tf_rip -= SZSIGCODE_EXTRA_BYTES;
863 
864 	/*
865 	 * x86 abi specifies that the direction flag must be cleared
866 	 * on function entry
867 	 */
868 	regs->tf_rflags &= ~(PSL_T | PSL_D);
869 
870 	/*
871 	 * 64 bit mode has a code and stack selector but
872 	 * no data or extra selector.  %fs and %gs are not
873 	 * stored in-context.
874 	 */
875 	regs->tf_cs = _ucodesel;
876 	regs->tf_ss = _udatasel;
877 	clear_quickret();
878 }
879 
880 /*
881  * Sanitize the trapframe for a virtual kernel passing control to a custom
882  * VM context.  Remove any items that would otherwise create a privilage
883  * issue.
884  *
885  * XXX at the moment we allow userland to set the resume flag.  Is this a
886  * bad idea?
887  */
888 int
889 cpu_sanitize_frame(struct trapframe *frame)
890 {
891 	frame->tf_cs = _ucodesel;
892 	frame->tf_ss = _udatasel;
893 	/* XXX VM (8086) mode not supported? */
894 	frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
895 	frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
896 
897 	return(0);
898 }
899 
900 /*
901  * Sanitize the tls so loading the descriptor does not blow up
902  * on us.  For x86_64 we don't have to do anything.
903  */
904 int
905 cpu_sanitize_tls(struct savetls *tls)
906 {
907 	return(0);
908 }
909 
910 /*
911  * sigreturn(ucontext_t *sigcntxp)
912  *
913  * System call to cleanup state after a signal
914  * has been taken.  Reset signal mask and
915  * stack state from context left by sendsig (above).
916  * Return to previous pc and psl as specified by
917  * context left by sendsig. Check carefully to
918  * make sure that the user has not modified the
919  * state to gain improper privileges.
920  *
921  * MPSAFE
922  */
923 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
924 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
925 
926 int
927 sys_sigreturn(struct sigreturn_args *uap)
928 {
929 	struct lwp *lp = curthread->td_lwp;
930 	struct trapframe *regs;
931 	ucontext_t uc;
932 	ucontext_t *ucp;
933 	register_t rflags;
934 	int cs;
935 	int error;
936 
937 	/*
938 	 * We have to copy the information into kernel space so userland
939 	 * can't modify it while we are sniffing it.
940 	 */
941 	regs = lp->lwp_md.md_regs;
942 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
943 	if (error)
944 		return (error);
945 	ucp = &uc;
946 	rflags = ucp->uc_mcontext.mc_rflags;
947 
948 	/* VM (8086) mode not supported */
949 	rflags &= ~PSL_VM_UNSUPP;
950 
951 #if 0 /* JG */
952 	if (eflags & PSL_VM) {
953 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
954 		struct vm86_kernel *vm86;
955 
956 		/*
957 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
958 		 * set up the vm86 area, and we can't enter vm86 mode.
959 		 */
960 		if (lp->lwp_thread->td_pcb->pcb_ext == 0)
961 			return (EINVAL);
962 		vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
963 		if (vm86->vm86_inited == 0)
964 			return (EINVAL);
965 
966 		/* go back to user mode if both flags are set */
967 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
968 			trapsignal(lp, SIGBUS, 0);
969 
970 		if (vm86->vm86_has_vme) {
971 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
972 			    (eflags & VME_USERCHANGE) | PSL_VM;
973 		} else {
974 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
975 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
976 			    (eflags & VM_USERCHANGE) | PSL_VM;
977 		}
978 		bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
979 		tf->tf_eflags = eflags;
980 		tf->tf_vm86_ds = tf->tf_ds;
981 		tf->tf_vm86_es = tf->tf_es;
982 		tf->tf_vm86_fs = tf->tf_fs;
983 		tf->tf_vm86_gs = tf->tf_gs;
984 		tf->tf_ds = _udatasel;
985 		tf->tf_es = _udatasel;
986 		tf->tf_fs = _udatasel;
987 		tf->tf_gs = _udatasel;
988 	} else
989 #endif
990 	{
991 		/*
992 		 * Don't allow users to change privileged or reserved flags.
993 		 */
994 		/*
995 		 * XXX do allow users to change the privileged flag PSL_RF.
996 		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
997 		 * should sometimes set it there too.  tf_eflags is kept in
998 		 * the signal context during signal handling and there is no
999 		 * other place to remember it, so the PSL_RF bit may be
1000 		 * corrupted by the signal handler without us knowing.
1001 		 * Corruption of the PSL_RF bit at worst causes one more or
1002 		 * one less debugger trap, so allowing it is fairly harmless.
1003 		 */
1004 		if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
1005 			kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
1006 			return(EINVAL);
1007 		}
1008 
1009 		/*
1010 		 * Don't allow users to load a valid privileged %cs.  Let the
1011 		 * hardware check for invalid selectors, excess privilege in
1012 		 * other selectors, invalid %eip's and invalid %esp's.
1013 		 */
1014 		cs = ucp->uc_mcontext.mc_cs;
1015 		if (!CS_SECURE(cs)) {
1016 			kprintf("sigreturn: cs = 0x%x\n", cs);
1017 			trapsignal(lp, SIGBUS, T_PROTFLT);
1018 			return(EINVAL);
1019 		}
1020 		bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
1021 	}
1022 
1023 	/*
1024 	 * Restore the FPU state from the frame
1025 	 */
1026 	crit_enter();
1027 	npxpop(&ucp->uc_mcontext);
1028 
1029 	if (ucp->uc_mcontext.mc_onstack & 1)
1030 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
1031 	else
1032 		lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
1033 
1034 	lp->lwp_sigmask = ucp->uc_sigmask;
1035 	SIG_CANTMASK(lp->lwp_sigmask);
1036 	clear_quickret();
1037 	crit_exit();
1038 	return(EJUSTRETURN);
1039 }
1040 
1041 /*
1042  * Machine dependent boot() routine
1043  *
1044  * I haven't seen anything to put here yet
1045  * Possibly some stuff might be grafted back here from boot()
1046  */
1047 void
1048 cpu_boot(int howto)
1049 {
1050 }
1051 
1052 /*
1053  * Shutdown the CPU as much as possible
1054  */
1055 void
1056 cpu_halt(void)
1057 {
1058 	for (;;)
1059 		__asm__ __volatile("hlt");
1060 }
1061 
1062 /*
1063  * cpu_idle() represents the idle LWKT.  You cannot return from this function
1064  * (unless you want to blow things up!).  Instead we look for runnable threads
1065  * and loop or halt as appropriate.  Giant is not held on entry to the thread.
1066  *
1067  * The main loop is entered with a critical section held, we must release
1068  * the critical section before doing anything else.  lwkt_switch() will
1069  * check for pending interrupts due to entering and exiting its own
1070  * critical section.
1071  *
1072  * NOTE: On an SMP system we rely on a scheduler IPI to wake a HLTed cpu up.
1073  *	 However, there are cases where the idlethread will be entered with
1074  *	 the possibility that no IPI will occur and in such cases
1075  *	 lwkt_switch() sets TDF_IDLE_NOHLT.
1076  *
1077  * NOTE: cpu_idle_repeat determines how many entries into the idle thread
1078  *	 must occur before it starts using ACPI halt.
1079  *
1080  * NOTE: Value overridden in hammer_time().
1081  */
1082 static int	cpu_idle_hlt = 2;
1083 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
1084     &cpu_idle_hlt, 0, "Idle loop HLT enable");
1085 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_repeat, CTLFLAG_RW,
1086     &cpu_idle_repeat, 0, "Idle entries before acpi hlt");
1087 
1088 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_hltcnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1089     0, CPU_IDLE_STAT_HALT, sysctl_cpu_idle_cnt, "Q", "Idle loop entry halts");
1090 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_spincnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1091     0, CPU_IDLE_STAT_SPIN, sysctl_cpu_idle_cnt, "Q", "Idle loop entry spins");
1092 
1093 static void
1094 cpu_idle_default_hook(void)
1095 {
1096 	/*
1097 	 * We must guarentee that hlt is exactly the instruction
1098 	 * following the sti.
1099 	 */
1100 	__asm __volatile("sti; hlt");
1101 }
1102 
1103 /* Other subsystems (e.g., ACPI) can hook this later. */
1104 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
1105 
1106 static __inline int
1107 cpu_mwait_cx_hint(struct cpu_idle_stat *stat)
1108 {
1109 	int hint, cx_idx;
1110 	u_int idx;
1111 
1112 	hint = stat->hint;
1113 	if (hint >= 0)
1114 		goto done;
1115 
1116 	idx = (stat->repeat + stat->repeat_last + stat->repeat_delta) >>
1117 	    cpu_mwait_repeat_shift;
1118 	if (idx >= cpu_mwait_c1_hints_cnt) {
1119 		/* Step up faster, once we walked through all C1 states */
1120 		stat->repeat_delta += 1 << (cpu_mwait_repeat_shift + 1);
1121 	}
1122 	if (hint == CPU_MWAIT_HINT_AUTODEEP) {
1123 		if (idx >= cpu_mwait_deep_hints_cnt)
1124 			idx = cpu_mwait_deep_hints_cnt - 1;
1125 		hint = cpu_mwait_deep_hints[idx];
1126 	} else {
1127 		if (idx >= cpu_mwait_hints_cnt)
1128 			idx = cpu_mwait_hints_cnt - 1;
1129 		hint = cpu_mwait_hints[idx];
1130 	}
1131 done:
1132 	cx_idx = MWAIT_EAX_TO_CX(hint);
1133 	if (cx_idx >= 0 && cx_idx < CPU_MWAIT_CX_MAX)
1134 		stat->mwait_cx[cx_idx]++;
1135 	return hint;
1136 }
1137 
1138 void
1139 cpu_idle(void)
1140 {
1141 	globaldata_t gd = mycpu;
1142 	struct cpu_idle_stat *stat = &cpu_idle_stats[gd->gd_cpuid];
1143 	struct thread *td __debugvar = gd->gd_curthread;
1144 	int reqflags;
1145 
1146 	stat->repeat = stat->repeat_last = cpu_idle_repeat_max;
1147 
1148 	crit_exit();
1149 	KKASSERT(td->td_critcount == 0);
1150 
1151 	for (;;) {
1152 		/*
1153 		 * See if there are any LWKTs ready to go.
1154 		 */
1155 		lwkt_switch();
1156 
1157 		/*
1158 		 * When halting inside a cli we must check for reqflags
1159 		 * races, particularly [re]schedule requests.  Running
1160 		 * splz() does the job.
1161 		 *
1162 		 * cpu_idle_hlt:
1163 		 *	0	Never halt, just spin
1164 		 *
1165 		 *	1	Always use MONITOR/MWAIT if avail, HLT
1166 		 *		otherwise.
1167 		 *
1168 		 *		Better default for modern (Haswell+) Intel
1169 		 *		cpus.
1170 		 *
1171 		 *	2	Use HLT/MONITOR/MWAIT up to a point and then
1172 		 *		use the ACPI halt (default).  This is a hybrid
1173 		 *		approach.  See machdep.cpu_idle_repeat.
1174 		 *
1175 		 *		Better default for modern AMD cpus and older
1176 		 *		Intel cpus.
1177 		 *
1178 		 *	3	Always use the ACPI halt.  This typically
1179 		 *		eats the least amount of power but the cpu
1180 		 *		will be slow waking up.  Slows down e.g.
1181 		 *		compiles and other pipe/event oriented stuff.
1182 		 *
1183 		 *		Usually the best default for AMD cpus.
1184 		 *
1185 		 *	4	Always use HLT.
1186 		 *
1187 		 *	5	Always spin.
1188 		 *
1189 		 * NOTE: Interrupts are enabled and we are not in a critical
1190 		 *	 section.
1191 		 *
1192 		 * NOTE: Preemptions do not reset gd_idle_repeat.   Also we
1193 		 *	 don't bother capping gd_idle_repeat, it is ok if
1194 		 *	 it overflows (we do make it unsigned, however).
1195 		 *
1196 		 * Implement optimized invltlb operations when halted
1197 		 * in idle.  By setting the bit in smp_idleinvl_mask
1198 		 * we inform other cpus that they can set _reqs to
1199 		 * request an invltlb.  Current the code to do that
1200 		 * sets the bits in _reqs anyway, but then check _mask
1201 		 * to determine if they can assume the invltlb will execute.
