xref: /dragonfly/sys/platform/pc64/x86_64/machdep.c (revision a9783bc6)
1 /*-
2  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3  * Copyright (c) 1992 Terrence R. Lambert.
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 2008-2017 The DragonFly Project.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
40  * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
41  */
42 
43 //#include "use_npx.h"
44 #include "use_isa.h"
45 #include "opt_cpu.h"
46 #include "opt_ddb.h"
47 #include "opt_inet.h"
48 #include "opt_msgbuf.h"
49 #include "opt_swap.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/sysproto.h>
54 #include <sys/signalvar.h>
55 #include <sys/kernel.h>
56 #include <sys/linker.h>
57 #include <sys/malloc.h>
58 #include <sys/proc.h>
59 #include <sys/priv.h>
60 #include <sys/buf.h>
61 #include <sys/reboot.h>
62 #include <sys/mbuf.h>
63 #include <sys/msgbuf.h>
64 #include <sys/sysent.h>
65 #include <sys/sysctl.h>
66 #include <sys/vmmeter.h>
67 #include <sys/bus.h>
68 #include <sys/usched.h>
69 #include <sys/reg.h>
70 #include <sys/sbuf.h>
71 #include <sys/ctype.h>
72 #include <sys/serialize.h>
73 #include <sys/systimer.h>
74 
75 #include <vm/vm.h>
76 #include <vm/vm_param.h>
77 #include <sys/lock.h>
78 #include <vm/vm_kern.h>
79 #include <vm/vm_object.h>
80 #include <vm/vm_page.h>
81 #include <vm/vm_map.h>
82 #include <vm/vm_pager.h>
83 #include <vm/vm_extern.h>
84 
85 #include <sys/thread2.h>
86 #include <sys/mplock2.h>
87 #include <sys/mutex2.h>
88 
89 #include <sys/exec.h>
90 #include <sys/cons.h>
91 
92 #include <sys/efi.h>
93 
94 #include <ddb/ddb.h>
95 
96 #include <machine/cpu.h>
97 #include <machine/clock.h>
98 #include <machine/specialreg.h>
99 #if 0 /* JG */
100 #include <machine/bootinfo.h>
101 #endif
102 #include <machine/md_var.h>
103 #include <machine/metadata.h>
104 #include <machine/pc/bios.h>
105 #include <machine/pcb_ext.h>
106 #include <machine/globaldata.h>		/* CPU_prvspace */
107 #include <machine/smp.h>
108 #include <machine/cputypes.h>
109 #include <machine/intr_machdep.h>
110 #include <machine/framebuffer.h>
111 
112 #ifdef OLD_BUS_ARCH
113 #include <bus/isa/isa_device.h>
114 #endif
115 #include <machine_base/isa/isa_intr.h>
116 #include <bus/isa/rtc.h>
117 #include <sys/random.h>
118 #include <sys/ptrace.h>
119 #include <machine/sigframe.h>
120 
121 #include <sys/machintr.h>
122 #include <machine_base/icu/icu_abi.h>
123 #include <machine_base/icu/elcr_var.h>
124 #include <machine_base/apic/lapic.h>
125 #include <machine_base/apic/ioapic.h>
126 #include <machine_base/apic/ioapic_abi.h>
127 #include <machine/mptable.h>
128 
129 #define PHYSMAP_ENTRIES		10
130 #define MAXBUFSTRUCTSIZE	((size_t)512 * 1024 * 1024)
131 
132 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
133 
134 extern void printcpuinfo(void);	/* XXX header file */
135 extern void identify_cpu(void);
136 extern void panicifcpuunsupported(void);
137 
138 static void cpu_startup(void *);
139 static void pic_finish(void *);
140 static void cpu_finish(void *);
141 
142 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
143 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
144 static void init_locks(void);
145 
146 extern void pcpu_timer_always(struct intrframe *);
147 
148 SYSINIT(cpu, SI_BOOT2_START_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
149 SYSINIT(pic_finish, SI_BOOT2_FINISH_PIC, SI_ORDER_FIRST, pic_finish, NULL);
150 SYSINIT(cpu_finish, SI_BOOT2_FINISH_CPU, SI_ORDER_FIRST, cpu_finish, NULL);
151 
152 #ifdef DDB
153 extern vm_offset_t ksym_start, ksym_end;
154 #endif
155 
156 struct privatespace CPU_prvspace_bsp __aligned(4096);
157 struct privatespace *CPU_prvspace[MAXCPU] = { &CPU_prvspace_bsp };
158 
159 vm_paddr_t efi_systbl_phys;
160 int	_udatasel, _ucodesel, _ucode32sel;
161 u_long	atdevbase;
162 int64_t tsc_offsets[MAXCPU];
163 cpumask_t smp_idleinvl_mask;
164 cpumask_t smp_idleinvl_reqs;
165 
166 static int cpu_mwait_halt_global; /* MWAIT hint (EAX) or CPU_MWAIT_HINT_ */
167 
168 #if defined(SWTCH_OPTIM_STATS)
169 extern int swtch_optim_stats;
170 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
171 	CTLFLAG_RD, &swtch_optim_stats, 0, "");
172 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
173 	CTLFLAG_RD, &tlb_flush_count, 0, "");
174 #endif
175 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_halt,
176 	CTLFLAG_RD, &cpu_mwait_halt_global, 0, "");
177 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_spin,
178 	CTLFLAG_RD, &cpu_mwait_spin, 0, "monitor/mwait target state");
179 
180 #define CPU_MWAIT_HAS_CX	\
181 	((cpu_feature2 & CPUID2_MON) && \
182 	 (cpu_mwait_feature & CPUID_MWAIT_EXT))
183 
184 #define CPU_MWAIT_CX_NAMELEN	16
185 
186 #define CPU_MWAIT_C1		1
187 #define CPU_MWAIT_C2		2
188 #define CPU_MWAIT_C3		3
189 #define CPU_MWAIT_CX_MAX	8
190 
191 #define CPU_MWAIT_HINT_AUTO	-1	/* C1 and C2 */
192 #define CPU_MWAIT_HINT_AUTODEEP	-2	/* C3+ */
193 
194 SYSCTL_NODE(_machdep, OID_AUTO, mwait, CTLFLAG_RW, 0, "MWAIT features");
195 SYSCTL_NODE(_machdep_mwait, OID_AUTO, CX, CTLFLAG_RW, 0, "MWAIT Cx settings");
196 
197 struct cpu_mwait_cx {
198 	int			subcnt;
199 	char			name[4];
200 	struct sysctl_ctx_list	sysctl_ctx;
201 	struct sysctl_oid	*sysctl_tree;
202 };
203 static struct cpu_mwait_cx	cpu_mwait_cx_info[CPU_MWAIT_CX_MAX];
204 static char			cpu_mwait_cx_supported[256];
205 
206 static int			cpu_mwait_c1_hints_cnt;
207 static int			cpu_mwait_hints_cnt;
208 static int			*cpu_mwait_hints;
209 
210 static int			cpu_mwait_deep_hints_cnt;
211 static int			*cpu_mwait_deep_hints;
212 
213 #define CPU_IDLE_REPEAT_DEFAULT	750
214 
215 static u_int			cpu_idle_repeat = CPU_IDLE_REPEAT_DEFAULT;
216 static u_long			cpu_idle_repeat_max = CPU_IDLE_REPEAT_DEFAULT;
217 static u_int			cpu_mwait_repeat_shift = 1;
218 
219 #define CPU_MWAIT_C3_PREAMBLE_BM_ARB	0x1
220 #define CPU_MWAIT_C3_PREAMBLE_BM_STS	0x2
221 
222 static int			cpu_mwait_c3_preamble =
223 				    CPU_MWAIT_C3_PREAMBLE_BM_ARB |
224 				    CPU_MWAIT_C3_PREAMBLE_BM_STS;
225 
226 SYSCTL_STRING(_machdep_mwait_CX, OID_AUTO, supported, CTLFLAG_RD,
227     cpu_mwait_cx_supported, 0, "MWAIT supported C states");
228 SYSCTL_INT(_machdep_mwait_CX, OID_AUTO, c3_preamble, CTLFLAG_RD,
229     &cpu_mwait_c3_preamble, 0, "C3+ preamble mask");
230 
231 static int	cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS,
232 		    int *, boolean_t);
233 static int	cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS);
234 static int	cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS);
235 static int	cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS);
236 
237 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, idle, CTLTYPE_STRING|CTLFLAG_RW,
238     NULL, 0, cpu_mwait_cx_idle_sysctl, "A", "");
239 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, spin, CTLTYPE_STRING|CTLFLAG_RW,
240     NULL, 0, cpu_mwait_cx_spin_sysctl, "A", "");
241 SYSCTL_UINT(_machdep_mwait_CX, OID_AUTO, repeat_shift, CTLFLAG_RW,
242     &cpu_mwait_repeat_shift, 0, "");
243 
244 long physmem = 0;
245 
246 u_long ebda_addr = 0;
247 
248 int imcr_present = 0;
249 
250 int naps = 0; /* # of Applications processors */
251 
252 u_int base_memory;
253 
254 static int
255 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
256 {
257 	u_long pmem = ctob(physmem);
258 	int error;
259 
260 	error = sysctl_handle_long(oidp, &pmem, 0, req);
261 
262 	return (error);
263 }
264 
265 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
266 	0, 0, sysctl_hw_physmem, "LU",
267 	"Total system memory in bytes (number of pages * page size)");
268 
269 static int
270 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
271 {
272 	u_long usermem = ctob(physmem - vmstats.v_wire_count);
273 	int error;
274 
275 	error = sysctl_handle_long(oidp, &usermem, 0, req);
276 
277 	return (error);
278 }
279 
280 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_ULONG|CTLFLAG_RD,
281 	0, 0, sysctl_hw_usermem, "LU", "");
282 
283 static int
284 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
285 {
286 	int error;
287 	u_long availpages;
288 
289 	availpages = x86_64_btop(avail_end - avail_start);
290 	error = sysctl_handle_long(oidp, &availpages, 0, req);
291 
292 	return (error);
293 }
294 
295 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_ULONG|CTLFLAG_RD,
296 	0, 0, sysctl_hw_availpages, "LU", "");
297 
298 vm_paddr_t Maxmem;
299 vm_paddr_t Realmem;
300 
301 /*
302  * The number of PHYSMAP entries must be one less than the number of
303  * PHYSSEG entries because the PHYSMAP entry that spans the largest
304  * physical address that is accessible by ISA DMA is split into two
305  * PHYSSEG entries.
306  */
307 vm_phystable_t phys_avail[VM_PHYSSEG_MAX + 1];
308 vm_phystable_t dump_avail[VM_PHYSSEG_MAX + 1];
309 
310 /* must be 1 less so 0 0 can signal end of chunks */
311 #define PHYS_AVAIL_ARRAY_END (NELEM(phys_avail) - 1)
312 #define DUMP_AVAIL_ARRAY_END (NELEM(dump_avail) - 1)
313 
314 static vm_offset_t buffer_sva, buffer_eva;
315 vm_offset_t clean_sva, clean_eva;
316 static vm_offset_t pager_sva, pager_eva;
317 static struct trapframe proc0_tf;
318 
319 static void cpu_implement_smap(void);
320 
321 static void
322 cpu_startup(void *dummy)
323 {
324 	caddr_t v;
325 	vm_size_t size = 0;
326 	vm_offset_t firstaddr;
327 
328 	/*
329 	 * Good {morning,afternoon,evening,night}.
330 	 */
331 	kprintf("%s", version);
332 	startrtclock();
333 	printcpuinfo();
334 	panicifcpuunsupported();
335 	if (cpu_stdext_feature & CPUID_STDEXT_SMAP)
336 		cpu_implement_smap();
337 
338 	kprintf("real memory  = %ju (%ju MB)\n",
339 		(intmax_t)Realmem,
340 		(intmax_t)Realmem / 1024 / 1024);
341 	/*
342 	 * Display any holes after the first chunk of extended memory.
343 	 */
344 	if (bootverbose) {
345 		int indx;
346 
347 		kprintf("Physical memory chunk(s):\n");
348 		for (indx = 0; phys_avail[indx].phys_end != 0; ++indx) {
349 			vm_paddr_t size1;
350 
351 			size1 = phys_avail[indx].phys_end -
352 				phys_avail[indx].phys_beg;
353 
354 			kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
355 				(intmax_t)phys_avail[indx].phys_beg,
356 				(intmax_t)phys_avail[indx].phys_end - 1,
357 				(intmax_t)size1,
358 				(intmax_t)(size1 / PAGE_SIZE));
359 		}
360 	}
361 
362 	/*
363 	 * Allocate space for system data structures.
364 	 * The first available kernel virtual address is in "v".
365 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
366 	 * As pages of memory are allocated and cleared,
367 	 * "firstaddr" is incremented.
368 	 * An index into the kernel page table corresponding to the
369 	 * virtual memory address maintained in "v" is kept in "mapaddr".
370 	 */
371 
372 	/*
373 	 * Make two passes.  The first pass calculates how much memory is
374 	 * needed and allocates it.  The second pass assigns virtual
375 	 * addresses to the various data structures.
376 	 */
377 	firstaddr = 0;
378 again:
379 	v = (caddr_t)firstaddr;
380 
381 #define	valloc(name, type, num) \
382 	    (name) = (type *)v; v = (caddr_t)((name)+(num))
383 #define	valloclim(name, type, num, lim) \
384 	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
385 
386 	/*
387 	 * Calculate nbuf such that maxbufspace uses approximately 1/20
388 	 * of physical memory by default, with a minimum of 50 buffers.
389 	 *
390 	 * The calculation is made after discounting 128MB.
391 	 *
392 	 * NOTE: maxbufspace is (nbuf * NBUFCALCSIZE) (NBUFCALCSIZE ~= 16KB).
393 	 *	 nbuf = (kbytes / factor) would cover all of memory.
394 	 */
395 	if (nbuf == 0) {
396 		long factor = NBUFCALCSIZE / 1024;		/* KB/nbuf */
397 		long kbytes = physmem * (PAGE_SIZE / 1024);	/* physmem */
398 
399 		nbuf = 50;
400 		if (kbytes > 128 * 1024)
401 			nbuf += (kbytes - 128 * 1024) / (factor * 20);
402 		if (maxbcache && nbuf > maxbcache / NBUFCALCSIZE)
403 			nbuf = maxbcache / NBUFCALCSIZE;
404 		if ((size_t)nbuf * sizeof(struct buf) > MAXBUFSTRUCTSIZE) {
405 			kprintf("Warning: nbuf capped at %ld due to the "
406 				"reasonability limit\n", nbuf);
407 			nbuf = MAXBUFSTRUCTSIZE / sizeof(struct buf);
408 		}
409 	}
410 
411 	/*
412 	 * Do not allow the buffer_map to be more then 1/2 the size of the
413 	 * kernel_map.
414 	 */
415 	if (nbuf > (virtual_end - virtual_start +
416 		    virtual2_end - virtual2_start) / (MAXBSIZE * 2)) {
417 		nbuf = (virtual_end - virtual_start +
418 			virtual2_end - virtual2_start) / (MAXBSIZE * 2);
419 		kprintf("Warning: nbufs capped at %ld due to kvm\n", nbuf);
420 	}
421 
422 	/*
423 	 * Do not allow the buffer_map to use more than 50% of available
424 	 * physical-equivalent memory.  Since the VM pages which back
425 	 * individual buffers are typically wired, having too many bufs
426 	 * can prevent the system from paging properly.
427 	 */
428 	if (nbuf > physmem * PAGE_SIZE / (NBUFCALCSIZE * 2)) {
429 		nbuf = physmem * PAGE_SIZE / (NBUFCALCSIZE * 2);
430 		kprintf("Warning: nbufs capped at %ld due to physmem\n", nbuf);
431 	}
432 
433 	/*
434 	 * Do not allow the sizeof(struct buf) * nbuf to exceed 1/4 of
435 	 * the valloc space which is just the virtual_end - virtual_start
436 	 * section.  This is typically ~2GB regardless of the amount of
437 	 * memory, so we use 500MB as a metric.
438 	 *
439 	 * This is because we use valloc() to allocate the buf header array.
440 	 *
441 	 * NOTE: buffer space in bytes is limited by vfs.*bufspace sysctls.
