xref: /dragonfly/sys/platform/pc64/x86_64/machdep.c (revision fcfde60f)
1 /*-
2  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3  * Copyright (c) 1992 Terrence R. Lambert.
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 2008-2017 The DragonFly Project.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
40  * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
41  */
42 
43 //#include "use_npx.h"
44 #include "use_isa.h"
45 #include "opt_cpu.h"
46 #include "opt_ddb.h"
47 #include "opt_inet.h"
48 #include "opt_msgbuf.h"
49 #include "opt_swap.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/sysproto.h>
54 #include <sys/signalvar.h>
55 #include <sys/kernel.h>
56 #include <sys/linker.h>
57 #include <sys/malloc.h>
58 #include <sys/proc.h>
59 #include <sys/priv.h>
60 #include <sys/buf.h>
61 #include <sys/reboot.h>
62 #include <sys/mbuf.h>
63 #include <sys/msgbuf.h>
64 #include <sys/sysent.h>
65 #include <sys/sysctl.h>
66 #include <sys/vmmeter.h>
67 #include <sys/bus.h>
68 #include <sys/usched.h>
69 #include <sys/reg.h>
70 #include <sys/sbuf.h>
71 #include <sys/ctype.h>
72 #include <sys/serialize.h>
73 #include <sys/systimer.h>
74 
75 #include <vm/vm.h>
76 #include <vm/vm_param.h>
77 #include <sys/lock.h>
78 #include <vm/vm_kern.h>
79 #include <vm/vm_object.h>
80 #include <vm/vm_page.h>
81 #include <vm/vm_map.h>
82 #include <vm/vm_pager.h>
83 #include <vm/vm_extern.h>
84 
85 #include <sys/thread2.h>
86 #include <sys/mplock2.h>
87 #include <sys/mutex2.h>
88 
89 #include <sys/user.h>
90 #include <sys/exec.h>
91 #include <sys/cons.h>
92 
93 #include <sys/efi.h>
94 
95 #include <ddb/ddb.h>
96 
97 #include <machine/cpu.h>
98 #include <machine/clock.h>
99 #include <machine/specialreg.h>
100 #if 0 /* JG */
101 #include <machine/bootinfo.h>
102 #endif
103 #include <machine/md_var.h>
104 #include <machine/metadata.h>
105 #include <machine/pc/bios.h>
106 #include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
107 #include <machine/globaldata.h>		/* CPU_prvspace */
108 #include <machine/smp.h>
109 #include <machine/cputypes.h>
110 #include <machine/intr_machdep.h>
111 #include <machine/framebuffer.h>
112 
113 #ifdef OLD_BUS_ARCH
114 #include <bus/isa/isa_device.h>
115 #endif
116 #include <machine_base/isa/isa_intr.h>
117 #include <bus/isa/rtc.h>
118 #include <sys/random.h>
119 #include <sys/ptrace.h>
120 #include <machine/sigframe.h>
121 
122 #include <sys/machintr.h>
123 #include <machine_base/icu/icu_abi.h>
124 #include <machine_base/icu/elcr_var.h>
125 #include <machine_base/apic/lapic.h>
126 #include <machine_base/apic/ioapic.h>
127 #include <machine_base/apic/ioapic_abi.h>
128 #include <machine/mptable.h>
129 
130 #define PHYSMAP_ENTRIES		10
131 
132 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
133 
134 extern void printcpuinfo(void);	/* XXX header file */
135 extern void identify_cpu(void);
136 extern void panicifcpuunsupported(void);
137 
138 static void cpu_startup(void *);
139 static void pic_finish(void *);
140 static void cpu_finish(void *);
141 
142 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
143 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
144 static void init_locks(void);
145 
146 extern void pcpu_timer_always(struct intrframe *);
147 
148 SYSINIT(cpu, SI_BOOT2_START_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
149 SYSINIT(pic_finish, SI_BOOT2_FINISH_PIC, SI_ORDER_FIRST, pic_finish, NULL);
150 SYSINIT(cpu_finish, SI_BOOT2_FINISH_CPU, SI_ORDER_FIRST, cpu_finish, NULL);
151 
152 #ifdef DDB
