xref: /dragonfly/sys/platform/pc64/x86_64/machdep.c (revision e98bdfd3)
1 /*-
2  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3  * Copyright (c) 1992 Terrence R. Lambert.
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 2008 The DragonFly Project.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
40  * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
41  */
42 
43 //#include "use_npx.h"
44 #include "use_isa.h"
45 #include "opt_compat.h"
46 #include "opt_cpu.h"
47 #include "opt_ddb.h"
48 #include "opt_directio.h"
49 #include "opt_inet.h"
50 #include "opt_msgbuf.h"
51 #include "opt_swap.h"
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/sysproto.h>
56 #include <sys/signalvar.h>
57 #include <sys/kernel.h>
58 #include <sys/linker.h>
59 #include <sys/malloc.h>
60 #include <sys/proc.h>
61 #include <sys/priv.h>
62 #include <sys/buf.h>
63 #include <sys/reboot.h>
64 #include <sys/mbuf.h>
65 #include <sys/msgbuf.h>
66 #include <sys/sysent.h>
67 #include <sys/sysctl.h>
68 #include <sys/vmmeter.h>
69 #include <sys/bus.h>
70 #include <sys/usched.h>
71 #include <sys/reg.h>
72 #include <sys/sbuf.h>
73 #include <sys/ctype.h>
74 #include <sys/serialize.h>
75 #include <sys/systimer.h>
76 
77 #include <vm/vm.h>
78 #include <vm/vm_param.h>
79 #include <sys/lock.h>
80 #include <vm/vm_kern.h>
81 #include <vm/vm_object.h>
82 #include <vm/vm_page.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_pager.h>
85 #include <vm/vm_extern.h>
86 
87 #include <sys/thread2.h>
88 #include <sys/mplock2.h>
89 #include <sys/mutex2.h>
90 
91 #include <sys/user.h>
92 #include <sys/exec.h>
93 #include <sys/cons.h>
94 
95 #include <sys/efi.h>
96 
97 #include <ddb/ddb.h>
98 
99 #include <machine/cpu.h>
100 #include <machine/clock.h>
101 #include <machine/specialreg.h>
102 #if 0 /* JG */
103 #include <machine/bootinfo.h>
104 #endif
105 #include <machine/md_var.h>
106 #include <machine/metadata.h>
107 #include <machine/pc/bios.h>
108 #include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
109 #include <machine/globaldata.h>		/* CPU_prvspace */
110 #include <machine/smp.h>
111 #ifdef PERFMON
112 #include <machine/perfmon.h>
113 #endif
114 #include <machine/cputypes.h>
115 #include <machine/intr_machdep.h>
116 #include <machine/framebuffer.h>
117 
118 #ifdef OLD_BUS_ARCH
119 #include <bus/isa/isa_device.h>
120 #endif
121 #include <machine_base/isa/isa_intr.h>
122 #include <bus/isa/rtc.h>
123 #include <sys/random.h>
124 #include <sys/ptrace.h>
125 #include <machine/sigframe.h>
126 
127 #include <sys/machintr.h>
128 #include <machine_base/icu/icu_abi.h>
129 #include <machine_base/icu/elcr_var.h>
130 #include <machine_base/apic/lapic.h>
131 #include <machine_base/apic/ioapic.h>
132 #include <machine_base/apic/ioapic_abi.h>
133 #include <machine/mptable.h>
134 
135 #define PHYSMAP_ENTRIES		10
136 
137 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
138 
139 extern void printcpuinfo(void);	/* XXX header file */
140 extern void identify_cpu(void);
141 #if 0 /* JG */
142 extern void finishidentcpu(void);
143 #endif
144 extern void panicifcpuunsupported(void);
145 
146 static void cpu_startup(void *);
147 static void pic_finish(void *);
148 static void cpu_finish(void *);
149 
150 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
151 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
152 #ifdef DIRECTIO
153 extern void ffs_rawread_setup(void);
154 #endif /* DIRECTIO */
155 static void init_locks(void);
156 
157 SYSINIT(cpu, SI_BOOT2_START_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
158 SYSINIT(pic_finish, SI_BOOT2_FINISH_PIC, SI_ORDER_FIRST, pic_finish, NULL);
159 SYSINIT(cpu_finish, SI_BOOT2_FINISH_CPU, SI_ORDER_FIRST, cpu_finish, NULL);
160 
161 #ifdef DDB
162 extern vm_offset_t ksym_start, ksym_end;
163 #endif
164 
165 struct privatespace CPU_prvspace_bsp __aligned(4096);
166 struct privatespace *CPU_prvspace[MAXCPU] = { &CPU_prvspace_bsp };
167 
168 int	_udatasel, _ucodesel, _ucode32sel;
169 u_long	atdevbase;
170 int64_t tsc_offsets[MAXCPU];
171 
172 static int cpu_mwait_halt_global; /* MWAIT hint (EAX) or CPU_MWAIT_HINT_ */
173 
174 #if defined(SWTCH_OPTIM_STATS)
175 extern int swtch_optim_stats;
176 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
177 	CTLFLAG_RD, &swtch_optim_stats, 0, "");
178 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
179 	CTLFLAG_RD, &tlb_flush_count, 0, "");
180 #endif
181 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_halt,
182 	CTLFLAG_RD, &cpu_mwait_halt_global, 0, "");
183 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_spin, CTLFLAG_RD, &cpu_mwait_spin, 0,
184     "monitor/mwait target state");
185 
186 #define CPU_MWAIT_HAS_CX	\
187 	((cpu_feature2 & CPUID2_MON) && \
188 	 (cpu_mwait_feature & CPUID_MWAIT_EXT))
189 
190 #define CPU_MWAIT_CX_NAMELEN	16
191 
192 #define CPU_MWAIT_C1		1
193 #define CPU_MWAIT_C2		2
194 #define CPU_MWAIT_C3		3
195 #define CPU_MWAIT_CX_MAX	8
196 
197 #define CPU_MWAIT_HINT_AUTO	-1	/* C1 and C2 */
198 #define CPU_MWAIT_HINT_AUTODEEP	-2	/* C3+ */
199 
200 SYSCTL_NODE(_machdep, OID_AUTO, mwait, CTLFLAG_RW, 0, "MWAIT features");
201 SYSCTL_NODE(_machdep_mwait, OID_AUTO, CX, CTLFLAG_RW, 0, "MWAIT Cx settings");
202 
203 struct cpu_mwait_cx {
204 	int			subcnt;
205 	char			name[4];
206 	struct sysctl_ctx_list	sysctl_ctx;
207 	struct sysctl_oid	*sysctl_tree;
208 };
209 static struct cpu_mwait_cx	cpu_mwait_cx_info[CPU_MWAIT_CX_MAX];
210 static char			cpu_mwait_cx_supported[256];
211 
212 static int			cpu_mwait_c1_hints_cnt;
213 static int			cpu_mwait_hints_cnt;
214 static int			*cpu_mwait_hints;
215 
216 static int			cpu_mwait_deep_hints_cnt;
217 static int			*cpu_mwait_deep_hints;
218 
219 #define CPU_IDLE_REPEAT_DEFAULT	750
220 
221 static u_int			cpu_idle_repeat = CPU_IDLE_REPEAT_DEFAULT;
222 static u_long			cpu_idle_repeat_max = CPU_IDLE_REPEAT_DEFAULT;
223 static u_int			cpu_mwait_repeat_shift = 1;
224 
225 #define CPU_MWAIT_C3_PREAMBLE_BM_ARB	0x1
226 #define CPU_MWAIT_C3_PREAMBLE_BM_STS	0x2
227 
228 static int			cpu_mwait_c3_preamble =
229 				    CPU_MWAIT_C3_PREAMBLE_BM_ARB |
230 				    CPU_MWAIT_C3_PREAMBLE_BM_STS;
231 
232 SYSCTL_STRING(_machdep_mwait_CX, OID_AUTO, supported, CTLFLAG_RD,
233     cpu_mwait_cx_supported, 0, "MWAIT supported C states");
234 SYSCTL_INT(_machdep_mwait_CX, OID_AUTO, c3_preamble, CTLFLAG_RD,
235     &cpu_mwait_c3_preamble, 0, "C3+ preamble mask");
236 
237 static int	cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS,
238 		    int *, boolean_t);
239 static int	cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS);
240 static int	cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS);
241 static int	cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS);
242 
243 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, idle, CTLTYPE_STRING|CTLFLAG_RW,
244     NULL, 0, cpu_mwait_cx_idle_sysctl, "A", "");
245 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, spin, CTLTYPE_STRING|CTLFLAG_RW,
246     NULL, 0, cpu_mwait_cx_spin_sysctl, "A", "");
247 SYSCTL_UINT(_machdep_mwait_CX, OID_AUTO, repeat_shift, CTLFLAG_RW,
248     &cpu_mwait_repeat_shift, 0, "");
249 
250 long physmem = 0;
251 
252 u_long ebda_addr = 0;
253 
254 int imcr_present = 0;
255 
256 int naps = 0; /* # of Applications processors */
257 
258 u_int base_memory;
259 struct mtx dt_lock;		/* lock for GDT and LDT */
260 
261 static int
262 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
263 {
264 	u_long pmem = ctob(physmem);
265 
266 	int error = sysctl_handle_long(oidp, &pmem, 0, req);
267 	return (error);
268 }
269 
270 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
271 	0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
272 
273 static int
274 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
275 {
276 	int error = sysctl_handle_int(oidp, 0,
277 		ctob(physmem - vmstats.v_wire_count), req);
278 	return (error);
279 }
280 
281 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
282 	0, 0, sysctl_hw_usermem, "IU", "");
283 
284 static int
285 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
286 {
287 	int error = sysctl_handle_int(oidp, 0,
288 		x86_64_btop(avail_end - avail_start), req);
289 	return (error);
290 }
291 
292 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
293 	0, 0, sysctl_hw_availpages, "I", "");
294 
295 vm_paddr_t Maxmem;
296 vm_paddr_t Realmem;
297 
298 /*
299  * The number of PHYSMAP entries must be one less than the number of
300  * PHYSSEG entries because the PHYSMAP entry that spans the largest
301  * physical address that is accessible by ISA DMA is split into two
302  * PHYSSEG entries.
303  */
304 #define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
305 
306 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
307 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
308 
309 /* must be 2 less so 0 0 can signal end of chunks */
310 #define PHYS_AVAIL_ARRAY_END (NELEM(phys_avail) - 2)
311 #define DUMP_AVAIL_ARRAY_END (NELEM(dump_avail) - 2)
312 
313 static vm_offset_t buffer_sva, buffer_eva;
314 vm_offset_t clean_sva, clean_eva;
315 static vm_offset_t pager_sva, pager_eva;
316 static struct trapframe proc0_tf;
317 
318 static void
319 cpu_startup(void *dummy)
320 {
321 	caddr_t v;
322 	vm_size_t size = 0;
323 	vm_offset_t firstaddr;
324 
325 	/*
326 	 * Good {morning,afternoon,evening,night}.
327 	 */
328 	kprintf("%s", version);
329 	startrtclock();
330 	printcpuinfo();
331 	panicifcpuunsupported();
332 #ifdef PERFMON
333 	perfmon_init();
334 #endif
335 	kprintf("real memory  = %ju (%ju MB)\n",
336 		(intmax_t)Realmem,
337 		(intmax_t)Realmem / 1024 / 1024);
338 	/*
339 	 * Display any holes after the first chunk of extended memory.
340 	 */
341 	if (bootverbose) {
342 		int indx;
343 
344 		kprintf("Physical memory chunk(s):\n");
345 		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
346 			vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
347 
348 			kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
349 				(intmax_t)phys_avail[indx],
350 				(intmax_t)phys_avail[indx + 1] - 1,
351 				(intmax_t)size1,
352 				(intmax_t)(size1 / PAGE_SIZE));
353 		}
354 	}
355 
356 	/*
357 	 * Allocate space for system data structures.
358 	 * The first available kernel virtual address is in "v".
359 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
360 	 * As pages of memory are allocated and cleared,
361 	 * "firstaddr" is incremented.
362 	 * An index into the kernel page table corresponding to the
363 	 * virtual memory address maintained in "v" is kept in "mapaddr".
364 	 */
365 
366 	/*
367 	 * Make two passes.  The first pass calculates how much memory is
368 	 * needed and allocates it.  The second pass assigns virtual
369 	 * addresses to the various data structures.
370 	 */
371 	firstaddr = 0;
372 again:
373 	v = (caddr_t)firstaddr;
374 
375 #define	valloc(name, type, num) \
376 	    (name) = (type *)v; v = (caddr_t)((name)+(num))
377 #define	valloclim(name, type, num, lim) \
378 	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
379 
380 	/*
381 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
382 	 * For the first 64MB of ram nominally allocate sufficient buffers to
383 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
384 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
385 	 * the buffer cache we limit the eventual kva reservation to
386 	 * maxbcache bytes.
387 	 *
388 	 * factor represents the 1/4 x ram conversion.
389 	 */
390 	if (nbuf == 0) {
391 		long factor = 4 * BKVASIZE / 1024;
392 		long kbytes = physmem * (PAGE_SIZE / 1024);
393 
394 		nbuf = 50;
395 		if (kbytes > 4096)
396 			nbuf += min((kbytes - 4096) / factor, 65536 / factor);
397 		if (kbytes > 65536)
398 			nbuf += (kbytes - 65536) * 2 / (factor * 5);
399 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
400 			nbuf = maxbcache / BKVASIZE;
401 	}
402 
403 	/*
404 	 * Do not allow the buffer_map to be more then 1/2 the size of the
405 	 * kernel_map.