442 	 */
443 	if (nbuf > (virtual_end - virtual_start) / (sizeof(struct buf) * 4)) {
444 		nbuf = (virtual_end - virtual_start) /
445 		       (sizeof(struct buf) * 4);
446 		kprintf("Warning: nbufs capped at %ld due to "
447 			"valloc considerations\n",
448 			nbuf);
449 	}
450 
451 	nswbuf_mem = lmax(lmin(nbuf / 32, 512), 8);
452 #ifdef NSWBUF_MIN
453 	if (nswbuf_mem < NSWBUF_MIN)
454 		nswbuf_mem = NSWBUF_MIN;
455 #endif
456 	nswbuf_kva = lmax(lmin(nbuf / 4, 512), 16);
457 #ifdef NSWBUF_MIN
458 	if (nswbuf_kva < NSWBUF_MIN)
459 		nswbuf_kva = NSWBUF_MIN;
460 #endif
461 
462 	valloc(swbuf_mem, struct buf, nswbuf_mem);
463 	valloc(swbuf_kva, struct buf, nswbuf_kva);
464 	valloc(buf, struct buf, nbuf);
465 
466 	/*
467 	 * End of first pass, size has been calculated so allocate memory
468 	 */
469 	if (firstaddr == 0) {
470 		size = (vm_size_t)(v - firstaddr);
471 		firstaddr = kmem_alloc(&kernel_map, round_page(size),
472 				       VM_SUBSYS_BUF);
473 		if (firstaddr == 0)
474 			panic("startup: no room for tables");
475 		goto again;
476 	}
477 
478 	/*
479 	 * End of second pass, addresses have been assigned
480 	 *
481 	 * nbuf is an int, make sure we don't overflow the field.
482 	 *
483 	 * On 64-bit systems we always reserve maximal allocations for
484 	 * buffer cache buffers and there are no fragmentation issues,
485 	 * so the KVA segment does not have to be excessively oversized.
486 	 */
487 	if ((vm_size_t)(v - firstaddr) != size)
488 		panic("startup: table size inconsistency");
489 
490 	kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
491 		      ((vm_offset_t)(nbuf + 16) * MAXBSIZE) +
492 		      ((nswbuf_mem + nswbuf_kva) * MAXPHYS) + pager_map_size);
493 	kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
494 		      ((vm_offset_t)(nbuf + 16) * MAXBSIZE));
495 	buffer_map.system_map = 1;
496 	kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
497 		      ((vm_offset_t)(nswbuf_mem + nswbuf_kva) * MAXPHYS) +
498 		      pager_map_size);
499 	pager_map.system_map = 1;
500 	kprintf("avail memory = %ju (%ju MB)\n",
501 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages),
502 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages) /
503 		1024 / 1024);
504 }
505 
506 struct cpu_idle_stat {
507 	int	hint;
508 	int	reserved;
509 	u_long	halt;
510 	u_long	spin;
511 	u_long	repeat;
512 	u_long	repeat_last;
513 	u_long	repeat_delta;
514 	u_long	mwait_cx[CPU_MWAIT_CX_MAX];
515 } __cachealign;
516 
517 #define CPU_IDLE_STAT_HALT	-1
518 #define CPU_IDLE_STAT_SPIN	-2
519 
520 static struct cpu_idle_stat	cpu_idle_stats[MAXCPU];
521 
522 static int
523 sysctl_cpu_idle_cnt(SYSCTL_HANDLER_ARGS)
524 {
525 	int idx = arg2, cpu, error;
526 	u_long val = 0;
527 
528 	if (idx == CPU_IDLE_STAT_HALT) {
529 		for (cpu = 0; cpu < ncpus; ++cpu)
530 			val += cpu_idle_stats[cpu].halt;
531 	} else if (idx == CPU_IDLE_STAT_SPIN) {
532 		for (cpu = 0; cpu < ncpus; ++cpu)
533 			val += cpu_idle_stats[cpu].spin;
534 	} else {
535 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
536 		    ("invalid index %d", idx));
537 		for (cpu = 0; cpu < ncpus; ++cpu)
538 			val += cpu_idle_stats[cpu].mwait_cx[idx];
539 	}
540 
541 	error = sysctl_handle_quad(oidp, &val, 0, req);
542         if (error || req->newptr == NULL)
543 	        return error;
544 
545 	if (idx == CPU_IDLE_STAT_HALT) {
546 		for (cpu = 0; cpu < ncpus; ++cpu)
547 			cpu_idle_stats[cpu].halt = 0;
548 		cpu_idle_stats[0].halt = val;
549 	} else if (idx == CPU_IDLE_STAT_SPIN) {
550 		for (cpu = 0; cpu < ncpus; ++cpu)
551 			cpu_idle_stats[cpu].spin = 0;
552 		cpu_idle_stats[0].spin = val;
553 	} else {
554 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
555 		    ("invalid index %d", idx));
556 		for (cpu = 0; cpu < ncpus; ++cpu)
557 			cpu_idle_stats[cpu].mwait_cx[idx] = 0;
558 		cpu_idle_stats[0].mwait_cx[idx] = val;
559 	}
560 	return 0;
561 }
562 
563 static void
564 cpu_mwait_attach(void)
565 {
566 	struct sbuf sb;
567 	int hint_idx, i;
568 
569 	if (!CPU_MWAIT_HAS_CX)
570 		return;
571 
572 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
573 	    (CPUID_TO_FAMILY(cpu_id) > 0xf ||
574 	     (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
575 	      CPUID_TO_MODEL(cpu_id) >= 0xf))) {
576 		int bm_sts = 1;
577 
578 		/*
579 		 * Pentium dual-core, Core 2 and beyond do not need any
580 		 * additional activities to enter deep C-state, i.e. C3(+).
581 		 */
582 		cpu_mwait_cx_no_bmarb();
583 
584 		TUNABLE_INT_FETCH("machdep.cpu.mwait.bm_sts", &bm_sts);
585 		if (!bm_sts)
586 			cpu_mwait_cx_no_bmsts();
587 	}
588 
589 	sbuf_new(&sb, cpu_mwait_cx_supported,
590 	    sizeof(cpu_mwait_cx_supported), SBUF_FIXEDLEN);
591 
592 	for (i = 0; i < CPU_MWAIT_CX_MAX; ++i) {
593 		struct cpu_mwait_cx *cx = &cpu_mwait_cx_info[i];
594 		int sub;
595 
596 		ksnprintf(cx->name, sizeof(cx->name), "C%d", i);
597 
598 		sysctl_ctx_init(&cx->sysctl_ctx);
599 		cx->sysctl_tree = SYSCTL_ADD_NODE(&cx->sysctl_ctx,
600 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait), OID_AUTO,
601 		    cx->name, CTLFLAG_RW, NULL, "Cx control/info");
602 		if (cx->sysctl_tree == NULL)
603 			continue;
604 
605 		cx->subcnt = CPUID_MWAIT_CX_SUBCNT(cpu_mwait_extemu, i);
606 		SYSCTL_ADD_INT(&cx->sysctl_ctx,
607 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
608 		    "subcnt", CTLFLAG_RD, &cx->subcnt, 0,
609 		    "sub-state count");
610 		SYSCTL_ADD_PROC(&cx->sysctl_ctx,
611 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
612 		    "entered", (CTLTYPE_QUAD | CTLFLAG_RW), 0,
613 		    i, sysctl_cpu_idle_cnt, "Q", "# of times entered");
614 
615 		for (sub = 0; sub < cx->subcnt; ++sub)
616 			sbuf_printf(&sb, "C%d/%d ", i, sub);
617 	}
618 	sbuf_trim(&sb);
619 	sbuf_finish(&sb);
620 
621 	/*
622 	 * Non-deep C-states
623 	 */
624 	cpu_mwait_c1_hints_cnt = cpu_mwait_cx_info[CPU_MWAIT_C1].subcnt;
625 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i)
626 		cpu_mwait_hints_cnt += cpu_mwait_cx_info[i].subcnt;
627 	cpu_mwait_hints = kmalloc(sizeof(int) * cpu_mwait_hints_cnt,
628 				  M_DEVBUF, M_WAITOK);
629 
630 	hint_idx = 0;
631 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i) {
632 		int j, subcnt;
633 
634 		subcnt = cpu_mwait_cx_info[i].subcnt;
635 		for (j = 0; j < subcnt; ++j) {
636 			KASSERT(hint_idx < cpu_mwait_hints_cnt,
637 			    ("invalid mwait hint index %d", hint_idx));
638 			cpu_mwait_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
639 			++hint_idx;
640 		}
641 	}
642 	KASSERT(hint_idx == cpu_mwait_hints_cnt,
643 	    ("mwait hint count %d != index %d",
644 	     cpu_mwait_hints_cnt, hint_idx));
645 
646 	if (bootverbose) {
647 		kprintf("MWAIT hints (%d C1 hints):\n", cpu_mwait_c1_hints_cnt);
648 		for (i = 0; i < cpu_mwait_hints_cnt; ++i) {
649 			int hint = cpu_mwait_hints[i];
650 
651 			kprintf("  C%d/%d hint 0x%04x\n",
652 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
653 			    hint);
654 		}
655 	}
656 
657 	/*
658 	 * Deep C-states
659 	 */
660 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i)
661 		cpu_mwait_deep_hints_cnt += cpu_mwait_cx_info[i].subcnt;
662 	cpu_mwait_deep_hints = kmalloc(sizeof(int) * cpu_mwait_deep_hints_cnt,
663 	    M_DEVBUF, M_WAITOK);
664 
665 	hint_idx = 0;
666 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i) {
667 		int j, subcnt;
668 
669 		subcnt = cpu_mwait_cx_info[i].subcnt;
670 		for (j = 0; j < subcnt; ++j) {
671 			KASSERT(hint_idx < cpu_mwait_deep_hints_cnt,
672 			    ("invalid mwait deep hint index %d", hint_idx));
673 			cpu_mwait_deep_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
674 			++hint_idx;
675 		}
676 	}
677 	KASSERT(hint_idx == cpu_mwait_deep_hints_cnt,
678 	    ("mwait deep hint count %d != index %d",
679 	     cpu_mwait_deep_hints_cnt, hint_idx));
680 
681 	if (bootverbose) {
682 		kprintf("MWAIT deep hints:\n");
683 		for (i = 0; i < cpu_mwait_deep_hints_cnt; ++i) {
684 			int hint = cpu_mwait_deep_hints[i];
685 
686 			kprintf("  C%d/%d hint 0x%04x\n",
687 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
688 			    hint);
689 		}
690 	}
691 	cpu_idle_repeat_max = 256 * cpu_mwait_deep_hints_cnt;
692 
693 	for (i = 0; i < ncpus; ++i) {
694 		char name[16];
695 
696 		ksnprintf(name, sizeof(name), "idle%d", i);
697 		SYSCTL_ADD_PROC(NULL,
698 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait_CX), OID_AUTO,
699 		    name, (CTLTYPE_STRING | CTLFLAG_RW), &cpu_idle_stats[i],
700 		    0, cpu_mwait_cx_pcpu_idle_sysctl, "A", "");
701 	}
702 }
703 
704 static void
705 cpu_finish(void *dummy __unused)
706 {
707 	cpu_setregs();
708 	cpu_mwait_attach();
709 }
710 
711 static void
712 pic_finish(void *dummy __unused)
713 {
714 	/* Log ELCR information */
715 	elcr_dump();
716 
717 	/* Log MPTABLE information */
718 	mptable_pci_int_dump();
719 
720 	/* Finalize PCI */
721 	MachIntrABI.finalize();
722 }
723 
724 /*
725  * Send an interrupt to process.
726  *
727  * Stack is set up to allow sigcode stored
728  * at top to call routine, followed by kcall
729  * to sigreturn routine below.  After sigreturn
730  * resets the signal mask, the stack, and the
731  * frame pointer, it returns to the user
732  * specified pc, psl.
733  */
734 void
735 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
736 {
737 	struct lwp *lp = curthread->td_lwp;
738 	struct proc *p = lp->lwp_proc;
739 	struct trapframe *regs;
740 	struct sigacts *psp = p->p_sigacts;
741 	struct sigframe sf, *sfp;
742 	int oonstack;
743 	char *sp;
744 
745 	regs = lp->lwp_md.md_regs;
746 	oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
747 
748 	/* Save user context */
749 	bzero(&sf, sizeof(struct sigframe));
750 	sf.sf_uc.uc_sigmask = *mask;
751 	sf.sf_uc.uc_stack = lp->lwp_sigstk;
752 	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
753 	KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
754 	/* gcc errors out on optimized bcopy */
755 	_bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
756 
757 	/* Make the size of the saved context visible to userland */
758 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
759 
760 	/* Allocate and validate space for the signal handler context. */
761         if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
762 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
763 		sp = (char *)lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
764 		    sizeof(struct sigframe);
765 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
766 	} else {
767 		/* We take red zone into account */
768 		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
769 	}
770 
771 	/*
772 	 * XXX AVX needs 64-byte alignment but sigframe has other fields and
773 	 * the embedded ucontext is not at the front, so aligning this won't
774 	 * help us.  Fortunately we bcopy in/out of the sigframe, so the
775 	 * kernel is ok.
776 	 *
777 	 * The problem though is if userland winds up trying to use the
778 	 * context directly.
779 	 */
780 	sfp = (struct sigframe *)((intptr_t)sp & ~(intptr_t)0xF);
781 
782 	/* Translate the signal is appropriate */
783 	if (p->p_sysent->sv_sigtbl) {
784 		if (sig <= p->p_sysent->sv_sigsize)
785 			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
786 	}
787 
788 	/*
789 	 * Build the argument list for the signal handler.
790 	 *
791 	 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
792 	 */
793 	regs->tf_rdi = sig;				/* argument 1 */
794 	regs->tf_rdx = (register_t)&sfp->sf_uc;		/* argument 3 */
795 
796 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
797 		/*
798 		 * Signal handler installed with SA_SIGINFO.
799 		 *
800 		 * action(signo, siginfo, ucontext)
801 		 */
802 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* argument 2 */
803 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
804 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
805 
806 		/* fill siginfo structure */
807 		sf.sf_si.si_signo = sig;
808 		sf.sf_si.si_pid = psp->ps_frominfo[sig].pid;
809 		sf.sf_si.si_uid = psp->ps_frominfo[sig].uid;
810 		sf.sf_si.si_code = code;
811 		sf.sf_si.si_addr = (void *)regs->tf_addr;
812 	} else {
813 		/*
814 		 * Old FreeBSD-style arguments.
815 		 *
816 		 * handler (signo, code, [uc], addr)
817 		 */
818 		regs->tf_rsi = (register_t)code;	/* argument 2 */
819 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
820 		sf.sf_ahu.sf_handler = catcher;
821 	}
822 
823 	/*
824 	 * If we're a vm86 process, we want to save the segment registers.
825 	 * We also change eflags to be our emulated eflags, not the actual
826 	 * eflags.
827 	 */
828 #if 0 /* JG */
829 	if (regs->tf_eflags & PSL_VM) {
830 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
831 		struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
832 
833 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
834 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
835 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
836 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
837 
838 		if (vm86->vm86_has_vme == 0)
839 			sf.sf_uc.uc_mcontext.mc_eflags =
840 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
841 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
842 
843 		/*
844 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
845 		 * syscalls made by the signal handler.  This just avoids
846 		 * wasting time for our lazy fixup of such faults.  PSL_NT
847 		 * does nothing in vm86 mode, but vm86 programs can set it
848 		 * almost legitimately in probes for old cpu types.
849 		 */
850 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
851 	}
852 #endif
853 
854 	/*
855 	 * Save the FPU state and reinit the FP unit
856 	 */
857 	npxpush(&sf.sf_uc.uc_mcontext);
858 
859 	/*
860 	 * Copy the sigframe out to the user's stack.
861 	 */
862 	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
863 		/*
864 		 * Something is wrong with the stack pointer.
865 		 * ...Kill the process.
866 		 */
867 		sigexit(lp, SIGILL);
868 	}
869 
870 	regs->tf_rsp = (register_t)sfp;
871 	regs->tf_rip = trunc_page64(PS_STRINGS - *(p->p_sysent->sv_szsigcode));
872 	regs->tf_rip -= SZSIGCODE_EXTRA_BYTES;
873 
874 	/*
875 	 * x86 abi specifies that the direction flag must be cleared
876 	 * on function entry
877 	 */
878 	regs->tf_rflags &= ~(PSL_T | PSL_D);
879 
880 	/*
881 	 * 64 bit mode has a code and stack selector but
882 	 * no data or extra selector.  %fs and %gs are not
883 	 * stored in-context.