1202 		 *
1203 		 * A critical section is required to ensure that interrupts
1204 		 * do not fully run until after we've had a chance to execute
1205 		 * the request.
1206 		 */
1207 		if (gd->gd_idle_repeat == 0) {
1208 			stat->repeat = (stat->repeat + stat->repeat_last) >> 1;
1209 			if (stat->repeat > cpu_idle_repeat_max)
1210 				stat->repeat = cpu_idle_repeat_max;
1211 			stat->repeat_last = 0;
1212 			stat->repeat_delta = 0;
1213 		}
1214 		++stat->repeat_last;
1215 
1216 		/*
1217 		 * General idle thread halt code
1218 		 *
1219 		 * IBRS NOTES - IBRS is a SPECTRE mitigation.  When going
1220 		 *		idle, disable IBRS to reduce hyperthread
1221 		 *		overhead.
1222 		 */
1223 		++gd->gd_idle_repeat;
1224 
1225 		switch(cpu_idle_hlt) {
1226 		default:
1227 		case 0:
1228 			/*
1229 			 * Always spin
1230 			 */
1231 			;
1232 do_spin:
1233 			splz();
1234 			__asm __volatile("sti");
1235 			stat->spin++;
1236 			crit_enter_gd(gd);
1237 			crit_exit_gd(gd);
1238 			break;
1239 		case 2:
1240 			/*
1241 			 * Use MONITOR/MWAIT (or HLT) for a few cycles,
1242 			 * then start using the ACPI halt code if we
1243 			 * continue to be idle.
1244 			 */
1245 			if (gd->gd_idle_repeat >= cpu_idle_repeat)
1246 				goto do_acpi;
1247 			/* FALL THROUGH */
1248 		case 1:
1249 			/*
1250 			 * Always use MONITOR/MWAIT (will use HLT if
1251 			 * MONITOR/MWAIT not available).
1252 			 */
1253 			if (cpu_mi_feature & CPU_MI_MONITOR) {
1254 				splz(); /* XXX */
1255 				reqflags = gd->gd_reqflags;
1256 				if (reqflags & RQF_IDLECHECK_WK_MASK)
1257 					goto do_spin;
1258 				crit_enter_gd(gd);
1259 				ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask, gd->gd_cpuid);
1260 				/*
1261 				 * IBRS/STIBP
1262 				 */
1263 				if (pscpu->trampoline.tr_pcb_spec_ctrl[1] &
1264 				    SPEC_CTRL_DUMMY_ENABLE) {
1265 					wrmsr(MSR_SPEC_CTRL, pscpu->trampoline.tr_pcb_spec_ctrl[1] & (SPEC_CTRL_IBRS|SPEC_CTRL_STIBP));
1266 				}
1267 				cpu_mmw_pause_int(&gd->gd_reqflags, reqflags,
1268 						  cpu_mwait_cx_hint(stat), 0);
1269 				if (pscpu->trampoline.tr_pcb_spec_ctrl[0] &
1270 				    SPEC_CTRL_DUMMY_ENABLE) {
1271 					wrmsr(MSR_SPEC_CTRL, pscpu->trampoline.tr_pcb_spec_ctrl[0] & (SPEC_CTRL_IBRS|SPEC_CTRL_STIBP));
1272 				}
1273 				stat->halt++;
1274 				ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask, gd->gd_cpuid);
1275 				if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1276 							      gd->gd_cpuid)) {
1277 					cpu_invltlb();
1278 					cpu_mfence();
1279 				}
1280 				crit_exit_gd(gd);
1281 				break;
1282 			}
1283 			/* FALLTHROUGH */
1284 		case 4:
1285 			/*
1286 			 * Use HLT
1287 			 */
1288 			__asm __volatile("cli");
1289 			splz();
1290 			crit_enter_gd(gd);
1291 			if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1292 				ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask,
1293 						     gd->gd_cpuid);
1294 				if (pscpu->trampoline.tr_pcb_spec_ctrl[1] &
1295 				    SPEC_CTRL_DUMMY_ENABLE) {
1296 					wrmsr(MSR_SPEC_CTRL, pscpu->trampoline.tr_pcb_spec_ctrl[1] & (SPEC_CTRL_IBRS|SPEC_CTRL_STIBP));
1297 				}
1298 				cpu_idle_default_hook();
1299 				if (pscpu->trampoline.tr_pcb_spec_ctrl[0] &
1300 				    SPEC_CTRL_DUMMY_ENABLE) {
1301 					wrmsr(MSR_SPEC_CTRL, pscpu->trampoline.tr_pcb_spec_ctrl[0] & (SPEC_CTRL_IBRS|SPEC_CTRL_STIBP));
1302 				}
1303 				ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask,
1304 						       gd->gd_cpuid);
1305 				if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1306 							      gd->gd_cpuid)) {
1307 					cpu_invltlb();
1308 					cpu_mfence();
1309 				}
1310 			}
1311 			__asm __volatile("sti");
1312 			stat->halt++;
1313 			crit_exit_gd(gd);
1314 			break;
1315 		case 3:
1316 			/*
1317 			 * Use ACPI halt
1318 			 */
1319 			;
1320 do_acpi:
1321 			__asm __volatile("cli");
1322 			splz();
1323 			crit_enter_gd(gd);
1324 			if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1325 				ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask,
1326 						     gd->gd_cpuid);
1327 				if (pscpu->trampoline.tr_pcb_spec_ctrl[1] &
1328 				    SPEC_CTRL_DUMMY_ENABLE) {
1329 					wrmsr(MSR_SPEC_CTRL, pscpu->trampoline.tr_pcb_spec_ctrl[1] & (SPEC_CTRL_IBRS|SPEC_CTRL_STIBP));
1330 				}
1331 				cpu_idle_hook();
1332 				if (pscpu->trampoline.tr_pcb_spec_ctrl[0] &
1333 				    SPEC_CTRL_DUMMY_ENABLE) {
1334 					wrmsr(MSR_SPEC_CTRL, pscpu->trampoline.tr_pcb_spec_ctrl[0] & (SPEC_CTRL_IBRS|SPEC_CTRL_STIBP));
1335 				}
1336 				ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask,
1337 						       gd->gd_cpuid);
1338 				if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1339 							      gd->gd_cpuid)) {
1340 					cpu_invltlb();
1341 					cpu_mfence();
1342 				}
1343 			}
1344 			__asm __volatile("sti");
1345 			stat->halt++;
1346 			crit_exit_gd(gd);
1347 			break;
1348 		}
1349 	}
1350 }
1351 
1352 /*
1353  * Called from deep ACPI via cpu_idle_hook() (see above) to actually halt
1354  * the cpu in C1.  ACPI might use other halt methods for deeper states
1355  * and not reach here.
1356  *
1357  * For now we always use HLT as we are not sure what ACPI may have actually
1358  * done.  MONITOR/MWAIT might not be appropriate.
1359  *
1360  * NOTE: MONITOR/MWAIT does not appear to throttle AMD cpus, while HLT
1361  *	 does.  On Intel, MONITOR/MWAIT does appear to throttle the cpu.
1362  */
1363 void
1364 cpu_idle_halt(void)
1365 {
1366 	globaldata_t gd;
1367 
1368 	gd = mycpu;
1369 #if 0
1370 	/* DISABLED FOR NOW */
1371 	struct cpu_idle_stat *stat;
1372 	int reqflags;
1373 
1374 
1375 	if ((cpu_idle_hlt == 1 || cpu_idle_hlt == 2) &&
1376 	    (cpu_mi_feature & CPU_MI_MONITOR) &&
1377 	    cpu_vendor_id != CPU_VENDOR_AMD) {
1378 		/*
1379 		 * Use MONITOR/MWAIT
1380 		 *
1381 		 * (NOTE: On ryzen, MWAIT does not throttle clocks, so we
1382 		 *	  have to use HLT)
1383 		 */
1384 		stat = &cpu_idle_stats[gd->gd_cpuid];
1385 		reqflags = gd->gd_reqflags;
1386 		if ((reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1387 			__asm __volatile("sti");
1388 			cpu_mmw_pause_int(&gd->gd_reqflags, reqflags,
1389 					  cpu_mwait_cx_hint(stat), 0);
1390 		} else {
1391 			__asm __volatile("sti; pause");
1392 		}
1393 	} else
1394 #endif
1395 	{
1396 		/*
1397 		 * Use HLT
1398 		 */
1399 		if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0)
1400 			__asm __volatile("sti; hlt");
1401 		else
1402 			__asm __volatile("sti; pause");
1403 	}
1404 }
1405 
1406 
1407 /*
1408  * Called in a loop indirectly via Xcpustop
1409  */
1410 void
1411 cpu_smp_stopped(void)
1412 {
1413 	globaldata_t gd = mycpu;
1414 	volatile __uint64_t *ptr;
1415 	__uint64_t ovalue;
1416 
1417 	ptr = CPUMASK_ADDR(started_cpus, gd->gd_cpuid);
1418 	ovalue = *ptr;
1419 	if ((ovalue & CPUMASK_SIMPLE(gd->gd_cpuid & 63)) == 0) {
1420 		if (cpu_mi_feature & CPU_MI_MONITOR) {
1421 			if (cpu_mwait_hints) {
1422 				cpu_mmw_pause_long(__DEVOLATILE(void *, ptr),
1423 					   ovalue,
1424 					   cpu_mwait_hints[
1425 						cpu_mwait_hints_cnt - 1], 0);
1426 			} else {
1427 				cpu_mmw_pause_long(__DEVOLATILE(void *, ptr),
1428 					   ovalue, 0, 0);
1429 			}
1430 		} else {
1431 			cpu_halt();	/* depend on lapic timer */
1432 		}
1433 	}
1434 }
1435 
1436 /*
1437  * This routine is called if a spinlock has been held through the
1438  * exponential backoff period and is seriously contested.  On a real cpu
1439  * we let it spin.
1440  */
1441 void
1442 cpu_spinlock_contested(void)
1443 {
1444 	cpu_pause();
1445 }
1446 
1447 /*
1448  * Clear registers on exec
1449  */
1450 void
1451 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
1452 {
1453 	struct thread *td = curthread;
1454 	struct lwp *lp = td->td_lwp;
1455 	struct pcb *pcb = td->td_pcb;
1456 	struct trapframe *regs = lp->lwp_md.md_regs;
1457 
1458 	user_ldt_free(pcb);
1459 
1460 	clear_quickret();
1461 	bzero((char *)regs, sizeof(struct trapframe));
1462 	regs->tf_rip = entry;
1463 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
1464 	regs->tf_rdi = stack;		/* argv */
1465 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
1466 	regs->tf_ss = _udatasel;
1467 	regs->tf_cs = _ucodesel;
1468 	regs->tf_rbx = ps_strings;
1469 
1470 	/*
1471 	 * Reset the hardware debug registers if they were in use.
1472 	 * They won't have any meaning for the newly exec'd process.
1473 	 */
1474 	if (pcb->pcb_flags & PCB_DBREGS) {
1475 		pcb->pcb_dr0 = 0;
1476 		pcb->pcb_dr1 = 0;
1477 		pcb->pcb_dr2 = 0;
1478 		pcb->pcb_dr3 = 0;
1479 		pcb->pcb_dr6 = 0;
1480 		pcb->pcb_dr7 = 0; /* JG set bit 10? */
1481 		if (pcb == td->td_pcb) {
1482 			/*
1483 			 * Clear the debug registers on the running
1484 			 * CPU, otherwise they will end up affecting
1485 			 * the next process we switch to.
1486 			 */
1487 			reset_dbregs();
1488 		}
1489 		pcb->pcb_flags &= ~PCB_DBREGS;
1490 	}
1491 
1492 	/*
1493 	 * Initialize the math emulator (if any) for the current process.
1494 	 * Actually, just clear the bit that says that the emulator has
1495 	 * been initialized.  Initialization is delayed until the process
1496 	 * traps to the emulator (if it is done at all) mainly because
1497 	 * emulators don't provide an entry point for initialization.
