xref: /dragonfly/sys/platform/pc64/x86_64/machdep.c (revision b0d289c2)
1 /*-
2  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3  * Copyright (c) 1992 Terrence R. Lambert.
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 2008 The DragonFly Project.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
40  * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
41  */
42 
43 //#include "use_npx.h"
44 #include "use_isa.h"
45 #include "opt_compat.h"
46 #include "opt_cpu.h"
47 #include "opt_ddb.h"
48 #include "opt_directio.h"
49 #include "opt_inet.h"
50 #include "opt_msgbuf.h"
51 #include "opt_swap.h"
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/sysproto.h>
56 #include <sys/signalvar.h>
57 #include <sys/kernel.h>
58 #include <sys/linker.h>
59 #include <sys/malloc.h>
60 #include <sys/proc.h>
61 #include <sys/priv.h>
62 #include <sys/buf.h>
63 #include <sys/reboot.h>
64 #include <sys/mbuf.h>
65 #include <sys/msgbuf.h>
66 #include <sys/sysent.h>
67 #include <sys/sysctl.h>
68 #include <sys/vmmeter.h>
69 #include <sys/bus.h>
70 #include <sys/usched.h>
71 #include <sys/reg.h>
72 #include <sys/sbuf.h>
73 #include <sys/ctype.h>
74 #include <sys/serialize.h>
75 #include <sys/systimer.h>
76 
77 #include <vm/vm.h>
78 #include <vm/vm_param.h>
79 #include <sys/lock.h>
80 #include <vm/vm_kern.h>
81 #include <vm/vm_object.h>
82 #include <vm/vm_page.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_pager.h>
85 #include <vm/vm_extern.h>
86 
87 #include <sys/thread2.h>
88 #include <sys/mplock2.h>
89 #include <sys/mutex2.h>
90 
91 #include <sys/user.h>
92 #include <sys/exec.h>
93 #include <sys/cons.h>
94 
95 #include <ddb/ddb.h>
96 
97 #include <machine/cpu.h>
98 #include <machine/clock.h>
99 #include <machine/specialreg.h>
100 #if 0 /* JG */
101 #include <machine/bootinfo.h>
102 #endif
103 #include <machine/md_var.h>
104 #include <machine/metadata.h>
105 #include <machine/pc/bios.h>
106 #include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
107 #include <machine/globaldata.h>		/* CPU_prvspace */
108 #include <machine/smp.h>
109 #ifdef PERFMON
110 #include <machine/perfmon.h>
111 #endif
112 #include <machine/cputypes.h>
113 #include <machine/intr_machdep.h>
114 
115 #ifdef OLD_BUS_ARCH
116 #include <bus/isa/isa_device.h>
117 #endif
118 #include <machine_base/isa/isa_intr.h>
119 #include <bus/isa/rtc.h>
120 #include <sys/random.h>
121 #include <sys/ptrace.h>
122 #include <machine/sigframe.h>
123 
124 #include <sys/machintr.h>
125 #include <machine_base/icu/icu_abi.h>
126 #include <machine_base/icu/elcr_var.h>
127 #include <machine_base/apic/lapic.h>
128 #include <machine_base/apic/ioapic.h>
129 #include <machine_base/apic/ioapic_abi.h>
130 #include <machine/mptable.h>
131 
132 #define PHYSMAP_ENTRIES		10
133 
134 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
135 
136 extern void printcpuinfo(void);	/* XXX header file */
137 extern void identify_cpu(void);
138 #if 0 /* JG */
139 extern void finishidentcpu(void);
140 #endif
141 extern void panicifcpuunsupported(void);
142 
143 static void cpu_startup(void *);
144 static void pic_finish(void *);
145 static void cpu_finish(void *);
146 
147 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
148 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
149 #ifdef DIRECTIO
150 extern void ffs_rawread_setup(void);
151 #endif /* DIRECTIO */
152 static void init_locks(void);
153 
154 SYSINIT(cpu, SI_BOOT2_START_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
155 SYSINIT(pic_finish, SI_BOOT2_FINISH_PIC, SI_ORDER_FIRST, pic_finish, NULL);
156 SYSINIT(cpu_finish, SI_BOOT2_FINISH_CPU, SI_ORDER_FIRST, cpu_finish, NULL);
157 
158 #ifdef DDB
159 extern vm_offset_t ksym_start, ksym_end;
160 #endif
161 
162 struct privatespace CPU_prvspace_bsp __aligned(4096);
163 struct privatespace *CPU_prvspace[MAXCPU] = { &CPU_prvspace_bsp };
164 
165 int	_udatasel, _ucodesel, _ucode32sel;
166 u_long	atdevbase;
167 int64_t tsc_offsets[MAXCPU];
168 
169 static int cpu_mwait_halt;	/* MWAIT hint (EAX) or CPU_MWAIT_HINT_ */
170 
171 #if defined(SWTCH_OPTIM_STATS)
172 extern int swtch_optim_stats;
173 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
174 	CTLFLAG_RD, &swtch_optim_stats, 0, "");
175 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
176 	CTLFLAG_RD, &tlb_flush_count, 0, "");
177 #endif
178 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_halt,
179 	CTLFLAG_RD, &cpu_mwait_halt, 0, "");
180 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_spin, CTLFLAG_RD, &cpu_mwait_spin, 0,
181     "monitor/mwait target state");
182 
183 #define CPU_MWAIT_C1		1
184 #define CPU_MWAIT_C2		2
185 #define CPU_MWAIT_C3		3
186 #define CPU_MWAIT_CX_MAX	8
187 
188 #define CPU_MWAIT_HINT_AUTO	-1	/* C1 and C2 */
189 #define CPU_MWAIT_HINT_AUTODEEP	-2	/* C3+ */
190 
191 SYSCTL_NODE(_machdep, OID_AUTO, mwait, CTLFLAG_RW, 0, "MWAIT features");
192 SYSCTL_NODE(_machdep_mwait, OID_AUTO, CX, CTLFLAG_RW, 0, "MWAIT Cx settings");
193 
194 struct cpu_mwait_cx {
195 	int			subcnt;
196 	char			name[4];
197 	struct sysctl_ctx_list	sysctl_ctx;
198 	struct sysctl_oid	*sysctl_tree;
199 };
200 static struct cpu_mwait_cx	cpu_mwait_cx_info[CPU_MWAIT_CX_MAX];
201 static char			cpu_mwait_cx_supported[256];
202 
203 static int			cpu_mwait_c1_hints_cnt;
204 static int			cpu_mwait_hints_cnt;
205 static int			*cpu_mwait_hints;
206 
207 static int			cpu_mwait_deep_hints_cnt;
208 static int			*cpu_mwait_deep_hints;
209 
210 #define CPU_IDLE_REPEAT_DEFAULT	750
211 
212 static u_int			cpu_idle_repeat = CPU_IDLE_REPEAT_DEFAULT;
213 static u_long			cpu_idle_repeat_max = CPU_IDLE_REPEAT_DEFAULT;
214 static u_int			cpu_mwait_repeat_shift = 1;
215 
216 #define CPU_MWAIT_C3_PREAMBLE_BM_ARB	0x1
217 #define CPU_MWAIT_C3_PREAMBLE_BM_STS	0x2
218 
219 static int			cpu_mwait_c3_preamble =
220 				    CPU_MWAIT_C3_PREAMBLE_BM_ARB |
221 				    CPU_MWAIT_C3_PREAMBLE_BM_STS;
222 
223 SYSCTL_STRING(_machdep_mwait_CX, OID_AUTO, supported, CTLFLAG_RD,
224     cpu_mwait_cx_supported, 0, "MWAIT supported C states");
225 
226 static struct lwkt_serialize cpu_mwait_cx_slize = LWKT_SERIALIZE_INITIALIZER;
227 static int	cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS,
228 		    int *, boolean_t);
229 static int	cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS);
230 static int	cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS);
231 
232 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, idle, CTLTYPE_STRING|CTLFLAG_RW,
233     NULL, 0, cpu_mwait_cx_idle_sysctl, "A", "");
234 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, spin, CTLTYPE_STRING|CTLFLAG_RW,
235     NULL, 0, cpu_mwait_cx_spin_sysctl, "A", "");
236 SYSCTL_UINT(_machdep_mwait_CX, OID_AUTO, repeat_shift, CTLFLAG_RW,
237     &cpu_mwait_repeat_shift, 0, "");
238 
239 long physmem = 0;
240 
241 u_long ebda_addr = 0;
242 
243 int imcr_present = 0;
244 
245 int naps = 0; /* # of Applications processors */
246 
247 u_int base_memory;
248 struct mtx dt_lock;		/* lock for GDT and LDT */
249 
250 static int
251 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
252 {
253 	u_long pmem = ctob(physmem);
254 
255 	int error = sysctl_handle_long(oidp, &pmem, 0, req);
256 	return (error);
257 }
258 
259 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
260 	0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
261 
262 static int
263 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
264 {
265 	int error = sysctl_handle_int(oidp, 0,
266 		ctob(physmem - vmstats.v_wire_count), req);
267 	return (error);
268 }
269 
270 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
271 	0, 0, sysctl_hw_usermem, "IU", "");
272 
273 static int
274 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
275 {
276 	int error = sysctl_handle_int(oidp, 0,
277 		x86_64_btop(avail_end - avail_start), req);
278 	return (error);
279 }
280 
281 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
282 	0, 0, sysctl_hw_availpages, "I", "");
283 
284 vm_paddr_t Maxmem;
285 vm_paddr_t Realmem;
286 
287 /*
288  * The number of PHYSMAP entries must be one less than the number of
289  * PHYSSEG entries because the PHYSMAP entry that spans the largest
290  * physical address that is accessible by ISA DMA is split into two
291  * PHYSSEG entries.
292  */
293 #define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
294 
295 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
296 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
297 
298 /* must be 2 less so 0 0 can signal end of chunks */
299 #define PHYS_AVAIL_ARRAY_END (NELEM(phys_avail) - 2)
300 #define DUMP_AVAIL_ARRAY_END (NELEM(dump_avail) - 2)
301 
302 static vm_offset_t buffer_sva, buffer_eva;
303 vm_offset_t clean_sva, clean_eva;
304 static vm_offset_t pager_sva, pager_eva;
305 static struct trapframe proc0_tf;
306 
307 static void
308 cpu_startup(void *dummy)
309 {
310 	caddr_t v;
311 	vm_size_t size = 0;
312 	vm_offset_t firstaddr;
313 
314 	/*
315 	 * Good {morning,afternoon,evening,night}.
316 	 */
317 	kprintf("%s", version);
318 	startrtclock();
319 	printcpuinfo();
320 	panicifcpuunsupported();
321 #ifdef PERFMON
322 	perfmon_init();
323 #endif
324 	kprintf("real memory  = %ju (%ju MB)\n",
325 		(intmax_t)Realmem,
326 		(intmax_t)Realmem / 1024 / 1024);
327 	/*
328 	 * Display any holes after the first chunk of extended memory.
329 	 */
330 	if (bootverbose) {
331 		int indx;
332 
333 		kprintf("Physical memory chunk(s):\n");
334 		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
335 			vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
336 
337 			kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
338 				(intmax_t)phys_avail[indx],
339 				(intmax_t)phys_avail[indx + 1] - 1,
340 				(intmax_t)size1,
341 				(intmax_t)(size1 / PAGE_SIZE));
342 		}
343 	}
344 
345 	/*
346 	 * Allocate space for system data structures.
347 	 * The first available kernel virtual address is in "v".
348 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
349 	 * As pages of memory are allocated and cleared,
350 	 * "firstaddr" is incremented.
351 	 * An index into the kernel page table corresponding to the
352 	 * virtual memory address maintained in "v" is kept in "mapaddr".
353 	 */
354 
355 	/*
356 	 * Make two passes.  The first pass calculates how much memory is
357 	 * needed and allocates it.  The second pass assigns virtual
358 	 * addresses to the various data structures.
359 	 */
360 	firstaddr = 0;
361 again:
362 	v = (caddr_t)firstaddr;
363 
364 #define	valloc(name, type, num) \
365 	    (name) = (type *)v; v = (caddr_t)((name)+(num))
366 #define	valloclim(name, type, num, lim) \
367 	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
368 
369 	/*
370 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
371 	 * For the first 64MB of ram nominally allocate sufficient buffers to
372 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
373 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
374 	 * the buffer cache we limit the eventual kva reservation to
375 	 * maxbcache bytes.
376 	 *
377 	 * factor represents the 1/4 x ram conversion.
