xref: /dragonfly/sys/platform/pc64/x86_64/machdep.c (revision f6061ce2)
1 /*-
2  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3  * Copyright (c) 1992 Terrence R. Lambert.
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 2008 The DragonFly Project.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
40  * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
41  */
42 
43 #include "use_ether.h"
44 //#include "use_npx.h"
45 #include "use_isa.h"
46 #include "opt_atalk.h"
47 #include "opt_compat.h"
48 #include "opt_cpu.h"
49 #include "opt_ddb.h"
50 #include "opt_directio.h"
51 #include "opt_inet.h"
52 #include "opt_ipx.h"
53 #include "opt_msgbuf.h"
54 #include "opt_swap.h"
55 
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/sysproto.h>
59 #include <sys/signalvar.h>
60 #include <sys/kernel.h>
61 #include <sys/linker.h>
62 #include <sys/malloc.h>
63 #include <sys/proc.h>
64 #include <sys/priv.h>
65 #include <sys/buf.h>
66 #include <sys/reboot.h>
67 #include <sys/mbuf.h>
68 #include <sys/msgbuf.h>
69 #include <sys/sysent.h>
70 #include <sys/sysctl.h>
71 #include <sys/vmmeter.h>
72 #include <sys/bus.h>
73 #include <sys/upcall.h>
74 #include <sys/usched.h>
75 #include <sys/reg.h>
76 
77 #include <vm/vm.h>
78 #include <vm/vm_param.h>
79 #include <sys/lock.h>
80 #include <vm/vm_kern.h>
81 #include <vm/vm_object.h>
82 #include <vm/vm_page.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_pager.h>
85 #include <vm/vm_extern.h>
86 
87 #include <sys/thread2.h>
88 #include <sys/mplock2.h>
89 
90 #include <sys/user.h>
91 #include <sys/exec.h>
92 #include <sys/cons.h>
93 
94 #include <ddb/ddb.h>
95 
96 #include <machine/cpu.h>
97 #include <machine/clock.h>
98 #include <machine/specialreg.h>
99 #if JG
100 #include <machine/bootinfo.h>
101 #endif
102 #include <machine/md_var.h>
103 #include <machine/metadata.h>
104 #include <machine/pc/bios.h>
105 #include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
106 #include <machine/globaldata.h>		/* CPU_prvspace */
107 #include <machine/smp.h>
108 #ifdef PERFMON
109 #include <machine/perfmon.h>
110 #endif
111 #include <machine/cputypes.h>
112 
113 #ifdef OLD_BUS_ARCH
114 #include <bus/isa/isa_device.h>
115 #endif
116 #include <machine_base/isa/intr_machdep.h>
117 #include <bus/isa/rtc.h>
118 #include <sys/random.h>
119 #include <sys/ptrace.h>
120 #include <machine/sigframe.h>
121 
122 #define PHYSMAP_ENTRIES		10
123 
124 extern void init386(int first);
125 extern void dblfault_handler(void);
126 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
127 
128 extern void printcpuinfo(void);	/* XXX header file */
129 extern void identify_cpu(void);
130 #if JG
131 extern void finishidentcpu(void);
132 #endif
133 extern void panicifcpuunsupported(void);
134 
135 static void cpu_startup(void *);
136 #ifndef CPU_DISABLE_SSE
137 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
138 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
139 #endif /* CPU_DISABLE_SSE */
140 #ifdef DIRECTIO
141 extern void ffs_rawread_setup(void);
142 #endif /* DIRECTIO */
143 static void init_locks(void);
144 
145 SYSINIT(cpu, SI_BOOT2_SMP, SI_ORDER_FIRST, cpu_startup, NULL)
146 
147 #ifdef DDB
148 extern vm_offset_t ksym_start, ksym_end;
149 #endif
150 
151 uint64_t SMPptpa;
152 pt_entry_t *SMPpt;
153 
154 
155 struct privatespace CPU_prvspace[MAXCPU];
156 
157 int	_udatasel, _ucodesel, _ucode32sel;
158 u_long	atdevbase;
159 #ifdef SMP
160 int64_t tsc_offsets[MAXCPU];
161 #else
162 int64_t tsc_offsets[1];
163 #endif
164 
165 #if defined(SWTCH_OPTIM_STATS)
166 extern int swtch_optim_stats;
167 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
168 	CTLFLAG_RD, &swtch_optim_stats, 0, "");
169 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
170 	CTLFLAG_RD, &tlb_flush_count, 0, "");
171 #endif
172 
173 int physmem = 0;
174 
175 static int
176 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
177 {
178 	int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
179 	return (error);
180 }
181 
182 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
183 	0, 0, sysctl_hw_physmem, "IU", "");
184 
185 static int
186 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
187 {
188 	int error = sysctl_handle_int(oidp, 0,
189 		ctob(physmem - vmstats.v_wire_count), req);
190 	return (error);
191 }
192 
193 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
194 	0, 0, sysctl_hw_usermem, "IU", "");
195 
196 static int
197 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
198 {
199 	int error = sysctl_handle_int(oidp, 0,
200 		x86_64_btop(avail_end - avail_start), req);
201 	return (error);
202 }
203 
204 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
205 	0, 0, sysctl_hw_availpages, "I", "");
206 
207 vm_paddr_t Maxmem = 0;
208 
209 /*
210  * The number of PHYSMAP entries must be one less than the number of
211  * PHYSSEG entries because the PHYSMAP entry that spans the largest
212  * physical address that is accessible by ISA DMA is split into two
213  * PHYSSEG entries.
214  */
215 #define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
216 
217 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
218 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
219 
220 /* must be 2 less so 0 0 can signal end of chunks */
221 #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
222 #define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
223 
224 static vm_offset_t buffer_sva, buffer_eva;
225 vm_offset_t clean_sva, clean_eva;
226 static vm_offset_t pager_sva, pager_eva;
227 static struct trapframe proc0_tf;
228 
229 static void
230 cpu_startup(void *dummy)
231 {
232 	caddr_t v;
233 	vm_size_t size = 0;
234 	vm_offset_t firstaddr;
235 
236 	if (boothowto & RB_VERBOSE)
237 		bootverbose++;
238 
239 	/*
240 	 * Good {morning,afternoon,evening,night}.
241 	 */
242 	kprintf("%s", version);
243 	startrtclock();
244 	printcpuinfo();
245 	panicifcpuunsupported();
246 #ifdef PERFMON
247 	perfmon_init();
248 #endif
249 	kprintf("real memory  = %ju (%ju MB)\n",
250 		(intmax_t)ptoa(Maxmem),
251 		(intmax_t)ptoa(Maxmem) / 1024 / 1024);
252 	/*
253 	 * Display any holes after the first chunk of extended memory.
254 	 */
255 	if (bootverbose) {
256 		int indx;
257 
258 		kprintf("Physical memory chunk(s):\n");
259 		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
260 			vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
261 
262 			kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
263 				(intmax_t)phys_avail[indx],
264 				(intmax_t)phys_avail[indx + 1] - 1,
265 				(intmax_t)size1,
266 				(intmax_t)(size1 / PAGE_SIZE));
267 		}
268 	}
269 
270 	/*
271 	 * Allocate space for system data structures.
272 	 * The first available kernel virtual address is in "v".
273 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
274 	 * As pages of memory are allocated and cleared,
275 	 * "firstaddr" is incremented.
276 	 * An index into the kernel page table corresponding to the
277 	 * virtual memory address maintained in "v" is kept in "mapaddr".
278 	 */
279 
280 	/*
281 	 * Make two passes.  The first pass calculates how much memory is
282 	 * needed and allocates it.  The second pass assigns virtual
283 	 * addresses to the various data structures.
284 	 */
285 	firstaddr = 0;
286 again:
287 	v = (caddr_t)firstaddr;
288 
289 #define	valloc(name, type, num) \
290 	    (name) = (type *)v; v = (caddr_t)((name)+(num))
291 #define	valloclim(name, type, num, lim) \
292 	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
293 
294 	/*
295 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
296 	 * For the first 64MB of ram nominally allocate sufficient buffers to
297 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
298 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
299 	 * the buffer cache we limit the eventual kva reservation to
300 	 * maxbcache bytes.
301 	 *
302 	 * factor represents the 1/4 x ram conversion.
303 	 */
304 	if (nbuf == 0) {
305 		int factor = 4 * BKVASIZE / 1024;
306 		int kbytes = physmem * (PAGE_SIZE / 1024);
307 
308 		nbuf = 50;
309 		if (kbytes > 4096)
310 			nbuf += min((kbytes - 4096) / factor, 65536 / factor);
311 		if (kbytes > 65536)
312 			nbuf += (kbytes - 65536) * 2 / (factor * 5);
313 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
314 			nbuf = maxbcache / BKVASIZE;
315 	}
316 
317 	/*
318 	 * Do not allow the buffer_map to be more then 1/2 the size of the
319 	 * kernel_map.