406 	 */
407 	if (nbuf > (virtual_end - virtual_start +
408 		    virtual2_end - virtual2_start) / (BKVASIZE * 2)) {
409 		nbuf = (virtual_end - virtual_start +
410 			virtual2_end - virtual2_start) / (BKVASIZE * 2);
411 		kprintf("Warning: nbufs capped at %ld due to kvm\n", nbuf);
412 	}
413 
414 	/*
415 	 * Do not allow the buffer_map to use more than 50% of available
416 	 * physical-equivalent memory.  Since the VM pages which back
417 	 * individual buffers are typically wired, having too many bufs
418 	 * can prevent the system from paging properly.
419 	 */
420 	if (nbuf > physmem * PAGE_SIZE / (BKVASIZE * 2)) {
421 		nbuf = physmem * PAGE_SIZE / (BKVASIZE * 2);
422 		kprintf("Warning: nbufs capped at %ld due to physmem\n", nbuf);
423 	}
424 
425 	/*
426 	 * Do not allow the sizeof(struct buf) * nbuf to exceed half of
427 	 * the valloc space which is just the virtual_end - virtual_start
428 	 * section.  We use valloc() to allocate the buf header array.
429 	 */
430 	if (nbuf > (virtual_end - virtual_start) / sizeof(struct buf) / 2) {
431 		nbuf = (virtual_end - virtual_start) /
432 		       sizeof(struct buf) / 2;
433 		kprintf("Warning: nbufs capped at %ld due to valloc "
434 			"considerations", nbuf);
435 	}
436 
437 	nswbuf = lmax(lmin(nbuf / 4, 256), 16);
438 #ifdef NSWBUF_MIN
439 	if (nswbuf < NSWBUF_MIN)
440 		nswbuf = NSWBUF_MIN;
441 #endif
442 #ifdef DIRECTIO
443 	ffs_rawread_setup();
444 #endif
445 
446 	valloc(swbuf, struct buf, nswbuf);
447 	valloc(buf, struct buf, nbuf);
448 
449 	/*
450 	 * End of first pass, size has been calculated so allocate memory
451 	 */
452 	if (firstaddr == 0) {
453 		size = (vm_size_t)(v - firstaddr);
454 		firstaddr = kmem_alloc(&kernel_map, round_page(size));
455 		if (firstaddr == 0)
456 			panic("startup: no room for tables");
457 		goto again;
458 	}
459 
460 	/*
461 	 * End of second pass, addresses have been assigned
462 	 *
463 	 * nbuf is an int, make sure we don't overflow the field.
464 	 *
465 	 * On 64-bit systems we always reserve maximal allocations for
466 	 * buffer cache buffers and there are no fragmentation issues,
467 	 * so the KVA segment does not have to be excessively oversized.
468 	 */
469 	if ((vm_size_t)(v - firstaddr) != size)
470 		panic("startup: table size inconsistency");
471 
472 	kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
473 		      ((vm_offset_t)(nbuf + 16) * BKVASIZE) +
474 		      (nswbuf * MAXPHYS) + pager_map_size);
475 	kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
476 		      ((vm_offset_t)(nbuf + 16) * BKVASIZE));
477 	buffer_map.system_map = 1;
478 	kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
479 		      ((vm_offset_t)nswbuf * MAXPHYS) + pager_map_size);
480 	pager_map.system_map = 1;
481 	kprintf("avail memory = %ju (%ju MB)\n",
482 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages),
483 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages) /
484 		1024 / 1024);
485 }
486 
487 struct cpu_idle_stat {
488 	int	hint;
489 	int	reserved;
490 	u_long	halt;
491 	u_long	spin;
492 	u_long	repeat;
493 	u_long	repeat_last;
494 	u_long	repeat_delta;
495 	u_long	mwait_cx[CPU_MWAIT_CX_MAX];
496 } __cachealign;
497 
498 #define CPU_IDLE_STAT_HALT	-1
499 #define CPU_IDLE_STAT_SPIN	-2
500 
501 static struct cpu_idle_stat	cpu_idle_stats[MAXCPU];
502 
503 static int
504 sysctl_cpu_idle_cnt(SYSCTL_HANDLER_ARGS)
505 {
506 	int idx = arg2, cpu, error;
507 	u_long val = 0;
508 
509 	if (idx == CPU_IDLE_STAT_HALT) {
510 		for (cpu = 0; cpu < ncpus; ++cpu)
511 			val += cpu_idle_stats[cpu].halt;
512 	} else if (idx == CPU_IDLE_STAT_SPIN) {
513 		for (cpu = 0; cpu < ncpus; ++cpu)
514 			val += cpu_idle_stats[cpu].spin;
515 	} else {
516 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
517 		    ("invalid index %d", idx));
518 		for (cpu = 0; cpu < ncpus; ++cpu)
519 			val += cpu_idle_stats[cpu].mwait_cx[idx];
520 	}
521 
522 	error = sysctl_handle_quad(oidp, &val, 0, req);
523         if (error || req->newptr == NULL)
524 	        return error;
525 
526 	if (idx == CPU_IDLE_STAT_HALT) {
527 		for (cpu = 0; cpu < ncpus; ++cpu)
528 			cpu_idle_stats[cpu].halt = 0;
529 		cpu_idle_stats[0].halt = val;
530 	} else if (idx == CPU_IDLE_STAT_SPIN) {
531 		for (cpu = 0; cpu < ncpus; ++cpu)
532 			cpu_idle_stats[cpu].spin = 0;
533 		cpu_idle_stats[0].spin = val;
534 	} else {
535 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
536 		    ("invalid index %d", idx));
537 		for (cpu = 0; cpu < ncpus; ++cpu)
538 			cpu_idle_stats[cpu].mwait_cx[idx] = 0;
539 		cpu_idle_stats[0].mwait_cx[idx] = val;
540 	}
541 	return 0;
542 }
543 
544 static void
545 cpu_mwait_attach(void)
546 {
547 	struct sbuf sb;
548 	int hint_idx, i;
549 
550 	if (!CPU_MWAIT_HAS_CX)
551 		return;
552 
553 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
554 	    (CPUID_TO_FAMILY(cpu_id) > 0xf ||
555 	     (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
556 	      CPUID_TO_MODEL(cpu_id) >= 0xf))) {
557 		int bm_sts = 1;
558 
559 		/*
560 		 * Pentium dual-core, Core 2 and beyond do not need any
561 		 * additional activities to enter deep C-state, i.e. C3(+).
562 		 */
563 		cpu_mwait_cx_no_bmarb();
564 
565 		TUNABLE_INT_FETCH("machdep.cpu.mwait.bm_sts", &bm_sts);
566 		if (!bm_sts)
567 			cpu_mwait_cx_no_bmsts();
568 	}
569 
570 	sbuf_new(&sb, cpu_mwait_cx_supported,
571 	    sizeof(cpu_mwait_cx_supported), SBUF_FIXEDLEN);
572 
573 	for (i = 0; i < CPU_MWAIT_CX_MAX; ++i) {
574 		struct cpu_mwait_cx *cx = &cpu_mwait_cx_info[i];
575 		int sub;
576 
577 		ksnprintf(cx->name, sizeof(cx->name), "C%d", i);
578 
579 		sysctl_ctx_init(&cx->sysctl_ctx);
580 		cx->sysctl_tree = SYSCTL_ADD_NODE(&cx->sysctl_ctx,
581 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait), OID_AUTO,
582 		    cx->name, CTLFLAG_RW, NULL, "Cx control/info");
583 		if (cx->sysctl_tree == NULL)
584 			continue;
585 
586 		cx->subcnt = CPUID_MWAIT_CX_SUBCNT(cpu_mwait_extemu, i);
587 		SYSCTL_ADD_INT(&cx->sysctl_ctx,
588 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
589 		    "subcnt", CTLFLAG_RD, &cx->subcnt, 0,
590 		    "sub-state count");
591 		SYSCTL_ADD_PROC(&cx->sysctl_ctx,
592 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
593 		    "entered", (CTLTYPE_QUAD | CTLFLAG_RW), 0,
594 		    i, sysctl_cpu_idle_cnt, "Q", "# of times entered");
595 
596 		for (sub = 0; sub < cx->subcnt; ++sub)
597 			sbuf_printf(&sb, "C%d/%d ", i, sub);
598 	}
599 	sbuf_trim(&sb);
600 	sbuf_finish(&sb);
601 
602 	/*
603 	 * Non-deep C-states
604 	 */
605 	cpu_mwait_c1_hints_cnt = cpu_mwait_cx_info[CPU_MWAIT_C1].subcnt;
606 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i)
607 		cpu_mwait_hints_cnt += cpu_mwait_cx_info[i].subcnt;
608 	cpu_mwait_hints = kmalloc(sizeof(int) * cpu_mwait_hints_cnt,
609 	    M_DEVBUF, M_WAITOK);
610 
611 	hint_idx = 0;
612 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i) {
613 		int j, subcnt;
614 
615 		subcnt = cpu_mwait_cx_info[i].subcnt;
616 		for (j = 0; j < subcnt; ++j) {
617 			KASSERT(hint_idx < cpu_mwait_hints_cnt,
618 			    ("invalid mwait hint index %d", hint_idx));
619 			cpu_mwait_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
620 			++hint_idx;
621 		}
622 	}
623 	KASSERT(hint_idx == cpu_mwait_hints_cnt,
624 	    ("mwait hint count %d != index %d",
625 	     cpu_mwait_hints_cnt, hint_idx));
626 
627 	if (bootverbose) {
628 		kprintf("MWAIT hints (%d C1 hints):\n", cpu_mwait_c1_hints_cnt);
629 		for (i = 0; i < cpu_mwait_hints_cnt; ++i) {
630 			int hint = cpu_mwait_hints[i];
631 
632 			kprintf("  C%d/%d hint 0x%04x\n",
633 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
634 			    hint);
635 		}
636 	}
637 
638 	/*
639 	 * Deep C-states
640 	 */
641 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i)
642 		cpu_mwait_deep_hints_cnt += cpu_mwait_cx_info[i].subcnt;
643 	cpu_mwait_deep_hints = kmalloc(sizeof(int) * cpu_mwait_deep_hints_cnt,
644 	    M_DEVBUF, M_WAITOK);
645 
646 	hint_idx = 0;
647 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i) {
648 		int j, subcnt;
649 
650 		subcnt = cpu_mwait_cx_info[i].subcnt;
651 		for (j = 0; j < subcnt; ++j) {
652 			KASSERT(hint_idx < cpu_mwait_deep_hints_cnt,
653 			    ("invalid mwait deep hint index %d", hint_idx));
654 			cpu_mwait_deep_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
655 			++hint_idx;
656 		}
657 	}
658 	KASSERT(hint_idx == cpu_mwait_deep_hints_cnt,
659 	    ("mwait deep hint count %d != index %d",
660 	     cpu_mwait_deep_hints_cnt, hint_idx));
661 
662 	if (bootverbose) {
663 		kprintf("MWAIT deep hints:\n");
664 		for (i = 0; i < cpu_mwait_deep_hints_cnt; ++i) {
665 			int hint = cpu_mwait_deep_hints[i];
666 
667 			kprintf("  C%d/%d hint 0x%04x\n",
668 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
669 			    hint);
670 		}
671 	}
672 	cpu_idle_repeat_max = 256 * cpu_mwait_deep_hints_cnt;
673 
674 	for (i = 0; i < ncpus; ++i) {
675 		char name[16];
676 
677 		ksnprintf(name, sizeof(name), "idle%d", i);
678 		SYSCTL_ADD_PROC(NULL,
679 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait_CX), OID_AUTO,
680 		    name, (CTLTYPE_STRING | CTLFLAG_RW), &cpu_idle_stats[i],
681 		    0, cpu_mwait_cx_pcpu_idle_sysctl, "A", "");
682 	}
683 }
684 
685 static void
686 cpu_finish(void *dummy __unused)
687 {
688 	cpu_setregs();
689 	cpu_mwait_attach();
690 }
691 
692 static void
693 pic_finish(void *dummy __unused)
694 {
695 	/* Log ELCR information */
696 	elcr_dump();
697 
698 	/* Log MPTABLE information */
699 	mptable_pci_int_dump();
700 
701 	/* Finalize PCI */
702 	MachIntrABI.finalize();
703 }
704 
705 /*
706  * Send an interrupt to process.
707  *
708  * Stack is set up to allow sigcode stored
709  * at top to call routine, followed by kcall
710  * to sigreturn routine below.  After sigreturn
711  * resets the signal mask, the stack, and the
712  * frame pointer, it returns to the user
713  * specified pc, psl.
714  */
715 void
716 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
717 {
718 	struct lwp *lp = curthread->td_lwp;
719 	struct proc *p = lp->lwp_proc;
720 	struct trapframe *regs;
721 	struct sigacts *psp = p->p_sigacts;
722 	struct sigframe sf, *sfp;
723 	int oonstack;
724 	char *sp;
725 
726 	regs = lp->lwp_md.md_regs;
727 	oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
728 
729 	/* Save user context */
730 	bzero(&sf, sizeof(struct sigframe));
731 	sf.sf_uc.uc_sigmask = *mask;
732 	sf.sf_uc.uc_stack = lp->lwp_sigstk;
733 	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
734 	KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
735 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
736 
737 	/* Make the size of the saved context visible to userland */
738 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
739 
740 	/* Allocate and validate space for the signal handler context. */
741         if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
742 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
743 		sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
744 			      sizeof(struct sigframe));
745 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
746 	} else {
747 		/* We take red zone into account */
748 		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
749 	}
750 
751 	/*
752 	 * XXX AVX needs 64-byte alignment but sigframe has other fields and
753 	 * the embedded ucontext is not at the front, so aligning this won't
754 	 * help us.  Fortunately we bcopy in/out of the sigframe, so the
755 	 * kernel is ok.
756 	 *
757 	 * The problem though is if userland winds up trying to use the
758 	 * context directly.
759 	 */
760 	sfp = (struct sigframe *)((intptr_t)sp & ~(intptr_t)0xF);
761 
762 	/* Translate the signal is appropriate */
763 	if (p->p_sysent->sv_sigtbl) {
764 		if (sig <= p->p_sysent->sv_sigsize)
765 			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
766 	}
767 
768 	/*
769 	 * Build the argument list for the signal handler.