1498 	 */
1499 	pcb->pcb_flags &= ~FP_SOFTFP;
1500 
1501 	/*
1502 	 * NOTE: do not set CR0_TS here.  npxinit() must do it after clearing
1503 	 *	 gd_npxthread.  Otherwise a preemptive interrupt thread
1504 	 *	 may panic in npxdna().
1505 	 */
1506 	crit_enter();
1507 	load_cr0(rcr0() | CR0_MP);
1508 
1509 	/*
1510 	 * NOTE: The MSR values must be correct so we can return to
1511 	 *	 userland.  gd_user_fs/gs must be correct so the switch
1512 	 *	 code knows what the current MSR values are.
1513 	 */
1514 	pcb->pcb_fsbase = 0;	/* Values loaded from PCB on switch */
1515 	pcb->pcb_gsbase = 0;
1516 	mdcpu->gd_user_fs = 0;	/* Cache of current MSR values */
1517 	mdcpu->gd_user_gs = 0;
1518 	wrmsr(MSR_FSBASE, 0);	/* Set MSR values for return to userland */
1519 	wrmsr(MSR_KGSBASE, 0);
1520 
1521 	/* Initialize the npx (if any) for the current process. */
1522 	npxinit();
1523 	crit_exit();
1524 
1525 	pcb->pcb_ds = _udatasel;
1526 	pcb->pcb_es = _udatasel;
1527 	pcb->pcb_fs = _udatasel;
1528 	pcb->pcb_gs = _udatasel;
1529 }
1530 
1531 void
1532 cpu_setregs(void)
1533 {
1534 	register_t cr0;
1535 
1536 	cr0 = rcr0();
1537 	cr0 |= CR0_NE;			/* Done by npxinit() */
1538 	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1539 	cr0 |= CR0_WP | CR0_AM;
1540 	load_cr0(cr0);
1541 	load_gs(_udatasel);
1542 }
1543 
1544 static int
1545 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1546 {
1547 	int error;
1548 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1549 		req);
1550 	if (!error && req->newptr)
1551 		resettodr();
1552 	return (error);
1553 }
1554 
1555 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1556 	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1557 
1558 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1559 	CTLFLAG_RW, &disable_rtc_set, 0, "");
1560 
1561 #if 0 /* JG */
1562 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1563 	CTLFLAG_RD, &bootinfo, bootinfo, "");
1564 #endif
1565 
1566 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1567 	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1568 
1569 static int
1570 efi_map_sysctl_handler(SYSCTL_HANDLER_ARGS)
1571 {
1572 	struct efi_map_header *efihdr;
1573 	caddr_t kmdp;
1574 	uint32_t efisize;
1575 
1576 	kmdp = preload_search_by_type("elf kernel");
1577 	if (kmdp == NULL)
1578 		kmdp = preload_search_by_type("elf64 kernel");
1579 	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
1580 	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
1581 	if (efihdr == NULL)
1582 		return (0);
1583 	efisize = *((uint32_t *)efihdr - 1);
1584 	return (SYSCTL_OUT(req, efihdr, efisize));
1585 }
1586 SYSCTL_PROC(_machdep, OID_AUTO, efi_map, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
1587     efi_map_sysctl_handler, "S,efi_map_header", "Raw EFI Memory Map");
1588 
1589 /*
1590  * Initialize x86 and configure to run kernel
1591  */
1592 
1593 /*
1594  * Initialize segments & interrupt table
1595  */
1596 
1597 int _default_ldt;
1598 struct user_segment_descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1599 struct gate_descriptor idt_arr[MAXCPU][NIDT];
1600 #if 0 /* JG */
1601 union descriptor ldt[NLDT];		/* local descriptor table */
1602 #endif
1603 
1604 /* table descriptors - used to load tables by cpu */
1605 struct region_descriptor r_gdt;
1606 struct region_descriptor r_idt_arr[MAXCPU];
1607 
1608 /* JG proc0paddr is a virtual address */
1609 void *proc0paddr;
1610 /* JG alignment? */
1611 char proc0paddr_buff[LWKT_THREAD_STACK];
1612 
1613 
1614 /* software prototypes -- in more palatable form */
1615 struct soft_segment_descriptor gdt_segs[] = {
1616 /* GNULL_SEL	0 Null Descriptor */
1617 {	0x0,			/* segment base address  */
1618 	0x0,			/* length */
1619 	0,			/* segment type */
1620 	0,			/* segment descriptor priority level */
1621 	0,			/* segment descriptor present */
1622 	0,			/* long */
1623 	0,			/* default 32 vs 16 bit size */
1624 	0			/* limit granularity (byte/page units)*/ },
1625 /* GCODE_SEL	1 Code Descriptor for kernel */
1626 {	0x0,			/* segment base address  */
1627 	0xfffff,		/* length - all address space */
1628 	SDT_MEMERA,		/* segment type */
1629 	SEL_KPL,		/* segment descriptor priority level */
1630 	1,			/* segment descriptor present */
1631 	1,			/* long */
1632 	0,			/* default 32 vs 16 bit size */
1633 	1			/* limit granularity (byte/page units)*/ },
1634 /* GDATA_SEL	2 Data Descriptor for kernel */
1635 {	0x0,			/* segment base address  */
1636 	0xfffff,		/* length - all address space */
1637 	SDT_MEMRWA,		/* segment type */
1638 	SEL_KPL,		/* segment descriptor priority level */
1639 	1,			/* segment descriptor present */
1640 	1,			/* long */
1641 	0,			/* default 32 vs 16 bit size */
1642 	1			/* limit granularity (byte/page units)*/ },
1643 /* GUCODE32_SEL	3 32 bit Code Descriptor for user */
1644 {	0x0,			/* segment base address  */
1645 	0xfffff,		/* length - all address space */
1646 	SDT_MEMERA,		/* segment type */
1647 	SEL_UPL,		/* segment descriptor priority level */
1648 	1,			/* segment descriptor present */
1649 	0,			/* long */
1650 	1,			/* default 32 vs 16 bit size */
1651 	1			/* limit granularity (byte/page units)*/ },
1652 /* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
1653 {	0x0,			/* segment base address  */
1654 	0xfffff,		/* length - all address space */
1655 	SDT_MEMRWA,		/* segment type */
1656 	SEL_UPL,		/* segment descriptor priority level */
1657 	1,			/* segment descriptor present */
1658 	0,			/* long */
1659 	1,			/* default 32 vs 16 bit size */
1660 	1			/* limit granularity (byte/page units)*/ },
1661 /* GUCODE_SEL	5 64 bit Code Descriptor for user */
1662 {	0x0,			/* segment base address  */
1663 	0xfffff,		/* length - all address space */
1664 	SDT_MEMERA,		/* segment type */
1665 	SEL_UPL,		/* segment descriptor priority level */
1666 	1,			/* segment descriptor present */
1667 	1,			/* long */
1668 	0,			/* default 32 vs 16 bit size */
1669 	1			/* limit granularity (byte/page units)*/ },
1670 /* GPROC0_SEL	6 Proc 0 Tss Descriptor */
1671 {
1672 	0x0,			/* segment base address */
1673 	sizeof(struct x86_64tss)-1,/* length - all address space */
1674 	SDT_SYSTSS,		/* segment type */
1675 	SEL_KPL,		/* segment descriptor priority level */
1676 	1,			/* segment descriptor present */
1677 	0,			/* long */
1678 	0,			/* unused - default 32 vs 16 bit size */
1679 	0			/* limit granularity (byte/page units)*/ },
1680 /* Actually, the TSS is a system descriptor which is double size */
1681 {	0x0,			/* segment base address  */
1682 	0x0,			/* length */
1683 	0,			/* segment type */
1684 	0,			/* segment descriptor priority level */
1685 	0,			/* segment descriptor present */
1686 	0,			/* long */
1687 	0,			/* default 32 vs 16 bit size */
1688 	0			/* limit granularity (byte/page units)*/ },
1689 /* GUGS32_SEL	8 32 bit GS Descriptor for user */
1690 {	0x0,			/* segment base address  */
1691 	0xfffff,		/* length - all address space */
1692 	SDT_MEMRWA,		/* segment type */
1693 	SEL_UPL,		/* segment descriptor priority level */
1694 	1,			/* segment descriptor present */
1695 	0,			/* long */
1696 	1,			/* default 32 vs 16 bit size */
1697 	1			/* limit granularity (byte/page units)*/ },
1698 };
1699 
1700 void
1701 setidt_global(int idx, inthand_t *func, int typ, int dpl, int ist)
1702 {
1703 	int cpu;
1704 
1705 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
1706 		struct gate_descriptor *ip = &idt_arr[cpu][idx];
1707 
1708 		ip->gd_looffset = (uintptr_t)func;
1709 		ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1710 		ip->gd_ist = ist;
1711 		ip->gd_xx = 0;
1712 		ip->gd_type = typ;
1713 		ip->gd_dpl = dpl;
1714 		ip->gd_p = 1;
1715 		ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1716 	}
1717 }
1718 
1719 void
1720 setidt(int idx, inthand_t *func, int typ, int dpl, int ist, int cpu)
1721 {
1722 	struct gate_descriptor *ip;
1723 
1724 	KASSERT(cpu >= 0 && cpu < ncpus, ("invalid cpu %d", cpu));
1725 
1726 	ip = &idt_arr[cpu][idx];
1727 	ip->gd_looffset = (uintptr_t)func;
1728 	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1729 	ip->gd_ist = ist;
1730 	ip->gd_xx = 0;
1731 	ip->gd_type = typ;
1732 	ip->gd_dpl = dpl;
1733 	ip->gd_p = 1;
1734 	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1735 }
1736 
1737 #define	IDTVEC(name)	__CONCAT(X,name)
1738 
1739 extern inthand_t
1740 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1741 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1742 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1743 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1744 	IDTVEC(xmm), IDTVEC(dblfault),
1745 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1746 
1747 void
1748 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1749 {
1750 	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1751 	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1752 	ssd->ssd_type  = sd->sd_type;
1753 	ssd->ssd_dpl   = sd->sd_dpl;
1754 	ssd->ssd_p     = sd->sd_p;
1755 	ssd->ssd_def32 = sd->sd_def32;
1756 	ssd->ssd_gran  = sd->sd_gran;
1757 }
1758 
1759 void
1760 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1761 {
1762 
1763 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1764 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1765 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1766 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1767 	sd->sd_type  = ssd->ssd_type;
1768 	sd->sd_dpl   = ssd->ssd_dpl;
1769 	sd->sd_p     = ssd->ssd_p;
1770 	sd->sd_long  = ssd->ssd_long;
1771 	sd->sd_def32 = ssd->ssd_def32;
1772 	sd->sd_gran  = ssd->ssd_gran;
1773 }
1774 
1775 void
1776 ssdtosyssd(struct soft_segment_descriptor *ssd,
1777     struct system_segment_descriptor *sd)
1778 {
1779 
1780 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1781 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1782 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1783 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1784 	sd->sd_type  = ssd->ssd_type;
1785 	sd->sd_dpl   = ssd->ssd_dpl;
1786 	sd->sd_p     = ssd->ssd_p;
1787 	sd->sd_gran  = ssd->ssd_gran;
1788 }
1789 
1790 /*
1791  * Populate the (physmap) array with base/bound pairs describing the
1792  * available physical memory in the system, then test this memory and
1793  * build the phys_avail array describing the actually-available memory.
1794  *
1795  * If we cannot accurately determine the physical memory map, then use
1796  * value from the 0xE801 call, and failing that, the RTC.
1797  *
1798  * Total memory size may be set by the kernel environment variable
1799  * hw.physmem or the compile-time define MAXMEM.
1800  *
1801  * Memory is aligned to PHYSMAP_ALIGN which must be a multiple
1802  * of PAGE_SIZE.  This also greatly reduces the memory test time
1803  * which would otherwise be excessive on machines with > 8G of ram.
1804  *
1805  * XXX first should be vm_paddr_t.
