xref: /dragonfly/sys/platform/pc64/x86_64/machdep.c (revision f7df6c8e)
1 /*-
2  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3  * Copyright (c) 1992 Terrence R. Lambert.
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 2008 The DragonFly Project.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
40  * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
41  */
42 
43 //#include "use_npx.h"
44 #include "use_isa.h"
45 #include "opt_compat.h"
46 #include "opt_cpu.h"
47 #include "opt_ddb.h"
48 #include "opt_directio.h"
49 #include "opt_inet.h"
50 #include "opt_msgbuf.h"
51 #include "opt_swap.h"
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/sysproto.h>
56 #include <sys/signalvar.h>
57 #include <sys/kernel.h>
58 #include <sys/linker.h>
59 #include <sys/malloc.h>
60 #include <sys/proc.h>
61 #include <sys/priv.h>
62 #include <sys/buf.h>
63 #include <sys/reboot.h>
64 #include <sys/mbuf.h>
65 #include <sys/msgbuf.h>
66 #include <sys/sysent.h>
67 #include <sys/sysctl.h>
68 #include <sys/vmmeter.h>
69 #include <sys/bus.h>
70 #include <sys/usched.h>
71 #include <sys/reg.h>
72 #include <sys/sbuf.h>
73 #include <sys/ctype.h>
74 #include <sys/serialize.h>
75 #include <sys/systimer.h>
76 
77 #include <vm/vm.h>
78 #include <vm/vm_param.h>
79 #include <sys/lock.h>
80 #include <vm/vm_kern.h>
81 #include <vm/vm_object.h>
82 #include <vm/vm_page.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_pager.h>
85 #include <vm/vm_extern.h>
86 
87 #include <sys/thread2.h>
88 #include <sys/mplock2.h>
89 #include <sys/mutex2.h>
90 
91 #include <sys/user.h>
92 #include <sys/exec.h>
93 #include <sys/cons.h>
94 
95 #include <ddb/ddb.h>
96 
97 #include <machine/cpu.h>
98 #include <machine/clock.h>
99 #include <machine/specialreg.h>
100 #if JG
101 #include <machine/bootinfo.h>
102 #endif
103 #include <machine/md_var.h>
104 #include <machine/metadata.h>
105 #include <machine/pc/bios.h>
106 #include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
107 #include <machine/globaldata.h>		/* CPU_prvspace */
108 #include <machine/smp.h>
109 #ifdef PERFMON
110 #include <machine/perfmon.h>
111 #endif
112 #include <machine/cputypes.h>
113 #include <machine/intr_machdep.h>
114 
115 #ifdef OLD_BUS_ARCH
116 #include <bus/isa/isa_device.h>
117 #endif
118 #include <machine_base/isa/isa_intr.h>
119 #include <bus/isa/rtc.h>
120 #include <sys/random.h>
121 #include <sys/ptrace.h>
122 #include <machine/sigframe.h>
123 
124 #include <sys/machintr.h>
125 #include <machine_base/icu/icu_abi.h>
126 #include <machine_base/icu/elcr_var.h>
127 #include <machine_base/apic/lapic.h>
128 #include <machine_base/apic/ioapic.h>
129 #include <machine_base/apic/ioapic_abi.h>
130 #include <machine/mptable.h>
131 
132 #define PHYSMAP_ENTRIES		10
133 
134 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
135 
136 extern void printcpuinfo(void);	/* XXX header file */
137 extern void identify_cpu(void);
138 #if JG
139 extern void finishidentcpu(void);
140 #endif
141 extern void panicifcpuunsupported(void);
142 
143 static void cpu_startup(void *);
144 static void pic_finish(void *);
145 static void cpu_finish(void *);
146 
147 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
148 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
149 #ifdef DIRECTIO
150 extern void ffs_rawread_setup(void);
151 #endif /* DIRECTIO */
152 static void init_locks(void);
153 
154 SYSINIT(cpu, SI_BOOT2_START_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
155 SYSINIT(pic_finish, SI_BOOT2_FINISH_PIC, SI_ORDER_FIRST, pic_finish, NULL)
156 SYSINIT(cpu_finish, SI_BOOT2_FINISH_CPU, SI_ORDER_FIRST, cpu_finish, NULL)
157 
158 #ifdef DDB
159 extern vm_offset_t ksym_start, ksym_end;
160 #endif
161 
162 struct privatespace CPU_prvspace_bsp __aligned(4096);
163 struct privatespace *CPU_prvspace[MAXCPU] = { &CPU_prvspace_bsp };
164 
165 int	_udatasel, _ucodesel, _ucode32sel;
166 u_long	atdevbase;
167 int64_t tsc_offsets[MAXCPU];
168 
169 static int cpu_mwait_halt;	/* MWAIT hint (EAX) or CPU_MWAIT_HINT_ */
170 
171 #if defined(SWTCH_OPTIM_STATS)
172 extern int swtch_optim_stats;
173 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
174 	CTLFLAG_RD, &swtch_optim_stats, 0, "");
175 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
176 	CTLFLAG_RD, &tlb_flush_count, 0, "");
177 #endif
178 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_halt,
179 	CTLFLAG_RD, &cpu_mwait_halt, 0, "");
180 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_spin, CTLFLAG_RD, &cpu_mwait_spin, 0,
181     "monitor/mwait target state");
182 
183 #define CPU_MWAIT_C1		1
184 #define CPU_MWAIT_C2		2
185 #define CPU_MWAIT_C3		3
186 #define CPU_MWAIT_CX_MAX	8
187 
188 #define CPU_MWAIT_HINT_AUTO	-1	/* C1 and C2 */
189 #define CPU_MWAIT_HINT_AUTODEEP	-2	/* C3+ */
190 
191 SYSCTL_NODE(_machdep, OID_AUTO, mwait, CTLFLAG_RW, 0, "MWAIT features");
192 SYSCTL_NODE(_machdep_mwait, OID_AUTO, CX, CTLFLAG_RW, 0, "MWAIT Cx settings");
193 
194 struct cpu_mwait_cx {
195 	int			subcnt;
196 	char			name[4];
197 	struct sysctl_ctx_list	sysctl_ctx;
198 	struct sysctl_oid	*sysctl_tree;
199 };
200 static struct cpu_mwait_cx	cpu_mwait_cx_info[CPU_MWAIT_CX_MAX];
201 static char			cpu_mwait_cx_supported[256];
202 
203 static int			cpu_mwait_c1_hints_cnt;
204 static int			cpu_mwait_hints_cnt;
205 static int			*cpu_mwait_hints;
206 
207 static int			cpu_mwait_deep_hints_cnt;
208 static int			*cpu_mwait_deep_hints;
209 
210 #define CPU_IDLE_REPEAT_DEFAULT	750
211 
212 static u_int			cpu_idle_repeat = CPU_IDLE_REPEAT_DEFAULT;
213 static u_long			cpu_idle_repeat_max = CPU_IDLE_REPEAT_DEFAULT;
214 static u_int			cpu_mwait_repeat_shift = 1;
215 
216 #define CPU_MWAIT_C3_PREAMBLE_BM_ARB	0x1
217 #define CPU_MWAIT_C3_PREAMBLE_BM_STS	0x2
218 
219 static int			cpu_mwait_c3_preamble =
220 				    CPU_MWAIT_C3_PREAMBLE_BM_ARB |
221 				    CPU_MWAIT_C3_PREAMBLE_BM_STS;
222 
223 SYSCTL_STRING(_machdep_mwait_CX, OID_AUTO, supported, CTLFLAG_RD,
224     cpu_mwait_cx_supported, 0, "MWAIT supported C states");
225 
226 static struct lwkt_serialize cpu_mwait_cx_slize = LWKT_SERIALIZE_INITIALIZER;
227 static int	cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS,
228 		    int *, boolean_t);
229 static int	cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS);
230 static int	cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS);
231 
232 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, idle, CTLTYPE_STRING|CTLFLAG_RW,
233     NULL, 0, cpu_mwait_cx_idle_sysctl, "A", "");
234 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, spin, CTLTYPE_STRING|CTLFLAG_RW,
235     NULL, 0, cpu_mwait_cx_spin_sysctl, "A", "");
236 SYSCTL_UINT(_machdep_mwait_CX, OID_AUTO, repeat_shift, CTLFLAG_RW,
237     &cpu_mwait_repeat_shift, 0, "");
238 
239 long physmem = 0;
240 
241 u_long ebda_addr = 0;
242 
243 int imcr_present = 0;
244 
245 int naps = 0; /* # of Applications processors */
246 
247 u_int base_memory;
248 struct mtx dt_lock;		/* lock for GDT and LDT */
249 
250 static int
251 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
252 {
253 	u_long pmem = ctob(physmem);
254 
255 	int error = sysctl_handle_long(oidp, &pmem, 0, req);
256 	return (error);
257 }
258 
259 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
260 	0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
261 
262 static int
263 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
264 {
265 	int error = sysctl_handle_int(oidp, 0,
266 		ctob(physmem - vmstats.v_wire_count), req);
267 	return (error);
268 }
269 
270 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
271 	0, 0, sysctl_hw_usermem, "IU", "");
272 
273 static int
274 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
275 {
276 	int error = sysctl_handle_int(oidp, 0,
277 		x86_64_btop(avail_end - avail_start), req);
278 	return (error);
279 }
280 
281 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
282 	0, 0, sysctl_hw_availpages, "I", "");
283 
284 vm_paddr_t Maxmem;
285 vm_paddr_t Realmem;
286 
287 /*
288  * The number of PHYSMAP entries must be one less than the number of
289  * PHYSSEG entries because the PHYSMAP entry that spans the largest
290  * physical address that is accessible by ISA DMA is split into two
291  * PHYSSEG entries.
292  */
293 #define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
294 
295 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
296 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
297 
298 /* must be 2 less so 0 0 can signal end of chunks */
299 #define PHYS_AVAIL_ARRAY_END (NELEM(phys_avail) - 2)
300 #define DUMP_AVAIL_ARRAY_END (NELEM(dump_avail) - 2)
301 
302 static vm_offset_t buffer_sva, buffer_eva;
303 vm_offset_t clean_sva, clean_eva;
304 static vm_offset_t pager_sva, pager_eva;
305 static struct trapframe proc0_tf;
306 
307 static void
308 cpu_startup(void *dummy)
309 {
310 	caddr_t v;
311 	vm_size_t size = 0;
312 	vm_offset_t firstaddr;
313 
314 	/*
315 	 * Good {morning,afternoon,evening,night}.
316 	 */
317 	kprintf("%s", version);
318 	startrtclock();
319 	printcpuinfo();
320 	panicifcpuunsupported();
321 #ifdef PERFMON
322 	perfmon_init();
323 #endif
324 	kprintf("real memory  = %ju (%ju MB)\n",
325 		(intmax_t)Realmem,
326 		(intmax_t)Realmem / 1024 / 1024);
327 	/*
328 	 * Display any holes after the first chunk of extended memory.
329 	 */
330 	if (bootverbose) {
331 		int indx;
332 
333 		kprintf("Physical memory chunk(s):\n");
334 		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
335 			vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
336 
337 			kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
338 				(intmax_t)phys_avail[indx],
339 				(intmax_t)phys_avail[indx + 1] - 1,
340 				(intmax_t)size1,
341 				(intmax_t)(size1 / PAGE_SIZE));
342 		}
343 	}
344 
345 	/*
346 	 * Allocate space for system data structures.
347 	 * The first available kernel virtual address is in "v".
348 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
349 	 * As pages of memory are allocated and cleared,
350 	 * "firstaddr" is incremented.
351 	 * An index into the kernel page table corresponding to the
352 	 * virtual memory address maintained in "v" is kept in "mapaddr".
353 	 */
354 
355 	/*
356 	 * Make two passes.  The first pass calculates how much memory is
357 	 * needed and allocates it.  The second pass assigns virtual
358 	 * addresses to the various data structures.
359 	 */
360 	firstaddr = 0;
361 again:
362 	v = (caddr_t)firstaddr;
363 
364 #define	valloc(name, type, num) \
365 	    (name) = (type *)v; v = (caddr_t)((name)+(num))
366 #define	valloclim(name, type, num, lim) \
367 	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
368 
369 	/*
370 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
371 	 * For the first 64MB of ram nominally allocate sufficient buffers to
372 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
373 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
374 	 * the buffer cache we limit the eventual kva reservation to
375 	 * maxbcache bytes.