153 extern vm_offset_t ksym_start, ksym_end;
154 #endif
155 
156 struct privatespace CPU_prvspace_bsp __aligned(4096);
157 struct privatespace *CPU_prvspace[MAXCPU] = { &CPU_prvspace_bsp };
158 
159 vm_paddr_t efi_systbl_phys;
160 int	_udatasel, _ucodesel, _ucode32sel;
161 u_long	atdevbase;
162 int64_t tsc_offsets[MAXCPU];
163 cpumask_t smp_idleinvl_mask;
164 cpumask_t smp_idleinvl_reqs;
165 
166 static int cpu_mwait_halt_global; /* MWAIT hint (EAX) or CPU_MWAIT_HINT_ */
167 
168 #if defined(SWTCH_OPTIM_STATS)
169 extern int swtch_optim_stats;
170 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
171 	CTLFLAG_RD, &swtch_optim_stats, 0, "");
172 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
173 	CTLFLAG_RD, &tlb_flush_count, 0, "");
174 #endif
175 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_halt,
176 	CTLFLAG_RD, &cpu_mwait_halt_global, 0, "");
177 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_spin,
178 	CTLFLAG_RD, &cpu_mwait_spin, 0, "monitor/mwait target state");
179 
180 #define CPU_MWAIT_HAS_CX	\
181 	((cpu_feature2 & CPUID2_MON) && \
182 	 (cpu_mwait_feature & CPUID_MWAIT_EXT))
183 
184 #define CPU_MWAIT_CX_NAMELEN	16
185 
186 #define CPU_MWAIT_C1		1
187 #define CPU_MWAIT_C2		2
188 #define CPU_MWAIT_C3		3
189 #define CPU_MWAIT_CX_MAX	8
190 
191 #define CPU_MWAIT_HINT_AUTO	-1	/* C1 and C2 */
192 #define CPU_MWAIT_HINT_AUTODEEP	-2	/* C3+ */
193 
194 SYSCTL_NODE(_machdep, OID_AUTO, mwait, CTLFLAG_RW, 0, "MWAIT features");
195 SYSCTL_NODE(_machdep_mwait, OID_AUTO, CX, CTLFLAG_RW, 0, "MWAIT Cx settings");
196 
197 struct cpu_mwait_cx {
198 	int			subcnt;
199 	char			name[4];
200 	struct sysctl_ctx_list	sysctl_ctx;
201 	struct sysctl_oid	*sysctl_tree;
202 };
203 static struct cpu_mwait_cx	cpu_mwait_cx_info[CPU_MWAIT_CX_MAX];
204 static char			cpu_mwait_cx_supported[256];
205 
206 static int			cpu_mwait_c1_hints_cnt;
207 static int			cpu_mwait_hints_cnt;
208 static int			*cpu_mwait_hints;
209 
210 static int			cpu_mwait_deep_hints_cnt;
211 static int			*cpu_mwait_deep_hints;
212 
213 #define CPU_IDLE_REPEAT_DEFAULT	750
214 
215 static u_int			cpu_idle_repeat = CPU_IDLE_REPEAT_DEFAULT;
216 static u_long			cpu_idle_repeat_max = CPU_IDLE_REPEAT_DEFAULT;
217 static u_int			cpu_mwait_repeat_shift = 1;
218 
219 #define CPU_MWAIT_C3_PREAMBLE_BM_ARB	0x1
220 #define CPU_MWAIT_C3_PREAMBLE_BM_STS	0x2
221 
222 static int			cpu_mwait_c3_preamble =
223 				    CPU_MWAIT_C3_PREAMBLE_BM_ARB |
224 				    CPU_MWAIT_C3_PREAMBLE_BM_STS;
225 
226 SYSCTL_STRING(_machdep_mwait_CX, OID_AUTO, supported, CTLFLAG_RD,
227     cpu_mwait_cx_supported, 0, "MWAIT supported C states");
228 SYSCTL_INT(_machdep_mwait_CX, OID_AUTO, c3_preamble, CTLFLAG_RD,
229     &cpu_mwait_c3_preamble, 0, "C3+ preamble mask");
230 
231 static int	cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS,
232 		    int *, boolean_t);
233 static int	cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS);
234 static int	cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS);
235 static int	cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS);
236 
237 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, idle, CTLTYPE_STRING|CTLFLAG_RW,
238     NULL, 0, cpu_mwait_cx_idle_sysctl, "A", "");
239 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, spin, CTLTYPE_STRING|CTLFLAG_RW,
240     NULL, 0, cpu_mwait_cx_spin_sysctl, "A", "");
241 SYSCTL_UINT(_machdep_mwait_CX, OID_AUTO, repeat_shift, CTLFLAG_RW,
242     &cpu_mwait_repeat_shift, 0, "");
243 