770 	 *
771 	 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
772 	 */
773 	regs->tf_rdi = sig;				/* argument 1 */
774 	regs->tf_rdx = (register_t)&sfp->sf_uc;		/* argument 3 */
775 
776 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
777 		/*
778 		 * Signal handler installed with SA_SIGINFO.
779 		 *
780 		 * action(signo, siginfo, ucontext)
781 		 */
782 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* argument 2 */
783 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
784 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
785 
786 		/* fill siginfo structure */
787 		sf.sf_si.si_signo = sig;
788 		sf.sf_si.si_code = code;
789 		sf.sf_si.si_addr = (void *)regs->tf_addr;
790 	} else {
791 		/*
792 		 * Old FreeBSD-style arguments.
793 		 *
794 		 * handler (signo, code, [uc], addr)
795 		 */
796 		regs->tf_rsi = (register_t)code;	/* argument 2 */
797 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
798 		sf.sf_ahu.sf_handler = catcher;
799 	}
800 
801 	/*
802 	 * If we're a vm86 process, we want to save the segment registers.
803 	 * We also change eflags to be our emulated eflags, not the actual
804 	 * eflags.
805 	 */
806 #if 0 /* JG */
807 	if (regs->tf_eflags & PSL_VM) {
808 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
809 		struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
810 
811 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
812 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
813 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
814 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
815 
816 		if (vm86->vm86_has_vme == 0)
817 			sf.sf_uc.uc_mcontext.mc_eflags =
818 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
819 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
820 
821 		/*
822 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
823 		 * syscalls made by the signal handler.  This just avoids
824 		 * wasting time for our lazy fixup of such faults.  PSL_NT
825 		 * does nothing in vm86 mode, but vm86 programs can set it
826 		 * almost legitimately in probes for old cpu types.
827 		 */
828 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
829 	}
830 #endif
831 
832 	/*
833 	 * Save the FPU state and reinit the FP unit
834 	 */
835 	npxpush(&sf.sf_uc.uc_mcontext);
836 
837 	/*
838 	 * Copy the sigframe out to the user's stack.
839 	 */
840 	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
841 		/*
842 		 * Something is wrong with the stack pointer.
843 		 * ...Kill the process.
844 		 */
845 		sigexit(lp, SIGILL);
846 	}
847 
848 	regs->tf_rsp = (register_t)sfp;
849 	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
850 
851 	/*
852 	 * i386 abi specifies that the direction flag must be cleared
853 	 * on function entry
854 	 */
855 	regs->tf_rflags &= ~(PSL_T|PSL_D);
856 
857 	/*
858 	 * 64 bit mode has a code and stack selector but
859 	 * no data or extra selector.  %fs and %gs are not
860 	 * stored in-context.
861 	 */
862 	regs->tf_cs = _ucodesel;
863 	regs->tf_ss = _udatasel;
864 	clear_quickret();
865 }
866 
867 /*
868  * Sanitize the trapframe for a virtual kernel passing control to a custom
869  * VM context.  Remove any items that would otherwise create a privilage
870  * issue.
871  *
872  * XXX at the moment we allow userland to set the resume flag.  Is this a
873  * bad idea?
874  */
875 int
876 cpu_sanitize_frame(struct trapframe *frame)
877 {
878 	frame->tf_cs = _ucodesel;
879 	frame->tf_ss = _udatasel;
880 	/* XXX VM (8086) mode not supported? */
881 	frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
882 	frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
883 
884 	return(0);
885 }
886 
887 /*
888  * Sanitize the tls so loading the descriptor does not blow up
889  * on us.  For x86_64 we don't have to do anything.
890  */
891 int
892 cpu_sanitize_tls(struct savetls *tls)
893 {
894 	return(0);
895 }
896 
897 /*
898  * sigreturn(ucontext_t *sigcntxp)
899  *
900  * System call to cleanup state after a signal
901  * has been taken.  Reset signal mask and
902  * stack state from context left by sendsig (above).
903  * Return to previous pc and psl as specified by
904  * context left by sendsig. Check carefully to
905  * make sure that the user has not modified the
906  * state to gain improper privileges.
907  *
908  * MPSAFE
909  */
910 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
911 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
912 
913 int
914 sys_sigreturn(struct sigreturn_args *uap)
915 {
916 	struct lwp *lp = curthread->td_lwp;
917 	struct trapframe *regs;
918 	ucontext_t uc;
919 	ucontext_t *ucp;
920 	register_t rflags;
921 	int cs;
922 	int error;
923 
924 	/*
925 	 * We have to copy the information into kernel space so userland
926 	 * can't modify it while we are sniffing it.
927 	 */
928 	regs = lp->lwp_md.md_regs;
929 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
930 	if (error)
931 		return (error);
932 	ucp = &uc;
933 	rflags = ucp->uc_mcontext.mc_rflags;
934 
935 	/* VM (8086) mode not supported */
936 	rflags &= ~PSL_VM_UNSUPP;
937 
938 #if 0 /* JG */
939 	if (eflags & PSL_VM) {
940 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
941 		struct vm86_kernel *vm86;
942 
943 		/*
944 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
945 		 * set up the vm86 area, and we can't enter vm86 mode.
946 		 */
947 		if (lp->lwp_thread->td_pcb->pcb_ext == 0)
948 			return (EINVAL);
949 		vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
950 		if (vm86->vm86_inited == 0)
951 			return (EINVAL);
952 
953 		/* go back to user mode if both flags are set */
954 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
955 			trapsignal(lp, SIGBUS, 0);
956 
957 		if (vm86->vm86_has_vme) {
958 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
959 			    (eflags & VME_USERCHANGE) | PSL_VM;
960 		} else {
961 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
962 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
963 			    (eflags & VM_USERCHANGE) | PSL_VM;
964 		}
965 		bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
966 		tf->tf_eflags = eflags;
967 		tf->tf_vm86_ds = tf->tf_ds;
968 		tf->tf_vm86_es = tf->tf_es;
969 		tf->tf_vm86_fs = tf->tf_fs;
970 		tf->tf_vm86_gs = tf->tf_gs;
971 		tf->tf_ds = _udatasel;
972 		tf->tf_es = _udatasel;
973 		tf->tf_fs = _udatasel;
974 		tf->tf_gs = _udatasel;
975 	} else
976 #endif
977 	{
978 		/*
979 		 * Don't allow users to change privileged or reserved flags.
980 		 */
981 		/*
982 		 * XXX do allow users to change the privileged flag PSL_RF.
983 		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
984 		 * should sometimes set it there too.  tf_eflags is kept in
985 		 * the signal context during signal handling and there is no
986 		 * other place to remember it, so the PSL_RF bit may be
987 		 * corrupted by the signal handler without us knowing.
988 		 * Corruption of the PSL_RF bit at worst causes one more or
989 		 * one less debugger trap, so allowing it is fairly harmless.
990 		 */
991 		if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
992 			kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
993 	    		return(EINVAL);
994 		}
995 
996 		/*
997 		 * Don't allow users to load a valid privileged %cs.  Let the
998 		 * hardware check for invalid selectors, excess privilege in
999 		 * other selectors, invalid %eip's and invalid %esp's.
1000 		 */
1001 		cs = ucp->uc_mcontext.mc_cs;
1002 		if (!CS_SECURE(cs)) {
1003 			kprintf("sigreturn: cs = 0x%x\n", cs);
1004 			trapsignal(lp, SIGBUS, T_PROTFLT);
1005 			return(EINVAL);
1006 		}
1007 		bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
1008 	}
1009 
1010 	/*
1011 	 * Restore the FPU state from the frame
1012 	 */
1013 	crit_enter();
1014 	npxpop(&ucp->uc_mcontext);
1015 
1016 	if (ucp->uc_mcontext.mc_onstack & 1)
1017 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
1018 	else
1019 		lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
1020 
1021 	lp->lwp_sigmask = ucp->uc_sigmask;
1022 	SIG_CANTMASK(lp->lwp_sigmask);
1023 	clear_quickret();
1024 	crit_exit();
1025 	return(EJUSTRETURN);
1026 }
1027 
1028 /*
1029  * Machine dependent boot() routine
1030  *
1031  * I haven't seen anything to put here yet
1032  * Possibly some stuff might be grafted back here from boot()
1033  */
1034 void
1035 cpu_boot(int howto)
1036 {
1037 }
1038 
1039 /*
1040  * Shutdown the CPU as much as possible
1041  */
1042 void
1043 cpu_halt(void)
1044 {
1045 	for (;;)
1046 		__asm__ __volatile("hlt");
1047 }
1048 
1049 /*
1050  * cpu_idle() represents the idle LWKT.  You cannot return from this function
1051  * (unless you want to blow things up!).  Instead we look for runnable threads
1052  * and loop or halt as appropriate.  Giant is not held on entry to the thread.
1053  *
1054  * The main loop is entered with a critical section held, we must release
1055  * the critical section before doing anything else.  lwkt_switch() will
1056  * check for pending interrupts due to entering and exiting its own
1057  * critical section.
1058  *
1059  * NOTE: On an SMP system we rely on a scheduler IPI to wake a HLTed cpu up.
1060  *	 However, there are cases where the idlethread will be entered with
1061  *	 the possibility that no IPI will occur and in such cases
1062  *	 lwkt_switch() sets TDF_IDLE_NOHLT.
1063  *
1064  * NOTE: cpu_idle_repeat determines how many entries into the idle thread
1065  *	 must occur before it starts using ACPI halt.
1066  *
1067  * NOTE: Value overridden in hammer_time().
1068  */
1069 static int	cpu_idle_hlt = 2;
1070 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
1071     &cpu_idle_hlt, 0, "Idle loop HLT enable");
1072 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_repeat, CTLFLAG_RW,
1073     &cpu_idle_repeat, 0, "Idle entries before acpi hlt");
1074 
1075 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_hltcnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1076     0, CPU_IDLE_STAT_HALT, sysctl_cpu_idle_cnt, "Q", "Idle loop entry halts");
1077 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_spincnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1078     0, CPU_IDLE_STAT_SPIN, sysctl_cpu_idle_cnt, "Q", "Idle loop entry spins");
1079 
1080 static void
1081 cpu_idle_default_hook(void)
1082 {
1083 	/*
1084 	 * We must guarentee that hlt is exactly the instruction
1085 	 * following the sti.
1086 	 */
1087 	__asm __volatile("sti; hlt");
1088 }
1089 
1090 /* Other subsystems (e.g., ACPI) can hook this later. */
1091 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
1092 
1093 static __inline int
1094 cpu_mwait_cx_hint(struct cpu_idle_stat *stat)
1095 {
1096 	int hint, cx_idx;
1097 	u_int idx;
1098 
1099 	hint = stat->hint;
1100 	if (hint >= 0)
1101 		goto done;
1102 
1103 	idx = (stat->repeat + stat->repeat_last + stat->repeat_delta) >>
1104 	    cpu_mwait_repeat_shift;
1105 	if (idx >= cpu_mwait_c1_hints_cnt) {
1106 		/* Step up faster, once we walked through all C1 states */
1107 		stat->repeat_delta += 1 << (cpu_mwait_repeat_shift + 1);
1108 	}
1109 	if (hint == CPU_MWAIT_HINT_AUTODEEP) {
1110 		if (idx >= cpu_mwait_deep_hints_cnt)
1111 			idx = cpu_mwait_deep_hints_cnt - 1;
1112 		hint = cpu_mwait_deep_hints[idx];
1113 	} else {
1114 		if (idx >= cpu_mwait_hints_cnt)
1115 			idx = cpu_mwait_hints_cnt - 1;
1116 		hint = cpu_mwait_hints[idx];
1117 	}
1118 done:
1119 	cx_idx = MWAIT_EAX_TO_CX(hint);
1120 	if (cx_idx >= 0 && cx_idx < CPU_MWAIT_CX_MAX)
1121 		stat->mwait_cx[cx_idx]++;
1122 	return hint;
1123 }
1124 
1125 void
1126 cpu_idle(void)
1127 {
1128 	globaldata_t gd = mycpu;
1129 	struct cpu_idle_stat *stat = &cpu_idle_stats[gd->gd_cpuid];
1130 	struct thread *td __debugvar = gd->gd_curthread;
1131 	int reqflags;
1132 	int quick;
1133 
1134 	stat->repeat = stat->repeat_last = cpu_idle_repeat_max;
1135 
1136 	crit_exit();
1137 	KKASSERT(td->td_critcount == 0);
1138 
1139 	for (;;) {
1140 		/*
1141 		 * See if there are any LWKTs ready to go.
1142 		 */
1143 		lwkt_switch();
1144 
1145 		/*
1146 		 * When halting inside a cli we must check for reqflags
1147 		 * races, particularly [re]schedule requests.  Running
1148 		 * splz() does the job.
1149 		 *
1150 		 * cpu_idle_hlt:
1151 		 *	0	Never halt, just spin
1152 		 *
1153 		 *	1	Always use HLT (or MONITOR/MWAIT if avail).
1154 		 *
1155 		 *		Better default for modern (Haswell+) Intel
1156 		 *		cpus.
1157 		 *
1158 		 *	2	Use HLT/MONITOR/MWAIT up to a point and then
1159 		 *		use the ACPI halt (default).  This is a hybrid
1160 		 *		approach.  See machdep.cpu_idle_repeat.
1161 		 *
1162 		 *		Better default for modern AMD cpus and older
1163 		 *		Intel cpus.
1164 		 *
1165 		 *	3	Always use the ACPI halt.  This typically
1166 		 *		eats the least amount of power but the cpu
1167 		 *		will be slow waking up.  Slows down e.g.
1168 		 *		compiles and other pipe/event oriented stuff.
1169 		 *
1170 		 *	4	Always use HLT.