376 	 *
377 	 * factor represents the 1/4 x ram conversion.
378 	 */
379 	if (nbuf == 0) {
380 		long factor = 4 * BKVASIZE / 1024;
381 		long kbytes = physmem * (PAGE_SIZE / 1024);
382 
383 		nbuf = 50;
384 		if (kbytes > 4096)
385 			nbuf += min((kbytes - 4096) / factor, 65536 / factor);
386 		if (kbytes > 65536)
387 			nbuf += (kbytes - 65536) * 2 / (factor * 5);
388 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
389 			nbuf = maxbcache / BKVASIZE;
390 	}
391 
392 	/*
393 	 * Do not allow the buffer_map to be more then 1/2 the size of the
394 	 * kernel_map.
395 	 */
396 	if (nbuf > (virtual_end - virtual_start +
397 		    virtual2_end - virtual2_start) / (BKVASIZE * 2)) {
398 		nbuf = (virtual_end - virtual_start +
399 			virtual2_end - virtual2_start) / (BKVASIZE * 2);
400 		kprintf("Warning: nbufs capped at %ld due to kvm\n", nbuf);
401 	}
402 
403 	/*
404 	 * Do not allow the buffer_map to use more than 50% of available
405 	 * physical-equivalent memory.  Since the VM pages which back
406 	 * individual buffers are typically wired, having too many bufs
407 	 * can prevent the system from paging properly.
408 	 */
409 	if (nbuf > physmem * PAGE_SIZE / (BKVASIZE * 2)) {
410 		nbuf = physmem * PAGE_SIZE / (BKVASIZE * 2);
411 		kprintf("Warning: nbufs capped at %ld due to physmem\n", nbuf);
412 	}
413 
414 	/*
415 	 * Do not allow the sizeof(struct buf) * nbuf to exceed half of
416 	 * the valloc space which is just the virtual_end - virtual_start
417 	 * section.  We use valloc() to allocate the buf header array.
418 	 */
419 	if (nbuf > (virtual_end - virtual_start) / sizeof(struct buf) / 2) {
420 		nbuf = (virtual_end - virtual_start) /
421 		       sizeof(struct buf) / 2;
422 		kprintf("Warning: nbufs capped at %ld due to valloc "
423 			"considerations", nbuf);
424 	}
425 
426 	nswbuf = lmax(lmin(nbuf / 4, 256), 16);
427 #ifdef NSWBUF_MIN
428 	if (nswbuf < NSWBUF_MIN)
429 		nswbuf = NSWBUF_MIN;
430 #endif
431 #ifdef DIRECTIO
432 	ffs_rawread_setup();
433 #endif
434 
435 	valloc(swbuf, struct buf, nswbuf);
436 	valloc(buf, struct buf, nbuf);
437 
438 	/*
439 	 * End of first pass, size has been calculated so allocate memory
440 	 */
441 	if (firstaddr == 0) {
442 		size = (vm_size_t)(v - firstaddr);
443 		firstaddr = kmem_alloc(&kernel_map, round_page(size));
444 		if (firstaddr == 0)
445 			panic("startup: no room for tables");
446 		goto again;
447 	}
448 
449 	/*
450 	 * End of second pass, addresses have been assigned
451 	 *
452 	 * nbuf is an int, make sure we don't overflow the field.
453 	 *
454 	 * On 64-bit systems we always reserve maximal allocations for
455 	 * buffer cache buffers and there are no fragmentation issues,
456 	 * so the KVA segment does not have to be excessively oversized.
457 	 */
458 	if ((vm_size_t)(v - firstaddr) != size)
459 		panic("startup: table size inconsistency");
460 
461 	kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
462 		      ((vm_offset_t)(nbuf + 16) * BKVASIZE) +
463 		      (nswbuf * MAXPHYS) + pager_map_size);
464 	kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
465 		      ((vm_offset_t)(nbuf + 16) * BKVASIZE));
466 	buffer_map.system_map = 1;
467 	kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
468 		      ((vm_offset_t)nswbuf * MAXPHYS) + pager_map_size);
469 	pager_map.system_map = 1;
470 
471 #if defined(USERCONFIG)
472 	userconfig();
473 	cninit();		/* the preferred console may have changed */
474 #endif
475 
476 	kprintf("avail memory = %ju (%ju MB)\n",
477 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages),
478 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages) /
479 		1024 / 1024);
480 }
481 
482 struct cpu_idle_stat {
483 	u_long	halt;
484 	u_long	spin;
485 	u_long	repeat;
486 	u_long	repeat_last;
487 	u_long	repeat_delta;
488 	u_long	mwait_cx[CPU_MWAIT_CX_MAX];
489 } __cachealign;
490 
491 #define CPU_IDLE_STAT_HALT	-1
492 #define CPU_IDLE_STAT_SPIN	-2
493 
494 static struct cpu_idle_stat	cpu_idle_stats[MAXCPU];
495 
496 static int
497 sysctl_cpu_idle_cnt(SYSCTL_HANDLER_ARGS)
498 {
499 	int idx = arg2, cpu, error;
500 	u_long val = 0;
501 
502 	if (idx == CPU_IDLE_STAT_HALT) {
503 		for (cpu = 0; cpu < ncpus; ++cpu)
504 			val += cpu_idle_stats[cpu].halt;
505 	} else if (idx == CPU_IDLE_STAT_SPIN) {
506 		for (cpu = 0; cpu < ncpus; ++cpu)
507 			val += cpu_idle_stats[cpu].spin;
508 	} else {
509 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
510 		    ("invalid index %d", idx));
511 		for (cpu = 0; cpu < ncpus; ++cpu)
512 			val += cpu_idle_stats[cpu].mwait_cx[idx];
513 	}
514 
515 	error = sysctl_handle_quad(oidp, &val, 0, req);
516         if (error || req->newptr == NULL)
517 	        return error;
518 
519 	if (idx == CPU_IDLE_STAT_HALT) {
520 		for (cpu = 0; cpu < ncpus; ++cpu)
521 			cpu_idle_stats[cpu].halt = 0;
522 		cpu_idle_stats[0].halt = val;
523 	} else if (idx == CPU_IDLE_STAT_SPIN) {
524 		for (cpu = 0; cpu < ncpus; ++cpu)
525 			cpu_idle_stats[cpu].spin = 0;
526 		cpu_idle_stats[0].spin = val;
527 	} else {
528 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
529 		    ("invalid index %d", idx));
530 		for (cpu = 0; cpu < ncpus; ++cpu)
531 			cpu_idle_stats[cpu].mwait_cx[idx] = 0;
532 		cpu_idle_stats[0].mwait_cx[idx] = val;
533 	}
534 	return 0;
535 }
536 
537 static void
538 cpu_mwait_attach(void)
539 {
540 	struct sbuf sb;
541 	int hint_idx, i;
542 
543 	if ((cpu_feature2 & CPUID2_MON) == 0 ||
544 	    (cpu_mwait_feature & CPUID_MWAIT_EXT) == 0)
545 		return;
546 
547 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
548 	    (CPUID_TO_FAMILY(cpu_id) > 0xf ||
549 	     (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
550 	      CPUID_TO_MODEL(cpu_id) >= 0xf))) {
551 		int bm_sts = 1;
552 
553 		atomic_clear_int(&cpu_mwait_c3_preamble,
554 		    CPU_MWAIT_C3_PREAMBLE_BM_ARB);
555 
556 		TUNABLE_INT_FETCH("machdep.cpu.mwait.bm_sts", &bm_sts);
557 		if (!bm_sts) {
558 			atomic_clear_int(&cpu_mwait_c3_preamble,
559 			    CPU_MWAIT_C3_PREAMBLE_BM_STS);
560 		}
561 	}
562 
563 	sbuf_new(&sb, cpu_mwait_cx_supported,
564 	    sizeof(cpu_mwait_cx_supported), SBUF_FIXEDLEN);
565 
566 	for (i = 0; i < CPU_MWAIT_CX_MAX; ++i) {
567 		struct cpu_mwait_cx *cx = &cpu_mwait_cx_info[i];
568 		int sub;
569 
570 		ksnprintf(cx->name, sizeof(cx->name), "C%d", i);
571 
572 		sysctl_ctx_init(&cx->sysctl_ctx);
573 		cx->sysctl_tree = SYSCTL_ADD_NODE(&cx->sysctl_ctx,
574 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait), OID_AUTO,
575 		    cx->name, CTLFLAG_RW, NULL, "Cx control/info");
576 		if (cx->sysctl_tree == NULL)
577 			continue;
578 
579 		cx->subcnt = CPUID_MWAIT_CX_SUBCNT(cpu_mwait_extemu, i);
580 		SYSCTL_ADD_INT(&cx->sysctl_ctx,
581 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
582 		    "subcnt", CTLFLAG_RD, &cx->subcnt, 0,
583 		    "sub-state count");
584 		SYSCTL_ADD_PROC(&cx->sysctl_ctx,
585 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
586 		    "entered", (CTLTYPE_QUAD | CTLFLAG_RW), 0,
587 		    i, sysctl_cpu_idle_cnt, "Q", "# of times entered");
588 
589 		for (sub = 0; sub < cx->subcnt; ++sub)
590 			sbuf_printf(&sb, "C%d/%d ", i, sub);
591 	}
592 	sbuf_trim(&sb);
593 	sbuf_finish(&sb);
594 
595 	/*
596 	 * Non-deep C-states
597 	 */
598 	cpu_mwait_c1_hints_cnt = cpu_mwait_cx_info[CPU_MWAIT_C1].subcnt;
599 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i)
600 		cpu_mwait_hints_cnt += cpu_mwait_cx_info[i].subcnt;
601 	cpu_mwait_hints = kmalloc(sizeof(int) * cpu_mwait_hints_cnt,
602 	    M_DEVBUF, M_WAITOK);
603 
604 	hint_idx = 0;
605 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i) {
606 		int j, subcnt;
607 
608 		subcnt = cpu_mwait_cx_info[i].subcnt;
609 		for (j = 0; j < subcnt; ++j) {
610 			KASSERT(hint_idx < cpu_mwait_hints_cnt,
611 			    ("invalid mwait hint index %d", hint_idx));
612 			cpu_mwait_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
613 			++hint_idx;
614 		}
615 	}
616 	KASSERT(hint_idx == cpu_mwait_hints_cnt,
617 	    ("mwait hint count %d != index %d",
618 	     cpu_mwait_hints_cnt, hint_idx));
619 
620 	if (bootverbose) {
621 		kprintf("MWAIT hints (%d C1 hints):\n", cpu_mwait_c1_hints_cnt);
622 		for (i = 0; i < cpu_mwait_hints_cnt; ++i) {
623 			int hint = cpu_mwait_hints[i];
624 
625 			kprintf("  C%d/%d hint 0x%04x\n",
626 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
627 			    hint);
628 		}
629 	}
630 
631 	/*
632 	 * Deep C-states
633 	 */
634 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i)
635 		cpu_mwait_deep_hints_cnt += cpu_mwait_cx_info[i].subcnt;
636 	cpu_mwait_deep_hints = kmalloc(sizeof(int) * cpu_mwait_deep_hints_cnt,
637 	    M_DEVBUF, M_WAITOK);
638 
639 	hint_idx = 0;
640 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i) {
641 		int j, subcnt;
642 
643 		subcnt = cpu_mwait_cx_info[i].subcnt;
644 		for (j = 0; j < subcnt; ++j) {
645 			KASSERT(hint_idx < cpu_mwait_deep_hints_cnt,
646 			    ("invalid mwait deep hint index %d", hint_idx));
647 			cpu_mwait_deep_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
648 			++hint_idx;
649 		}
650 	}
651 	KASSERT(hint_idx == cpu_mwait_deep_hints_cnt,
652 	    ("mwait deep hint count %d != index %d",
653 	     cpu_mwait_deep_hints_cnt, hint_idx));
654 
655 	if (bootverbose) {
656 		kprintf("MWAIT deep hints:\n");
657 		for (i = 0; i < cpu_mwait_deep_hints_cnt; ++i) {
658 			int hint = cpu_mwait_deep_hints[i];
659 
660 			kprintf("  C%d/%d hint 0x%04x\n",
661 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
662 			    hint);
663 		}
664 	}
665 	cpu_idle_repeat_max = 256 * cpu_mwait_deep_hints_cnt;
666 }
667 
668 static void
669 cpu_finish(void *dummy __unused)
670 {
671 	cpu_setregs();
672 	cpu_mwait_attach();
673 }
674 
675 static void
676 pic_finish(void *dummy __unused)
677 {
678 	/* Log ELCR information */
679 	elcr_dump();
680 
681 	/* Log MPTABLE information */
682 	mptable_pci_int_dump();
683 
684 	/* Finalize PCI */
685 	MachIntrABI.finalize();
686 }
687 
688 /*
689  * Send an interrupt to process.