884 	 */
885 	regs->tf_cs = _ucodesel;
886 	regs->tf_ss = _udatasel;
887 	clear_quickret();
888 }
889 
890 /*
891  * Sanitize the trapframe for a virtual kernel passing control to a custom
892  * VM context.  Remove any items that would otherwise create a privilage
893  * issue.
894  *
895  * XXX at the moment we allow userland to set the resume flag.  Is this a
896  * bad idea?
897  */
898 int
899 cpu_sanitize_frame(struct trapframe *frame)
900 {
901 	frame->tf_cs = _ucodesel;
902 	frame->tf_ss = _udatasel;
903 	/* XXX VM (8086) mode not supported? */
904 	frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
905 	frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
906 
907 	return(0);
908 }
909 
910 /*
911  * Sanitize the tls so loading the descriptor does not blow up
912  * on us.  For x86_64 we don't have to do anything.
913  */
914 int
915 cpu_sanitize_tls(struct savetls *tls)
916 {
917 	return(0);
918 }
919 
920 /*
921  * sigreturn(ucontext_t *sigcntxp)
922  *
923  * System call to cleanup state after a signal
924  * has been taken.  Reset signal mask and
925  * stack state from context left by sendsig (above).
926  * Return to previous pc and psl as specified by
927  * context left by sendsig. Check carefully to
928  * make sure that the user has not modified the
929  * state to gain improper privileges.
930  *
931  * MPSAFE
932  */
933 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
934 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
935 
936 int
937 sys_sigreturn(struct sigreturn_args *uap)
938 {
939 	struct lwp *lp = curthread->td_lwp;
940 	struct trapframe *regs;
941 	ucontext_t uc;
942 	ucontext_t *ucp;
943 	register_t rflags;
944 	int cs;
945 	int error;
946 
947 	/*
948 	 * We have to copy the information into kernel space so userland
949 	 * can't modify it while we are sniffing it.
950 	 */
951 	regs = lp->lwp_md.md_regs;
952 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
953 	if (error)
954 		return (error);
955 	ucp = &uc;
956 	rflags = ucp->uc_mcontext.mc_rflags;
957 
958 	/* VM (8086) mode not supported */
959 	rflags &= ~PSL_VM_UNSUPP;
960 
961 #if 0 /* JG */
962 	if (eflags & PSL_VM) {
963 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
964 		struct vm86_kernel *vm86;
965 
966 		/*
967 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
968 		 * set up the vm86 area, and we can't enter vm86 mode.
969 		 */
970 		if (lp->lwp_thread->td_pcb->pcb_ext == 0)
971 			return (EINVAL);
972 		vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
973 		if (vm86->vm86_inited == 0)
974 			return (EINVAL);
975 
976 		/* go back to user mode if both flags are set */
977 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
978 			trapsignal(lp, SIGBUS, 0);
979 
980 		if (vm86->vm86_has_vme) {
981 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
982 			    (eflags & VME_USERCHANGE) | PSL_VM;
983 		} else {
984 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
985 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
986 			    (eflags & VM_USERCHANGE) | PSL_VM;
987 		}
988 		bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
989 		tf->tf_eflags = eflags;
990 		tf->tf_vm86_ds = tf->tf_ds;
991 		tf->tf_vm86_es = tf->tf_es;
992 		tf->tf_vm86_fs = tf->tf_fs;
993 		tf->tf_vm86_gs = tf->tf_gs;
994 		tf->tf_ds = _udatasel;
995 		tf->tf_es = _udatasel;
996 		tf->tf_fs = _udatasel;
997 		tf->tf_gs = _udatasel;
998 	} else
999 #endif
1000 	{
1001 		/*
1002 		 * Don't allow users to change privileged or reserved flags.
1003 		 */
1004 		/*
1005 		 * XXX do allow users to change the privileged flag PSL_RF.
1006 		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
1007 		 * should sometimes set it there too.  tf_eflags is kept in
1008 		 * the signal context during signal handling and there is no
1009 		 * other place to remember it, so the PSL_RF bit may be
1010 		 * corrupted by the signal handler without us knowing.
1011 		 * Corruption of the PSL_RF bit at worst causes one more or
1012 		 * one less debugger trap, so allowing it is fairly harmless.
1013 		 */
1014 		if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
1015 			kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
1016 			return(EINVAL);
1017 		}
1018 
1019 		/*
1020 		 * Don't allow users to load a valid privileged %cs.  Let the
1021 		 * hardware check for invalid selectors, excess privilege in
1022 		 * other selectors, invalid %eip's and invalid %esp's.
1023 		 */
1024 		cs = ucp->uc_mcontext.mc_cs;
1025 		if (!CS_SECURE(cs)) {
1026 			kprintf("sigreturn: cs = 0x%x\n", cs);
1027 			trapsignal(lp, SIGBUS, T_PROTFLT);
1028 			return(EINVAL);
1029 		}
1030 		/* gcc errors out on optimized bcopy */
1031 		_bcopy(&ucp->uc_mcontext.mc_rdi, regs,
1032 		       sizeof(struct trapframe));
1033 	}
1034 
1035 	/*
1036 	 * Restore the FPU state from the frame
1037 	 */
1038 	crit_enter();
1039 	npxpop(&ucp->uc_mcontext);
1040 
1041 	if (ucp->uc_mcontext.mc_onstack & 1)
1042 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
1043 	else
1044 		lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
1045 
1046 	lp->lwp_sigmask = ucp->uc_sigmask;
1047 	SIG_CANTMASK(lp->lwp_sigmask);
1048 	clear_quickret();
1049 	crit_exit();
1050 	return(EJUSTRETURN);
1051 }
1052 
1053 /*
1054  * Machine dependent boot() routine
1055  *
1056  * I haven't seen anything to put here yet
1057  * Possibly some stuff might be grafted back here from boot()
1058  */
1059 void
1060 cpu_boot(int howto)
1061 {
1062 }
1063 
1064 /*
1065  * Shutdown the CPU as much as possible
1066  */
1067 void
1068 cpu_halt(void)
1069 {
1070 	for (;;)
1071 		__asm__ __volatile("hlt");
1072 }
1073 
1074 /*
1075  * cpu_idle() represents the idle LWKT.  You cannot return from this function
1076  * (unless you want to blow things up!).  Instead we look for runnable threads
1077  * and loop or halt as appropriate.  Giant is not held on entry to the thread.
1078  *
1079  * The main loop is entered with a critical section held, we must release
1080  * the critical section before doing anything else.  lwkt_switch() will
1081  * check for pending interrupts due to entering and exiting its own
1082  * critical section.
1083  *
1084  * NOTE: On an SMP system we rely on a scheduler IPI to wake a HLTed cpu up.
1085  *	 However, there are cases where the idlethread will be entered with
1086  *	 the possibility that no IPI will occur and in such cases
1087  *	 lwkt_switch() sets TDF_IDLE_NOHLT.
1088  *
1089  * NOTE: cpu_idle_repeat determines how many entries into the idle thread
1090  *	 must occur before it starts using ACPI halt.
1091  *
1092  * NOTE: Value overridden in hammer_time().
1093  */
1094 static int	cpu_idle_hlt = 2;
1095 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
1096     &cpu_idle_hlt, 0, "Idle loop HLT enable");
1097 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_repeat, CTLFLAG_RW,
1098     &cpu_idle_repeat, 0, "Idle entries before acpi hlt");
1099 
1100 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_hltcnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1101     0, CPU_IDLE_STAT_HALT, sysctl_cpu_idle_cnt, "Q", "Idle loop entry halts");
1102 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_spincnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1103     0, CPU_IDLE_STAT_SPIN, sysctl_cpu_idle_cnt, "Q", "Idle loop entry spins");
1104 
1105 static void
1106 cpu_idle_default_hook(void)
1107 {
1108 	/*
1109 	 * We must guarentee that hlt is exactly the instruction
1110 	 * following the sti.
1111 	 */
1112 	__asm __volatile("sti; hlt");
1113 }
1114 
1115 /* Other subsystems (e.g., ACPI) can hook this later. */
1116 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
1117 
1118 static __inline int
1119 cpu_mwait_cx_hint(struct cpu_idle_stat *stat)
1120 {
1121 	int hint, cx_idx;
1122 	u_int idx;
1123 
1124 	hint = stat->hint;
1125 	if (hint >= 0)
1126 		goto done;
1127 
1128 	idx = (stat->repeat + stat->repeat_last + stat->repeat_delta) >>
1129 	    cpu_mwait_repeat_shift;
1130 	if (idx >= cpu_mwait_c1_hints_cnt) {
1131 		/* Step up faster, once we walked through all C1 states */
1132 		stat->repeat_delta += 1 << (cpu_mwait_repeat_shift + 1);
1133 	}
1134 	if (hint == CPU_MWAIT_HINT_AUTODEEP) {
1135 		if (idx >= cpu_mwait_deep_hints_cnt)
1136 			idx = cpu_mwait_deep_hints_cnt - 1;
1137 		hint = cpu_mwait_deep_hints[idx];
1138 	} else {
1139 		if (idx >= cpu_mwait_hints_cnt)
1140 			idx = cpu_mwait_hints_cnt - 1;
1141 		hint = cpu_mwait_hints[idx];
1142 	}
1143 done:
1144 	cx_idx = MWAIT_EAX_TO_CX(hint);
1145 	if (cx_idx >= 0 && cx_idx < CPU_MWAIT_CX_MAX)
1146 		stat->mwait_cx[cx_idx]++;
1147 	return hint;
1148 }
1149 
1150 void
1151 cpu_idle(void)
1152 {
1153 	globaldata_t gd = mycpu;
1154 	struct cpu_idle_stat *stat = &cpu_idle_stats[gd->gd_cpuid];
1155 	struct thread *td __debugvar = gd->gd_curthread;
1156 	int reqflags;
1157 
1158 	stat->repeat = stat->repeat_last = cpu_idle_repeat_max;
1159 
1160 	crit_exit();
1161 	KKASSERT(td->td_critcount == 0);
1162 
1163 	for (;;) {
1164 		/*
1165 		 * See if there are any LWKTs ready to go.
1166 		 */
1167 		lwkt_switch();
1168 
1169 		/*
1170 		 * When halting inside a cli we must check for reqflags
1171 		 * races, particularly [re]schedule requests.  Running
1172 		 * splz() does the job.
1173 		 *
1174 		 * cpu_idle_hlt:
1175 		 *	0	Never halt, just spin
1176 		 *
1177 		 *	1	Always use MONITOR/MWAIT if avail, HLT
1178 		 *		otherwise.
1179 		 *
1180 		 *		Better default for modern (Haswell+) Intel
1181 		 *		cpus.
1182 		 *
1183 		 *	2	Use HLT/MONITOR/MWAIT up to a point and then
1184 		 *		use the ACPI halt (default).  This is a hybrid
1185 		 *		approach.  See machdep.cpu_idle_repeat.
1186 		 *
1187 		 *		Better default for modern AMD cpus and older
1188 		 *		Intel cpus.
1189 		 *
1190 		 *	3	Always use the ACPI halt.  This typically
1191 		 *		eats the least amount of power but the cpu
1192 		 *		will be slow waking up.  Slows down e.g.
1193 		 *		compiles and other pipe/event oriented stuff.
1194 		 *
1195 		 *		Usually the best default for AMD cpus.
1196 		 *
1197 		 *	4	Always use HLT.
1198 		 *
1199 		 *	5	Always spin.
1200 		 *
1201 		 * NOTE: Interrupts are enabled and we are not in a critical
1202 		 *	 section.
1203 		 *
1204 		 * NOTE: Preemptions do not reset gd_idle_repeat.   Also we
1205 		 *	 don't bother capping gd_idle_repeat, it is ok if
1206 		 *	 it overflows (we do make it unsigned, however).
1207 		 *
1208 		 * Implement optimized invltlb operations when halted
1209 		 * in idle.  By setting the bit in smp_idleinvl_mask
1210 		 * we inform other cpus that they can set _reqs to
1211 		 * request an invltlb.  Current the code to do that
1212 		 * sets the bits in _reqs anyway, but then check _mask
1213 		 * to determine if they can assume the invltlb will execute.
1214 		 *
1215 		 * A critical section is required to ensure that interrupts
1216 		 * do not fully run until after we've had a chance to execute
1217 		 * the request.
1218 		 */
1219 		if (gd->gd_idle_repeat == 0) {
1220 			stat->repeat = (stat->repeat + stat->repeat_last) >> 1;
1221 			if (stat->repeat > cpu_idle_repeat_max)
1222 				stat->repeat = cpu_idle_repeat_max;
1223 			stat->repeat_last = 0;
1224 			stat->repeat_delta = 0;
1225 		}
1226 		++stat->repeat_last;
1227 
1228 		/*
1229 		 * General idle thread halt code
1230 		 *
1231 		 * IBRS NOTES - IBRS is a SPECTRE mitigation.  When going
1232 		 *		idle, disable IBRS to reduce hyperthread
1233 		 *		overhead.
1234 		 */
1235 		++gd->gd_idle_repeat;
1236 
1237 		switch(cpu_idle_hlt) {
1238 		default:
1239 		case 0:
1240 			/*
1241 			 * Always spin
1242 			 */
1243 			;
1244 do_spin:
1245 			splz();
1246 			__asm __volatile("sti");
1247 			stat->spin++;
1248 			crit_enter_gd(gd);
1249 			crit_exit_gd(gd);
1250 			break;
1251 		case 2:
1252 			/*
1253 			 * Use MONITOR/MWAIT (or HLT) for a few cycles,
1254 			 * then start using the ACPI halt code if we
1255 			 * continue to be idle.
1256 			 */
1257 			if (gd->gd_idle_repeat >= cpu_idle_repeat)
1258 				goto do_acpi;
1259 			/* FALL THROUGH */
1260 		case 1:
1261 			/*
1262 			 * Always use MONITOR/MWAIT (will use HLT if
1263 			 * MONITOR/MWAIT not available).
1264 			 */
1265 			if (cpu_mi_feature & CPU_MI_MONITOR) {
1266 				splz(); /* XXX */
1267 				reqflags = gd->gd_reqflags;
1268 				if (reqflags & RQF_IDLECHECK_WK_MASK)
1269 					goto do_spin;
1270 				crit_enter_gd(gd);
1271 				ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask, gd->gd_cpuid);
1272 				/*
1273 				 * IBRS/STIBP
1274 				 */
1275 				if (pscpu->trampoline.tr_pcb_spec_ctrl[1] &
1276 				    SPEC_CTRL_DUMMY_ENABLE) {
1277 					wrmsr(MSR_SPEC_CTRL, pscpu->trampoline.tr_pcb_spec_ctrl[1] & (SPEC_CTRL_IBRS|SPEC_CTRL_STIBP));
1278 				}
1279 				cpu_mmw_pause_int(&gd->gd_reqflags, reqflags,
1280 						  cpu_mwait_cx_hint(stat), 0);
1281 				if (pscpu->trampoline.tr_pcb_spec_ctrl[0] &
1282 				    SPEC_CTRL_DUMMY_ENABLE) {
1283 					wrmsr(MSR_SPEC_CTRL, pscpu->trampoline.tr_pcb_spec_ctrl[0] & (SPEC_CTRL_IBRS|SPEC_CTRL_STIBP));
1284 				}
1285 				stat->halt++;
1286 				ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask, gd->gd_cpuid);
1287 				if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1288 							      gd->gd_cpuid)) {
1289 					cpu_invltlb();
1290 					cpu_mfence();
1291 				}
1292 				crit_exit_gd(gd);
1293 				break;
1294 			}
1295 			/* FALLTHROUGH */
1296 		case 4:
1297 			/*
1298 			 * Use HLT
1299 			 */
1300 			__asm __volatile("cli");
1301 			splz();
1302 			crit_enter_gd(gd);
1303 			if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1304 				ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask,
1305 						     gd->gd_cpuid);
1306 				if (pscpu->trampoline.tr_pcb_spec_ctrl[1] &
1307 				    SPEC_CTRL_DUMMY_ENABLE) {
1308 					wrmsr(MSR_SPEC_CTRL, pscpu->trampoline.tr_pcb_spec_ctrl[1] & (SPEC_CTRL_IBRS|SPEC_CTRL_STIBP));
1309 				}
1310 				cpu_idle_default_hook();
1311 				if (pscpu->trampoline.tr_pcb_spec_ctrl[0] &
1312 				    SPEC_CTRL_DUMMY_ENABLE) {
1313 					wrmsr(MSR_SPEC_CTRL, pscpu->trampoline.tr_pcb_spec_ctrl[0] & (SPEC_CTRL_IBRS|SPEC_CTRL_STIBP));
1314 				}
1315 				ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask,
1316 						       gd->gd_cpuid);
1317 				if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1318 							      gd->gd_cpuid)) {
1319 					cpu_invltlb();
1320 					cpu_mfence();
1321 				}
1322 			}
1323 			__asm __volatile("sti");
1324 			stat->halt++;
1325 			crit_exit_gd(gd);
1326 			break;
1327 		case 3:
1328 			/*
1329 			 * Use ACPI halt
1330 			 */
1331 			;
1332 do_acpi:
1333 			__asm __volatile("cli");
1334 			splz();
1335 			crit_enter_gd(gd);
1336 			if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1337 				ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask,
1338 						     gd->gd_cpuid);
1339 				if (pscpu->trampoline.tr_pcb_spec_ctrl[1] &
1340 				    SPEC_CTRL_DUMMY_ENABLE) {
1341 					wrmsr(MSR_SPEC_CTRL, pscpu->trampoline.tr_pcb_spec_ctrl[1] & (SPEC_CTRL_IBRS|SPEC_CTRL_STIBP));
1342 				}
1343 				cpu_idle_hook();
1344 				if (pscpu->trampoline.tr_pcb_spec_ctrl[0] &
1345 				    SPEC_CTRL_DUMMY_ENABLE) {
1346 					wrmsr(MSR_SPEC_CTRL, pscpu->trampoline.tr_pcb_spec_ctrl[0] & (SPEC_CTRL_IBRS|SPEC_CTRL_STIBP));
1347 				}
1348 				ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask,
1349 						       gd->gd_cpuid);
1350 				if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1351 							      gd->gd_cpuid)) {
1352 					cpu_invltlb();
1353 					cpu_mfence();
1354 				}
1355 			}
1356 			__asm __volatile("sti");
1357 			stat->halt++;
1358 			crit_exit_gd(gd);
1359 			break;
1360 		}
1361 	}
1362 }
1363 
1364 /*
1365  * Called from deep ACPI via cpu_idle_hook() (see above) to actually halt
1366  * the cpu in C1.  ACPI might use other halt methods for deeper states
1367  * and not reach here.