320 	 */
321 	if (nbuf > (virtual_end - virtual_start) / (BKVASIZE * 2)) {
322 		nbuf = (virtual_end - virtual_start) / (BKVASIZE * 2);
323 		kprintf("Warning: nbufs capped at %d\n", nbuf);
324 	}
325 
326 	nswbuf = max(min(nbuf/4, 256), 16);
327 #ifdef NSWBUF_MIN
328 	if (nswbuf < NSWBUF_MIN)
329 		nswbuf = NSWBUF_MIN;
330 #endif
331 #ifdef DIRECTIO
332 	ffs_rawread_setup();
333 #endif
334 
335 	valloc(swbuf, struct buf, nswbuf);
336 	valloc(buf, struct buf, nbuf);
337 
338 	/*
339 	 * End of first pass, size has been calculated so allocate memory
340 	 */
341 	if (firstaddr == 0) {
342 		size = (vm_size_t)(v - firstaddr);
343 		firstaddr = kmem_alloc(&kernel_map, round_page(size));
344 		if (firstaddr == 0)
345 			panic("startup: no room for tables");
346 		goto again;
347 	}
348 
349 	/*
350 	 * End of second pass, addresses have been assigned
351 	 */
352 	if ((vm_size_t)(v - firstaddr) != size)
353 		panic("startup: table size inconsistency");
354 
355 	kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
356 		      (nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
357 	kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
358 		      (nbuf*BKVASIZE));
359 	buffer_map.system_map = 1;
360 	kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
361 		      (nswbuf*MAXPHYS) + pager_map_size);
362 	pager_map.system_map = 1;
363 
364 #if defined(USERCONFIG)
365 	userconfig();
366 	cninit();		/* the preferred console may have changed */
367 #endif
368 
369 	kprintf("avail memory = %ju (%ju MB)\n",
370 		(uintmax_t)ptoa(vmstats.v_free_count),
371 		(uintmax_t)ptoa(vmstats.v_free_count) / 1024 / 1024);
372 
373 	/*
374 	 * Set up buffers, so they can be used to read disk labels.
375 	 */
376 	bufinit();
377 	vm_pager_bufferinit();
378 
379 #ifdef SMP
380 	/*
381 	 * OK, enough kmem_alloc/malloc state should be up, lets get on with it!
382 	 */
383 	mp_start();			/* fire up the APs and APICs */
384 	mp_announce();
385 #endif  /* SMP */
386 	cpu_setregs();
387 }
388 
389 /*
390  * Send an interrupt to process.
391  *
392  * Stack is set up to allow sigcode stored
393  * at top to call routine, followed by kcall
394  * to sigreturn routine below.  After sigreturn
395  * resets the signal mask, the stack, and the
396  * frame pointer, it returns to the user
397  * specified pc, psl.
398  */
399 void
400 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
401 {
402 	struct lwp *lp = curthread->td_lwp;
403 	struct proc *p = lp->lwp_proc;
404 	struct trapframe *regs;
405 	struct sigacts *psp = p->p_sigacts;
406 	struct sigframe sf, *sfp;
407 	int oonstack;
408 	char *sp;
409 
410 	regs = lp->lwp_md.md_regs;
411 	oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
412 
413 	/* Save user context */
414 	bzero(&sf, sizeof(struct sigframe));
415 	sf.sf_uc.uc_sigmask = *mask;
416 	sf.sf_uc.uc_stack = lp->lwp_sigstk;
417 	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
418 	KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
419 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
420 
421 	/* Make the size of the saved context visible to userland */
422 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
423 
424 	/* Save mailbox pending state for syscall interlock semantics */
425 	if (p->p_flag & P_MAILBOX)
426 		sf.sf_uc.uc_mcontext.mc_xflags |= PGEX_MAILBOX;
427 
428 	/* Allocate and validate space for the signal handler context. */
429         if ((lp->lwp_flag & LWP_ALTSTACK) != 0 && !oonstack &&
430 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
431 		sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
432 			      sizeof(struct sigframe));
433 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
434 	} else {
435 		/* We take red zone into account */
436 		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
437 	}
438 
439 	/* Align to 16 bytes */
440 	sfp = (struct sigframe *)((intptr_t)sp & ~0xFUL);
441 
442 	/* Translate the signal is appropriate */
443 	if (p->p_sysent->sv_sigtbl) {
444 		if (sig <= p->p_sysent->sv_sigsize)
445 			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
446 	}
447 
448 	/*
449 	 * Build the argument list for the signal handler.
450 	 *
451 	 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
452 	 */
453 	regs->tf_rdi = sig;				/* argument 1 */
454 	regs->tf_rdx = (register_t)&sfp->sf_uc;		/* argument 3 */
455 
456 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
457 		/*
458 		 * Signal handler installed with SA_SIGINFO.
459 		 *
460 		 * action(signo, siginfo, ucontext)
461 		 */
462 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* argument 2 */
463 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
464 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
465 
466 		/* fill siginfo structure */
467 		sf.sf_si.si_signo = sig;
468 		sf.sf_si.si_code = code;
469 		sf.sf_si.si_addr = (void *)regs->tf_addr;
470 	} else {
471 		/*
472 		 * Old FreeBSD-style arguments.
473 		 *
474 		 * handler (signo, code, [uc], addr)
475 		 */
476 		regs->tf_rsi = (register_t)code;	/* argument 2 */
477 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
478 		sf.sf_ahu.sf_handler = catcher;
479 	}
480 
481 	/*
482 	 * If we're a vm86 process, we want to save the segment registers.
483 	 * We also change eflags to be our emulated eflags, not the actual
484 	 * eflags.
485 	 */
486 #if JG
487 	if (regs->tf_eflags & PSL_VM) {
488 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
489 		struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
490 
491 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
492 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
493 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
494 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
495 
496 		if (vm86->vm86_has_vme == 0)
497 			sf.sf_uc.uc_mcontext.mc_eflags =
498 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
499 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
500 
501 		/*
502 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
503 		 * syscalls made by the signal handler.  This just avoids
504 		 * wasting time for our lazy fixup of such faults.  PSL_NT
505 		 * does nothing in vm86 mode, but vm86 programs can set it
506 		 * almost legitimately in probes for old cpu types.
507 		 */
508 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
509 	}
510 #endif
511 
512 	/*
513 	 * Save the FPU state and reinit the FP unit
514 	 */
515 	npxpush(&sf.sf_uc.uc_mcontext);
516 
517 	/*
518 	 * Copy the sigframe out to the user's stack.
519 	 */
520 	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
521 		/*
522 		 * Something is wrong with the stack pointer.
523 		 * ...Kill the process.
524 		 */
525 		sigexit(lp, SIGILL);
526 	}
527 
528 	regs->tf_rsp = (register_t)sfp;
529 	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
530 
531 	/*
532 	 * i386 abi specifies that the direction flag must be cleared
533 	 * on function entry
534 	 */
535 	regs->tf_rflags &= ~(PSL_T|PSL_D);
536 
537 	/*
538 	 * 64 bit mode has a code and stack selector but
539 	 * no data or extra selector.  %fs and %gs are not
540 	 * stored in-context.
541 	 */
542 	regs->tf_cs = _ucodesel;
543 	regs->tf_ss = _udatasel;
544 }
545 
546 /*
547  * Sanitize the trapframe for a virtual kernel passing control to a custom
548  * VM context.  Remove any items that would otherwise create a privilage
549  * issue.
550  *
551  * XXX at the moment we allow userland to set the resume flag.  Is this a
552  * bad idea?
553  */
554 int
555 cpu_sanitize_frame(struct trapframe *frame)
556 {
557 	frame->tf_cs = _ucodesel;
558 	frame->tf_ss = _udatasel;
559 	/* XXX VM (8086) mode not supported? */
560 	frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
561 	frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
562 
563 	return(0);
564 }
565 
566 /*
567  * Sanitize the tls so loading the descriptor does not blow up
568  * on us.  For x86_64 we don't have to do anything.
569  */
570 int
571 cpu_sanitize_tls(struct savetls *tls)
572 {
573 	return(0);
574 }
575 
576 /*
577  * sigreturn(ucontext_t *sigcntxp)
578  *
579  * System call to cleanup state after a signal
580  * has been taken.  Reset signal mask and
581  * stack state from context left by sendsig (above).
582  * Return to previous pc and psl as specified by
583  * context left by sendsig. Check carefully to
584  * make sure that the user has not modified the
585  * state to gain improper privileges.
586  *
587  * MPSAFE
588  */
589 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
590 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
591 
592 int
593 sys_sigreturn(struct sigreturn_args *uap)
594 {
595 	struct lwp *lp = curthread->td_lwp;
596 	struct proc *p = lp->lwp_proc;
597 	struct trapframe *regs;
598 	ucontext_t uc;
599 	ucontext_t *ucp;
600 	register_t rflags;
601 	int cs;
602 	int error;
603 
604 	/*
605 	 * We have to copy the information into kernel space so userland
606 	 * can't modify it while we are sniffing it.
607 	 */
608 	regs = lp->lwp_md.md_regs;
609 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
610 	if (error)
611 		return (error);
612 	ucp = &uc;
613 	rflags = ucp->uc_mcontext.mc_rflags;
614 
615 	/* VM (8086) mode not supported */
616 	rflags &= ~PSL_VM_UNSUPP;
617 
618 #if JG
619 	if (eflags & PSL_VM) {
620 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
621 		struct vm86_kernel *vm86;
622 
623 		/*
624 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
625 		 * set up the vm86 area, and we can't enter vm86 mode.
626 		 */
627 		if (lp->lwp_thread->td_pcb->pcb_ext == 0)
628 			return (EINVAL);
629 		vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
630 		if (vm86->vm86_inited == 0)
631 			return (EINVAL);
632 
633 		/* go back to user mode if both flags are set */
634 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
635 			trapsignal(lp, SIGBUS, 0);
636 
637 		if (vm86->vm86_has_vme) {
638 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
639 			    (eflags & VME_USERCHANGE) | PSL_VM;
640 		} else {
641 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
642 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
643 			    (eflags & VM_USERCHANGE) | PSL_VM;
644 		}
645 		bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
646 		tf->tf_eflags = eflags;
647 		tf->tf_vm86_ds = tf->tf_ds;
648 		tf->tf_vm86_es = tf->tf_es;
649 		tf->tf_vm86_fs = tf->tf_fs;
650 		tf->tf_vm86_gs = tf->tf_gs;
651 		tf->tf_ds = _udatasel;
652 		tf->tf_es = _udatasel;
653 		tf->tf_fs = _udatasel;
654 		tf->tf_gs = _udatasel;
655 	} else
656 #endif
657 	{
658 		/*
659 		 * Don't allow users to change privileged or reserved flags.