690  *
691  * Stack is set up to allow sigcode stored
692  * at top to call routine, followed by kcall
693  * to sigreturn routine below.  After sigreturn
694  * resets the signal mask, the stack, and the
695  * frame pointer, it returns to the user
696  * specified pc, psl.
697  */
698 void
699 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
700 {
701 	struct lwp *lp = curthread->td_lwp;
702 	struct proc *p = lp->lwp_proc;
703 	struct trapframe *regs;
704 	struct sigacts *psp = p->p_sigacts;
705 	struct sigframe sf, *sfp;
706 	int oonstack;
707 	char *sp;
708 
709 	regs = lp->lwp_md.md_regs;
710 	oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
711 
712 	/* Save user context */
713 	bzero(&sf, sizeof(struct sigframe));
714 	sf.sf_uc.uc_sigmask = *mask;
715 	sf.sf_uc.uc_stack = lp->lwp_sigstk;
716 	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
717 	KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
718 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
719 
720 	/* Make the size of the saved context visible to userland */
721 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
722 
723 	/* Allocate and validate space for the signal handler context. */
724         if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
725 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
726 		sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
727 			      sizeof(struct sigframe));
728 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
729 	} else {
730 		/* We take red zone into account */
731 		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
732 	}
733 
734 	/*
735 	 * XXX AVX needs 64-byte alignment but sigframe has other fields and
736 	 * the embedded ucontext is not at the front, so aligning this won't
737 	 * help us.  Fortunately we bcopy in/out of the sigframe, so the
738 	 * kernel is ok.
739 	 *
740 	 * The problem though is if userland winds up trying to use the
741 	 * context directly.
742 	 */
743 	sfp = (struct sigframe *)((intptr_t)sp & ~(intptr_t)0xF);
744 
745 	/* Translate the signal is appropriate */
746 	if (p->p_sysent->sv_sigtbl) {
747 		if (sig <= p->p_sysent->sv_sigsize)
748 			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
749 	}
750 
751 	/*
752 	 * Build the argument list for the signal handler.
753 	 *
754 	 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
755 	 */
756 	regs->tf_rdi = sig;				/* argument 1 */
757 	regs->tf_rdx = (register_t)&sfp->sf_uc;		/* argument 3 */
758 
759 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
760 		/*
761 		 * Signal handler installed with SA_SIGINFO.
762 		 *
763 		 * action(signo, siginfo, ucontext)
764 		 */
765 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* argument 2 */
766 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
767 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
768 
769 		/* fill siginfo structure */
770 		sf.sf_si.si_signo = sig;
771 		sf.sf_si.si_code = code;
772 		sf.sf_si.si_addr = (void *)regs->tf_addr;
773 	} else {
774 		/*
775 		 * Old FreeBSD-style arguments.
776 		 *
777 		 * handler (signo, code, [uc], addr)
778 		 */
779 		regs->tf_rsi = (register_t)code;	/* argument 2 */
780 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
781 		sf.sf_ahu.sf_handler = catcher;
782 	}
783 
784 	/*
785 	 * If we're a vm86 process, we want to save the segment registers.
786 	 * We also change eflags to be our emulated eflags, not the actual
787 	 * eflags.
788 	 */
789 #if JG
790 	if (regs->tf_eflags & PSL_VM) {
791 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
792 		struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
793 
794 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
795 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
796 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
797 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
798 
799 		if (vm86->vm86_has_vme == 0)
800 			sf.sf_uc.uc_mcontext.mc_eflags =
801 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
802 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
803 
804 		/*
805 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
806 		 * syscalls made by the signal handler.  This just avoids
807 		 * wasting time for our lazy fixup of such faults.  PSL_NT
808 		 * does nothing in vm86 mode, but vm86 programs can set it
809 		 * almost legitimately in probes for old cpu types.
810 		 */
811 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
812 	}
813 #endif
814 
815 	/*
816 	 * Save the FPU state and reinit the FP unit
817 	 */
818 	npxpush(&sf.sf_uc.uc_mcontext);
819 
820 	/*
821 	 * Copy the sigframe out to the user's stack.
822 	 */
823 	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
824 		/*
825 		 * Something is wrong with the stack pointer.
826 		 * ...Kill the process.
827 		 */
828 		sigexit(lp, SIGILL);
829 	}
830 
831 	regs->tf_rsp = (register_t)sfp;
832 	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
833 
834 	/*
835 	 * i386 abi specifies that the direction flag must be cleared
836 	 * on function entry
837 	 */
838 	regs->tf_rflags &= ~(PSL_T|PSL_D);
839 
840 	/*
841 	 * 64 bit mode has a code and stack selector but
842 	 * no data or extra selector.  %fs and %gs are not
843 	 * stored in-context.
844 	 */
845 	regs->tf_cs = _ucodesel;
846 	regs->tf_ss = _udatasel;
847 	clear_quickret();
848 }
849 
850 /*
851  * Sanitize the trapframe for a virtual kernel passing control to a custom
852  * VM context.  Remove any items that would otherwise create a privilage
853  * issue.
854  *
855  * XXX at the moment we allow userland to set the resume flag.  Is this a
856  * bad idea?
857  */
858 int
859 cpu_sanitize_frame(struct trapframe *frame)
860 {
861 	frame->tf_cs = _ucodesel;
862 	frame->tf_ss = _udatasel;
863 	/* XXX VM (8086) mode not supported? */
864 	frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
865 	frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
866 
867 	return(0);
868 }
869 
870 /*
871  * Sanitize the tls so loading the descriptor does not blow up
872  * on us.  For x86_64 we don't have to do anything.
873  */
874 int
875 cpu_sanitize_tls(struct savetls *tls)
876 {
877 	return(0);
878 }
879 
880 /*
881  * sigreturn(ucontext_t *sigcntxp)
882  *
883  * System call to cleanup state after a signal
884  * has been taken.  Reset signal mask and
885  * stack state from context left by sendsig (above).
886  * Return to previous pc and psl as specified by
887  * context left by sendsig. Check carefully to
888  * make sure that the user has not modified the
889  * state to gain improper privileges.
890  *
891  * MPSAFE
892  */
893 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
894 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
895 
896 int
897 sys_sigreturn(struct sigreturn_args *uap)
898 {
899 	struct lwp *lp = curthread->td_lwp;
900 	struct trapframe *regs;
901 	ucontext_t uc;
902 	ucontext_t *ucp;
903 	register_t rflags;
904 	int cs;
905 	int error;
906 
907 	/*
908 	 * We have to copy the information into kernel space so userland
909 	 * can't modify it while we are sniffing it.
910 	 */
911 	regs = lp->lwp_md.md_regs;
912 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
913 	if (error)
914 		return (error);
915 	ucp = &uc;
916 	rflags = ucp->uc_mcontext.mc_rflags;
917 
918 	/* VM (8086) mode not supported */
919 	rflags &= ~PSL_VM_UNSUPP;
920 
921 #if JG
922 	if (eflags & PSL_VM) {
923 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
924 		struct vm86_kernel *vm86;
925 
926 		/*
927 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
928 		 * set up the vm86 area, and we can't enter vm86 mode.
929 		 */
930 		if (lp->lwp_thread->td_pcb->pcb_ext == 0)
931 			return (EINVAL);
932 		vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
933 		if (vm86->vm86_inited == 0)
934 			return (EINVAL);
935 
936 		/* go back to user mode if both flags are set */
937 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
938 			trapsignal(lp, SIGBUS, 0);
939 
940 		if (vm86->vm86_has_vme) {
941 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
942 			    (eflags & VME_USERCHANGE) | PSL_VM;
943 		} else {
944 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
945 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
946 			    (eflags & VM_USERCHANGE) | PSL_VM;
947 		}
948 		bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
949 		tf->tf_eflags = eflags;
950 		tf->tf_vm86_ds = tf->tf_ds;
951 		tf->tf_vm86_es = tf->tf_es;
952 		tf->tf_vm86_fs = tf->tf_fs;
953 		tf->tf_vm86_gs = tf->tf_gs;
954 		tf->tf_ds = _udatasel;
955 		tf->tf_es = _udatasel;
956 		tf->tf_fs = _udatasel;
957 		tf->tf_gs = _udatasel;
958 	} else
959 #endif
960 	{
961 		/*
962 		 * Don't allow users to change privileged or reserved flags.
963 		 */
964 		/*
965 		 * XXX do allow users to change the privileged flag PSL_RF.
966 		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
967 		 * should sometimes set it there too.  tf_eflags is kept in
968 		 * the signal context during signal handling and there is no
969 		 * other place to remember it, so the PSL_RF bit may be
970 		 * corrupted by the signal handler without us knowing.
971 		 * Corruption of the PSL_RF bit at worst causes one more or
972 		 * one less debugger trap, so allowing it is fairly harmless.
973 		 */
974 		if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
975 			kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
976 	    		return(EINVAL);
977 		}
978 
979 		/*
980 		 * Don't allow users to load a valid privileged %cs.  Let the
981 		 * hardware check for invalid selectors, excess privilege in
982 		 * other selectors, invalid %eip's and invalid %esp's.
983 		 */
984 		cs = ucp->uc_mcontext.mc_cs;
985 		if (!CS_SECURE(cs)) {
986 			kprintf("sigreturn: cs = 0x%x\n", cs);
987 			trapsignal(lp, SIGBUS, T_PROTFLT);
988 			return(EINVAL);
989 		}
990 		bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
991 	}
992 
993 	/*
994 	 * Restore the FPU state from the frame
995 	 */
996 	crit_enter();
997 	npxpop(&ucp->uc_mcontext);
998 
999 	if (ucp->uc_mcontext.mc_onstack & 1)
1000 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
1001 	else
1002 		lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
1003 
1004 	lp->lwp_sigmask = ucp->uc_sigmask;
1005 	SIG_CANTMASK(lp->lwp_sigmask);
1006 	clear_quickret();
1007 	crit_exit();
1008 	return(EJUSTRETURN);
1009 }
1010 
1011 /*
1012  * Machine dependent boot() routine
1013  *
1014  * I haven't seen anything to put here yet
1015  * Possibly some stuff might be grafted back here from boot()
1016  */
1017 void
1018 cpu_boot(int howto)
1019 {
1020 }
1021 
1022 /*
1023  * Shutdown the CPU as much as possible
1024  */
1025 void
1026 cpu_halt(void)
1027 {
1028 	for (;;)
1029 		__asm__ __volatile("hlt");
1030 }
1031 
1032 /*
1033  * cpu_idle() represents the idle LWKT.  You cannot return from this function
1034  * (unless you want to blow things up!).  Instead we look for runnable threads
1035  * and loop or halt as appropriate.  Giant is not held on entry to the thread.
1036  *
1037  * The main loop is entered with a critical section held, we must release
1038  * the critical section before doing anything else.  lwkt_switch() will
1039  * check for pending interrupts due to entering and exiting its own
1040  * critical section.
1041  *
1042  * NOTE: On an SMP system we rely on a scheduler IPI to wake a HLTed cpu up.
1043  *	 However, there are cases where the idlethread will be entered with
1044  *	 the possibility that no IPI will occur and in such cases
1045  *	 lwkt_switch() sets TDF_IDLE_NOHLT.
1046  *
1047  * NOTE: cpu_idle_repeat determines how many entries into the idle thread
1048  *	 must occur before it starts using ACPI halt.
1049  */
1050 static int	cpu_idle_hlt = 2;
1051 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
1052     &cpu_idle_hlt, 0, "Idle loop HLT enable");
1053 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_repeat, CTLFLAG_RW,
1054     &cpu_idle_repeat, 0, "Idle entries before acpi hlt");
1055 
1056 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_hltcnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1057     0, CPU_IDLE_STAT_HALT, sysctl_cpu_idle_cnt, "Q", "Idle loop entry halts");
1058 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_spincnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1059     0, CPU_IDLE_STAT_SPIN, sysctl_cpu_idle_cnt, "Q", "Idle loop entry spins");
1060 
1061 static void
1062 cpu_idle_default_hook(void)
1063 {
1064 	/*
1065 	 * We must guarentee that hlt is exactly the instruction
1066 	 * following the sti.
