xref: /dragonfly/sys/platform/pc64/x86_64/machdep.c (revision cecb9aae)
1 /*-
2  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3  * Copyright (c) 1992 Terrence R. Lambert.
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 2008 The DragonFly Project.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
40  * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
41  */
42 
43 //#include "use_npx.h"
44 #include "use_isa.h"
45 #include "opt_compat.h"
46 #include "opt_cpu.h"
47 #include "opt_ddb.h"
48 #include "opt_directio.h"
49 #include "opt_inet.h"
50 #include "opt_ipx.h"
51 #include "opt_msgbuf.h"
52 #include "opt_swap.h"
53 
54 #include <sys/param.h>
55 #include <sys/systm.h>
56 #include <sys/sysproto.h>
57 #include <sys/signalvar.h>
58 #include <sys/kernel.h>
59 #include <sys/linker.h>
60 #include <sys/malloc.h>
61 #include <sys/proc.h>
62 #include <sys/priv.h>
63 #include <sys/buf.h>
64 #include <sys/reboot.h>
65 #include <sys/mbuf.h>
66 #include <sys/msgbuf.h>
67 #include <sys/sysent.h>
68 #include <sys/sysctl.h>
69 #include <sys/vmmeter.h>
70 #include <sys/bus.h>
71 #include <sys/usched.h>
72 #include <sys/reg.h>
73 
74 #include <vm/vm.h>
75 #include <vm/vm_param.h>
76 #include <sys/lock.h>
77 #include <vm/vm_kern.h>
78 #include <vm/vm_object.h>
79 #include <vm/vm_page.h>
80 #include <vm/vm_map.h>
81 #include <vm/vm_pager.h>
82 #include <vm/vm_extern.h>
83 
84 #include <sys/thread2.h>
85 #include <sys/mplock2.h>
86 #include <sys/mutex2.h>
87 
88 #include <sys/user.h>
89 #include <sys/exec.h>
90 #include <sys/cons.h>
91 
92 #include <ddb/ddb.h>
93 
94 #include <machine/cpu.h>
95 #include <machine/clock.h>
96 #include <machine/specialreg.h>
97 #if JG
98 #include <machine/bootinfo.h>
99 #endif
100 #include <machine/md_var.h>
101 #include <machine/metadata.h>
102 #include <machine/pc/bios.h>
103 #include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
104 #include <machine/globaldata.h>		/* CPU_prvspace */
105 #include <machine/smp.h>
106 #ifdef PERFMON
107 #include <machine/perfmon.h>
108 #endif
109 #include <machine/cputypes.h>
110 #include <machine/intr_machdep.h>
111 
112 #ifdef OLD_BUS_ARCH
113 #include <bus/isa/isa_device.h>
114 #endif
115 #include <machine_base/isa/isa_intr.h>
116 #include <bus/isa/rtc.h>
117 #include <sys/random.h>
118 #include <sys/ptrace.h>
119 #include <machine/sigframe.h>
120 
121 #include <sys/machintr.h>
122 #include <machine_base/icu/icu_abi.h>
123 #include <machine_base/icu/elcr_var.h>
124 #include <machine_base/apic/lapic.h>
125 #include <machine_base/apic/ioapic.h>
126 #include <machine_base/apic/ioapic_abi.h>
127 #include <machine/mptable.h>
128 
129 #define PHYSMAP_ENTRIES		10
130 
131 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
132 
133 extern void printcpuinfo(void);	/* XXX header file */
134 extern void identify_cpu(void);
135 #if JG
136 extern void finishidentcpu(void);
137 #endif
138 extern void panicifcpuunsupported(void);
139 
140 static void cpu_startup(void *);
141 static void pic_finish(void *);
142 static void cpu_finish(void *);
143 
144 #ifndef CPU_DISABLE_SSE
145 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
146 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
147 #endif /* CPU_DISABLE_SSE */
148 #ifdef DIRECTIO
149 extern void ffs_rawread_setup(void);
150 #endif /* DIRECTIO */
151 static void init_locks(void);
152 
153 SYSINIT(cpu, SI_BOOT2_START_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
154 SYSINIT(pic_finish, SI_BOOT2_FINISH_PIC, SI_ORDER_FIRST, pic_finish, NULL)
155 SYSINIT(cpu_finish, SI_BOOT2_FINISH_CPU, SI_ORDER_FIRST, cpu_finish, NULL)
156 
157 #ifdef DDB
158 extern vm_offset_t ksym_start, ksym_end;
159 #endif
160 
161 struct privatespace CPU_prvspace[MAXCPU] __aligned(4096); /* XXX */
162 
163 int	_udatasel, _ucodesel, _ucode32sel;
164 u_long	atdevbase;
165 int64_t tsc_offsets[MAXCPU];
166 
167 #if defined(SWTCH_OPTIM_STATS)
168 extern int swtch_optim_stats;
169 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
170 	CTLFLAG_RD, &swtch_optim_stats, 0, "");
171 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
172 	CTLFLAG_RD, &tlb_flush_count, 0, "");
173 #endif
174 
175 long physmem = 0;
176 
177 u_long ebda_addr = 0;
178 
179 int imcr_present = 0;
180 
181 int naps = 0; /* # of Applications processors */
182 
183 u_int base_memory;
184 struct mtx dt_lock;		/* lock for GDT and LDT */
185 
186 static int
187 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
188 {
189 	u_long pmem = ctob(physmem);
190 
191 	int error = sysctl_handle_long(oidp, &pmem, 0, req);
192 	return (error);
193 }
194 
195 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
196 	0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
197 
198 static int
199 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
200 {
201 	int error = sysctl_handle_int(oidp, 0,
202 		ctob(physmem - vmstats.v_wire_count), req);
203 	return (error);
204 }
205 
206 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
207 	0, 0, sysctl_hw_usermem, "IU", "");
208 
209 static int
210 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
211 {
212 	int error = sysctl_handle_int(oidp, 0,
213 		x86_64_btop(avail_end - avail_start), req);
214 	return (error);
215 }
216 
217 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
218 	0, 0, sysctl_hw_availpages, "I", "");
219 
220 vm_paddr_t Maxmem;
221 vm_paddr_t Realmem;
222 
223 /*
224  * The number of PHYSMAP entries must be one less than the number of
225  * PHYSSEG entries because the PHYSMAP entry that spans the largest
226  * physical address that is accessible by ISA DMA is split into two
227  * PHYSSEG entries.
228  */
229 #define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
230 
231 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
232 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
233 
234 /* must be 2 less so 0 0 can signal end of chunks */
235 #define PHYS_AVAIL_ARRAY_END (NELEM(phys_avail) - 2)
236 #define DUMP_AVAIL_ARRAY_END (NELEM(dump_avail) - 2)
237 
238 static vm_offset_t buffer_sva, buffer_eva;
239 vm_offset_t clean_sva, clean_eva;
240 static vm_offset_t pager_sva, pager_eva;
241 static struct trapframe proc0_tf;
242 
243 static void
244 cpu_startup(void *dummy)
245 {
246 	caddr_t v;
247 	vm_size_t size = 0;
248 	vm_offset_t firstaddr;
249 
250 	/*
251 	 * Good {morning,afternoon,evening,night}.
252 	 */
253 	kprintf("%s", version);
254 	startrtclock();
255 	printcpuinfo();
256 	panicifcpuunsupported();
257 #ifdef PERFMON
258 	perfmon_init();
259 #endif
260 	kprintf("real memory  = %ju (%ju MB)\n",
261 		(intmax_t)Realmem,
262 		(intmax_t)Realmem / 1024 / 1024);
263 	/*
264 	 * Display any holes after the first chunk of extended memory.
265 	 */
266 	if (bootverbose) {
267 		int indx;
268 
269 		kprintf("Physical memory chunk(s):\n");
270 		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
271 			vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
272 
273 			kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
274 				(intmax_t)phys_avail[indx],
275 				(intmax_t)phys_avail[indx + 1] - 1,
276 				(intmax_t)size1,
277 				(intmax_t)(size1 / PAGE_SIZE));
278 		}
279 	}
280 
281 	/*
282 	 * Allocate space for system data structures.
283 	 * The first available kernel virtual address is in "v".
284 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
285 	 * As pages of memory are allocated and cleared,
286 	 * "firstaddr" is incremented.
287 	 * An index into the kernel page table corresponding to the
288 	 * virtual memory address maintained in "v" is kept in "mapaddr".
289 	 */
290 
291 	/*
292 	 * Make two passes.  The first pass calculates how much memory is
293 	 * needed and allocates it.  The second pass assigns virtual
294 	 * addresses to the various data structures.
295 	 */
296 	firstaddr = 0;
297 again:
298 	v = (caddr_t)firstaddr;
299 
300 #define	valloc(name, type, num) \
301 	    (name) = (type *)v; v = (caddr_t)((name)+(num))
302 #define	valloclim(name, type, num, lim) \
303 	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
304 
305 	/*
306 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
307 	 * For the first 64MB of ram nominally allocate sufficient buffers to
308 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
309 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
310 	 * the buffer cache we limit the eventual kva reservation to
311 	 * maxbcache bytes.
312 	 *
313 	 * factor represents the 1/4 x ram conversion.
314 	 */
315 	if (nbuf == 0) {
316 		long factor = 4 * BKVASIZE / 1024;
317 		long kbytes = physmem * (PAGE_SIZE / 1024);
318 
319 		nbuf = 50;
320 		if (kbytes > 4096)
321 			nbuf += min((kbytes - 4096) / factor, 65536 / factor);
322 		if (kbytes > 65536)
323 			nbuf += (kbytes - 65536) * 2 / (factor * 5);
324 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
325 			nbuf = maxbcache / BKVASIZE;
326 	}
327 
328 	/*
329 	 * Do not allow the buffer_map to be more then 1/2 the size of the
330 	 * kernel_map.