1806  */
1807 
1808 #define PHYSMAP_ALIGN		(vm_paddr_t)(128 * 1024)
1809 #define PHYSMAP_ALIGN_MASK	(vm_paddr_t)(PHYSMAP_ALIGN - 1)
1810 #define PHYSMAP_SIZE		VM_PHYSSEG_MAX
1811 
1812 vm_paddr_t physmap[PHYSMAP_SIZE];
1813 struct bios_smap *smapbase, *smap, *smapend;
1814 struct efi_map_header *efihdrbase;
1815 u_int32_t smapsize;
1816 
1817 #define PHYSMAP_HANDWAVE	(vm_paddr_t)(2 * 1024 * 1024)
1818 #define PHYSMAP_HANDWAVE_MASK	(PHYSMAP_HANDWAVE - 1)
1819 
1820 static void
1821 add_smap_entries(int *physmap_idx)
1822 {
1823 	int i;
1824 
1825 	smapsize = *((u_int32_t *)smapbase - 1);
1826 	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1827 
1828 	for (smap = smapbase; smap < smapend; smap++) {
1829 		if (boothowto & RB_VERBOSE)
1830 			kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1831 			    smap->type, smap->base, smap->length);
1832 
1833 		if (smap->type != SMAP_TYPE_MEMORY)
1834 			continue;
1835 
1836 		if (smap->length == 0)
1837 			continue;
1838 
1839 		for (i = 0; i <= *physmap_idx; i += 2) {
1840 			if (smap->base < physmap[i + 1]) {
1841 				if (boothowto & RB_VERBOSE) {
1842 					kprintf("Overlapping or non-monotonic "
1843 						"memory region, ignoring "
1844 						"second region\n");
1845 				}
1846 				break;
1847 			}
1848 		}
1849 		if (i <= *physmap_idx)
1850 			continue;
1851 
1852 		Realmem += smap->length;
1853 
1854 		if (smap->base == physmap[*physmap_idx + 1]) {
1855 			physmap[*physmap_idx + 1] += smap->length;
1856 			continue;
1857 		}
1858 
1859 		*physmap_idx += 2;
1860 		if (*physmap_idx == PHYSMAP_SIZE) {
1861 			kprintf("Too many segments in the physical "
1862 				"address map, giving up\n");
1863 			break;
1864 		}
1865 		physmap[*physmap_idx] = smap->base;
1866 		physmap[*physmap_idx + 1] = smap->base + smap->length;
1867 	}
1868 }
1869 
1870 static void
1871 add_efi_map_entries(int *physmap_idx)
1872 {
1873 	 struct efi_md *map, *p;
1874 	 const char *type;
1875 	 size_t efisz;
1876 	 int i, ndesc;
1877 
1878 	static const char *types[] = {
1879 		"Reserved",
1880 		"LoaderCode",
1881 		"LoaderData",
1882 		"BootServicesCode",
1883 		"BootServicesData",
1884 		"RuntimeServicesCode",
1885 		"RuntimeServicesData",
1886 		"ConventionalMemory",
1887 		"UnusableMemory",
1888 		"ACPIReclaimMemory",
1889 		"ACPIMemoryNVS",
1890 		"MemoryMappedIO",
1891 		"MemoryMappedIOPortSpace",
1892 		"PalCode"
1893 	 };
1894 
1895 	/*
1896 	 * Memory map data provided by UEFI via the GetMemoryMap
1897 	 * Boot Services API.
1898 	 */
1899 	efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
1900 	map = (struct efi_md *)((uint8_t *)efihdrbase + efisz);
1901 
1902 	if (efihdrbase->descriptor_size == 0)
1903 		return;
1904 	ndesc = efihdrbase->memory_size / efihdrbase->descriptor_size;
1905 
1906 	if (boothowto & RB_VERBOSE)
1907 		kprintf("%23s %12s %12s %8s %4s\n",
1908 		    "Type", "Physical", "Virtual", "#Pages", "Attr");
1909 
1910 	for (i = 0, p = map; i < ndesc; i++,
1911 	    p = efi_next_descriptor(p, efihdrbase->descriptor_size)) {
1912 		if (boothowto & RB_VERBOSE) {
1913 			if (p->md_type <= EFI_MD_TYPE_PALCODE)
1914 				type = types[p->md_type];
1915 			else
1916 				type = "<INVALID>";
1917 			kprintf("%23s %012lx %12p %08lx ", type, p->md_phys,
1918 			    p->md_virt, p->md_pages);
1919 			if (p->md_attr & EFI_MD_ATTR_UC)
1920 				kprintf("UC ");
1921 			if (p->md_attr & EFI_MD_ATTR_WC)
1922 				kprintf("WC ");
1923 			if (p->md_attr & EFI_MD_ATTR_WT)
1924 				kprintf("WT ");
1925 			if (p->md_attr & EFI_MD_ATTR_WB)
1926 				kprintf("WB ");
1927 			if (p->md_attr & EFI_MD_ATTR_UCE)
1928 				kprintf("UCE ");
1929 			if (p->md_attr & EFI_MD_ATTR_WP)
1930 				kprintf("WP ");
1931 			if (p->md_attr & EFI_MD_ATTR_RP)
1932 				kprintf("RP ");
1933 			if (p->md_attr & EFI_MD_ATTR_XP)
1934 				kprintf("XP ");
1935 			if (p->md_attr & EFI_MD_ATTR_RT)
1936 				kprintf("RUNTIME");
1937 			kprintf("\n");
1938 		}
1939 
1940 		switch (p->md_type) {
1941 		case EFI_MD_TYPE_CODE:
1942 		case EFI_MD_TYPE_DATA:
1943 		case EFI_MD_TYPE_BS_CODE:
1944 		case EFI_MD_TYPE_BS_DATA:
1945 		case EFI_MD_TYPE_FREE:
1946 			/*
1947 			 * We're allowed to use any entry with these types.
1948 			 */
1949 			break;
1950 		default:
1951 			continue;
1952 		}
1953 
1954 		Realmem += p->md_pages * PAGE_SIZE;
1955 
1956 		if (p->md_phys == physmap[*physmap_idx + 1]) {
1957 			physmap[*physmap_idx + 1] += p->md_pages * PAGE_SIZE;
1958 			continue;
1959 		}
1960 
1961 		*physmap_idx += 2;
1962 		if (*physmap_idx == PHYSMAP_SIZE) {
1963 			kprintf("Too many segments in the physical "
1964 				"address map, giving up\n");
1965 			break;
1966 		}
1967 		physmap[*physmap_idx] = p->md_phys;
1968 		physmap[*physmap_idx + 1] = p->md_phys + p->md_pages * PAGE_SIZE;
1969 	 }
1970 }
1971 
1972 struct fb_info efi_fb_info;
1973 static int have_efi_framebuffer = 0;
1974 
1975 static void
1976 efi_fb_init_vaddr(int direct_map)
1977 {
1978 	uint64_t sz;
1979 	vm_offset_t addr, v;
1980 
1981 	v = efi_fb_info.vaddr;
1982 	sz = efi_fb_info.stride * efi_fb_info.height;
1983 
1984 	if (direct_map) {
1985 		addr = PHYS_TO_DMAP(efi_fb_info.paddr);
1986 		if (addr >= DMAP_MIN_ADDRESS && addr + sz < DMAP_MAX_ADDRESS)
1987 			efi_fb_info.vaddr = addr;
1988 	} else {
1989 		efi_fb_info.vaddr = (vm_offset_t)pmap_mapdev_attr(
1990 		    efi_fb_info.paddr, sz, PAT_WRITE_COMBINING);
1991 	}
1992 }
1993 
1994 static u_int
1995 efifb_color_depth(struct efi_fb *efifb)
1996 {
1997 	uint32_t mask;
1998 	u_int depth;
1999 
2000 	mask = efifb->fb_mask_red | efifb->fb_mask_green |
2001 	    efifb->fb_mask_blue | efifb->fb_mask_reserved;
2002 	if (mask == 0)
2003 		return (0);
2004 	for (depth = 1; mask != 1; depth++)
2005 		mask >>= 1;
2006 	return (depth);
2007 }
2008 
2009 int
2010 probe_efi_fb(int early)
2011 {
2012 	struct efi_fb	*efifb;
2013 	caddr_t		kmdp;
2014 	u_int		depth;
2015 
2016 	if (have_efi_framebuffer) {
2017 		if (!early &&
2018 		    (efi_fb_info.vaddr == 0 ||
2019 		     efi_fb_info.vaddr == PHYS_TO_DMAP(efi_fb_info.paddr)))
2020 			efi_fb_init_vaddr(0);
2021 		return 0;
2022 	}
2023 
2024 	kmdp = preload_search_by_type("elf kernel");
2025 	if (kmdp == NULL)
2026 		kmdp = preload_search_by_type("elf64 kernel");
2027 	efifb = (struct efi_fb *)preload_search_info(kmdp,
2028 	    MODINFO_METADATA | MODINFOMD_EFI_FB);
2029 	if (efifb == NULL)
2030 		return 1;
2031 
2032 	depth = efifb_color_depth(efifb);
2033 	/*
2034 	 * Our bootloader should already notice, when we won't be able to
2035 	 * use the UEFI framebuffer.
2036 	 */
2037 	if (depth != 24 && depth != 32)
2038 		return 1;
2039 
2040 	have_efi_framebuffer = 1;
2041 
2042 	efi_fb_info.is_vga_boot_display = 1;
2043 	efi_fb_info.width = efifb->fb_width;
2044 	efi_fb_info.height = efifb->fb_height;
2045 	efi_fb_info.depth = depth;
2046 	efi_fb_info.stride = efifb->fb_stride * (depth / 8);
2047 	efi_fb_info.paddr = efifb->fb_addr;
2048 	if (early) {
2049 		efi_fb_info.vaddr = 0;
2050 	} else {
2051 		efi_fb_init_vaddr(0);
2052 	}
2053 	efi_fb_info.fbops.fb_set_par = NULL;
2054 	efi_fb_info.fbops.fb_blank = NULL;
2055 	efi_fb_info.fbops.fb_debug_enter = NULL;
2056 	efi_fb_info.device = NULL;
2057 
2058 	return 0;
2059 }
2060 
2061 static void
2062 efifb_startup(void *arg)
2063 {
2064 	probe_efi_fb(0);
2065 }
2066 
2067 SYSINIT(efi_fb_info, SI_BOOT1_POST, SI_ORDER_FIRST, efifb_startup, NULL);
2068 
2069 static void
2070 getmemsize(caddr_t kmdp, u_int64_t first)
2071 {
2072 	int off, physmap_idx, pa_indx, da_indx;
2073 	int i, j;
2074 	vm_paddr_t pa;
2075 	vm_paddr_t msgbuf_size;
2076 	u_long physmem_tunable;
2077 	pt_entry_t *pte;
2078 	quad_t dcons_addr, dcons_size;
2079 
2080 	bzero(physmap, sizeof(physmap));
2081 	physmap_idx = 0;
2082 
2083 	/*
2084 	 * get memory map from INT 15:E820, kindly supplied by the loader.
2085 	 *
2086 	 * subr_module.c says:
2087 	 * "Consumer may safely assume that size value precedes data."
2088 	 * ie: an int32_t immediately precedes smap.
2089 	 */
2090 	efihdrbase = (struct efi_map_header *)preload_search_info(kmdp,
2091 		     MODINFO_METADATA | MODINFOMD_EFI_MAP);
2092 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
2093 		   MODINFO_METADATA | MODINFOMD_SMAP);
2094 	if (smapbase == NULL && efihdrbase == NULL)
2095 		panic("No BIOS smap or EFI map info from loader!");
2096 
2097 	if (efihdrbase == NULL)
2098 		add_smap_entries(&physmap_idx);
2099 	else
2100 		add_efi_map_entries(&physmap_idx);
2101 
2102 	base_memory = physmap[1] / 1024;
2103 	/* make hole for AP bootstrap code */
2104 	physmap[1] = mp_bootaddress(base_memory);
2105 
2106 	/* Save EBDA address, if any */
2107 	ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
2108 	ebda_addr <<= 4;
2109 
2110 	/*
2111 	 * Maxmem isn't the "maximum memory", it's one larger than the
2112 	 * highest page of the physical address space.  It should be
2113 	 * called something like "Maxphyspage".  We may adjust this
2114 	 * based on ``hw.physmem'' and the results of the memory test.
2115 	 */
2116 	Maxmem = atop(physmap[physmap_idx + 1]);
2117 
2118 #ifdef MAXMEM
2119 	Maxmem = MAXMEM / 4;
2120 #endif
2121 
2122 	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
2123 		Maxmem = atop(physmem_tunable);
2124 
2125 	/*
2126 	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
2127 	 * in the system.