1067 	 */
1068 	__asm __volatile("sti; hlt");
1069 }
1070 
1071 /* Other subsystems (e.g., ACPI) can hook this later. */
1072 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
1073 
1074 static __inline int
1075 cpu_mwait_cx_hint(struct cpu_idle_stat *stat)
1076 {
1077 	int hint, cx_idx;
1078 	u_int idx;
1079 
1080 	if (cpu_mwait_halt >= 0) {
1081 		hint = cpu_mwait_halt;
1082 		goto done;
1083 	}
1084 
1085 	idx = (stat->repeat + stat->repeat_last + stat->repeat_delta) >>
1086 	    cpu_mwait_repeat_shift;
1087 	if (idx >= cpu_mwait_c1_hints_cnt) {
1088 		/* Step up faster, once we walked through all C1 states */
1089 		stat->repeat_delta += 1 << (cpu_mwait_repeat_shift + 1);
1090 	}
1091 	if (cpu_mwait_halt == CPU_MWAIT_HINT_AUTODEEP) {
1092 		if (idx >= cpu_mwait_deep_hints_cnt)
1093 			idx = cpu_mwait_deep_hints_cnt - 1;
1094 		hint = cpu_mwait_deep_hints[idx];
1095 	} else {
1096 		if (idx >= cpu_mwait_hints_cnt)
1097 			idx = cpu_mwait_hints_cnt - 1;
1098 		hint = cpu_mwait_hints[idx];
1099 	}
1100 done:
1101 	cx_idx = MWAIT_EAX_TO_CX(hint);
1102 	if (cx_idx >= 0 && cx_idx < CPU_MWAIT_CX_MAX)
1103 		stat->mwait_cx[cx_idx]++;
1104 	return hint;
1105 }
1106 
1107 void
1108 cpu_idle(void)
1109 {
1110 	globaldata_t gd = mycpu;
1111 	struct cpu_idle_stat *stat = &cpu_idle_stats[gd->gd_cpuid];
1112 	struct thread *td __debugvar = gd->gd_curthread;
1113 	int reqflags;
1114 	int quick;
1115 
1116 	stat->repeat = stat->repeat_last = cpu_idle_repeat_max;
1117 
1118 	crit_exit();
1119 	KKASSERT(td->td_critcount == 0);
1120 
1121 	for (;;) {
1122 		/*
1123 		 * See if there are any LWKTs ready to go.
1124 		 */
1125 		lwkt_switch();
1126 
1127 		/*
1128 		 * When halting inside a cli we must check for reqflags
1129 		 * races, particularly [re]schedule requests.  Running
1130 		 * splz() does the job.
1131 		 *
1132 		 * cpu_idle_hlt:
1133 		 *	0	Never halt, just spin
1134 		 *
1135 		 *	1	Always use HLT (or MONITOR/MWAIT if avail).
1136 		 *		This typically eats more power than the
1137 		 *		ACPI halt.
1138 		 *
1139 		 *	2	Use HLT/MONITOR/MWAIT up to a point and then
1140 		 *		use the ACPI halt (default).  This is a hybrid
1141 		 *		approach.  See machdep.cpu_idle_repeat.
1142 		 *
1143 		 *	3	Always use the ACPI halt.  This typically
1144 		 *		eats the least amount of power but the cpu
1145 		 *		will be slow waking up.  Slows down e.g.
1146 		 *		compiles and other pipe/event oriented stuff.
1147 		 *
1148 		 *	4	Always use HLT.
1149 		 *
1150 		 * NOTE: Interrupts are enabled and we are not in a critical
1151 		 *	 section.
1152 		 *
1153 		 * NOTE: Preemptions do not reset gd_idle_repeat.   Also we
1154 		 *	 don't bother capping gd_idle_repeat, it is ok if
1155 		 *	 it overflows.
1156 		 */
1157 		if (gd->gd_idle_repeat == 0) {
1158 			stat->repeat = (stat->repeat + stat->repeat_last) >> 1;
1159 			if (stat->repeat > cpu_idle_repeat_max)
1160 				stat->repeat = cpu_idle_repeat_max;
1161 			stat->repeat_last = 0;
1162 			stat->repeat_delta = 0;
1163 		}
1164 		++stat->repeat_last;
1165 
1166 		++gd->gd_idle_repeat;
1167 		reqflags = gd->gd_reqflags;
1168 		quick = (cpu_idle_hlt == 1) ||
1169 			(cpu_idle_hlt < 3 &&
1170 			 gd->gd_idle_repeat < cpu_idle_repeat);
1171 
1172 		if (quick && (cpu_mi_feature & CPU_MI_MONITOR) &&
1173 		    (reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1174 			splz(); /* XXX */
1175 			cpu_mmw_pause_int(&gd->gd_reqflags, reqflags,
1176 			    cpu_mwait_cx_hint(stat), 0);
1177 			stat->halt++;
1178 		} else if (cpu_idle_hlt) {
1179 			__asm __volatile("cli");
1180 			splz();
1181 			if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1182 				if (quick)
1183 					cpu_idle_default_hook();
1184 				else
1185 					cpu_idle_hook();
1186 			}
1187 			__asm __volatile("sti");
1188 			stat->halt++;
1189 		} else {
1190 			splz();
1191 			__asm __volatile("sti");
1192 			stat->spin++;
1193 		}
1194 	}
1195 }
1196 
1197 /*
1198  * This routine is called if a spinlock has been held through the
1199  * exponential backoff period and is seriously contested.  On a real cpu
1200  * we let it spin.
1201  */
1202 void
1203 cpu_spinlock_contested(void)
1204 {
1205 	cpu_pause();
1206 }
1207 
1208 /*
1209  * Clear registers on exec
1210  */
1211 void
1212 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
1213 {
1214 	struct thread *td = curthread;
1215 	struct lwp *lp = td->td_lwp;
1216 	struct pcb *pcb = td->td_pcb;
1217 	struct trapframe *regs = lp->lwp_md.md_regs;
1218 
1219 	/* was i386_user_cleanup() in NetBSD */
1220 	user_ldt_free(pcb);
1221 
1222 	clear_quickret();
1223 	bzero((char *)regs, sizeof(struct trapframe));
1224 	regs->tf_rip = entry;
1225 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
1226 	regs->tf_rdi = stack;		/* argv */
1227 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
1228 	regs->tf_ss = _udatasel;
1229 	regs->tf_cs = _ucodesel;
1230 	regs->tf_rbx = ps_strings;
1231 
1232 	/*
1233 	 * Reset the hardware debug registers if they were in use.
1234 	 * They won't have any meaning for the newly exec'd process.
1235 	 */
1236 	if (pcb->pcb_flags & PCB_DBREGS) {
1237 		pcb->pcb_dr0 = 0;
1238 		pcb->pcb_dr1 = 0;
1239 		pcb->pcb_dr2 = 0;
1240 		pcb->pcb_dr3 = 0;
1241 		pcb->pcb_dr6 = 0;
1242 		pcb->pcb_dr7 = 0; /* JG set bit 10? */
1243 		if (pcb == td->td_pcb) {
1244 			/*
1245 			 * Clear the debug registers on the running
1246 			 * CPU, otherwise they will end up affecting
1247 			 * the next process we switch to.
1248 			 */
1249 			reset_dbregs();
1250 		}
1251 		pcb->pcb_flags &= ~PCB_DBREGS;
1252 	}
1253 
1254 	/*
1255 	 * Initialize the math emulator (if any) for the current process.
1256 	 * Actually, just clear the bit that says that the emulator has
1257 	 * been initialized.  Initialization is delayed until the process
1258 	 * traps to the emulator (if it is done at all) mainly because
1259 	 * emulators don't provide an entry point for initialization.
1260 	 */
1261 	pcb->pcb_flags &= ~FP_SOFTFP;
1262 
1263 	/*
1264 	 * NOTE: do not set CR0_TS here.  npxinit() must do it after clearing
1265 	 *	 gd_npxthread.  Otherwise a preemptive interrupt thread
1266 	 *	 may panic in npxdna().
1267 	 */
1268 	crit_enter();
1269 	load_cr0(rcr0() | CR0_MP);
1270 
1271 	/*
1272 	 * NOTE: The MSR values must be correct so we can return to
1273 	 * 	 userland.  gd_user_fs/gs must be correct so the switch
1274 	 *	 code knows what the current MSR values are.
1275 	 */
1276 	pcb->pcb_fsbase = 0;	/* Values loaded from PCB on switch */
1277 	pcb->pcb_gsbase = 0;
1278 	mdcpu->gd_user_fs = 0;	/* Cache of current MSR values */
1279 	mdcpu->gd_user_gs = 0;
1280 	wrmsr(MSR_FSBASE, 0);	/* Set MSR values for return to userland */
1281 	wrmsr(MSR_KGSBASE, 0);
1282 
1283 	/* Initialize the npx (if any) for the current process. */
1284 	npxinit();
1285 	crit_exit();
1286 
1287 	pcb->pcb_ds = _udatasel;
1288 	pcb->pcb_es = _udatasel;
1289 	pcb->pcb_fs = _udatasel;
1290 	pcb->pcb_gs = _udatasel;
1291 }
1292 
1293 void
1294 cpu_setregs(void)
1295 {
1296 	register_t cr0;
1297 
1298 	cr0 = rcr0();
1299 	cr0 |= CR0_NE;			/* Done by npxinit() */
1300 	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1301 	cr0 |= CR0_WP | CR0_AM;
1302 	load_cr0(cr0);
1303 	load_gs(_udatasel);
1304 }
1305 
1306 static int
1307 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1308 {
1309 	int error;
1310 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1311 		req);
1312 	if (!error && req->newptr)
1313 		resettodr();
1314 	return (error);
1315 }
1316 
1317 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1318 	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1319 
1320 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1321 	CTLFLAG_RW, &disable_rtc_set, 0, "");
1322 
1323 #if JG
1324 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1325 	CTLFLAG_RD, &bootinfo, bootinfo, "");
1326 #endif
1327 
1328 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1329 	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1330 
1331 extern u_long bootdev;		/* not a cdev_t - encoding is different */
1332 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1333 	CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1334 
1335 /*
1336  * Initialize 386 and configure to run kernel
1337  */
1338 
1339 /*
1340  * Initialize segments & interrupt table
1341  */
1342 
1343 int _default_ldt;
1344 struct user_segment_descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1345 struct gate_descriptor idt_arr[MAXCPU][NIDT];
1346 #if JG
1347 union descriptor ldt[NLDT];		/* local descriptor table */
1348 #endif
1349 
1350 /* table descriptors - used to load tables by cpu */
1351 struct region_descriptor r_gdt;
1352 struct region_descriptor r_idt_arr[MAXCPU];
1353 
1354 /* JG proc0paddr is a virtual address */
1355 void *proc0paddr;
1356 /* JG alignment? */
1357 char proc0paddr_buff[LWKT_THREAD_STACK];
1358 
1359 
1360 /* software prototypes -- in more palatable form */
1361 struct soft_segment_descriptor gdt_segs[] = {
1362 /* GNULL_SEL	0 Null Descriptor */
1363 {	0x0,			/* segment base address  */
1364 	0x0,			/* length */
1365 	0,			/* segment type */
1366 	0,			/* segment descriptor priority level */
1367 	0,			/* segment descriptor present */
1368 	0,			/* long */
1369 	0,			/* default 32 vs 16 bit size */
1370 	0  			/* limit granularity (byte/page units)*/ },
1371 /* GCODE_SEL	1 Code Descriptor for kernel */
1372 {	0x0,			/* segment base address  */
1373 	0xfffff,		/* length - all address space */
1374 	SDT_MEMERA,		/* segment type */
1375 	SEL_KPL,		/* segment descriptor priority level */
1376 	1,			/* segment descriptor present */
1377 	1,			/* long */
1378 	0,			/* default 32 vs 16 bit size */
1379 	1  			/* limit granularity (byte/page units)*/ },
1380 /* GDATA_SEL	2 Data Descriptor for kernel */
1381 {	0x0,			/* segment base address  */
1382 	0xfffff,		/* length - all address space */
1383 	SDT_MEMRWA,		/* segment type */
1384 	SEL_KPL,		/* segment descriptor priority level */
1385 	1,			/* segment descriptor present */
1386 	1,			/* long */
1387 	0,			/* default 32 vs 16 bit size */
1388 	1  			/* limit granularity (byte/page units)*/ },
1389 /* GUCODE32_SEL	3 32 bit Code Descriptor for user */
1390 {	0x0,			/* segment base address  */
1391 	0xfffff,		/* length - all address space */
1392 	SDT_MEMERA,		/* segment type */
1393 	SEL_UPL,		/* segment descriptor priority level */
1394 	1,			/* segment descriptor present */
1395 	0,			/* long */
1396 	1,			/* default 32 vs 16 bit size */
1397 	1  			/* limit granularity (byte/page units)*/ },