331 	 */
332 	if (nbuf > (virtual_end - virtual_start +
333 		    virtual2_end - virtual2_start) / (BKVASIZE * 2)) {
334 		nbuf = (virtual_end - virtual_start +
335 			virtual2_end - virtual2_start) / (BKVASIZE * 2);
336 		kprintf("Warning: nbufs capped at %ld due to kvm\n", nbuf);
337 	}
338 
339 	/*
340 	 * Do not allow the buffer_map to use more than 50% of available
341 	 * physical-equivalent memory.  Since the VM pages which back
342 	 * individual buffers are typically wired, having too many bufs
343 	 * can prevent the system from paging properly.
344 	 */
345 	if (nbuf > physmem * PAGE_SIZE / (BKVASIZE * 2)) {
346 		nbuf = physmem * PAGE_SIZE / (BKVASIZE * 2);
347 		kprintf("Warning: nbufs capped at %ld due to physmem\n", nbuf);
348 	}
349 
350 	/*
351 	 * Do not allow the sizeof(struct buf) * nbuf to exceed half of
352 	 * the valloc space which is just the virtual_end - virtual_start
353 	 * section.  We use valloc() to allocate the buf header array.
354 	 */
355 	if (nbuf > (virtual_end - virtual_start) / sizeof(struct buf) / 2) {
356 		nbuf = (virtual_end - virtual_start) /
357 		       sizeof(struct buf) / 2;
358 		kprintf("Warning: nbufs capped at %ld due to valloc "
359 			"considerations", nbuf);
360 	}
361 
362 	nswbuf = lmax(lmin(nbuf / 4, 256), 16);
363 #ifdef NSWBUF_MIN
364 	if (nswbuf < NSWBUF_MIN)
365 		nswbuf = NSWBUF_MIN;
366 #endif
367 #ifdef DIRECTIO
368 	ffs_rawread_setup();
369 #endif
370 
371 	valloc(swbuf, struct buf, nswbuf);
372 	valloc(buf, struct buf, nbuf);
373 
374 	/*
375 	 * End of first pass, size has been calculated so allocate memory
376 	 */
377 	if (firstaddr == 0) {
378 		size = (vm_size_t)(v - firstaddr);
379 		firstaddr = kmem_alloc(&kernel_map, round_page(size));
380 		if (firstaddr == 0)
381 			panic("startup: no room for tables");
382 		goto again;
383 	}
384 
385 	/*
386 	 * End of second pass, addresses have been assigned
387 	 *
388 	 * nbuf is an int, make sure we don't overflow the field.
389 	 *
390 	 * On 64-bit systems fragmentation can create serious performance
391 	 * loss due to the large number of buffers the system is likely
392 	 * going to maintain.  The easiest solution is to create a KVA
393 	 * section that is twice as big as the nominal buffer cache size,
394 	 * hence the multiplication by 2 below.
395 	 */
396 	if ((vm_size_t)(v - firstaddr) != size)
397 		panic("startup: table size inconsistency");
398 
399 	kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
400 		      ((vm_offset_t)nbuf * BKVASIZE * 2) +
401 		      (nswbuf * MAXPHYS) + pager_map_size);
402 	kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
403 		      ((vm_offset_t)nbuf * BKVASIZE * 2));
404 	buffer_map.system_map = 1;
405 	kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
406 		      ((vm_offset_t)nswbuf * MAXPHYS) + pager_map_size);
407 	pager_map.system_map = 1;
408 
409 #if defined(USERCONFIG)
410 	userconfig();
411 	cninit();		/* the preferred console may have changed */
412 #endif
413 
414 	kprintf("avail memory = %ju (%ju MB)\n",
415 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages),
416 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages) /
417 		1024 / 1024);
418 
419 	/*
420 	 * Set up buffers, so they can be used to read disk labels.
421 	 */
422 	bufinit();
423 	vm_pager_bufferinit();
424 }
425 
426 static void
427 cpu_finish(void *dummy __unused)
428 {
429 	cpu_setregs();
430 }
431 
432 static void
433 pic_finish(void *dummy __unused)
434 {
435 	/* Log ELCR information */
436 	elcr_dump();
437 
438 	/* Log MPTABLE information */
439 	mptable_pci_int_dump();
440 
441 	/* Finalize PCI */
442 	MachIntrABI.finalize();
443 }
444 
445 /*
446  * Send an interrupt to process.
447  *
448  * Stack is set up to allow sigcode stored
449  * at top to call routine, followed by kcall
450  * to sigreturn routine below.  After sigreturn
451  * resets the signal mask, the stack, and the
452  * frame pointer, it returns to the user
453  * specified pc, psl.
454  */
455 void
456 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
457 {
458 	struct lwp *lp = curthread->td_lwp;
459 	struct proc *p = lp->lwp_proc;
460 	struct trapframe *regs;
461 	struct sigacts *psp = p->p_sigacts;
462 	struct sigframe sf, *sfp;
463 	int oonstack;
464 	char *sp;
465 
466 	regs = lp->lwp_md.md_regs;
467 	oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
468 
469 	/* Save user context */
470 	bzero(&sf, sizeof(struct sigframe));
471 	sf.sf_uc.uc_sigmask = *mask;
472 	sf.sf_uc.uc_stack = lp->lwp_sigstk;
473 	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
474 	KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
475 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
476 
477 	/* Make the size of the saved context visible to userland */
478 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
479 
480 	/* Allocate and validate space for the signal handler context. */
481         if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
482 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
483 		sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
484 			      sizeof(struct sigframe));
485 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
486 	} else {
487 		/* We take red zone into account */
488 		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
489 	}
490 
491 	/*
492 	 * XXX AVX needs 64-byte alignment but sigframe has other fields and
493 	 * the embedded ucontext is not at the front, so aligning this won't
494 	 * help us.  Fortunately we bcopy in/out of the sigframe, so the
495 	 * kernel is ok.
496 	 *
497 	 * The problem though is if userland winds up trying to use the
498 	 * context directly.
499 	 */
500 	sfp = (struct sigframe *)((intptr_t)sp & ~(intptr_t)0xF);
501 
502 	/* Translate the signal is appropriate */
503 	if (p->p_sysent->sv_sigtbl) {
504 		if (sig <= p->p_sysent->sv_sigsize)
505 			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
506 	}
507 
508 	/*
509 	 * Build the argument list for the signal handler.
510 	 *
511 	 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
512 	 */
513 	regs->tf_rdi = sig;				/* argument 1 */
514 	regs->tf_rdx = (register_t)&sfp->sf_uc;		/* argument 3 */
515 
516 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
517 		/*
518 		 * Signal handler installed with SA_SIGINFO.
519 		 *
520 		 * action(signo, siginfo, ucontext)
521 		 */
522 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* argument 2 */
523 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
524 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
525 
526 		/* fill siginfo structure */
527 		sf.sf_si.si_signo = sig;
528 		sf.sf_si.si_code = code;
529 		sf.sf_si.si_addr = (void *)regs->tf_addr;
530 	} else {
531 		/*
532 		 * Old FreeBSD-style arguments.
533 		 *
534 		 * handler (signo, code, [uc], addr)
535 		 */
536 		regs->tf_rsi = (register_t)code;	/* argument 2 */
537 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
538 		sf.sf_ahu.sf_handler = catcher;
539 	}
540 
541 	/*
542 	 * If we're a vm86 process, we want to save the segment registers.
543 	 * We also change eflags to be our emulated eflags, not the actual
544 	 * eflags.
545 	 */
546 #if JG
547 	if (regs->tf_eflags & PSL_VM) {
548 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
549 		struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
550 
551 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
552 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
553 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
554 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
555 
556 		if (vm86->vm86_has_vme == 0)
557 			sf.sf_uc.uc_mcontext.mc_eflags =
558 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
559 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
560 
561 		/*
562 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
563 		 * syscalls made by the signal handler.  This just avoids
564 		 * wasting time for our lazy fixup of such faults.  PSL_NT
565 		 * does nothing in vm86 mode, but vm86 programs can set it
566 		 * almost legitimately in probes for old cpu types.
567 		 */
568 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
569 	}
570 #endif
571 
572 	/*
573 	 * Save the FPU state and reinit the FP unit
574 	 */
575 	npxpush(&sf.sf_uc.uc_mcontext);
576 
577 	/*
578 	 * Copy the sigframe out to the user's stack.
579 	 */
580 	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
581 		/*
582 		 * Something is wrong with the stack pointer.
583 		 * ...Kill the process.
584 		 */
585 		sigexit(lp, SIGILL);
586 	}
587 
588 	regs->tf_rsp = (register_t)sfp;
589 	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
590 
591 	/*
592 	 * i386 abi specifies that the direction flag must be cleared
593 	 * on function entry
594 	 */
595 	regs->tf_rflags &= ~(PSL_T|PSL_D);
596 
597 	/*
598 	 * 64 bit mode has a code and stack selector but
599 	 * no data or extra selector.  %fs and %gs are not
600 	 * stored in-context.
601 	 */
602 	regs->tf_cs = _ucodesel;
603 	regs->tf_ss = _udatasel;
604 	clear_quickret();
605 }
606 
607 /*
608  * Sanitize the trapframe for a virtual kernel passing control to a custom
609  * VM context.  Remove any items that would otherwise create a privilage
610  * issue.
611  *
612  * XXX at the moment we allow userland to set the resume flag.  Is this a
613  * bad idea?
614  */
615 int
616 cpu_sanitize_frame(struct trapframe *frame)
617 {
618 	frame->tf_cs = _ucodesel;
619 	frame->tf_ss = _udatasel;
620 	/* XXX VM (8086) mode not supported? */
621 	frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
622 	frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
623 
624 	return(0);
625 }
626 
627 /*
628  * Sanitize the tls so loading the descriptor does not blow up
629  * on us.  For x86_64 we don't have to do anything.
630  */
631 int
632 cpu_sanitize_tls(struct savetls *tls)
633 {
634 	return(0);
635 }
636 
637 /*
638  * sigreturn(ucontext_t *sigcntxp)
639  *
640  * System call to cleanup state after a signal
641  * has been taken.  Reset signal mask and
642  * stack state from context left by sendsig (above).