2128 	 */
2129 	if (Maxmem > atop(physmap[physmap_idx + 1]))
2130 		Maxmem = atop(physmap[physmap_idx + 1]);
2131 
2132 	/*
2133 	 * Blowing out the DMAP will blow up the system.
2134 	 */
2135 	if (Maxmem > atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS)) {
2136 		kprintf("Limiting Maxmem due to DMAP size\n");
2137 		Maxmem = atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS);
2138 	}
2139 
2140 	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
2141 	    (boothowto & RB_VERBOSE)) {
2142 		kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
2143 	}
2144 
2145 	/*
2146 	 * Call pmap initialization to make new kernel address space
2147 	 *
2148 	 * Mask off page 0.
2149 	 */
2150 	pmap_bootstrap(&first);
2151 	physmap[0] = PAGE_SIZE;
2152 
2153 	/*
2154 	 * Align the physmap to PHYSMAP_ALIGN and cut out anything
2155 	 * exceeding Maxmem.
2156 	 */
2157 	for (i = j = 0; i <= physmap_idx; i += 2) {
2158 		if (physmap[i+1] > ptoa(Maxmem))
2159 			physmap[i+1] = ptoa(Maxmem);
2160 		physmap[i] = (physmap[i] + PHYSMAP_ALIGN_MASK) &
2161 			     ~PHYSMAP_ALIGN_MASK;
2162 		physmap[i+1] = physmap[i+1] & ~PHYSMAP_ALIGN_MASK;
2163 
2164 		physmap[j] = physmap[i];
2165 		physmap[j+1] = physmap[i+1];
2166 
2167 		if (physmap[i] < physmap[i+1])
2168 			j += 2;
2169 	}
2170 	physmap_idx = j - 2;
2171 
2172 	/*
2173 	 * Align anything else used in the validation loop.
2174 	 *
2175 	 * Also make sure that our 2MB kernel text+data+bss mappings
2176 	 * do not overlap potentially allocatable space.
2177 	 */
2178 	first = (first + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
2179 
2180 	/*
2181 	 * Size up each available chunk of physical memory.
2182 	 */
2183 	pa_indx = 0;
2184 	da_indx = 0;
2185 	phys_avail[pa_indx].phys_beg = physmap[0];
2186 	phys_avail[pa_indx].phys_end = physmap[0];
2187 	dump_avail[da_indx].phys_beg = 0;
2188 	dump_avail[da_indx].phys_end = physmap[0];
2189 	pte = CMAP1;
2190 
2191 	/*
2192 	 * Get dcons buffer address
2193 	 */
2194 	if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
2195 	    kgetenv_quad("dcons.size", &dcons_size) == 0)
2196 		dcons_addr = 0;
2197 
2198 	/*
2199 	 * Validate the physical memory.  The physical memory segments
2200 	 * have already been aligned to PHYSMAP_ALIGN which is a multiple
2201 	 * of PAGE_SIZE.
2202 	 *
2203 	 * We no longer perform an exhaustive memory test.  Instead we
2204 	 * simply test the first and last word in each physmap[]
2205 	 * segment.
2206 	 */
2207 	for (i = 0; i <= physmap_idx; i += 2) {
2208 		vm_paddr_t end;
2209 		vm_paddr_t incr;
2210 
2211 		end = physmap[i + 1];
2212 
2213 		for (pa = physmap[i]; pa < end; pa += incr) {
2214 			int page_bad, full;
2215 			volatile uint64_t *ptr = (uint64_t *)CADDR1;
2216 			uint64_t tmp;
2217 
2218 			full = FALSE;
2219 
2220 			/*
2221 			 * Calculate incr.  Just test the first and
2222 			 * last page in each physmap[] segment.
2223 			 */
2224 			if (pa == end - PAGE_SIZE)
2225 				incr = PAGE_SIZE;
2226 			else
2227 				incr = end - pa - PAGE_SIZE;
2228 
2229 			/*
2230 			 * Make sure we don't skip blacked out areas.
2231 			 */
2232 			if (pa < 0x200000 && 0x200000 < end) {
2233 				incr = 0x200000 - pa;
2234 			}
2235 			if (dcons_addr > 0 &&
2236 			    pa < dcons_addr &&
2237 			    dcons_addr < end) {
2238 				incr = dcons_addr - pa;
2239 			}
2240 
2241 			/*
2242 			 * Block out kernel memory as not available.
2243 			 */
2244 			if (pa >= 0x200000 && pa < first) {
2245 				incr = first - pa;
2246 				if (pa + incr > end)
2247 					incr = end - pa;
2248 				goto do_dump_avail;
2249 			}
2250 
2251 			/*
2252 			 * Block out the dcons buffer if it exists.
2253 			 */
2254 			if (dcons_addr > 0 &&
2255 			    pa >= trunc_page(dcons_addr) &&
2256 			    pa < dcons_addr + dcons_size) {
2257 				incr = dcons_addr + dcons_size - pa;
2258 				incr = (incr + PAGE_MASK) &
2259 				       ~(vm_paddr_t)PAGE_MASK;
2260 				if (pa + incr > end)
2261 					incr = end - pa;
2262 				goto do_dump_avail;
2263 			}
2264 
2265 			page_bad = FALSE;
2266 
2267 			/*
2268 			 * Map the page non-cacheable for the memory
2269 			 * test.
2270 			 */
2271 			*pte = pa |
2272 			    kernel_pmap.pmap_bits[PG_V_IDX] |
2273 			    kernel_pmap.pmap_bits[PG_RW_IDX] |
2274 			    kernel_pmap.pmap_bits[PG_N_IDX];
2275 			cpu_invlpg(__DEVOLATILE(void *, ptr));
2276 			cpu_mfence();
2277 
2278 			/*
2279 			 * Save original value for restoration later.
2280 			 */
2281 			tmp = *ptr;
2282 
2283 			/*
2284 			 * Test for alternating 1's and 0's
2285 			 */
2286 			*ptr = 0xaaaaaaaaaaaaaaaaLLU;
2287 			cpu_mfence();
2288 			if (*ptr != 0xaaaaaaaaaaaaaaaaLLU)
2289 				page_bad = TRUE;
2290 			/*
2291 			 * Test for alternating 0's and 1's
2292 			 */
2293 			*ptr = 0x5555555555555555LLU;
2294 			cpu_mfence();
2295 			if (*ptr != 0x5555555555555555LLU)
2296 				page_bad = TRUE;
2297 			/*
2298 			 * Test for all 1's
2299 			 */
2300 			*ptr = 0xffffffffffffffffLLU;
2301 			cpu_mfence();
2302 			if (*ptr != 0xffffffffffffffffLLU)
2303 				page_bad = TRUE;
2304 			/*
2305 			 * Test for all 0's
2306 			 */
2307 			*ptr = 0x0;
2308 			cpu_mfence();
2309 			if (*ptr != 0x0)
2310 				page_bad = TRUE;
2311 
2312 			/*
2313 			 * Restore original value.
2314 			 */
2315 			*ptr = tmp;
2316 
2317 			/*
2318 			 * Adjust array of valid/good pages.
2319 			 */
2320 			if (page_bad == TRUE) {
2321 				incr = PAGE_SIZE;
2322 				continue;
2323 			}
2324 
2325 			/*
2326 			 * Collapse page address into phys_avail[].  Do a
2327 			 * continuation of the current phys_avail[] index
2328 			 * when possible.
2329 			 */
2330 			if (phys_avail[pa_indx].phys_end == pa) {
2331 				/*
2332 				 * Continuation
2333 				 */
2334 				phys_avail[pa_indx].phys_end += incr;
2335 			} else if (phys_avail[pa_indx].phys_beg ==
2336 				   phys_avail[pa_indx].phys_end) {
2337 				/*
2338 				 * Current phys_avail is completely empty,
2339 				 * reuse the index.
2340 				 */
2341 				phys_avail[pa_indx].phys_beg = pa;
2342 				phys_avail[pa_indx].phys_end = pa + incr;
2343 			} else {
2344 				/*
2345 				 * Allocate next phys_avail index.
2346 				 */
2347 				++pa_indx;
2348 				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
2349 					kprintf(
2350 		"Too many holes in the physical address space, giving up\n");
2351 					--pa_indx;
2352 					full = TRUE;
2353 					goto do_dump_avail;
2354 				}
2355 				phys_avail[pa_indx].phys_beg = pa;
2356 				phys_avail[pa_indx].phys_end = pa + incr;
2357 			}
2358 			physmem += incr / PAGE_SIZE;
2359 
2360 			/*
2361 			 * pa available for dumping
2362 			 */
2363 do_dump_avail:
2364 			if (dump_avail[da_indx].phys_end == pa) {
2365 				dump_avail[da_indx].phys_end += incr;
2366 			} else {
2367 				++da_indx;
2368 				if (da_indx == DUMP_AVAIL_ARRAY_END) {
2369 					--da_indx;
2370 					goto do_next;
2371 				}
2372 				dump_avail[da_indx].phys_beg = pa;
2373 				dump_avail[da_indx].phys_end = pa + incr;
2374 			}
2375 do_next:
2376 			if (full)
2377 				break;
2378 		}
2379 	}
2380 	*pte = 0;
2381 	cpu_invltlb();
2382 	cpu_mfence();
2383 
2384 	/*
2385 	 * The last chunk must contain at least one page plus the message
2386 	 * buffer to avoid complicating other code (message buffer address
2387 	 * calculation, etc.).
2388 	 */
2389 	msgbuf_size = (MSGBUF_SIZE + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
2390 
2391 	while (phys_avail[pa_indx].phys_beg + PHYSMAP_ALIGN + msgbuf_size >=
2392 	       phys_avail[pa_indx].phys_end) {
2393 		physmem -= atop(phys_avail[pa_indx].phys_end -
2394 				phys_avail[pa_indx].phys_beg);
2395 		phys_avail[pa_indx].phys_beg = 0;
2396 		phys_avail[pa_indx].phys_end = 0;
2397 		--pa_indx;
2398 	}
2399 
2400 	Maxmem = atop(phys_avail[pa_indx].phys_end);
2401 
2402 	/* Trim off space for the message buffer. */
2403 	phys_avail[pa_indx].phys_end -= msgbuf_size;
2404 
2405 	avail_end = phys_avail[pa_indx].phys_end;
2406 
2407 	/* Map the message buffer. */
2408 	for (off = 0; off < msgbuf_size; off += PAGE_SIZE) {
2409 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2410 	}
2411 	/* Try to get EFI framebuffer working as early as possible */
2412 	if (have_efi_framebuffer)
2413 		efi_fb_init_vaddr(1);
2414 }
2415 
2416 struct machintr_abi MachIntrABI;
2417 
2418 /*
2419  * IDT VECTORS:
2420  *	0	Divide by zero
2421  *	1	Debug
2422  *	2	NMI
2423  *	3	BreakPoint
2424  *	4	OverFlow
2425  *	5	Bound-Range
2426  *	6	Invalid OpCode
2427  *	7	Device Not Available (x87)
2428  *	8	Double-Fault
2429  *	9	Coprocessor Segment overrun (unsupported, reserved)
2430  *	10	Invalid-TSS
2431  *	11	Segment not present
2432  *	12	Stack
2433  *	13	General Protection
2434  *	14	Page Fault
2435  *	15	Reserved
2436  *	16	x87 FP Exception pending
2437  *	17	Alignment Check
2438  *	18	Machine Check
2439  *	19	SIMD floating point
2440  *	20-31	reserved
2441  *	32-255	INTn/external sources
2442  */
2443 u_int64_t
2444 hammer_time(u_int64_t modulep, u_int64_t physfree)
2445 {
2446 	caddr_t kmdp;
2447 	int gsel_tss, x, cpu;
2448 #if 0 /* JG */
2449 	int metadata_missing, off;
2450 #endif
2451 	struct mdglobaldata *gd;
2452 	struct privatespace *ps;
2453 	u_int64_t msr;
2454 
2455 	/*
2456 	 * Prevent lowering of the ipl if we call tsleep() early.