244 long physmem = 0;
245 
246 u_long ebda_addr = 0;
247 
248 int imcr_present = 0;
249 
250 int naps = 0; /* # of Applications processors */
251 
252 u_int base_memory;
253 
254 static int
255 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
256 {
257 	u_long pmem = ctob(physmem);
258 	int error;
259 
260 	error = sysctl_handle_long(oidp, &pmem, 0, req);
261 
262 	return (error);
263 }
264 
265 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
266 	0, 0, sysctl_hw_physmem, "LU",
267 	"Total system memory in bytes (number of pages * page size)");
268 
269 static int
270 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
271 {
272 	u_long usermem = ctob(physmem - vmstats.v_wire_count);
273 	int error;
274 
275 	error = sysctl_handle_long(oidp, &usermem, 0, req);
276 
277 	return (error);
278 }
279 
280 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_ULONG|CTLFLAG_RD,
281 	0, 0, sysctl_hw_usermem, "LU", "");
282 
283 static int
284 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
285 {
286 	int error;
287 	u_long availpages;
288 
289 	availpages = x86_64_btop(avail_end - avail_start);
290 	error = sysctl_handle_long(oidp, &availpages, 0, req);
291 
292 	return (error);
293 }
294 
295 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_ULONG|CTLFLAG_RD,
296 	0, 0, sysctl_hw_availpages, "LU", "");
297 
298 vm_paddr_t Maxmem;
299 vm_paddr_t Realmem;
300 
301 /*
302  * The number of PHYSMAP entries must be one less than the number of
303  * PHYSSEG entries because the PHYSMAP entry that spans the largest
304  * physical address that is accessible by ISA DMA is split into two
305  * PHYSSEG entries.
306  */
307 vm_phystable_t phys_avail[VM_PHYSSEG_MAX + 1];
308 vm_phystable_t dump_avail[VM_PHYSSEG_MAX + 1];
309 
310 /* must be 1 less so 0 0 can signal end of chunks */
311 #define PHYS_AVAIL_ARRAY_END (NELEM(phys_avail) - 1)
312 #define DUMP_AVAIL_ARRAY_END (NELEM(dump_avail) - 1)
313 
314 static vm_offset_t buffer_sva, buffer_eva;
315 vm_offset_t clean_sva, clean_eva;
316 static vm_offset_t pager_sva, pager_eva;
317 static struct trapframe proc0_tf;
318 
319 static void
320 cpu_startup(void *dummy)
321 {
322 	caddr_t v;
323 	vm_size_t size = 0;
324 	vm_offset_t firstaddr;
325 
326 	/*
327 	 * Good {morning,afternoon,evening,night}.
328 	 */
329 	kprintf("%s", version);
330 	startrtclock();
331 	printcpuinfo();
332 	panicifcpuunsupported();
333 	kprintf("real memory  = %ju (%ju MB)\n",
334 		(intmax_t)Realmem,
335 		(intmax_t)Realmem / 1024 / 1024);
336 	/*
337 	 * Display any holes after the first chunk of extended memory.
338 	 */
339 	if (bootverbose) {
340 		int indx;
341 
342 		kprintf("Physical memory chunk(s):\n");
343 		for (indx = 0; phys_avail[indx].phys_end != 0; ++indx) {
344 			vm_paddr_t size1;
345 
346 			size1 = phys_avail[indx].phys_end -
347 				phys_avail[indx].phys_beg;
348 
349 			kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
350 				(intmax_t)phys_avail[indx].phys_beg,
351 				(intmax_t)phys_avail[indx].phys_end - 1,
352 				(intmax_t)size1,
353 				(intmax_t)(size1 / PAGE_SIZE));
354 		}
355 	}
356 
357 	/*
358 	 * Allocate space for system data structures.
359 	 * The first available kernel virtual address is in "v".
360 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
361 	 * As pages of memory are allocated and cleared,
362 	 * "firstaddr" is incremented.
363 	 * An index into the kernel page table corresponding to the
364 	 * virtual memory address maintained in "v" is kept in "mapaddr".