643  * Return to previous pc and psl as specified by
644  * context left by sendsig. Check carefully to
645  * make sure that the user has not modified the
646  * state to gain improper privileges.
647  *
648  * MPSAFE
649  */
650 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
651 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
652 
653 int
654 sys_sigreturn(struct sigreturn_args *uap)
655 {
656 	struct lwp *lp = curthread->td_lwp;
657 	struct trapframe *regs;
658 	ucontext_t uc;
659 	ucontext_t *ucp;
660 	register_t rflags;
661 	int cs;
662 	int error;
663 
664 	/*
665 	 * We have to copy the information into kernel space so userland
666 	 * can't modify it while we are sniffing it.
667 	 */
668 	regs = lp->lwp_md.md_regs;
669 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
670 	if (error)
671 		return (error);
672 	ucp = &uc;
673 	rflags = ucp->uc_mcontext.mc_rflags;
674 
675 	/* VM (8086) mode not supported */
676 	rflags &= ~PSL_VM_UNSUPP;
677 
678 #if JG
679 	if (eflags & PSL_VM) {
680 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
681 		struct vm86_kernel *vm86;
682 
683 		/*
684 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
685 		 * set up the vm86 area, and we can't enter vm86 mode.
686 		 */
687 		if (lp->lwp_thread->td_pcb->pcb_ext == 0)
688 			return (EINVAL);
689 		vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
690 		if (vm86->vm86_inited == 0)
691 			return (EINVAL);
692 
693 		/* go back to user mode if both flags are set */
694 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
695 			trapsignal(lp, SIGBUS, 0);
696 
697 		if (vm86->vm86_has_vme) {
698 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
699 			    (eflags & VME_USERCHANGE) | PSL_VM;
700 		} else {
701 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
702 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
703 			    (eflags & VM_USERCHANGE) | PSL_VM;
704 		}
705 		bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
706 		tf->tf_eflags = eflags;
707 		tf->tf_vm86_ds = tf->tf_ds;
708 		tf->tf_vm86_es = tf->tf_es;
709 		tf->tf_vm86_fs = tf->tf_fs;
710 		tf->tf_vm86_gs = tf->tf_gs;
711 		tf->tf_ds = _udatasel;
712 		tf->tf_es = _udatasel;
713 		tf->tf_fs = _udatasel;
714 		tf->tf_gs = _udatasel;
715 	} else
716 #endif
717 	{
718 		/*
719 		 * Don't allow users to change privileged or reserved flags.
720 		 */
721 		/*
722 		 * XXX do allow users to change the privileged flag PSL_RF.
723 		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
724 		 * should sometimes set it there too.  tf_eflags is kept in
725 		 * the signal context during signal handling and there is no
726 		 * other place to remember it, so the PSL_RF bit may be
727 		 * corrupted by the signal handler without us knowing.
728 		 * Corruption of the PSL_RF bit at worst causes one more or
729 		 * one less debugger trap, so allowing it is fairly harmless.
730 		 */
731 		if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
732 			kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
733 	    		return(EINVAL);
734 		}
735 
736 		/*
737 		 * Don't allow users to load a valid privileged %cs.  Let the
738 		 * hardware check for invalid selectors, excess privilege in
739 		 * other selectors, invalid %eip's and invalid %esp's.
740 		 */
741 		cs = ucp->uc_mcontext.mc_cs;
742 		if (!CS_SECURE(cs)) {
743 			kprintf("sigreturn: cs = 0x%x\n", cs);
744 			trapsignal(lp, SIGBUS, T_PROTFLT);
745 			return(EINVAL);
746 		}
747 		bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
748 	}
749 
750 	/*
751 	 * Restore the FPU state from the frame
752 	 */
753 	crit_enter();
754 	npxpop(&ucp->uc_mcontext);
755 
756 	if (ucp->uc_mcontext.mc_onstack & 1)
757 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
758 	else
759 		lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
760 
761 	lp->lwp_sigmask = ucp->uc_sigmask;
762 	SIG_CANTMASK(lp->lwp_sigmask);
763 	clear_quickret();
764 	crit_exit();
765 	return(EJUSTRETURN);
766 }
767 
768 /*
769  * Machine dependent boot() routine
770  *
771  * I haven't seen anything to put here yet
772  * Possibly some stuff might be grafted back here from boot()
773  */
774 void
775 cpu_boot(int howto)
776 {
777 }
778 
779 /*
780  * Shutdown the CPU as much as possible
781  */
782 void
783 cpu_halt(void)
784 {
785 	for (;;)
786 		__asm__ __volatile("hlt");
787 }
788 
789 /*
790  * cpu_idle() represents the idle LWKT.  You cannot return from this function
791  * (unless you want to blow things up!).  Instead we look for runnable threads
792  * and loop or halt as appropriate.  Giant is not held on entry to the thread.
793  *
794  * The main loop is entered with a critical section held, we must release
795  * the critical section before doing anything else.  lwkt_switch() will
796  * check for pending interrupts due to entering and exiting its own
797  * critical section.
798  *
799  * NOTE: On an SMP system we rely on a scheduler IPI to wake a HLTed cpu up.
800  *	 However, there are cases where the idlethread will be entered with
801  *	 the possibility that no IPI will occur and in such cases
802  *	 lwkt_switch() sets TDF_IDLE_NOHLT.
803  *
804  * NOTE: cpu_idle_hlt again defaults to 2 (use ACPI sleep states).  Set to
805  *	 1 to just use hlt and for debugging purposes.
806  *
807  * NOTE: cpu_idle_repeat determines how many entries into the idle thread
808  *	 must occur before it starts using ACPI halt.
809  */
810 static int	cpu_idle_hlt = 2;
811 static int	cpu_idle_hltcnt;
812 static int	cpu_idle_spincnt;
813 static u_int	cpu_idle_repeat = 750;
814 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
815     &cpu_idle_hlt, 0, "Idle loop HLT enable");
816 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hltcnt, CTLFLAG_RW,
817     &cpu_idle_hltcnt, 0, "Idle loop entry halts");
818 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_spincnt, CTLFLAG_RW,
819     &cpu_idle_spincnt, 0, "Idle loop entry spins");
820 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_repeat, CTLFLAG_RW,
821     &cpu_idle_repeat, 0, "Idle entries before acpi hlt");
822 
823 static void
824 cpu_idle_default_hook(void)
825 {
826 	/*
827 	 * We must guarentee that hlt is exactly the instruction
828 	 * following the sti.
829 	 */
830 	__asm __volatile("sti; hlt");
831 }
832 
833 /* Other subsystems (e.g., ACPI) can hook this later. */
834 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
835 
836 void
837 cpu_idle(void)
838 {
839 	globaldata_t gd = mycpu;
840 	struct thread *td __debugvar = gd->gd_curthread;
841 	int reqflags;
842 	int quick;
843 
844 	crit_exit();
845 	KKASSERT(td->td_critcount == 0);
846 	for (;;) {
847 		/*
848 		 * See if there are any LWKTs ready to go.
849 		 */
850 		lwkt_switch();
851 
852 		/*
853 		 * When halting inside a cli we must check for reqflags
854 		 * races, particularly [re]schedule requests.  Running
855 		 * splz() does the job.
856 		 *
857 		 * cpu_idle_hlt:
858 		 *	0	Never halt, just spin
859 		 *
860 		 *	1	Always use HLT (or MONITOR/MWAIT if avail).
861 		 *		This typically eats more power than the
862 		 *		ACPI halt.
863 		 *
864 		 *	2	Use HLT/MONITOR/MWAIT up to a point and then
865 		 *		use the ACPI halt (default).  This is a hybrid
866 		 *		approach.  See machdep.cpu_idle_repeat.
867 		 *
868 		 *	3	Always use the ACPI halt.  This typically
869 		 *		eats the least amount of power but the cpu
870 		 *		will be slow waking up.  Slows down e.g.
871 		 *		compiles and other pipe/event oriented stuff.
872 		 *
873 		 * NOTE: Interrupts are enabled and we are not in a critical
874 		 *	 section.
875 		 *
876 		 * NOTE: Preemptions do not reset gd_idle_repeat.   Also we
877 		 *	 don't bother capping gd_idle_repeat, it is ok if
878 		 *	 it overflows.
879 		 */
880 		++gd->gd_idle_repeat;
881 		reqflags = gd->gd_reqflags;
882 		quick = (cpu_idle_hlt == 1) ||
883 			(cpu_idle_hlt < 3 &&
884 			 gd->gd_idle_repeat < cpu_idle_repeat);
885 
886 		if (quick && (cpu_mi_feature & CPU_MI_MONITOR) &&
887 		    (reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
888 			splz(); /* XXX */
889 			cpu_mmw_pause_int(&gd->gd_reqflags, reqflags);
890 			++cpu_idle_hltcnt;
891 		} else if (cpu_idle_hlt) {
892 			__asm __volatile("cli");
893 			splz();
894 			if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
895 				if (quick)
896 					cpu_idle_default_hook();
897 				else
898 					cpu_idle_hook();
899 			}
900 			__asm __volatile("sti");
901 			++cpu_idle_hltcnt;
902 		} else {
903 			splz();
904 			__asm __volatile("sti");
905 			++cpu_idle_spincnt;
906 		}
907 	}
908 }
909 
910 /*
911  * This routine is called if a spinlock has been held through the
912  * exponential backoff period and is seriously contested.  On a real cpu
913  * we let it spin.
914  */
915 void
916 cpu_spinlock_contested(void)
917 {
918 	cpu_pause();
919 }
920 
921 /*
922  * Clear registers on exec
923  */
924 void
925 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
926 {
927 	struct thread *td = curthread;
928 	struct lwp *lp = td->td_lwp;
929 	struct pcb *pcb = td->td_pcb;
930 	struct trapframe *regs = lp->lwp_md.md_regs;
931 
932 	/* was i386_user_cleanup() in NetBSD */
933 	user_ldt_free(pcb);
934 
935 	clear_quickret();
936 	bzero((char *)regs, sizeof(struct trapframe));
937 	regs->tf_rip = entry;
938 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
939 	regs->tf_rdi = stack;		/* argv */
940 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
941 	regs->tf_ss = _udatasel;
942 	regs->tf_cs = _ucodesel;
943 	regs->tf_rbx = ps_strings;
944 
945 	/*
946 	 * Reset the hardware debug registers if they were in use.