1398 /* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
1399 {	0x0,			/* segment base address  */
1400 	0xfffff,		/* length - all address space */
1401 	SDT_MEMRWA,		/* segment type */
1402 	SEL_UPL,		/* segment descriptor priority level */
1403 	1,			/* segment descriptor present */
1404 	0,			/* long */
1405 	1,			/* default 32 vs 16 bit size */
1406 	1  			/* limit granularity (byte/page units)*/ },
1407 /* GUCODE_SEL	5 64 bit Code Descriptor for user */
1408 {	0x0,			/* segment base address  */
1409 	0xfffff,		/* length - all address space */
1410 	SDT_MEMERA,		/* segment type */
1411 	SEL_UPL,		/* segment descriptor priority level */
1412 	1,			/* segment descriptor present */
1413 	1,			/* long */
1414 	0,			/* default 32 vs 16 bit size */
1415 	1  			/* limit granularity (byte/page units)*/ },
1416 /* GPROC0_SEL	6 Proc 0 Tss Descriptor */
1417 {
1418 	0x0,			/* segment base address */
1419 	sizeof(struct x86_64tss)-1,/* length - all address space */
1420 	SDT_SYSTSS,		/* segment type */
1421 	SEL_KPL,		/* segment descriptor priority level */
1422 	1,			/* segment descriptor present */
1423 	0,			/* long */
1424 	0,			/* unused - default 32 vs 16 bit size */
1425 	0  			/* limit granularity (byte/page units)*/ },
1426 /* Actually, the TSS is a system descriptor which is double size */
1427 {	0x0,			/* segment base address  */
1428 	0x0,			/* length */
1429 	0,			/* segment type */
1430 	0,			/* segment descriptor priority level */
1431 	0,			/* segment descriptor present */
1432 	0,			/* long */
1433 	0,			/* default 32 vs 16 bit size */
1434 	0  			/* limit granularity (byte/page units)*/ },
1435 /* GUGS32_SEL	8 32 bit GS Descriptor for user */
1436 {	0x0,			/* segment base address  */
1437 	0xfffff,		/* length - all address space */
1438 	SDT_MEMRWA,		/* segment type */
1439 	SEL_UPL,		/* segment descriptor priority level */
1440 	1,			/* segment descriptor present */
1441 	0,			/* long */
1442 	1,			/* default 32 vs 16 bit size */
1443 	1  			/* limit granularity (byte/page units)*/ },
1444 };
1445 
1446 void
1447 setidt_global(int idx, inthand_t *func, int typ, int dpl, int ist)
1448 {
1449 	int cpu;
1450 
1451 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
1452 		struct gate_descriptor *ip = &idt_arr[cpu][idx];
1453 
1454 		ip->gd_looffset = (uintptr_t)func;
1455 		ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1456 		ip->gd_ist = ist;
1457 		ip->gd_xx = 0;
1458 		ip->gd_type = typ;
1459 		ip->gd_dpl = dpl;
1460 		ip->gd_p = 1;
1461 		ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1462 	}
1463 }
1464 
1465 void
1466 setidt(int idx, inthand_t *func, int typ, int dpl, int ist, int cpu)
1467 {
1468 	struct gate_descriptor *ip;
1469 
1470 	KASSERT(cpu >= 0 && cpu < ncpus, ("invalid cpu %d", cpu));
1471 
1472 	ip = &idt_arr[cpu][idx];
1473 	ip->gd_looffset = (uintptr_t)func;
1474 	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1475 	ip->gd_ist = ist;
1476 	ip->gd_xx = 0;
1477 	ip->gd_type = typ;
1478 	ip->gd_dpl = dpl;
1479 	ip->gd_p = 1;
1480 	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1481 }
1482 
1483 #define	IDTVEC(name)	__CONCAT(X,name)
1484 
1485 extern inthand_t
1486 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1487 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1488 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1489 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1490 	IDTVEC(xmm), IDTVEC(dblfault),
1491 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1492 
1493 #ifdef DEBUG_INTERRUPTS
1494 extern inthand_t *Xrsvdary[256];
1495 #endif
1496 
1497 void
1498 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1499 {
1500 	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1501 	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1502 	ssd->ssd_type  = sd->sd_type;
1503 	ssd->ssd_dpl   = sd->sd_dpl;
1504 	ssd->ssd_p     = sd->sd_p;
1505 	ssd->ssd_def32 = sd->sd_def32;
1506 	ssd->ssd_gran  = sd->sd_gran;
1507 }
1508 
1509 void
1510 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1511 {
1512 
1513 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1514 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1515 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1516 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1517 	sd->sd_type  = ssd->ssd_type;
1518 	sd->sd_dpl   = ssd->ssd_dpl;
1519 	sd->sd_p     = ssd->ssd_p;
1520 	sd->sd_long  = ssd->ssd_long;
1521 	sd->sd_def32 = ssd->ssd_def32;
1522 	sd->sd_gran  = ssd->ssd_gran;
1523 }
1524 
1525 void
1526 ssdtosyssd(struct soft_segment_descriptor *ssd,
1527     struct system_segment_descriptor *sd)
1528 {
1529 
1530 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1531 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1532 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1533 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1534 	sd->sd_type  = ssd->ssd_type;
1535 	sd->sd_dpl   = ssd->ssd_dpl;
1536 	sd->sd_p     = ssd->ssd_p;
1537 	sd->sd_gran  = ssd->ssd_gran;
1538 }
1539 
1540 /*
1541  * Populate the (physmap) array with base/bound pairs describing the
1542  * available physical memory in the system, then test this memory and
1543  * build the phys_avail array describing the actually-available memory.
1544  *
1545  * If we cannot accurately determine the physical memory map, then use
1546  * value from the 0xE801 call, and failing that, the RTC.
1547  *
1548  * Total memory size may be set by the kernel environment variable
1549  * hw.physmem or the compile-time define MAXMEM.
1550  *
1551  * Memory is aligned to PHYSMAP_ALIGN which must be a multiple
1552  * of PAGE_SIZE.  This also greatly reduces the memory test time
1553  * which would otherwise be excessive on machines with > 8G of ram.
1554  *
1555  * XXX first should be vm_paddr_t.
1556  */
1557 
1558 #define PHYSMAP_ALIGN		(vm_paddr_t)(128 * 1024)
1559 #define PHYSMAP_ALIGN_MASK	(vm_paddr_t)(PHYSMAP_ALIGN - 1)
1560 	vm_paddr_t physmap[PHYSMAP_SIZE];
1561 	struct bios_smap *smapbase, *smap, *smapend;
1562 	u_int32_t smapsize;
1563 
1564 static void
1565 getmemsize(caddr_t kmdp, u_int64_t first)
1566 {
1567 	int off, physmap_idx, pa_indx, da_indx;
1568 	int i, j;
1569 	vm_paddr_t pa;
1570 	vm_paddr_t msgbuf_size;
1571 	u_long physmem_tunable;
1572 	pt_entry_t *pte;
1573 	quad_t dcons_addr, dcons_size;
1574 
1575 	bzero(physmap, sizeof(physmap));
1576 	physmap_idx = 0;
1577 
1578 	/*
1579 	 * get memory map from INT 15:E820, kindly supplied by the loader.
1580 	 *
1581 	 * subr_module.c says:
1582 	 * "Consumer may safely assume that size value precedes data."
1583 	 * ie: an int32_t immediately precedes smap.
1584 	 */
1585 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1586 	    MODINFO_METADATA | MODINFOMD_SMAP);
1587 	if (smapbase == NULL)
1588 		panic("No BIOS smap info from loader!");
1589 
1590 	smapsize = *((u_int32_t *)smapbase - 1);
1591 	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1592 
1593 	for (smap = smapbase; smap < smapend; smap++) {
1594 		if (boothowto & RB_VERBOSE)
1595 			kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1596 			    smap->type, smap->base, smap->length);
1597 
1598 		if (smap->type != SMAP_TYPE_MEMORY)
1599 			continue;
1600 
1601 		if (smap->length == 0)
1602 			continue;
1603 
1604 		for (i = 0; i <= physmap_idx; i += 2) {
1605 			if (smap->base < physmap[i + 1]) {
1606 				if (boothowto & RB_VERBOSE) {
1607 					kprintf("Overlapping or non-monotonic "
1608 						"memory region, ignoring "
1609 						"second region\n");
1610 				}
1611 				break;
1612 			}
1613 		}
1614 		if (i <= physmap_idx)
1615 			continue;
1616 
1617 		Realmem += smap->length;
1618 
1619 		if (smap->base == physmap[physmap_idx + 1]) {
1620 			physmap[physmap_idx + 1] += smap->length;
1621 			continue;
1622 		}
1623 
1624 		physmap_idx += 2;
1625 		if (physmap_idx == PHYSMAP_SIZE) {
1626 			kprintf("Too many segments in the physical "
1627 				"address map, giving up\n");
1628 			break;
1629 		}
1630 		physmap[physmap_idx] = smap->base;
1631 		physmap[physmap_idx + 1] = smap->base + smap->length;
1632 	}
1633 
1634 	base_memory = physmap[1] / 1024;
1635 	/* make hole for AP bootstrap code */
1636 	physmap[1] = mp_bootaddress(base_memory);
1637 
1638 	/* Save EBDA address, if any */
1639 	ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
1640 	ebda_addr <<= 4;
1641 
1642 	/*
1643 	 * Maxmem isn't the "maximum memory", it's one larger than the
1644 	 * highest page of the physical address space.  It should be
1645 	 * called something like "Maxphyspage".  We may adjust this
1646 	 * based on ``hw.physmem'' and the results of the memory test.
1647 	 */
1648 	Maxmem = atop(physmap[physmap_idx + 1]);
1649 
1650 #ifdef MAXMEM
1651 	Maxmem = MAXMEM / 4;
1652 #endif
1653 
1654 	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1655 		Maxmem = atop(physmem_tunable);
1656 
1657 	/*
1658 	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1659 	 * in the system.
1660 	 */
1661 	if (Maxmem > atop(physmap[physmap_idx + 1]))
1662 		Maxmem = atop(physmap[physmap_idx + 1]);
1663 
1664 	/*
1665 	 * Blowing out the DMAP will blow up the system.
1666 	 */
1667 	if (Maxmem > atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS)) {
1668 		kprintf("Limiting Maxmem due to DMAP size\n");
1669 		Maxmem = atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS);
1670 	}
1671 
1672 	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1673 	    (boothowto & RB_VERBOSE)) {
1674 		kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
1675 	}
1676 
1677 	/*
1678 	 * Call pmap initialization to make new kernel address space
1679 	 *
1680 	 * Mask off page 0.
1681 	 */
1682 	pmap_bootstrap(&first);
1683 	physmap[0] = PAGE_SIZE;
1684 
1685 	/*
1686 	 * Align the physmap to PHYSMAP_ALIGN and cut out anything
1687 	 * exceeding Maxmem.
1688 	 */
1689 	for (i = j = 0; i <= physmap_idx; i += 2) {
1690 		if (physmap[i+1] > ptoa(Maxmem))
1691 			physmap[i+1] = ptoa(Maxmem);
1692 		physmap[i] = (physmap[i] + PHYSMAP_ALIGN_MASK) &
1693 			     ~PHYSMAP_ALIGN_MASK;
1694 		physmap[i+1] = physmap[i+1] & ~PHYSMAP_ALIGN_MASK;
1695 
1696 		physmap[j] = physmap[i];
1697 		physmap[j+1] = physmap[i+1];
1698 
1699 		if (physmap[i] < physmap[i+1])
1700 			j += 2;
1701 	}
1702 	physmap_idx = j - 2;
1703 
1704 	/*
1705 	 * Align anything else used in the validation loop.
1706 	 */
1707 	first = (first + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1708 
1709 	/*
1710 	 * Size up each available chunk of physical memory.