660 		 */
661 		/*
662 		 * XXX do allow users to change the privileged flag PSL_RF.
663 		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
664 		 * should sometimes set it there too.  tf_eflags is kept in
665 		 * the signal context during signal handling and there is no
666 		 * other place to remember it, so the PSL_RF bit may be
667 		 * corrupted by the signal handler without us knowing.
668 		 * Corruption of the PSL_RF bit at worst causes one more or
669 		 * one less debugger trap, so allowing it is fairly harmless.
670 		 */
671 		if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
672 			kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
673 	    		return(EINVAL);
674 		}
675 
676 		/*
677 		 * Don't allow users to load a valid privileged %cs.  Let the
678 		 * hardware check for invalid selectors, excess privilege in
679 		 * other selectors, invalid %eip's and invalid %esp's.
680 		 */
681 		cs = ucp->uc_mcontext.mc_cs;
682 		if (!CS_SECURE(cs)) {
683 			kprintf("sigreturn: cs = 0x%x\n", cs);
684 			trapsignal(lp, SIGBUS, T_PROTFLT);
685 			return(EINVAL);
686 		}
687 		bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
688 	}
689 
690 	/*
691 	 * Restore the FPU state from the frame
692 	 */
693 	crit_enter();
694 	npxpop(&ucp->uc_mcontext);
695 
696 	/*
697 	 * Merge saved signal mailbox pending flag to maintain interlock
698 	 * semantics against system calls.
699 	 */
700 	if (ucp->uc_mcontext.mc_xflags & PGEX_MAILBOX)
701 		p->p_flag |= P_MAILBOX;
702 
703 	if (ucp->uc_mcontext.mc_onstack & 1)
704 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
705 	else
706 		lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
707 
708 	lp->lwp_sigmask = ucp->uc_sigmask;
709 	SIG_CANTMASK(lp->lwp_sigmask);
710 	crit_exit();
711 	return(EJUSTRETURN);
712 }
713 
714 /*
715  * Stack frame on entry to function.  %rax will contain the function vector,
716  * %rcx will contain the function data.  flags, rcx, and rax will have
717  * already been pushed on the stack.
718  */
719 struct upc_frame {
720 	register_t	rax;
721 	register_t	rcx;
722 	register_t	rdx;
723 	register_t	flags;
724 	register_t	oldip;
725 };
726 
727 void
728 sendupcall(struct vmupcall *vu, int morepending)
729 {
730 	struct lwp *lp = curthread->td_lwp;
731 	struct trapframe *regs;
732 	struct upcall upcall;
733 	struct upc_frame upc_frame;
734 	int	crit_count = 0;
735 
736 	/*
737 	 * If we are a virtual kernel running an emulated user process
738 	 * context, switch back to the virtual kernel context before
739 	 * trying to post the signal.
740 	 */
741 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
742 		lp->lwp_md.md_regs->tf_trapno = 0;
743 		vkernel_trap(lp, lp->lwp_md.md_regs);
744 	}
745 
746 	/*
747 	 * Get the upcall data structure
748 	 */
749 	if (copyin(lp->lwp_upcall, &upcall, sizeof(upcall)) ||
750 	    copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int))
751 	) {
752 		vu->vu_pending = 0;
753 		kprintf("bad upcall address\n");
754 		return;
755 	}
756 
757 	/*
758 	 * If the data structure is already marked pending or has a critical
759 	 * section count, mark the data structure as pending and return
760 	 * without doing an upcall.  vu_pending is left set.
761 	 */
762 	if (upcall.upc_pending || crit_count >= vu->vu_pending) {
763 		if (upcall.upc_pending < vu->vu_pending) {
764 			upcall.upc_pending = vu->vu_pending;
765 			copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
766 				sizeof(upcall.upc_pending));
767 		}
768 		return;
769 	}
770 
771 	/*
772 	 * We can run this upcall now, clear vu_pending.
773 	 *
774 	 * Bump our critical section count and set or clear the
775 	 * user pending flag depending on whether more upcalls are
776 	 * pending.  The user will be responsible for calling
777 	 * upc_dispatch(-1) to process remaining upcalls.
778 	 */
779 	vu->vu_pending = 0;
780 	upcall.upc_pending = morepending;
781 	++crit_count;
782 	copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
783 		sizeof(upcall.upc_pending));
784 	copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff,
785 		sizeof(int));
786 
787 	/*
788 	 * Construct a stack frame and issue the upcall
789 	 */
790 	regs = lp->lwp_md.md_regs;
791 	upc_frame.rax = regs->tf_rax;
792 	upc_frame.rcx = regs->tf_rcx;
793 	upc_frame.rdx = regs->tf_rdx;
794 	upc_frame.flags = regs->tf_rflags;
795 	upc_frame.oldip = regs->tf_rip;
796 	if (copyout(&upc_frame, (void *)(regs->tf_rsp - sizeof(upc_frame)),
797 	    sizeof(upc_frame)) != 0) {
798 		kprintf("bad stack on upcall\n");
799 	} else {
800 		regs->tf_rax = (register_t)vu->vu_func;
801 		regs->tf_rcx = (register_t)vu->vu_data;
802 		regs->tf_rdx = (register_t)lp->lwp_upcall;
803 		regs->tf_rip = (register_t)vu->vu_ctx;
804 		regs->tf_rsp -= sizeof(upc_frame);
805 	}
806 }
807 
808 /*
809  * fetchupcall occurs in the context of a system call, which means that
810  * we have to return EJUSTRETURN in order to prevent eax and edx from
811  * being overwritten by the syscall return value.
812  *
813  * if vu is not NULL we return the new context in %edx, the new data in %ecx,
814  * and the function pointer in %eax.
815  */
816 int
817 fetchupcall(struct vmupcall *vu, int morepending, void *rsp)
818 {
819 	struct upc_frame upc_frame;
820 	struct lwp *lp = curthread->td_lwp;
821 	struct trapframe *regs;
822 	int error;
823 	struct upcall upcall;
824 	int crit_count;
825 
826 	regs = lp->lwp_md.md_regs;
827 
828 	error = copyout(&morepending, &lp->lwp_upcall->upc_pending, sizeof(int));
829 	if (error == 0) {
830 	    if (vu) {
831 		/*
832 		 * This jumps us to the next ready context.
833 		 */
834 		vu->vu_pending = 0;
835 		error = copyin(lp->lwp_upcall, &upcall, sizeof(upcall));
836 		crit_count = 0;
837 		if (error == 0)
838 			error = copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int));
839 		++crit_count;
840 		if (error == 0)
841 			error = copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff, sizeof(int));
842 		regs->tf_rax = (register_t)vu->vu_func;
843 		regs->tf_rcx = (register_t)vu->vu_data;
844 		regs->tf_rdx = (register_t)lp->lwp_upcall;
845 		regs->tf_rip = (register_t)vu->vu_ctx;
846 		regs->tf_rsp = (register_t)rsp;
847 	    } else {
848 		/*
849 		 * This returns us to the originally interrupted code.
850 		 */
851 		error = copyin(rsp, &upc_frame, sizeof(upc_frame));
852 		regs->tf_rax = upc_frame.rax;
853 		regs->tf_rcx = upc_frame.rcx;
854 		regs->tf_rdx = upc_frame.rdx;
855 		regs->tf_rflags = (regs->tf_rflags & ~PSL_USERCHANGE) |
856 				(upc_frame.flags & PSL_USERCHANGE);
857 		regs->tf_rip = upc_frame.oldip;
858 		regs->tf_rsp = (register_t)((char *)rsp + sizeof(upc_frame));
859 	    }
860 	}
861 	if (error == 0)
862 		error = EJUSTRETURN;
863 	return(error);
864 }
865 
866 /*
867  * Machine dependent boot() routine
868  *
869  * I haven't seen anything to put here yet
870  * Possibly some stuff might be grafted back here from boot()
871  */
872 void
873 cpu_boot(int howto)
874 {
875 }
876 
877 /*
878  * Shutdown the CPU as much as possible
879  */
880 void
881 cpu_halt(void)
882 {
883 	for (;;)
884 		__asm__ __volatile("hlt");
885 }
886 
887 /*
888  * cpu_idle() represents the idle LWKT.  You cannot return from this function
889  * (unless you want to blow things up!).  Instead we look for runnable threads
890  * and loop or halt as appropriate.  Giant is not held on entry to the thread.
891  *
892  * The main loop is entered with a critical section held, we must release
893  * the critical section before doing anything else.  lwkt_switch() will
894  * check for pending interrupts due to entering and exiting its own
895  * critical section.
896  *
897  * Note on cpu_idle_hlt:  On an SMP system we rely on a scheduler IPI
898  * to wake a HLTed cpu up.  However, there are cases where the idlethread
899  * will be entered with the possibility that no IPI will occur and in such
900  * cases lwkt_switch() sets TDF_IDLE_NOHLT.
901  */
902 static int	cpu_idle_hlt = 1;
903 static int	cpu_idle_hltcnt;
904 static int	cpu_idle_spincnt;
905 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
906     &cpu_idle_hlt, 0, "Idle loop HLT enable");
907 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hltcnt, CTLFLAG_RW,
908     &cpu_idle_hltcnt, 0, "Idle loop entry halts");
909 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_spincnt, CTLFLAG_RW,
910     &cpu_idle_spincnt, 0, "Idle loop entry spins");
911 
912 static void
913 cpu_idle_default_hook(void)
914 {
915 	/*
916 	 * We must guarentee that hlt is exactly the instruction
917 	 * following the sti.