947 	 * They won't have any meaning for the newly exec'd process.
948 	 */
949 	if (pcb->pcb_flags & PCB_DBREGS) {
950 		pcb->pcb_dr0 = 0;
951 		pcb->pcb_dr1 = 0;
952 		pcb->pcb_dr2 = 0;
953 		pcb->pcb_dr3 = 0;
954 		pcb->pcb_dr6 = 0;
955 		pcb->pcb_dr7 = 0; /* JG set bit 10? */
956 		if (pcb == td->td_pcb) {
957 			/*
958 			 * Clear the debug registers on the running
959 			 * CPU, otherwise they will end up affecting
960 			 * the next process we switch to.
961 			 */
962 			reset_dbregs();
963 		}
964 		pcb->pcb_flags &= ~PCB_DBREGS;
965 	}
966 
967 	/*
968 	 * Initialize the math emulator (if any) for the current process.
969 	 * Actually, just clear the bit that says that the emulator has
970 	 * been initialized.  Initialization is delayed until the process
971 	 * traps to the emulator (if it is done at all) mainly because
972 	 * emulators don't provide an entry point for initialization.
973 	 */
974 	pcb->pcb_flags &= ~FP_SOFTFP;
975 
976 	/*
977 	 * NOTE: do not set CR0_TS here.  npxinit() must do it after clearing
978 	 *	 gd_npxthread.  Otherwise a preemptive interrupt thread
979 	 *	 may panic in npxdna().
980 	 */
981 	crit_enter();
982 	load_cr0(rcr0() | CR0_MP);
983 
984 	/*
985 	 * NOTE: The MSR values must be correct so we can return to
986 	 * 	 userland.  gd_user_fs/gs must be correct so the switch
987 	 *	 code knows what the current MSR values are.
988 	 */
989 	pcb->pcb_fsbase = 0;	/* Values loaded from PCB on switch */
990 	pcb->pcb_gsbase = 0;
991 	mdcpu->gd_user_fs = 0;	/* Cache of current MSR values */
992 	mdcpu->gd_user_gs = 0;
993 	wrmsr(MSR_FSBASE, 0);	/* Set MSR values for return to userland */
994 	wrmsr(MSR_KGSBASE, 0);
995 
996 	/* Initialize the npx (if any) for the current process. */
997 	npxinit(__INITIAL_FPUCW__);
998 	crit_exit();
999 
1000 	pcb->pcb_ds = _udatasel;
1001 	pcb->pcb_es = _udatasel;
1002 	pcb->pcb_fs = _udatasel;
1003 	pcb->pcb_gs = _udatasel;
1004 }
1005 
1006 void
1007 cpu_setregs(void)
1008 {
1009 	register_t cr0;
1010 
1011 	cr0 = rcr0();
1012 	cr0 |= CR0_NE;			/* Done by npxinit() */
1013 	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1014 	cr0 |= CR0_WP | CR0_AM;
1015 	load_cr0(cr0);
1016 	load_gs(_udatasel);
1017 }
1018 
1019 static int
1020 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1021 {
1022 	int error;
1023 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1024 		req);
1025 	if (!error && req->newptr)
1026 		resettodr();
1027 	return (error);
1028 }
1029 
1030 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1031 	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1032 
1033 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1034 	CTLFLAG_RW, &disable_rtc_set, 0, "");
1035 
1036 #if JG
1037 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1038 	CTLFLAG_RD, &bootinfo, bootinfo, "");
1039 #endif
1040 
1041 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1042 	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1043 
1044 extern u_long bootdev;		/* not a cdev_t - encoding is different */
1045 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1046 	CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1047 
1048 /*
1049  * Initialize 386 and configure to run kernel
1050  */
1051 
1052 /*
1053  * Initialize segments & interrupt table
1054  */
1055 
1056 int _default_ldt;
1057 struct user_segment_descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1058 struct gate_descriptor idt_arr[MAXCPU][NIDT];
1059 #if JG
1060 union descriptor ldt[NLDT];		/* local descriptor table */
1061 #endif
1062 
1063 /* table descriptors - used to load tables by cpu */
1064 struct region_descriptor r_gdt;
1065 struct region_descriptor r_idt_arr[MAXCPU];
1066 
1067 /* JG proc0paddr is a virtual address */
1068 void *proc0paddr;
1069 /* JG alignment? */
1070 char proc0paddr_buff[LWKT_THREAD_STACK];
1071 
1072 
1073 /* software prototypes -- in more palatable form */
1074 struct soft_segment_descriptor gdt_segs[] = {
1075 /* GNULL_SEL	0 Null Descriptor */
1076 {	0x0,			/* segment base address  */
1077 	0x0,			/* length */
1078 	0,			/* segment type */
1079 	0,			/* segment descriptor priority level */
1080 	0,			/* segment descriptor present */
1081 	0,			/* long */
1082 	0,			/* default 32 vs 16 bit size */
1083 	0  			/* limit granularity (byte/page units)*/ },
1084 /* GCODE_SEL	1 Code Descriptor for kernel */
1085 {	0x0,			/* segment base address  */
1086 	0xfffff,		/* length - all address space */
1087 	SDT_MEMERA,		/* segment type */
1088 	SEL_KPL,		/* segment descriptor priority level */
1089 	1,			/* segment descriptor present */
1090 	1,			/* long */
1091 	0,			/* default 32 vs 16 bit size */
1092 	1  			/* limit granularity (byte/page units)*/ },
1093 /* GDATA_SEL	2 Data Descriptor for kernel */
1094 {	0x0,			/* segment base address  */
1095 	0xfffff,		/* length - all address space */
1096 	SDT_MEMRWA,		/* segment type */
1097 	SEL_KPL,		/* segment descriptor priority level */
1098 	1,			/* segment descriptor present */
1099 	1,			/* long */
1100 	0,			/* default 32 vs 16 bit size */
1101 	1  			/* limit granularity (byte/page units)*/ },
1102 /* GUCODE32_SEL	3 32 bit Code Descriptor for user */
1103 {	0x0,			/* segment base address  */
1104 	0xfffff,		/* length - all address space */
1105 	SDT_MEMERA,		/* segment type */
1106 	SEL_UPL,		/* segment descriptor priority level */
1107 	1,			/* segment descriptor present */
1108 	0,			/* long */
1109 	1,			/* default 32 vs 16 bit size */
1110 	1  			/* limit granularity (byte/page units)*/ },
1111 /* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
1112 {	0x0,			/* segment base address  */
1113 	0xfffff,		/* length - all address space */
1114 	SDT_MEMRWA,		/* segment type */
1115 	SEL_UPL,		/* segment descriptor priority level */
1116 	1,			/* segment descriptor present */
1117 	0,			/* long */
1118 	1,			/* default 32 vs 16 bit size */
1119 	1  			/* limit granularity (byte/page units)*/ },
1120 /* GUCODE_SEL	5 64 bit Code Descriptor for user */
1121 {	0x0,			/* segment base address  */
1122 	0xfffff,		/* length - all address space */
1123 	SDT_MEMERA,		/* segment type */
1124 	SEL_UPL,		/* segment descriptor priority level */
1125 	1,			/* segment descriptor present */
1126 	1,			/* long */
1127 	0,			/* default 32 vs 16 bit size */
1128 	1  			/* limit granularity (byte/page units)*/ },
1129 /* GPROC0_SEL	6 Proc 0 Tss Descriptor */
1130 {
1131 	0x0,			/* segment base address */
1132 	sizeof(struct x86_64tss)-1,/* length - all address space */
1133 	SDT_SYSTSS,		/* segment type */
1134 	SEL_KPL,		/* segment descriptor priority level */
1135 	1,			/* segment descriptor present */
1136 	0,			/* long */
1137 	0,			/* unused - default 32 vs 16 bit size */
1138 	0  			/* limit granularity (byte/page units)*/ },
1139 /* Actually, the TSS is a system descriptor which is double size */
1140 {	0x0,			/* segment base address  */
1141 	0x0,			/* length */
1142 	0,			/* segment type */
1143 	0,			/* segment descriptor priority level */
1144 	0,			/* segment descriptor present */
1145 	0,			/* long */
1146 	0,			/* default 32 vs 16 bit size */
1147 	0  			/* limit granularity (byte/page units)*/ },
1148 /* GUGS32_SEL	8 32 bit GS Descriptor for user */
1149 {	0x0,			/* segment base address  */
1150 	0xfffff,		/* length - all address space */
1151 	SDT_MEMRWA,		/* segment type */
1152 	SEL_UPL,		/* segment descriptor priority level */
1153 	1,			/* segment descriptor present */
1154 	0,			/* long */
1155 	1,			/* default 32 vs 16 bit size */
1156 	1  			/* limit granularity (byte/page units)*/ },
1157 };
1158 
1159 void
1160 setidt_global(int idx, inthand_t *func, int typ, int dpl, int ist)
1161 {
1162 	int cpu;
1163 
1164 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
1165 		struct gate_descriptor *ip = &idt_arr[cpu][idx];
1166 
1167 		ip->gd_looffset = (uintptr_t)func;
1168 		ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1169 		ip->gd_ist = ist;
1170 		ip->gd_xx = 0;
1171 		ip->gd_type = typ;
1172 		ip->gd_dpl = dpl;
1173 		ip->gd_p = 1;
1174 		ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1175 	}
1176 }
1177 
1178 void
1179 setidt(int idx, inthand_t *func, int typ, int dpl, int ist, int cpu)
1180 {
1181 	struct gate_descriptor *ip;
1182 
1183 	KASSERT(cpu >= 0 && cpu < ncpus, ("invalid cpu %d", cpu));
1184 
1185 	ip = &idt_arr[cpu][idx];
1186 	ip->gd_looffset = (uintptr_t)func;
1187 	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1188 	ip->gd_ist = ist;
1189 	ip->gd_xx = 0;
1190 	ip->gd_type = typ;
1191 	ip->gd_dpl = dpl;
1192 	ip->gd_p = 1;
1193 	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1194 }
1195 
1196 #define	IDTVEC(name)	__CONCAT(X,name)
1197 
1198 extern inthand_t
1199 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1200 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1201 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1202 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1203 	IDTVEC(xmm), IDTVEC(dblfault),
1204 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1205 
1206 #ifdef DEBUG_INTERRUPTS
1207 extern inthand_t *Xrsvdary[256];
1208 #endif
1209 
1210 void
1211 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1212 {
1213 	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1214 	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1215 	ssd->ssd_type  = sd->sd_type;
1216 	ssd->ssd_dpl   = sd->sd_dpl;
1217 	ssd->ssd_p     = sd->sd_p;
1218 	ssd->ssd_def32 = sd->sd_def32;
1219 	ssd->ssd_gran  = sd->sd_gran;
1220 }
1221 
1222 void
1223 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1224 {
1225 
1226 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1227 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1228 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1229 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1230 	sd->sd_type  = ssd->ssd_type;
1231 	sd->sd_dpl   = ssd->ssd_dpl;
1232 	sd->sd_p     = ssd->ssd_p;
1233 	sd->sd_long  = ssd->ssd_long;
1234 	sd->sd_def32 = ssd->ssd_def32;
1235 	sd->sd_gran  = ssd->ssd_gran;
1236 }
1237 
1238 void
1239 ssdtosyssd(struct soft_segment_descriptor *ssd,
1240     struct system_segment_descriptor *sd)
1241 {
1242 
1243 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1244 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1245 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1246 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1247 	sd->sd_type  = ssd->ssd_type;
1248 	sd->sd_dpl   = ssd->ssd_dpl;
1249 	sd->sd_p     = ssd->ssd_p;
1250 	sd->sd_gran  = ssd->ssd_gran;
1251 }
1252 
1253 /*
1254  * Populate the (physmap) array with base/bound pairs describing the
1255  * available physical memory in the system, then test this memory and
1256  * build the phys_avail array describing the actually-available memory.