1368  *
1369  * For now we always use HLT as we are not sure what ACPI may have actually
1370  * done.  MONITOR/MWAIT might not be appropriate.
1371  *
1372  * NOTE: MONITOR/MWAIT does not appear to throttle AMD cpus, while HLT
1373  *	 does.  On Intel, MONITOR/MWAIT does appear to throttle the cpu.
1374  */
1375 void
1376 cpu_idle_halt(void)
1377 {
1378 	globaldata_t gd;
1379 
1380 	gd = mycpu;
1381 #if 0
1382 	/* DISABLED FOR NOW */
1383 	struct cpu_idle_stat *stat;
1384 	int reqflags;
1385 
1386 
1387 	if ((cpu_idle_hlt == 1 || cpu_idle_hlt == 2) &&
1388 	    (cpu_mi_feature & CPU_MI_MONITOR) &&
1389 	    cpu_vendor_id != CPU_VENDOR_AMD) {
1390 		/*
1391 		 * Use MONITOR/MWAIT
1392 		 *
1393 		 * (NOTE: On ryzen, MWAIT does not throttle clocks, so we
1394 		 *	  have to use HLT)
1395 		 */
1396 		stat = &cpu_idle_stats[gd->gd_cpuid];
1397 		reqflags = gd->gd_reqflags;
1398 		if ((reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1399 			__asm __volatile("sti");
1400 			cpu_mmw_pause_int(&gd->gd_reqflags, reqflags,
1401 					  cpu_mwait_cx_hint(stat), 0);
1402 		} else {
1403 			__asm __volatile("sti; pause");
1404 		}
1405 	} else
1406 #endif
1407 	{
1408 		/*
1409 		 * Use HLT
1410 		 */
1411 		if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0)
1412 			__asm __volatile("sti; hlt");
1413 		else
1414 			__asm __volatile("sti; pause");
1415 	}
1416 }
1417 
1418 
1419 /*
1420  * Called in a loop indirectly via Xcpustop
1421  */
1422 void
1423 cpu_smp_stopped(void)
1424 {
1425 	globaldata_t gd = mycpu;
1426 	volatile __uint64_t *ptr;
1427 	__uint64_t ovalue;
1428 
1429 	ptr = CPUMASK_ADDR(started_cpus, gd->gd_cpuid);
1430 	ovalue = *ptr;
1431 	if ((ovalue & CPUMASK_SIMPLE(gd->gd_cpuid & 63)) == 0) {
1432 		if (cpu_mi_feature & CPU_MI_MONITOR) {
1433 			if (cpu_mwait_hints) {
1434 				cpu_mmw_pause_long(__DEVOLATILE(void *, ptr),
1435 					   ovalue,
1436 					   cpu_mwait_hints[
1437 						cpu_mwait_hints_cnt - 1], 0);
1438 			} else {
1439 				cpu_mmw_pause_long(__DEVOLATILE(void *, ptr),
1440 					   ovalue, 0, 0);
1441 			}
1442 		} else {
1443 			cpu_halt();	/* depend on lapic timer */
1444 		}
1445 	}
1446 }
1447 
1448 /*
1449  * This routine is called if a spinlock has been held through the
1450  * exponential backoff period and is seriously contested.  On a real cpu
1451  * we let it spin.
1452  */
1453 void
1454 cpu_spinlock_contested(void)
1455 {
1456 	cpu_pause();
1457 }
1458 
1459 /*
1460  * Clear registers on exec
1461  */
1462 void
1463 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
1464 {
1465 	struct thread *td = curthread;
1466 	struct lwp *lp = td->td_lwp;
1467 	struct pcb *pcb = td->td_pcb;
1468 	struct trapframe *regs = lp->lwp_md.md_regs;
1469 
1470 	user_ldt_free(pcb);
1471 
1472 	clear_quickret();
1473 	bzero((char *)regs, sizeof(struct trapframe));
1474 	regs->tf_rip = entry;
1475 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
1476 	regs->tf_rdi = stack;		/* argv */
1477 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
1478 	regs->tf_ss = _udatasel;
1479 	regs->tf_cs = _ucodesel;
1480 	regs->tf_rbx = ps_strings;
1481 
1482 	/*
1483 	 * Reset the hardware debug registers if they were in use.
1484 	 * They won't have any meaning for the newly exec'd process.
1485 	 */
1486 	if (pcb->pcb_flags & PCB_DBREGS) {
1487 		pcb->pcb_dr0 = 0;
1488 		pcb->pcb_dr1 = 0;
1489 		pcb->pcb_dr2 = 0;
1490 		pcb->pcb_dr3 = 0;
1491 		pcb->pcb_dr6 = 0;
1492 		pcb->pcb_dr7 = 0; /* JG set bit 10? */
1493 		if (pcb == td->td_pcb) {
1494 			/*
1495 			 * Clear the debug registers on the running
1496 			 * CPU, otherwise they will end up affecting
1497 			 * the next process we switch to.
1498 			 */
1499 			reset_dbregs();
1500 		}
1501 		pcb->pcb_flags &= ~PCB_DBREGS;
1502 	}
1503 
1504 	/*
1505 	 * Initialize the math emulator (if any) for the current process.
1506 	 * Actually, just clear the bit that says that the emulator has
1507 	 * been initialized.  Initialization is delayed until the process
1508 	 * traps to the emulator (if it is done at all) mainly because
1509 	 * emulators don't provide an entry point for initialization.
1510 	 */
1511 	pcb->pcb_flags &= ~FP_SOFTFP;
1512 
1513 	/*
1514 	 * NOTE: do not set CR0_TS here.  npxinit() must do it after clearing
1515 	 *	 gd_npxthread.  Otherwise a preemptive interrupt thread
1516 	 *	 may panic in npxdna().
1517 	 */
1518 	crit_enter();
1519 	load_cr0(rcr0() | CR0_MP);
1520 
1521 	/*
1522 	 * NOTE: The MSR values must be correct so we can return to
1523 	 *	 userland.  gd_user_fs/gs must be correct so the switch
1524 	 *	 code knows what the current MSR values are.
1525 	 */
1526 	pcb->pcb_fsbase = 0;	/* Values loaded from PCB on switch */
1527 	pcb->pcb_gsbase = 0;
1528 	mdcpu->gd_user_fs = 0;	/* Cache of current MSR values */
1529 	mdcpu->gd_user_gs = 0;
1530 	wrmsr(MSR_FSBASE, 0);	/* Set MSR values for return to userland */
1531 	wrmsr(MSR_KGSBASE, 0);
1532 
1533 	/* Initialize the npx (if any) for the current process. */
1534 	npxinit();
1535 	crit_exit();
1536 
1537 	pcb->pcb_ds = _udatasel;
1538 	pcb->pcb_es = _udatasel;
1539 	pcb->pcb_fs = _udatasel;
1540 	pcb->pcb_gs = _udatasel;
1541 }
1542 
1543 void
1544 cpu_setregs(void)
1545 {
1546 	register_t cr0;
1547 
1548 	cr0 = rcr0();
1549 	cr0 |= CR0_NE;			/* Done by npxinit() */
1550 	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1551 	cr0 |= CR0_WP | CR0_AM;
1552 	load_cr0(cr0);
1553 	load_gs(_udatasel);
1554 }
1555 
1556 static int
1557 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1558 {
1559 	int error;
1560 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1561 		req);
1562 	if (!error && req->newptr)
1563 		resettodr();
1564 	return (error);
1565 }
1566 
1567 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1568 	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1569 
1570 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1571 	CTLFLAG_RW, &disable_rtc_set, 0, "");
1572 
1573 #if 0 /* JG */
1574 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1575 	CTLFLAG_RD, &bootinfo, bootinfo, "");
1576 #endif
1577 
1578 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1579 	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1580 
1581 static int
1582 efi_map_sysctl_handler(SYSCTL_HANDLER_ARGS)
1583 {
1584 	struct efi_map_header *efihdr;
1585 	caddr_t kmdp;
1586 	uint32_t efisize;
1587 
1588 	kmdp = preload_search_by_type("elf kernel");
1589 	if (kmdp == NULL)
1590 		kmdp = preload_search_by_type("elf64 kernel");
1591 	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
1592 	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
1593 	if (efihdr == NULL)
1594 		return (0);
1595 	efisize = *((uint32_t *)efihdr - 1);
1596 	return (SYSCTL_OUT(req, efihdr, efisize));
1597 }
1598 SYSCTL_PROC(_machdep, OID_AUTO, efi_map, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
1599     efi_map_sysctl_handler, "S,efi_map_header", "Raw EFI Memory Map");
1600 
1601 /*
1602  * Initialize x86 and configure to run kernel
1603  */
1604 
1605 /*
1606  * Initialize segments & interrupt table
1607  */
1608 
1609 int _default_ldt;
1610 struct user_segment_descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1611 struct gate_descriptor idt_arr[MAXCPU][NIDT];
1612 #if 0 /* JG */
1613 union descriptor ldt[NLDT];		/* local descriptor table */
1614 #endif
1615 
1616 /* table descriptors - used to load tables by cpu */
1617 struct region_descriptor r_gdt;
1618 struct region_descriptor r_idt_arr[MAXCPU];
1619 
1620 /* JG proc0paddr is a virtual address */
1621 void *proc0paddr;
1622 /* JG alignment? */
1623 char proc0paddr_buff[LWKT_THREAD_STACK];
1624 
1625 
1626 /* software prototypes -- in more palatable form */
1627 struct soft_segment_descriptor gdt_segs[] = {
1628 /* GNULL_SEL	0 Null Descriptor */
1629 {	0x0,			/* segment base address  */
1630 	0x0,			/* length */
1631 	0,			/* segment type */
1632 	0,			/* segment descriptor priority level */
1633 	0,			/* segment descriptor present */
1634 	0,			/* long */
1635 	0,			/* default 32 vs 16 bit size */
1636 	0			/* limit granularity (byte/page units)*/ },
1637 /* GCODE_SEL	1 Code Descriptor for kernel */
1638 {	0x0,			/* segment base address  */
1639 	0xfffff,		/* length - all address space */
1640 	SDT_MEMERA,		/* segment type */
1641 	SEL_KPL,		/* segment descriptor priority level */
1642 	1,			/* segment descriptor present */
1643 	1,			/* long */
1644 	0,			/* default 32 vs 16 bit size */
1645 	1			/* limit granularity (byte/page units)*/ },
1646 /* GDATA_SEL	2 Data Descriptor for kernel */
1647 {	0x0,			/* segment base address  */
1648 	0xfffff,		/* length - all address space */
1649 	SDT_MEMRWA,		/* segment type */
1650 	SEL_KPL,		/* segment descriptor priority level */
1651 	1,			/* segment descriptor present */
1652 	1,			/* long */
1653 	0,			/* default 32 vs 16 bit size */
1654 	1			/* limit granularity (byte/page units)*/ },
1655 /* GUCODE32_SEL	3 32 bit Code Descriptor for user */
1656 {	0x0,			/* segment base address  */
1657 	0xfffff,		/* length - all address space */
1658 	SDT_MEMERA,		/* segment type */
1659 	SEL_UPL,		/* segment descriptor priority level */
1660 	1,			/* segment descriptor present */
1661 	0,			/* long */
1662 	1,			/* default 32 vs 16 bit size */
1663 	1			/* limit granularity (byte/page units)*/ },
1664 /* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
1665 {	0x0,			/* segment base address  */
1666 	0xfffff,		/* length - all address space */
1667 	SDT_MEMRWA,		/* segment type */
1668 	SEL_UPL,		/* segment descriptor priority level */
1669 	1,			/* segment descriptor present */
1670 	0,			/* long */
1671 	1,			/* default 32 vs 16 bit size */
1672 	1			/* limit granularity (byte/page units)*/ },
1673 /* GUCODE_SEL	5 64 bit Code Descriptor for user */
1674 {	0x0,			/* segment base address  */
1675 	0xfffff,		/* length - all address space */
1676 	SDT_MEMERA,		/* segment type */
1677 	SEL_UPL,		/* segment descriptor priority level */
1678 	1,			/* segment descriptor present */
1679 	1,			/* long */
1680 	0,			/* default 32 vs 16 bit size */
1681 	1			/* limit granularity (byte/page units)*/ },
1682 /* GPROC0_SEL	6 Proc 0 Tss Descriptor */
1683 {
1684 	0x0,			/* segment base address */
1685 	sizeof(struct x86_64tss)-1,/* length - all address space */
1686 	SDT_SYSTSS,		/* segment type */
1687 	SEL_KPL,		/* segment descriptor priority level */
1688 	1,			/* segment descriptor present */
1689 	0,			/* long */
1690 	0,			/* unused - default 32 vs 16 bit size */
1691 	0			/* limit granularity (byte/page units)*/ },
1692 /* Actually, the TSS is a system descriptor which is double size */
1693 {	0x0,			/* segment base address  */
1694 	0x0,			/* length */
1695 	0,			/* segment type */
1696 	0,			/* segment descriptor priority level */
1697 	0,			/* segment descriptor present */
1698 	0,			/* long */
1699 	0,			/* default 32 vs 16 bit size */
1700 	0			/* limit granularity (byte/page units)*/ },
1701 /* GUGS32_SEL	8 32 bit GS Descriptor for user */
1702 {	0x0,			/* segment base address  */
1703 	0xfffff,		/* length - all address space */
1704 	SDT_MEMRWA,		/* segment type */
1705 	SEL_UPL,		/* segment descriptor priority level */
1706 	1,			/* segment descriptor present */
1707 	0,			/* long */
1708 	1,			/* default 32 vs 16 bit size */
1709 	1			/* limit granularity (byte/page units)*/ },
1710 };
1711 
1712 void
1713 setidt_global(int idx, inthand_t *func, int typ, int dpl, int ist)
1714 {
1715 	int cpu;
1716 
1717 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
1718 		struct gate_descriptor *ip = &idt_arr[cpu][idx];
1719 
1720 		ip->gd_looffset = (uintptr_t)func;
1721 		ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1722 		ip->gd_ist = ist;
1723 		ip->gd_xx = 0;
1724 		ip->gd_type = typ;
1725 		ip->gd_dpl = dpl;
1726 		ip->gd_p = 1;
1727 		ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1728 	}
1729 }
1730 
1731 void
1732 setidt(int idx, inthand_t *func, int typ, int dpl, int ist, int cpu)
1733 {
1734 	struct gate_descriptor *ip;
1735 
1736 	KASSERT(cpu >= 0 && cpu < ncpus, ("invalid cpu %d", cpu));
1737 
1738 	ip = &idt_arr[cpu][idx];
1739 	ip->gd_looffset = (uintptr_t)func;
1740 	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1741 	ip->gd_ist = ist;
1742 	ip->gd_xx = 0;
1743 	ip->gd_type = typ;
1744 	ip->gd_dpl = dpl;
1745 	ip->gd_p = 1;
1746 	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1747 }
1748 
1749 #define	IDTVEC(name)	__CONCAT(X,name)
1750 
1751 extern inthand_t
1752 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1753 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1754 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1755 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1756 	IDTVEC(xmm), IDTVEC(dblfault),
1757 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1758 
1759 void
1760 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1761 {
1762 	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1763 	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1764 	ssd->ssd_type  = sd->sd_type;
1765 	ssd->ssd_dpl   = sd->sd_dpl;
1766 	ssd->ssd_p     = sd->sd_p;
1767 	ssd->ssd_def32 = sd->sd_def32;
1768 	ssd->ssd_gran  = sd->sd_gran;
1769 }
1770 
1771 void
1772 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1773 {
1774 
1775 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1776 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1777 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1778 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1779 	sd->sd_type  = ssd->ssd_type;
1780 	sd->sd_dpl   = ssd->ssd_dpl;
1781 	sd->sd_p     = ssd->ssd_p;
1782 	sd->sd_long  = ssd->ssd_long;
1783 	sd->sd_def32 = ssd->ssd_def32;
1784 	sd->sd_gran  = ssd->ssd_gran;
1785 }
1786 
1787 void
1788 ssdtosyssd(struct soft_segment_descriptor *ssd,
1789     struct system_segment_descriptor *sd)
1790 {
1791 
1792 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1793 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1794 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1795 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1796 	sd->sd_type  = ssd->ssd_type;
1797 	sd->sd_dpl   = ssd->ssd_dpl;
1798 	sd->sd_p     = ssd->ssd_p;
1799 	sd->sd_gran  = ssd->ssd_gran;
1800 }
1801 
1802 /*
1803  * Populate the (physmap) array with base/bound pairs describing the
1804  * available physical memory in the system, then test this memory and
1805  * build the phys_avail array describing the actually-available memory.