378 	 */
379 	if (nbuf == 0) {
380 		long factor = 4 * BKVASIZE / 1024;
381 		long kbytes = physmem * (PAGE_SIZE / 1024);
382 
383 		nbuf = 50;
384 		if (kbytes > 4096)
385 			nbuf += min((kbytes - 4096) / factor, 65536 / factor);
386 		if (kbytes > 65536)
387 			nbuf += (kbytes - 65536) * 2 / (factor * 5);
388 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
389 			nbuf = maxbcache / BKVASIZE;
390 	}
391 
392 	/*
393 	 * Do not allow the buffer_map to be more then 1/2 the size of the
394 	 * kernel_map.
395 	 */
396 	if (nbuf > (virtual_end - virtual_start +
397 		    virtual2_end - virtual2_start) / (BKVASIZE * 2)) {
398 		nbuf = (virtual_end - virtual_start +
399 			virtual2_end - virtual2_start) / (BKVASIZE * 2);
400 		kprintf("Warning: nbufs capped at %ld due to kvm\n", nbuf);
401 	}
402 
403 	/*
404 	 * Do not allow the buffer_map to use more than 50% of available
405 	 * physical-equivalent memory.  Since the VM pages which back
406 	 * individual buffers are typically wired, having too many bufs
407 	 * can prevent the system from paging properly.
408 	 */
409 	if (nbuf > physmem * PAGE_SIZE / (BKVASIZE * 2)) {
410 		nbuf = physmem * PAGE_SIZE / (BKVASIZE * 2);
411 		kprintf("Warning: nbufs capped at %ld due to physmem\n", nbuf);
412 	}
413 
414 	/*
415 	 * Do not allow the sizeof(struct buf) * nbuf to exceed half of
416 	 * the valloc space which is just the virtual_end - virtual_start
417 	 * section.  We use valloc() to allocate the buf header array.
418 	 */
419 	if (nbuf > (virtual_end - virtual_start) / sizeof(struct buf) / 2) {
420 		nbuf = (virtual_end - virtual_start) /
421 		       sizeof(struct buf) / 2;
422 		kprintf("Warning: nbufs capped at %ld due to valloc "
423 			"considerations", nbuf);
424 	}
425 
426 	nswbuf = lmax(lmin(nbuf / 4, 256), 16);
427 #ifdef NSWBUF_MIN
428 	if (nswbuf < NSWBUF_MIN)
429 		nswbuf = NSWBUF_MIN;
430 #endif
431 #ifdef DIRECTIO
432 	ffs_rawread_setup();
433 #endif
434 
435 	valloc(swbuf, struct buf, nswbuf);
436 	valloc(buf, struct buf, nbuf);
437 
438 	/*
439 	 * End of first pass, size has been calculated so allocate memory
440 	 */
441 	if (firstaddr == 0) {
442 		size = (vm_size_t)(v - firstaddr);
443 		firstaddr = kmem_alloc(&kernel_map, round_page(size));
444 		if (firstaddr == 0)
445 			panic("startup: no room for tables");
446 		goto again;
447 	}
448 
449 	/*
450 	 * End of second pass, addresses have been assigned
451 	 *
452 	 * nbuf is an int, make sure we don't overflow the field.
453 	 *
454 	 * On 64-bit systems we always reserve maximal allocations for
455 	 * buffer cache buffers and there are no fragmentation issues,
456 	 * so the KVA segment does not have to be excessively oversized.
457 	 */
458 	if ((vm_size_t)(v - firstaddr) != size)
459 		panic("startup: table size inconsistency");
460 
461 	kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
462 		      ((vm_offset_t)(nbuf + 16) * BKVASIZE) +
463 		      (nswbuf * MAXPHYS) + pager_map_size);
464 	kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
465 		      ((vm_offset_t)(nbuf + 16) * BKVASIZE));
466 	buffer_map.system_map = 1;
467 	kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
468 		      ((vm_offset_t)nswbuf * MAXPHYS) + pager_map_size);
469 	pager_map.system_map = 1;
470 
471 #if defined(USERCONFIG)
472 	userconfig();
473 	cninit();		/* the preferred console may have changed */
474 #endif
475 
476 	kprintf("avail memory = %ju (%ju MB)\n",
477 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages),
478 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages) /
479 		1024 / 1024);
480 }
481 
482 struct cpu_idle_stat {
483 	u_long	halt;
484 	u_long	spin;
485 	u_long	repeat;
486 	u_long	repeat_last;
487 	u_long	repeat_delta;
488 	u_long	mwait_cx[CPU_MWAIT_CX_MAX];
489 } __cachealign;
490 
491 #define CPU_IDLE_STAT_HALT	-1
492 #define CPU_IDLE_STAT_SPIN	-2
493 
494 static struct cpu_idle_stat	cpu_idle_stats[MAXCPU];
495 
496 static int
497 sysctl_cpu_idle_cnt(SYSCTL_HANDLER_ARGS)
498 {
499 	int idx = arg2, cpu, error;
500 	u_long val = 0;
501 
502 	if (idx == CPU_IDLE_STAT_HALT) {
503 		for (cpu = 0; cpu < ncpus; ++cpu)
504 			val += cpu_idle_stats[cpu].halt;
505 	} else if (idx == CPU_IDLE_STAT_SPIN) {
506 		for (cpu = 0; cpu < ncpus; ++cpu)
507 			val += cpu_idle_stats[cpu].spin;
508 	} else {
509 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
510 		    ("invalid index %d", idx));
511 		for (cpu = 0; cpu < ncpus; ++cpu)
512 			val += cpu_idle_stats[cpu].mwait_cx[idx];
513 	}
514 
515 	error = sysctl_handle_quad(oidp, &val, 0, req);
516         if (error || req->newptr == NULL)
517 	        return error;
518 
519 	if (idx == CPU_IDLE_STAT_HALT) {
520 		for (cpu = 0; cpu < ncpus; ++cpu)
521 			cpu_idle_stats[cpu].halt = 0;
522 		cpu_idle_stats[0].halt = val;
523 	} else if (idx == CPU_IDLE_STAT_SPIN) {
524 		for (cpu = 0; cpu < ncpus; ++cpu)
525 			cpu_idle_stats[cpu].spin = 0;
526 		cpu_idle_stats[0].spin = val;
527 	} else {
528 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
529 		    ("invalid index %d", idx));
530 		for (cpu = 0; cpu < ncpus; ++cpu)
531 			cpu_idle_stats[cpu].mwait_cx[idx] = 0;
532 		cpu_idle_stats[0].mwait_cx[idx] = val;
533 	}
534 	return 0;
535 }
536 
537 static void
538 cpu_mwait_attach(void)
539 {
540 	struct sbuf sb;
541 	int hint_idx, i;
542 
543 	if ((cpu_feature2 & CPUID2_MON) == 0 ||
544 	    (cpu_mwait_feature & CPUID_MWAIT_EXT) == 0)
545 		return;
546 
547 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
548 	    (CPUID_TO_FAMILY(cpu_id) > 0xf ||
549 	     (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
550 	      CPUID_TO_MODEL(cpu_id) >= 0xf))) {
551 		int bm_sts = 1;
552 
553 		/*
554 		 * Pentium dual-core, Core 2 and beyond do not need any
555 		 * additional activities to enter deep C-state, i.e. C3(+).
556 		 */
557 		cpu_mwait_cx_no_bmarb();
558 
559 		TUNABLE_INT_FETCH("machdep.cpu.mwait.bm_sts", &bm_sts);
560 		if (!bm_sts)
561 			cpu_mwait_cx_no_bmsts();
562 	}
563 
564 	sbuf_new(&sb, cpu_mwait_cx_supported,
565 	    sizeof(cpu_mwait_cx_supported), SBUF_FIXEDLEN);
566 
567 	for (i = 0; i < CPU_MWAIT_CX_MAX; ++i) {
568 		struct cpu_mwait_cx *cx = &cpu_mwait_cx_info[i];
569 		int sub;
570 
571 		ksnprintf(cx->name, sizeof(cx->name), "C%d", i);
572 
573 		sysctl_ctx_init(&cx->sysctl_ctx);
574 		cx->sysctl_tree = SYSCTL_ADD_NODE(&cx->sysctl_ctx,
575 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait), OID_AUTO,
576 		    cx->name, CTLFLAG_RW, NULL, "Cx control/info");
577 		if (cx->sysctl_tree == NULL)
578 			continue;
579 
580 		cx->subcnt = CPUID_MWAIT_CX_SUBCNT(cpu_mwait_extemu, i);
581 		SYSCTL_ADD_INT(&cx->sysctl_ctx,
582 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
583 		    "subcnt", CTLFLAG_RD, &cx->subcnt, 0,
584 		    "sub-state count");
585 		SYSCTL_ADD_PROC(&cx->sysctl_ctx,
586 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
587 		    "entered", (CTLTYPE_QUAD | CTLFLAG_RW), 0,
588 		    i, sysctl_cpu_idle_cnt, "Q", "# of times entered");
589 
590 		for (sub = 0; sub < cx->subcnt; ++sub)
591 			sbuf_printf(&sb, "C%d/%d ", i, sub);
592 	}
593 	sbuf_trim(&sb);
594 	sbuf_finish(&sb);
595 
596 	/*
597 	 * Non-deep C-states
598 	 */
599 	cpu_mwait_c1_hints_cnt = cpu_mwait_cx_info[CPU_MWAIT_C1].subcnt;
600 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i)
601 		cpu_mwait_hints_cnt += cpu_mwait_cx_info[i].subcnt;
602 	cpu_mwait_hints = kmalloc(sizeof(int) * cpu_mwait_hints_cnt,
603 	    M_DEVBUF, M_WAITOK);
604 
605 	hint_idx = 0;
606 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i) {
607 		int j, subcnt;
608 
609 		subcnt = cpu_mwait_cx_info[i].subcnt;
610 		for (j = 0; j < subcnt; ++j) {
611 			KASSERT(hint_idx < cpu_mwait_hints_cnt,
612 			    ("invalid mwait hint index %d", hint_idx));
613 			cpu_mwait_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
614 			++hint_idx;
615 		}
616 	}
617 	KASSERT(hint_idx == cpu_mwait_hints_cnt,
618 	    ("mwait hint count %d != index %d",
619 	     cpu_mwait_hints_cnt, hint_idx));
620 
621 	if (bootverbose) {
622 		kprintf("MWAIT hints (%d C1 hints):\n", cpu_mwait_c1_hints_cnt);
623 		for (i = 0; i < cpu_mwait_hints_cnt; ++i) {
624 			int hint = cpu_mwait_hints[i];
625 
626 			kprintf("  C%d/%d hint 0x%04x\n",
627 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
628 			    hint);
629 		}
630 	}
631 
632 	/*
633 	 * Deep C-states
634 	 */
635 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i)
636 		cpu_mwait_deep_hints_cnt += cpu_mwait_cx_info[i].subcnt;
637 	cpu_mwait_deep_hints = kmalloc(sizeof(int) * cpu_mwait_deep_hints_cnt,
638 	    M_DEVBUF, M_WAITOK);
639 
640 	hint_idx = 0;
641 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i) {
642 		int j, subcnt;
643 
644 		subcnt = cpu_mwait_cx_info[i].subcnt;
645 		for (j = 0; j < subcnt; ++j) {
646 			KASSERT(hint_idx < cpu_mwait_deep_hints_cnt,
647 			    ("invalid mwait deep hint index %d", hint_idx));
648 			cpu_mwait_deep_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
649 			++hint_idx;
650 		}
651 	}
652 	KASSERT(hint_idx == cpu_mwait_deep_hints_cnt,
653 	    ("mwait deep hint count %d != index %d",
654 	     cpu_mwait_deep_hints_cnt, hint_idx));
655 
656 	if (bootverbose) {
657 		kprintf("MWAIT deep hints:\n");
658 		for (i = 0; i < cpu_mwait_deep_hints_cnt; ++i) {
659 			int hint = cpu_mwait_deep_hints[i];
660 
661 			kprintf("  C%d/%d hint 0x%04x\n",
662 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
663 			    hint);
664 		}
665 	}
666 	cpu_idle_repeat_max = 256 * cpu_mwait_deep_hints_cnt;
667 }
668 
669 static void
670 cpu_finish(void *dummy __unused)
671 {
672 	cpu_setregs();
673 	cpu_mwait_attach();
674 }
675 
676 static void
677 pic_finish(void *dummy __unused)
678 {
679 	/* Log ELCR information */
680 	elcr_dump();
681 
682 	/* Log MPTABLE information */
683 	mptable_pci_int_dump();
684 
685 	/* Finalize PCI */
686 	MachIntrABI.finalize();
687 }
688 
689 /*
690  * Send an interrupt to process.