1711 	 */
1712 	pa_indx = 0;
1713 	da_indx = 1;
1714 	phys_avail[pa_indx++] = physmap[0];
1715 	phys_avail[pa_indx] = physmap[0];
1716 	dump_avail[da_indx] = physmap[0];
1717 	pte = CMAP1;
1718 
1719 	/*
1720 	 * Get dcons buffer address
1721 	 */
1722 	if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
1723 	    kgetenv_quad("dcons.size", &dcons_size) == 0)
1724 		dcons_addr = 0;
1725 
1726 	/*
1727 	 * Validate the physical memory.  The physical memory segments
1728 	 * have already been aligned to PHYSMAP_ALIGN which is a multiple
1729 	 * of PAGE_SIZE.
1730 	 */
1731 	for (i = 0; i <= physmap_idx; i += 2) {
1732 		vm_paddr_t end;
1733 
1734 		end = physmap[i + 1];
1735 
1736 		for (pa = physmap[i]; pa < end; pa += PHYSMAP_ALIGN) {
1737 			int tmp, page_bad, full;
1738 			int *ptr = (int *)CADDR1;
1739 
1740 			full = FALSE;
1741 			/*
1742 			 * block out kernel memory as not available.
1743 			 */
1744 			if (pa >= 0x200000 && pa < first)
1745 				goto do_dump_avail;
1746 
1747 			/*
1748 			 * block out dcons buffer
1749 			 */
1750 			if (dcons_addr > 0
1751 			    && pa >= trunc_page(dcons_addr)
1752 			    && pa < dcons_addr + dcons_size) {
1753 				goto do_dump_avail;
1754 			}
1755 
1756 			page_bad = FALSE;
1757 
1758 			/*
1759 			 * map page into kernel: valid, read/write,non-cacheable
1760 			 */
1761 			*pte = pa |
1762 			    kernel_pmap.pmap_bits[PG_V_IDX] |
1763 			    kernel_pmap.pmap_bits[PG_RW_IDX] |
1764 			    kernel_pmap.pmap_bits[PG_N_IDX];
1765 			cpu_invltlb();
1766 
1767 			tmp = *ptr;
1768 			/*
1769 			 * Test for alternating 1's and 0's
1770 			 */
1771 			*(volatile int *)ptr = 0xaaaaaaaa;
1772 			cpu_mfence();
1773 			if (*(volatile int *)ptr != 0xaaaaaaaa)
1774 				page_bad = TRUE;
1775 			/*
1776 			 * Test for alternating 0's and 1's
1777 			 */
1778 			*(volatile int *)ptr = 0x55555555;
1779 			cpu_mfence();
1780 			if (*(volatile int *)ptr != 0x55555555)
1781 				page_bad = TRUE;
1782 			/*
1783 			 * Test for all 1's
1784 			 */
1785 			*(volatile int *)ptr = 0xffffffff;
1786 			cpu_mfence();
1787 			if (*(volatile int *)ptr != 0xffffffff)
1788 				page_bad = TRUE;
1789 			/*
1790 			 * Test for all 0's
1791 			 */
1792 			*(volatile int *)ptr = 0x0;
1793 			cpu_mfence();
1794 			if (*(volatile int *)ptr != 0x0)
1795 				page_bad = TRUE;
1796 			/*
1797 			 * Restore original value.
1798 			 */
1799 			*ptr = tmp;
1800 
1801 			/*
1802 			 * Adjust array of valid/good pages.
1803 			 */
1804 			if (page_bad == TRUE)
1805 				continue;
1806 			/*
1807 			 * If this good page is a continuation of the
1808 			 * previous set of good pages, then just increase
1809 			 * the end pointer. Otherwise start a new chunk.
1810 			 * Note that "end" points one higher than end,
1811 			 * making the range >= start and < end.
1812 			 * If we're also doing a speculative memory
1813 			 * test and we at or past the end, bump up Maxmem
1814 			 * so that we keep going. The first bad page
1815 			 * will terminate the loop.
1816 			 */
1817 			if (phys_avail[pa_indx] == pa) {
1818 				phys_avail[pa_indx] += PHYSMAP_ALIGN;
1819 			} else {
1820 				pa_indx++;
1821 				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1822 					kprintf(
1823 		"Too many holes in the physical address space, giving up\n");
1824 					pa_indx--;
1825 					full = TRUE;
1826 					goto do_dump_avail;
1827 				}
1828 				phys_avail[pa_indx++] = pa;
1829 				phys_avail[pa_indx] = pa + PHYSMAP_ALIGN;
1830 			}
1831 			physmem += PHYSMAP_ALIGN / PAGE_SIZE;
1832 do_dump_avail:
1833 			if (dump_avail[da_indx] == pa) {
1834 				dump_avail[da_indx] += PHYSMAP_ALIGN;
1835 			} else {
1836 				da_indx++;
1837 				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1838 					da_indx--;
1839 					goto do_next;
1840 				}
1841 				dump_avail[da_indx++] = pa;
1842 				dump_avail[da_indx] = pa + PHYSMAP_ALIGN;
1843 			}
1844 do_next:
1845 			if (full)
1846 				break;
1847 		}
1848 	}
1849 	*pte = 0;
1850 	cpu_invltlb();
1851 
1852 	/*
1853 	 * The last chunk must contain at least one page plus the message
1854 	 * buffer to avoid complicating other code (message buffer address
1855 	 * calculation, etc.).
1856 	 */
1857 	msgbuf_size = (MSGBUF_SIZE + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1858 
1859 	while (phys_avail[pa_indx - 1] + PHYSMAP_ALIGN +
1860 	       msgbuf_size >= phys_avail[pa_indx]) {
1861 		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1862 		phys_avail[pa_indx--] = 0;
1863 		phys_avail[pa_indx--] = 0;
1864 	}
1865 
1866 	Maxmem = atop(phys_avail[pa_indx]);
1867 
1868 	/* Trim off space for the message buffer. */
1869 	phys_avail[pa_indx] -= msgbuf_size;
1870 
1871 	avail_end = phys_avail[pa_indx];
1872 
1873 	/* Map the message buffer. */
1874 	for (off = 0; off < msgbuf_size; off += PAGE_SIZE) {
1875 		pmap_kenter((vm_offset_t)msgbufp + off,
1876 			    phys_avail[pa_indx] + off);
1877 	}
1878 }
1879 
1880 struct machintr_abi MachIntrABI;
1881 
1882 /*
1883  * IDT VECTORS:
1884  *	0	Divide by zero
1885  *	1	Debug
1886  *	2	NMI
1887  *	3	BreakPoint
1888  *	4	OverFlow
1889  *	5	Bound-Range
1890  *	6	Invalid OpCode
1891  *	7	Device Not Available (x87)
1892  *	8	Double-Fault
1893  *	9	Coprocessor Segment overrun (unsupported, reserved)
1894  *	10	Invalid-TSS
1895  *	11	Segment not present
1896  *	12	Stack
1897  *	13	General Protection
1898  *	14	Page Fault
1899  *	15	Reserved
1900  *	16	x87 FP Exception pending
1901  *	17	Alignment Check
1902  *	18	Machine Check
1903  *	19	SIMD floating point
1904  *	20-31	reserved
1905  *	32-255	INTn/external sources
1906  */
1907 u_int64_t
1908 hammer_time(u_int64_t modulep, u_int64_t physfree)
1909 {
1910 	caddr_t kmdp;
1911 	int gsel_tss, x, cpu;
1912 #if JG
1913 	int metadata_missing, off;
1914 #endif
1915 	struct mdglobaldata *gd;
1916 	u_int64_t msr;
1917 
1918 	/*
1919 	 * Prevent lowering of the ipl if we call tsleep() early.
1920 	 */
1921 	gd = &CPU_prvspace[0]->mdglobaldata;
1922 	bzero(gd, sizeof(*gd));
1923 
1924 	/*
1925 	 * Note: on both UP and SMP curthread must be set non-NULL
1926 	 * early in the boot sequence because the system assumes
1927 	 * that 'curthread' is never NULL.
1928 	 */
1929 
1930 	gd->mi.gd_curthread = &thread0;
1931 	thread0.td_gd = &gd->mi;
1932 
1933 	atdevbase = ISA_HOLE_START + PTOV_OFFSET;
1934 
1935 #if JG
1936 	metadata_missing = 0;
1937 	if (bootinfo.bi_modulep) {
1938 		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1939 		preload_bootstrap_relocate(KERNBASE);
1940 	} else {
1941 		metadata_missing = 1;
1942 	}
1943 	if (bootinfo.bi_envp)
1944 		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1945 #endif
1946 
1947 	preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
1948 	preload_bootstrap_relocate(PTOV_OFFSET);
1949 	kmdp = preload_search_by_type("elf kernel");
1950 	if (kmdp == NULL)
1951 		kmdp = preload_search_by_type("elf64 kernel");
1952 	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1953 	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
1954 #ifdef DDB
1955 	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1956 	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1957 #endif
1958 
1959 	if (boothowto & RB_VERBOSE)
1960 		bootverbose++;
1961 
1962 	/*
1963 	 * Default MachIntrABI to ICU
1964 	 */
1965 	MachIntrABI = MachIntrABI_ICU;
1966 
1967 	/*
1968 	 * start with one cpu.  Note: with one cpu, ncpus2_shift, ncpus2_mask,
1969 	 * and ncpus_fit_mask remain 0.
1970 	 */
1971 	ncpus = 1;
1972 	ncpus2 = 1;
1973 	ncpus_fit = 1;
1974 	/* Init basic tunables, hz etc */
1975 	init_param1();
1976 
1977 	/*
1978 	 * make gdt memory segments
1979 	 */
1980 	gdt_segs[GPROC0_SEL].ssd_base =
1981 		(uintptr_t) &CPU_prvspace[0]->mdglobaldata.gd_common_tss;
1982 
1983 	gd->mi.gd_prvspace = CPU_prvspace[0];
1984 
1985 	for (x = 0; x < NGDT; x++) {
1986 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
1987 			ssdtosd(&gdt_segs[x], &gdt[x]);
1988 	}
1989 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1990 	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1991 
1992 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1993 	r_gdt.rd_base =  (long) gdt;
1994 	lgdt(&r_gdt);
1995 
1996 	wrmsr(MSR_FSBASE, 0);		/* User value */
1997 	wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
1998 	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1999 
2000 	mi_gdinit(&gd->mi, 0);
2001 	cpu_gdinit(gd, 0);
2002 	proc0paddr = proc0paddr_buff;
2003 	mi_proc0init(&gd->mi, proc0paddr);
2004 	safepri = TDPRI_MAX;
2005 
2006 	/* spinlocks and the BGL */
2007 	init_locks();
2008 
2009 	/* exceptions */
2010 	for (x = 0; x < NIDT; x++)
2011 		setidt_global(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
2012 	setidt_global(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
2013 	setidt_global(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
2014 	setidt_global(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 1);
2015  	setidt_global(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
2016 	setidt_global(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
2017 	setidt_global(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
2018 	setidt_global(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
2019 	setidt_global(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
2020 	setidt_global(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
2021 	setidt_global(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
2022 	setidt_global(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
2023 	setidt_global(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
2024 	setidt_global(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
2025 	setidt_global(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
2026 	setidt_global(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
2027 	setidt_global(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
2028 	setidt_global(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
2029 	setidt_global(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
2030 	setidt_global(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
2031 
2032 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
2033 		r_idt_arr[cpu].rd_limit = sizeof(idt_arr[cpu]) - 1;
2034 		r_idt_arr[cpu].rd_base = (long) &idt_arr[cpu][0];
2035 	}
2036 
2037 	lidt(&r_idt_arr[0]);
2038 
2039 	/*
2040 	 * Initialize the console before we print anything out.