1806  *
1807  * If we cannot accurately determine the physical memory map, then use
1808  * value from the 0xE801 call, and failing that, the RTC.
1809  *
1810  * Total memory size may be set by the kernel environment variable
1811  * hw.physmem or the compile-time define MAXMEM.
1812  *
1813  * Memory is aligned to PHYSMAP_ALIGN which must be a multiple
1814  * of PAGE_SIZE.  This also greatly reduces the memory test time
1815  * which would otherwise be excessive on machines with > 8G of ram.
1816  *
1817  * XXX first should be vm_paddr_t.
1818  */
1819 
1820 #define PHYSMAP_ALIGN		(vm_paddr_t)(128 * 1024)
1821 #define PHYSMAP_ALIGN_MASK	(vm_paddr_t)(PHYSMAP_ALIGN - 1)
1822 #define PHYSMAP_SIZE		VM_PHYSSEG_MAX
1823 
1824 vm_paddr_t physmap[PHYSMAP_SIZE];
1825 struct bios_smap *smapbase, *smap, *smapend;
1826 struct efi_map_header *efihdrbase;
1827 u_int32_t smapsize;
1828 
1829 #define PHYSMAP_HANDWAVE	(vm_paddr_t)(2 * 1024 * 1024)
1830 #define PHYSMAP_HANDWAVE_MASK	(PHYSMAP_HANDWAVE - 1)
1831 
1832 static void
1833 add_smap_entries(int *physmap_idx)
1834 {
1835 	int i;
1836 
1837 	smapsize = *((u_int32_t *)smapbase - 1);
1838 	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1839 
1840 	for (smap = smapbase; smap < smapend; smap++) {
1841 		if (boothowto & RB_VERBOSE)
1842 			kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1843 			    smap->type, smap->base, smap->length);
1844 
1845 		if (smap->type != SMAP_TYPE_MEMORY)
1846 			continue;
1847 
1848 		if (smap->length == 0)
1849 			continue;
1850 
1851 		for (i = 0; i <= *physmap_idx; i += 2) {
1852 			if (smap->base < physmap[i + 1]) {
1853 				if (boothowto & RB_VERBOSE) {
1854 					kprintf("Overlapping or non-monotonic "
1855 						"memory region, ignoring "
1856 						"second region\n");
1857 				}
1858 				break;
1859 			}
1860 		}
1861 		if (i <= *physmap_idx)
1862 			continue;
1863 
1864 		Realmem += smap->length;
1865 
1866 		if (smap->base == physmap[*physmap_idx + 1]) {
1867 			physmap[*physmap_idx + 1] += smap->length;
1868 			continue;
1869 		}
1870 
1871 		*physmap_idx += 2;
1872 		if (*physmap_idx == PHYSMAP_SIZE) {
1873 			kprintf("Too many segments in the physical "
1874 				"address map, giving up\n");
1875 			break;
1876 		}
1877 		physmap[*physmap_idx] = smap->base;
1878 		physmap[*physmap_idx + 1] = smap->base + smap->length;
1879 	}
1880 }
1881 
1882 static void
1883 add_efi_map_entries(int *physmap_idx)
1884 {
1885 	struct efi_md *map, *p;
1886 	const char *type;
1887 	size_t efisz;
1888 	int i, ndesc;
1889 
1890 	static const char *types[] = {
1891 		"Reserved",
1892 		"LoaderCode",
1893 		"LoaderData",
1894 		"BootServicesCode",
1895 		"BootServicesData",
1896 		"RuntimeServicesCode",
1897 		"RuntimeServicesData",
1898 		"ConventionalMemory",
1899 		"UnusableMemory",
1900 		"ACPIReclaimMemory",
1901 		"ACPIMemoryNVS",
1902 		"MemoryMappedIO",
1903 		"MemoryMappedIOPortSpace",
1904 		"PalCode"
1905 	 };
1906 
1907 	/*
1908 	 * Memory map data provided by UEFI via the GetMemoryMap
1909 	 * Boot Services API.
1910 	 */
1911 	efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
1912 	map = (struct efi_md *)((uint8_t *)efihdrbase + efisz);
1913 
1914 	if (efihdrbase->descriptor_size == 0)
1915 		return;
1916 	ndesc = efihdrbase->memory_size / efihdrbase->descriptor_size;
1917 
1918 	if (boothowto & RB_VERBOSE)
1919 		kprintf("%23s %12s %12s %8s %4s\n",
1920 		    "Type", "Physical", "Virtual", "#Pages", "Attr");
1921 
1922 	for (i = 0, p = map; i < ndesc; i++,
1923 	    p = efi_next_descriptor(p, efihdrbase->descriptor_size)) {
1924 		if (boothowto & RB_VERBOSE) {
1925 			if (p->md_type <= EFI_MD_TYPE_PALCODE)
1926 				type = types[p->md_type];
1927 			else
1928 				type = "<INVALID>";
1929 			kprintf("%23s %012lx %12p %08lx ", type, p->md_phys,
1930 			    p->md_virt, p->md_pages);
1931 			if (p->md_attr & EFI_MD_ATTR_UC)
1932 				kprintf("UC ");
1933 			if (p->md_attr & EFI_MD_ATTR_WC)
1934 				kprintf("WC ");
1935 			if (p->md_attr & EFI_MD_ATTR_WT)
1936 				kprintf("WT ");
1937 			if (p->md_attr & EFI_MD_ATTR_WB)
1938 				kprintf("WB ");
1939 			if (p->md_attr & EFI_MD_ATTR_UCE)
1940 				kprintf("UCE ");
1941 			if (p->md_attr & EFI_MD_ATTR_WP)
1942 				kprintf("WP ");
1943 			if (p->md_attr & EFI_MD_ATTR_RP)
1944 				kprintf("RP ");
1945 			if (p->md_attr & EFI_MD_ATTR_XP)
1946 				kprintf("XP ");
1947 			if (p->md_attr & EFI_MD_ATTR_RT)
1948 				kprintf("RUNTIME");
1949 			kprintf("\n");
1950 		}
1951 
1952 		switch (p->md_type) {
1953 		case EFI_MD_TYPE_CODE:
1954 		case EFI_MD_TYPE_DATA:
1955 		case EFI_MD_TYPE_BS_CODE:
1956 		case EFI_MD_TYPE_BS_DATA:
1957 		case EFI_MD_TYPE_FREE:
1958 			/*
1959 			 * We're allowed to use any entry with these types.
1960 			 */
1961 			break;
1962 		default:
1963 			continue;
1964 		}
1965 
1966 		Realmem += p->md_pages * PAGE_SIZE;
1967 
1968 		if (p->md_phys == physmap[*physmap_idx + 1]) {
1969 			physmap[*physmap_idx + 1] += p->md_pages * PAGE_SIZE;
1970 			continue;
1971 		}
1972 
1973 		*physmap_idx += 2;
1974 		if (*physmap_idx == PHYSMAP_SIZE) {
1975 			kprintf("Too many segments in the physical "
1976 				"address map, giving up\n");
1977 			break;
1978 		}
1979 		physmap[*physmap_idx] = p->md_phys;
1980 		physmap[*physmap_idx + 1] = p->md_phys + p->md_pages * PAGE_SIZE;
1981 	 }
1982 }
1983 
1984 struct fb_info efi_fb_info;
1985 static int have_efi_framebuffer = 0;
1986 
1987 static void
1988 efi_fb_init_vaddr(int direct_map)
1989 {
1990 	uint64_t sz;
1991 	vm_offset_t addr, v;
1992 
1993 	v = efi_fb_info.vaddr;
1994 	sz = efi_fb_info.stride * efi_fb_info.height;
1995 
1996 	if (direct_map) {
1997 		addr = PHYS_TO_DMAP(efi_fb_info.paddr);
1998 		if (addr >= DMAP_MIN_ADDRESS && addr + sz < DMAP_MAX_ADDRESS)
1999 			efi_fb_info.vaddr = addr;
2000 	} else {
2001 		efi_fb_info.vaddr = (vm_offset_t)pmap_mapdev_attr(
2002 		    efi_fb_info.paddr, sz, PAT_WRITE_COMBINING);
2003 	}
2004 }
2005 
2006 static u_int
2007 efifb_color_depth(struct efi_fb *efifb)
2008 {
2009 	uint32_t mask;
2010 	u_int depth;
2011 
2012 	mask = efifb->fb_mask_red | efifb->fb_mask_green |
2013 	    efifb->fb_mask_blue | efifb->fb_mask_reserved;
2014 	if (mask == 0)
2015 		return (0);
2016 	for (depth = 1; mask != 1; depth++)
2017 		mask >>= 1;
2018 	return (depth);
2019 }
2020 
2021 int
2022 probe_efi_fb(int early)
2023 {
2024 	struct efi_fb	*efifb;
2025 	caddr_t		kmdp;
2026 	u_int		depth;
2027 
2028 	if (have_efi_framebuffer) {
2029 		if (!early &&
2030 		    (efi_fb_info.vaddr == 0 ||
2031 		     efi_fb_info.vaddr == PHYS_TO_DMAP(efi_fb_info.paddr)))
2032 			efi_fb_init_vaddr(0);
2033 		return 0;
2034 	}
2035 
2036 	kmdp = preload_search_by_type("elf kernel");
2037 	if (kmdp == NULL)
2038 		kmdp = preload_search_by_type("elf64 kernel");
2039 	efifb = (struct efi_fb *)preload_search_info(kmdp,
2040 	    MODINFO_METADATA | MODINFOMD_EFI_FB);
2041 	if (efifb == NULL)
2042 		return 1;
2043 
2044 	depth = efifb_color_depth(efifb);
2045 	/*
2046 	 * Our bootloader should already notice, when we won't be able to
2047 	 * use the UEFI framebuffer.
2048 	 */
2049 	if (depth != 24 && depth != 32)
2050 		return 1;
2051 
2052 	have_efi_framebuffer = 1;
2053 
2054 	efi_fb_info.is_vga_boot_display = 1;
2055 	efi_fb_info.width = efifb->fb_width;
2056 	efi_fb_info.height = efifb->fb_height;
2057 	efi_fb_info.depth = depth;
2058 	efi_fb_info.stride = efifb->fb_stride * (depth / 8);
2059 	efi_fb_info.paddr = efifb->fb_addr;
2060 	if (early) {
2061 		efi_fb_info.vaddr = 0;
2062 	} else {
2063 		efi_fb_init_vaddr(0);
2064 	}
2065 	efi_fb_info.fbops.fb_set_par = NULL;
2066 	efi_fb_info.fbops.fb_blank = NULL;
2067 	efi_fb_info.fbops.fb_debug_enter = NULL;
2068 	efi_fb_info.device = NULL;
2069 
2070 	return 0;
2071 }
2072 
2073 static void
2074 efifb_startup(void *arg)
2075 {
2076 	probe_efi_fb(0);
2077 }
2078 
2079 SYSINIT(efi_fb_info, SI_BOOT1_POST, SI_ORDER_FIRST, efifb_startup, NULL);
2080 
2081 static void
2082 getmemsize(caddr_t kmdp, u_int64_t first)
2083 {
2084 	int off, physmap_idx, pa_indx, da_indx;
2085 	int i, j;
2086 	vm_paddr_t pa;
2087 	vm_paddr_t msgbuf_size;
2088 	u_long physmem_tunable;
2089 	pt_entry_t *pte;
2090 	quad_t dcons_addr, dcons_size;
2091 
2092 	bzero(physmap, sizeof(physmap));
2093 	physmap_idx = 0;
2094 
2095 	/*
2096 	 * get memory map from INT 15:E820, kindly supplied by the loader.
2097 	 *
2098 	 * subr_module.c says:
2099 	 * "Consumer may safely assume that size value precedes data."
2100 	 * ie: an int32_t immediately precedes smap.
2101 	 */
2102 	efihdrbase = (struct efi_map_header *)preload_search_info(kmdp,
2103 		     MODINFO_METADATA | MODINFOMD_EFI_MAP);
2104 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
2105 		   MODINFO_METADATA | MODINFOMD_SMAP);
2106 	if (smapbase == NULL && efihdrbase == NULL)
2107 		panic("No BIOS smap or EFI map info from loader!");
2108 
2109 	if (efihdrbase == NULL)
2110 		add_smap_entries(&physmap_idx);
2111 	else
2112 		add_efi_map_entries(&physmap_idx);
2113 
2114 	base_memory = physmap[1] / 1024;
2115 	/* make hole for AP bootstrap code */
2116 	physmap[1] = mp_bootaddress(base_memory);
2117 
2118 	/* Save EBDA address, if any */
2119 	ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
2120 	ebda_addr <<= 4;
2121 
2122 	/*
2123 	 * Maxmem isn't the "maximum memory", it's one larger than the
2124 	 * highest page of the physical address space.  It should be
2125 	 * called something like "Maxphyspage".  We may adjust this
2126 	 * based on ``hw.physmem'' and the results of the memory test.
2127 	 */
2128 	Maxmem = atop(physmap[physmap_idx + 1]);
2129 
2130 #ifdef MAXMEM
2131 	Maxmem = MAXMEM / 4;
2132 #endif
2133 
2134 	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
2135 		Maxmem = atop(physmem_tunable);
2136 
2137 	/*
2138 	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
2139 	 * in the system.
2140 	 */
2141 	if (Maxmem > atop(physmap[physmap_idx + 1]))
2142 		Maxmem = atop(physmap[physmap_idx + 1]);
2143 
2144 	/*
2145 	 * Blowing out the DMAP will blow up the system.
2146 	 */
2147 	if (Maxmem > atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS)) {
2148 		kprintf("Limiting Maxmem due to DMAP size\n");
2149 		Maxmem = atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS);
2150 	}
2151 
2152 	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
2153 	    (boothowto & RB_VERBOSE)) {
2154 		kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
2155 	}
2156 
2157 	/*
2158 	 * Call pmap initialization to make new kernel address space
2159 	 *
2160 	 * Mask off page 0.