691  *
692  * Stack is set up to allow sigcode stored
693  * at top to call routine, followed by kcall
694  * to sigreturn routine below.  After sigreturn
695  * resets the signal mask, the stack, and the
696  * frame pointer, it returns to the user
697  * specified pc, psl.
698  */
699 void
700 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
701 {
702 	struct lwp *lp = curthread->td_lwp;
703 	struct proc *p = lp->lwp_proc;
704 	struct trapframe *regs;
705 	struct sigacts *psp = p->p_sigacts;
706 	struct sigframe sf, *sfp;
707 	int oonstack;
708 	char *sp;
709 
710 	regs = lp->lwp_md.md_regs;
711 	oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
712 
713 	/* Save user context */
714 	bzero(&sf, sizeof(struct sigframe));
715 	sf.sf_uc.uc_sigmask = *mask;
716 	sf.sf_uc.uc_stack = lp->lwp_sigstk;
717 	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
718 	KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
719 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
720 
721 	/* Make the size of the saved context visible to userland */
722 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
723 
724 	/* Allocate and validate space for the signal handler context. */
725         if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
726 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
727 		sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
728 			      sizeof(struct sigframe));
729 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
730 	} else {
731 		/* We take red zone into account */
732 		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
733 	}
734 
735 	/*
736 	 * XXX AVX needs 64-byte alignment but sigframe has other fields and
737 	 * the embedded ucontext is not at the front, so aligning this won't
738 	 * help us.  Fortunately we bcopy in/out of the sigframe, so the
739 	 * kernel is ok.
740 	 *
741 	 * The problem though is if userland winds up trying to use the
742 	 * context directly.
743 	 */
744 	sfp = (struct sigframe *)((intptr_t)sp & ~(intptr_t)0xF);
745 
746 	/* Translate the signal is appropriate */
747 	if (p->p_sysent->sv_sigtbl) {
748 		if (sig <= p->p_sysent->sv_sigsize)
749 			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
750 	}
751 
752 	/*
753 	 * Build the argument list for the signal handler.
754 	 *
755 	 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
756 	 */
757 	regs->tf_rdi = sig;				/* argument 1 */
758 	regs->tf_rdx = (register_t)&sfp->sf_uc;		/* argument 3 */
759 
760 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
761 		/*
762 		 * Signal handler installed with SA_SIGINFO.
763 		 *
764 		 * action(signo, siginfo, ucontext)
765 		 */
766 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* argument 2 */
767 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
768 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
769 
770 		/* fill siginfo structure */
771 		sf.sf_si.si_signo = sig;
772 		sf.sf_si.si_code = code;
773 		sf.sf_si.si_addr = (void *)regs->tf_addr;
774 	} else {
775 		/*
776 		 * Old FreeBSD-style arguments.
777 		 *
778 		 * handler (signo, code, [uc], addr)
779 		 */
780 		regs->tf_rsi = (register_t)code;	/* argument 2 */
781 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
782 		sf.sf_ahu.sf_handler = catcher;
783 	}
784 
785 	/*
786 	 * If we're a vm86 process, we want to save the segment registers.
787 	 * We also change eflags to be our emulated eflags, not the actual
788 	 * eflags.
789 	 */
790 #if 0 /* JG */
791 	if (regs->tf_eflags & PSL_VM) {
792 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
793 		struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
794 
795 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
796 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
797 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
798 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
799 
800 		if (vm86->vm86_has_vme == 0)
801 			sf.sf_uc.uc_mcontext.mc_eflags =
802 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
803 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
804 
805 		/*
806 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
807 		 * syscalls made by the signal handler.  This just avoids
808 		 * wasting time for our lazy fixup of such faults.  PSL_NT
809 		 * does nothing in vm86 mode, but vm86 programs can set it
810 		 * almost legitimately in probes for old cpu types.
811 		 */
812 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
813 	}
814 #endif
815 
816 	/*
817 	 * Save the FPU state and reinit the FP unit
818 	 */
819 	npxpush(&sf.sf_uc.uc_mcontext);
820 
821 	/*
822 	 * Copy the sigframe out to the user's stack.
823 	 */
824 	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
825 		/*
826 		 * Something is wrong with the stack pointer.
827 		 * ...Kill the process.
828 		 */
829 		sigexit(lp, SIGILL);
830 	}
831 
832 	regs->tf_rsp = (register_t)sfp;
833 	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
834 
835 	/*
836 	 * i386 abi specifies that the direction flag must be cleared
837 	 * on function entry
838 	 */
839 	regs->tf_rflags &= ~(PSL_T|PSL_D);
840 
841 	/*
842 	 * 64 bit mode has a code and stack selector but
843 	 * no data or extra selector.  %fs and %gs are not
844 	 * stored in-context.
845 	 */
846 	regs->tf_cs = _ucodesel;
847 	regs->tf_ss = _udatasel;
848 	clear_quickret();
849 }
850 
851 /*
852  * Sanitize the trapframe for a virtual kernel passing control to a custom
853  * VM context.  Remove any items that would otherwise create a privilage
854  * issue.
855  *
856  * XXX at the moment we allow userland to set the resume flag.  Is this a
857  * bad idea?
858  */
859 int
860 cpu_sanitize_frame(struct trapframe *frame)
861 {
862 	frame->tf_cs = _ucodesel;
863 	frame->tf_ss = _udatasel;
864 	/* XXX VM (8086) mode not supported? */
865 	frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
866 	frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
867 
868 	return(0);
869 }
870 
871 /*
872  * Sanitize the tls so loading the descriptor does not blow up
873  * on us.  For x86_64 we don't have to do anything.
874  */
875 int
876 cpu_sanitize_tls(struct savetls *tls)
877 {
878 	return(0);
879 }
880 
881 /*
882  * sigreturn(ucontext_t *sigcntxp)
883  *
884  * System call to cleanup state after a signal
885  * has been taken.  Reset signal mask and
886  * stack state from context left by sendsig (above).
887  * Return to previous pc and psl as specified by
888  * context left by sendsig. Check carefully to
889  * make sure that the user has not modified the
890  * state to gain improper privileges.
891  *
892  * MPSAFE
893  */
894 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
895 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
896 
897 int
898 sys_sigreturn(struct sigreturn_args *uap)
899 {
900 	struct lwp *lp = curthread->td_lwp;
901 	struct trapframe *regs;
902 	ucontext_t uc;
903 	ucontext_t *ucp;
904 	register_t rflags;
905 	int cs;
906 	int error;
907 
908 	/*
909 	 * We have to copy the information into kernel space so userland
910 	 * can't modify it while we are sniffing it.
911 	 */
912 	regs = lp->lwp_md.md_regs;
913 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
914 	if (error)
915 		return (error);
916 	ucp = &uc;
917 	rflags = ucp->uc_mcontext.mc_rflags;
918 
919 	/* VM (8086) mode not supported */
920 	rflags &= ~PSL_VM_UNSUPP;
921 
922 #if 0 /* JG */
923 	if (eflags & PSL_VM) {
924 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
925 		struct vm86_kernel *vm86;
926 
927 		/*
928 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
929 		 * set up the vm86 area, and we can't enter vm86 mode.
930 		 */
931 		if (lp->lwp_thread->td_pcb->pcb_ext == 0)
932 			return (EINVAL);
933 		vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
934 		if (vm86->vm86_inited == 0)
935 			return (EINVAL);
936 
937 		/* go back to user mode if both flags are set */
938 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
939 			trapsignal(lp, SIGBUS, 0);
940 
941 		if (vm86->vm86_has_vme) {
942 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
943 			    (eflags & VME_USERCHANGE) | PSL_VM;
944 		} else {
945 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
946 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
947 			    (eflags & VM_USERCHANGE) | PSL_VM;
948 		}
949 		bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
950 		tf->tf_eflags = eflags;
951 		tf->tf_vm86_ds = tf->tf_ds;
952 		tf->tf_vm86_es = tf->tf_es;
953 		tf->tf_vm86_fs = tf->tf_fs;
954 		tf->tf_vm86_gs = tf->tf_gs;
955 		tf->tf_ds = _udatasel;
956 		tf->tf_es = _udatasel;
957 		tf->tf_fs = _udatasel;
958 		tf->tf_gs = _udatasel;
959 	} else
960 #endif
961 	{
962 		/*
963 		 * Don't allow users to change privileged or reserved flags.
964 		 */
965 		/*
966 		 * XXX do allow users to change the privileged flag PSL_RF.
967 		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
968 		 * should sometimes set it there too.  tf_eflags is kept in
969 		 * the signal context during signal handling and there is no
970 		 * other place to remember it, so the PSL_RF bit may be
971 		 * corrupted by the signal handler without us knowing.
972 		 * Corruption of the PSL_RF bit at worst causes one more or
973 		 * one less debugger trap, so allowing it is fairly harmless.
974 		 */
975 		if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
976 			kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
977 	    		return(EINVAL);
978 		}
979 
980 		/*
981 		 * Don't allow users to load a valid privileged %cs.  Let the
982 		 * hardware check for invalid selectors, excess privilege in
983 		 * other selectors, invalid %eip's and invalid %esp's.
984 		 */
985 		cs = ucp->uc_mcontext.mc_cs;
986 		if (!CS_SECURE(cs)) {
987 			kprintf("sigreturn: cs = 0x%x\n", cs);
988 			trapsignal(lp, SIGBUS, T_PROTFLT);
989 			return(EINVAL);
990 		}
991 		bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
992 	}
993 
994 	/*
995 	 * Restore the FPU state from the frame
996 	 */
997 	crit_enter();
998 	npxpop(&ucp->uc_mcontext);
999 
1000 	if (ucp->uc_mcontext.mc_onstack & 1)
1001 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
1002 	else
1003 		lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
1004 
1005 	lp->lwp_sigmask = ucp->uc_sigmask;
1006 	SIG_CANTMASK(lp->lwp_sigmask);
1007 	clear_quickret();
1008 	crit_exit();
1009 	return(EJUSTRETURN);
1010 }
1011 
1012 /*
1013  * Machine dependent boot() routine
1014  *
1015  * I haven't seen anything to put here yet
1016  * Possibly some stuff might be grafted back here from boot()
1017  */
1018 void
1019 cpu_boot(int howto)
1020 {
1021 }
1022 
1023 /*
1024  * Shutdown the CPU as much as possible
1025  */
1026 void
1027 cpu_halt(void)
1028 {
1029 	for (;;)
1030 		__asm__ __volatile("hlt");
1031 }
1032 
1033 /*
1034  * cpu_idle() represents the idle LWKT.  You cannot return from this function
1035  * (unless you want to blow things up!).  Instead we look for runnable threads
1036  * and loop or halt as appropriate.  Giant is not held on entry to the thread.
1037  *
1038  * The main loop is entered with a critical section held, we must release
1039  * the critical section before doing anything else.  lwkt_switch() will
1040  * check for pending interrupts due to entering and exiting its own
1041  * critical section.
1042  *
1043  * NOTE: On an SMP system we rely on a scheduler IPI to wake a HLTed cpu up.
1044  *	 However, there are cases where the idlethread will be entered with
1045  *	 the possibility that no IPI will occur and in such cases
1046  *	 lwkt_switch() sets TDF_IDLE_NOHLT.
1047  *
1048  * NOTE: cpu_idle_repeat determines how many entries into the idle thread
1049  *	 must occur before it starts using ACPI halt.
1050  *
1051  * NOTE: Value overridden in hammer_time().
1052  */
1053 static int	cpu_idle_hlt = 2;
1054 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
1055     &cpu_idle_hlt, 0, "Idle loop HLT enable");
1056 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_repeat, CTLFLAG_RW,
1057     &cpu_idle_repeat, 0, "Idle entries before acpi hlt");
1058 
1059 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_hltcnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1060     0, CPU_IDLE_STAT_HALT, sysctl_cpu_idle_cnt, "Q", "Idle loop entry halts");
1061 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_spincnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1062     0, CPU_IDLE_STAT_SPIN, sysctl_cpu_idle_cnt, "Q", "Idle loop entry spins");
1063 
1064 static void
1065 cpu_idle_default_hook(void)
1066 {
1067 	/*
1068 	 * We must guarentee that hlt is exactly the instruction
1069 	 * following the sti.