1171 		 *
1172 		 * NOTE: Interrupts are enabled and we are not in a critical
1173 		 *	 section.
1174 		 *
1175 		 * NOTE: Preemptions do not reset gd_idle_repeat.   Also we
1176 		 *	 don't bother capping gd_idle_repeat, it is ok if
1177 		 *	 it overflows.
1178 		 */
1179 		if (gd->gd_idle_repeat == 0) {
1180 			stat->repeat = (stat->repeat + stat->repeat_last) >> 1;
1181 			if (stat->repeat > cpu_idle_repeat_max)
1182 				stat->repeat = cpu_idle_repeat_max;
1183 			stat->repeat_last = 0;
1184 			stat->repeat_delta = 0;
1185 		}
1186 		++stat->repeat_last;
1187 
1188 		++gd->gd_idle_repeat;
1189 		reqflags = gd->gd_reqflags;
1190 		quick = (cpu_idle_hlt == 1) ||
1191 			(cpu_idle_hlt < 3 &&
1192 			 gd->gd_idle_repeat < cpu_idle_repeat);
1193 
1194 		if (quick && (cpu_mi_feature & CPU_MI_MONITOR) &&
1195 		    (reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1196 			splz(); /* XXX */
1197 			cpu_mmw_pause_int(&gd->gd_reqflags, reqflags,
1198 			    cpu_mwait_cx_hint(stat), 0);
1199 			stat->halt++;
1200 		} else if (cpu_idle_hlt) {
1201 			__asm __volatile("cli");
1202 			splz();
1203 			if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1204 				if (quick)
1205 					cpu_idle_default_hook();
1206 				else
1207 					cpu_idle_hook();
1208 			}
1209 			__asm __volatile("sti");
1210 			stat->halt++;
1211 		} else {
1212 			splz();
1213 			__asm __volatile("sti");
1214 			stat->spin++;
1215 		}
1216 	}
1217 }
1218 
1219 /*
1220  * This routine is called if a spinlock has been held through the
1221  * exponential backoff period and is seriously contested.  On a real cpu
1222  * we let it spin.
1223  */
1224 void
1225 cpu_spinlock_contested(void)
1226 {
1227 	cpu_pause();
1228 }
1229 
1230 /*
1231  * Clear registers on exec
1232  */
1233 void
1234 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
1235 {
1236 	struct thread *td = curthread;
1237 	struct lwp *lp = td->td_lwp;
1238 	struct pcb *pcb = td->td_pcb;
1239 	struct trapframe *regs = lp->lwp_md.md_regs;
1240 
1241 	/* was i386_user_cleanup() in NetBSD */
1242 	user_ldt_free(pcb);
1243 
1244 	clear_quickret();
1245 	bzero((char *)regs, sizeof(struct trapframe));
1246 	regs->tf_rip = entry;
1247 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
1248 	regs->tf_rdi = stack;		/* argv */
1249 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
1250 	regs->tf_ss = _udatasel;
1251 	regs->tf_cs = _ucodesel;
1252 	regs->tf_rbx = ps_strings;
1253 
1254 	/*
1255 	 * Reset the hardware debug registers if they were in use.
1256 	 * They won't have any meaning for the newly exec'd process.
1257 	 */
1258 	if (pcb->pcb_flags & PCB_DBREGS) {
1259 		pcb->pcb_dr0 = 0;
1260 		pcb->pcb_dr1 = 0;
1261 		pcb->pcb_dr2 = 0;
1262 		pcb->pcb_dr3 = 0;
1263 		pcb->pcb_dr6 = 0;
1264 		pcb->pcb_dr7 = 0; /* JG set bit 10? */
1265 		if (pcb == td->td_pcb) {
1266 			/*
1267 			 * Clear the debug registers on the running
1268 			 * CPU, otherwise they will end up affecting
1269 			 * the next process we switch to.
1270 			 */
1271 			reset_dbregs();
1272 		}
1273 		pcb->pcb_flags &= ~PCB_DBREGS;
1274 	}
1275 
1276 	/*
1277 	 * Initialize the math emulator (if any) for the current process.
1278 	 * Actually, just clear the bit that says that the emulator has
1279 	 * been initialized.  Initialization is delayed until the process
1280 	 * traps to the emulator (if it is done at all) mainly because
1281 	 * emulators don't provide an entry point for initialization.
1282 	 */
1283 	pcb->pcb_flags &= ~FP_SOFTFP;
1284 
1285 	/*
1286 	 * NOTE: do not set CR0_TS here.  npxinit() must do it after clearing
1287 	 *	 gd_npxthread.  Otherwise a preemptive interrupt thread
1288 	 *	 may panic in npxdna().
1289 	 */
1290 	crit_enter();
1291 	load_cr0(rcr0() | CR0_MP);
1292 
1293 	/*
1294 	 * NOTE: The MSR values must be correct so we can return to
1295 	 * 	 userland.  gd_user_fs/gs must be correct so the switch
1296 	 *	 code knows what the current MSR values are.
1297 	 */
1298 	pcb->pcb_fsbase = 0;	/* Values loaded from PCB on switch */
1299 	pcb->pcb_gsbase = 0;
1300 	mdcpu->gd_user_fs = 0;	/* Cache of current MSR values */
1301 	mdcpu->gd_user_gs = 0;
1302 	wrmsr(MSR_FSBASE, 0);	/* Set MSR values for return to userland */
1303 	wrmsr(MSR_KGSBASE, 0);
1304 
1305 	/* Initialize the npx (if any) for the current process. */
1306 	npxinit();
1307 	crit_exit();
1308 
1309 	pcb->pcb_ds = _udatasel;
1310 	pcb->pcb_es = _udatasel;
1311 	pcb->pcb_fs = _udatasel;
1312 	pcb->pcb_gs = _udatasel;
1313 }
1314 
1315 void
1316 cpu_setregs(void)
1317 {
1318 	register_t cr0;
1319 
1320 	cr0 = rcr0();
1321 	cr0 |= CR0_NE;			/* Done by npxinit() */
1322 	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1323 	cr0 |= CR0_WP | CR0_AM;
1324 	load_cr0(cr0);
1325 	load_gs(_udatasel);
1326 }
1327 
1328 static int
1329 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1330 {
1331 	int error;
1332 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1333 		req);
1334 	if (!error && req->newptr)
1335 		resettodr();
1336 	return (error);
1337 }
1338 
1339 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1340 	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1341 
1342 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1343 	CTLFLAG_RW, &disable_rtc_set, 0, "");
1344 
1345 #if 0 /* JG */
1346 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1347 	CTLFLAG_RD, &bootinfo, bootinfo, "");
1348 #endif
1349 
1350 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1351 	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1352 
1353 extern u_long bootdev;		/* not a cdev_t - encoding is different */
1354 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1355 	CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1356 
1357 /*
1358  * Initialize 386 and configure to run kernel
1359  */
1360 
1361 /*
1362  * Initialize segments & interrupt table
1363  */
1364 
1365 int _default_ldt;
1366 struct user_segment_descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1367 struct gate_descriptor idt_arr[MAXCPU][NIDT];
1368 #if 0 /* JG */
1369 union descriptor ldt[NLDT];		/* local descriptor table */
1370 #endif
1371 
1372 /* table descriptors - used to load tables by cpu */
1373 struct region_descriptor r_gdt;
1374 struct region_descriptor r_idt_arr[MAXCPU];
1375 
1376 /* JG proc0paddr is a virtual address */
1377 void *proc0paddr;
1378 /* JG alignment? */
1379 char proc0paddr_buff[LWKT_THREAD_STACK];
1380 
1381 
1382 /* software prototypes -- in more palatable form */
1383 struct soft_segment_descriptor gdt_segs[] = {
1384 /* GNULL_SEL	0 Null Descriptor */
1385 {	0x0,			/* segment base address  */
1386 	0x0,			/* length */
1387 	0,			/* segment type */
1388 	0,			/* segment descriptor priority level */
1389 	0,			/* segment descriptor present */
1390 	0,			/* long */
1391 	0,			/* default 32 vs 16 bit size */
1392 	0  			/* limit granularity (byte/page units)*/ },
1393 /* GCODE_SEL	1 Code Descriptor for kernel */
1394 {	0x0,			/* segment base address  */
1395 	0xfffff,		/* length - all address space */
1396 	SDT_MEMERA,		/* segment type */
1397 	SEL_KPL,		/* segment descriptor priority level */
1398 	1,			/* segment descriptor present */
1399 	1,			/* long */
1400 	0,			/* default 32 vs 16 bit size */
1401 	1  			/* limit granularity (byte/page units)*/ },
1402 /* GDATA_SEL	2 Data Descriptor for kernel */
1403 {	0x0,			/* segment base address  */
1404 	0xfffff,		/* length - all address space */
1405 	SDT_MEMRWA,		/* segment type */
1406 	SEL_KPL,		/* segment descriptor priority level */
1407 	1,			/* segment descriptor present */
1408 	1,			/* long */
1409 	0,			/* default 32 vs 16 bit size */
1410 	1  			/* limit granularity (byte/page units)*/ },
1411 /* GUCODE32_SEL	3 32 bit Code Descriptor for user */
1412 {	0x0,			/* segment base address  */
1413 	0xfffff,		/* length - all address space */
1414 	SDT_MEMERA,		/* segment type */
1415 	SEL_UPL,		/* segment descriptor priority level */
1416 	1,			/* segment descriptor present */
1417 	0,			/* long */
1418 	1,			/* default 32 vs 16 bit size */
1419 	1  			/* limit granularity (byte/page units)*/ },
1420 /* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
1421 {	0x0,			/* segment base address  */
1422 	0xfffff,		/* length - all address space */
1423 	SDT_MEMRWA,		/* segment type */
1424 	SEL_UPL,		/* segment descriptor priority level */
1425 	1,			/* segment descriptor present */
1426 	0,			/* long */
1427 	1,			/* default 32 vs 16 bit size */
1428 	1  			/* limit granularity (byte/page units)*/ },
1429 /* GUCODE_SEL	5 64 bit Code Descriptor for user */
1430 {	0x0,			/* segment base address  */
1431 	0xfffff,		/* length - all address space */
1432 	SDT_MEMERA,		/* segment type */
1433 	SEL_UPL,		/* segment descriptor priority level */
1434 	1,			/* segment descriptor present */
1435 	1,			/* long */
1436 	0,			/* default 32 vs 16 bit size */
1437 	1  			/* limit granularity (byte/page units)*/ },
1438 /* GPROC0_SEL	6 Proc 0 Tss Descriptor */
1439 {
1440 	0x0,			/* segment base address */
1441 	sizeof(struct x86_64tss)-1,/* length - all address space */
1442 	SDT_SYSTSS,		/* segment type */
1443 	SEL_KPL,		/* segment descriptor priority level */
1444 	1,			/* segment descriptor present */
1445 	0,			/* long */
1446 	0,			/* unused - default 32 vs 16 bit size */
1447 	0  			/* limit granularity (byte/page units)*/ },
1448 /* Actually, the TSS is a system descriptor which is double size */
1449 {	0x0,			/* segment base address  */
1450 	0x0,			/* length */
1451 	0,			/* segment type */
1452 	0,			/* segment descriptor priority level */
1453 	0,			/* segment descriptor present */
1454 	0,			/* long */
1455 	0,			/* default 32 vs 16 bit size */
1456 	0  			/* limit granularity (byte/page units)*/ },
1457 /* GUGS32_SEL	8 32 bit GS Descriptor for user */
1458 {	0x0,			/* segment base address  */
1459 	0xfffff,		/* length - all address space */
1460 	SDT_MEMRWA,		/* segment type */
1461 	SEL_UPL,		/* segment descriptor priority level */
1462 	1,			/* segment descriptor present */
1463 	0,			/* long */
1464 	1,			/* default 32 vs 16 bit size */
1465 	1  			/* limit granularity (byte/page units)*/ },
1466 };
1467 
1468 void
1469 setidt_global(int idx, inthand_t *func, int typ, int dpl, int ist)
1470 {
1471 	int cpu;
1472 
1473 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
1474 		struct gate_descriptor *ip = &idt_arr[cpu][idx];
1475 
1476 		ip->gd_looffset = (uintptr_t)func;
1477 		ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1478 		ip->gd_ist = ist;
1479 		ip->gd_xx = 0;
1480 		ip->gd_type = typ;
1481 		ip->gd_dpl = dpl;
1482 		ip->gd_p = 1;
1483 		ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1484 	}
1485 }
1486 
1487 void
1488 setidt(int idx, inthand_t *func, int typ, int dpl, int ist, int cpu)
1489 {
1490 	struct gate_descriptor *ip;
1491 
1492 	KASSERT(cpu >= 0 && cpu < ncpus, ("invalid cpu %d", cpu));
1493 
1494 	ip = &idt_arr[cpu][idx];
1495 	ip->gd_looffset = (uintptr_t)func;
1496 	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1497 	ip->gd_ist = ist;
1498 	ip->gd_xx = 0;
1499 	ip->gd_type = typ;
1500 	ip->gd_dpl = dpl;
1501 	ip->gd_p = 1;
1502 	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1503 }
1504 
1505 #define	IDTVEC(name)	__CONCAT(X,name)
1506 
1507 extern inthand_t
1508 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1509 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1510 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1511 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1512 	IDTVEC(xmm), IDTVEC(dblfault),
1513 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1514 
1515 void
1516 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1517 {
1518 	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1519 	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1520 	ssd->ssd_type  = sd->sd_type;
1521 	ssd->ssd_dpl   = sd->sd_dpl;
1522 	ssd->ssd_p     = sd->sd_p;
1523 	ssd->ssd_def32 = sd->sd_def32;
1524 	ssd->ssd_gran  = sd->sd_gran;
1525 }
1526 
1527 void
1528 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1529 {
1530 
1531 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1532 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1533 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1534 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1535 	sd->sd_type  = ssd->ssd_type;
1536 	sd->sd_dpl   = ssd->ssd_dpl;
1537 	sd->sd_p     = ssd->ssd_p;
1538 	sd->sd_long  = ssd->ssd_long;
1539 	sd->sd_def32 = ssd->ssd_def32;
1540 	sd->sd_gran  = ssd->ssd_gran;
1541 }
1542 
1543 void
1544 ssdtosyssd(struct soft_segment_descriptor *ssd,
1545     struct system_segment_descriptor *sd)
1546 {
1547 
1548 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1549 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1550 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1551 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1552 	sd->sd_type  = ssd->ssd_type;
1553 	sd->sd_dpl   = ssd->ssd_dpl;
1554 	sd->sd_p     = ssd->ssd_p;
1555 	sd->sd_gran  = ssd->ssd_gran;
1556 }
1557 
1558 /*
1559  * Populate the (physmap) array with base/bound pairs describing the
1560  * available physical memory in the system, then test this memory and
1561  * build the phys_avail array describing the actually-available memory.