365 	 */
366 
367 	/*
368 	 * Make two passes.  The first pass calculates how much memory is
369 	 * needed and allocates it.  The second pass assigns virtual
370 	 * addresses to the various data structures.
371 	 */
372 	firstaddr = 0;
373 again:
374 	v = (caddr_t)firstaddr;
375 
376 #define	valloc(name, type, num) \
377 	    (name) = (type *)v; v = (caddr_t)((name)+(num))
378 #define	valloclim(name, type, num, lim) \
379 	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
380 
381 	/*
382 	 * The nominal buffer size (and minimum KVA allocation) is MAXBSIZE.
383 	 * For the first 64MB of ram nominally allocate sufficient buffers to
384 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
385 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
386 	 * the buffer cache we limit the eventual kva reservation to
387 	 * maxbcache bytes.
388 	 *
389 	 * factor represents the 1/4 x ram conversion.
390 	 */
391 	if (nbuf == 0) {
392 		long factor = 4 * NBUFCALCSIZE / 1024;
393 		long kbytes = physmem * (PAGE_SIZE / 1024);
394 
395 		nbuf = 50;
396 		if (kbytes > 4096)
397 			nbuf += min((kbytes - 4096) / factor, 65536 / factor);
398 		if (kbytes > 65536)
399 			nbuf += (kbytes - 65536) * 2 / (factor * 5);
400 		if (maxbcache && nbuf > maxbcache / NBUFCALCSIZE)
401 			nbuf = maxbcache / NBUFCALCSIZE;
402 	}
403 
404 	/*
405 	 * Do not allow the buffer_map to be more then 1/2 the size of the
406 	 * kernel_map.
407 	 */
408 	if (nbuf > (virtual_end - virtual_start +
409 		    virtual2_end - virtual2_start) / (MAXBSIZE * 2)) {
410 		nbuf = (virtual_end - virtual_start +
411 			virtual2_end - virtual2_start) / (MAXBSIZE * 2);
412 		kprintf("Warning: nbufs capped at %ld due to kvm\n", nbuf);
413 	}
414 
415 	/*
416 	 * Do not allow the buffer_map to use more than 50% of available
417 	 * physical-equivalent memory.  Since the VM pages which back
418 	 * individual buffers are typically wired, having too many bufs
419 	 * can prevent the system from paging properly.
420 	 */
421 	if (nbuf > physmem * PAGE_SIZE / (NBUFCALCSIZE * 2)) {
422 		nbuf = physmem * PAGE_SIZE / (NBUFCALCSIZE * 2);
423 		kprintf("Warning: nbufs capped at %ld due to physmem\n", nbuf);
424 	}
425 
426 	/*
427 	 * Do not allow the sizeof(struct buf) * nbuf to exceed 1/4 of
428 	 * the valloc space which is just the virtual_end - virtual_start
429 	 * section.  This is typically ~2GB regardless of the amount of
430 	 * memory, so we use 500MB as a metric.
431 	 *
432 	 * This is because we use valloc() to allocate the buf header array.
433 	 *
434 	 * NOTE: buffer space in bytes is limited by vfs.*bufspace sysctls.
435 	 */
436 	if (nbuf > (virtual_end - virtual_start) / sizeof(struct buf) / 4) {
437 		nbuf = (virtual_end - virtual_start) /
438 		       sizeof(struct buf) / 2;
439 		kprintf("Warning: nbufs capped at %ld due to "
440 			"valloc considerations\n",
441 			nbuf);
442 	}
443 
444 	nswbuf_mem = lmax(lmin(nbuf / 32, 512), 8);
445 #ifdef NSWBUF_MIN
446 	if (nswbuf_mem < NSWBUF_MIN)
447 		nswbuf_mem = NSWBUF_MIN;
448 #endif
449 	nswbuf_kva = lmax(lmin(nbuf / 4, 512), 16);
450 #ifdef NSWBUF_MIN
451 	if (nswbuf_kva < NSWBUF_MIN)
452 		nswbuf_kva = NSWBUF_MIN;
453 #endif
454 
455 	valloc(swbuf_mem, struct buf, nswbuf_mem);
456 	valloc(swbuf_kva, struct buf, nswbuf_kva);
457 	valloc(buf, struct buf, nbuf);
458 
459 	/*
460 	 * End of first pass, size has been calculated so allocate memory
461 	 */
462 	if (firstaddr == 0) {
463 		size = (vm_size_t)(v - firstaddr);
464 		firstaddr = kmem_alloc(&kernel_map, round_page(size),
465 				       VM_SUBSYS_BUF);
466 		if (firstaddr == 0)
467 			panic("startup: no room for tables");
468 		goto again;
469 	}
470 
471 	/*
472 	 * End of second pass, addresses have been assigned
473 	 *
474 	 * nbuf is an int, make sure we don't overflow the field.