918 	 */
919 	__asm __volatile("sti; hlt");
920 }
921 
922 /* Other subsystems (e.g., ACPI) can hook this later. */
923 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
924 
925 void
926 cpu_idle(void)
927 {
928 	struct thread *td = curthread;
929 
930 	crit_exit();
931 	KKASSERT(td->td_critcount == 0);
932 	for (;;) {
933 		/*
934 		 * See if there are any LWKTs ready to go.
935 		 */
936 		lwkt_switch();
937 
938 		/*
939 		 * If we are going to halt call splz unconditionally after
940 		 * CLIing to catch any interrupt races.  Note that we are
941 		 * at SPL0 and interrupts are enabled.
942 		 */
943 		if (cpu_idle_hlt && !lwkt_runnable() &&
944 		    (td->td_flags & TDF_IDLE_NOHLT) == 0) {
945 			__asm __volatile("cli");
946 			splz();
947 			if (!lwkt_runnable())
948 				cpu_idle_hook();
949 #ifdef SMP
950 			else
951 				handle_cpu_contention_mask();
952 #endif
953 			++cpu_idle_hltcnt;
954 		} else {
955 			td->td_flags &= ~TDF_IDLE_NOHLT;
956 			splz();
957 #ifdef SMP
958 			__asm __volatile("sti");
959 			handle_cpu_contention_mask();
960 #else
961 			__asm __volatile("sti");
962 #endif
963 			++cpu_idle_spincnt;
964 		}
965 	}
966 }
967 
968 #ifdef SMP
969 
970 /*
971  * This routine is called when the only runnable threads require
972  * the MP lock, and the scheduler couldn't get it.  On a real cpu
973  * we let the scheduler spin.
974  */
975 void
976 handle_cpu_contention_mask(void)
977 {
978         cpumask_t mask;
979 
980         mask = cpu_contention_mask;
981         cpu_ccfence();
982         if (mask && bsfl(mask) != mycpu->gd_cpuid)
983                 DELAY(2);
984 }
985 
986 /*
987  * This routine is called if a spinlock has been held through the
988  * exponential backoff period and is seriously contested.  On a real cpu
989  * we let it spin.
990  */
991 void
992 cpu_spinlock_contested(void)
993 {
994 	cpu_pause();
995 }
996 
997 #endif
998 
999 /*
1000  * Clear registers on exec
1001  */
1002 void
1003 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
1004 {
1005 	struct thread *td = curthread;
1006 	struct lwp *lp = td->td_lwp;
1007 	struct pcb *pcb = td->td_pcb;
1008 	struct trapframe *regs = lp->lwp_md.md_regs;
1009 
1010 	/* was i386_user_cleanup() in NetBSD */
1011 	user_ldt_free(pcb);
1012 
1013 	bzero((char *)regs, sizeof(struct trapframe));
1014 	regs->tf_rip = entry;
1015 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
1016 	regs->tf_rdi = stack;		/* argv */
1017 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
1018 	regs->tf_ss = _udatasel;
1019 	regs->tf_cs = _ucodesel;
1020 	regs->tf_rbx = ps_strings;
1021 
1022 	/*
1023 	 * Reset the hardware debug registers if they were in use.
1024 	 * They won't have any meaning for the newly exec'd process.
1025 	 */
1026 	if (pcb->pcb_flags & PCB_DBREGS) {
1027 		pcb->pcb_dr0 = 0;
1028 		pcb->pcb_dr1 = 0;
1029 		pcb->pcb_dr2 = 0;
1030 		pcb->pcb_dr3 = 0;
1031 		pcb->pcb_dr6 = 0;
1032 		pcb->pcb_dr7 = 0; /* JG set bit 10? */
1033 		if (pcb == td->td_pcb) {
1034 			/*
1035 			 * Clear the debug registers on the running
1036 			 * CPU, otherwise they will end up affecting
1037 			 * the next process we switch to.
1038 			 */
1039 			reset_dbregs();
1040 		}
1041 		pcb->pcb_flags &= ~PCB_DBREGS;
1042 	}
1043 
1044 	/*
1045 	 * Initialize the math emulator (if any) for the current process.
1046 	 * Actually, just clear the bit that says that the emulator has
1047 	 * been initialized.  Initialization is delayed until the process
1048 	 * traps to the emulator (if it is done at all) mainly because
1049 	 * emulators don't provide an entry point for initialization.
1050 	 */
1051 	pcb->pcb_flags &= ~FP_SOFTFP;
1052 
1053 	/*
1054 	 * NOTE: do not set CR0_TS here.  npxinit() must do it after clearing
1055 	 *	 gd_npxthread.  Otherwise a preemptive interrupt thread
1056 	 *	 may panic in npxdna().
1057 	 */
1058 	crit_enter();
1059 	load_cr0(rcr0() | CR0_MP);
1060 
1061 	/*
1062 	 * NOTE: The MSR values must be correct so we can return to
1063 	 * 	 userland.  gd_user_fs/gs must be correct so the switch
1064 	 *	 code knows what the current MSR values are.
1065 	 */
1066 	pcb->pcb_fsbase = 0;	/* Values loaded from PCB on switch */
1067 	pcb->pcb_gsbase = 0;
1068 	mdcpu->gd_user_fs = 0;	/* Cache of current MSR values */
1069 	mdcpu->gd_user_gs = 0;
1070 	wrmsr(MSR_FSBASE, 0);	/* Set MSR values for return to userland */
1071 	wrmsr(MSR_KGSBASE, 0);
1072 
1073 	/* Initialize the npx (if any) for the current process. */
1074 	npxinit(__INITIAL_NPXCW__);
1075 	crit_exit();
1076 
1077 	pcb->pcb_ds = _udatasel;
1078 	pcb->pcb_es = _udatasel;
1079 	pcb->pcb_fs = _udatasel;
1080 	pcb->pcb_gs = _udatasel;
1081 }
1082 
1083 void
1084 cpu_setregs(void)
1085 {
1086 	register_t cr0;
1087 
1088 	cr0 = rcr0();
1089 	cr0 |= CR0_NE;			/* Done by npxinit() */
1090 	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1091 	cr0 |= CR0_WP | CR0_AM;
1092 	load_cr0(cr0);
1093 	load_gs(_udatasel);
1094 }
1095 
1096 static int
1097 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1098 {
1099 	int error;
1100 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1101 		req);
1102 	if (!error && req->newptr)
1103 		resettodr();
1104 	return (error);
1105 }
1106 
1107 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1108 	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1109 
1110 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1111 	CTLFLAG_RW, &disable_rtc_set, 0, "");
1112 
1113 #if JG
1114 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1115 	CTLFLAG_RD, &bootinfo, bootinfo, "");
1116 #endif
1117 
1118 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1119 	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1120 
1121 extern u_long bootdev;		/* not a cdev_t - encoding is different */
1122 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1123 	CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1124 
1125 /*
1126  * Initialize 386 and configure to run kernel
1127  */
1128 
1129 /*
1130  * Initialize segments & interrupt table
1131  */
1132 
1133 int _default_ldt;
1134 struct user_segment_descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1135 static struct gate_descriptor idt0[NIDT];
1136 struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1137 #if JG
1138 union descriptor ldt[NLDT];		/* local descriptor table */
1139 #endif
1140 
1141 /* table descriptors - used to load tables by cpu */
1142 struct region_descriptor r_gdt, r_idt;
1143 
1144 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
1145 extern int has_f00f_bug;
1146 #endif
1147 
1148 static char dblfault_stack[PAGE_SIZE] __aligned(16);
1149 
1150 /* JG proc0paddr is a virtual address */
1151 void *proc0paddr;
1152 /* JG alignment? */
1153 char proc0paddr_buff[LWKT_THREAD_STACK];
1154 
1155 
1156 /* software prototypes -- in more palatable form */
1157 struct soft_segment_descriptor gdt_segs[] = {
1158 /* GNULL_SEL	0 Null Descriptor */
1159 {	0x0,			/* segment base address  */
1160 	0x0,			/* length */
1161 	0,			/* segment type */
1162 	0,			/* segment descriptor priority level */
1163 	0,			/* segment descriptor present */
1164 	0,			/* long */
1165 	0,			/* default 32 vs 16 bit size */
1166 	0  			/* limit granularity (byte/page units)*/ },
1167 /* GCODE_SEL	1 Code Descriptor for kernel */
1168 {	0x0,			/* segment base address  */
1169 	0xfffff,		/* length - all address space */
1170 	SDT_MEMERA,		/* segment type */
1171 	SEL_KPL,		/* segment descriptor priority level */
1172 	1,			/* segment descriptor present */
1173 	1,			/* long */
1174 	0,			/* default 32 vs 16 bit size */
1175 	1  			/* limit granularity (byte/page units)*/ },
1176 /* GDATA_SEL	2 Data Descriptor for kernel */
1177 {	0x0,			/* segment base address  */
1178 	0xfffff,		/* length - all address space */
1179 	SDT_MEMRWA,		/* segment type */
1180 	SEL_KPL,		/* segment descriptor priority level */
1181 	1,			/* segment descriptor present */
1182 	1,			/* long */
1183 	0,			/* default 32 vs 16 bit size */
1184 	1  			/* limit granularity (byte/page units)*/ },
1185 /* GUCODE32_SEL	3 32 bit Code Descriptor for user */
1186 {	0x0,			/* segment base address  */
1187 	0xfffff,		/* length - all address space */
1188 	SDT_MEMERA,		/* segment type */
1189 	SEL_UPL,		/* segment descriptor priority level */
1190 	1,			/* segment descriptor present */
1191 	0,			/* long */
1192 	1,			/* default 32 vs 16 bit size */
1193 	1  			/* limit granularity (byte/page units)*/ },
1194 /* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
1195 {	0x0,			/* segment base address  */
1196 	0xfffff,		/* length - all address space */
1197 	SDT_MEMRWA,		/* segment type */
1198 	SEL_UPL,		/* segment descriptor priority level */
1199 	1,			/* segment descriptor present */
1200 	0,			/* long */
1201 	1,			/* default 32 vs 16 bit size */
1202 	1  			/* limit granularity (byte/page units)*/ },