2457 	 */
2458 	gd = &CPU_prvspace[0]->mdglobaldata;
2459 	ps = (struct privatespace *)gd;
2460 	bzero(gd, sizeof(*gd));
2461 	bzero(&ps->common_tss, sizeof(ps->common_tss));
2462 
2463 	/*
2464 	 * Note: on both UP and SMP curthread must be set non-NULL
2465 	 * early in the boot sequence because the system assumes
2466 	 * that 'curthread' is never NULL.
2467 	 */
2468 
2469 	gd->mi.gd_curthread = &thread0;
2470 	thread0.td_gd = &gd->mi;
2471 
2472 	atdevbase = ISA_HOLE_START + PTOV_OFFSET;
2473 
2474 #if 0 /* JG */
2475 	metadata_missing = 0;
2476 	if (bootinfo.bi_modulep) {
2477 		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
2478 		preload_bootstrap_relocate(KERNBASE);
2479 	} else {
2480 		metadata_missing = 1;
2481 	}
2482 	if (bootinfo.bi_envp)
2483 		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
2484 #endif
2485 
2486 	preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
2487 	preload_bootstrap_relocate(PTOV_OFFSET);
2488 	kmdp = preload_search_by_type("elf kernel");
2489 	if (kmdp == NULL)
2490 		kmdp = preload_search_by_type("elf64 kernel");
2491 	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
2492 	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
2493 #ifdef DDB
2494 	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
2495 	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
2496 #endif
2497 	efi_systbl_phys = MD_FETCH(kmdp, MODINFOMD_FW_HANDLE, vm_paddr_t);
2498 
2499 	if (boothowto & RB_VERBOSE)
2500 		bootverbose++;
2501 
2502 	/*
2503 	 * Default MachIntrABI to ICU
2504 	 */
2505 	MachIntrABI = MachIntrABI_ICU;
2506 
2507 	/*
2508 	 * start with one cpu.  Note: with one cpu, ncpus_fit_mask remain 0.
2509 	 */
2510 	ncpus = 1;
2511 	ncpus_fit = 1;
2512 	/* Init basic tunables, hz etc */
2513 	init_param1();
2514 
2515 	/*
2516 	 * make gdt memory segments
2517 	 */
2518 	gdt_segs[GPROC0_SEL].ssd_base =
2519 		(uintptr_t) &CPU_prvspace[0]->common_tss;
2520 
2521 	gd->mi.gd_prvspace = CPU_prvspace[0];
2522 
2523 	for (x = 0; x < NGDT; x++) {
2524 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
2525 			ssdtosd(&gdt_segs[x], &gdt[x]);
2526 	}
2527 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2528 	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
2529 
2530 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
2531 	r_gdt.rd_base =  (long) gdt;
2532 	lgdt(&r_gdt);
2533 
2534 	wrmsr(MSR_FSBASE, 0);		/* User value */
2535 	wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
2536 	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
2537 
2538 	mi_gdinit(&gd->mi, 0);
2539 	cpu_gdinit(gd, 0);
2540 	proc0paddr = proc0paddr_buff;
2541 	mi_proc0init(&gd->mi, proc0paddr);
2542 	safepri = TDPRI_MAX;
2543 
2544 	/* spinlocks and the BGL */
2545 	init_locks();
2546 
2547 	/* exceptions */
2548 	for (x = 0; x < NIDT; x++)
2549 		setidt_global(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
2550 	setidt_global(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
2551 	setidt_global(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 2);
2552 	setidt_global(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 1);
2553 	setidt_global(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
2554 	setidt_global(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
2555 	setidt_global(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
2556 	setidt_global(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
2557 	setidt_global(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
2558 	setidt_global(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
2559 	setidt_global(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
2560 	setidt_global(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
2561 	setidt_global(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
2562 	setidt_global(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
2563 	setidt_global(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
2564 	setidt_global(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
2565 	setidt_global(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
2566 	setidt_global(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
2567 	setidt_global(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
2568 	setidt_global(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
2569 
2570 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
2571 		r_idt_arr[cpu].rd_limit = sizeof(idt_arr[cpu]) - 1;
2572 		r_idt_arr[cpu].rd_base = (long) &idt_arr[cpu][0];
2573 	}
2574 
2575 	lidt(&r_idt_arr[0]);
2576 
2577 	/*
2578 	 * Initialize the console before we print anything out.
2579 	 */
2580 	cninit();
2581 
2582 #if 0 /* JG */
2583 	if (metadata_missing)
2584 		kprintf("WARNING: loader(8) metadata is missing!\n");
2585 #endif
2586 
2587 #if	NISA >0
2588 	elcr_probe();
2589 	isa_defaultirq();
2590 #endif
2591 	rand_initialize();
2592 
2593 	/*
2594 	 * Initialize IRQ mapping
2595 	 *
2596 	 * NOTE:
2597 	 * SHOULD be after elcr_probe()
2598 	 */
2599 	MachIntrABI_ICU.initmap();
2600 	MachIntrABI_IOAPIC.initmap();
2601 
2602 #ifdef DDB
2603 	kdb_init();
2604 	if (boothowto & RB_KDB)
2605 		Debugger("Boot flags requested debugger");
2606 #endif
2607 
2608 	identify_cpu();		/* Final stage of CPU initialization */
2609 	initializecpu(0);	/* Initialize CPU registers */
2610 
2611 	/*
2612 	 * On modern Intel cpus, haswell or later, cpu_idle_hlt=1 is better
2613 	 * because the cpu does significant power management in MWAIT
2614 	 * (also suggested is to set sysctl machdep.mwait.CX.idle=AUTODEEP).
2615 	 *
2616 	 * On many AMD cpus cpu_idle_hlt=3 is better, because the cpu does
2617 	 * significant power management only when using ACPI halt mode.
2618 	 * (However, on Ryzen, mode 4 (HLT) also does power management).
2619 	 *
2620 	 * On older AMD or Intel cpus, cpu_idle_hlt=2 is better because ACPI
2621 	 * is needed to reduce power consumption, but wakeup times are often
2622 	 * too long.
2623 	 */
2624 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
2625 	    CPUID_TO_MODEL(cpu_id) >= 0x3C) {	/* Haswell or later */
2626 		cpu_idle_hlt = 1;
2627 	}
2628 	if (cpu_vendor_id == CPU_VENDOR_AMD) {
2629 		if (CPUID_TO_FAMILY(cpu_id) >= 0x17) {
2630 			/* Ryzen or later */
2631 			cpu_idle_hlt = 3;
2632 		} else if (CPUID_TO_FAMILY(cpu_id) >= 0x14) {
2633 			/* Bobcat or later */
2634 			cpu_idle_hlt = 3;
2635 		}
2636 	}
2637 
2638 	TUNABLE_INT_FETCH("hw.apic_io_enable", &ioapic_enable); /* for compat */
2639 	TUNABLE_INT_FETCH("hw.ioapic_enable", &ioapic_enable);
2640 	TUNABLE_INT_FETCH("hw.lapic_enable", &lapic_enable);
2641 	TUNABLE_INT_FETCH("machdep.cpu_idle_hlt", &cpu_idle_hlt);
2642 
2643 	/*
2644 	 * Some of the virtual machines do not work w/ I/O APIC
2645 	 * enabled.  If the user does not explicitly enable or
2646 	 * disable the I/O APIC (ioapic_enable < 0), then we
2647 	 * disable I/O APIC on all virtual machines.
2648 	 *
2649 	 * NOTE:
2650 	 * This must be done after identify_cpu(), which sets
2651 	 * 'cpu_feature2'
2652 	 */
2653 	if (ioapic_enable < 0) {
2654 		if (cpu_feature2 & CPUID2_VMM)
2655 			ioapic_enable = 0;
2656 		else
2657 			ioapic_enable = 1;
2658 	}
2659 
2660 	/*
2661 	 * TSS entry point for interrupts, traps, and exceptions
2662 	 * (sans NMI).  This will always go to near the top of the pcpu
2663 	 * trampoline area.  Hardware-pushed data will be copied into
2664 	 * the trap-frame on entry, and (if necessary) returned to the
2665 	 * trampoline on exit.
2666 	 *
2667 	 * We store some pcb data for the trampoline code above the
2668 	 * stack the cpu hw pushes into, and arrange things so the
2669 	 * address of tr_pcb_rsp is the same as the desired top of
2670 	 * stack.
2671 	 */
2672 	ps->common_tss.tss_rsp0 = (register_t)&ps->trampoline.tr_pcb_rsp;
2673 	ps->trampoline.tr_pcb_rsp = ps->common_tss.tss_rsp0;
2674 	ps->trampoline.tr_pcb_gs_kernel = (register_t)gd;
2675 	ps->trampoline.tr_pcb_cr3 = KPML4phys;	/* adj to user cr3 live */
2676 	ps->dbltramp.tr_pcb_gs_kernel = (register_t)gd;
2677 	ps->dbltramp.tr_pcb_cr3 = KPML4phys;
2678 	ps->dbgtramp.tr_pcb_gs_kernel = (register_t)gd;
2679 	ps->dbgtramp.tr_pcb_cr3 = KPML4phys;
2680 
2681 	/* double fault stack */
2682 	ps->common_tss.tss_ist1 = (register_t)&ps->dbltramp.tr_pcb_rsp;
2683 	/* #DB debugger needs its own stack */
2684 	ps->common_tss.tss_ist2 = (register_t)&ps->dbgtramp.tr_pcb_rsp;
2685 
2686 	/* Set the IO permission bitmap (empty due to tss seg limit) */
2687 	ps->common_tss.tss_iobase = sizeof(struct x86_64tss);
2688 
2689 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2690 	gd->gd_tss_gdt = &gdt[GPROC0_SEL];
2691 	gd->gd_common_tssd = *gd->gd_tss_gdt;
2692 	ltr(gsel_tss);
2693 
2694 	/* Set up the fast syscall stuff */
2695 	msr = rdmsr(MSR_EFER) | EFER_SCE;
2696 	wrmsr(MSR_EFER, msr);
2697 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
2698 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
2699 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
2700 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
2701 	wrmsr(MSR_STAR, msr);
2702 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
2703 
2704 	getmemsize(kmdp, physfree);
2705 	init_param2(physmem);
2706 
2707 	/* now running on new page tables, configured,and u/iom is accessible */
2708 
2709 	/* Map the message buffer. */
2710 #if 0 /* JG */
2711 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2712 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2713 #endif
2714 
2715 	msgbufinit(msgbufp, MSGBUF_SIZE);
2716 
2717 
2718 	/* transfer to user mode */
2719 
2720 	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2721 	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2722 	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
2723 
2724 	load_ds(_udatasel);
2725 	load_es(_udatasel);
2726 	load_fs(_udatasel);
2727 
2728 	/* setup proc 0's pcb */
2729 	thread0.td_pcb->pcb_flags = 0;
2730 	thread0.td_pcb->pcb_cr3 = KPML4phys;
2731 	thread0.td_pcb->pcb_cr3_iso = 0;
2732 	thread0.td_pcb->pcb_ext = NULL;
2733 	lwp0.lwp_md.md_regs = &proc0_tf;	/* XXX needed? */
2734 
2735 	/* Location of kernel stack for locore */
2736 	return ((u_int64_t)thread0.td_pcb);
2737 }
2738 
2739 /*
2740  * Initialize machine-dependant portions of the global data structure.
2741  * Note that the global data area and cpu0's idlestack in the private
2742  * data space were allocated in locore.
2743  *
2744  * Note: the idlethread's cpl is 0
2745  *
2746  * WARNING!  Called from early boot, 'mycpu' may not work yet.
2747  */
2748 void
2749 cpu_gdinit(struct mdglobaldata *gd, int cpu)
2750 {
2751 	if (cpu)
2752 		gd->mi.gd_curthread = &gd->mi.gd_idlethread;
2753 
2754 	lwkt_init_thread(&gd->mi.gd_idlethread,
2755 			gd->mi.gd_prvspace->idlestack,
2756 			sizeof(gd->mi.gd_prvspace->idlestack),
2757 			0, &gd->mi);
2758 	lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
2759 	gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
2760 	gd->mi.gd_idlethread.td_sp -= sizeof(void *);
2761 	*(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
2762 }
2763 
2764 /*
2765  * We only have to check for DMAP bounds, the globaldata space is
2766  * actually part of the kernel_map so we don't have to waste time
2767  * checking CPU_prvspace[*].