2161 	 */
2162 	pmap_bootstrap(&first);
2163 	physmap[0] = PAGE_SIZE;
2164 
2165 	/*
2166 	 * Align the physmap to PHYSMAP_ALIGN and cut out anything
2167 	 * exceeding Maxmem.
2168 	 */
2169 	for (i = j = 0; i <= physmap_idx; i += 2) {
2170 		if (physmap[i+1] > ptoa(Maxmem))
2171 			physmap[i+1] = ptoa(Maxmem);
2172 		physmap[i] = (physmap[i] + PHYSMAP_ALIGN_MASK) &
2173 			     ~PHYSMAP_ALIGN_MASK;
2174 		physmap[i+1] = physmap[i+1] & ~PHYSMAP_ALIGN_MASK;
2175 
2176 		physmap[j] = physmap[i];
2177 		physmap[j+1] = physmap[i+1];
2178 
2179 		if (physmap[i] < physmap[i+1])
2180 			j += 2;
2181 	}
2182 	physmap_idx = j - 2;
2183 
2184 	/*
2185 	 * Align anything else used in the validation loop.
2186 	 *
2187 	 * Also make sure that our 2MB kernel text+data+bss mappings
2188 	 * do not overlap potentially allocatable space.
2189 	 */
2190 	first = (first + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
2191 
2192 	/*
2193 	 * Size up each available chunk of physical memory.
2194 	 */
2195 	pa_indx = 0;
2196 	da_indx = 0;
2197 	phys_avail[pa_indx].phys_beg = physmap[0];
2198 	phys_avail[pa_indx].phys_end = physmap[0];
2199 	dump_avail[da_indx].phys_beg = 0;
2200 	dump_avail[da_indx].phys_end = physmap[0];
2201 	pte = CMAP1;
2202 
2203 	/*
2204 	 * Get dcons buffer address
2205 	 */
2206 	if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
2207 	    kgetenv_quad("dcons.size", &dcons_size) == 0)
2208 		dcons_addr = 0;
2209 
2210 	/*
2211 	 * Validate the physical memory.  The physical memory segments
2212 	 * have already been aligned to PHYSMAP_ALIGN which is a multiple
2213 	 * of PAGE_SIZE.
2214 	 *
2215 	 * We no longer perform an exhaustive memory test.  Instead we
2216 	 * simply test the first and last word in each physmap[]
2217 	 * segment.
2218 	 */
2219 	for (i = 0; i <= physmap_idx; i += 2) {
2220 		vm_paddr_t end;
2221 		vm_paddr_t incr;
2222 
2223 		end = physmap[i + 1];
2224 
2225 		for (pa = physmap[i]; pa < end; pa += incr) {
2226 			int page_bad, full;
2227 			volatile uint64_t *ptr = (uint64_t *)CADDR1;
2228 			uint64_t tmp;
2229 
2230 			full = FALSE;
2231 
2232 			/*
2233 			 * Calculate incr.  Just test the first and
2234 			 * last page in each physmap[] segment.
2235 			 */
2236 			if (pa == end - PAGE_SIZE)
2237 				incr = PAGE_SIZE;
2238 			else
2239 				incr = end - pa - PAGE_SIZE;
2240 
2241 			/*
2242 			 * Make sure we don't skip blacked out areas.
2243 			 */
2244 			if (pa < 0x200000 && 0x200000 < end) {
2245 				incr = 0x200000 - pa;
2246 			}
2247 			if (dcons_addr > 0 &&
2248 			    pa < dcons_addr &&
2249 			    dcons_addr < end) {
2250 				incr = dcons_addr - pa;
2251 			}
2252 
2253 			/*
2254 			 * Block out kernel memory as not available.
2255 			 */
2256 			if (pa >= 0x200000 && pa < first) {
2257 				incr = first - pa;
2258 				if (pa + incr > end)
2259 					incr = end - pa;
2260 				goto do_dump_avail;
2261 			}
2262 
2263 			/*
2264 			 * Block out the dcons buffer if it exists.
2265 			 */
2266 			if (dcons_addr > 0 &&
2267 			    pa >= trunc_page(dcons_addr) &&
2268 			    pa < dcons_addr + dcons_size) {
2269 				incr = dcons_addr + dcons_size - pa;
2270 				incr = (incr + PAGE_MASK) &
2271 				       ~(vm_paddr_t)PAGE_MASK;
2272 				if (pa + incr > end)
2273 					incr = end - pa;
2274 				goto do_dump_avail;
2275 			}
2276 
2277 			page_bad = FALSE;
2278 
2279 			/*
2280 			 * Map the page non-cacheable for the memory
2281 			 * test.
2282 			 */
2283 			*pte = pa |
2284 			    kernel_pmap.pmap_bits[PG_V_IDX] |
2285 			    kernel_pmap.pmap_bits[PG_RW_IDX] |
2286 			    kernel_pmap.pmap_bits[PG_N_IDX];
2287 			cpu_invlpg(__DEVOLATILE(void *, ptr));
2288 			cpu_mfence();
2289 
2290 			/*
2291 			 * Save original value for restoration later.
2292 			 */
2293 			tmp = *ptr;
2294 
2295 			/*
2296 			 * Test for alternating 1's and 0's
2297 			 */
2298 			*ptr = 0xaaaaaaaaaaaaaaaaLLU;
2299 			cpu_mfence();
2300 			if (*ptr != 0xaaaaaaaaaaaaaaaaLLU)
2301 				page_bad = TRUE;
2302 			/*
2303 			 * Test for alternating 0's and 1's
2304 			 */
2305 			*ptr = 0x5555555555555555LLU;
2306 			cpu_mfence();
2307 			if (*ptr != 0x5555555555555555LLU)
2308 				page_bad = TRUE;
2309 			/*
2310 			 * Test for all 1's
2311 			 */
2312 			*ptr = 0xffffffffffffffffLLU;
2313 			cpu_mfence();
2314 			if (*ptr != 0xffffffffffffffffLLU)
2315 				page_bad = TRUE;
2316 			/*
2317 			 * Test for all 0's
2318 			 */
2319 			*ptr = 0x0;
2320 			cpu_mfence();
2321 			if (*ptr != 0x0)
2322 				page_bad = TRUE;
2323 
2324 			/*
2325 			 * Restore original value.
2326 			 */
2327 			*ptr = tmp;
2328 
2329 			/*
2330 			 * Adjust array of valid/good pages.
2331 			 */
2332 			if (page_bad == TRUE) {
2333 				incr = PAGE_SIZE;
2334 				continue;
2335 			}
2336 
2337 			/*
2338 			 * Collapse page address into phys_avail[].  Do a
2339 			 * continuation of the current phys_avail[] index
2340 			 * when possible.
2341 			 */
2342 			if (phys_avail[pa_indx].phys_end == pa) {
2343 				/*
2344 				 * Continuation
2345 				 */
2346 				phys_avail[pa_indx].phys_end += incr;
2347 			} else if (phys_avail[pa_indx].phys_beg ==
2348 				   phys_avail[pa_indx].phys_end) {
2349 				/*
2350 				 * Current phys_avail is completely empty,
2351 				 * reuse the index.
2352 				 */
2353 				phys_avail[pa_indx].phys_beg = pa;
2354 				phys_avail[pa_indx].phys_end = pa + incr;
2355 			} else {
2356 				/*
2357 				 * Allocate next phys_avail index.
2358 				 */
2359 				++pa_indx;
2360 				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
2361 					kprintf(
2362 		"Too many holes in the physical address space, giving up\n");
2363 					--pa_indx;
2364 					full = TRUE;
2365 					goto do_dump_avail;
2366 				}
2367 				phys_avail[pa_indx].phys_beg = pa;
2368 				phys_avail[pa_indx].phys_end = pa + incr;
2369 			}
2370 			physmem += incr / PAGE_SIZE;
2371 
2372 			/*
2373 			 * pa available for dumping
2374 			 */
2375 do_dump_avail:
2376 			if (dump_avail[da_indx].phys_end == pa) {
2377 				dump_avail[da_indx].phys_end += incr;
2378 			} else {
2379 				++da_indx;
2380 				if (da_indx == DUMP_AVAIL_ARRAY_END) {
2381 					--da_indx;
2382 					goto do_next;
2383 				}
2384 				dump_avail[da_indx].phys_beg = pa;
2385 				dump_avail[da_indx].phys_end = pa + incr;
2386 			}
2387 do_next:
2388 			if (full)
2389 				break;
2390 		}
2391 	}
2392 	*pte = 0;
2393 	cpu_invltlb();
2394 	cpu_mfence();
2395 
2396 	/*
2397 	 * The last chunk must contain at least one page plus the message
2398 	 * buffer to avoid complicating other code (message buffer address
2399 	 * calculation, etc.).
2400 	 */
2401 	msgbuf_size = (MSGBUF_SIZE + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
2402 
2403 	while (phys_avail[pa_indx].phys_beg + PHYSMAP_ALIGN + msgbuf_size >=
2404 	       phys_avail[pa_indx].phys_end) {
2405 		physmem -= atop(phys_avail[pa_indx].phys_end -
2406 				phys_avail[pa_indx].phys_beg);
2407 		phys_avail[pa_indx].phys_beg = 0;
2408 		phys_avail[pa_indx].phys_end = 0;
2409 		--pa_indx;
2410 	}
2411 
2412 	Maxmem = atop(phys_avail[pa_indx].phys_end);
2413 
2414 	/* Trim off space for the message buffer. */
2415 	phys_avail[pa_indx].phys_end -= msgbuf_size;
2416 
2417 	avail_end = phys_avail[pa_indx].phys_end;
2418 
2419 	/* Map the message buffer. */
2420 	for (off = 0; off < msgbuf_size; off += PAGE_SIZE) {
2421 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2422 	}
2423 
2424 	/* Try to get EFI framebuffer working as early as possible */
2425 	{
2426 		/*
2427 		 * HACK: Setting machdep.hack_efifb_probe_early=1 works around
2428 		 * an issue that occurs on some recent systems where there is
2429 		 * no system console when booting via UEFI. Bug #3167.
2430 		 *
2431 		 * NOTE: This is not intended to be a permant fix.
2432 		 */
2433 
2434 		int hack_efifb_probe_early = 0;
2435 		TUNABLE_INT_FETCH("machdep.hack_efifb_probe_early", &hack_efifb_probe_early);
2436 
2437 		if (hack_efifb_probe_early)
2438 			probe_efi_fb(1);
2439 		else if (have_efi_framebuffer)
2440 			efi_fb_init_vaddr(1);
2441 	}
2442 }
2443 
2444 struct machintr_abi MachIntrABI;
2445 
2446 /*
2447  * IDT VECTORS:
2448  *	0	Divide by zero
2449  *	1	Debug
2450  *	2	NMI
2451  *	3	BreakPoint
2452  *	4	OverFlow
2453  *	5	Bound-Range
2454  *	6	Invalid OpCode
2455  *	7	Device Not Available (x87)
2456  *	8	Double-Fault
2457  *	9	Coprocessor Segment overrun (unsupported, reserved)
2458  *	10	Invalid-TSS
2459  *	11	Segment not present
2460  *	12	Stack
2461  *	13	General Protection
2462  *	14	Page Fault
2463  *	15	Reserved
2464  *	16	x87 FP Exception pending
2465  *	17	Alignment Check
2466  *	18	Machine Check
2467  *	19	SIMD floating point
2468  *	20-31	reserved
2469  *	32-255	INTn/external sources
2470  */
2471 u_int64_t
2472 hammer_time(u_int64_t modulep, u_int64_t physfree)
2473 {
2474 	caddr_t kmdp;
2475 	int gsel_tss, x, cpu;
2476 #if 0 /* JG */
2477 	int metadata_missing, off;
2478 #endif
2479 	struct mdglobaldata *gd;
2480 	struct privatespace *ps;
2481 	u_int64_t msr;
2482 
2483 	/*
2484 	 * Prevent lowering of the ipl if we call tsleep() early.
2485 	 */
2486 	gd = &CPU_prvspace[0]->mdglobaldata;
2487 	ps = (struct privatespace *)gd;
2488 	bzero(gd, sizeof(*gd));
2489 	bzero(&ps->common_tss, sizeof(ps->common_tss));
2490 
2491 	/*
2492 	 * Note: on both UP and SMP curthread must be set non-NULL
2493 	 * early in the boot sequence because the system assumes
2494 	 * that 'curthread' is never NULL.
2495 	 */
2496 
2497 	gd->mi.gd_curthread = &thread0;
2498 	thread0.td_gd = &gd->mi;
2499 
2500 	atdevbase = ISA_HOLE_START + PTOV_OFFSET;
2501 
2502 #if 0 /* JG */
2503 	metadata_missing = 0;
2504 	if (bootinfo.bi_modulep) {
2505 		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
2506 		preload_bootstrap_relocate(KERNBASE);
2507 	} else {
2508 		metadata_missing = 1;
2509 	}
2510 	if (bootinfo.bi_envp)
2511 		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
2512 #endif
2513 
2514 	preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
2515 	preload_bootstrap_relocate(PTOV_OFFSET);
2516 	kmdp = preload_search_by_type("elf kernel");
2517 	if (kmdp == NULL)
2518 		kmdp = preload_search_by_type("elf64 kernel");
2519 	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
2520 	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
2521 #ifdef DDB
2522 	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
2523 	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
2524 #endif
2525 	efi_systbl_phys = MD_FETCH(kmdp, MODINFOMD_FW_HANDLE, vm_paddr_t);
2526 
2527 	if (boothowto & RB_VERBOSE)
2528 		bootverbose++;
2529 
2530 	/*
2531 	 * Default MachIntrABI to ICU
2532 	 */
2533 	MachIntrABI = MachIntrABI_ICU;
2534 
2535 	/*
2536 	 * start with one cpu.  Note: with one cpu, ncpus_fit_mask remain 0.
2537 	 */
2538 	ncpus = 1;
2539 	ncpus_fit = 1;
2540 	/* Init basic tunables, hz etc */
2541 	init_param1();
2542 
2543 	/*
2544 	 * make gdt memory segments
2545 	 */
2546 	gdt_segs[GPROC0_SEL].ssd_base =
2547 		(uintptr_t) &CPU_prvspace[0]->common_tss;
2548 
2549 	gd->mi.gd_prvspace = CPU_prvspace[0];
2550 
2551 	for (x = 0; x < NGDT; x++) {
2552 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
2553 			ssdtosd(&gdt_segs[x], &gdt[x]);
2554 	}
2555 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2556 	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
2557 
2558 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
2559 	r_gdt.rd_base =  (long) gdt;
2560 	lgdt(&r_gdt);
2561 
2562 	wrmsr(MSR_FSBASE, 0);		/* User value */
2563 	wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
2564 	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
2565 
2566 	mi_gdinit(&gd->mi, 0);
2567 	cpu_gdinit(gd, 0);
2568 	proc0paddr = proc0paddr_buff;
2569 	mi_proc0init(&gd->mi, proc0paddr);
2570 	safepri = TDPRI_MAX;
2571 
2572 	/* spinlocks and the BGL */
2573 	init_locks();
2574 
2575 	/* exceptions */
2576 	for (x = 0; x < NIDT; x++)
2577 		setidt_global(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
2578 	setidt_global(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
2579 	setidt_global(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 2);
2580 	setidt_global(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 1);
2581 	setidt_global(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
2582 	setidt_global(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
2583 	setidt_global(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
2584 	setidt_global(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
2585 	setidt_global(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
2586 	setidt_global(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
2587 	setidt_global(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
2588 	setidt_global(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
2589 	setidt_global(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
2590 	setidt_global(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
2591 	setidt_global(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
2592 	setidt_global(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
2593 	setidt_global(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
2594 	setidt_global(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
2595 	setidt_global(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
2596 	setidt_global(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
2597 
2598 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
2599 		r_idt_arr[cpu].rd_limit = sizeof(idt_arr[cpu]) - 1;
2600 		r_idt_arr[cpu].rd_base = (long) &idt_arr[cpu][0];
2601 	}
2602 
2603 	lidt(&r_idt_arr[0]);
2604 
2605 	/*
2606 	 * Initialize the console before we print anything out.