1203 /* GUCODE_SEL	5 64 bit Code Descriptor for user */
1204 {	0x0,			/* segment base address  */
1205 	0xfffff,		/* length - all address space */
1206 	SDT_MEMERA,		/* segment type */
1207 	SEL_UPL,		/* segment descriptor priority level */
1208 	1,			/* segment descriptor present */
1209 	1,			/* long */
1210 	0,			/* default 32 vs 16 bit size */
1211 	1  			/* limit granularity (byte/page units)*/ },
1212 /* GPROC0_SEL	6 Proc 0 Tss Descriptor */
1213 {
1214 	0x0,			/* segment base address */
1215 	sizeof(struct x86_64tss)-1,/* length - all address space */
1216 	SDT_SYSTSS,		/* segment type */
1217 	SEL_KPL,		/* segment descriptor priority level */
1218 	1,			/* segment descriptor present */
1219 	0,			/* long */
1220 	0,			/* unused - default 32 vs 16 bit size */
1221 	0  			/* limit granularity (byte/page units)*/ },
1222 /* Actually, the TSS is a system descriptor which is double size */
1223 {	0x0,			/* segment base address  */
1224 	0x0,			/* length */
1225 	0,			/* segment type */
1226 	0,			/* segment descriptor priority level */
1227 	0,			/* segment descriptor present */
1228 	0,			/* long */
1229 	0,			/* default 32 vs 16 bit size */
1230 	0  			/* limit granularity (byte/page units)*/ },
1231 /* GUGS32_SEL	8 32 bit GS Descriptor for user */
1232 {	0x0,			/* segment base address  */
1233 	0xfffff,		/* length - all address space */
1234 	SDT_MEMRWA,		/* segment type */
1235 	SEL_UPL,		/* segment descriptor priority level */
1236 	1,			/* segment descriptor present */
1237 	0,			/* long */
1238 	1,			/* default 32 vs 16 bit size */
1239 	1  			/* limit granularity (byte/page units)*/ },
1240 };
1241 
1242 void
1243 setidt(int idx, inthand_t *func, int typ, int dpl, int ist)
1244 {
1245 	struct gate_descriptor *ip;
1246 
1247 	ip = idt + idx;
1248 	ip->gd_looffset = (uintptr_t)func;
1249 	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1250 	ip->gd_ist = ist;
1251 	ip->gd_xx = 0;
1252 	ip->gd_type = typ;
1253 	ip->gd_dpl = dpl;
1254 	ip->gd_p = 1;
1255 	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1256 }
1257 
1258 #define	IDTVEC(name)	__CONCAT(X,name)
1259 
1260 extern inthand_t
1261 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1262 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1263 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1264 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1265 	IDTVEC(xmm), IDTVEC(dblfault),
1266 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1267 
1268 #ifdef DEBUG_INTERRUPTS
1269 extern inthand_t *Xrsvdary[256];
1270 #endif
1271 
1272 void
1273 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1274 {
1275 	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1276 	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1277 	ssd->ssd_type  = sd->sd_type;
1278 	ssd->ssd_dpl   = sd->sd_dpl;
1279 	ssd->ssd_p     = sd->sd_p;
1280 	ssd->ssd_def32 = sd->sd_def32;
1281 	ssd->ssd_gran  = sd->sd_gran;
1282 }
1283 
1284 void
1285 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1286 {
1287 
1288 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1289 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1290 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1291 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1292 	sd->sd_type  = ssd->ssd_type;
1293 	sd->sd_dpl   = ssd->ssd_dpl;
1294 	sd->sd_p     = ssd->ssd_p;
1295 	sd->sd_long  = ssd->ssd_long;
1296 	sd->sd_def32 = ssd->ssd_def32;
1297 	sd->sd_gran  = ssd->ssd_gran;
1298 }
1299 
1300 void
1301 ssdtosyssd(struct soft_segment_descriptor *ssd,
1302     struct system_segment_descriptor *sd)
1303 {
1304 
1305 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1306 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1307 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1308 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1309 	sd->sd_type  = ssd->ssd_type;
1310 	sd->sd_dpl   = ssd->ssd_dpl;
1311 	sd->sd_p     = ssd->ssd_p;
1312 	sd->sd_gran  = ssd->ssd_gran;
1313 }
1314 
1315 u_int basemem;
1316 
1317 /*
1318  * Populate the (physmap) array with base/bound pairs describing the
1319  * available physical memory in the system, then test this memory and
1320  * build the phys_avail array describing the actually-available memory.
1321  *
1322  * If we cannot accurately determine the physical memory map, then use
1323  * value from the 0xE801 call, and failing that, the RTC.
1324  *
1325  * Total memory size may be set by the kernel environment variable
1326  * hw.physmem or the compile-time define MAXMEM.
1327  *
1328  * XXX first should be vm_paddr_t.
1329  */
1330 static void
1331 getmemsize(caddr_t kmdp, u_int64_t first)
1332 {
1333 	int i, off, physmap_idx, pa_indx, da_indx;
1334 	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1335 	u_long physmem_tunable;
1336 	pt_entry_t *pte;
1337 	struct bios_smap *smapbase, *smap, *smapend;
1338 	u_int32_t smapsize;
1339 	quad_t dcons_addr, dcons_size;
1340 
1341 	bzero(physmap, sizeof(physmap));
1342 	basemem = 0;
1343 	physmap_idx = 0;
1344 
1345 	/*
1346 	 * get memory map from INT 15:E820, kindly supplied by the loader.
1347 	 *
1348 	 * subr_module.c says:
1349 	 * "Consumer may safely assume that size value precedes data."
1350 	 * ie: an int32_t immediately precedes smap.
1351 	 */
1352 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1353 	    MODINFO_METADATA | MODINFOMD_SMAP);
1354 	if (smapbase == NULL)
1355 		panic("No BIOS smap info from loader!");
1356 
1357 	smapsize = *((u_int32_t *)smapbase - 1);
1358 	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1359 
1360 	for (smap = smapbase; smap < smapend; smap++) {
1361 		if (boothowto & RB_VERBOSE)
1362 			kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1363 			    smap->type, smap->base, smap->length);
1364 
1365 		if (smap->type != SMAP_TYPE_MEMORY)
1366 			continue;
1367 
1368 		if (smap->length == 0)
1369 			continue;
1370 
1371 		for (i = 0; i <= physmap_idx; i += 2) {
1372 			if (smap->base < physmap[i + 1]) {
1373 				if (boothowto & RB_VERBOSE)
1374 					kprintf(
1375 	"Overlapping or non-monotonic memory region, ignoring second region\n");
1376 				continue;
1377 			}
1378 		}
1379 
1380 		if (smap->base == physmap[physmap_idx + 1]) {
1381 			physmap[physmap_idx + 1] += smap->length;
1382 			continue;
1383 		}
1384 
1385 		physmap_idx += 2;
1386 		if (physmap_idx == PHYSMAP_SIZE) {
1387 			kprintf(
1388 		"Too many segments in the physical address map, giving up\n");
1389 			break;
1390 		}
1391 		physmap[physmap_idx] = smap->base;
1392 		physmap[physmap_idx + 1] = smap->base + smap->length;
1393 	}
1394 
1395 	/*
1396 	 * Find the 'base memory' segment for SMP
1397 	 */
1398 	basemem = 0;
1399 	for (i = 0; i <= physmap_idx; i += 2) {
1400 		if (physmap[i] == 0x00000000) {
1401 			basemem = physmap[i + 1] / 1024;
1402 			break;
1403 		}
1404 	}
1405 	if (basemem == 0)
1406 		panic("BIOS smap did not include a basemem segment!");
1407 
1408 #ifdef SMP
1409 	/* make hole for AP bootstrap code */
1410 	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1411 
1412 	/* look for the MP hardware - needed for apic addresses */
1413 	mp_probe();
1414 #endif
1415 
1416 	/*
1417 	 * Maxmem isn't the "maximum memory", it's one larger than the
1418 	 * highest page of the physical address space.  It should be
1419 	 * called something like "Maxphyspage".  We may adjust this
1420 	 * based on ``hw.physmem'' and the results of the memory test.
1421 	 */
1422 	Maxmem = atop(physmap[physmap_idx + 1]);
1423 
1424 #ifdef MAXMEM
1425 	Maxmem = MAXMEM / 4;
1426 #endif
1427 
1428 	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1429 		Maxmem = atop(physmem_tunable);
1430 
1431 	/*
1432 	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1433 	 * in the system.
1434 	 */
1435 	if (Maxmem > atop(physmap[physmap_idx + 1]))
1436 		Maxmem = atop(physmap[physmap_idx + 1]);
1437 
1438 	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1439 	    (boothowto & RB_VERBOSE))
1440 		kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
1441 
1442 	/* call pmap initialization to make new kernel address space */
1443 	pmap_bootstrap(&first);
1444 
1445 	/*
1446 	 * Size up each available chunk of physical memory.
1447 	 */
1448 	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1449 	pa_indx = 0;
1450 	da_indx = 1;
1451 	phys_avail[pa_indx++] = physmap[0];
1452 	phys_avail[pa_indx] = physmap[0];
1453 	dump_avail[da_indx] = physmap[0];
1454 	pte = CMAP1;
1455 
1456 	/*
1457 	 * Get dcons buffer address
1458 	 */
1459 	if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
1460 	    kgetenv_quad("dcons.size", &dcons_size) == 0)
1461 		dcons_addr = 0;
1462 
1463 	/*
1464 	 * physmap is in bytes, so when converting to page boundaries,
1465 	 * round up the start address and round down the end address.