2768  */
2769 int
2770 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
2771 {
2772 #if 0
2773 	if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
2774 	    eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
2775 		return (TRUE);
2776 	}
2777 #endif
2778 	if (saddr >= DMAP_MIN_ADDRESS && eaddr <= DMAP_MAX_ADDRESS)
2779 		return (TRUE);
2780 	return (FALSE);
2781 }
2782 
2783 struct globaldata *
2784 globaldata_find(int cpu)
2785 {
2786 	KKASSERT(cpu >= 0 && cpu < ncpus);
2787 	return(&CPU_prvspace[cpu]->mdglobaldata.mi);
2788 }
2789 
2790 /*
2791  * This path should be safe from the SYSRET issue because only stopped threads
2792  * can have their %rip adjusted this way (and all heavy weight thread switches
2793  * clear QUICKREF and thus do not use SYSRET).  However, the code path is
2794  * convoluted so add a safety by forcing %rip to be cannonical.
2795  */
2796 int
2797 ptrace_set_pc(struct lwp *lp, unsigned long addr)
2798 {
2799 	if (addr & 0x0000800000000000LLU)
2800 		lp->lwp_md.md_regs->tf_rip = addr | 0xFFFF000000000000LLU;
2801 	else
2802 		lp->lwp_md.md_regs->tf_rip = addr & 0x0000FFFFFFFFFFFFLLU;
2803 	return (0);
2804 }
2805 
2806 int
2807 ptrace_single_step(struct lwp *lp)
2808 {
2809 	lp->lwp_md.md_regs->tf_rflags |= PSL_T;
2810 	return (0);
2811 }
2812 
2813 int
2814 fill_regs(struct lwp *lp, struct reg *regs)
2815 {
2816 	struct trapframe *tp;
2817 
2818 	if ((tp = lp->lwp_md.md_regs) == NULL)
2819 		return EINVAL;
2820 	bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
2821 	return (0);
2822 }
2823 
2824 int
2825 set_regs(struct lwp *lp, struct reg *regs)
2826 {
2827 	struct trapframe *tp;
2828 
2829 	tp = lp->lwp_md.md_regs;
2830 	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
2831 	    !CS_SECURE(regs->r_cs))
2832 		return (EINVAL);
2833 	bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
2834 	clear_quickret();
2835 	return (0);
2836 }
2837 
2838 static void
2839 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2840 {
2841 	struct env87 *penv_87 = &sv_87->sv_env;
2842 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2843 	int i;
2844 
2845 	/* FPU control/status */
2846 	penv_87->en_cw = penv_xmm->en_cw;
2847 	penv_87->en_sw = penv_xmm->en_sw;
2848 	penv_87->en_tw = penv_xmm->en_tw;
2849 	penv_87->en_fip = penv_xmm->en_fip;
2850 	penv_87->en_fcs = penv_xmm->en_fcs;
2851 	penv_87->en_opcode = penv_xmm->en_opcode;
2852 	penv_87->en_foo = penv_xmm->en_foo;
2853 	penv_87->en_fos = penv_xmm->en_fos;
2854 
2855 	/* FPU registers */
2856 	for (i = 0; i < 8; ++i)
2857 		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2858 }
2859 
2860 static void
2861 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2862 {
2863 	struct env87 *penv_87 = &sv_87->sv_env;
2864 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2865 	int i;
2866 
2867 	/* FPU control/status */
2868 	penv_xmm->en_cw = penv_87->en_cw;
2869 	penv_xmm->en_sw = penv_87->en_sw;
2870 	penv_xmm->en_tw = penv_87->en_tw;
2871 	penv_xmm->en_fip = penv_87->en_fip;
2872 	penv_xmm->en_fcs = penv_87->en_fcs;
2873 	penv_xmm->en_opcode = penv_87->en_opcode;
2874 	penv_xmm->en_foo = penv_87->en_foo;
2875 	penv_xmm->en_fos = penv_87->en_fos;
2876 
2877 	/* FPU registers */
2878 	for (i = 0; i < 8; ++i)
2879 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2880 }
2881 
2882 int
2883 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2884 {
2885 	if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
2886 		return EINVAL;
2887 	if (cpu_fxsr) {
2888 		fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2889 				(struct save87 *)fpregs);
2890 		return (0);
2891 	}
2892 	bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2893 	return (0);
2894 }
2895 
2896 int
2897 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2898 {
2899 	if (cpu_fxsr) {
2900 		set_fpregs_xmm((struct save87 *)fpregs,
2901 			       &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2902 		return (0);
2903 	}
2904 	bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2905 	return (0);
2906 }
2907 
2908 int
2909 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2910 {
2911 	struct pcb *pcb;
2912 
2913         if (lp == NULL) {
2914                 dbregs->dr[0] = rdr0();
2915                 dbregs->dr[1] = rdr1();
2916                 dbregs->dr[2] = rdr2();
2917                 dbregs->dr[3] = rdr3();
2918                 dbregs->dr[4] = rdr4();
2919                 dbregs->dr[5] = rdr5();
2920                 dbregs->dr[6] = rdr6();
2921                 dbregs->dr[7] = rdr7();
2922 		return (0);
2923         }
2924 	if (lp->lwp_thread == NULL || (pcb = lp->lwp_thread->td_pcb) == NULL)
2925 		return EINVAL;
2926 	dbregs->dr[0] = pcb->pcb_dr0;
2927 	dbregs->dr[1] = pcb->pcb_dr1;
2928 	dbregs->dr[2] = pcb->pcb_dr2;
2929 	dbregs->dr[3] = pcb->pcb_dr3;
2930 	dbregs->dr[4] = 0;
2931 	dbregs->dr[5] = 0;
2932 	dbregs->dr[6] = pcb->pcb_dr6;
2933 	dbregs->dr[7] = pcb->pcb_dr7;
2934 	return (0);
2935 }
2936 
2937 int
2938 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2939 {
2940 	if (lp == NULL) {
2941 		load_dr0(dbregs->dr[0]);
2942 		load_dr1(dbregs->dr[1]);
2943 		load_dr2(dbregs->dr[2]);
2944 		load_dr3(dbregs->dr[3]);
2945 		load_dr4(dbregs->dr[4]);
2946 		load_dr5(dbregs->dr[5]);
2947 		load_dr6(dbregs->dr[6]);
2948 		load_dr7(dbregs->dr[7]);
2949 	} else {
2950 		struct pcb *pcb;
2951 		struct ucred *ucred;
2952 		int i;
2953 		uint64_t mask1, mask2;
2954 
2955 		/*
2956 		 * Don't let an illegal value for dr7 get set.	Specifically,
2957 		 * check for undefined settings.  Setting these bit patterns
2958 		 * result in undefined behaviour and can lead to an unexpected
2959 		 * TRCTRAP.
2960 		 */
2961 		/* JG this loop looks unreadable */
2962 		/* Check 4 2-bit fields for invalid patterns.
2963 		 * These fields are R/Wi, for i = 0..3
2964 		 */
2965 		/* Is 10 in LENi allowed when running in compatibility mode? */
2966 		/* Pattern 10 in R/Wi might be used to indicate
2967 		 * breakpoint on I/O. Further analysis should be
2968 		 * carried to decide if it is safe and useful to
2969 		 * provide access to that capability
2970 		 */
2971 		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2972 		     i++, mask1 <<= 4, mask2 <<= 4)
2973 			if ((dbregs->dr[7] & mask1) == mask2)
2974 				return (EINVAL);
2975 
2976 		pcb = lp->lwp_thread->td_pcb;
2977 		ucred = lp->lwp_proc->p_ucred;
2978 
2979 		/*
2980 		 * Don't let a process set a breakpoint that is not within the
2981 		 * process's address space.  If a process could do this, it
2982 		 * could halt the system by setting a breakpoint in the kernel
2983 		 * (if ddb was enabled).  Thus, we need to check to make sure
2984 		 * that no breakpoints are being enabled for addresses outside
2985 		 * process's address space, unless, perhaps, we were called by
2986 		 * uid 0.
2987 		 *
2988 		 * XXX - what about when the watched area of the user's
2989 		 * address space is written into from within the kernel
2990 		 * ... wouldn't that still cause a breakpoint to be generated
2991 		 * from within kernel mode?
2992 		 */
2993 
2994 		if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2995 			if (dbregs->dr[7] & 0x3) {
2996 				/* dr0 is enabled */
2997 				if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2998 					return (EINVAL);
2999 			}
3000 
3001 			if (dbregs->dr[7] & (0x3<<2)) {
3002 				/* dr1 is enabled */
3003 				if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
3004 					return (EINVAL);
3005 			}
3006 
3007 			if (dbregs->dr[7] & (0x3<<4)) {
3008 				/* dr2 is enabled */
3009 				if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
3010 					return (EINVAL);
3011 			}
3012 
3013 			if (dbregs->dr[7] & (0x3<<6)) {
3014 				/* dr3 is enabled */
3015 				if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
3016 					return (EINVAL);
3017 			}
3018 		}
3019 
3020 		pcb->pcb_dr0 = dbregs->dr[0];
3021 		pcb->pcb_dr1 = dbregs->dr[1];
3022 		pcb->pcb_dr2 = dbregs->dr[2];
3023 		pcb->pcb_dr3 = dbregs->dr[3];
3024 		pcb->pcb_dr6 = dbregs->dr[6];
3025 		pcb->pcb_dr7 = dbregs->dr[7];
3026 
3027 		pcb->pcb_flags |= PCB_DBREGS;
3028 	}
3029 
3030 	return (0);
3031 }
3032 
3033 /*
3034  * Return > 0 if a hardware breakpoint has been hit, and the
3035  * breakpoint was in user space.  Return 0, otherwise.
3036  */
3037 int
3038 user_dbreg_trap(void)
3039 {
3040         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
3041         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
3042         int nbp;            /* number of breakpoints that triggered */
3043         caddr_t addr[4];    /* breakpoint addresses */
3044         int i;
3045 
3046         dr7 = rdr7();
3047         if ((dr7 & 0xff) == 0) {
3048                 /*
3049                  * all GE and LE bits in the dr7 register are zero,
3050                  * thus the trap couldn't have been caused by the
3051                  * hardware debug registers
3052                  */
3053                 return 0;
3054         }
3055 
3056         nbp = 0;
3057         dr6 = rdr6();
3058         bp = dr6 & 0xf;
3059 
3060         if (bp == 0) {
3061                 /*
3062                  * None of the breakpoint bits are set meaning this
3063                  * trap was not caused by any of the debug registers
3064                  */
3065                 return 0;
3066         }
3067 
3068         /*
3069          * at least one of the breakpoints were hit, check to see
3070          * which ones and if any of them are user space addresses
3071          */
3072 
3073         if (bp & 0x01) {
3074                 addr[nbp++] = (caddr_t)rdr0();
3075         }
3076         if (bp & 0x02) {
3077                 addr[nbp++] = (caddr_t)rdr1();
3078         }
3079         if (bp & 0x04) {
3080                 addr[nbp++] = (caddr_t)rdr2();
3081         }
3082         if (bp & 0x08) {
3083                 addr[nbp++] = (caddr_t)rdr3();
3084         }
3085 
3086         for (i = 0; i < nbp; i++) {
3087                 if (addr[i] < (caddr_t)VM_MAX_USER_ADDRESS) {
3088                         /*
3089                          * addr[i] is in user space
3090                          */
3091                         return nbp;
3092                 }
3093         }
3094 
3095         /*
3096          * None of the breakpoints are in user space.
3097          */
3098         return 0;
3099 }
3100 
3101 
3102 #ifndef DDB
3103 void
3104 Debugger(const char *msg)
3105 {
3106 	kprintf("Debugger(\"%s\") called.\n", msg);
3107 }
3108 #endif /* no DDB */
3109 
3110 #ifdef DDB
3111 
3112 /*
3113  * Provide inb() and outb() as functions.  They are normally only
3114  * available as macros calling inlined functions, thus cannot be
3115  * called inside DDB.