1257  *
1258  * If we cannot accurately determine the physical memory map, then use
1259  * value from the 0xE801 call, and failing that, the RTC.
1260  *
1261  * Total memory size may be set by the kernel environment variable
1262  * hw.physmem or the compile-time define MAXMEM.
1263  *
1264  * Memory is aligned to PHYSMAP_ALIGN which must be a multiple
1265  * of PAGE_SIZE.  This also greatly reduces the memory test time
1266  * which would otherwise be excessive on machines with > 8G of ram.
1267  *
1268  * XXX first should be vm_paddr_t.
1269  */
1270 
1271 #define PHYSMAP_ALIGN		(vm_paddr_t)(128 * 1024)
1272 #define PHYSMAP_ALIGN_MASK	(vm_paddr_t)(PHYSMAP_ALIGN - 1)
1273 
1274 static void
1275 getmemsize(caddr_t kmdp, u_int64_t first)
1276 {
1277 	int off, physmap_idx, pa_indx, da_indx;
1278 	int i, j;
1279 	vm_paddr_t physmap[PHYSMAP_SIZE];
1280 	vm_paddr_t pa;
1281 	vm_paddr_t msgbuf_size;
1282 	u_long physmem_tunable;
1283 	pt_entry_t *pte;
1284 	struct bios_smap *smapbase, *smap, *smapend;
1285 	u_int32_t smapsize;
1286 	quad_t dcons_addr, dcons_size;
1287 
1288 	bzero(physmap, sizeof(physmap));
1289 	physmap_idx = 0;
1290 
1291 	/*
1292 	 * get memory map from INT 15:E820, kindly supplied by the loader.
1293 	 *
1294 	 * subr_module.c says:
1295 	 * "Consumer may safely assume that size value precedes data."
1296 	 * ie: an int32_t immediately precedes smap.
1297 	 */
1298 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1299 	    MODINFO_METADATA | MODINFOMD_SMAP);
1300 	if (smapbase == NULL)
1301 		panic("No BIOS smap info from loader!");
1302 
1303 	smapsize = *((u_int32_t *)smapbase - 1);
1304 	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1305 
1306 	for (smap = smapbase; smap < smapend; smap++) {
1307 		if (boothowto & RB_VERBOSE)
1308 			kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1309 			    smap->type, smap->base, smap->length);
1310 
1311 		if (smap->type != SMAP_TYPE_MEMORY)
1312 			continue;
1313 
1314 		if (smap->length == 0)
1315 			continue;
1316 
1317 		for (i = 0; i <= physmap_idx; i += 2) {
1318 			if (smap->base < physmap[i + 1]) {
1319 				if (boothowto & RB_VERBOSE) {
1320 					kprintf("Overlapping or non-monotonic "
1321 						"memory region, ignoring "
1322 						"second region\n");
1323 				}
1324 				break;
1325 			}
1326 		}
1327 		if (i <= physmap_idx)
1328 			continue;
1329 
1330 		Realmem += smap->length;
1331 
1332 		if (smap->base == physmap[physmap_idx + 1]) {
1333 			physmap[physmap_idx + 1] += smap->length;
1334 			continue;
1335 		}
1336 
1337 		physmap_idx += 2;
1338 		if (physmap_idx == PHYSMAP_SIZE) {
1339 			kprintf("Too many segments in the physical "
1340 				"address map, giving up\n");
1341 			break;
1342 		}
1343 		physmap[physmap_idx] = smap->base;
1344 		physmap[physmap_idx + 1] = smap->base + smap->length;
1345 	}
1346 
1347 	base_memory = physmap[1] / 1024;
1348 	/* make hole for AP bootstrap code */
1349 	physmap[1] = mp_bootaddress(base_memory);
1350 
1351 	/* Save EBDA address, if any */
1352 	ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
1353 	ebda_addr <<= 4;
1354 
1355 	/*
1356 	 * Maxmem isn't the "maximum memory", it's one larger than the
1357 	 * highest page of the physical address space.  It should be
1358 	 * called something like "Maxphyspage".  We may adjust this
1359 	 * based on ``hw.physmem'' and the results of the memory test.
1360 	 */
1361 	Maxmem = atop(physmap[physmap_idx + 1]);
1362 
1363 #ifdef MAXMEM
1364 	Maxmem = MAXMEM / 4;
1365 #endif
1366 
1367 	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1368 		Maxmem = atop(physmem_tunable);
1369 
1370 	/*
1371 	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1372 	 * in the system.
1373 	 */
1374 	if (Maxmem > atop(physmap[physmap_idx + 1]))
1375 		Maxmem = atop(physmap[physmap_idx + 1]);
1376 
1377 	/*
1378 	 * Blowing out the DMAP will blow up the system.
1379 	 */
1380 	if (Maxmem > atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS)) {
1381 		kprintf("Limiting Maxmem due to DMAP size\n");
1382 		Maxmem = atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS);
1383 	}
1384 
1385 	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1386 	    (boothowto & RB_VERBOSE)) {
1387 		kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
1388 	}
1389 
1390 	/*
1391 	 * Call pmap initialization to make new kernel address space
1392 	 *
1393 	 * Mask off page 0.
1394 	 */
1395 	pmap_bootstrap(&first);
1396 	physmap[0] = PAGE_SIZE;
1397 
1398 	/*
1399 	 * Align the physmap to PHYSMAP_ALIGN and cut out anything
1400 	 * exceeding Maxmem.
1401 	 */
1402 	for (i = j = 0; i <= physmap_idx; i += 2) {
1403 		if (physmap[i+1] > ptoa(Maxmem))
1404 			physmap[i+1] = ptoa(Maxmem);
1405 		physmap[i] = (physmap[i] + PHYSMAP_ALIGN_MASK) &
1406 			     ~PHYSMAP_ALIGN_MASK;
1407 		physmap[i+1] = physmap[i+1] & ~PHYSMAP_ALIGN_MASK;
1408 
1409 		physmap[j] = physmap[i];
1410 		physmap[j+1] = physmap[i+1];
1411 
1412 		if (physmap[i] < physmap[i+1])
1413 			j += 2;
1414 	}
1415 	physmap_idx = j - 2;
1416 
1417 	/*
1418 	 * Align anything else used in the validation loop.
1419 	 */
1420 	first = (first + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1421 
1422 	/*
1423 	 * Size up each available chunk of physical memory.
1424 	 */
1425 	pa_indx = 0;
1426 	da_indx = 1;
1427 	phys_avail[pa_indx++] = physmap[0];
1428 	phys_avail[pa_indx] = physmap[0];
1429 	dump_avail[da_indx] = physmap[0];
1430 	pte = CMAP1;
1431 
1432 	/*
1433 	 * Get dcons buffer address
1434 	 */
1435 	if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
1436 	    kgetenv_quad("dcons.size", &dcons_size) == 0)
1437 		dcons_addr = 0;
1438 
1439 	/*
1440 	 * Validate the physical memory.  The physical memory segments
1441 	 * have already been aligned to PHYSMAP_ALIGN which is a multiple
1442 	 * of PAGE_SIZE.
1443 	 */
1444 	for (i = 0; i <= physmap_idx; i += 2) {
1445 		vm_paddr_t end;
1446 
1447 		end = physmap[i + 1];
1448 
1449 		for (pa = physmap[i]; pa < end; pa += PHYSMAP_ALIGN) {
1450 			int tmp, page_bad, full;
1451 			int *ptr = (int *)CADDR1;
1452 
1453 			full = FALSE;
1454 			/*
1455 			 * block out kernel memory as not available.