475 	 *
476 	 * On 64-bit systems we always reserve maximal allocations for
477 	 * buffer cache buffers and there are no fragmentation issues,
478 	 * so the KVA segment does not have to be excessively oversized.
479 	 */
480 	if ((vm_size_t)(v - firstaddr) != size)
481 		panic("startup: table size inconsistency");
482 
483 	kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
484 		      ((vm_offset_t)(nbuf + 16) * MAXBSIZE) +
485 		      ((nswbuf_mem + nswbuf_kva) * MAXPHYS) + pager_map_size);
486 	kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
487 		      ((vm_offset_t)(nbuf + 16) * MAXBSIZE));
488 	buffer_map.system_map = 1;
489 	kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
490 		      ((vm_offset_t)(nswbuf_mem + nswbuf_kva) * MAXPHYS) +
491 		      pager_map_size);
492 	pager_map.system_map = 1;
493 	kprintf("avail memory = %ju (%ju MB)\n",
494 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages),
495 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages) /
496 		1024 / 1024);
497 }
498 
499 struct cpu_idle_stat {
500 	int	hint;
501 	int	reserved;
502 	u_long	halt;
503 	u_long	spin;
504 	u_long	repeat;
505 	u_long	repeat_last;
506 	u_long	repeat_delta;
507 	u_long	mwait_cx[CPU_MWAIT_CX_MAX];
508 } __cachealign;
509 
510 #define CPU_IDLE_STAT_HALT	-1
511 #define CPU_IDLE_STAT_SPIN	-2
512 
513 static struct cpu_idle_stat	cpu_idle_stats[MAXCPU];
514 
515 static int
516 sysctl_cpu_idle_cnt(SYSCTL_HANDLER_ARGS)
517 {
518 	int idx = arg2, cpu, error;
519 	u_long val = 0;
520 
521 	if (idx == CPU_IDLE_STAT_HALT) {
522 		for (cpu = 0; cpu < ncpus; ++cpu)
523 			val += cpu_idle_stats[cpu].halt;
524 	} else if (idx == CPU_IDLE_STAT_SPIN) {
525 		for (cpu = 0; cpu < ncpus; ++cpu)
526 			val += cpu_idle_stats[cpu].spin;
527 	} else {
528 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
529 		    ("invalid index %d", idx));
530 		for (cpu = 0; cpu < ncpus; ++cpu)
531 			val += cpu_idle_stats[cpu].mwait_cx[idx];
532 	}
533 
534 	error = sysctl_handle_quad(oidp, &val, 0, req);
535         if (error || req->newptr == NULL)
536 	        return error;
537 
538 	if (idx == CPU_IDLE_STAT_HALT) {
539 		for (cpu = 0; cpu < ncpus; ++cpu)
540 			cpu_idle_stats[cpu].halt = 0;
541 		cpu_idle_stats[0].halt = val;
542 	} else if (idx == CPU_IDLE_STAT_SPIN) {
543 		for (cpu = 0; cpu < ncpus; ++cpu)
544 			cpu_idle_stats[cpu].spin = 0;
545 		cpu_idle_stats[0].spin = val;
546 	} else {
547 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
548 		    ("invalid index %d", idx));
549 		for (cpu = 0; cpu < ncpus; ++cpu)
550 			cpu_idle_stats[cpu].mwait_cx[idx] = 0;
551 		cpu_idle_stats[0].mwait_cx[idx] = val;
552 	}
553 	return 0;
554 }
555 
556 static void
557 cpu_mwait_attach(void)
558 {
559 	struct sbuf sb;
560 	int hint_idx, i;
561 
562 	if (!CPU_MWAIT_HAS_CX)
563 		return;
564 
565 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
566 	    (CPUID_TO_FAMILY(cpu_id) > 0xf ||
567 	     (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
568 	      CPUID_TO_MODEL(cpu_id) >= 0xf))) {
569 		int bm_sts = 1;
570 
571 		/*
572 		 * Pentium dual-core, Core 2 and beyond do not need any
573 		 * additional activities to enter deep C-state, i.e. C3(+).