3116  *
3117  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
3118  */
3119 
3120 #undef inb
3121 #undef outb
3122 
3123 /* silence compiler warnings */
3124 u_char inb(u_int);
3125 void outb(u_int, u_char);
3126 
3127 u_char
3128 inb(u_int port)
3129 {
3130 	u_char	data;
3131 	/*
3132 	 * We use %%dx and not %1 here because i/o is done at %dx and not at
3133 	 * %edx, while gcc generates inferior code (movw instead of movl)
3134 	 * if we tell it to load (u_short) port.
3135 	 */
3136 	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
3137 	return (data);
3138 }
3139 
3140 void
3141 outb(u_int port, u_char data)
3142 {
3143 	u_char	al;
3144 	/*
3145 	 * Use an unnecessary assignment to help gcc's register allocator.
3146 	 * This make a large difference for gcc-1.40 and a tiny difference
3147 	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
3148 	 * best results.  gcc-2.6.0 can't handle this.
3149 	 */
3150 	al = data;
3151 	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
3152 }
3153 
3154 #endif /* DDB */
3155 
3156 
3157 
3158 /*
3159  * initialize all the SMP locks
3160  */
3161 
3162 /* critical region when masking or unmasking interupts */
3163 struct spinlock_deprecated imen_spinlock;
3164 
3165 /* lock region used by kernel profiling */
3166 struct spinlock_deprecated mcount_spinlock;
3167 
3168 /* locks com (tty) data/hardware accesses: a FASTINTR() */
3169 struct spinlock_deprecated com_spinlock;
3170 
3171 /* lock regions around the clock hardware */
3172 struct spinlock_deprecated clock_spinlock;
3173 
3174 static void
3175 init_locks(void)
3176 {
3177 	/*
3178 	 * Get the initial mplock with a count of 1 for the BSP.
3179 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
3180 	 */
3181 	cpu_get_initial_mplock();
3182 	/* DEPRECATED */
3183 	spin_init_deprecated(&mcount_spinlock);
3184 	spin_init_deprecated(&imen_spinlock);
3185 	spin_init_deprecated(&com_spinlock);
3186 	spin_init_deprecated(&clock_spinlock);
3187 
3188 	/* our token pool needs to work early */
3189 	lwkt_token_pool_init();
3190 }
3191 
3192 boolean_t
3193 cpu_mwait_hint_valid(uint32_t hint)
3194 {
3195 	int cx_idx, sub;
3196 
3197 	cx_idx = MWAIT_EAX_TO_CX(hint);
3198 	if (cx_idx >= CPU_MWAIT_CX_MAX)
3199 		return FALSE;
3200 
3201 	sub = MWAIT_EAX_TO_CX_SUB(hint);
3202 	if (sub >= cpu_mwait_cx_info[cx_idx].subcnt)
3203 		return FALSE;
3204 
3205 	return TRUE;
3206 }
3207 
3208 void
3209 cpu_mwait_cx_no_bmsts(void)
3210 {
3211 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_STS);
3212 }
3213 
3214 void
3215 cpu_mwait_cx_no_bmarb(void)
3216 {
3217 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_ARB);
3218 }
3219 
3220 static int
3221 cpu_mwait_cx_hint2name(int hint, char *name, int namelen, boolean_t allow_auto)
3222 {
3223 	int old_cx_idx, sub = 0;
3224 
3225 	if (hint >= 0) {
3226 		old_cx_idx = MWAIT_EAX_TO_CX(hint);
3227 		sub = MWAIT_EAX_TO_CX_SUB(hint);
3228 	} else if (hint == CPU_MWAIT_HINT_AUTO) {
3229 		old_cx_idx = allow_auto ? CPU_MWAIT_C2 : CPU_MWAIT_CX_MAX;
3230 	} else if (hint == CPU_MWAIT_HINT_AUTODEEP) {
3231 		old_cx_idx = allow_auto ? CPU_MWAIT_C3 : CPU_MWAIT_CX_MAX;
3232 	} else {
3233 		old_cx_idx = CPU_MWAIT_CX_MAX;
3234 	}
3235 
3236 	if (!CPU_MWAIT_HAS_CX)
3237 		strlcpy(name, "NONE", namelen);
3238 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTO)
3239 		strlcpy(name, "AUTO", namelen);
3240 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTODEEP)
3241 		strlcpy(name, "AUTODEEP", namelen);
3242 	else if (old_cx_idx >= CPU_MWAIT_CX_MAX ||
3243 	    sub >= cpu_mwait_cx_info[old_cx_idx].subcnt)
3244 		strlcpy(name, "INVALID", namelen);
3245 	else
3246 		ksnprintf(name, namelen, "C%d/%d", old_cx_idx, sub);
3247 
3248 	return old_cx_idx;
3249 }
3250 
3251 static int
3252 cpu_mwait_cx_name2hint(char *name, int *hint0, boolean_t allow_auto)
3253 {
3254 	int cx_idx, sub, hint;
3255 	char *ptr, *start;
3256 
3257 	if (allow_auto && strcmp(name, "AUTO") == 0) {
3258 		hint = CPU_MWAIT_HINT_AUTO;
3259 		cx_idx = CPU_MWAIT_C2;
3260 		goto done;
3261 	}
3262 	if (allow_auto && strcmp(name, "AUTODEEP") == 0) {
3263 		hint = CPU_MWAIT_HINT_AUTODEEP;
3264 		cx_idx = CPU_MWAIT_C3;
3265 		goto done;
3266 	}
3267 
3268 	if (strlen(name) < 4 || toupper(name[0]) != 'C')
3269 		return -1;
3270 	start = &name[1];
3271 	ptr = NULL;
3272 
3273 	cx_idx = strtol(start, &ptr, 10);
3274 	if (ptr == start || *ptr != '/')
3275 		return -1;
3276 	if (cx_idx < 0 || cx_idx >= CPU_MWAIT_CX_MAX)
3277 		return -1;
3278 
3279 	start = ptr + 1;
3280 	ptr = NULL;
3281 
3282 	sub = strtol(start, &ptr, 10);
3283 	if (*ptr != '\0')
3284 		return -1;
3285 	if (sub < 0 || sub >= cpu_mwait_cx_info[cx_idx].subcnt)
3286 		return -1;
3287 
3288 	hint = MWAIT_EAX_HINT(cx_idx, sub);
3289 done:
3290 	*hint0 = hint;
3291 	return cx_idx;
3292 }
3293 
3294 static int
3295 cpu_mwait_cx_transit(int old_cx_idx, int cx_idx)
3296 {
3297 	if (cx_idx >= CPU_MWAIT_C3 && cpu_mwait_c3_preamble)
3298 		return EOPNOTSUPP;
3299 	if (old_cx_idx < CPU_MWAIT_C3 && cx_idx >= CPU_MWAIT_C3) {
3300 		int error;
3301 
3302 		error = cputimer_intr_powersave_addreq();
3303 		if (error)
3304 			return error;
3305 	} else if (old_cx_idx >= CPU_MWAIT_C3 && cx_idx < CPU_MWAIT_C3) {
3306 		cputimer_intr_powersave_remreq();
3307 	}
3308 	return 0;
3309 }
3310 
3311 static int
3312 cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS, int *hint0,
3313     boolean_t allow_auto)
3314 {
3315 	int error, cx_idx, old_cx_idx, hint;
3316 	char name[CPU_MWAIT_CX_NAMELEN];
3317 
3318 	hint = *hint0;
3319 	old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name),
3320 	    allow_auto);
3321 
3322 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
3323 	if (error != 0 || req->newptr == NULL)
3324 		return error;
3325 
3326 	if (!CPU_MWAIT_HAS_CX)
3327 		return EOPNOTSUPP;
3328 
3329 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, allow_auto);
3330 	if (cx_idx < 0)
3331 		return EINVAL;
3332 
3333 	error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3334 	if (error)
3335 		return error;
3336 
3337 	*hint0 = hint;
3338 	return 0;
3339 }
3340 
3341 static int
3342 cpu_mwait_cx_setname(struct cpu_idle_stat *stat, const char *cx_name)
3343 {
3344 	int error, cx_idx, old_cx_idx, hint;
3345 	char name[CPU_MWAIT_CX_NAMELEN];
3346 
3347 	KASSERT(CPU_MWAIT_HAS_CX, ("cpu does not support mwait CX extension"));
3348 
3349 	hint = stat->hint;
3350 	old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3351 
3352 	strlcpy(name, cx_name, sizeof(name));
3353 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3354 	if (cx_idx < 0)
3355 		return EINVAL;
3356 
3357 	error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3358 	if (error)
3359 		return error;
3360 
3361 	stat->hint = hint;
3362 	return 0;
3363 }
3364 
3365 static int
3366 cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS)
3367 {
3368 	int hint = cpu_mwait_halt_global;
3369 	int error, cx_idx, cpu;
3370 	char name[CPU_MWAIT_CX_NAMELEN], cx_name[CPU_MWAIT_CX_NAMELEN];
3371 
3372 	cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3373 
3374 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
3375 	if (error != 0 || req->newptr == NULL)
3376 		return error;
3377 
3378 	if (!CPU_MWAIT_HAS_CX)
3379 		return EOPNOTSUPP;
3380 
3381 	/* Save name for later per-cpu CX configuration */
3382 	strlcpy(cx_name, name, sizeof(cx_name));
3383 
3384 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3385 	if (cx_idx < 0)
3386 		return EINVAL;
3387 
3388 	/* Change per-cpu CX configuration */
3389 	for (cpu = 0; cpu < ncpus; ++cpu) {
3390 		error = cpu_mwait_cx_setname(&cpu_idle_stats[cpu], cx_name);
3391 		if (error)
3392 			return error;
3393 	}
3394 
3395 	cpu_mwait_halt_global = hint;
3396 	return 0;
3397 }
3398 
3399 static int
3400 cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS)
3401 {
3402 	struct cpu_idle_stat *stat = arg1;
3403 	int error;
3404 
3405 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3406 	    &stat->hint, TRUE);
3407 	return error;
3408 }
3409 
3410 static int
3411 cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS)
3412 {
3413 	int error;
3414 
3415 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3416 	    &cpu_mwait_spin, FALSE);
3417 	return error;
3418 }
3419 
3420 /*
3421  * This manual debugging code is called unconditionally from Xtimer
3422  * (the per-cpu timer interrupt) whether the current thread is in a
3423  * critical section or not) and can be useful in tracking down lockups.
3424  *
3425  * NOTE: MANUAL DEBUG CODE
3426  */
3427 #if 0
3428 static int saveticks[SMP_MAXCPU];
3429 static int savecounts[SMP_MAXCPU];
3430 #endif
3431 
3432 void
3433 pcpu_timer_always(struct intrframe *frame)
3434 {
3435 #if 0
3436 	globaldata_t gd = mycpu;
3437 	int cpu = gd->gd_cpuid;
3438 	char buf[64];
3439 	short *gptr;
3440 	int i;
3441 
3442 	if (cpu <= 20) {
3443 		gptr = (short *)0xFFFFFFFF800b8000 + 80 * cpu;
3444 		*gptr = ((*gptr + 1) & 0x00FF) | 0x0700;
3445 		++gptr;
3446 
3447 		ksnprintf(buf, sizeof(buf), " %p %16s %d %16s ",
3448 		    (void *)frame->if_rip, gd->gd_curthread->td_comm, ticks,
3449 		    gd->gd_infomsg);
3450 		for (i = 0; buf[i]; ++i) {
3451 			gptr[i] = 0x0700 | (unsigned char)buf[i];
3452 		}
3453 	}
3454 #if 0
3455 	if (saveticks[gd->gd_cpuid] != ticks) {
3456 		saveticks[gd->gd_cpuid] = ticks;
3457 		savecounts[gd->gd_cpuid] = 0;
3458 	}
3459 	++savecounts[gd->gd_cpuid];
3460 	if (savecounts[gd->gd_cpuid] > 2000 && panicstr == NULL) {
3461 		panic("cpud %d panicing on ticks failure",
3462 			gd->gd_cpuid);
3463 	}
3464 	for (i = 0; i < ncpus; ++i) {
3465 		int delta;
3466 		if (saveticks[i] && panicstr == NULL) {
3467 			delta = saveticks[i] - ticks;
3468 			if (delta < -10 || delta > 10) {
3469 				panic("cpu %d panicing on cpu %d watchdog",
3470 				      gd->gd_cpuid, i);
3471 			}
3472 		}
3473 	}
3474 #endif
3475 #endif
3476 }
3477