1070 	 */
1071 	__asm __volatile("sti; hlt");
1072 }
1073 
1074 /* Other subsystems (e.g., ACPI) can hook this later. */
1075 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
1076 
1077 static __inline int
1078 cpu_mwait_cx_hint(struct cpu_idle_stat *stat)
1079 {
1080 	int hint, cx_idx;
1081 	u_int idx;
1082 
1083 	if (cpu_mwait_halt >= 0) {
1084 		hint = cpu_mwait_halt;
1085 		goto done;
1086 	}
1087 
1088 	idx = (stat->repeat + stat->repeat_last + stat->repeat_delta) >>
1089 	    cpu_mwait_repeat_shift;
1090 	if (idx >= cpu_mwait_c1_hints_cnt) {
1091 		/* Step up faster, once we walked through all C1 states */
1092 		stat->repeat_delta += 1 << (cpu_mwait_repeat_shift + 1);
1093 	}
1094 	if (cpu_mwait_halt == CPU_MWAIT_HINT_AUTODEEP) {
1095 		if (idx >= cpu_mwait_deep_hints_cnt)
1096 			idx = cpu_mwait_deep_hints_cnt - 1;
1097 		hint = cpu_mwait_deep_hints[idx];
1098 	} else {
1099 		if (idx >= cpu_mwait_hints_cnt)
1100 			idx = cpu_mwait_hints_cnt - 1;
1101 		hint = cpu_mwait_hints[idx];
1102 	}
1103 done:
1104 	cx_idx = MWAIT_EAX_TO_CX(hint);
1105 	if (cx_idx >= 0 && cx_idx < CPU_MWAIT_CX_MAX)
1106 		stat->mwait_cx[cx_idx]++;
1107 	return hint;
1108 }
1109 
1110 void
1111 cpu_idle(void)
1112 {
1113 	globaldata_t gd = mycpu;
1114 	struct cpu_idle_stat *stat = &cpu_idle_stats[gd->gd_cpuid];
1115 	struct thread *td __debugvar = gd->gd_curthread;
1116 	int reqflags;
1117 	int quick;
1118 
1119 	stat->repeat = stat->repeat_last = cpu_idle_repeat_max;
1120 
1121 	crit_exit();
1122 	KKASSERT(td->td_critcount == 0);
1123 
1124 	for (;;) {
1125 		/*
1126 		 * See if there are any LWKTs ready to go.
1127 		 */
1128 		lwkt_switch();
1129 
1130 		/*
1131 		 * When halting inside a cli we must check for reqflags
1132 		 * races, particularly [re]schedule requests.  Running
1133 		 * splz() does the job.
1134 		 *
1135 		 * cpu_idle_hlt:
1136 		 *	0	Never halt, just spin
1137 		 *
1138 		 *	1	Always use HLT (or MONITOR/MWAIT if avail).
1139 		 *
1140 		 *		Better default for modern (Haswell+) Intel
1141 		 *		cpus.
1142 		 *
1143 		 *	2	Use HLT/MONITOR/MWAIT up to a point and then
1144 		 *		use the ACPI halt (default).  This is a hybrid
1145 		 *		approach.  See machdep.cpu_idle_repeat.
1146 		 *
1147 		 *		Better default for modern AMD cpus and older
1148 		 *		Intel cpus.
1149 		 *
1150 		 *	3	Always use the ACPI halt.  This typically
1151 		 *		eats the least amount of power but the cpu
1152 		 *		will be slow waking up.  Slows down e.g.
1153 		 *		compiles and other pipe/event oriented stuff.
1154 		 *
1155 		 *	4	Always use HLT.
1156 		 *
1157 		 * NOTE: Interrupts are enabled and we are not in a critical
1158 		 *	 section.
1159 		 *
1160 		 * NOTE: Preemptions do not reset gd_idle_repeat.   Also we
1161 		 *	 don't bother capping gd_idle_repeat, it is ok if
1162 		 *	 it overflows.
1163 		 */
1164 		if (gd->gd_idle_repeat == 0) {
1165 			stat->repeat = (stat->repeat + stat->repeat_last) >> 1;
1166 			if (stat->repeat > cpu_idle_repeat_max)
1167 				stat->repeat = cpu_idle_repeat_max;
1168 			stat->repeat_last = 0;
1169 			stat->repeat_delta = 0;
1170 		}
1171 		++stat->repeat_last;
1172 
1173 		++gd->gd_idle_repeat;
1174 		reqflags = gd->gd_reqflags;
1175 		quick = (cpu_idle_hlt == 1) ||
1176 			(cpu_idle_hlt < 3 &&
1177 			 gd->gd_idle_repeat < cpu_idle_repeat);
1178 
1179 		if (quick && (cpu_mi_feature & CPU_MI_MONITOR) &&
1180 		    (reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1181 			splz(); /* XXX */
1182 			cpu_mmw_pause_int(&gd->gd_reqflags, reqflags,
1183 			    cpu_mwait_cx_hint(stat), 0);
1184 			stat->halt++;
1185 		} else if (cpu_idle_hlt) {
1186 			__asm __volatile("cli");
1187 			splz();
1188 			if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1189 				if (quick)
1190 					cpu_idle_default_hook();
1191 				else
1192 					cpu_idle_hook();
1193 			}
1194 			__asm __volatile("sti");
1195 			stat->halt++;
1196 		} else {
1197 			splz();
1198 			__asm __volatile("sti");
1199 			stat->spin++;
1200 		}
1201 	}
1202 }
1203 
1204 /*
1205  * This routine is called if a spinlock has been held through the
1206  * exponential backoff period and is seriously contested.  On a real cpu
1207  * we let it spin.
1208  */
1209 void
1210 cpu_spinlock_contested(void)
1211 {
1212 	cpu_pause();
1213 }
1214 
1215 /*
1216  * Clear registers on exec
1217  */
1218 void
1219 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
1220 {
1221 	struct thread *td = curthread;
1222 	struct lwp *lp = td->td_lwp;
1223 	struct pcb *pcb = td->td_pcb;
1224 	struct trapframe *regs = lp->lwp_md.md_regs;
1225 
1226 	/* was i386_user_cleanup() in NetBSD */
1227 	user_ldt_free(pcb);
1228 
1229 	clear_quickret();
1230 	bzero((char *)regs, sizeof(struct trapframe));
1231 	regs->tf_rip = entry;
1232 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
1233 	regs->tf_rdi = stack;		/* argv */
1234 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
1235 	regs->tf_ss = _udatasel;
1236 	regs->tf_cs = _ucodesel;
1237 	regs->tf_rbx = ps_strings;
1238 
1239 	/*
1240 	 * Reset the hardware debug registers if they were in use.
1241 	 * They won't have any meaning for the newly exec'd process.
1242 	 */
1243 	if (pcb->pcb_flags & PCB_DBREGS) {
1244 		pcb->pcb_dr0 = 0;
1245 		pcb->pcb_dr1 = 0;
1246 		pcb->pcb_dr2 = 0;
1247 		pcb->pcb_dr3 = 0;
1248 		pcb->pcb_dr6 = 0;
1249 		pcb->pcb_dr7 = 0; /* JG set bit 10? */
1250 		if (pcb == td->td_pcb) {
1251 			/*
1252 			 * Clear the debug registers on the running
1253 			 * CPU, otherwise they will end up affecting
1254 			 * the next process we switch to.
1255 			 */
1256 			reset_dbregs();
1257 		}
1258 		pcb->pcb_flags &= ~PCB_DBREGS;
1259 	}
1260 
1261 	/*
1262 	 * Initialize the math emulator (if any) for the current process.
1263 	 * Actually, just clear the bit that says that the emulator has
1264 	 * been initialized.  Initialization is delayed until the process
1265 	 * traps to the emulator (if it is done at all) mainly because
1266 	 * emulators don't provide an entry point for initialization.
1267 	 */
1268 	pcb->pcb_flags &= ~FP_SOFTFP;
1269 
1270 	/*
1271 	 * NOTE: do not set CR0_TS here.  npxinit() must do it after clearing
1272 	 *	 gd_npxthread.  Otherwise a preemptive interrupt thread
1273 	 *	 may panic in npxdna().
1274 	 */
1275 	crit_enter();
1276 	load_cr0(rcr0() | CR0_MP);
1277 
1278 	/*
1279 	 * NOTE: The MSR values must be correct so we can return to
1280 	 * 	 userland.  gd_user_fs/gs must be correct so the switch
1281 	 *	 code knows what the current MSR values are.
1282 	 */
1283 	pcb->pcb_fsbase = 0;	/* Values loaded from PCB on switch */
1284 	pcb->pcb_gsbase = 0;
1285 	mdcpu->gd_user_fs = 0;	/* Cache of current MSR values */
1286 	mdcpu->gd_user_gs = 0;
1287 	wrmsr(MSR_FSBASE, 0);	/* Set MSR values for return to userland */
1288 	wrmsr(MSR_KGSBASE, 0);
1289 
1290 	/* Initialize the npx (if any) for the current process. */
1291 	npxinit();
1292 	crit_exit();
1293 
1294 	pcb->pcb_ds = _udatasel;
1295 	pcb->pcb_es = _udatasel;
1296 	pcb->pcb_fs = _udatasel;
1297 	pcb->pcb_gs = _udatasel;
1298 }
1299 
1300 void
1301 cpu_setregs(void)
1302 {
1303 	register_t cr0;
1304 
1305 	cr0 = rcr0();
1306 	cr0 |= CR0_NE;			/* Done by npxinit() */
1307 	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1308 	cr0 |= CR0_WP | CR0_AM;
1309 	load_cr0(cr0);
1310 	load_gs(_udatasel);
1311 }
1312 
1313 static int
1314 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1315 {
1316 	int error;
1317 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1318 		req);
1319 	if (!error && req->newptr)
1320 		resettodr();
1321 	return (error);
1322 }
1323 
1324 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1325 	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1326 
1327 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1328 	CTLFLAG_RW, &disable_rtc_set, 0, "");
1329 
1330 #if 0 /* JG */
1331 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1332 	CTLFLAG_RD, &bootinfo, bootinfo, "");
1333 #endif
1334 
1335 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1336 	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1337 
1338 extern u_long bootdev;		/* not a cdev_t - encoding is different */
1339 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1340 	CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1341 
1342 /*
1343  * Initialize 386 and configure to run kernel
1344  */
1345 
1346 /*
1347  * Initialize segments & interrupt table
1348  */
1349 
1350 int _default_ldt;
1351 struct user_segment_descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1352 struct gate_descriptor idt_arr[MAXCPU][NIDT];
1353 #if 0 /* JG */
1354 union descriptor ldt[NLDT];		/* local descriptor table */
1355 #endif
1356 
1357 /* table descriptors - used to load tables by cpu */
1358 struct region_descriptor r_gdt;
1359 struct region_descriptor r_idt_arr[MAXCPU];
1360 
1361 /* JG proc0paddr is a virtual address */
1362 void *proc0paddr;
1363 /* JG alignment? */
1364 char proc0paddr_buff[LWKT_THREAD_STACK];
1365 
1366 
1367 /* software prototypes -- in more palatable form */
1368 struct soft_segment_descriptor gdt_segs[] = {
1369 /* GNULL_SEL	0 Null Descriptor */
1370 {	0x0,			/* segment base address  */
1371 	0x0,			/* length */
1372 	0,			/* segment type */
1373 	0,			/* segment descriptor priority level */
1374 	0,			/* segment descriptor present */
1375 	0,			/* long */
1376 	0,			/* default 32 vs 16 bit size */
1377 	0  			/* limit granularity (byte/page units)*/ },
1378 /* GCODE_SEL	1 Code Descriptor for kernel */
1379 {	0x0,			/* segment base address  */
1380 	0xfffff,		/* length - all address space */
1381 	SDT_MEMERA,		/* segment type */
1382 	SEL_KPL,		/* segment descriptor priority level */
1383 	1,			/* segment descriptor present */
1384 	1,			/* long */
1385 	0,			/* default 32 vs 16 bit size */
1386 	1  			/* limit granularity (byte/page units)*/ },
1387 /* GDATA_SEL	2 Data Descriptor for kernel */
1388 {	0x0,			/* segment base address  */
1389 	0xfffff,		/* length - all address space */
1390 	SDT_MEMRWA,		/* segment type */
1391 	SEL_KPL,		/* segment descriptor priority level */
1392 	1,			/* segment descriptor present */
1393 	1,			/* long */
1394 	0,			/* default 32 vs 16 bit size */
1395 	1  			/* limit granularity (byte/page units)*/ },
1396 /* GUCODE32_SEL	3 32 bit Code Descriptor for user */
1397 {	0x0,			/* segment base address  */
1398 	0xfffff,		/* length - all address space */
1399 	SDT_MEMERA,		/* segment type */
1400 	SEL_UPL,		/* segment descriptor priority level */
1401 	1,			/* segment descriptor present */
1402 	0,			/* long */
1403 	1,			/* default 32 vs 16 bit size */
1404 	1  			/* limit granularity (byte/page units)*/ },
1405 /* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
1406 {	0x0,			/* segment base address  */
1407 	0xfffff,		/* length - all address space */
1408 	SDT_MEMRWA,		/* segment type */