1456 			 */
1457 			if (pa >= 0x200000 && pa < first)
1458 				goto do_dump_avail;
1459 
1460 			/*
1461 			 * block out dcons buffer
1462 			 */
1463 			if (dcons_addr > 0
1464 			    && pa >= trunc_page(dcons_addr)
1465 			    && pa < dcons_addr + dcons_size) {
1466 				goto do_dump_avail;
1467 			}
1468 
1469 			page_bad = FALSE;
1470 
1471 			/*
1472 			 * map page into kernel: valid, read/write,non-cacheable
1473 			 */
1474 			*pte = pa | PG_V | PG_RW | PG_N;
1475 			cpu_invltlb();
1476 
1477 			tmp = *ptr;
1478 			/*
1479 			 * Test for alternating 1's and 0's
1480 			 */
1481 			*(volatile int *)ptr = 0xaaaaaaaa;
1482 			cpu_mfence();
1483 			if (*(volatile int *)ptr != 0xaaaaaaaa)
1484 				page_bad = TRUE;
1485 			/*
1486 			 * Test for alternating 0's and 1's
1487 			 */
1488 			*(volatile int *)ptr = 0x55555555;
1489 			cpu_mfence();
1490 			if (*(volatile int *)ptr != 0x55555555)
1491 				page_bad = TRUE;
1492 			/*
1493 			 * Test for all 1's
1494 			 */
1495 			*(volatile int *)ptr = 0xffffffff;
1496 			cpu_mfence();
1497 			if (*(volatile int *)ptr != 0xffffffff)
1498 				page_bad = TRUE;
1499 			/*
1500 			 * Test for all 0's
1501 			 */
1502 			*(volatile int *)ptr = 0x0;
1503 			cpu_mfence();
1504 			if (*(volatile int *)ptr != 0x0)
1505 				page_bad = TRUE;
1506 			/*
1507 			 * Restore original value.
1508 			 */
1509 			*ptr = tmp;
1510 
1511 			/*
1512 			 * Adjust array of valid/good pages.
1513 			 */
1514 			if (page_bad == TRUE)
1515 				continue;
1516 			/*
1517 			 * If this good page is a continuation of the
1518 			 * previous set of good pages, then just increase
1519 			 * the end pointer. Otherwise start a new chunk.
1520 			 * Note that "end" points one higher than end,
1521 			 * making the range >= start and < end.
1522 			 * If we're also doing a speculative memory
1523 			 * test and we at or past the end, bump up Maxmem
1524 			 * so that we keep going. The first bad page
1525 			 * will terminate the loop.
1526 			 */
1527 			if (phys_avail[pa_indx] == pa) {
1528 				phys_avail[pa_indx] += PHYSMAP_ALIGN;
1529 			} else {
1530 				pa_indx++;
1531 				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1532 					kprintf(
1533 		"Too many holes in the physical address space, giving up\n");
1534 					pa_indx--;
1535 					full = TRUE;
1536 					goto do_dump_avail;
1537 				}
1538 				phys_avail[pa_indx++] = pa;
1539 				phys_avail[pa_indx] = pa + PHYSMAP_ALIGN;
1540 			}
1541 			physmem += PHYSMAP_ALIGN / PAGE_SIZE;
1542 do_dump_avail:
1543 			if (dump_avail[da_indx] == pa) {
1544 				dump_avail[da_indx] += PHYSMAP_ALIGN;
1545 			} else {
1546 				da_indx++;
1547 				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1548 					da_indx--;
1549 					goto do_next;
1550 				}
1551 				dump_avail[da_indx++] = pa;
1552 				dump_avail[da_indx] = pa + PHYSMAP_ALIGN;
1553 			}
1554 do_next:
1555 			if (full)
1556 				break;
1557 		}
1558 	}
1559 	*pte = 0;
1560 	cpu_invltlb();
1561 
1562 	/*
1563 	 * The last chunk must contain at least one page plus the message
1564 	 * buffer to avoid complicating other code (message buffer address
1565 	 * calculation, etc.).
1566 	 */
1567 	msgbuf_size = (MSGBUF_SIZE + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1568 
1569 	while (phys_avail[pa_indx - 1] + PHYSMAP_ALIGN +
1570 	       msgbuf_size >= phys_avail[pa_indx]) {
1571 		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1572 		phys_avail[pa_indx--] = 0;
1573 		phys_avail[pa_indx--] = 0;
1574 	}
1575 
1576 	Maxmem = atop(phys_avail[pa_indx]);
1577 
1578 	/* Trim off space for the message buffer. */
1579 	phys_avail[pa_indx] -= msgbuf_size;
1580 
1581 	avail_end = phys_avail[pa_indx];
1582 
1583 	/* Map the message buffer. */
1584 	for (off = 0; off < msgbuf_size; off += PAGE_SIZE) {
1585 		pmap_kenter((vm_offset_t)msgbufp + off,
1586 			    phys_avail[pa_indx] + off);
1587 	}
1588 }
1589 
1590 struct machintr_abi MachIntrABI;
1591 
1592 /*
1593  * IDT VECTORS:
1594  *	0	Divide by zero
1595  *	1	Debug
1596  *	2	NMI
1597  *	3	BreakPoint
1598  *	4	OverFlow
1599  *	5	Bound-Range
1600  *	6	Invalid OpCode
1601  *	7	Device Not Available (x87)
1602  *	8	Double-Fault
1603  *	9	Coprocessor Segment overrun (unsupported, reserved)
1604  *	10	Invalid-TSS
1605  *	11	Segment not present
1606  *	12	Stack
1607  *	13	General Protection
1608  *	14	Page Fault
1609  *	15	Reserved
1610  *	16	x87 FP Exception pending
1611  *	17	Alignment Check
1612  *	18	Machine Check
1613  *	19	SIMD floating point
1614  *	20-31	reserved
1615  *	32-255	INTn/external sources
1616  */
1617 u_int64_t
1618 hammer_time(u_int64_t modulep, u_int64_t physfree)
1619 {
1620 	caddr_t kmdp;
1621 	int gsel_tss, x, cpu;
1622 #if JG
1623 	int metadata_missing, off;
1624 #endif
1625 	struct mdglobaldata *gd;
1626 	u_int64_t msr;
1627 
1628 	/*
1629 	 * Prevent lowering of the ipl if we call tsleep() early.
1630 	 */
1631 	gd = &CPU_prvspace[0].mdglobaldata;
1632 	bzero(gd, sizeof(*gd));
1633 
1634 	/*
1635 	 * Note: on both UP and SMP curthread must be set non-NULL
1636 	 * early in the boot sequence because the system assumes
1637 	 * that 'curthread' is never NULL.
1638 	 */
1639 
1640 	gd->mi.gd_curthread = &thread0;
1641 	thread0.td_gd = &gd->mi;
1642 
1643 	atdevbase = ISA_HOLE_START + PTOV_OFFSET;
1644 
1645 #if JG
1646 	metadata_missing = 0;
1647 	if (bootinfo.bi_modulep) {
1648 		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1649 		preload_bootstrap_relocate(KERNBASE);
1650 	} else {
1651 		metadata_missing = 1;
1652 	}
1653 	if (bootinfo.bi_envp)
1654 		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1655 #endif
1656 
1657 	preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
1658 	preload_bootstrap_relocate(PTOV_OFFSET);
1659 	kmdp = preload_search_by_type("elf kernel");
1660 	if (kmdp == NULL)
1661 		kmdp = preload_search_by_type("elf64 kernel");
1662 	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1663 	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
1664 #ifdef DDB
1665 	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1666 	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1667 #endif
1668 
1669 	if (boothowto & RB_VERBOSE)
1670 		bootverbose++;
1671 
1672 	/*
1673 	 * Default MachIntrABI to ICU
1674 	 */
1675 	MachIntrABI = MachIntrABI_ICU;
1676 
1677 	/*
1678 	 * start with one cpu.  Note: with one cpu, ncpus2_shift, ncpus2_mask,
1679 	 * and ncpus_fit_mask remain 0.
1680 	 */
1681 	ncpus = 1;
1682 	ncpus2 = 1;
1683 	ncpus_fit = 1;
1684 	/* Init basic tunables, hz etc */
1685 	init_param1();
1686 
1687 	/*
1688 	 * make gdt memory segments
1689 	 */
1690 	gdt_segs[GPROC0_SEL].ssd_base =
1691 		(uintptr_t) &CPU_prvspace[0].mdglobaldata.gd_common_tss;
1692 
1693 	gd->mi.gd_prvspace = &CPU_prvspace[0];
1694 
1695 	for (x = 0; x < NGDT; x++) {
1696 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
1697 			ssdtosd(&gdt_segs[x], &gdt[x]);
1698 	}
1699 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1700 	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1701 
1702 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1703 	r_gdt.rd_base =  (long) gdt;
1704 	lgdt(&r_gdt);
1705 
1706 	wrmsr(MSR_FSBASE, 0);		/* User value */
1707 	wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
1708 	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1709 
1710 	mi_gdinit(&gd->mi, 0);
1711 	cpu_gdinit(gd, 0);
1712 	proc0paddr = proc0paddr_buff;
1713 	mi_proc0init(&gd->mi, proc0paddr);
1714 	safepri = TDPRI_MAX;
1715 
1716 	/* spinlocks and the BGL */
1717 	init_locks();
1718 
1719 	/* exceptions */
1720 	for (x = 0; x < NIDT; x++)
1721 		setidt_global(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1722 	setidt_global(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1723 	setidt_global(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1724 	setidt_global(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 1);
1725  	setidt_global(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1726 	setidt_global(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1727 	setidt_global(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1728 	setidt_global(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1729 	setidt_global(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1730 	setidt_global(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1731 	setidt_global(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1732 	setidt_global(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1733 	setidt_global(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1734 	setidt_global(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1735 	setidt_global(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1736 	setidt_global(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1737 	setidt_global(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1738 	setidt_global(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1739 	setidt_global(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1740 	setidt_global(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1741 
1742 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
1743 		r_idt_arr[cpu].rd_limit = sizeof(idt_arr[cpu]) - 1;
1744 		r_idt_arr[cpu].rd_base = (long) &idt_arr[cpu][0];
1745 	}
1746 
1747 	lidt(&r_idt_arr[0]);
1748 
1749 	/*
1750 	 * Initialize the console before we print anything out.