2607 	 */
2608 	cninit();
2609 
2610 #if 0 /* JG */
2611 	if (metadata_missing)
2612 		kprintf("WARNING: loader(8) metadata is missing!\n");
2613 #endif
2614 
2615 #if	NISA >0
2616 	elcr_probe();
2617 	isa_defaultirq();
2618 #endif
2619 	rand_initialize();
2620 
2621 	/*
2622 	 * Initialize IRQ mapping
2623 	 *
2624 	 * NOTE:
2625 	 * SHOULD be after elcr_probe()
2626 	 */
2627 	MachIntrABI_ICU.initmap();
2628 	MachIntrABI_IOAPIC.initmap();
2629 
2630 #ifdef DDB
2631 	kdb_init();
2632 	if (boothowto & RB_KDB)
2633 		Debugger("Boot flags requested debugger");
2634 #endif
2635 
2636 	identify_cpu();		/* Final stage of CPU initialization */
2637 	initializecpu(0);	/* Initialize CPU registers */
2638 
2639 	/*
2640 	 * On modern Intel cpus, haswell or later, cpu_idle_hlt=1 is better
2641 	 * because the cpu does significant power management in MWAIT
2642 	 * (also suggested is to set sysctl machdep.mwait.CX.idle=AUTODEEP).
2643 	 *
2644 	 * On many AMD cpus cpu_idle_hlt=3 is better, because the cpu does
2645 	 * significant power management only when using ACPI halt mode.
2646 	 * (However, on Ryzen, mode 4 (HLT) also does power management).
2647 	 *
2648 	 * On older AMD or Intel cpus, cpu_idle_hlt=2 is better because ACPI
2649 	 * is needed to reduce power consumption, but wakeup times are often
2650 	 * too long.
2651 	 */
2652 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
2653 	    CPUID_TO_MODEL(cpu_id) >= 0x3C) {	/* Haswell or later */
2654 		cpu_idle_hlt = 1;
2655 	}
2656 	if (cpu_vendor_id == CPU_VENDOR_AMD) {
2657 		if (CPUID_TO_FAMILY(cpu_id) >= 0x17) {
2658 			/* Ryzen or later */
2659 			cpu_idle_hlt = 3;
2660 		} else if (CPUID_TO_FAMILY(cpu_id) >= 0x14) {
2661 			/* Bobcat or later */
2662 			cpu_idle_hlt = 3;
2663 		}
2664 	}
2665 
2666 	TUNABLE_INT_FETCH("hw.apic_io_enable", &ioapic_enable); /* for compat */
2667 	TUNABLE_INT_FETCH("hw.ioapic_enable", &ioapic_enable);
2668 	TUNABLE_INT_FETCH("hw.lapic_enable", &lapic_enable);
2669 	TUNABLE_INT_FETCH("machdep.cpu_idle_hlt", &cpu_idle_hlt);
2670 
2671 	/*
2672 	 * Some of the virtual machines do not work w/ I/O APIC
2673 	 * enabled.  If the user does not explicitly enable or
2674 	 * disable the I/O APIC (ioapic_enable < 0), then we
2675 	 * disable I/O APIC on all virtual machines.
2676 	 *
2677 	 * NOTE:
2678 	 * This must be done after identify_cpu(), which sets
2679 	 * 'cpu_feature2'
2680 	 */
2681 	if (ioapic_enable < 0) {
2682 		if (cpu_feature2 & CPUID2_VMM)
2683 			ioapic_enable = 0;
2684 		else
2685 			ioapic_enable = 1;
2686 	}
2687 
2688 	/*
2689 	 * TSS entry point for interrupts, traps, and exceptions
2690 	 * (sans NMI).  This will always go to near the top of the pcpu
2691 	 * trampoline area.  Hardware-pushed data will be copied into
2692 	 * the trap-frame on entry, and (if necessary) returned to the
2693 	 * trampoline on exit.
2694 	 *
2695 	 * We store some pcb data for the trampoline code above the
2696 	 * stack the cpu hw pushes into, and arrange things so the
2697 	 * address of tr_pcb_rsp is the same as the desired top of
2698 	 * stack.
2699 	 */
2700 	ps->common_tss.tss_rsp0 = (register_t)&ps->trampoline.tr_pcb_rsp;
2701 	ps->trampoline.tr_pcb_rsp = ps->common_tss.tss_rsp0;
2702 	ps->trampoline.tr_pcb_gs_kernel = (register_t)gd;
2703 	ps->trampoline.tr_pcb_cr3 = KPML4phys;	/* adj to user cr3 live */
2704 	ps->dbltramp.tr_pcb_gs_kernel = (register_t)gd;
2705 	ps->dbltramp.tr_pcb_cr3 = KPML4phys;
2706 	ps->dbgtramp.tr_pcb_gs_kernel = (register_t)gd;
2707 	ps->dbgtramp.tr_pcb_cr3 = KPML4phys;
2708 
2709 	/* double fault stack */
2710 	ps->common_tss.tss_ist1 = (register_t)&ps->dbltramp.tr_pcb_rsp;
2711 	/* #DB debugger needs its own stack */
2712 	ps->common_tss.tss_ist2 = (register_t)&ps->dbgtramp.tr_pcb_rsp;
2713 
2714 	/* Set the IO permission bitmap (empty due to tss seg limit) */
2715 	ps->common_tss.tss_iobase = sizeof(struct x86_64tss);
2716 
2717 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2718 	gd->gd_tss_gdt = &gdt[GPROC0_SEL];
2719 	gd->gd_common_tssd = *gd->gd_tss_gdt;
2720 	ltr(gsel_tss);
2721 
2722 	/* Set up the fast syscall stuff */
2723 	msr = rdmsr(MSR_EFER) | EFER_SCE;
2724 	wrmsr(MSR_EFER, msr);
2725 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
2726 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
2727 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
2728 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
2729 	wrmsr(MSR_STAR, msr);
2730 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL|PSL_AC);
2731 
2732 	getmemsize(kmdp, physfree);
2733 	init_param2(physmem);
2734 
2735 	/* now running on new page tables, configured,and u/iom is accessible */
2736 
2737 	/* Map the message buffer. */
2738 #if 0 /* JG */
2739 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2740 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2741 #endif
2742 
2743 	msgbufinit(msgbufp, MSGBUF_SIZE);
2744 
2745 
2746 	/* transfer to user mode */
2747 
2748 	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2749 	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2750 	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
2751 
2752 	load_ds(_udatasel);
2753 	load_es(_udatasel);
2754 	load_fs(_udatasel);
2755 
2756 	/* setup proc 0's pcb */
2757 	thread0.td_pcb->pcb_flags = 0;
2758 	thread0.td_pcb->pcb_cr3 = KPML4phys;
2759 	thread0.td_pcb->pcb_cr3_iso = 0;
2760 	thread0.td_pcb->pcb_ext = NULL;
2761 	lwp0.lwp_md.md_regs = &proc0_tf;	/* XXX needed? */
2762 
2763 	/* Location of kernel stack for locore */
2764 	return ((u_int64_t)thread0.td_pcb);
2765 }
2766 
2767 /*
2768  * Initialize machine-dependant portions of the global data structure.
2769  * Note that the global data area and cpu0's idlestack in the private
2770  * data space were allocated in locore.
2771  *
2772  * Note: the idlethread's cpl is 0
2773  *
2774  * WARNING!  Called from early boot, 'mycpu' may not work yet.
2775  */
2776 void
2777 cpu_gdinit(struct mdglobaldata *gd, int cpu)
2778 {
2779 	if (cpu)
2780 		gd->mi.gd_curthread = &gd->mi.gd_idlethread;
2781 
2782 	lwkt_init_thread(&gd->mi.gd_idlethread,
2783 			gd->mi.gd_prvspace->idlestack,
2784 			sizeof(gd->mi.gd_prvspace->idlestack),
2785 			0, &gd->mi);
2786 	lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
2787 	gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
2788 	gd->mi.gd_idlethread.td_sp -= sizeof(void *);
2789 	*(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
2790 }
2791 
2792 /*
2793  * We only have to check for DMAP bounds, the globaldata space is
2794  * actually part of the kernel_map so we don't have to waste time
2795  * checking CPU_prvspace[*].
2796  */
2797 int
2798 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
2799 {
2800 #if 0
2801 	if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
2802 	    eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
2803 		return (TRUE);
2804 	}
2805 #endif
2806 	if (saddr >= DMAP_MIN_ADDRESS && eaddr <= DMAP_MAX_ADDRESS)
2807 		return (TRUE);
2808 	return (FALSE);
2809 }
2810 
2811 struct globaldata *
2812 globaldata_find(int cpu)
2813 {
2814 	KKASSERT(cpu >= 0 && cpu < ncpus);
2815 	return(&CPU_prvspace[cpu]->mdglobaldata.mi);
2816 }
2817 
2818 /*
2819  * This path should be safe from the SYSRET issue because only stopped threads
2820  * can have their %rip adjusted this way (and all heavy weight thread switches
2821  * clear QUICKREF and thus do not use SYSRET).  However, the code path is
2822  * convoluted so add a safety by forcing %rip to be cannonical.
2823  */
2824 int
2825 ptrace_set_pc(struct lwp *lp, unsigned long addr)
2826 {
2827 	if (addr & 0x0000800000000000LLU)
2828 		lp->lwp_md.md_regs->tf_rip = addr | 0xFFFF000000000000LLU;
2829 	else
2830 		lp->lwp_md.md_regs->tf_rip = addr & 0x0000FFFFFFFFFFFFLLU;
2831 	return (0);
2832 }
2833 
2834 int
2835 ptrace_single_step(struct lwp *lp)
2836 {
2837 	lp->lwp_md.md_regs->tf_rflags |= PSL_T;
2838 	return (0);
2839 }
2840 
2841 int
2842 fill_regs(struct lwp *lp, struct reg *regs)
2843 {
2844 	struct trapframe *tp;
2845 
2846 	if ((tp = lp->lwp_md.md_regs) == NULL)
2847 		return EINVAL;
2848 	bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
2849 	return (0);
2850 }
2851 
2852 int
2853 set_regs(struct lwp *lp, struct reg *regs)
2854 {
2855 	struct trapframe *tp;
2856 
2857 	tp = lp->lwp_md.md_regs;
2858 	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
2859 	    !CS_SECURE(regs->r_cs))
2860 		return (EINVAL);
2861 	bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
2862 	clear_quickret();
2863 	return (0);
2864 }
2865 
2866 static void
2867 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2868 {
2869 	struct env87 *penv_87 = &sv_87->sv_env;
2870 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2871 	int i;
2872 
2873 	/* FPU control/status */
2874 	penv_87->en_cw = penv_xmm->en_cw;
2875 	penv_87->en_sw = penv_xmm->en_sw;
2876 	penv_87->en_tw = penv_xmm->en_tw;
2877 	penv_87->en_fip = penv_xmm->en_fip;
2878 	penv_87->en_fcs = penv_xmm->en_fcs;
2879 	penv_87->en_opcode = penv_xmm->en_opcode;
2880 	penv_87->en_foo = penv_xmm->en_foo;
2881 	penv_87->en_fos = penv_xmm->en_fos;
2882 
2883 	/* FPU registers */
2884 	for (i = 0; i < 8; ++i)
2885 		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2886 }
2887 
2888 static void
2889 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2890 {
2891 	struct env87 *penv_87 = &sv_87->sv_env;
2892 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2893 	int i;
2894 
2895 	/* FPU control/status */
2896 	penv_xmm->en_cw = penv_87->en_cw;
2897 	penv_xmm->en_sw = penv_87->en_sw;
2898 	penv_xmm->en_tw = penv_87->en_tw;
2899 	penv_xmm->en_fip = penv_87->en_fip;
2900 	penv_xmm->en_fcs = penv_87->en_fcs;
2901 	penv_xmm->en_opcode = penv_87->en_opcode;
2902 	penv_xmm->en_foo = penv_87->en_foo;
2903 	penv_xmm->en_fos = penv_87->en_fos;
2904 
2905 	/* FPU registers */
2906 	for (i = 0; i < 8; ++i)
2907 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2908 }
2909 
2910 int
2911 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2912 {
2913 	if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
2914 		return EINVAL;
2915 	if (cpu_fxsr) {
2916 		fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2917 				(struct save87 *)fpregs);
2918 		return (0);
2919 	}
2920 	bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2921 	return (0);
2922 }
2923 
2924 int
2925 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2926 {
2927 	if (cpu_fxsr) {
2928 		set_fpregs_xmm((struct save87 *)fpregs,
2929 			       &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2930 		return (0);
2931 	}
2932 	bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2933 	return (0);
2934 }
2935 
2936 int
2937 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2938 {
2939 	struct pcb *pcb;
2940 
2941         if (lp == NULL) {
2942                 dbregs->dr[0] = rdr0();
2943                 dbregs->dr[1] = rdr1();
2944                 dbregs->dr[2] = rdr2();
2945                 dbregs->dr[3] = rdr3();
2946                 dbregs->dr[4] = rdr4();
2947                 dbregs->dr[5] = rdr5();
2948                 dbregs->dr[6] = rdr6();
2949                 dbregs->dr[7] = rdr7();
2950 		return (0);
2951         }
2952 	if (lp->lwp_thread == NULL || (pcb = lp->lwp_thread->td_pcb) == NULL)
2953 		return EINVAL;
2954 	dbregs->dr[0] = pcb->pcb_dr0;
2955 	dbregs->dr[1] = pcb->pcb_dr1;
2956 	dbregs->dr[2] = pcb->pcb_dr2;
2957 	dbregs->dr[3] = pcb->pcb_dr3;
2958 	dbregs->dr[4] = 0;
2959 	dbregs->dr[5] = 0;
2960 	dbregs->dr[6] = pcb->pcb_dr6;
2961 	dbregs->dr[7] = pcb->pcb_dr7;
2962 	return (0);
2963 }
2964 
2965 int
2966 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2967 {
2968 	if (lp == NULL) {
2969 		load_dr0(dbregs->dr[0]);
2970 		load_dr1(dbregs->dr[1]);
2971 		load_dr2(dbregs->dr[2]);
2972 		load_dr3(dbregs->dr[3]);
2973 		load_dr4(dbregs->dr[4]);
2974 		load_dr5(dbregs->dr[5]);
2975 		load_dr6(dbregs->dr[6]);
2976 		load_dr7(dbregs->dr[7]);
2977 	} else {
2978 		struct pcb *pcb;
2979 		struct ucred *ucred;
2980 		int i;
2981 		uint64_t mask1, mask2;
2982 
2983 		/*
2984 		 * Don't let an illegal value for dr7 get set.	Specifically,
2985 		 * check for undefined settings.  Setting these bit patterns
2986 		 * result in undefined behaviour and can lead to an unexpected
2987 		 * TRCTRAP.
2988 		 */
2989 		/* JG this loop looks unreadable */
2990 		/* Check 4 2-bit fields for invalid patterns.
2991 		 * These fields are R/Wi, for i = 0..3
2992 		 */
2993 		/* Is 10 in LENi allowed when running in compatibility mode? */
2994 		/* Pattern 10 in R/Wi might be used to indicate
2995 		 * breakpoint on I/O. Further analysis should be
2996 		 * carried to decide if it is safe and useful to
2997 		 * provide access to that capability
2998 		 */
2999 		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
3000 		     i++, mask1 <<= 4, mask2 <<= 4)
3001 			if ((dbregs->dr[7] & mask1) == mask2)
3002 				return (EINVAL);
3003 
3004 		pcb = lp->lwp_thread->td_pcb;
3005 		ucred = lp->lwp_proc->p_ucred;
3006 
3007 		/*
3008 		 * Don't let a process set a breakpoint that is not within the
3009 		 * process's address space.  If a process could do this, it
3010 		 * could halt the system by setting a breakpoint in the kernel
3011 		 * (if ddb was enabled).  Thus, we need to check to make sure
3012 		 * that no breakpoints are being enabled for addresses outside
3013 		 * process's address space, unless, perhaps, we were called by
3014 		 * uid 0.
3015 		 *
3016 		 * XXX - what about when the watched area of the user's
3017 		 * address space is written into from within the kernel
3018 		 * ... wouldn't that still cause a breakpoint to be generated
3019 		 * from within kernel mode?