1409 	SEL_UPL,		/* segment descriptor priority level */
1410 	1,			/* segment descriptor present */
1411 	0,			/* long */
1412 	1,			/* default 32 vs 16 bit size */
1413 	1  			/* limit granularity (byte/page units)*/ },
1414 /* GUCODE_SEL	5 64 bit Code Descriptor for user */
1415 {	0x0,			/* segment base address  */
1416 	0xfffff,		/* length - all address space */
1417 	SDT_MEMERA,		/* segment type */
1418 	SEL_UPL,		/* segment descriptor priority level */
1419 	1,			/* segment descriptor present */
1420 	1,			/* long */
1421 	0,			/* default 32 vs 16 bit size */
1422 	1  			/* limit granularity (byte/page units)*/ },
1423 /* GPROC0_SEL	6 Proc 0 Tss Descriptor */
1424 {
1425 	0x0,			/* segment base address */
1426 	sizeof(struct x86_64tss)-1,/* length - all address space */
1427 	SDT_SYSTSS,		/* segment type */
1428 	SEL_KPL,		/* segment descriptor priority level */
1429 	1,			/* segment descriptor present */
1430 	0,			/* long */
1431 	0,			/* unused - default 32 vs 16 bit size */
1432 	0  			/* limit granularity (byte/page units)*/ },
1433 /* Actually, the TSS is a system descriptor which is double size */
1434 {	0x0,			/* segment base address  */
1435 	0x0,			/* length */
1436 	0,			/* segment type */
1437 	0,			/* segment descriptor priority level */
1438 	0,			/* segment descriptor present */
1439 	0,			/* long */
1440 	0,			/* default 32 vs 16 bit size */
1441 	0  			/* limit granularity (byte/page units)*/ },
1442 /* GUGS32_SEL	8 32 bit GS Descriptor for user */
1443 {	0x0,			/* segment base address  */
1444 	0xfffff,		/* length - all address space */
1445 	SDT_MEMRWA,		/* segment type */
1446 	SEL_UPL,		/* segment descriptor priority level */
1447 	1,			/* segment descriptor present */
1448 	0,			/* long */
1449 	1,			/* default 32 vs 16 bit size */
1450 	1  			/* limit granularity (byte/page units)*/ },
1451 };
1452 
1453 void
1454 setidt_global(int idx, inthand_t *func, int typ, int dpl, int ist)
1455 {
1456 	int cpu;
1457 
1458 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
1459 		struct gate_descriptor *ip = &idt_arr[cpu][idx];
1460 
1461 		ip->gd_looffset = (uintptr_t)func;
1462 		ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1463 		ip->gd_ist = ist;
1464 		ip->gd_xx = 0;
1465 		ip->gd_type = typ;
1466 		ip->gd_dpl = dpl;
1467 		ip->gd_p = 1;
1468 		ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1469 	}
1470 }
1471 
1472 void
1473 setidt(int idx, inthand_t *func, int typ, int dpl, int ist, int cpu)
1474 {
1475 	struct gate_descriptor *ip;
1476 
1477 	KASSERT(cpu >= 0 && cpu < ncpus, ("invalid cpu %d", cpu));
1478 
1479 	ip = &idt_arr[cpu][idx];
1480 	ip->gd_looffset = (uintptr_t)func;
1481 	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1482 	ip->gd_ist = ist;
1483 	ip->gd_xx = 0;
1484 	ip->gd_type = typ;
1485 	ip->gd_dpl = dpl;
1486 	ip->gd_p = 1;
1487 	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1488 }
1489 
1490 #define	IDTVEC(name)	__CONCAT(X,name)
1491 
1492 extern inthand_t
1493 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1494 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1495 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1496 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1497 	IDTVEC(xmm), IDTVEC(dblfault),
1498 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1499 
1500 #ifdef DEBUG_INTERRUPTS
1501 extern inthand_t *Xrsvdary[256];
1502 #endif
1503 
1504 void
1505 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1506 {
1507 	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1508 	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1509 	ssd->ssd_type  = sd->sd_type;
1510 	ssd->ssd_dpl   = sd->sd_dpl;
1511 	ssd->ssd_p     = sd->sd_p;
1512 	ssd->ssd_def32 = sd->sd_def32;
1513 	ssd->ssd_gran  = sd->sd_gran;
1514 }
1515 
1516 void
1517 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1518 {
1519 
1520 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1521 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1522 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1523 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1524 	sd->sd_type  = ssd->ssd_type;
1525 	sd->sd_dpl   = ssd->ssd_dpl;
1526 	sd->sd_p     = ssd->ssd_p;
1527 	sd->sd_long  = ssd->ssd_long;
1528 	sd->sd_def32 = ssd->ssd_def32;
1529 	sd->sd_gran  = ssd->ssd_gran;
1530 }
1531 
1532 void
1533 ssdtosyssd(struct soft_segment_descriptor *ssd,
1534     struct system_segment_descriptor *sd)
1535 {
1536 
1537 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1538 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1539 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1540 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1541 	sd->sd_type  = ssd->ssd_type;
1542 	sd->sd_dpl   = ssd->ssd_dpl;
1543 	sd->sd_p     = ssd->ssd_p;
1544 	sd->sd_gran  = ssd->ssd_gran;
1545 }
1546 
1547 /*
1548  * Populate the (physmap) array with base/bound pairs describing the
1549  * available physical memory in the system, then test this memory and
1550  * build the phys_avail array describing the actually-available memory.
1551  *
1552  * If we cannot accurately determine the physical memory map, then use
1553  * value from the 0xE801 call, and failing that, the RTC.
1554  *
1555  * Total memory size may be set by the kernel environment variable
1556  * hw.physmem or the compile-time define MAXMEM.
1557  *
1558  * Memory is aligned to PHYSMAP_ALIGN which must be a multiple
1559  * of PAGE_SIZE.  This also greatly reduces the memory test time
1560  * which would otherwise be excessive on machines with > 8G of ram.
1561  *
1562  * XXX first should be vm_paddr_t.
1563  */
1564 
1565 #define PHYSMAP_ALIGN		(vm_paddr_t)(128 * 1024)
1566 #define PHYSMAP_ALIGN_MASK	(vm_paddr_t)(PHYSMAP_ALIGN - 1)
1567 	vm_paddr_t physmap[PHYSMAP_SIZE];
1568 	struct bios_smap *smapbase, *smap, *smapend;
1569 	u_int32_t smapsize;
1570 
1571 static void
1572 getmemsize(caddr_t kmdp, u_int64_t first)
1573 {
1574 	int off, physmap_idx, pa_indx, da_indx;
1575 	int i, j;
1576 	vm_paddr_t pa;
1577 	vm_paddr_t msgbuf_size;
1578 	u_long physmem_tunable;
1579 	pt_entry_t *pte;
1580 	quad_t dcons_addr, dcons_size;
1581 
1582 	bzero(physmap, sizeof(physmap));
1583 	physmap_idx = 0;
1584 
1585 	/*
1586 	 * get memory map from INT 15:E820, kindly supplied by the loader.
1587 	 *
1588 	 * subr_module.c says:
1589 	 * "Consumer may safely assume that size value precedes data."
1590 	 * ie: an int32_t immediately precedes smap.
1591 	 */
1592 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1593 	    MODINFO_METADATA | MODINFOMD_SMAP);
1594 	if (smapbase == NULL)
1595 		panic("No BIOS smap info from loader!");
1596 
1597 	smapsize = *((u_int32_t *)smapbase - 1);
1598 	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1599 
1600 	for (smap = smapbase; smap < smapend; smap++) {
1601 		if (boothowto & RB_VERBOSE)
1602 			kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1603 			    smap->type, smap->base, smap->length);
1604 
1605 		if (smap->type != SMAP_TYPE_MEMORY)
1606 			continue;
1607 
1608 		if (smap->length == 0)
1609 			continue;
1610 
1611 		for (i = 0; i <= physmap_idx; i += 2) {
1612 			if (smap->base < physmap[i + 1]) {
1613 				if (boothowto & RB_VERBOSE) {
1614 					kprintf("Overlapping or non-monotonic "
1615 						"memory region, ignoring "
1616 						"second region\n");
1617 				}
1618 				break;
1619 			}
1620 		}
1621 		if (i <= physmap_idx)
1622 			continue;
1623 
1624 		Realmem += smap->length;
1625 
1626 		if (smap->base == physmap[physmap_idx + 1]) {
1627 			physmap[physmap_idx + 1] += smap->length;
1628 			continue;
1629 		}
1630 
1631 		physmap_idx += 2;
1632 		if (physmap_idx == PHYSMAP_SIZE) {
1633 			kprintf("Too many segments in the physical "
1634 				"address map, giving up\n");
1635 			break;
1636 		}
1637 		physmap[physmap_idx] = smap->base;
1638 		physmap[physmap_idx + 1] = smap->base + smap->length;
1639 	}
1640 
1641 	base_memory = physmap[1] / 1024;
1642 	/* make hole for AP bootstrap code */
1643 	physmap[1] = mp_bootaddress(base_memory);
1644 
1645 	/* Save EBDA address, if any */
1646 	ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
1647 	ebda_addr <<= 4;
1648 
1649 	/*
1650 	 * Maxmem isn't the "maximum memory", it's one larger than the
1651 	 * highest page of the physical address space.  It should be
1652 	 * called something like "Maxphyspage".  We may adjust this
1653 	 * based on ``hw.physmem'' and the results of the memory test.
1654 	 */
1655 	Maxmem = atop(physmap[physmap_idx + 1]);
1656 
1657 #ifdef MAXMEM
1658 	Maxmem = MAXMEM / 4;
1659 #endif
1660 
1661 	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1662 		Maxmem = atop(physmem_tunable);
1663 
1664 	/*
1665 	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1666 	 * in the system.
1667 	 */
1668 	if (Maxmem > atop(physmap[physmap_idx + 1]))
1669 		Maxmem = atop(physmap[physmap_idx + 1]);
1670 
1671 	/*
1672 	 * Blowing out the DMAP will blow up the system.
1673 	 */
1674 	if (Maxmem > atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS)) {
1675 		kprintf("Limiting Maxmem due to DMAP size\n");
1676 		Maxmem = atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS);
1677 	}
1678 
1679 	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1680 	    (boothowto & RB_VERBOSE)) {
1681 		kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
1682 	}
1683 
1684 	/*
1685 	 * Call pmap initialization to make new kernel address space
1686 	 *
1687 	 * Mask off page 0.
1688 	 */
1689 	pmap_bootstrap(&first);
1690 	physmap[0] = PAGE_SIZE;
1691 
1692 	/*
1693 	 * Align the physmap to PHYSMAP_ALIGN and cut out anything
1694 	 * exceeding Maxmem.
1695 	 */
1696 	for (i = j = 0; i <= physmap_idx; i += 2) {
1697 		if (physmap[i+1] > ptoa(Maxmem))
1698 			physmap[i+1] = ptoa(Maxmem);
1699 		physmap[i] = (physmap[i] + PHYSMAP_ALIGN_MASK) &
1700 			     ~PHYSMAP_ALIGN_MASK;
1701 		physmap[i+1] = physmap[i+1] & ~PHYSMAP_ALIGN_MASK;
1702 
1703 		physmap[j] = physmap[i];
1704 		physmap[j+1] = physmap[i+1];
1705 
1706 		if (physmap[i] < physmap[i+1])
1707 			j += 2;
1708 	}
1709 	physmap_idx = j - 2;
1710 
1711 	/*
1712 	 * Align anything else used in the validation loop.
1713 	 */
1714 	first = (first + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1715 
1716 	/*
1717 	 * Size up each available chunk of physical memory.
1718 	 */
1719 	pa_indx = 0;
1720 	da_indx = 1;
1721 	phys_avail[pa_indx++] = physmap[0];
1722 	phys_avail[pa_indx] = physmap[0];
1723 	dump_avail[da_indx] = physmap[0];
1724 	pte = CMAP1;
1725 
1726 	/*
1727 	 * Get dcons buffer address
1728 	 */
1729 	if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
1730 	    kgetenv_quad("dcons.size", &dcons_size) == 0)
1731 		dcons_addr = 0;
1732 
1733 	/*
1734 	 * Validate the physical memory.  The physical memory segments
1735 	 * have already been aligned to PHYSMAP_ALIGN which is a multiple
1736 	 * of PAGE_SIZE.