1466 	 */
1467 	for (i = 0; i <= physmap_idx; i += 2) {
1468 		vm_paddr_t end;
1469 
1470 		end = ptoa((vm_paddr_t)Maxmem);
1471 		if (physmap[i + 1] < end)
1472 			end = trunc_page(physmap[i + 1]);
1473 		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1474 			int tmp, page_bad, full;
1475 			int *ptr = (int *)CADDR1;
1476 
1477 			full = FALSE;
1478 			/*
1479 			 * block out kernel memory as not available.
1480 			 */
1481 			if (pa >= 0x100000 && pa < first)
1482 				goto do_dump_avail;
1483 
1484 			/*
1485 			 * block out dcons buffer
1486 			 */
1487 			if (dcons_addr > 0
1488 			    && pa >= trunc_page(dcons_addr)
1489 			    && pa < dcons_addr + dcons_size)
1490 				goto do_dump_avail;
1491 
1492 			page_bad = FALSE;
1493 
1494 			/*
1495 			 * map page into kernel: valid, read/write,non-cacheable
1496 			 */
1497 			*pte = pa | PG_V | PG_RW | PG_N;
1498 			cpu_invltlb();
1499 
1500 			tmp = *(int *)ptr;
1501 			/*
1502 			 * Test for alternating 1's and 0's
1503 			 */
1504 			*(volatile int *)ptr = 0xaaaaaaaa;
1505 			if (*(volatile int *)ptr != 0xaaaaaaaa)
1506 				page_bad = TRUE;
1507 			/*
1508 			 * Test for alternating 0's and 1's
1509 			 */
1510 			*(volatile int *)ptr = 0x55555555;
1511 			if (*(volatile int *)ptr != 0x55555555)
1512 				page_bad = TRUE;
1513 			/*
1514 			 * Test for all 1's
1515 			 */
1516 			*(volatile int *)ptr = 0xffffffff;
1517 			if (*(volatile int *)ptr != 0xffffffff)
1518 				page_bad = TRUE;
1519 			/*
1520 			 * Test for all 0's
1521 			 */
1522 			*(volatile int *)ptr = 0x0;
1523 			if (*(volatile int *)ptr != 0x0)
1524 				page_bad = TRUE;
1525 			/*
1526 			 * Restore original value.
1527 			 */
1528 			*(int *)ptr = tmp;
1529 
1530 			/*
1531 			 * Adjust array of valid/good pages.
1532 			 */
1533 			if (page_bad == TRUE)
1534 				continue;
1535 			/*
1536 			 * If this good page is a continuation of the
1537 			 * previous set of good pages, then just increase
1538 			 * the end pointer. Otherwise start a new chunk.
1539 			 * Note that "end" points one higher than end,
1540 			 * making the range >= start and < end.
1541 			 * If we're also doing a speculative memory
1542 			 * test and we at or past the end, bump up Maxmem
1543 			 * so that we keep going. The first bad page
1544 			 * will terminate the loop.
1545 			 */
1546 			if (phys_avail[pa_indx] == pa) {
1547 				phys_avail[pa_indx] += PAGE_SIZE;
1548 			} else {
1549 				pa_indx++;
1550 				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1551 					kprintf(
1552 		"Too many holes in the physical address space, giving up\n");
1553 					pa_indx--;
1554 					full = TRUE;
1555 					goto do_dump_avail;
1556 				}
1557 				phys_avail[pa_indx++] = pa;	/* start */
1558 				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1559 			}
1560 			physmem++;
1561 do_dump_avail:
1562 			if (dump_avail[da_indx] == pa) {
1563 				dump_avail[da_indx] += PAGE_SIZE;
1564 			} else {
1565 				da_indx++;
1566 				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1567 					da_indx--;
1568 					goto do_next;
1569 				}
1570 				dump_avail[da_indx++] = pa; /* start */
1571 				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1572 			}
1573 do_next:
1574 			if (full)
1575 				break;
1576 		}
1577 	}
1578 	*pte = 0;
1579 	cpu_invltlb();
1580 
1581 	/*
1582 	 * XXX
1583 	 * The last chunk must contain at least one page plus the message
1584 	 * buffer to avoid complicating other code (message buffer address
1585 	 * calculation, etc.).
1586 	 */
1587 	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1588 	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1589 		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1590 		phys_avail[pa_indx--] = 0;
1591 		phys_avail[pa_indx--] = 0;
1592 	}
1593 
1594 	Maxmem = atop(phys_avail[pa_indx]);
1595 
1596 	/* Trim off space for the message buffer. */
1597 	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1598 
1599 	avail_end = phys_avail[pa_indx];
1600 
1601 	/* Map the message buffer. */
1602 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1603 		pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
1604 		    off);
1605 }
1606 
1607 /*
1608  * IDT VECTORS:
1609  *	0	Divide by zero
1610  *	1	Debug
1611  *	2	NMI
1612  *	3	BreakPoint
1613  *	4	OverFlow
1614  *	5	Bound-Range
1615  *	6	Invalid OpCode
1616  *	7	Device Not Available (x87)
1617  *	8	Double-Fault
1618  *	9	Coprocessor Segment overrun (unsupported, reserved)
1619  *	10	Invalid-TSS
1620  *	11	Segment not present
1621  *	12	Stack
1622  *	13	General Protection
1623  *	14	Page Fault
1624  *	15	Reserved
1625  *	16	x87 FP Exception pending
1626  *	17	Alignment Check
1627  *	18	Machine Check
1628  *	19	SIMD floating point
1629  *	20-31	reserved
1630  *	32-255	INTn/external sources
1631  */
1632 u_int64_t
1633 hammer_time(u_int64_t modulep, u_int64_t physfree)
1634 {
1635 	caddr_t kmdp;
1636 	int gsel_tss, x;
1637 #if JG
1638 	int metadata_missing, off;
1639 #endif
1640 	struct mdglobaldata *gd;
1641 	u_int64_t msr;
1642 
1643 	/*
1644 	 * Prevent lowering of the ipl if we call tsleep() early.
1645 	 */
1646 	gd = &CPU_prvspace[0].mdglobaldata;
1647 	bzero(gd, sizeof(*gd));
1648 
1649 	/*
1650 	 * Note: on both UP and SMP curthread must be set non-NULL
1651 	 * early in the boot sequence because the system assumes
1652 	 * that 'curthread' is never NULL.
1653 	 */
1654 
1655 	gd->mi.gd_curthread = &thread0;
1656 	thread0.td_gd = &gd->mi;
1657 
1658 	atdevbase = ISA_HOLE_START + PTOV_OFFSET;
1659 
1660 #if JG
1661 	metadata_missing = 0;
1662 	if (bootinfo.bi_modulep) {
1663 		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1664 		preload_bootstrap_relocate(KERNBASE);
1665 	} else {
1666 		metadata_missing = 1;
1667 	}
1668 	if (bootinfo.bi_envp)
1669 		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1670 #endif
1671 
1672 	preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
1673 	preload_bootstrap_relocate(PTOV_OFFSET);
1674 	kmdp = preload_search_by_type("elf kernel");
1675 	if (kmdp == NULL)
1676 		kmdp = preload_search_by_type("elf64 kernel");
1677 	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1678 	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
1679 #ifdef DDB
1680 	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1681 	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1682 #endif
1683 
1684 	/*
1685 	 * start with one cpu.  Note: with one cpu, ncpus2_shift, ncpus2_mask,
1686 	 * and ncpus_fit_mask remain 0.
1687 	 */
1688 	ncpus = 1;
1689 	ncpus2 = 1;
1690 	ncpus_fit = 1;
1691 	/* Init basic tunables, hz etc */
1692 	init_param1();
1693 
1694 	/*
1695 	 * make gdt memory segments
1696 	 */
1697 	gdt_segs[GPROC0_SEL].ssd_base =
1698 		(uintptr_t) &CPU_prvspace[0].mdglobaldata.gd_common_tss;
1699 
1700 	gd->mi.gd_prvspace = &CPU_prvspace[0];
1701 
1702 	for (x = 0; x < NGDT; x++) {
1703 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
1704 			ssdtosd(&gdt_segs[x], &gdt[x]);
1705 	}
1706 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1707 	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1708 
1709 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1710 	r_gdt.rd_base =  (long) gdt;
1711 	lgdt(&r_gdt);
1712 
1713 	wrmsr(MSR_FSBASE, 0);		/* User value */
1714 	wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
1715 	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1716 
1717 	mi_gdinit(&gd->mi, 0);
1718 	cpu_gdinit(gd, 0);
1719 	proc0paddr = proc0paddr_buff;
1720 	mi_proc0init(&gd->mi, proc0paddr);
1721 	safepri = TDPRI_MAX;
1722 
1723 	/* spinlocks and the BGL */
1724 	init_locks();
1725 
1726 	/* exceptions */
1727 	for (x = 0; x < NIDT; x++)
1728 		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1729 	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1730 	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1731 	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 1);
1732  	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1733 	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1734 	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1735 	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1736 	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1737 	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1738 	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1739 	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1740 	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1741 	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1742 	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1743 	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1744 	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1745 	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1746 	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1747 	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1748 
1749 	r_idt.rd_limit = sizeof(idt0) - 1;
1750 	r_idt.rd_base = (long) idt;
1751 	lidt(&r_idt);
1752 
1753 	/*
1754 	 * Initialize the console before we print anything out.