1562  *
1563  * If we cannot accurately determine the physical memory map, then use
1564  * value from the 0xE801 call, and failing that, the RTC.
1565  *
1566  * Total memory size may be set by the kernel environment variable
1567  * hw.physmem or the compile-time define MAXMEM.
1568  *
1569  * Memory is aligned to PHYSMAP_ALIGN which must be a multiple
1570  * of PAGE_SIZE.  This also greatly reduces the memory test time
1571  * which would otherwise be excessive on machines with > 8G of ram.
1572  *
1573  * XXX first should be vm_paddr_t.
1574  */
1575 
1576 #define PHYSMAP_ALIGN		(vm_paddr_t)(128 * 1024)
1577 #define PHYSMAP_ALIGN_MASK	(vm_paddr_t)(PHYSMAP_ALIGN - 1)
1578 	vm_paddr_t physmap[PHYSMAP_SIZE];
1579 	struct bios_smap *smapbase, *smap, *smapend;
1580 	struct efi_map_header *efihdrbase;
1581 	u_int32_t smapsize;
1582 
1583 static void
1584 add_smap_entries(int *physmap_idx)
1585 {
1586 	int i;
1587 
1588 	smapsize = *((u_int32_t *)smapbase - 1);
1589 	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1590 
1591 	for (smap = smapbase; smap < smapend; smap++) {
1592 		if (boothowto & RB_VERBOSE)
1593 			kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1594 			    smap->type, smap->base, smap->length);
1595 
1596 		if (smap->type != SMAP_TYPE_MEMORY)
1597 			continue;
1598 
1599 		if (smap->length == 0)
1600 			continue;
1601 
1602 		for (i = 0; i <= *physmap_idx; i += 2) {
1603 			if (smap->base < physmap[i + 1]) {
1604 				if (boothowto & RB_VERBOSE) {
1605 					kprintf("Overlapping or non-monotonic "
1606 						"memory region, ignoring "
1607 						"second region\n");
1608 				}
1609 				break;
1610 			}
1611 		}
1612 		if (i <= *physmap_idx)
1613 			continue;
1614 
1615 		Realmem += smap->length;
1616 
1617 		if (smap->base == physmap[*physmap_idx + 1]) {
1618 			physmap[*physmap_idx + 1] += smap->length;
1619 			continue;
1620 		}
1621 
1622 		*physmap_idx += 2;
1623 		if (*physmap_idx == PHYSMAP_SIZE) {
1624 			kprintf("Too many segments in the physical "
1625 				"address map, giving up\n");
1626 			break;
1627 		}
1628 		physmap[*physmap_idx] = smap->base;
1629 		physmap[*physmap_idx + 1] = smap->base + smap->length;
1630 	}
1631 }
1632 
1633 #define efi_next_descriptor(ptr, size) \
1634 	((struct efi_md *)(((uint8_t *) ptr) + size))
1635 
1636 static void
1637 add_efi_map_entries(int *physmap_idx)
1638 {
1639 	 struct efi_md *map, *p;
1640 	 const char *type;
1641 	 size_t efisz;
1642 	 int i, ndesc;
1643 
1644 	static const char *types[] = {
1645 		"Reserved",
1646 		"LoaderCode",
1647 		"LoaderData",
1648 		"BootServicesCode",
1649 		"BootServicesData",
1650 		"RuntimeServicesCode",
1651 		"RuntimeServicesData",
1652 		"ConventionalMemory",
1653 		"UnusableMemory",
1654 		"ACPIReclaimMemory",
1655 		"ACPIMemoryNVS",
1656 		"MemoryMappedIO",
1657 		"MemoryMappedIOPortSpace",
1658 		"PalCode"
1659 	 };
1660 
1661 	/*
1662 	 * Memory map data provided by UEFI via the GetMemoryMap
1663 	 * Boot Services API.
1664 	 */
1665 	efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
1666 	map = (struct efi_md *)((uint8_t *)efihdrbase + efisz);
1667 
1668 	if (efihdrbase->descriptor_size == 0)
1669 		return;
1670 	ndesc = efihdrbase->memory_size / efihdrbase->descriptor_size;
1671 
1672 	if (boothowto & RB_VERBOSE)
1673 		kprintf("%23s %12s %12s %8s %4s\n",
1674 		    "Type", "Physical", "Virtual", "#Pages", "Attr");
1675 
1676 	for (i = 0, p = map; i < ndesc; i++,
1677 	    p = efi_next_descriptor(p, efihdrbase->descriptor_size)) {
1678 		if (boothowto & RB_VERBOSE) {
1679 			if (p->md_type <= EFI_MD_TYPE_PALCODE)
1680 				type = types[p->md_type];
1681 			else
1682 				type = "<INVALID>";
1683 			kprintf("%23s %012lx %12p %08lx ", type, p->md_phys,
1684 			    p->md_virt, p->md_pages);
1685 			if (p->md_attr & EFI_MD_ATTR_UC)
1686 				kprintf("UC ");
1687 			if (p->md_attr & EFI_MD_ATTR_WC)
1688 				kprintf("WC ");
1689 			if (p->md_attr & EFI_MD_ATTR_WT)
1690 				kprintf("WT ");
1691 			if (p->md_attr & EFI_MD_ATTR_WB)
1692 				kprintf("WB ");
1693 			if (p->md_attr & EFI_MD_ATTR_UCE)
1694 				kprintf("UCE ");
1695 			if (p->md_attr & EFI_MD_ATTR_WP)
1696 				kprintf("WP ");
1697 			if (p->md_attr & EFI_MD_ATTR_RP)
1698 				kprintf("RP ");
1699 			if (p->md_attr & EFI_MD_ATTR_XP)
1700 				kprintf("XP ");
1701 			if (p->md_attr & EFI_MD_ATTR_RT)
1702 				kprintf("RUNTIME");
1703 			kprintf("\n");
1704 		}
1705 
1706 		switch (p->md_type) {
1707 		case EFI_MD_TYPE_CODE:
1708 		case EFI_MD_TYPE_DATA:
1709 		case EFI_MD_TYPE_BS_CODE:
1710 		case EFI_MD_TYPE_BS_DATA:
1711 		case EFI_MD_TYPE_FREE:
1712 			/*
1713 			 * We're allowed to use any entry with these types.
1714 			 */
1715 			break;
1716 		default:
1717 			continue;
1718 		}
1719 
1720 		Realmem += p->md_pages * PAGE_SIZE;
1721 
1722 		if (p->md_phys == physmap[*physmap_idx + 1]) {
1723 			physmap[*physmap_idx + 1] += p->md_pages * PAGE_SIZE;
1724 			continue;
1725 		}
1726 
1727 		*physmap_idx += 2;
1728 		if (*physmap_idx == PHYSMAP_SIZE) {
1729 			kprintf("Too many segments in the physical "
1730 				"address map, giving up\n");
1731 			break;
1732 		}
1733 		physmap[*physmap_idx] = p->md_phys;
1734 		physmap[*physmap_idx + 1] = p->md_phys + p->md_pages * PAGE_SIZE;
1735 	 }
1736 }
1737 
1738 struct fb_info efi_fb_info;
1739 static int have_efi_framebuffer = 0;
1740 
1741 static void
1742 efi_fb_init_vaddr(int direct_map)
1743 {
1744 	uint64_t sz;
1745 	vm_offset_t addr, v;
1746 
1747 	v = efi_fb_info.vaddr;
1748 	sz = efi_fb_info.stride * efi_fb_info.height;
1749 
1750 	if (direct_map) {
1751 		addr = PHYS_TO_DMAP(efi_fb_info.paddr);
1752 		if (addr >= DMAP_MIN_ADDRESS && addr + sz < DMAP_MAX_ADDRESS)
1753 			efi_fb_info.vaddr = addr;
1754 	} else {
1755 		efi_fb_info.vaddr = (vm_offset_t)pmap_mapdev_attr(
1756 		    efi_fb_info.paddr, sz, PAT_WRITE_COMBINING);
1757 	}
1758 
1759 	if (v == 0 && efi_fb_info.vaddr != 0)
1760 		memset((void *)efi_fb_info.vaddr, 0x77, sz);
1761 }
1762 
1763 int
1764 probe_efi_fb(int early)
1765 {
1766 	struct efi_fb	*efifb;
1767 	caddr_t		kmdp;
1768 
1769 	if (have_efi_framebuffer) {
1770 		if (!early &&
1771 		    (efi_fb_info.vaddr == 0 ||
1772 		     efi_fb_info.vaddr == PHYS_TO_DMAP(efi_fb_info.paddr)))
1773 			efi_fb_init_vaddr(0);
1774 		return 0;
1775 	}
1776 
1777 	kmdp = preload_search_by_type("elf kernel");
1778 	if (kmdp == NULL)
1779 		kmdp = preload_search_by_type("elf64 kernel");
1780 	efifb = (struct efi_fb *)preload_search_info(kmdp,
1781 	    MODINFO_METADATA | MODINFOMD_EFI_FB);
1782 	if (efifb == NULL)
1783 		return 1;
1784 
1785 	have_efi_framebuffer = 1;
1786 
1787 	efi_fb_info.is_vga_boot_display = 1;
1788 	efi_fb_info.width = efifb->fb_width;
1789 	efi_fb_info.height = efifb->fb_height;
1790 	efi_fb_info.stride = efifb->fb_stride * 4;
1791 	efi_fb_info.depth = 32;
1792 	efi_fb_info.paddr = efifb->fb_addr;
1793 	if (early) {
1794 		efi_fb_info.vaddr = 0;
1795 	} else {
1796 		efi_fb_init_vaddr(0);
1797 	}
1798 	efi_fb_info.restore = NULL;
1799 	efi_fb_info.device = NULL;
1800 
1801 	return 0;
1802 }
1803 
1804 static void
1805 efifb_startup(void *arg)
1806 {
1807 	probe_efi_fb(0);
1808 }
1809 
1810 SYSINIT(efi_fb_info, SI_BOOT1_POST, SI_ORDER_FIRST, efifb_startup, NULL);
1811 
1812 static void
1813 getmemsize(caddr_t kmdp, u_int64_t first)
1814 {
1815 	int off, physmap_idx, pa_indx, da_indx;
1816 	int i, j;
1817 	vm_paddr_t pa;
1818 	vm_paddr_t msgbuf_size;
1819 	u_long physmem_tunable;
1820 	pt_entry_t *pte;
1821 	quad_t dcons_addr, dcons_size;
1822 
1823 	bzero(physmap, sizeof(physmap));
1824 	physmap_idx = 0;
1825 
1826 	/*
1827 	 * get memory map from INT 15:E820, kindly supplied by the loader.
1828 	 *
1829 	 * subr_module.c says:
1830 	 * "Consumer may safely assume that size value precedes data."
1831 	 * ie: an int32_t immediately precedes smap.
1832 	 */
1833 	efihdrbase = (struct efi_map_header *)preload_search_info(kmdp,
1834 	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
1835 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1836 	    MODINFO_METADATA | MODINFOMD_SMAP);
1837 	if (smapbase == NULL && efihdrbase == NULL)
1838 		panic("No BIOS smap or EFI map info from loader!");
1839 
1840 	if (efihdrbase == NULL)
1841 		add_smap_entries(&physmap_idx);
1842 	else
1843 		add_efi_map_entries(&physmap_idx);
1844 
1845 	base_memory = physmap[1] / 1024;
1846 	/* make hole for AP bootstrap code */
1847 	physmap[1] = mp_bootaddress(base_memory);
1848 
1849 	/* Save EBDA address, if any */
1850 	ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
1851 	ebda_addr <<= 4;
1852 
1853 	/*
1854 	 * Maxmem isn't the "maximum memory", it's one larger than the
1855 	 * highest page of the physical address space.  It should be
1856 	 * called something like "Maxphyspage".  We may adjust this
1857 	 * based on ``hw.physmem'' and the results of the memory test.
1858 	 */
1859 	Maxmem = atop(physmap[physmap_idx + 1]);
1860 
1861 #ifdef MAXMEM
1862 	Maxmem = MAXMEM / 4;
1863 #endif
1864 
1865 	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1866 		Maxmem = atop(physmem_tunable);
1867 
1868 	/*
1869 	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1870 	 * in the system.
1871 	 */
1872 	if (Maxmem > atop(physmap[physmap_idx + 1]))
1873 		Maxmem = atop(physmap[physmap_idx + 1]);
1874 
1875 	/*
1876 	 * Blowing out the DMAP will blow up the system.
1877 	 */
1878 	if (Maxmem > atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS)) {
1879 		kprintf("Limiting Maxmem due to DMAP size\n");
1880 		Maxmem = atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS);
1881 	}
1882 
1883 	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1884 	    (boothowto & RB_VERBOSE)) {
1885 		kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
1886 	}
1887 
1888 	/*
1889 	 * Call pmap initialization to make new kernel address space
1890 	 *
1891 	 * Mask off page 0.