1737 	 */
1738 	for (i = 0; i <= physmap_idx; i += 2) {
1739 		vm_paddr_t end;
1740 
1741 		end = physmap[i + 1];
1742 
1743 		for (pa = physmap[i]; pa < end; pa += PHYSMAP_ALIGN) {
1744 			int tmp, page_bad, full;
1745 			int *ptr = (int *)CADDR1;
1746 
1747 			full = FALSE;
1748 			/*
1749 			 * block out kernel memory as not available.
1750 			 */
1751 			if (pa >= 0x200000 && pa < first)
1752 				goto do_dump_avail;
1753 
1754 			/*
1755 			 * block out dcons buffer
1756 			 */
1757 			if (dcons_addr > 0
1758 			    && pa >= trunc_page(dcons_addr)
1759 			    && pa < dcons_addr + dcons_size) {
1760 				goto do_dump_avail;
1761 			}
1762 
1763 			page_bad = FALSE;
1764 
1765 			/*
1766 			 * map page into kernel: valid, read/write,non-cacheable
1767 			 */
1768 			*pte = pa |
1769 			    kernel_pmap.pmap_bits[PG_V_IDX] |
1770 			    kernel_pmap.pmap_bits[PG_RW_IDX] |
1771 			    kernel_pmap.pmap_bits[PG_N_IDX];
1772 			cpu_invltlb();
1773 
1774 			tmp = *ptr;
1775 			/*
1776 			 * Test for alternating 1's and 0's
1777 			 */
1778 			*(volatile int *)ptr = 0xaaaaaaaa;
1779 			cpu_mfence();
1780 			if (*(volatile int *)ptr != 0xaaaaaaaa)
1781 				page_bad = TRUE;
1782 			/*
1783 			 * Test for alternating 0's and 1's
1784 			 */
1785 			*(volatile int *)ptr = 0x55555555;
1786 			cpu_mfence();
1787 			if (*(volatile int *)ptr != 0x55555555)
1788 				page_bad = TRUE;
1789 			/*
1790 			 * Test for all 1's
1791 			 */
1792 			*(volatile int *)ptr = 0xffffffff;
1793 			cpu_mfence();
1794 			if (*(volatile int *)ptr != 0xffffffff)
1795 				page_bad = TRUE;
1796 			/*
1797 			 * Test for all 0's
1798 			 */
1799 			*(volatile int *)ptr = 0x0;
1800 			cpu_mfence();
1801 			if (*(volatile int *)ptr != 0x0)
1802 				page_bad = TRUE;
1803 			/*
1804 			 * Restore original value.
1805 			 */
1806 			*ptr = tmp;
1807 
1808 			/*
1809 			 * Adjust array of valid/good pages.
1810 			 */
1811 			if (page_bad == TRUE)
1812 				continue;
1813 			/*
1814 			 * If this good page is a continuation of the
1815 			 * previous set of good pages, then just increase
1816 			 * the end pointer. Otherwise start a new chunk.
1817 			 * Note that "end" points one higher than end,
1818 			 * making the range >= start and < end.
1819 			 * If we're also doing a speculative memory
1820 			 * test and we at or past the end, bump up Maxmem
1821 			 * so that we keep going. The first bad page
1822 			 * will terminate the loop.
1823 			 */
1824 			if (phys_avail[pa_indx] == pa) {
1825 				phys_avail[pa_indx] += PHYSMAP_ALIGN;
1826 			} else {
1827 				pa_indx++;
1828 				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1829 					kprintf(
1830 		"Too many holes in the physical address space, giving up\n");
1831 					pa_indx--;
1832 					full = TRUE;
1833 					goto do_dump_avail;
1834 				}
1835 				phys_avail[pa_indx++] = pa;
1836 				phys_avail[pa_indx] = pa + PHYSMAP_ALIGN;
1837 			}
1838 			physmem += PHYSMAP_ALIGN / PAGE_SIZE;
1839 do_dump_avail:
1840 			if (dump_avail[da_indx] == pa) {
1841 				dump_avail[da_indx] += PHYSMAP_ALIGN;
1842 			} else {
1843 				da_indx++;
1844 				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1845 					da_indx--;
1846 					goto do_next;
1847 				}
1848 				dump_avail[da_indx++] = pa;
1849 				dump_avail[da_indx] = pa + PHYSMAP_ALIGN;
1850 			}
1851 do_next:
1852 			if (full)
1853 				break;
1854 		}
1855 	}
1856 	*pte = 0;
1857 	cpu_invltlb();
1858 
1859 	/*
1860 	 * The last chunk must contain at least one page plus the message
1861 	 * buffer to avoid complicating other code (message buffer address
1862 	 * calculation, etc.).
1863 	 */
1864 	msgbuf_size = (MSGBUF_SIZE + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1865 
1866 	while (phys_avail[pa_indx - 1] + PHYSMAP_ALIGN +
1867 	       msgbuf_size >= phys_avail[pa_indx]) {
1868 		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1869 		phys_avail[pa_indx--] = 0;
1870 		phys_avail[pa_indx--] = 0;
1871 	}
1872 
1873 	Maxmem = atop(phys_avail[pa_indx]);
1874 
1875 	/* Trim off space for the message buffer. */
1876 	phys_avail[pa_indx] -= msgbuf_size;
1877 
1878 	avail_end = phys_avail[pa_indx];
1879 
1880 	/* Map the message buffer. */
1881 	for (off = 0; off < msgbuf_size; off += PAGE_SIZE) {
1882 		pmap_kenter((vm_offset_t)msgbufp + off,
1883 			    phys_avail[pa_indx] + off);
1884 	}
1885 }
1886 
1887 struct machintr_abi MachIntrABI;
1888 
1889 /*
1890  * IDT VECTORS:
1891  *	0	Divide by zero
1892  *	1	Debug
1893  *	2	NMI
1894  *	3	BreakPoint
1895  *	4	OverFlow
1896  *	5	Bound-Range
1897  *	6	Invalid OpCode
1898  *	7	Device Not Available (x87)
1899  *	8	Double-Fault
1900  *	9	Coprocessor Segment overrun (unsupported, reserved)
1901  *	10	Invalid-TSS
1902  *	11	Segment not present
1903  *	12	Stack
1904  *	13	General Protection
1905  *	14	Page Fault
1906  *	15	Reserved
1907  *	16	x87 FP Exception pending
1908  *	17	Alignment Check
1909  *	18	Machine Check
1910  *	19	SIMD floating point
1911  *	20-31	reserved
1912  *	32-255	INTn/external sources
1913  */
1914 u_int64_t
1915 hammer_time(u_int64_t modulep, u_int64_t physfree)
1916 {
1917 	caddr_t kmdp;
1918 	int gsel_tss, x, cpu;
1919 #if 0 /* JG */
1920 	int metadata_missing, off;
1921 #endif
1922 	struct mdglobaldata *gd;
1923 	u_int64_t msr;
1924 
1925 	/*
1926 	 * Prevent lowering of the ipl if we call tsleep() early.
1927 	 */
1928 	gd = &CPU_prvspace[0]->mdglobaldata;
1929 	bzero(gd, sizeof(*gd));
1930 
1931 	/*
1932 	 * Note: on both UP and SMP curthread must be set non-NULL
1933 	 * early in the boot sequence because the system assumes
1934 	 * that 'curthread' is never NULL.
1935 	 */
1936 
1937 	gd->mi.gd_curthread = &thread0;
1938 	thread0.td_gd = &gd->mi;
1939 
1940 	atdevbase = ISA_HOLE_START + PTOV_OFFSET;
1941 
1942 #if 0 /* JG */
1943 	metadata_missing = 0;
1944 	if (bootinfo.bi_modulep) {
1945 		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1946 		preload_bootstrap_relocate(KERNBASE);
1947 	} else {
1948 		metadata_missing = 1;
1949 	}
1950 	if (bootinfo.bi_envp)
1951 		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1952 #endif
1953 
1954 	preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
1955 	preload_bootstrap_relocate(PTOV_OFFSET);
1956 	kmdp = preload_search_by_type("elf kernel");
1957 	if (kmdp == NULL)
1958 		kmdp = preload_search_by_type("elf64 kernel");
1959 	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1960 	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
1961 #ifdef DDB
1962 	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1963 	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1964 #endif
1965 
1966 	if (boothowto & RB_VERBOSE)
1967 		bootverbose++;
1968 
1969 	/*
1970 	 * Default MachIntrABI to ICU
1971 	 */
1972 	MachIntrABI = MachIntrABI_ICU;
1973 
1974 	/*
1975 	 * start with one cpu.  Note: with one cpu, ncpus2_shift, ncpus2_mask,
1976 	 * and ncpus_fit_mask remain 0.
1977 	 */
1978 	ncpus = 1;
1979 	ncpus2 = 1;
1980 	ncpus_fit = 1;
1981 	/* Init basic tunables, hz etc */
1982 	init_param1();
1983 
1984 	/*
1985 	 * make gdt memory segments
1986 	 */
1987 	gdt_segs[GPROC0_SEL].ssd_base =
1988 		(uintptr_t) &CPU_prvspace[0]->mdglobaldata.gd_common_tss;
1989 
1990 	gd->mi.gd_prvspace = CPU_prvspace[0];
1991 
1992 	for (x = 0; x < NGDT; x++) {
1993 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
1994 			ssdtosd(&gdt_segs[x], &gdt[x]);
1995 	}
1996 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1997 	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1998 
1999 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
2000 	r_gdt.rd_base =  (long) gdt;
2001 	lgdt(&r_gdt);
2002 
2003 	wrmsr(MSR_FSBASE, 0);		/* User value */
2004 	wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
2005 	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
2006 
2007 	mi_gdinit(&gd->mi, 0);
2008 	cpu_gdinit(gd, 0);
2009 	proc0paddr = proc0paddr_buff;
2010 	mi_proc0init(&gd->mi, proc0paddr);
2011 	safepri = TDPRI_MAX;
2012 
2013 	/* spinlocks and the BGL */
2014 	init_locks();
2015 
2016 	/* exceptions */
2017 	for (x = 0; x < NIDT; x++)
2018 		setidt_global(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
2019 	setidt_global(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
2020 	setidt_global(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
2021 	setidt_global(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 1);
2022  	setidt_global(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
2023 	setidt_global(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
2024 	setidt_global(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
2025 	setidt_global(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
2026 	setidt_global(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
2027 	setidt_global(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
2028 	setidt_global(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
2029 	setidt_global(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
2030 	setidt_global(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
2031 	setidt_global(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
2032 	setidt_global(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
2033 	setidt_global(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
2034 	setidt_global(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
2035 	setidt_global(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
2036 	setidt_global(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
2037 	setidt_global(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
2038 
2039 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
2040 		r_idt_arr[cpu].rd_limit = sizeof(idt_arr[cpu]) - 1;
2041 		r_idt_arr[cpu].rd_base = (long) &idt_arr[cpu][0];
2042 	}
2043 
2044 	lidt(&r_idt_arr[0]);
2045 
2046 	/*
2047 	 * Initialize the console before we print anything out.
2048 	 */
2049 	cninit();
2050 
2051 #if 0 /* JG */
2052 	if (metadata_missing)
2053 		kprintf("WARNING: loader(8) metadata is missing!\n");
2054 #endif
2055 
2056 #if	NISA >0
2057 	elcr_probe();
2058 	isa_defaultirq();
2059 #endif
2060 	rand_initialize();
2061 
2062 	/*
2063 	 * Initialize IRQ mapping
2064 	 *
2065 	 * NOTE:
2066 	 * SHOULD be after elcr_probe()
2067 	 */
2068 	MachIntrABI_ICU.initmap();
2069 	MachIntrABI_IOAPIC.initmap();
2070 
2071 #ifdef DDB
2072 	kdb_init();
2073 	if (boothowto & RB_KDB)
2074 		Debugger("Boot flags requested debugger");
2075 #endif
2076 
2077 #if 0 /* JG */
2078 	finishidentcpu();	/* Final stage of CPU initialization */
2079 	setidt(6, &IDTVEC(ill),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2080 	setidt(13, &IDTVEC(prot),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2081 #endif
2082 	identify_cpu();		/* Final stage of CPU initialization */
2083 	initializecpu(0);	/* Initialize CPU registers */
2084 
2085 	/*
2086 	 * On modern intel cpus, haswell or later, cpu_idle_hlt=1 is better
2087 	 * becaue the cpu does significant power management in HLT
2088 	 * (also suggested is to set sysctl machdep.mwait.CX.idle=AUTODEEP).