1755 	 */
1756 	cninit();
1757 
1758 #if JG
1759 	if (metadata_missing)
1760 		kprintf("WARNING: loader(8) metadata is missing!\n");
1761 #endif
1762 
1763 #if	NISA >0
1764 	isa_defaultirq();
1765 #endif
1766 	rand_initialize();
1767 
1768 #ifdef DDB
1769 	kdb_init();
1770 	if (boothowto & RB_KDB)
1771 		Debugger("Boot flags requested debugger");
1772 #endif
1773 
1774 #if JG
1775 	finishidentcpu();	/* Final stage of CPU initialization */
1776 	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1777 	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1778 #endif
1779 	identify_cpu();		/* Final stage of CPU initialization */
1780 	initializecpu();	/* Initialize CPU registers */
1781 
1782 	/* make an initial tss so cpu can get interrupt stack on syscall! */
1783 	gd->gd_common_tss.tss_rsp0 =
1784 		(register_t)(thread0.td_kstack +
1785 			     KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb));
1786 	/* Ensure the stack is aligned to 16 bytes */
1787 	gd->gd_common_tss.tss_rsp0 &= ~0xFul;
1788 	gd->gd_rsp0 = gd->gd_common_tss.tss_rsp0;
1789 
1790 	/* doublefault stack space, runs on ist1 */
1791 	gd->gd_common_tss.tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1792 
1793 	/* Set the IO permission bitmap (empty due to tss seg limit) */
1794 	gd->gd_common_tss.tss_iobase = sizeof(struct x86_64tss);
1795 
1796 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1797 	gd->gd_tss_gdt = &gdt[GPROC0_SEL];
1798 	gd->gd_common_tssd = *gd->gd_tss_gdt;
1799 	ltr(gsel_tss);
1800 
1801 	/* Set up the fast syscall stuff */
1802 	msr = rdmsr(MSR_EFER) | EFER_SCE;
1803 	wrmsr(MSR_EFER, msr);
1804 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1805 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1806 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1807 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1808 	wrmsr(MSR_STAR, msr);
1809 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1810 
1811 	getmemsize(kmdp, physfree);
1812 	init_param2(physmem);
1813 
1814 	/* now running on new page tables, configured,and u/iom is accessible */
1815 
1816 	/* Map the message buffer. */
1817 #if JG
1818 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1819 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
1820 #endif
1821 
1822 	msgbufinit(msgbufp, MSGBUF_SIZE);
1823 
1824 
1825 	/* transfer to user mode */
1826 
1827 	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1828 	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1829 	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1830 
1831 	load_ds(_udatasel);
1832 	load_es(_udatasel);
1833 	load_fs(_udatasel);
1834 
1835 	/* setup proc 0's pcb */
1836 	thread0.td_pcb->pcb_flags = 0;
1837 	thread0.td_pcb->pcb_cr3 = KPML4phys;
1838 	thread0.td_pcb->pcb_ext = 0;
1839 	lwp0.lwp_md.md_regs = &proc0_tf;
1840 
1841 	/* Location of kernel stack for locore */
1842 	return ((u_int64_t)thread0.td_pcb);
1843 }
1844 
1845 /*
1846  * Initialize machine-dependant portions of the global data structure.
1847  * Note that the global data area and cpu0's idlestack in the private
1848  * data space were allocated in locore.
1849  *
1850  * Note: the idlethread's cpl is 0
1851  *
1852  * WARNING!  Called from early boot, 'mycpu' may not work yet.
1853  */
1854 void
1855 cpu_gdinit(struct mdglobaldata *gd, int cpu)
1856 {
1857 	if (cpu)
1858 		gd->mi.gd_curthread = &gd->mi.gd_idlethread;
1859 
1860 	lwkt_init_thread(&gd->mi.gd_idlethread,
1861 			gd->mi.gd_prvspace->idlestack,
1862 			sizeof(gd->mi.gd_prvspace->idlestack),
1863 			0, &gd->mi);
1864 	lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
1865 	gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
1866 	gd->mi.gd_idlethread.td_sp -= sizeof(void *);
1867 	*(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
1868 }
1869 
1870 int
1871 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
1872 {
1873 	if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
1874 	    eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
1875 		return (TRUE);
1876 	}
1877 	return (FALSE);
1878 }
1879 
1880 struct globaldata *
1881 globaldata_find(int cpu)
1882 {
1883 	KKASSERT(cpu >= 0 && cpu < ncpus);
1884 	return(&CPU_prvspace[cpu].mdglobaldata.mi);
1885 }
1886 
1887 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
1888 static void f00f_hack(void *unused);
1889 SYSINIT(f00f_hack, SI_BOOT2_BIOS, SI_ORDER_ANY, f00f_hack, NULL);
1890 
1891 static void
1892 f00f_hack(void *unused)
1893 {
1894 	struct gate_descriptor *new_idt;
1895 	vm_offset_t tmp;
1896 
1897 	if (!has_f00f_bug)
1898 		return;
1899 
1900 	kprintf("Intel Pentium detected, installing workaround for F00F bug\n");
1901 
1902 	r_idt.rd_limit = sizeof(idt0) - 1;
1903 
1904 	tmp = kmem_alloc(&kernel_map, PAGE_SIZE * 2);
1905 	if (tmp == 0)
1906 		panic("kmem_alloc returned 0");
1907 	if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
1908 		panic("kmem_alloc returned non-page-aligned memory");
1909 	/* Put the first seven entries in the lower page */
1910 	new_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
1911 	bcopy(idt, new_idt, sizeof(idt0));
1912 	r_idt.rd_base = (int)new_idt;
1913 	lidt(&r_idt);
1914 	idt = new_idt;
1915 	if (vm_map_protect(&kernel_map, tmp, tmp + PAGE_SIZE,
1916 			   VM_PROT_READ, FALSE) != KERN_SUCCESS)
1917 		panic("vm_map_protect failed");
1918 	return;
1919 }
1920 #endif /* defined(I586_CPU) && !NO_F00F_HACK */
1921 
1922 int
1923 ptrace_set_pc(struct lwp *lp, unsigned long addr)
1924 {
1925 	lp->lwp_md.md_regs->tf_rip = addr;
1926 	return (0);
1927 }
1928 
1929 int
1930 ptrace_single_step(struct lwp *lp)
1931 {
1932 	lp->lwp_md.md_regs->tf_rflags |= PSL_T;
1933 	return (0);
1934 }
1935 
1936 int
1937 fill_regs(struct lwp *lp, struct reg *regs)
1938 {
1939 	struct trapframe *tp;
1940 
1941 	tp = lp->lwp_md.md_regs;
1942 	bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
1943 	return (0);
1944 }
1945 
1946 int
1947 set_regs(struct lwp *lp, struct reg *regs)
1948 {
1949 	struct trapframe *tp;
1950 
1951 	tp = lp->lwp_md.md_regs;
1952 	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
1953 	    !CS_SECURE(regs->r_cs))
1954 		return (EINVAL);
1955 	bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
1956 	return (0);
1957 }
1958 
1959 #ifndef CPU_DISABLE_SSE
1960 static void
1961 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
1962 {
1963 	struct env87 *penv_87 = &sv_87->sv_env;
1964 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1965 	int i;
1966 
1967 	/* FPU control/status */
1968 	penv_87->en_cw = penv_xmm->en_cw;
1969 	penv_87->en_sw = penv_xmm->en_sw;
1970 	penv_87->en_tw = penv_xmm->en_tw;
1971 	penv_87->en_fip = penv_xmm->en_fip;
1972 	penv_87->en_fcs = penv_xmm->en_fcs;
1973 	penv_87->en_opcode = penv_xmm->en_opcode;
1974 	penv_87->en_foo = penv_xmm->en_foo;
1975 	penv_87->en_fos = penv_xmm->en_fos;
1976 
1977 	/* FPU registers */
1978 	for (i = 0; i < 8; ++i)
1979 		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
1980 
1981 	sv_87->sv_ex_sw = sv_xmm->sv_ex_sw;
1982 }
1983 
1984 static void
1985 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
1986 {
1987 	struct env87 *penv_87 = &sv_87->sv_env;
1988 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1989 	int i;
1990 
1991 	/* FPU control/status */
1992 	penv_xmm->en_cw = penv_87->en_cw;
1993 	penv_xmm->en_sw = penv_87->en_sw;
1994 	penv_xmm->en_tw = penv_87->en_tw;
1995 	penv_xmm->en_fip = penv_87->en_fip;
1996 	penv_xmm->en_fcs = penv_87->en_fcs;
1997 	penv_xmm->en_opcode = penv_87->en_opcode;
1998 	penv_xmm->en_foo = penv_87->en_foo;
1999 	penv_xmm->en_fos = penv_87->en_fos;
2000 
2001 	/* FPU registers */
2002 	for (i = 0; i < 8; ++i)
2003 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2004 
2005 	sv_xmm->sv_ex_sw = sv_87->sv_ex_sw;
2006 }
2007 #endif /* CPU_DISABLE_SSE */
2008 
2009 int
2010 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2011 {
2012 #ifndef CPU_DISABLE_SSE
2013 	if (cpu_fxsr) {
2014 		fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2015 				(struct save87 *)fpregs);
2016 		return (0);
2017 	}
2018 #endif /* CPU_DISABLE_SSE */
2019 	bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2020 	return (0);
2021 }
2022 
2023 int
2024 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2025 {
2026 #ifndef CPU_DISABLE_SSE
2027 	if (cpu_fxsr) {
2028 		set_fpregs_xmm((struct save87 *)fpregs,
2029 			       &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2030 		return (0);
2031 	}
2032 #endif /* CPU_DISABLE_SSE */
2033 	bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2034 	return (0);
2035 }
2036 
2037 int
2038 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2039 {
2040         if (lp == NULL) {
2041                 dbregs->dr[0] = rdr0();
2042                 dbregs->dr[1] = rdr1();
2043                 dbregs->dr[2] = rdr2();
2044                 dbregs->dr[3] = rdr3();
2045                 dbregs->dr[4] = rdr4();
2046                 dbregs->dr[5] = rdr5();
2047                 dbregs->dr[6] = rdr6();
2048                 dbregs->dr[7] = rdr7();
2049         } else {
2050 		struct pcb *pcb;
2051 
2052                 pcb = lp->lwp_thread->td_pcb;
2053                 dbregs->dr[0] = pcb->pcb_dr0;
2054                 dbregs->dr[1] = pcb->pcb_dr1;
2055                 dbregs->dr[2] = pcb->pcb_dr2;
2056                 dbregs->dr[3] = pcb->pcb_dr3;
2057                 dbregs->dr[4] = 0;
2058                 dbregs->dr[5] = 0;
2059                 dbregs->dr[6] = pcb->pcb_dr6;
2060                 dbregs->dr[7] = pcb->pcb_dr7;
2061         }
2062 	return (0);
2063 }
2064 
2065 int
2066 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2067 {
2068 	if (lp == NULL) {
2069 		load_dr0(dbregs->dr[0]);
2070 		load_dr1(dbregs->dr[1]);
2071 		load_dr2(dbregs->dr[2]);
2072 		load_dr3(dbregs->dr[3]);
2073 		load_dr4(dbregs->dr[4]);
2074 		load_dr5(dbregs->dr[5]);
2075 		load_dr6(dbregs->dr[6]);
2076 		load_dr7(dbregs->dr[7]);
2077 	} else {
2078 		struct pcb *pcb;
2079 		struct ucred *ucred;
2080 		int i;
2081 		uint64_t mask1, mask2;
2082 
2083 		/*
2084 		 * Don't let an illegal value for dr7 get set.	Specifically,
2085 		 * check for undefined settings.  Setting these bit patterns
2086 		 * result in undefined behaviour and can lead to an unexpected
2087 		 * TRCTRAP.