1892 	 */
1893 	pmap_bootstrap(&first);
1894 	physmap[0] = PAGE_SIZE;
1895 
1896 	/*
1897 	 * Align the physmap to PHYSMAP_ALIGN and cut out anything
1898 	 * exceeding Maxmem.
1899 	 */
1900 	for (i = j = 0; i <= physmap_idx; i += 2) {
1901 		if (physmap[i+1] > ptoa(Maxmem))
1902 			physmap[i+1] = ptoa(Maxmem);
1903 		physmap[i] = (physmap[i] + PHYSMAP_ALIGN_MASK) &
1904 			     ~PHYSMAP_ALIGN_MASK;
1905 		physmap[i+1] = physmap[i+1] & ~PHYSMAP_ALIGN_MASK;
1906 
1907 		physmap[j] = physmap[i];
1908 		physmap[j+1] = physmap[i+1];
1909 
1910 		if (physmap[i] < physmap[i+1])
1911 			j += 2;
1912 	}
1913 	physmap_idx = j - 2;
1914 
1915 	/*
1916 	 * Align anything else used in the validation loop.
1917 	 */
1918 	first = (first + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1919 
1920 	/*
1921 	 * Size up each available chunk of physical memory.
1922 	 */
1923 	pa_indx = 0;
1924 	da_indx = 1;
1925 	phys_avail[pa_indx++] = physmap[0];
1926 	phys_avail[pa_indx] = physmap[0];
1927 	dump_avail[da_indx] = physmap[0];
1928 	pte = CMAP1;
1929 
1930 	/*
1931 	 * Get dcons buffer address
1932 	 */
1933 	if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
1934 	    kgetenv_quad("dcons.size", &dcons_size) == 0)
1935 		dcons_addr = 0;
1936 
1937 	/*
1938 	 * Validate the physical memory.  The physical memory segments
1939 	 * have already been aligned to PHYSMAP_ALIGN which is a multiple
1940 	 * of PAGE_SIZE.
1941 	 */
1942 	for (i = 0; i <= physmap_idx; i += 2) {
1943 		vm_paddr_t end;
1944 
1945 		end = physmap[i + 1];
1946 
1947 		for (pa = physmap[i]; pa < end; pa += PHYSMAP_ALIGN) {
1948 			int tmp, page_bad, full;
1949 			int *ptr = (int *)CADDR1;
1950 
1951 			full = FALSE;
1952 			/*
1953 			 * block out kernel memory as not available.
1954 			 */
1955 			if (pa >= 0x200000 && pa < first)
1956 				goto do_dump_avail;
1957 
1958 			/*
1959 			 * block out dcons buffer
1960 			 */
1961 			if (dcons_addr > 0
1962 			    && pa >= trunc_page(dcons_addr)
1963 			    && pa < dcons_addr + dcons_size) {
1964 				goto do_dump_avail;
1965 			}
1966 
1967 			page_bad = FALSE;
1968 
1969 			/*
1970 			 * map page into kernel: valid, read/write,non-cacheable
1971 			 */
1972 			*pte = pa |
1973 			    kernel_pmap.pmap_bits[PG_V_IDX] |
1974 			    kernel_pmap.pmap_bits[PG_RW_IDX] |
1975 			    kernel_pmap.pmap_bits[PG_N_IDX];
1976 			cpu_invltlb();
1977 
1978 			tmp = *ptr;
1979 			/*
1980 			 * Test for alternating 1's and 0's
1981 			 */
1982 			*(volatile int *)ptr = 0xaaaaaaaa;
1983 			cpu_mfence();
1984 			if (*(volatile int *)ptr != 0xaaaaaaaa)
1985 				page_bad = TRUE;
1986 			/*
1987 			 * Test for alternating 0's and 1's
1988 			 */
1989 			*(volatile int *)ptr = 0x55555555;
1990 			cpu_mfence();
1991 			if (*(volatile int *)ptr != 0x55555555)
1992 				page_bad = TRUE;
1993 			/*
1994 			 * Test for all 1's
1995 			 */
1996 			*(volatile int *)ptr = 0xffffffff;
1997 			cpu_mfence();
1998 			if (*(volatile int *)ptr != 0xffffffff)
1999 				page_bad = TRUE;
2000 			/*
2001 			 * Test for all 0's
2002 			 */
2003 			*(volatile int *)ptr = 0x0;
2004 			cpu_mfence();
2005 			if (*(volatile int *)ptr != 0x0)
2006 				page_bad = TRUE;
2007 			/*
2008 			 * Restore original value.
2009 			 */
2010 			*ptr = tmp;
2011 
2012 			/*
2013 			 * Adjust array of valid/good pages.
2014 			 */
2015 			if (page_bad == TRUE)
2016 				continue;
2017 			/*
2018 			 * If this good page is a continuation of the
2019 			 * previous set of good pages, then just increase
2020 			 * the end pointer. Otherwise start a new chunk.
2021 			 * Note that "end" points one higher than end,
2022 			 * making the range >= start and < end.
2023 			 * If we're also doing a speculative memory
2024 			 * test and we at or past the end, bump up Maxmem
2025 			 * so that we keep going. The first bad page
2026 			 * will terminate the loop.
2027 			 */
2028 			if (phys_avail[pa_indx] == pa) {
2029 				phys_avail[pa_indx] += PHYSMAP_ALIGN;
2030 			} else {
2031 				pa_indx++;
2032 				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
2033 					kprintf(
2034 		"Too many holes in the physical address space, giving up\n");
2035 					pa_indx--;
2036 					full = TRUE;
2037 					goto do_dump_avail;
2038 				}
2039 				phys_avail[pa_indx++] = pa;
2040 				phys_avail[pa_indx] = pa + PHYSMAP_ALIGN;
2041 			}
2042 			physmem += PHYSMAP_ALIGN / PAGE_SIZE;
2043 do_dump_avail:
2044 			if (dump_avail[da_indx] == pa) {
2045 				dump_avail[da_indx] += PHYSMAP_ALIGN;
2046 			} else {
2047 				da_indx++;
2048 				if (da_indx == DUMP_AVAIL_ARRAY_END) {
2049 					da_indx--;
2050 					goto do_next;
2051 				}
2052 				dump_avail[da_indx++] = pa;
2053 				dump_avail[da_indx] = pa + PHYSMAP_ALIGN;
2054 			}
2055 do_next:
2056 			if (full)
2057 				break;
2058 		}
2059 	}
2060 	*pte = 0;
2061 	cpu_invltlb();
2062 
2063 	/*
2064 	 * The last chunk must contain at least one page plus the message
2065 	 * buffer to avoid complicating other code (message buffer address
2066 	 * calculation, etc.).
2067 	 */
2068 	msgbuf_size = (MSGBUF_SIZE + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
2069 
2070 	while (phys_avail[pa_indx - 1] + PHYSMAP_ALIGN +
2071 	       msgbuf_size >= phys_avail[pa_indx]) {
2072 		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
2073 		phys_avail[pa_indx--] = 0;
2074 		phys_avail[pa_indx--] = 0;
2075 	}
2076 
2077 	Maxmem = atop(phys_avail[pa_indx]);
2078 
2079 	/* Trim off space for the message buffer. */
2080 	phys_avail[pa_indx] -= msgbuf_size;
2081 
2082 	avail_end = phys_avail[pa_indx];
2083 
2084 	/* Map the message buffer. */
2085 	for (off = 0; off < msgbuf_size; off += PAGE_SIZE) {
2086 		pmap_kenter((vm_offset_t)msgbufp + off,
2087 			    phys_avail[pa_indx] + off);
2088 	}
2089 	/* Try to get EFI framebuffer working as early as possible */
2090 	if (have_efi_framebuffer)
2091 		efi_fb_init_vaddr(1);
2092 }
2093 
2094 struct machintr_abi MachIntrABI;
2095 
2096 /*
2097  * IDT VECTORS:
2098  *	0	Divide by zero
2099  *	1	Debug
2100  *	2	NMI
2101  *	3	BreakPoint
2102  *	4	OverFlow
2103  *	5	Bound-Range
2104  *	6	Invalid OpCode
2105  *	7	Device Not Available (x87)
2106  *	8	Double-Fault
2107  *	9	Coprocessor Segment overrun (unsupported, reserved)
2108  *	10	Invalid-TSS
2109  *	11	Segment not present
2110  *	12	Stack
2111  *	13	General Protection
2112  *	14	Page Fault
2113  *	15	Reserved
2114  *	16	x87 FP Exception pending
2115  *	17	Alignment Check
2116  *	18	Machine Check
2117  *	19	SIMD floating point
2118  *	20-31	reserved
2119  *	32-255	INTn/external sources
2120  */
2121 u_int64_t
2122 hammer_time(u_int64_t modulep, u_int64_t physfree)
2123 {
2124 	caddr_t kmdp;
2125 	int gsel_tss, x, cpu;
2126 #if 0 /* JG */
2127 	int metadata_missing, off;
2128 #endif
2129 	struct mdglobaldata *gd;
2130 	u_int64_t msr;
2131 
2132 	/*
2133 	 * Prevent lowering of the ipl if we call tsleep() early.
2134 	 */
2135 	gd = &CPU_prvspace[0]->mdglobaldata;
2136 	bzero(gd, sizeof(*gd));
2137 
2138 	/*
2139 	 * Note: on both UP and SMP curthread must be set non-NULL
2140 	 * early in the boot sequence because the system assumes
2141 	 * that 'curthread' is never NULL.
2142 	 */
2143 
2144 	gd->mi.gd_curthread = &thread0;
2145 	thread0.td_gd = &gd->mi;
2146 
2147 	atdevbase = ISA_HOLE_START + PTOV_OFFSET;
2148 
2149 #if 0 /* JG */
2150 	metadata_missing = 0;
2151 	if (bootinfo.bi_modulep) {
2152 		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
2153 		preload_bootstrap_relocate(KERNBASE);
2154 	} else {
2155 		metadata_missing = 1;
2156 	}
2157 	if (bootinfo.bi_envp)
2158 		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
2159 #endif
2160 
2161 	preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
2162 	preload_bootstrap_relocate(PTOV_OFFSET);
2163 	kmdp = preload_search_by_type("elf kernel");
2164 	if (kmdp == NULL)
2165 		kmdp = preload_search_by_type("elf64 kernel");
2166 	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
2167 	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
2168 #ifdef DDB
2169 	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
2170 	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
2171 #endif
2172 
2173 	if (boothowto & RB_VERBOSE)
2174 		bootverbose++;
2175 
2176 	/*
2177 	 * Default MachIntrABI to ICU
2178 	 */
2179 	MachIntrABI = MachIntrABI_ICU;
2180 
2181 	/*
2182 	 * start with one cpu.  Note: with one cpu, ncpus2_shift, ncpus2_mask,
2183 	 * and ncpus_fit_mask remain 0.
2184 	 */
2185 	ncpus = 1;
2186 	ncpus2 = 1;
2187 	ncpus_fit = 1;
2188 	/* Init basic tunables, hz etc */
2189 	init_param1();
2190 
2191 	/*
2192 	 * make gdt memory segments
2193 	 */
2194 	gdt_segs[GPROC0_SEL].ssd_base =
2195 		(uintptr_t) &CPU_prvspace[0]->mdglobaldata.gd_common_tss;
2196 
2197 	gd->mi.gd_prvspace = CPU_prvspace[0];
2198 
2199 	for (x = 0; x < NGDT; x++) {
2200 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
2201 			ssdtosd(&gdt_segs[x], &gdt[x]);
2202 	}
2203 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2204 	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
2205 
2206 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
2207 	r_gdt.rd_base =  (long) gdt;
2208 	lgdt(&r_gdt);
2209 
2210 	wrmsr(MSR_FSBASE, 0);		/* User value */
2211 	wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
2212 	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
2213 
2214 	mi_gdinit(&gd->mi, 0);
2215 	cpu_gdinit(gd, 0);
2216 	proc0paddr = proc0paddr_buff;
2217 	mi_proc0init(&gd->mi, proc0paddr);
2218 	safepri = TDPRI_MAX;
2219 
2220 	/* spinlocks and the BGL */
2221 	init_locks();
2222 
2223 	/* exceptions */
2224 	for (x = 0; x < NIDT; x++)
2225 		setidt_global(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
2226 	setidt_global(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
2227 	setidt_global(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
2228 	setidt_global(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 1);
2229  	setidt_global(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
2230 	setidt_global(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
2231 	setidt_global(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
2232 	setidt_global(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
2233 	setidt_global(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
2234 	setidt_global(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
2235 	setidt_global(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
2236 	setidt_global(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
2237 	setidt_global(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
2238 	setidt_global(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
2239 	setidt_global(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
2240 	setidt_global(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
2241 	setidt_global(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
2242 	setidt_global(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
2243 	setidt_global(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
2244 	setidt_global(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
2245 
2246 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
2247 		r_idt_arr[cpu].rd_limit = sizeof(idt_arr[cpu]) - 1;
2248 		r_idt_arr[cpu].rd_base = (long) &idt_arr[cpu][0];
2249 	}
2250 
2251 	lidt(&r_idt_arr[0]);
2252 
2253 	/*
2254 	 * Initialize the console before we print anything out.