2089 	 *
2090 	 * On modern amd cpus or on any older amd or intel cpu,
2091 	 * cpu_idle_hlt=2 is better because ACPI is needed to reduce power
2092 	 * consumption.
2093 	 */
2094 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
2095 	    CPUID_TO_MODEL(cpu_id) >= 0x3C) {	/* Haswell or later */
2096 		cpu_idle_hlt = 1;
2097 	}
2098 
2099 	TUNABLE_INT_FETCH("hw.apic_io_enable", &ioapic_enable); /* for compat */
2100 	TUNABLE_INT_FETCH("hw.ioapic_enable", &ioapic_enable);
2101 	TUNABLE_INT_FETCH("hw.lapic_enable", &lapic_enable);
2102 	TUNABLE_INT_FETCH("machdep.cpu_idle_hlt", &cpu_idle_hlt);
2103 
2104 	/*
2105 	 * Some of the virtual machines do not work w/ I/O APIC
2106 	 * enabled.  If the user does not explicitly enable or
2107 	 * disable the I/O APIC (ioapic_enable < 0), then we
2108 	 * disable I/O APIC on all virtual machines.
2109 	 *
2110 	 * NOTE:
2111 	 * This must be done after identify_cpu(), which sets
2112 	 * 'cpu_feature2'
2113 	 */
2114 	if (ioapic_enable < 0) {
2115 		if (cpu_feature2 & CPUID2_VMM)
2116 			ioapic_enable = 0;
2117 		else
2118 			ioapic_enable = 1;
2119 	}
2120 
2121 	/* make an initial tss so cpu can get interrupt stack on syscall! */
2122 	gd->gd_common_tss.tss_rsp0 =
2123 		(register_t)(thread0.td_kstack +
2124 			     KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb));
2125 	/* Ensure the stack is aligned to 16 bytes */
2126 	gd->gd_common_tss.tss_rsp0 &= ~(register_t)0xF;
2127 
2128 	/* double fault stack */
2129 	gd->gd_common_tss.tss_ist1 =
2130 		(long)&gd->mi.gd_prvspace->idlestack[
2131 			sizeof(gd->mi.gd_prvspace->idlestack)];
2132 
2133 	/* Set the IO permission bitmap (empty due to tss seg limit) */
2134 	gd->gd_common_tss.tss_iobase = sizeof(struct x86_64tss);
2135 
2136 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2137 	gd->gd_tss_gdt = &gdt[GPROC0_SEL];
2138 	gd->gd_common_tssd = *gd->gd_tss_gdt;
2139 	ltr(gsel_tss);
2140 
2141 	/* Set up the fast syscall stuff */
2142 	msr = rdmsr(MSR_EFER) | EFER_SCE;
2143 	wrmsr(MSR_EFER, msr);
2144 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
2145 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
2146 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
2147 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
2148 	wrmsr(MSR_STAR, msr);
2149 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
2150 
2151 	getmemsize(kmdp, physfree);
2152 	init_param2(physmem);
2153 
2154 	/* now running on new page tables, configured,and u/iom is accessible */
2155 
2156 	/* Map the message buffer. */
2157 #if 0 /* JG */
2158 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2159 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2160 #endif
2161 
2162 	msgbufinit(msgbufp, MSGBUF_SIZE);
2163 
2164 
2165 	/* transfer to user mode */
2166 
2167 	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2168 	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2169 	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
2170 
2171 	load_ds(_udatasel);
2172 	load_es(_udatasel);
2173 	load_fs(_udatasel);
2174 
2175 	/* setup proc 0's pcb */
2176 	thread0.td_pcb->pcb_flags = 0;
2177 	thread0.td_pcb->pcb_cr3 = KPML4phys;
2178 	thread0.td_pcb->pcb_ext = NULL;
2179 	lwp0.lwp_md.md_regs = &proc0_tf;	/* XXX needed? */
2180 
2181 	/* Location of kernel stack for locore */
2182 	return ((u_int64_t)thread0.td_pcb);
2183 }
2184 
2185 /*
2186  * Initialize machine-dependant portions of the global data structure.
2187  * Note that the global data area and cpu0's idlestack in the private
2188  * data space were allocated in locore.
2189  *
2190  * Note: the idlethread's cpl is 0
2191  *
2192  * WARNING!  Called from early boot, 'mycpu' may not work yet.
2193  */
2194 void
2195 cpu_gdinit(struct mdglobaldata *gd, int cpu)
2196 {
2197 	if (cpu)
2198 		gd->mi.gd_curthread = &gd->mi.gd_idlethread;
2199 
2200 	lwkt_init_thread(&gd->mi.gd_idlethread,
2201 			gd->mi.gd_prvspace->idlestack,
2202 			sizeof(gd->mi.gd_prvspace->idlestack),
2203 			0, &gd->mi);
2204 	lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
2205 	gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
2206 	gd->mi.gd_idlethread.td_sp -= sizeof(void *);
2207 	*(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
2208 }
2209 
2210 /*
2211  * We only have to check for DMAP bounds, the globaldata space is
2212  * actually part of the kernel_map so we don't have to waste time
2213  * checking CPU_prvspace[*].
2214  */
2215 int
2216 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
2217 {
2218 #if 0
2219 	if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
2220 	    eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
2221 		return (TRUE);
2222 	}
2223 #endif
2224 	if (saddr >= DMAP_MIN_ADDRESS && eaddr <= DMAP_MAX_ADDRESS)
2225 		return (TRUE);
2226 	return (FALSE);
2227 }
2228 
2229 struct globaldata *
2230 globaldata_find(int cpu)
2231 {
2232 	KKASSERT(cpu >= 0 && cpu < ncpus);
2233 	return(&CPU_prvspace[cpu]->mdglobaldata.mi);
2234 }
2235 
2236 /*
2237  * This path should be safe from the SYSRET issue because only stopped threads
2238  * can have their %rip adjusted this way (and all heavy weight thread switches
2239  * clear QUICKREF and thus do not use SYSRET).  However, the code path is
2240  * convoluted so add a safety by forcing %rip to be cannonical.
2241  */
2242 int
2243 ptrace_set_pc(struct lwp *lp, unsigned long addr)
2244 {
2245 	if (addr & 0x0000800000000000LLU)
2246 		lp->lwp_md.md_regs->tf_rip = addr | 0xFFFF000000000000LLU;
2247 	else
2248 		lp->lwp_md.md_regs->tf_rip = addr & 0x0000FFFFFFFFFFFFLLU;
2249 	return (0);
2250 }
2251 
2252 int
2253 ptrace_single_step(struct lwp *lp)
2254 {
2255 	lp->lwp_md.md_regs->tf_rflags |= PSL_T;
2256 	return (0);
2257 }
2258 
2259 int
2260 fill_regs(struct lwp *lp, struct reg *regs)
2261 {
2262 	struct trapframe *tp;
2263 
2264 	if ((tp = lp->lwp_md.md_regs) == NULL)
2265 		return EINVAL;
2266 	bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
2267 	return (0);
2268 }
2269 
2270 int
2271 set_regs(struct lwp *lp, struct reg *regs)
2272 {
2273 	struct trapframe *tp;
2274 
2275 	tp = lp->lwp_md.md_regs;
2276 	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
2277 	    !CS_SECURE(regs->r_cs))
2278 		return (EINVAL);
2279 	bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
2280 	clear_quickret();
2281 	return (0);
2282 }
2283 
2284 static void
2285 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2286 {
2287 	struct env87 *penv_87 = &sv_87->sv_env;
2288 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2289 	int i;
2290 
2291 	/* FPU control/status */
2292 	penv_87->en_cw = penv_xmm->en_cw;
2293 	penv_87->en_sw = penv_xmm->en_sw;
2294 	penv_87->en_tw = penv_xmm->en_tw;
2295 	penv_87->en_fip = penv_xmm->en_fip;
2296 	penv_87->en_fcs = penv_xmm->en_fcs;
2297 	penv_87->en_opcode = penv_xmm->en_opcode;
2298 	penv_87->en_foo = penv_xmm->en_foo;
2299 	penv_87->en_fos = penv_xmm->en_fos;
2300 
2301 	/* FPU registers */
2302 	for (i = 0; i < 8; ++i)
2303 		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2304 }
2305 
2306 static void
2307 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2308 {
2309 	struct env87 *penv_87 = &sv_87->sv_env;
2310 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2311 	int i;
2312 
2313 	/* FPU control/status */
2314 	penv_xmm->en_cw = penv_87->en_cw;
2315 	penv_xmm->en_sw = penv_87->en_sw;
2316 	penv_xmm->en_tw = penv_87->en_tw;
2317 	penv_xmm->en_fip = penv_87->en_fip;
2318 	penv_xmm->en_fcs = penv_87->en_fcs;
2319 	penv_xmm->en_opcode = penv_87->en_opcode;
2320 	penv_xmm->en_foo = penv_87->en_foo;
2321 	penv_xmm->en_fos = penv_87->en_fos;
2322 
2323 	/* FPU registers */
2324 	for (i = 0; i < 8; ++i)
2325 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2326 }
2327 
2328 int
2329 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2330 {
2331 	if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
2332 		return EINVAL;
2333 	if (cpu_fxsr) {
2334 		fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2335 				(struct save87 *)fpregs);
2336 		return (0);
2337 	}
2338 	bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2339 	return (0);
2340 }
2341 
2342 int
2343 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2344 {
2345 	if (cpu_fxsr) {
2346 		set_fpregs_xmm((struct save87 *)fpregs,
2347 			       &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2348 		return (0);
2349 	}
2350 	bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2351 	return (0);
2352 }
2353 
2354 int
2355 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2356 {
2357 	struct pcb *pcb;
2358 
2359         if (lp == NULL) {
2360                 dbregs->dr[0] = rdr0();
2361                 dbregs->dr[1] = rdr1();
2362                 dbregs->dr[2] = rdr2();
2363                 dbregs->dr[3] = rdr3();
2364                 dbregs->dr[4] = rdr4();
2365                 dbregs->dr[5] = rdr5();
2366                 dbregs->dr[6] = rdr6();
2367                 dbregs->dr[7] = rdr7();
2368 		return (0);
2369         }
2370 	if (lp->lwp_thread == NULL || (pcb = lp->lwp_thread->td_pcb) == NULL)
2371 		return EINVAL;
2372 	dbregs->dr[0] = pcb->pcb_dr0;
2373 	dbregs->dr[1] = pcb->pcb_dr1;
2374 	dbregs->dr[2] = pcb->pcb_dr2;
2375 	dbregs->dr[3] = pcb->pcb_dr3;
2376 	dbregs->dr[4] = 0;
2377 	dbregs->dr[5] = 0;
2378 	dbregs->dr[6] = pcb->pcb_dr6;
2379 	dbregs->dr[7] = pcb->pcb_dr7;
2380 	return (0);
2381 }
2382 
2383 int
2384 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2385 {
2386 	if (lp == NULL) {
2387 		load_dr0(dbregs->dr[0]);
2388 		load_dr1(dbregs->dr[1]);
2389 		load_dr2(dbregs->dr[2]);
2390 		load_dr3(dbregs->dr[3]);
2391 		load_dr4(dbregs->dr[4]);
2392 		load_dr5(dbregs->dr[5]);
2393 		load_dr6(dbregs->dr[6]);
2394 		load_dr7(dbregs->dr[7]);
2395 	} else {
2396 		struct pcb *pcb;
2397 		struct ucred *ucred;
2398 		int i;
2399 		uint64_t mask1, mask2;
2400 
2401 		/*
2402 		 * Don't let an illegal value for dr7 get set.	Specifically,
2403 		 * check for undefined settings.  Setting these bit patterns
2404 		 * result in undefined behaviour and can lead to an unexpected
2405 		 * TRCTRAP.
2406 		 */
2407 		/* JG this loop looks unreadable */
2408 		/* Check 4 2-bit fields for invalid patterns.
2409 		 * These fields are R/Wi, for i = 0..3
2410 		 */
2411 		/* Is 10 in LENi allowed when running in compatibility mode? */
2412 		/* Pattern 10 in R/Wi might be used to indicate
2413 		 * breakpoint on I/O. Further analysis should be
2414 		 * carried to decide if it is safe and useful to
2415 		 * provide access to that capability
2416 		 */
2417 		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2418 		     i++, mask1 <<= 4, mask2 <<= 4)
2419 			if ((dbregs->dr[7] & mask1) == mask2)
2420 				return (EINVAL);
2421 
2422 		pcb = lp->lwp_thread->td_pcb;
2423 		ucred = lp->lwp_proc->p_ucred;
2424 
2425 		/*
2426 		 * Don't let a process set a breakpoint that is not within the
2427 		 * process's address space.  If a process could do this, it
2428 		 * could halt the system by setting a breakpoint in the kernel
2429 		 * (if ddb was enabled).  Thus, we need to check to make sure
2430 		 * that no breakpoints are being enabled for addresses outside
2431 		 * process's address space, unless, perhaps, we were called by
2432 		 * uid 0.