1751 	 */
1752 	cninit();
1753 
1754 #if JG
1755 	if (metadata_missing)
1756 		kprintf("WARNING: loader(8) metadata is missing!\n");
1757 #endif
1758 
1759 #if	NISA >0
1760 	elcr_probe();
1761 	isa_defaultirq();
1762 #endif
1763 	rand_initialize();
1764 
1765 	/*
1766 	 * Initialize IRQ mapping
1767 	 *
1768 	 * NOTE:
1769 	 * SHOULD be after elcr_probe()
1770 	 */
1771 	MachIntrABI_ICU.initmap();
1772 	MachIntrABI_IOAPIC.initmap();
1773 
1774 #ifdef DDB
1775 	kdb_init();
1776 	if (boothowto & RB_KDB)
1777 		Debugger("Boot flags requested debugger");
1778 #endif
1779 
1780 #if JG
1781 	finishidentcpu();	/* Final stage of CPU initialization */
1782 	setidt(6, &IDTVEC(ill),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1783 	setidt(13, &IDTVEC(prot),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1784 #endif
1785 	identify_cpu();		/* Final stage of CPU initialization */
1786 	initializecpu();	/* Initialize CPU registers */
1787 
1788 	TUNABLE_INT_FETCH("hw.apic_io_enable", &ioapic_enable); /* for compat */
1789 	TUNABLE_INT_FETCH("hw.ioapic_enable", &ioapic_enable);
1790 	TUNABLE_INT_FETCH("hw.lapic_enable", &lapic_enable);
1791 
1792 	/*
1793 	 * Some of the virtual machines do not work w/ I/O APIC
1794 	 * enabled.  If the user does not explicitly enable or
1795 	 * disable the I/O APIC (ioapic_enable < 0), then we
1796 	 * disable I/O APIC on all virtual machines.
1797 	 *
1798 	 * NOTE:
1799 	 * This must be done after identify_cpu(), which sets
1800 	 * 'cpu_feature2'
1801 	 */
1802 	if (ioapic_enable < 0) {
1803 		if (cpu_feature2 & CPUID2_VMM)
1804 			ioapic_enable = 0;
1805 		else
1806 			ioapic_enable = 1;
1807 	}
1808 
1809 	/* make an initial tss so cpu can get interrupt stack on syscall! */
1810 	gd->gd_common_tss.tss_rsp0 =
1811 		(register_t)(thread0.td_kstack +
1812 			     KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb));
1813 	/* Ensure the stack is aligned to 16 bytes */
1814 	gd->gd_common_tss.tss_rsp0 &= ~(register_t)0xF;
1815 
1816 	/* double fault stack */
1817 	gd->gd_common_tss.tss_ist1 =
1818 		(long)&gd->mi.gd_prvspace->idlestack[
1819 			sizeof(gd->mi.gd_prvspace->idlestack)];
1820 
1821 	/* Set the IO permission bitmap (empty due to tss seg limit) */
1822 	gd->gd_common_tss.tss_iobase = sizeof(struct x86_64tss);
1823 
1824 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1825 	gd->gd_tss_gdt = &gdt[GPROC0_SEL];
1826 	gd->gd_common_tssd = *gd->gd_tss_gdt;
1827 	ltr(gsel_tss);
1828 
1829 	/* Set up the fast syscall stuff */
1830 	msr = rdmsr(MSR_EFER) | EFER_SCE;
1831 	wrmsr(MSR_EFER, msr);
1832 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1833 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1834 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1835 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1836 	wrmsr(MSR_STAR, msr);
1837 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
1838 
1839 	getmemsize(kmdp, physfree);
1840 	init_param2(physmem);
1841 
1842 	/* now running on new page tables, configured,and u/iom is accessible */
1843 
1844 	/* Map the message buffer. */
1845 #if JG
1846 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1847 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
1848 #endif
1849 
1850 	msgbufinit(msgbufp, MSGBUF_SIZE);
1851 
1852 
1853 	/* transfer to user mode */
1854 
1855 	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1856 	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1857 	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1858 
1859 	load_ds(_udatasel);
1860 	load_es(_udatasel);
1861 	load_fs(_udatasel);
1862 
1863 	/* setup proc 0's pcb */
1864 	thread0.td_pcb->pcb_flags = 0;
1865 	thread0.td_pcb->pcb_cr3 = KPML4phys;
1866 	thread0.td_pcb->pcb_ext = NULL;
1867 	lwp0.lwp_md.md_regs = &proc0_tf;	/* XXX needed? */
1868 
1869 	/* Location of kernel stack for locore */
1870 	return ((u_int64_t)thread0.td_pcb);
1871 }
1872 
1873 /*
1874  * Initialize machine-dependant portions of the global data structure.
1875  * Note that the global data area and cpu0's idlestack in the private
1876  * data space were allocated in locore.
1877  *
1878  * Note: the idlethread's cpl is 0
1879  *
1880  * WARNING!  Called from early boot, 'mycpu' may not work yet.
1881  */
1882 void
1883 cpu_gdinit(struct mdglobaldata *gd, int cpu)
1884 {
1885 	if (cpu)
1886 		gd->mi.gd_curthread = &gd->mi.gd_idlethread;
1887 
1888 	lwkt_init_thread(&gd->mi.gd_idlethread,
1889 			gd->mi.gd_prvspace->idlestack,
1890 			sizeof(gd->mi.gd_prvspace->idlestack),
1891 			0, &gd->mi);
1892 	lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
1893 	gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
1894 	gd->mi.gd_idlethread.td_sp -= sizeof(void *);
1895 	*(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
1896 }
1897 
1898 int
1899 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
1900 {
1901 	if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
1902 	    eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
1903 		return (TRUE);
1904 	}
1905 	if (saddr >= DMAP_MIN_ADDRESS && eaddr <= DMAP_MAX_ADDRESS)
1906 		return (TRUE);
1907 	return (FALSE);
1908 }
1909 
1910 struct globaldata *
1911 globaldata_find(int cpu)
1912 {
1913 	KKASSERT(cpu >= 0 && cpu < ncpus);
1914 	return(&CPU_prvspace[cpu].mdglobaldata.mi);
1915 }
1916 
1917 int
1918 ptrace_set_pc(struct lwp *lp, unsigned long addr)
1919 {
1920 	lp->lwp_md.md_regs->tf_rip = addr;
1921 	return (0);
1922 }
1923 
1924 int
1925 ptrace_single_step(struct lwp *lp)
1926 {
1927 	lp->lwp_md.md_regs->tf_rflags |= PSL_T;
1928 	return (0);
1929 }
1930 
1931 int
1932 fill_regs(struct lwp *lp, struct reg *regs)
1933 {
1934 	struct trapframe *tp;
1935 
1936 	if ((tp = lp->lwp_md.md_regs) == NULL)
1937 		return EINVAL;
1938 	bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
1939 	return (0);
1940 }
1941 
1942 int
1943 set_regs(struct lwp *lp, struct reg *regs)
1944 {
1945 	struct trapframe *tp;
1946 
1947 	tp = lp->lwp_md.md_regs;
1948 	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
1949 	    !CS_SECURE(regs->r_cs))
1950 		return (EINVAL);
1951 	bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
1952 	clear_quickret();
1953 	return (0);
1954 }
1955 
1956 #ifndef CPU_DISABLE_SSE
1957 static void
1958 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
1959 {
1960 	struct env87 *penv_87 = &sv_87->sv_env;
1961 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1962 	int i;
1963 
1964 	/* FPU control/status */
1965 	penv_87->en_cw = penv_xmm->en_cw;
1966 	penv_87->en_sw = penv_xmm->en_sw;
1967 	penv_87->en_tw = penv_xmm->en_tw;
1968 	penv_87->en_fip = penv_xmm->en_fip;
1969 	penv_87->en_fcs = penv_xmm->en_fcs;
1970 	penv_87->en_opcode = penv_xmm->en_opcode;
1971 	penv_87->en_foo = penv_xmm->en_foo;
1972 	penv_87->en_fos = penv_xmm->en_fos;
1973 
1974 	/* FPU registers */
1975 	for (i = 0; i < 8; ++i)
1976 		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
1977 }
1978 
1979 static void
1980 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
1981 {
1982 	struct env87 *penv_87 = &sv_87->sv_env;
1983 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1984 	int i;
1985 
1986 	/* FPU control/status */
1987 	penv_xmm->en_cw = penv_87->en_cw;
1988 	penv_xmm->en_sw = penv_87->en_sw;
1989 	penv_xmm->en_tw = penv_87->en_tw;
1990 	penv_xmm->en_fip = penv_87->en_fip;
1991 	penv_xmm->en_fcs = penv_87->en_fcs;
1992 	penv_xmm->en_opcode = penv_87->en_opcode;
1993 	penv_xmm->en_foo = penv_87->en_foo;
1994 	penv_xmm->en_fos = penv_87->en_fos;
1995 
1996 	/* FPU registers */
1997 	for (i = 0; i < 8; ++i)
1998 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
1999 }
2000 #endif /* CPU_DISABLE_SSE */
2001 
2002 int
2003 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2004 {
2005 	if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
2006 		return EINVAL;
2007 #ifndef CPU_DISABLE_SSE
2008 	if (cpu_fxsr) {
2009 		fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2010 				(struct save87 *)fpregs);
2011 		return (0);
2012 	}
2013 #endif /* CPU_DISABLE_SSE */
2014 	bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2015 	return (0);
2016 }
2017 
2018 int
2019 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2020 {
2021 #ifndef CPU_DISABLE_SSE
2022 	if (cpu_fxsr) {
2023 		set_fpregs_xmm((struct save87 *)fpregs,
2024 			       &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2025 		return (0);
2026 	}
2027 #endif /* CPU_DISABLE_SSE */
2028 	bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2029 	return (0);
2030 }
2031 
2032 int
2033 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2034 {
2035 	struct pcb *pcb;
2036 
2037         if (lp == NULL) {
2038                 dbregs->dr[0] = rdr0();
2039                 dbregs->dr[1] = rdr1();
2040                 dbregs->dr[2] = rdr2();
2041                 dbregs->dr[3] = rdr3();
2042                 dbregs->dr[4] = rdr4();
2043                 dbregs->dr[5] = rdr5();
2044                 dbregs->dr[6] = rdr6();
2045                 dbregs->dr[7] = rdr7();
2046 		return (0);
2047         }
2048 	if (lp->lwp_thread == NULL || (pcb = lp->lwp_thread->td_pcb) == NULL)
2049 		return EINVAL;
2050 	dbregs->dr[0] = pcb->pcb_dr0;
2051 	dbregs->dr[1] = pcb->pcb_dr1;
2052 	dbregs->dr[2] = pcb->pcb_dr2;
2053 	dbregs->dr[3] = pcb->pcb_dr3;
2054 	dbregs->dr[4] = 0;
2055 	dbregs->dr[5] = 0;
2056 	dbregs->dr[6] = pcb->pcb_dr6;
2057 	dbregs->dr[7] = pcb->pcb_dr7;
2058 	return (0);
2059 }
2060 
2061 int
2062 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2063 {
2064 	if (lp == NULL) {
2065 		load_dr0(dbregs->dr[0]);
2066 		load_dr1(dbregs->dr[1]);
2067 		load_dr2(dbregs->dr[2]);
2068 		load_dr3(dbregs->dr[3]);
2069 		load_dr4(dbregs->dr[4]);
2070 		load_dr5(dbregs->dr[5]);
2071 		load_dr6(dbregs->dr[6]);
2072 		load_dr7(dbregs->dr[7]);
2073 	} else {
2074 		struct pcb *pcb;
2075 		struct ucred *ucred;
2076 		int i;
2077 		uint64_t mask1, mask2;
2078 
2079 		/*
2080 		 * Don't let an illegal value for dr7 get set.	Specifically,
2081 		 * check for undefined settings.  Setting these bit patterns
2082 		 * result in undefined behaviour and can lead to an unexpected
2083 		 * TRCTRAP.