2255 	 */
2256 	cninit();
2257 
2258 #if 0 /* JG */
2259 	if (metadata_missing)
2260 		kprintf("WARNING: loader(8) metadata is missing!\n");
2261 #endif
2262 
2263 #if	NISA >0
2264 	elcr_probe();
2265 	isa_defaultirq();
2266 #endif
2267 	rand_initialize();
2268 
2269 	/*
2270 	 * Initialize IRQ mapping
2271 	 *
2272 	 * NOTE:
2273 	 * SHOULD be after elcr_probe()
2274 	 */
2275 	MachIntrABI_ICU.initmap();
2276 	MachIntrABI_IOAPIC.initmap();
2277 
2278 #ifdef DDB
2279 	kdb_init();
2280 	if (boothowto & RB_KDB)
2281 		Debugger("Boot flags requested debugger");
2282 #endif
2283 
2284 #if 0 /* JG */
2285 	finishidentcpu();	/* Final stage of CPU initialization */
2286 	setidt(6, &IDTVEC(ill),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2287 	setidt(13, &IDTVEC(prot),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2288 #endif
2289 	identify_cpu();		/* Final stage of CPU initialization */
2290 	initializecpu(0);	/* Initialize CPU registers */
2291 
2292 	/*
2293 	 * On modern intel cpus, haswell or later, cpu_idle_hlt=1 is better
2294 	 * becaue the cpu does significant power management in HLT
2295 	 * (also suggested is to set sysctl machdep.mwait.CX.idle=AUTODEEP).
2296 	 *
2297 	 * On modern amd cpus or on any older amd or intel cpu,
2298 	 * cpu_idle_hlt=2 is better because ACPI is needed to reduce power
2299 	 * consumption.
2300 	 */
2301 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
2302 	    CPUID_TO_MODEL(cpu_id) >= 0x3C) {	/* Haswell or later */
2303 		cpu_idle_hlt = 1;
2304 	}
2305 
2306 	TUNABLE_INT_FETCH("hw.apic_io_enable", &ioapic_enable); /* for compat */
2307 	TUNABLE_INT_FETCH("hw.ioapic_enable", &ioapic_enable);
2308 	TUNABLE_INT_FETCH("hw.lapic_enable", &lapic_enable);
2309 	TUNABLE_INT_FETCH("machdep.cpu_idle_hlt", &cpu_idle_hlt);
2310 
2311 	/*
2312 	 * Some of the virtual machines do not work w/ I/O APIC
2313 	 * enabled.  If the user does not explicitly enable or
2314 	 * disable the I/O APIC (ioapic_enable < 0), then we
2315 	 * disable I/O APIC on all virtual machines.
2316 	 *
2317 	 * NOTE:
2318 	 * This must be done after identify_cpu(), which sets
2319 	 * 'cpu_feature2'
2320 	 */
2321 	if (ioapic_enable < 0) {
2322 		if (cpu_feature2 & CPUID2_VMM)
2323 			ioapic_enable = 0;
2324 		else
2325 			ioapic_enable = 1;
2326 	}
2327 
2328 	/* make an initial tss so cpu can get interrupt stack on syscall! */
2329 	gd->gd_common_tss.tss_rsp0 =
2330 		(register_t)(thread0.td_kstack +
2331 			     KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb));
2332 	/* Ensure the stack is aligned to 16 bytes */
2333 	gd->gd_common_tss.tss_rsp0 &= ~(register_t)0xF;
2334 
2335 	/* double fault stack */
2336 	gd->gd_common_tss.tss_ist1 =
2337 		(long)&gd->mi.gd_prvspace->idlestack[
2338 			sizeof(gd->mi.gd_prvspace->idlestack)];
2339 
2340 	/* Set the IO permission bitmap (empty due to tss seg limit) */
2341 	gd->gd_common_tss.tss_iobase = sizeof(struct x86_64tss);
2342 
2343 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2344 	gd->gd_tss_gdt = &gdt[GPROC0_SEL];
2345 	gd->gd_common_tssd = *gd->gd_tss_gdt;
2346 	ltr(gsel_tss);
2347 
2348 	/* Set up the fast syscall stuff */
2349 	msr = rdmsr(MSR_EFER) | EFER_SCE;
2350 	wrmsr(MSR_EFER, msr);
2351 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
2352 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
2353 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
2354 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
2355 	wrmsr(MSR_STAR, msr);
2356 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
2357 
2358 	getmemsize(kmdp, physfree);
2359 	init_param2(physmem);
2360 
2361 	/* now running on new page tables, configured,and u/iom is accessible */
2362 
2363 	/* Map the message buffer. */
2364 #if 0 /* JG */
2365 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2366 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2367 #endif
2368 
2369 	msgbufinit(msgbufp, MSGBUF_SIZE);
2370 
2371 
2372 	/* transfer to user mode */
2373 
2374 	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2375 	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2376 	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
2377 
2378 	load_ds(_udatasel);
2379 	load_es(_udatasel);
2380 	load_fs(_udatasel);
2381 
2382 	/* setup proc 0's pcb */
2383 	thread0.td_pcb->pcb_flags = 0;
2384 	thread0.td_pcb->pcb_cr3 = KPML4phys;
2385 	thread0.td_pcb->pcb_ext = NULL;
2386 	lwp0.lwp_md.md_regs = &proc0_tf;	/* XXX needed? */
2387 
2388 	/* Location of kernel stack for locore */
2389 	return ((u_int64_t)thread0.td_pcb);
2390 }
2391 
2392 /*
2393  * Initialize machine-dependant portions of the global data structure.
2394  * Note that the global data area and cpu0's idlestack in the private
2395  * data space were allocated in locore.
2396  *
2397  * Note: the idlethread's cpl is 0
2398  *
2399  * WARNING!  Called from early boot, 'mycpu' may not work yet.
2400  */
2401 void
2402 cpu_gdinit(struct mdglobaldata *gd, int cpu)
2403 {
2404 	if (cpu)
2405 		gd->mi.gd_curthread = &gd->mi.gd_idlethread;
2406 
2407 	lwkt_init_thread(&gd->mi.gd_idlethread,
2408 			gd->mi.gd_prvspace->idlestack,
2409 			sizeof(gd->mi.gd_prvspace->idlestack),
2410 			0, &gd->mi);
2411 	lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
2412 	gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
2413 	gd->mi.gd_idlethread.td_sp -= sizeof(void *);
2414 	*(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
2415 }
2416 
2417 /*
2418  * We only have to check for DMAP bounds, the globaldata space is
2419  * actually part of the kernel_map so we don't have to waste time
2420  * checking CPU_prvspace[*].
2421  */
2422 int
2423 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
2424 {
2425 #if 0
2426 	if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
2427 	    eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
2428 		return (TRUE);
2429 	}
2430 #endif
2431 	if (saddr >= DMAP_MIN_ADDRESS && eaddr <= DMAP_MAX_ADDRESS)
2432 		return (TRUE);
2433 	return (FALSE);
2434 }
2435 
2436 struct globaldata *
2437 globaldata_find(int cpu)
2438 {
2439 	KKASSERT(cpu >= 0 && cpu < ncpus);
2440 	return(&CPU_prvspace[cpu]->mdglobaldata.mi);
2441 }
2442 
2443 /*
2444  * This path should be safe from the SYSRET issue because only stopped threads
2445  * can have their %rip adjusted this way (and all heavy weight thread switches
2446  * clear QUICKREF and thus do not use SYSRET).  However, the code path is
2447  * convoluted so add a safety by forcing %rip to be cannonical.
2448  */
2449 int
2450 ptrace_set_pc(struct lwp *lp, unsigned long addr)
2451 {
2452 	if (addr & 0x0000800000000000LLU)
2453 		lp->lwp_md.md_regs->tf_rip = addr | 0xFFFF000000000000LLU;
2454 	else
2455 		lp->lwp_md.md_regs->tf_rip = addr & 0x0000FFFFFFFFFFFFLLU;
2456 	return (0);
2457 }
2458 
2459 int
2460 ptrace_single_step(struct lwp *lp)
2461 {
2462 	lp->lwp_md.md_regs->tf_rflags |= PSL_T;
2463 	return (0);
2464 }
2465 
2466 int
2467 fill_regs(struct lwp *lp, struct reg *regs)
2468 {
2469 	struct trapframe *tp;
2470 
2471 	if ((tp = lp->lwp_md.md_regs) == NULL)
2472 		return EINVAL;
2473 	bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
2474 	return (0);
2475 }
2476 
2477 int
2478 set_regs(struct lwp *lp, struct reg *regs)
2479 {
2480 	struct trapframe *tp;
2481 
2482 	tp = lp->lwp_md.md_regs;
2483 	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
2484 	    !CS_SECURE(regs->r_cs))
2485 		return (EINVAL);
2486 	bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
2487 	clear_quickret();
2488 	return (0);
2489 }
2490 
2491 static void
2492 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2493 {
2494 	struct env87 *penv_87 = &sv_87->sv_env;
2495 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2496 	int i;
2497 
2498 	/* FPU control/status */
2499 	penv_87->en_cw = penv_xmm->en_cw;
2500 	penv_87->en_sw = penv_xmm->en_sw;
2501 	penv_87->en_tw = penv_xmm->en_tw;
2502 	penv_87->en_fip = penv_xmm->en_fip;
2503 	penv_87->en_fcs = penv_xmm->en_fcs;
2504 	penv_87->en_opcode = penv_xmm->en_opcode;
2505 	penv_87->en_foo = penv_xmm->en_foo;
2506 	penv_87->en_fos = penv_xmm->en_fos;
2507 
2508 	/* FPU registers */
2509 	for (i = 0; i < 8; ++i)
2510 		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2511 }
2512 
2513 static void
2514 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2515 {
2516 	struct env87 *penv_87 = &sv_87->sv_env;
2517 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2518 	int i;
2519 
2520 	/* FPU control/status */
2521 	penv_xmm->en_cw = penv_87->en_cw;
2522 	penv_xmm->en_sw = penv_87->en_sw;
2523 	penv_xmm->en_tw = penv_87->en_tw;
2524 	penv_xmm->en_fip = penv_87->en_fip;
2525 	penv_xmm->en_fcs = penv_87->en_fcs;
2526 	penv_xmm->en_opcode = penv_87->en_opcode;
2527 	penv_xmm->en_foo = penv_87->en_foo;
2528 	penv_xmm->en_fos = penv_87->en_fos;
2529 
2530 	/* FPU registers */
2531 	for (i = 0; i < 8; ++i)
2532 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2533 }
2534 
2535 int
2536 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2537 {
2538 	if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
2539 		return EINVAL;
2540 	if (cpu_fxsr) {
2541 		fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2542 				(struct save87 *)fpregs);
2543 		return (0);
2544 	}
2545 	bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2546 	return (0);
2547 }
2548 
2549 int
2550 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2551 {
2552 	if (cpu_fxsr) {
2553 		set_fpregs_xmm((struct save87 *)fpregs,
2554 			       &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2555 		return (0);
2556 	}
2557 	bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2558 	return (0);
2559 }
2560 
2561 int
2562 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2563 {
2564 	struct pcb *pcb;
2565 
2566         if (lp == NULL) {
2567                 dbregs->dr[0] = rdr0();
2568                 dbregs->dr[1] = rdr1();
2569                 dbregs->dr[2] = rdr2();
2570                 dbregs->dr[3] = rdr3();
2571                 dbregs->dr[4] = rdr4();
2572                 dbregs->dr[5] = rdr5();
2573                 dbregs->dr[6] = rdr6();
2574                 dbregs->dr[7] = rdr7();
2575 		return (0);
2576         }
2577 	if (lp->lwp_thread == NULL || (pcb = lp->lwp_thread->td_pcb) == NULL)
2578 		return EINVAL;
2579 	dbregs->dr[0] = pcb->pcb_dr0;
2580 	dbregs->dr[1] = pcb->pcb_dr1;
2581 	dbregs->dr[2] = pcb->pcb_dr2;
2582 	dbregs->dr[3] = pcb->pcb_dr3;
2583 	dbregs->dr[4] = 0;
2584 	dbregs->dr[5] = 0;
2585 	dbregs->dr[6] = pcb->pcb_dr6;
2586 	dbregs->dr[7] = pcb->pcb_dr7;
2587 	return (0);
2588 }
2589 
2590 int
2591 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2592 {
2593 	if (lp == NULL) {
2594 		load_dr0(dbregs->dr[0]);
2595 		load_dr1(dbregs->dr[1]);
2596 		load_dr2(dbregs->dr[2]);
2597 		load_dr3(dbregs->dr[3]);
2598 		load_dr4(dbregs->dr[4]);
2599 		load_dr5(dbregs->dr[5]);
2600 		load_dr6(dbregs->dr[6]);
2601 		load_dr7(dbregs->dr[7]);
2602 	} else {
2603 		struct pcb *pcb;
2604 		struct ucred *ucred;
2605 		int i;
2606 		uint64_t mask1, mask2;
2607 
2608 		/*
2609 		 * Don't let an illegal value for dr7 get set.	Specifically,
2610 		 * check for undefined settings.  Setting these bit patterns
2611 		 * result in undefined behaviour and can lead to an unexpected
2612 		 * TRCTRAP.
2613 		 */
2614 		/* JG this loop looks unreadable */
2615 		/* Check 4 2-bit fields for invalid patterns.
2616 		 * These fields are R/Wi, for i = 0..3
2617 		 */
2618 		/* Is 10 in LENi allowed when running in compatibility mode? */
2619 		/* Pattern 10 in R/Wi might be used to indicate
2620 		 * breakpoint on I/O. Further analysis should be
2621 		 * carried to decide if it is safe and useful to
2622 		 * provide access to that capability
2623 		 */
2624 		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2625 		     i++, mask1 <<= 4, mask2 <<= 4)
2626 			if ((dbregs->dr[7] & mask1) == mask2)
2627 				return (EINVAL);
2628 
2629 		pcb = lp->lwp_thread->td_pcb;
2630 		ucred = lp->lwp_proc->p_ucred;
2631 
2632 		/*
2633 		 * Don't let a process set a breakpoint that is not within the
2634 		 * process's address space.  If a process could do this, it
2635 		 * could halt the system by setting a breakpoint in the kernel
2636 		 * (if ddb was enabled).  Thus, we need to check to make sure
2637 		 * that no breakpoints are being enabled for addresses outside
2638 		 * process's address space, unless, perhaps, we were called by
2639 		 * uid 0.
2640 		 *
2641 		 * XXX - what about when the watched area of the user's
2642 		 * address space is written into from within the kernel
2643 		 * ... wouldn't that still cause a breakpoint to be generated
2644 		 * from within kernel mode?