2041 	 */
2042 	cninit();
2043 
2044 #if JG
2045 	if (metadata_missing)
2046 		kprintf("WARNING: loader(8) metadata is missing!\n");
2047 #endif
2048 
2049 #if	NISA >0
2050 	elcr_probe();
2051 	isa_defaultirq();
2052 #endif
2053 	rand_initialize();
2054 
2055 	/*
2056 	 * Initialize IRQ mapping
2057 	 *
2058 	 * NOTE:
2059 	 * SHOULD be after elcr_probe()
2060 	 */
2061 	MachIntrABI_ICU.initmap();
2062 	MachIntrABI_IOAPIC.initmap();
2063 
2064 #ifdef DDB
2065 	kdb_init();
2066 	if (boothowto & RB_KDB)
2067 		Debugger("Boot flags requested debugger");
2068 #endif
2069 
2070 #if JG
2071 	finishidentcpu();	/* Final stage of CPU initialization */
2072 	setidt(6, &IDTVEC(ill),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2073 	setidt(13, &IDTVEC(prot),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2074 #endif
2075 	identify_cpu();		/* Final stage of CPU initialization */
2076 	initializecpu(0);	/* Initialize CPU registers */
2077 
2078 	TUNABLE_INT_FETCH("hw.apic_io_enable", &ioapic_enable); /* for compat */
2079 	TUNABLE_INT_FETCH("hw.ioapic_enable", &ioapic_enable);
2080 	TUNABLE_INT_FETCH("hw.lapic_enable", &lapic_enable);
2081 	TUNABLE_INT_FETCH("machdep.cpu_idle_hlt", &cpu_idle_hlt);
2082 
2083 	/*
2084 	 * Some of the virtual machines do not work w/ I/O APIC
2085 	 * enabled.  If the user does not explicitly enable or
2086 	 * disable the I/O APIC (ioapic_enable < 0), then we
2087 	 * disable I/O APIC on all virtual machines.
2088 	 *
2089 	 * NOTE:
2090 	 * This must be done after identify_cpu(), which sets
2091 	 * 'cpu_feature2'
2092 	 */
2093 	if (ioapic_enable < 0) {
2094 		if (cpu_feature2 & CPUID2_VMM)
2095 			ioapic_enable = 0;
2096 		else
2097 			ioapic_enable = 1;
2098 	}
2099 
2100 	/* make an initial tss so cpu can get interrupt stack on syscall! */
2101 	gd->gd_common_tss.tss_rsp0 =
2102 		(register_t)(thread0.td_kstack +
2103 			     KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb));
2104 	/* Ensure the stack is aligned to 16 bytes */
2105 	gd->gd_common_tss.tss_rsp0 &= ~(register_t)0xF;
2106 
2107 	/* double fault stack */
2108 	gd->gd_common_tss.tss_ist1 =
2109 		(long)&gd->mi.gd_prvspace->idlestack[
2110 			sizeof(gd->mi.gd_prvspace->idlestack)];
2111 
2112 	/* Set the IO permission bitmap (empty due to tss seg limit) */
2113 	gd->gd_common_tss.tss_iobase = sizeof(struct x86_64tss);
2114 
2115 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2116 	gd->gd_tss_gdt = &gdt[GPROC0_SEL];
2117 	gd->gd_common_tssd = *gd->gd_tss_gdt;
2118 	ltr(gsel_tss);
2119 
2120 	/* Set up the fast syscall stuff */
2121 	msr = rdmsr(MSR_EFER) | EFER_SCE;
2122 	wrmsr(MSR_EFER, msr);
2123 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
2124 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
2125 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
2126 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
2127 	wrmsr(MSR_STAR, msr);
2128 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
2129 
2130 	getmemsize(kmdp, physfree);
2131 	init_param2(physmem);
2132 
2133 	/* now running on new page tables, configured,and u/iom is accessible */
2134 
2135 	/* Map the message buffer. */
2136 #if JG
2137 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2138 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2139 #endif
2140 
2141 	msgbufinit(msgbufp, MSGBUF_SIZE);
2142 
2143 
2144 	/* transfer to user mode */
2145 
2146 	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2147 	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2148 	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
2149 
2150 	load_ds(_udatasel);
2151 	load_es(_udatasel);
2152 	load_fs(_udatasel);
2153 
2154 	/* setup proc 0's pcb */
2155 	thread0.td_pcb->pcb_flags = 0;
2156 	thread0.td_pcb->pcb_cr3 = KPML4phys;
2157 	thread0.td_pcb->pcb_ext = NULL;
2158 	lwp0.lwp_md.md_regs = &proc0_tf;	/* XXX needed? */
2159 
2160 	/* Location of kernel stack for locore */
2161 	return ((u_int64_t)thread0.td_pcb);
2162 }
2163 
2164 /*
2165  * Initialize machine-dependant portions of the global data structure.
2166  * Note that the global data area and cpu0's idlestack in the private
2167  * data space were allocated in locore.
2168  *
2169  * Note: the idlethread's cpl is 0
2170  *
2171  * WARNING!  Called from early boot, 'mycpu' may not work yet.
2172  */
2173 void
2174 cpu_gdinit(struct mdglobaldata *gd, int cpu)
2175 {
2176 	if (cpu)
2177 		gd->mi.gd_curthread = &gd->mi.gd_idlethread;
2178 
2179 	lwkt_init_thread(&gd->mi.gd_idlethread,
2180 			gd->mi.gd_prvspace->idlestack,
2181 			sizeof(gd->mi.gd_prvspace->idlestack),
2182 			0, &gd->mi);
2183 	lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
2184 	gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
2185 	gd->mi.gd_idlethread.td_sp -= sizeof(void *);
2186 	*(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
2187 }
2188 
2189 /*
2190  * We only have to check for DMAP bounds, the globaldata space is
2191  * actually part of the kernel_map so we don't have to waste time
2192  * checking CPU_prvspace[*].
2193  */
2194 int
2195 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
2196 {
2197 #if 0
2198 	if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
2199 	    eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
2200 		return (TRUE);
2201 	}
2202 #endif
2203 	if (saddr >= DMAP_MIN_ADDRESS && eaddr <= DMAP_MAX_ADDRESS)
2204 		return (TRUE);
2205 	return (FALSE);
2206 }
2207 
2208 struct globaldata *
2209 globaldata_find(int cpu)
2210 {
2211 	KKASSERT(cpu >= 0 && cpu < ncpus);
2212 	return(&CPU_prvspace[cpu]->mdglobaldata.mi);
2213 }
2214 
2215 /*
2216  * This path should be safe from the SYSRET issue because only stopped threads
2217  * can have their %rip adjusted this way (and all heavy weight thread switches
2218  * clear QUICKREF and thus do not use SYSRET).  However, the code path is
2219  * convoluted so add a safety by forcing %rip to be cannonical.
2220  */
2221 int
2222 ptrace_set_pc(struct lwp *lp, unsigned long addr)
2223 {
2224 	if (addr & 0x0000800000000000LLU)
2225 		lp->lwp_md.md_regs->tf_rip = addr | 0xFFFF000000000000LLU;
2226 	else
2227 		lp->lwp_md.md_regs->tf_rip = addr & 0x0000FFFFFFFFFFFFLLU;
2228 	return (0);
2229 }
2230 
2231 int
2232 ptrace_single_step(struct lwp *lp)
2233 {
2234 	lp->lwp_md.md_regs->tf_rflags |= PSL_T;
2235 	return (0);
2236 }
2237 
2238 int
2239 fill_regs(struct lwp *lp, struct reg *regs)
2240 {
2241 	struct trapframe *tp;
2242 
2243 	if ((tp = lp->lwp_md.md_regs) == NULL)
2244 		return EINVAL;
2245 	bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
2246 	return (0);
2247 }
2248 
2249 int
2250 set_regs(struct lwp *lp, struct reg *regs)
2251 {
2252 	struct trapframe *tp;
2253 
2254 	tp = lp->lwp_md.md_regs;
2255 	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
2256 	    !CS_SECURE(regs->r_cs))
2257 		return (EINVAL);
2258 	bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
2259 	clear_quickret();
2260 	return (0);
2261 }
2262 
2263 static void
2264 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2265 {
2266 	struct env87 *penv_87 = &sv_87->sv_env;
2267 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2268 	int i;
2269 
2270 	/* FPU control/status */
2271 	penv_87->en_cw = penv_xmm->en_cw;
2272 	penv_87->en_sw = penv_xmm->en_sw;
2273 	penv_87->en_tw = penv_xmm->en_tw;
2274 	penv_87->en_fip = penv_xmm->en_fip;
2275 	penv_87->en_fcs = penv_xmm->en_fcs;
2276 	penv_87->en_opcode = penv_xmm->en_opcode;
2277 	penv_87->en_foo = penv_xmm->en_foo;
2278 	penv_87->en_fos = penv_xmm->en_fos;
2279 
2280 	/* FPU registers */
2281 	for (i = 0; i < 8; ++i)
2282 		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2283 }
2284 
2285 static void
2286 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2287 {
2288 	struct env87 *penv_87 = &sv_87->sv_env;
2289 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2290 	int i;
2291 
2292 	/* FPU control/status */
2293 	penv_xmm->en_cw = penv_87->en_cw;
2294 	penv_xmm->en_sw = penv_87->en_sw;
2295 	penv_xmm->en_tw = penv_87->en_tw;
2296 	penv_xmm->en_fip = penv_87->en_fip;
2297 	penv_xmm->en_fcs = penv_87->en_fcs;
2298 	penv_xmm->en_opcode = penv_87->en_opcode;
2299 	penv_xmm->en_foo = penv_87->en_foo;
2300 	penv_xmm->en_fos = penv_87->en_fos;
2301 
2302 	/* FPU registers */
2303 	for (i = 0; i < 8; ++i)
2304 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2305 }
2306 
2307 int
2308 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2309 {
2310 	if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
2311 		return EINVAL;
2312 	if (cpu_fxsr) {
2313 		fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2314 				(struct save87 *)fpregs);
2315 		return (0);
2316 	}
2317 	bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2318 	return (0);
2319 }
2320 
2321 int
2322 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2323 {
2324 	if (cpu_fxsr) {
2325 		set_fpregs_xmm((struct save87 *)fpregs,
2326 			       &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2327 		return (0);
2328 	}
2329 	bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2330 	return (0);
2331 }
2332 
2333 int
2334 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2335 {
2336 	struct pcb *pcb;
2337 
2338         if (lp == NULL) {
2339                 dbregs->dr[0] = rdr0();
2340                 dbregs->dr[1] = rdr1();
2341                 dbregs->dr[2] = rdr2();
2342                 dbregs->dr[3] = rdr3();
2343                 dbregs->dr[4] = rdr4();
2344                 dbregs->dr[5] = rdr5();
2345                 dbregs->dr[6] = rdr6();
2346                 dbregs->dr[7] = rdr7();
2347 		return (0);
2348         }
2349 	if (lp->lwp_thread == NULL || (pcb = lp->lwp_thread->td_pcb) == NULL)
2350 		return EINVAL;
2351 	dbregs->dr[0] = pcb->pcb_dr0;
2352 	dbregs->dr[1] = pcb->pcb_dr1;
2353 	dbregs->dr[2] = pcb->pcb_dr2;
2354 	dbregs->dr[3] = pcb->pcb_dr3;
2355 	dbregs->dr[4] = 0;
2356 	dbregs->dr[5] = 0;
2357 	dbregs->dr[6] = pcb->pcb_dr6;
2358 	dbregs->dr[7] = pcb->pcb_dr7;
2359 	return (0);
2360 }
2361 
2362 int
2363 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2364 {
2365 	if (lp == NULL) {
2366 		load_dr0(dbregs->dr[0]);
2367 		load_dr1(dbregs->dr[1]);
2368 		load_dr2(dbregs->dr[2]);
2369 		load_dr3(dbregs->dr[3]);
2370 		load_dr4(dbregs->dr[4]);
2371 		load_dr5(dbregs->dr[5]);
2372 		load_dr6(dbregs->dr[6]);
2373 		load_dr7(dbregs->dr[7]);
2374 	} else {
2375 		struct pcb *pcb;
2376 		struct ucred *ucred;
2377 		int i;
2378 		uint64_t mask1, mask2;
2379 
2380 		/*
2381 		 * Don't let an illegal value for dr7 get set.	Specifically,
2382 		 * check for undefined settings.  Setting these bit patterns
2383 		 * result in undefined behaviour and can lead to an unexpected
2384 		 * TRCTRAP.
2385 		 */
2386 		/* JG this loop looks unreadable */
2387 		/* Check 4 2-bit fields for invalid patterns.
2388 		 * These fields are R/Wi, for i = 0..3
2389 		 */
2390 		/* Is 10 in LENi allowed when running in compatibility mode? */
2391 		/* Pattern 10 in R/Wi might be used to indicate
2392 		 * breakpoint on I/O. Further analysis should be
2393 		 * carried to decide if it is safe and useful to
2394 		 * provide access to that capability
2395 		 */
2396 		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2397 		     i++, mask1 <<= 4, mask2 <<= 4)
2398 			if ((dbregs->dr[7] & mask1) == mask2)
2399 				return (EINVAL);
2400 
2401 		pcb = lp->lwp_thread->td_pcb;
2402 		ucred = lp->lwp_proc->p_ucred;
2403 
2404 		/*
2405 		 * Don't let a process set a breakpoint that is not within the
2406 		 * process's address space.  If a process could do this, it
2407 		 * could halt the system by setting a breakpoint in the kernel
2408 		 * (if ddb was enabled).  Thus, we need to check to make sure
2409 		 * that no breakpoints are being enabled for addresses outside
2410 		 * process's address space, unless, perhaps, we were called by
2411 		 * uid 0.