2084 		 */
2085 		/* JG this loop looks unreadable */
2086 		/* Check 4 2-bit fields for invalid patterns.
2087 		 * These fields are R/Wi, for i = 0..3
2088 		 */
2089 		/* Is 10 in LENi allowed when running in compatibility mode? */
2090 		/* Pattern 10 in R/Wi might be used to indicate
2091 		 * breakpoint on I/O. Further analysis should be
2092 		 * carried to decide if it is safe and useful to
2093 		 * provide access to that capability
2094 		 */
2095 		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2096 		     i++, mask1 <<= 4, mask2 <<= 4)
2097 			if ((dbregs->dr[7] & mask1) == mask2)
2098 				return (EINVAL);
2099 
2100 		pcb = lp->lwp_thread->td_pcb;
2101 		ucred = lp->lwp_proc->p_ucred;
2102 
2103 		/*
2104 		 * Don't let a process set a breakpoint that is not within the
2105 		 * process's address space.  If a process could do this, it
2106 		 * could halt the system by setting a breakpoint in the kernel
2107 		 * (if ddb was enabled).  Thus, we need to check to make sure
2108 		 * that no breakpoints are being enabled for addresses outside
2109 		 * process's address space, unless, perhaps, we were called by
2110 		 * uid 0.
2111 		 *
2112 		 * XXX - what about when the watched area of the user's
2113 		 * address space is written into from within the kernel
2114 		 * ... wouldn't that still cause a breakpoint to be generated
2115 		 * from within kernel mode?
2116 		 */
2117 
2118 		if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2119 			if (dbregs->dr[7] & 0x3) {
2120 				/* dr0 is enabled */
2121 				if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2122 					return (EINVAL);
2123 			}
2124 
2125 			if (dbregs->dr[7] & (0x3<<2)) {
2126 				/* dr1 is enabled */
2127 				if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2128 					return (EINVAL);
2129 			}
2130 
2131 			if (dbregs->dr[7] & (0x3<<4)) {
2132 				/* dr2 is enabled */
2133 				if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2134 					return (EINVAL);
2135 			}
2136 
2137 			if (dbregs->dr[7] & (0x3<<6)) {
2138 				/* dr3 is enabled */
2139 				if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2140 					return (EINVAL);
2141 			}
2142 		}
2143 
2144 		pcb->pcb_dr0 = dbregs->dr[0];
2145 		pcb->pcb_dr1 = dbregs->dr[1];
2146 		pcb->pcb_dr2 = dbregs->dr[2];
2147 		pcb->pcb_dr3 = dbregs->dr[3];
2148 		pcb->pcb_dr6 = dbregs->dr[6];
2149 		pcb->pcb_dr7 = dbregs->dr[7];
2150 
2151 		pcb->pcb_flags |= PCB_DBREGS;
2152 	}
2153 
2154 	return (0);
2155 }
2156 
2157 /*
2158  * Return > 0 if a hardware breakpoint has been hit, and the
2159  * breakpoint was in user space.  Return 0, otherwise.
2160  */
2161 int
2162 user_dbreg_trap(void)
2163 {
2164         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2165         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2166         int nbp;            /* number of breakpoints that triggered */
2167         caddr_t addr[4];    /* breakpoint addresses */
2168         int i;
2169 
2170         dr7 = rdr7();
2171         if ((dr7 & 0xff) == 0) {
2172                 /*
2173                  * all GE and LE bits in the dr7 register are zero,
2174                  * thus the trap couldn't have been caused by the
2175                  * hardware debug registers
2176                  */
2177                 return 0;
2178         }
2179 
2180         nbp = 0;
2181         dr6 = rdr6();
2182         bp = dr6 & 0xf;
2183 
2184         if (bp == 0) {
2185                 /*
2186                  * None of the breakpoint bits are set meaning this
2187                  * trap was not caused by any of the debug registers
2188                  */
2189                 return 0;
2190         }
2191 
2192         /*
2193          * at least one of the breakpoints were hit, check to see
2194          * which ones and if any of them are user space addresses
2195          */
2196 
2197         if (bp & 0x01) {
2198                 addr[nbp++] = (caddr_t)rdr0();
2199         }
2200         if (bp & 0x02) {
2201                 addr[nbp++] = (caddr_t)rdr1();
2202         }
2203         if (bp & 0x04) {
2204                 addr[nbp++] = (caddr_t)rdr2();
2205         }
2206         if (bp & 0x08) {
2207                 addr[nbp++] = (caddr_t)rdr3();
2208         }
2209 
2210         for (i=0; i<nbp; i++) {
2211                 if (addr[i] <
2212                     (caddr_t)VM_MAX_USER_ADDRESS) {
2213                         /*
2214                          * addr[i] is in user space
2215                          */
2216                         return nbp;
2217                 }
2218         }
2219 
2220         /*
2221          * None of the breakpoints are in user space.
2222          */
2223         return 0;
2224 }
2225 
2226 
2227 #ifndef DDB
2228 void
2229 Debugger(const char *msg)
2230 {
2231 	kprintf("Debugger(\"%s\") called.\n", msg);
2232 }
2233 #endif /* no DDB */
2234 
2235 #ifdef DDB
2236 
2237 /*
2238  * Provide inb() and outb() as functions.  They are normally only
2239  * available as macros calling inlined functions, thus cannot be
2240  * called inside DDB.
2241  *
2242  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2243  */
2244 
2245 #undef inb
2246 #undef outb
2247 
2248 /* silence compiler warnings */
2249 u_char inb(u_int);
2250 void outb(u_int, u_char);
2251 
2252 u_char
2253 inb(u_int port)
2254 {
2255 	u_char	data;
2256 	/*
2257 	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2258 	 * %edx, while gcc generates inferior code (movw instead of movl)
2259 	 * if we tell it to load (u_short) port.
2260 	 */
2261 	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2262 	return (data);
2263 }
2264 
2265 void
2266 outb(u_int port, u_char data)
2267 {
2268 	u_char	al;
2269 	/*
2270 	 * Use an unnecessary assignment to help gcc's register allocator.
2271 	 * This make a large difference for gcc-1.40 and a tiny difference
2272 	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2273 	 * best results.  gcc-2.6.0 can't handle this.
2274 	 */
2275 	al = data;
2276 	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2277 }
2278 
2279 #endif /* DDB */
2280 
2281 
2282 
2283 #include "opt_cpu.h"
2284 
2285 
2286 /*
2287  * initialize all the SMP locks
2288  */
2289 
2290 /* critical region when masking or unmasking interupts */
2291 struct spinlock_deprecated imen_spinlock;
2292 
2293 /* critical region for old style disable_intr/enable_intr */
2294 struct spinlock_deprecated mpintr_spinlock;
2295 
2296 /* critical region around INTR() routines */
2297 struct spinlock_deprecated intr_spinlock;
2298 
2299 /* lock region used by kernel profiling */
2300 struct spinlock_deprecated mcount_spinlock;
2301 
2302 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2303 struct spinlock_deprecated com_spinlock;
2304 
2305 /* lock regions around the clock hardware */
2306 struct spinlock_deprecated clock_spinlock;
2307 
2308 static void
2309 init_locks(void)
2310 {
2311 	/*
2312 	 * Get the initial mplock with a count of 1 for the BSP.
2313 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
2314 	 */
2315 	cpu_get_initial_mplock();
2316 	/* DEPRECATED */
2317 	spin_lock_init(&mcount_spinlock);
2318 	spin_lock_init(&intr_spinlock);
2319 	spin_lock_init(&mpintr_spinlock);
2320 	spin_lock_init(&imen_spinlock);
2321 	spin_lock_init(&com_spinlock);
2322 	spin_lock_init(&clock_spinlock);
2323 
2324 	/* our token pool needs to work early */
2325 	lwkt_token_pool_init();
2326 }
2327 
2328