2433 		 *
2434 		 * XXX - what about when the watched area of the user's
2435 		 * address space is written into from within the kernel
2436 		 * ... wouldn't that still cause a breakpoint to be generated
2437 		 * from within kernel mode?
2438 		 */
2439 
2440 		if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2441 			if (dbregs->dr[7] & 0x3) {
2442 				/* dr0 is enabled */
2443 				if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2444 					return (EINVAL);
2445 			}
2446 
2447 			if (dbregs->dr[7] & (0x3<<2)) {
2448 				/* dr1 is enabled */
2449 				if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2450 					return (EINVAL);
2451 			}
2452 
2453 			if (dbregs->dr[7] & (0x3<<4)) {
2454 				/* dr2 is enabled */
2455 				if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2456 					return (EINVAL);
2457 			}
2458 
2459 			if (dbregs->dr[7] & (0x3<<6)) {
2460 				/* dr3 is enabled */
2461 				if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2462 					return (EINVAL);
2463 			}
2464 		}
2465 
2466 		pcb->pcb_dr0 = dbregs->dr[0];
2467 		pcb->pcb_dr1 = dbregs->dr[1];
2468 		pcb->pcb_dr2 = dbregs->dr[2];
2469 		pcb->pcb_dr3 = dbregs->dr[3];
2470 		pcb->pcb_dr6 = dbregs->dr[6];
2471 		pcb->pcb_dr7 = dbregs->dr[7];
2472 
2473 		pcb->pcb_flags |= PCB_DBREGS;
2474 	}
2475 
2476 	return (0);
2477 }
2478 
2479 /*
2480  * Return > 0 if a hardware breakpoint has been hit, and the
2481  * breakpoint was in user space.  Return 0, otherwise.
2482  */
2483 int
2484 user_dbreg_trap(void)
2485 {
2486         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2487         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2488         int nbp;            /* number of breakpoints that triggered */
2489         caddr_t addr[4];    /* breakpoint addresses */
2490         int i;
2491 
2492         dr7 = rdr7();
2493         if ((dr7 & 0xff) == 0) {
2494                 /*
2495                  * all GE and LE bits in the dr7 register are zero,
2496                  * thus the trap couldn't have been caused by the
2497                  * hardware debug registers
2498                  */
2499                 return 0;
2500         }
2501 
2502         nbp = 0;
2503         dr6 = rdr6();
2504         bp = dr6 & 0xf;
2505 
2506         if (bp == 0) {
2507                 /*
2508                  * None of the breakpoint bits are set meaning this
2509                  * trap was not caused by any of the debug registers
2510                  */
2511                 return 0;
2512         }
2513 
2514         /*
2515          * at least one of the breakpoints were hit, check to see
2516          * which ones and if any of them are user space addresses
2517          */
2518 
2519         if (bp & 0x01) {
2520                 addr[nbp++] = (caddr_t)rdr0();
2521         }
2522         if (bp & 0x02) {
2523                 addr[nbp++] = (caddr_t)rdr1();
2524         }
2525         if (bp & 0x04) {
2526                 addr[nbp++] = (caddr_t)rdr2();
2527         }
2528         if (bp & 0x08) {
2529                 addr[nbp++] = (caddr_t)rdr3();
2530         }
2531 
2532         for (i=0; i<nbp; i++) {
2533                 if (addr[i] <
2534                     (caddr_t)VM_MAX_USER_ADDRESS) {
2535                         /*
2536                          * addr[i] is in user space
2537                          */
2538                         return nbp;
2539                 }
2540         }
2541 
2542         /*
2543          * None of the breakpoints are in user space.
2544          */
2545         return 0;
2546 }
2547 
2548 
2549 #ifndef DDB
2550 void
2551 Debugger(const char *msg)
2552 {
2553 	kprintf("Debugger(\"%s\") called.\n", msg);
2554 }
2555 #endif /* no DDB */
2556 
2557 #ifdef DDB
2558 
2559 /*
2560  * Provide inb() and outb() as functions.  They are normally only
2561  * available as macros calling inlined functions, thus cannot be
2562  * called inside DDB.
2563  *
2564  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2565  */
2566 
2567 #undef inb
2568 #undef outb
2569 
2570 /* silence compiler warnings */
2571 u_char inb(u_int);
2572 void outb(u_int, u_char);
2573 
2574 u_char
2575 inb(u_int port)
2576 {
2577 	u_char	data;
2578 	/*
2579 	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2580 	 * %edx, while gcc generates inferior code (movw instead of movl)
2581 	 * if we tell it to load (u_short) port.
2582 	 */
2583 	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2584 	return (data);
2585 }
2586 
2587 void
2588 outb(u_int port, u_char data)
2589 {
2590 	u_char	al;
2591 	/*
2592 	 * Use an unnecessary assignment to help gcc's register allocator.
2593 	 * This make a large difference for gcc-1.40 and a tiny difference
2594 	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2595 	 * best results.  gcc-2.6.0 can't handle this.
2596 	 */
2597 	al = data;
2598 	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2599 }
2600 
2601 #endif /* DDB */
2602 
2603 
2604 
2605 /*
2606  * initialize all the SMP locks
2607  */
2608 
2609 /* critical region when masking or unmasking interupts */
2610 struct spinlock_deprecated imen_spinlock;
2611 
2612 /* critical region for old style disable_intr/enable_intr */
2613 struct spinlock_deprecated mpintr_spinlock;
2614 
2615 /* critical region around INTR() routines */
2616 struct spinlock_deprecated intr_spinlock;
2617 
2618 /* lock region used by kernel profiling */
2619 struct spinlock_deprecated mcount_spinlock;
2620 
2621 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2622 struct spinlock_deprecated com_spinlock;
2623 
2624 /* lock regions around the clock hardware */
2625 struct spinlock_deprecated clock_spinlock;
2626 
2627 static void
2628 init_locks(void)
2629 {
2630 	/*
2631 	 * Get the initial mplock with a count of 1 for the BSP.
2632 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
2633 	 */
2634 	cpu_get_initial_mplock();
2635 	/* DEPRECATED */
2636 	spin_lock_init(&mcount_spinlock);
2637 	spin_lock_init(&intr_spinlock);
2638 	spin_lock_init(&mpintr_spinlock);
2639 	spin_lock_init(&imen_spinlock);
2640 	spin_lock_init(&com_spinlock);
2641 	spin_lock_init(&clock_spinlock);
2642 
2643 	/* our token pool needs to work early */
2644 	lwkt_token_pool_init();
2645 }
2646 
2647 boolean_t
2648 cpu_mwait_hint_valid(uint32_t hint)
2649 {
2650 	int cx_idx, sub;
2651 
2652 	cx_idx = MWAIT_EAX_TO_CX(hint);
2653 	if (cx_idx >= CPU_MWAIT_CX_MAX)
2654 		return FALSE;
2655 
2656 	sub = MWAIT_EAX_TO_CX_SUB(hint);
2657 	if (sub >= cpu_mwait_cx_info[cx_idx].subcnt)
2658 		return FALSE;
2659 
2660 	return TRUE;
2661 }
2662 
2663 void
2664 cpu_mwait_cx_no_bmsts(void)
2665 {
2666 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_STS);
2667 }
2668 
2669 void
2670 cpu_mwait_cx_no_bmarb(void)
2671 {
2672 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_ARB);
2673 }
2674 
2675 static int
2676 cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS, int *hint0,
2677     boolean_t allow_auto)
2678 {
2679 	int error, cx_idx, old_cx_idx, sub = 0, hint;
2680 	char name[16], *ptr, *start;
2681 
2682 	hint = *hint0;
2683 	if (hint >= 0) {
2684 		old_cx_idx = MWAIT_EAX_TO_CX(hint);
2685 		sub = MWAIT_EAX_TO_CX_SUB(hint);
2686 	} else if (hint == CPU_MWAIT_HINT_AUTO) {
2687 		old_cx_idx = allow_auto ? CPU_MWAIT_C2 : CPU_MWAIT_CX_MAX;
2688 	} else if (hint == CPU_MWAIT_HINT_AUTODEEP) {
2689 		old_cx_idx = allow_auto ? CPU_MWAIT_C3 : CPU_MWAIT_CX_MAX;
2690 	} else {
2691 		old_cx_idx = CPU_MWAIT_CX_MAX;
2692 	}
2693 
2694 	if ((cpu_feature2 & CPUID2_MON) == 0 ||
2695 	    (cpu_mwait_feature & CPUID_MWAIT_EXT) == 0)
2696 		strlcpy(name, "NONE", sizeof(name));
2697 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTO)
2698 		strlcpy(name, "AUTO", sizeof(name));
2699 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTODEEP)
2700 		strlcpy(name, "AUTODEEP", sizeof(name));
2701 	else if (old_cx_idx >= CPU_MWAIT_CX_MAX ||
2702 	    sub >= cpu_mwait_cx_info[old_cx_idx].subcnt)
2703 		strlcpy(name, "INVALID", sizeof(name));
2704 	else
2705 		ksnprintf(name, sizeof(name), "C%d/%d", old_cx_idx, sub);
2706 
2707 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
2708 	if (error != 0 || req->newptr == NULL)
2709 		return error;
2710 
2711 	if ((cpu_feature2 & CPUID2_MON) == 0 ||
2712 	    (cpu_mwait_feature & CPUID_MWAIT_EXT) == 0)
2713 		return EOPNOTSUPP;
2714 
2715 	if (allow_auto && strcmp(name, "AUTO") == 0) {
2716 		hint = CPU_MWAIT_HINT_AUTO;
2717 		cx_idx = CPU_MWAIT_C2;
2718 		goto done;
2719 	}
2720 	if (allow_auto && strcmp(name, "AUTODEEP") == 0) {
2721 		hint = CPU_MWAIT_HINT_AUTODEEP;
2722 		cx_idx = CPU_MWAIT_C3;
2723 		goto done;
2724 	}
2725 
2726 	if (strlen(name) < 4 || toupper(name[0]) != 'C')
2727 		return EINVAL;
2728 	start = &name[1];
2729 	ptr = NULL;
2730 
2731 	cx_idx = strtol(start, &ptr, 10);
2732 	if (ptr == start || *ptr != '/')
2733 		return EINVAL;
2734 	if (cx_idx < 0 || cx_idx >= CPU_MWAIT_CX_MAX)
2735 		return EINVAL;
2736 
2737 	start = ptr + 1;
2738 	ptr = NULL;
2739 
2740 	sub = strtol(start, &ptr, 10);
2741 	if (*ptr != '\0')
2742 		return EINVAL;
2743 	if (sub < 0 || sub >= cpu_mwait_cx_info[cx_idx].subcnt)
2744 		return EINVAL;
2745 
2746 	hint = MWAIT_EAX_HINT(cx_idx, sub);
2747 done:
2748 	if (cx_idx >= CPU_MWAIT_C3 && cpu_mwait_c3_preamble)
2749 		return EOPNOTSUPP;
2750 	if (old_cx_idx < CPU_MWAIT_C3 && cx_idx >= CPU_MWAIT_C3) {
2751 		error = cputimer_intr_powersave_addreq();
2752 		if (error)
2753 			return error;
2754 	} else if (old_cx_idx >= CPU_MWAIT_C3 && cx_idx < CPU_MWAIT_C3) {
2755 		cputimer_intr_powersave_remreq();
2756 	}
2757 
2758 	*hint0 = hint;
2759 	return 0;
2760 }
2761 
2762 static int
2763 cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS)
2764 {
2765 	int error;
2766 
2767 	lwkt_serialize_enter(&cpu_mwait_cx_slize);
2768 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
2769 	    &cpu_mwait_halt, TRUE);
2770 	lwkt_serialize_exit(&cpu_mwait_cx_slize);
2771 	return error;
2772 }
2773 
2774 static int
2775 cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS)
2776 {
2777 	int error;
2778 
2779 	lwkt_serialize_enter(&cpu_mwait_cx_slize);
2780 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
2781 	    &cpu_mwait_spin, FALSE);
2782 	lwkt_serialize_exit(&cpu_mwait_cx_slize);
2783 	return error;
2784 }
2785