2412 		 *
2413 		 * XXX - what about when the watched area of the user's
2414 		 * address space is written into from within the kernel
2415 		 * ... wouldn't that still cause a breakpoint to be generated
2416 		 * from within kernel mode?
2417 		 */
2418 
2419 		if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2420 			if (dbregs->dr[7] & 0x3) {
2421 				/* dr0 is enabled */
2422 				if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2423 					return (EINVAL);
2424 			}
2425 
2426 			if (dbregs->dr[7] & (0x3<<2)) {
2427 				/* dr1 is enabled */
2428 				if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2429 					return (EINVAL);
2430 			}
2431 
2432 			if (dbregs->dr[7] & (0x3<<4)) {
2433 				/* dr2 is enabled */
2434 				if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2435 					return (EINVAL);
2436 			}
2437 
2438 			if (dbregs->dr[7] & (0x3<<6)) {
2439 				/* dr3 is enabled */
2440 				if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2441 					return (EINVAL);
2442 			}
2443 		}
2444 
2445 		pcb->pcb_dr0 = dbregs->dr[0];
2446 		pcb->pcb_dr1 = dbregs->dr[1];
2447 		pcb->pcb_dr2 = dbregs->dr[2];
2448 		pcb->pcb_dr3 = dbregs->dr[3];
2449 		pcb->pcb_dr6 = dbregs->dr[6];
2450 		pcb->pcb_dr7 = dbregs->dr[7];
2451 
2452 		pcb->pcb_flags |= PCB_DBREGS;
2453 	}
2454 
2455 	return (0);
2456 }
2457 
2458 /*
2459  * Return > 0 if a hardware breakpoint has been hit, and the
2460  * breakpoint was in user space.  Return 0, otherwise.
2461  */
2462 int
2463 user_dbreg_trap(void)
2464 {
2465         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2466         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2467         int nbp;            /* number of breakpoints that triggered */
2468         caddr_t addr[4];    /* breakpoint addresses */
2469         int i;
2470 
2471         dr7 = rdr7();
2472         if ((dr7 & 0xff) == 0) {
2473                 /*
2474                  * all GE and LE bits in the dr7 register are zero,
2475                  * thus the trap couldn't have been caused by the
2476                  * hardware debug registers
2477                  */
2478                 return 0;
2479         }
2480 
2481         nbp = 0;
2482         dr6 = rdr6();
2483         bp = dr6 & 0xf;
2484 
2485         if (bp == 0) {
2486                 /*
2487                  * None of the breakpoint bits are set meaning this
2488                  * trap was not caused by any of the debug registers
2489                  */
2490                 return 0;
2491         }
2492 
2493         /*
2494          * at least one of the breakpoints were hit, check to see
2495          * which ones and if any of them are user space addresses
2496          */
2497 
2498         if (bp & 0x01) {
2499                 addr[nbp++] = (caddr_t)rdr0();
2500         }
2501         if (bp & 0x02) {
2502                 addr[nbp++] = (caddr_t)rdr1();
2503         }
2504         if (bp & 0x04) {
2505                 addr[nbp++] = (caddr_t)rdr2();
2506         }
2507         if (bp & 0x08) {
2508                 addr[nbp++] = (caddr_t)rdr3();
2509         }
2510 
2511         for (i=0; i<nbp; i++) {
2512                 if (addr[i] <
2513                     (caddr_t)VM_MAX_USER_ADDRESS) {
2514                         /*
2515                          * addr[i] is in user space
2516                          */
2517                         return nbp;
2518                 }
2519         }
2520 
2521         /*
2522          * None of the breakpoints are in user space.
2523          */
2524         return 0;
2525 }
2526 
2527 
2528 #ifndef DDB
2529 void
2530 Debugger(const char *msg)
2531 {
2532 	kprintf("Debugger(\"%s\") called.\n", msg);
2533 }
2534 #endif /* no DDB */
2535 
2536 #ifdef DDB
2537 
2538 /*
2539  * Provide inb() and outb() as functions.  They are normally only
2540  * available as macros calling inlined functions, thus cannot be
2541  * called inside DDB.
2542  *
2543  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2544  */
2545 
2546 #undef inb
2547 #undef outb
2548 
2549 /* silence compiler warnings */
2550 u_char inb(u_int);
2551 void outb(u_int, u_char);
2552 
2553 u_char
2554 inb(u_int port)
2555 {
2556 	u_char	data;
2557 	/*
2558 	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2559 	 * %edx, while gcc generates inferior code (movw instead of movl)
2560 	 * if we tell it to load (u_short) port.
2561 	 */
2562 	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2563 	return (data);
2564 }
2565 
2566 void
2567 outb(u_int port, u_char data)
2568 {
2569 	u_char	al;
2570 	/*
2571 	 * Use an unnecessary assignment to help gcc's register allocator.
2572 	 * This make a large difference for gcc-1.40 and a tiny difference
2573 	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2574 	 * best results.  gcc-2.6.0 can't handle this.
2575 	 */
2576 	al = data;
2577 	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2578 }
2579 
2580 #endif /* DDB */
2581 
2582 
2583 
2584 /*
2585  * initialize all the SMP locks
2586  */
2587 
2588 /* critical region when masking or unmasking interupts */
2589 struct spinlock_deprecated imen_spinlock;
2590 
2591 /* critical region for old style disable_intr/enable_intr */
2592 struct spinlock_deprecated mpintr_spinlock;
2593 
2594 /* critical region around INTR() routines */
2595 struct spinlock_deprecated intr_spinlock;
2596 
2597 /* lock region used by kernel profiling */
2598 struct spinlock_deprecated mcount_spinlock;
2599 
2600 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2601 struct spinlock_deprecated com_spinlock;
2602 
2603 /* lock regions around the clock hardware */
2604 struct spinlock_deprecated clock_spinlock;
2605 
2606 static void
2607 init_locks(void)
2608 {
2609 	/*
2610 	 * Get the initial mplock with a count of 1 for the BSP.
2611 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
2612 	 */
2613 	cpu_get_initial_mplock();
2614 	/* DEPRECATED */
2615 	spin_lock_init(&mcount_spinlock);
2616 	spin_lock_init(&intr_spinlock);
2617 	spin_lock_init(&mpintr_spinlock);
2618 	spin_lock_init(&imen_spinlock);
2619 	spin_lock_init(&com_spinlock);
2620 	spin_lock_init(&clock_spinlock);
2621 
2622 	/* our token pool needs to work early */
2623 	lwkt_token_pool_init();
2624 }
2625 
2626 boolean_t
2627 cpu_mwait_hint_valid(uint32_t hint)
2628 {
2629 	int cx_idx, sub;
2630 
2631 	cx_idx = MWAIT_EAX_TO_CX(hint);
2632 	if (cx_idx >= CPU_MWAIT_CX_MAX)
2633 		return FALSE;
2634 
2635 	sub = MWAIT_EAX_TO_CX_SUB(hint);
2636 	if (sub >= cpu_mwait_cx_info[cx_idx].subcnt)
2637 		return FALSE;
2638 
2639 	return TRUE;
2640 }
2641 
2642 void
2643 cpu_mwait_cx_no_bmsts(void)
2644 {
2645 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_STS);
2646 }
2647 
2648 static int
2649 cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS, int *hint0,
2650     boolean_t allow_auto)
2651 {
2652 	int error, cx_idx, old_cx_idx, sub = 0, hint;
2653 	char name[16], *ptr, *start;
2654 
2655 	hint = *hint0;
2656 	if (hint >= 0) {
2657 		old_cx_idx = MWAIT_EAX_TO_CX(hint);
2658 		sub = MWAIT_EAX_TO_CX_SUB(hint);
2659 	} else if (hint == CPU_MWAIT_HINT_AUTO) {
2660 		old_cx_idx = allow_auto ? CPU_MWAIT_C2 : CPU_MWAIT_CX_MAX;
2661 	} else if (hint == CPU_MWAIT_HINT_AUTODEEP) {
2662 		old_cx_idx = allow_auto ? CPU_MWAIT_C3 : CPU_MWAIT_CX_MAX;
2663 	} else {
2664 		old_cx_idx = CPU_MWAIT_CX_MAX;
2665 	}
2666 
2667 	if ((cpu_feature2 & CPUID2_MON) == 0 ||
2668 	    (cpu_mwait_feature & CPUID_MWAIT_EXT) == 0)
2669 		strlcpy(name, "NONE", sizeof(name));
2670 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTO)
2671 		strlcpy(name, "AUTO", sizeof(name));
2672 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTODEEP)
2673 		strlcpy(name, "AUTODEEP", sizeof(name));
2674 	else if (old_cx_idx >= CPU_MWAIT_CX_MAX ||
2675 	    sub >= cpu_mwait_cx_info[old_cx_idx].subcnt)
2676 		strlcpy(name, "INVALID", sizeof(name));
2677 	else
2678 		ksnprintf(name, sizeof(name), "C%d/%d", old_cx_idx, sub);
2679 
2680 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
2681 	if (error != 0 || req->newptr == NULL)
2682 		return error;
2683 
2684 	if ((cpu_feature2 & CPUID2_MON) == 0 ||
2685 	    (cpu_mwait_feature & CPUID_MWAIT_EXT) == 0)
2686 		return EOPNOTSUPP;
2687 
2688 	if (allow_auto && strcmp(name, "AUTO") == 0) {
2689 		hint = CPU_MWAIT_HINT_AUTO;
2690 		cx_idx = CPU_MWAIT_C2;
2691 		goto done;
2692 	}
2693 	if (allow_auto && strcmp(name, "AUTODEEP") == 0) {
2694 		hint = CPU_MWAIT_HINT_AUTODEEP;
2695 		cx_idx = CPU_MWAIT_C3;
2696 		goto done;
2697 	}
2698 
2699 	if (strlen(name) < 4 || toupper(name[0]) != 'C')
2700 		return EINVAL;
2701 	start = &name[1];
2702 	ptr = NULL;
2703 
2704 	cx_idx = strtol(start, &ptr, 10);
2705 	if (ptr == start || *ptr != '/')
2706 		return EINVAL;
2707 	if (cx_idx < 0 || cx_idx >= CPU_MWAIT_CX_MAX)
2708 		return EINVAL;
2709 
2710 	start = ptr + 1;
2711 	ptr = NULL;
2712 
2713 	sub = strtol(start, &ptr, 10);
2714 	if (*ptr != '\0')
2715 		return EINVAL;
2716 	if (sub < 0 || sub >= cpu_mwait_cx_info[cx_idx].subcnt)
2717 		return EINVAL;
2718 
2719 	hint = MWAIT_EAX_HINT(cx_idx, sub);
2720 done:
2721 	if (cx_idx >= CPU_MWAIT_C3 && cpu_mwait_c3_preamble)
2722 		return EOPNOTSUPP;
2723 	if (old_cx_idx < CPU_MWAIT_C3 && cx_idx >= CPU_MWAIT_C3) {
2724 		error = cputimer_intr_powersave_addreq();
2725 		if (error)
2726 			return error;
2727 	} else if (old_cx_idx >= CPU_MWAIT_C3 && cx_idx < CPU_MWAIT_C3) {
2728 		cputimer_intr_powersave_remreq();
2729 	}
2730 
2731 	*hint0 = hint;
2732 	return 0;
2733 }
2734 
2735 static int
2736 cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS)
2737 {
2738 	int error;
2739 
2740 	lwkt_serialize_enter(&cpu_mwait_cx_slize);
2741 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
2742 	    &cpu_mwait_halt, TRUE);
2743 	lwkt_serialize_exit(&cpu_mwait_cx_slize);
2744 	return error;
2745 }
2746 
2747 static int
2748 cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS)
2749 {
2750 	int error;
2751 
2752 	lwkt_serialize_enter(&cpu_mwait_cx_slize);
2753 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
2754 	    &cpu_mwait_spin, FALSE);
2755 	lwkt_serialize_exit(&cpu_mwait_cx_slize);
2756 	return error;
2757 }
2758