2088 		 */
2089 		/* JG this loop looks unreadable */
2090 		/* Check 4 2-bit fields for invalid patterns.
2091 		 * These fields are R/Wi, for i = 0..3
2092 		 */
2093 		/* Is 10 in LENi allowed when running in compatibility mode? */
2094 		/* Pattern 10 in R/Wi might be used to indicate
2095 		 * breakpoint on I/O. Further analysis should be
2096 		 * carried to decide if it is safe and useful to
2097 		 * provide access to that capability
2098 		 */
2099 		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2100 		     i++, mask1 <<= 4, mask2 <<= 4)
2101 			if ((dbregs->dr[7] & mask1) == mask2)
2102 				return (EINVAL);
2103 
2104 		pcb = lp->lwp_thread->td_pcb;
2105 		ucred = lp->lwp_proc->p_ucred;
2106 
2107 		/*
2108 		 * Don't let a process set a breakpoint that is not within the
2109 		 * process's address space.  If a process could do this, it
2110 		 * could halt the system by setting a breakpoint in the kernel
2111 		 * (if ddb was enabled).  Thus, we need to check to make sure
2112 		 * that no breakpoints are being enabled for addresses outside
2113 		 * process's address space, unless, perhaps, we were called by
2114 		 * uid 0.
2115 		 *
2116 		 * XXX - what about when the watched area of the user's
2117 		 * address space is written into from within the kernel
2118 		 * ... wouldn't that still cause a breakpoint to be generated
2119 		 * from within kernel mode?
2120 		 */
2121 
2122 		if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2123 			if (dbregs->dr[7] & 0x3) {
2124 				/* dr0 is enabled */
2125 				if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2126 					return (EINVAL);
2127 			}
2128 
2129 			if (dbregs->dr[7] & (0x3<<2)) {
2130 				/* dr1 is enabled */
2131 				if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2132 					return (EINVAL);
2133 			}
2134 
2135 			if (dbregs->dr[7] & (0x3<<4)) {
2136 				/* dr2 is enabled */
2137 				if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2138 					return (EINVAL);
2139 			}
2140 
2141 			if (dbregs->dr[7] & (0x3<<6)) {
2142 				/* dr3 is enabled */
2143 				if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2144 					return (EINVAL);
2145 			}
2146 		}
2147 
2148 		pcb->pcb_dr0 = dbregs->dr[0];
2149 		pcb->pcb_dr1 = dbregs->dr[1];
2150 		pcb->pcb_dr2 = dbregs->dr[2];
2151 		pcb->pcb_dr3 = dbregs->dr[3];
2152 		pcb->pcb_dr6 = dbregs->dr[6];
2153 		pcb->pcb_dr7 = dbregs->dr[7];
2154 
2155 		pcb->pcb_flags |= PCB_DBREGS;
2156 	}
2157 
2158 	return (0);
2159 }
2160 
2161 /*
2162  * Return > 0 if a hardware breakpoint has been hit, and the
2163  * breakpoint was in user space.  Return 0, otherwise.
2164  */
2165 int
2166 user_dbreg_trap(void)
2167 {
2168         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2169         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2170         int nbp;            /* number of breakpoints that triggered */
2171         caddr_t addr[4];    /* breakpoint addresses */
2172         int i;
2173 
2174         dr7 = rdr7();
2175         if ((dr7 & 0xff) == 0) {
2176                 /*
2177                  * all GE and LE bits in the dr7 register are zero,
2178                  * thus the trap couldn't have been caused by the
2179                  * hardware debug registers
2180                  */
2181                 return 0;
2182         }
2183 
2184         nbp = 0;
2185         dr6 = rdr6();
2186         bp = dr6 & 0xf;
2187 
2188         if (bp == 0) {
2189                 /*
2190                  * None of the breakpoint bits are set meaning this
2191                  * trap was not caused by any of the debug registers
2192                  */
2193                 return 0;
2194         }
2195 
2196         /*
2197          * at least one of the breakpoints were hit, check to see
2198          * which ones and if any of them are user space addresses
2199          */
2200 
2201         if (bp & 0x01) {
2202                 addr[nbp++] = (caddr_t)rdr0();
2203         }
2204         if (bp & 0x02) {
2205                 addr[nbp++] = (caddr_t)rdr1();
2206         }
2207         if (bp & 0x04) {
2208                 addr[nbp++] = (caddr_t)rdr2();
2209         }
2210         if (bp & 0x08) {
2211                 addr[nbp++] = (caddr_t)rdr3();
2212         }
2213 
2214         for (i=0; i<nbp; i++) {
2215                 if (addr[i] <
2216                     (caddr_t)VM_MAX_USER_ADDRESS) {
2217                         /*
2218                          * addr[i] is in user space
2219                          */
2220                         return nbp;
2221                 }
2222         }
2223 
2224         /*
2225          * None of the breakpoints are in user space.
2226          */
2227         return 0;
2228 }
2229 
2230 
2231 #ifndef DDB
2232 void
2233 Debugger(const char *msg)
2234 {
2235 	kprintf("Debugger(\"%s\") called.\n", msg);
2236 }
2237 #endif /* no DDB */
2238 
2239 #ifdef DDB
2240 
2241 /*
2242  * Provide inb() and outb() as functions.  They are normally only
2243  * available as macros calling inlined functions, thus cannot be
2244  * called inside DDB.
2245  *
2246  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2247  */
2248 
2249 #undef inb
2250 #undef outb
2251 
2252 /* silence compiler warnings */
2253 u_char inb(u_int);
2254 void outb(u_int, u_char);
2255 
2256 u_char
2257 inb(u_int port)
2258 {
2259 	u_char	data;
2260 	/*
2261 	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2262 	 * %edx, while gcc generates inferior code (movw instead of movl)
2263 	 * if we tell it to load (u_short) port.
2264 	 */
2265 	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2266 	return (data);
2267 }
2268 
2269 void
2270 outb(u_int port, u_char data)
2271 {
2272 	u_char	al;
2273 	/*
2274 	 * Use an unnecessary assignment to help gcc's register allocator.
2275 	 * This make a large difference for gcc-1.40 and a tiny difference
2276 	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2277 	 * best results.  gcc-2.6.0 can't handle this.
2278 	 */
2279 	al = data;
2280 	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2281 }
2282 
2283 #endif /* DDB */
2284 
2285 
2286 
2287 #include "opt_cpu.h"
2288 
2289 
2290 /*
2291  * initialize all the SMP locks
2292  */
2293 
2294 /* critical region when masking or unmasking interupts */
2295 struct spinlock_deprecated imen_spinlock;
2296 
2297 /* critical region for old style disable_intr/enable_intr */
2298 struct spinlock_deprecated mpintr_spinlock;
2299 
2300 /* critical region around INTR() routines */
2301 struct spinlock_deprecated intr_spinlock;
2302 
2303 /* lock region used by kernel profiling */
2304 struct spinlock_deprecated mcount_spinlock;
2305 
2306 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2307 struct spinlock_deprecated com_spinlock;
2308 
2309 /* lock regions around the clock hardware */
2310 struct spinlock_deprecated clock_spinlock;
2311 
2312 static void
2313 init_locks(void)
2314 {
2315 	/*
2316 	 * mp_lock = 0;	BSP already owns the MP lock
2317 	 */
2318 	/*
2319 	 * Get the initial mp_lock with a count of 1 for the BSP.
2320 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
2321 	 */
2322 #ifdef SMP
2323 	cpu_get_initial_mplock();
2324 #endif
2325 	/* DEPRECATED */
2326 	spin_lock_init(&mcount_spinlock);
2327 	spin_lock_init(&intr_spinlock);
2328 	spin_lock_init(&mpintr_spinlock);
2329 	spin_lock_init(&imen_spinlock);
2330 	spin_lock_init(&com_spinlock);
2331 	spin_lock_init(&clock_spinlock);
2332 
2333 	/* our token pool needs to work early */
2334 	lwkt_token_pool_init();
2335 }
2336 
2337