574 		 */
575 		cpu_mwait_cx_no_bmarb();
576 
577 		TUNABLE_INT_FETCH("machdep.cpu.mwait.bm_sts", &bm_sts);
578 		if (!bm_sts)
579 			cpu_mwait_cx_no_bmsts();
580 	}
581 
582 	sbuf_new(&sb, cpu_mwait_cx_supported,
583 	    sizeof(cpu_mwait_cx_supported), SBUF_FIXEDLEN);
584 
585 	for (i = 0; i < CPU_MWAIT_CX_MAX; ++i) {
586 		struct cpu_mwait_cx *cx = &cpu_mwait_cx_info[i];
587 		int sub;
588 
589 		ksnprintf(cx->name, sizeof(cx->name), "C%d", i);
590 
591 		sysctl_ctx_init(&cx->sysctl_ctx);
592 		cx->sysctl_tree = SYSCTL_ADD_NODE(&cx->sysctl_ctx,
593 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait), OID_AUTO,
594 		    cx->name, CTLFLAG_RW, NULL, "Cx control/info");
595 		if (cx->sysctl_tree == NULL)
596 			continue;
597 
598 		cx->subcnt = CPUID_MWAIT_CX_SUBCNT(cpu_mwait_extemu, i);
599 		SYSCTL_ADD_INT(&cx->sysctl_ctx,
600 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
601 		    "subcnt", CTLFLAG_RD, &cx->subcnt, 0,
602 		    "sub-state count");
603 		SYSCTL_ADD_PROC(&cx->sysctl_ctx,
604 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
605 		    "entered", (CTLTYPE_QUAD | CTLFLAG_RW), 0,
606 		    i, sysctl_cpu_idle_cnt, "Q", "# of times entered");
607 
608 		for (sub = 0; sub < cx->subcnt; ++sub)
609 			sbuf_printf(&sb, "C%d/%d ", i, sub);
610 	}
611 	sbuf_trim(&sb);
612 	sbuf_finish(&sb);
613 
614 	/*
615 	 * Non-deep C-states
616 	 */
617 	cpu_mwait_c1_hints_cnt = cpu_mwait_cx_info[CPU_MWAIT_C1].subcnt;
618 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i)
619 		cpu_mwait_hints_cnt += cpu_mwait_cx_info[i].subcnt;
620 	cpu_mwait_hints = kmalloc(sizeof(int) * cpu_mwait_hints_cnt,
621 				  M_DEVBUF, M_WAITOK);
622 
623 	hint_idx = 0;
624 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i) {
625 		int j, subcnt;
626 
627 		subcnt = cpu_mwait_cx_info[i].subcnt;
628 		for (j = 0; j < subcnt; ++j) {
629 			KASSERT(hint_idx < cpu_mwait_hints_cnt,
630 			    ("invalid mwait hint index %d", hint_idx));
631 			cpu_mwait_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
632 			++hint_idx;
633 		}
634 	}
635 	KASSERT(hint_idx == cpu_mwait_hints_cnt,
636 	    ("mwait hint count %d != index %d",
637 	     cpu_mwait_hints_cnt, hint_idx));
638 
639 	if (bootverbose) {
640 		kprintf("MWAIT hints (%d C1 hints):\n", cpu_mwait_c1_hints_cnt);
641 		for (i = 0; i < cpu_mwait_hints_cnt; ++i) {
642 			int hint = cpu_mwait_hints[i];
643 
644 			kprintf("  C%d/%d hint 0x%04x\n",
645 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
646 			    hint);
647 		}
648 	}
649 
650 	/*
651 	 * Deep C-states
652 	 */
653 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i)
654 		cpu_mwait_deep_hints_cnt += cpu_mwait_cx_info[i].subcnt;
655 	cpu_mwait_deep_hints = kmalloc(sizeof(int) * cpu_mwait_deep_hints_cnt,
656 	    M_DEVBUF, M_WAITOK);
657 
658 	hint_idx = 0;
659 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i) {
660 		int j, subcnt;
661 
662 		subcnt = cpu_mwait_cx_info[i].subcnt;
663 		for (j = 0; j < subcnt; ++j) {
664 			KASSERT(hint_idx < cpu_mwait_deep_hints_cnt,
665 			    ("invalid mwait deep hint index %d", hint_idx));
666 			cpu_mwait_deep_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
667 			++hint_idx;
668 		}
669 	}
670 	KASSERT(hint_idx == cpu_mwait_deep_hints_cnt,
671 	    ("mwait deep hint count %d != index %d",
672 	     cpu_mwait_deep_hints_cnt, hint_idx));
673 
674 	if (bootverbose) {
675 		kprintf("MWAIT deep hints:\n");
676 		for (i = 0; i < cpu_mwait_deep_hints_cnt; ++i) {