2645 		 */
2646 
2647 		if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2648 			if (dbregs->dr[7] & 0x3) {
2649 				/* dr0 is enabled */
2650 				if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2651 					return (EINVAL);
2652 			}
2653 
2654 			if (dbregs->dr[7] & (0x3<<2)) {
2655 				/* dr1 is enabled */
2656 				if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2657 					return (EINVAL);
2658 			}
2659 
2660 			if (dbregs->dr[7] & (0x3<<4)) {
2661 				/* dr2 is enabled */
2662 				if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2663 					return (EINVAL);
2664 			}
2665 
2666 			if (dbregs->dr[7] & (0x3<<6)) {
2667 				/* dr3 is enabled */
2668 				if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2669 					return (EINVAL);
2670 			}
2671 		}
2672 
2673 		pcb->pcb_dr0 = dbregs->dr[0];
2674 		pcb->pcb_dr1 = dbregs->dr[1];
2675 		pcb->pcb_dr2 = dbregs->dr[2];
2676 		pcb->pcb_dr3 = dbregs->dr[3];
2677 		pcb->pcb_dr6 = dbregs->dr[6];
2678 		pcb->pcb_dr7 = dbregs->dr[7];
2679 
2680 		pcb->pcb_flags |= PCB_DBREGS;
2681 	}
2682 
2683 	return (0);
2684 }
2685 
2686 /*
2687  * Return > 0 if a hardware breakpoint has been hit, and the
2688  * breakpoint was in user space.  Return 0, otherwise.
2689  */
2690 int
2691 user_dbreg_trap(void)
2692 {
2693         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2694         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2695         int nbp;            /* number of breakpoints that triggered */
2696         caddr_t addr[4];    /* breakpoint addresses */
2697         int i;
2698 
2699         dr7 = rdr7();
2700         if ((dr7 & 0xff) == 0) {
2701                 /*
2702                  * all GE and LE bits in the dr7 register are zero,
2703                  * thus the trap couldn't have been caused by the
2704                  * hardware debug registers
2705                  */
2706                 return 0;
2707         }
2708 
2709         nbp = 0;
2710         dr6 = rdr6();
2711         bp = dr6 & 0xf;
2712 
2713         if (bp == 0) {
2714                 /*
2715                  * None of the breakpoint bits are set meaning this
2716                  * trap was not caused by any of the debug registers
2717                  */
2718                 return 0;
2719         }
2720 
2721         /*
2722          * at least one of the breakpoints were hit, check to see
2723          * which ones and if any of them are user space addresses
2724          */
2725 
2726         if (bp & 0x01) {
2727                 addr[nbp++] = (caddr_t)rdr0();
2728         }
2729         if (bp & 0x02) {
2730                 addr[nbp++] = (caddr_t)rdr1();
2731         }
2732         if (bp & 0x04) {
2733                 addr[nbp++] = (caddr_t)rdr2();
2734         }
2735         if (bp & 0x08) {
2736                 addr[nbp++] = (caddr_t)rdr3();
2737         }
2738 
2739         for (i=0; i<nbp; i++) {
2740                 if (addr[i] <
2741                     (caddr_t)VM_MAX_USER_ADDRESS) {
2742                         /*
2743                          * addr[i] is in user space
2744                          */
2745                         return nbp;
2746                 }
2747         }
2748 
2749         /*
2750          * None of the breakpoints are in user space.
2751          */
2752         return 0;
2753 }
2754 
2755 
2756 #ifndef DDB
2757 void
2758 Debugger(const char *msg)
2759 {
2760 	kprintf("Debugger(\"%s\") called.\n", msg);
2761 }
2762 #endif /* no DDB */
2763 
2764 #ifdef DDB
2765 
2766 /*
2767  * Provide inb() and outb() as functions.  They are normally only
2768  * available as macros calling inlined functions, thus cannot be
2769  * called inside DDB.
2770  *
2771  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2772  */
2773 
2774 #undef inb
2775 #undef outb
2776 
2777 /* silence compiler warnings */
2778 u_char inb(u_int);
2779 void outb(u_int, u_char);
2780 
2781 u_char
2782 inb(u_int port)
2783 {
2784 	u_char	data;
2785 	/*
2786 	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2787 	 * %edx, while gcc generates inferior code (movw instead of movl)
2788 	 * if we tell it to load (u_short) port.
2789 	 */
2790 	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2791 	return (data);
2792 }
2793 
2794 void
2795 outb(u_int port, u_char data)
2796 {
2797 	u_char	al;
2798 	/*
2799 	 * Use an unnecessary assignment to help gcc's register allocator.
2800 	 * This make a large difference for gcc-1.40 and a tiny difference
2801 	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2802 	 * best results.  gcc-2.6.0 can't handle this.
2803 	 */
2804 	al = data;
2805 	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2806 }
2807 
2808 #endif /* DDB */
2809 
2810 
2811 
2812 /*
2813  * initialize all the SMP locks
2814  */
2815 
2816 /* critical region when masking or unmasking interupts */
2817 struct spinlock_deprecated imen_spinlock;
2818 
2819 /* lock region used by kernel profiling */
2820 struct spinlock_deprecated mcount_spinlock;
2821 
2822 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2823 struct spinlock_deprecated com_spinlock;
2824 
2825 /* lock regions around the clock hardware */
2826 struct spinlock_deprecated clock_spinlock;
2827 
2828 static void
2829 init_locks(void)
2830 {
2831 	/*
2832 	 * Get the initial mplock with a count of 1 for the BSP.
2833 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
2834 	 */
2835 	cpu_get_initial_mplock();
2836 	/* DEPRECATED */
2837 	spin_init_deprecated(&mcount_spinlock);
2838 	spin_init_deprecated(&imen_spinlock);
2839 	spin_init_deprecated(&com_spinlock);
2840 	spin_init_deprecated(&clock_spinlock);
2841 
2842 	/* our token pool needs to work early */
2843 	lwkt_token_pool_init();
2844 }
2845 
2846 boolean_t
2847 cpu_mwait_hint_valid(uint32_t hint)
2848 {
2849 	int cx_idx, sub;
2850 
2851 	cx_idx = MWAIT_EAX_TO_CX(hint);
2852 	if (cx_idx >= CPU_MWAIT_CX_MAX)
2853 		return FALSE;
2854 
2855 	sub = MWAIT_EAX_TO_CX_SUB(hint);
2856 	if (sub >= cpu_mwait_cx_info[cx_idx].subcnt)
2857 		return FALSE;
2858 
2859 	return TRUE;
2860 }
2861 
2862 void
2863 cpu_mwait_cx_no_bmsts(void)
2864 {
2865 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_STS);
2866 }
2867 
2868 void
2869 cpu_mwait_cx_no_bmarb(void)
2870 {
2871 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_ARB);
2872 }
2873 
2874 static int
2875 cpu_mwait_cx_hint2name(int hint, char *name, int namelen, boolean_t allow_auto)
2876 {
2877 	int old_cx_idx, sub = 0;
2878 
2879 	if (hint >= 0) {
2880 		old_cx_idx = MWAIT_EAX_TO_CX(hint);
2881 		sub = MWAIT_EAX_TO_CX_SUB(hint);
2882 	} else if (hint == CPU_MWAIT_HINT_AUTO) {
2883 		old_cx_idx = allow_auto ? CPU_MWAIT_C2 : CPU_MWAIT_CX_MAX;
2884 	} else if (hint == CPU_MWAIT_HINT_AUTODEEP) {
2885 		old_cx_idx = allow_auto ? CPU_MWAIT_C3 : CPU_MWAIT_CX_MAX;
2886 	} else {
2887 		old_cx_idx = CPU_MWAIT_CX_MAX;
2888 	}
2889 
2890 	if (!CPU_MWAIT_HAS_CX)
2891 		strlcpy(name, "NONE", namelen);
2892 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTO)
2893 		strlcpy(name, "AUTO", namelen);
2894 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTODEEP)
2895 		strlcpy(name, "AUTODEEP", namelen);
2896 	else if (old_cx_idx >= CPU_MWAIT_CX_MAX ||
2897 	    sub >= cpu_mwait_cx_info[old_cx_idx].subcnt)
2898 		strlcpy(name, "INVALID", namelen);
2899 	else
2900 		ksnprintf(name, namelen, "C%d/%d", old_cx_idx, sub);
2901 
2902 	return old_cx_idx;
2903 }
2904 
2905 static int
2906 cpu_mwait_cx_name2hint(char *name, int *hint0, boolean_t allow_auto)
2907 {
2908 	int cx_idx, sub, hint;
2909 	char *ptr, *start;
2910 
2911 	if (allow_auto && strcmp(name, "AUTO") == 0) {
2912 		hint = CPU_MWAIT_HINT_AUTO;
2913 		cx_idx = CPU_MWAIT_C2;
2914 		goto done;
2915 	}
2916 	if (allow_auto && strcmp(name, "AUTODEEP") == 0) {
2917 		hint = CPU_MWAIT_HINT_AUTODEEP;
2918 		cx_idx = CPU_MWAIT_C3;
2919 		goto done;
2920 	}
2921 
2922 	if (strlen(name) < 4 || toupper(name[0]) != 'C')
2923 		return -1;
2924 	start = &name[1];
2925 	ptr = NULL;
2926 
2927 	cx_idx = strtol(start, &ptr, 10);
2928 	if (ptr == start || *ptr != '/')
2929 		return -1;
2930 	if (cx_idx < 0 || cx_idx >= CPU_MWAIT_CX_MAX)
2931 		return -1;
2932 
2933 	start = ptr + 1;
2934 	ptr = NULL;
2935 
2936 	sub = strtol(start, &ptr, 10);
2937 	if (*ptr != '\0')
2938 		return -1;
2939 	if (sub < 0 || sub >= cpu_mwait_cx_info[cx_idx].subcnt)
2940 		return -1;
2941 
2942 	hint = MWAIT_EAX_HINT(cx_idx, sub);
2943 done:
2944 	*hint0 = hint;
2945 	return cx_idx;
2946 }
2947 
2948 static int
2949 cpu_mwait_cx_transit(int old_cx_idx, int cx_idx)
2950 {
2951 	if (cx_idx >= CPU_MWAIT_C3 && cpu_mwait_c3_preamble)
2952 		return EOPNOTSUPP;
2953 	if (old_cx_idx < CPU_MWAIT_C3 && cx_idx >= CPU_MWAIT_C3) {
2954 		int error;
2955 
2956 		error = cputimer_intr_powersave_addreq();
2957 		if (error)
2958 			return error;
2959 	} else if (old_cx_idx >= CPU_MWAIT_C3 && cx_idx < CPU_MWAIT_C3) {
2960 		cputimer_intr_powersave_remreq();
2961 	}
2962 	return 0;
2963 }
2964 
2965 static int
2966 cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS, int *hint0,
2967     boolean_t allow_auto)
2968 {
2969 	int error, cx_idx, old_cx_idx, hint;
2970 	char name[CPU_MWAIT_CX_NAMELEN];
2971 
2972 	hint = *hint0;
2973 	old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name),
2974 	    allow_auto);
2975 
2976 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
2977 	if (error != 0 || req->newptr == NULL)
2978 		return error;
2979 
2980 	if (!CPU_MWAIT_HAS_CX)
2981 		return EOPNOTSUPP;
2982 
2983 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, allow_auto);
2984 	if (cx_idx < 0)
2985 		return EINVAL;
2986 
2987 	error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
2988 	if (error)
2989 		return error;
2990 
2991 	*hint0 = hint;
2992 	return 0;
2993 }
2994 
2995 static int
2996 cpu_mwait_cx_setname(struct cpu_idle_stat *stat, const char *cx_name)
2997 {
2998 	int error, cx_idx, old_cx_idx, hint;
2999 	char name[CPU_MWAIT_CX_NAMELEN];
3000 
3001 	KASSERT(CPU_MWAIT_HAS_CX, ("cpu does not support mwait CX extension"));
3002 
3003 	hint = stat->hint;
3004 	old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3005 
3006 	strlcpy(name, cx_name, sizeof(name));
3007 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3008 	if (cx_idx < 0)
3009 		return EINVAL;
3010 
3011 	error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3012 	if (error)
3013 		return error;
3014 
3015 	stat->hint = hint;
3016 	return 0;
3017 }
3018 
3019 static int
3020 cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS)
3021 {
3022 	int hint = cpu_mwait_halt_global;
3023 	int error, cx_idx, cpu;
3024 	char name[CPU_MWAIT_CX_NAMELEN], cx_name[CPU_MWAIT_CX_NAMELEN];
3025 
3026 	cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3027 
3028 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
3029 	if (error != 0 || req->newptr == NULL)
3030 		return error;
3031 
3032 	if (!CPU_MWAIT_HAS_CX)
3033 		return EOPNOTSUPP;
3034 
3035 	/* Save name for later per-cpu CX configuration */
3036 	strlcpy(cx_name, name, sizeof(cx_name));
3037 
3038 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3039 	if (cx_idx < 0)
3040 		return EINVAL;
3041 
3042 	/* Change per-cpu CX configuration */
3043 	for (cpu = 0; cpu < ncpus; ++cpu) {
3044 		error = cpu_mwait_cx_setname(&cpu_idle_stats[cpu], cx_name);
3045 		if (error)
3046 			return error;
3047 	}
3048 
3049 	cpu_mwait_halt_global = hint;
3050 	return 0;
3051 }
3052 
3053 static int
3054 cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS)
3055 {
3056 	struct cpu_idle_stat *stat = arg1;
3057 	int error;
3058 
3059 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3060 	    &stat->hint, TRUE);
3061 	return error;
3062 }
3063 
3064 static int
3065 cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS)
3066 {
3067 	int error;
3068 
3069 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3070 	    &cpu_mwait_spin, FALSE);
3071 	return error;
3072 }
3073