3020 		 */
3021 
3022 		if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
3023 			if (dbregs->dr[7] & 0x3) {
3024 				/* dr0 is enabled */
3025 				if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
3026 					return (EINVAL);
3027 			}
3028 
3029 			if (dbregs->dr[7] & (0x3<<2)) {
3030 				/* dr1 is enabled */
3031 				if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
3032 					return (EINVAL);
3033 			}
3034 
3035 			if (dbregs->dr[7] & (0x3<<4)) {
3036 				/* dr2 is enabled */
3037 				if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
3038 					return (EINVAL);
3039 			}
3040 
3041 			if (dbregs->dr[7] & (0x3<<6)) {
3042 				/* dr3 is enabled */
3043 				if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
3044 					return (EINVAL);
3045 			}
3046 		}
3047 
3048 		pcb->pcb_dr0 = dbregs->dr[0];
3049 		pcb->pcb_dr1 = dbregs->dr[1];
3050 		pcb->pcb_dr2 = dbregs->dr[2];
3051 		pcb->pcb_dr3 = dbregs->dr[3];
3052 		pcb->pcb_dr6 = dbregs->dr[6];
3053 		pcb->pcb_dr7 = dbregs->dr[7];
3054 
3055 		pcb->pcb_flags |= PCB_DBREGS;
3056 	}
3057 
3058 	return (0);
3059 }
3060 
3061 /*
3062  * Return > 0 if a hardware breakpoint has been hit, and the
3063  * breakpoint was in user space.  Return 0, otherwise.
3064  */
3065 int
3066 user_dbreg_trap(void)
3067 {
3068         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
3069         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
3070         int nbp;            /* number of breakpoints that triggered */
3071         caddr_t addr[4];    /* breakpoint addresses */
3072         int i;
3073 
3074         dr7 = rdr7();
3075         if ((dr7 & 0xff) == 0) {
3076                 /*
3077                  * all GE and LE bits in the dr7 register are zero,
3078                  * thus the trap couldn't have been caused by the
3079                  * hardware debug registers
3080                  */
3081                 return 0;
3082         }
3083 
3084         nbp = 0;
3085         dr6 = rdr6();
3086         bp = dr6 & 0xf;
3087 
3088         if (bp == 0) {
3089                 /*
3090                  * None of the breakpoint bits are set meaning this
3091                  * trap was not caused by any of the debug registers
3092                  */
3093                 return 0;
3094         }
3095 
3096         /*
3097          * at least one of the breakpoints were hit, check to see
3098          * which ones and if any of them are user space addresses
3099          */
3100 
3101         if (bp & 0x01) {
3102                 addr[nbp++] = (caddr_t)rdr0();
3103         }
3104         if (bp & 0x02) {
3105                 addr[nbp++] = (caddr_t)rdr1();
3106         }
3107         if (bp & 0x04) {
3108                 addr[nbp++] = (caddr_t)rdr2();
3109         }
3110         if (bp & 0x08) {
3111                 addr[nbp++] = (caddr_t)rdr3();
3112         }
3113 
3114         for (i = 0; i < nbp; i++) {
3115                 if (addr[i] < (caddr_t)VM_MAX_USER_ADDRESS) {
3116                         /*
3117                          * addr[i] is in user space
3118                          */
3119                         return nbp;
3120                 }
3121         }
3122 
3123         /*
3124          * None of the breakpoints are in user space.
3125          */
3126         return 0;
3127 }
3128 
3129 
3130 #ifndef DDB
3131 void
3132 Debugger(const char *msg)
3133 {
3134 	kprintf("Debugger(\"%s\") called.\n", msg);
3135 }
3136 #endif /* no DDB */
3137 
3138 #ifdef DDB
3139 
3140 /*
3141  * Provide inb() and outb() as functions.  They are normally only
3142  * available as macros calling inlined functions, thus cannot be
3143  * called inside DDB.
3144  *
3145  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
3146  */
3147 
3148 #undef inb
3149 #undef outb
3150 
3151 /* silence compiler warnings */
3152 u_char inb(u_int);
3153 void outb(u_int, u_char);
3154 
3155 u_char
3156 inb(u_int port)
3157 {
3158 	u_char	data;
3159 	/*
3160 	 * We use %%dx and not %1 here because i/o is done at %dx and not at
3161 	 * %edx, while gcc generates inferior code (movw instead of movl)
3162 	 * if we tell it to load (u_short) port.
3163 	 */
3164 	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
3165 	return (data);
3166 }
3167 
3168 void
3169 outb(u_int port, u_char data)
3170 {
3171 	u_char	al;
3172 	/*
3173 	 * Use an unnecessary assignment to help gcc's register allocator.
3174 	 * This make a large difference for gcc-1.40 and a tiny difference
3175 	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
3176 	 * best results.  gcc-2.6.0 can't handle this.
3177 	 */
3178 	al = data;
3179 	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
3180 }
3181 
3182 #endif /* DDB */
3183 
3184 
3185 
3186 /*
3187  * initialize all the SMP locks
3188  */
3189 
3190 /* critical region when masking or unmasking interupts */
3191 struct spinlock_deprecated imen_spinlock;
3192 
3193 /* locks com (tty) data/hardware accesses: a FASTINTR() */
3194 struct spinlock_deprecated com_spinlock;
3195 
3196 /* lock regions around the clock hardware */
3197 struct spinlock_deprecated clock_spinlock;
3198 
3199 static void
3200 init_locks(void)
3201 {
3202 	/*
3203 	 * Get the initial mplock with a count of 1 for the BSP.
3204 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
3205 	 */
3206 	cpu_get_initial_mplock();
3207 	/* DEPRECATED */
3208 	spin_init_deprecated(&imen_spinlock);
3209 	spin_init_deprecated(&com_spinlock);
3210 	spin_init_deprecated(&clock_spinlock);
3211 
3212 	/* our token pool needs to work early */
3213 	lwkt_token_pool_init();
3214 }
3215 
3216 boolean_t
3217 cpu_mwait_hint_valid(uint32_t hint)
3218 {
3219 	int cx_idx, sub;
3220 
3221 	cx_idx = MWAIT_EAX_TO_CX(hint);
3222 	if (cx_idx >= CPU_MWAIT_CX_MAX)
3223 		return FALSE;
3224 
3225 	sub = MWAIT_EAX_TO_CX_SUB(hint);
3226 	if (sub >= cpu_mwait_cx_info[cx_idx].subcnt)
3227 		return FALSE;
3228 
3229 	return TRUE;
3230 }
3231 
3232 void
3233 cpu_mwait_cx_no_bmsts(void)
3234 {
3235 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_STS);
3236 }
3237 
3238 void
3239 cpu_mwait_cx_no_bmarb(void)
3240 {
3241 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_ARB);
3242 }
3243 
3244 static int
3245 cpu_mwait_cx_hint2name(int hint, char *name, int namelen, boolean_t allow_auto)
3246 {
3247 	int old_cx_idx, sub = 0;
3248 
3249 	if (hint >= 0) {
3250 		old_cx_idx = MWAIT_EAX_TO_CX(hint);
3251 		sub = MWAIT_EAX_TO_CX_SUB(hint);
3252 	} else if (hint == CPU_MWAIT_HINT_AUTO) {
3253 		old_cx_idx = allow_auto ? CPU_MWAIT_C2 : CPU_MWAIT_CX_MAX;
3254 	} else if (hint == CPU_MWAIT_HINT_AUTODEEP) {
3255 		old_cx_idx = allow_auto ? CPU_MWAIT_C3 : CPU_MWAIT_CX_MAX;
3256 	} else {
3257 		old_cx_idx = CPU_MWAIT_CX_MAX;
3258 	}
3259 
3260 	if (!CPU_MWAIT_HAS_CX)
3261 		strlcpy(name, "NONE", namelen);
3262 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTO)
3263 		strlcpy(name, "AUTO", namelen);
3264 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTODEEP)
3265 		strlcpy(name, "AUTODEEP", namelen);
3266 	else if (old_cx_idx >= CPU_MWAIT_CX_MAX ||
3267 	    sub >= cpu_mwait_cx_info[old_cx_idx].subcnt)
3268 		strlcpy(name, "INVALID", namelen);
3269 	else
3270 		ksnprintf(name, namelen, "C%d/%d", old_cx_idx, sub);
3271 
3272 	return old_cx_idx;
3273 }
3274 
3275 static int
3276 cpu_mwait_cx_name2hint(char *name, int *hint0, boolean_t allow_auto)
3277 {
3278 	int cx_idx, sub, hint;
3279 	char *ptr, *start;
3280 
3281 	if (allow_auto && strcmp(name, "AUTO") == 0) {
3282 		hint = CPU_MWAIT_HINT_AUTO;
3283 		cx_idx = CPU_MWAIT_C2;
3284 		goto done;
3285 	}
3286 	if (allow_auto && strcmp(name, "AUTODEEP") == 0) {
3287 		hint = CPU_MWAIT_HINT_AUTODEEP;
3288 		cx_idx = CPU_MWAIT_C3;
3289 		goto done;
3290 	}
3291 
3292 	if (strlen(name) < 4 || toupper(name[0]) != 'C')
3293 		return -1;
3294 	start = &name[1];
3295 	ptr = NULL;
3296 
3297 	cx_idx = strtol(start, &ptr, 10);
3298 	if (ptr == start || *ptr != '/')
3299 		return -1;
3300 	if (cx_idx < 0 || cx_idx >= CPU_MWAIT_CX_MAX)
3301 		return -1;
3302 
3303 	start = ptr + 1;
3304 	ptr = NULL;
3305 
3306 	sub = strtol(start, &ptr, 10);
3307 	if (*ptr != '\0')
3308 		return -1;
3309 	if (sub < 0 || sub >= cpu_mwait_cx_info[cx_idx].subcnt)
3310 		return -1;
3311 
3312 	hint = MWAIT_EAX_HINT(cx_idx, sub);
3313 done:
3314 	*hint0 = hint;
3315 	return cx_idx;
3316 }
3317 
3318 static int
3319 cpu_mwait_cx_transit(int old_cx_idx, int cx_idx)
3320 {
3321 	if (cx_idx >= CPU_MWAIT_C3 && cpu_mwait_c3_preamble)
3322 		return EOPNOTSUPP;
3323 	if (old_cx_idx < CPU_MWAIT_C3 && cx_idx >= CPU_MWAIT_C3) {
3324 		int error;
3325 
3326 		error = cputimer_intr_powersave_addreq();
3327 		if (error)
3328 			return error;
3329 	} else if (old_cx_idx >= CPU_MWAIT_C3 && cx_idx < CPU_MWAIT_C3) {
3330 		cputimer_intr_powersave_remreq();
3331 	}
3332 	return 0;
3333 }
3334 
3335 static int
3336 cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS, int *hint0,
3337     boolean_t allow_auto)
3338 {
3339 	int error, cx_idx, old_cx_idx, hint;
3340 	char name[CPU_MWAIT_CX_NAMELEN];
3341 
3342 	hint = *hint0;
3343 	old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name),
3344 	    allow_auto);
3345 
3346 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
3347 	if (error != 0 || req->newptr == NULL)
3348 		return error;
3349 
3350 	if (!CPU_MWAIT_HAS_CX)
3351 		return EOPNOTSUPP;
3352 
3353 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, allow_auto);
3354 	if (cx_idx < 0)
3355 		return EINVAL;
3356 
3357 	error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3358 	if (error)
3359 		return error;
3360 
3361 	*hint0 = hint;
3362 	return 0;
3363 }
3364 
3365 static int
3366 cpu_mwait_cx_setname(struct cpu_idle_stat *stat, const char *cx_name)
3367 {
3368 	int error, cx_idx, old_cx_idx, hint;
3369 	char name[CPU_MWAIT_CX_NAMELEN];
3370 
3371 	KASSERT(CPU_MWAIT_HAS_CX, ("cpu does not support mwait CX extension"));
3372 
3373 	hint = stat->hint;
3374 	old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3375 
3376 	strlcpy(name, cx_name, sizeof(name));
3377 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3378 	if (cx_idx < 0)
3379 		return EINVAL;
3380 
3381 	error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3382 	if (error)
3383 		return error;
3384 
3385 	stat->hint = hint;
3386 	return 0;
3387 }
3388 
3389 static int
3390 cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS)
3391 {
3392 	int hint = cpu_mwait_halt_global;
3393 	int error, cx_idx, cpu;
3394 	char name[CPU_MWAIT_CX_NAMELEN], cx_name[CPU_MWAIT_CX_NAMELEN];
3395 
3396 	cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3397 
3398 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
3399 	if (error != 0 || req->newptr == NULL)
3400 		return error;
3401 
3402 	if (!CPU_MWAIT_HAS_CX)
3403 		return EOPNOTSUPP;
3404 
3405 	/* Save name for later per-cpu CX configuration */
3406 	strlcpy(cx_name, name, sizeof(cx_name));
3407 
3408 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3409 	if (cx_idx < 0)
3410 		return EINVAL;
3411 
3412 	/* Change per-cpu CX configuration */
3413 	for (cpu = 0; cpu < ncpus; ++cpu) {
3414 		error = cpu_mwait_cx_setname(&cpu_idle_stats[cpu], cx_name);
3415 		if (error)
3416 			return error;
3417 	}
3418 
3419 	cpu_mwait_halt_global = hint;
3420 	return 0;
3421 }
3422 
3423 static int
3424 cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS)
3425 {
3426 	struct cpu_idle_stat *stat = arg1;
3427 	int error;
3428 
3429 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3430 	    &stat->hint, TRUE);
3431 	return error;
3432 }
3433 
3434 static int
3435 cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS)
3436 {
3437 	int error;
3438 
3439 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3440 	    &cpu_mwait_spin, FALSE);
3441 	return error;
3442 }
3443 
3444 /*
3445  * This manual debugging code is called unconditionally from Xtimer
3446  * (the per-cpu timer interrupt) whether the current thread is in a
3447  * critical section or not) and can be useful in tracking down lockups.
3448  *
3449  * NOTE: MANUAL DEBUG CODE
3450  */
3451 #if 0
3452 static int saveticks[SMP_MAXCPU];
3453 static int savecounts[SMP_MAXCPU];
3454 #endif
3455 
3456 void
3457 pcpu_timer_always(struct intrframe *frame)
3458 {
3459 #if 0
3460 	globaldata_t gd = mycpu;
3461 	int cpu = gd->gd_cpuid;
3462 	char buf[64];
3463 	short *gptr;
3464 	int i;
3465 
3466 	if (cpu <= 20) {
3467 		gptr = (short *)0xFFFFFFFF800b8000 + 80 * cpu;
3468 		*gptr = ((*gptr + 1) & 0x00FF) | 0x0700;
3469 		++gptr;
3470 
3471 		ksnprintf(buf, sizeof(buf), " %p %16s %d %16s ",
3472 		    (void *)frame->if_rip, gd->gd_curthread->td_comm, ticks,
3473 		    gd->gd_infomsg);
3474 		for (i = 0; buf[i]; ++i) {
3475 			gptr[i] = 0x0700 | (unsigned char)buf[i];
3476 		}
3477 	}
3478 #if 0
3479 	if (saveticks[gd->gd_cpuid] != ticks) {
3480 		saveticks[gd->gd_cpuid] = ticks;
3481 		savecounts[gd->gd_cpuid] = 0;
3482 	}
3483 	++savecounts[gd->gd_cpuid];
3484 	if (savecounts[gd->gd_cpuid] > 2000 && panicstr == NULL) {
3485 		panic("cpud %d panicing on ticks failure",
3486 			gd->gd_cpuid);
3487 	}
3488 	for (i = 0; i < ncpus; ++i) {
3489 		int delta;
3490 		if (saveticks[i] && panicstr == NULL) {
3491 			delta = saveticks[i] - ticks;
3492 			if (delta < -10 || delta > 10) {
3493 				panic("cpu %d panicing on cpu %d watchdog",
3494 				      gd->gd_cpuid, i);
3495 			}
3496 		}
3497 	}
3498 #endif
3499 #endif
3500 }
3501 
3502 SET_DECLARE(smap_open, char);
3503 SET_DECLARE(smap_close, char);
3504 
3505 static void
3506 cpu_implement_smap(void)
3507 {
3508 	char **scan;
3509 
3510 	for (scan = SET_BEGIN(smap_open);		/* nop -> stac */
3511 	     scan < SET_LIMIT(smap_open); ++scan) {
3512 		(*scan)[0] = 0x0F;
3513 		(*scan)[1] = 0x01;
3514 		(*scan)[2] = 0xCB;
3515 	}
3516 	for (scan = SET_BEGIN(smap_close);		/* nop -> clac */
3517 	     scan < SET_LIMIT(smap_close); ++scan) {
3518 		(*scan)[0] = 0x0F;
3519 		(*scan)[1] = 0x01;
3520 		(*scan)[2] = 0xCA;
3521 	}
3522 }
3523