677 			int hint = cpu_mwait_deep_hints[i];
678 
679 			kprintf("  C%d/%d hint 0x%04x\n",
680 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
681 			    hint);
682 		}
683 	}
684 	cpu_idle_repeat_max = 256 * cpu_mwait_deep_hints_cnt;
685 
686 	for (i = 0; i < ncpus; ++i) {
687 		char name[16];
688 
689 		ksnprintf(name, sizeof(name), "idle%d", i);
690 		SYSCTL_ADD_PROC(NULL,
691 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait_CX), OID_AUTO,
692 		    name, (CTLTYPE_STRING | CTLFLAG_RW), &cpu_idle_stats[i],
693 		    0, cpu_mwait_cx_pcpu_idle_sysctl, "A", "");
694 	}
695 }
696 
697 static void
698 cpu_finish(void *dummy __unused)
699 {
700 	cpu_setregs();
701 	cpu_mwait_attach();
702 }
703 
704 static void
705 pic_finish(void *dummy __unused)
706 {
707 	/* Log ELCR information */
708 	elcr_dump();
709 
710 	/* Log MPTABLE information */
711 	mptable_pci_int_dump();
712 
713 	/* Finalize PCI */
714 	MachIntrABI.finalize();
715 }
716 
717 /*
718  * Send an interrupt to process.
719  *
720  * Stack is set up to allow sigcode stored
721  * at top to call routine, followed by kcall
722  * to sigreturn routine below.  After sigreturn
723  * resets the signal mask, the stack, and the
724  * frame pointer, it returns to the user
725  * specified pc, psl.
726  */
727 void
728 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
729 {
730 	struct lwp *lp = curthread->td_lwp;
731 	struct proc *p = lp->lwp_proc;
732 	struct trapframe *regs;
733 	struct sigacts *psp = p->p_sigacts;
734 	struct sigframe sf, *sfp;
735 	int oonstack;
736 	char *sp;
737 
738 	regs = lp->lwp_md.md_regs;
739 	oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
740 
741 	/* Save user context */
742 	bzero(&sf, sizeof(struct sigframe));
743 	sf.sf_uc.uc_sigmask = *mask;
744 	sf.sf_uc.uc_stack = lp->lwp_sigstk;
745 	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
746 	KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
747 	/* gcc errors out on optimized bcopy */
748 	_bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
749 
750 	/* Make the size of the saved context visible to userland */
751 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
752 
753 	/* Allocate and validate space for the signal handler context. */
754         if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
755 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
756 		sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
757 			      sizeof(struct sigframe));
758 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
759 	} else {
760 		/* We take red zone into account */
761 		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
762 	}
763 
764 	/*
765 	 * XXX AVX needs 64-byte alignment but sigframe has other fields and
766 	 * the embedded ucontext is not at the front, so aligning this won't
767 	 * help us.  Fortunately we bcopy in/out of the sigframe, so the
768 	 * kernel is ok.
769 	 *
770 	 * The problem though is if userland winds up trying to use the
771 	 * context directly.
772 	 */
773 	sfp = (struct sigframe *)((intptr_t)sp & ~(intptr_t)0xF);
774 
775 	/* Translate the signal is appropriate */
776 	if (p->p_sysent->sv_sigtbl) {
777 		if (sig <= p->p_sysent->sv_sigsize)
778 			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
779 	}
780 
781 	/*
782 	 * Build the argument list for the signal handler.
783 	 *
784 	 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
785 	 */
786 	regs->tf_rdi = sig;				/* argument 1 */
787 	regs->tf_rdx = (register_t)&sfp->sf_uc;		/* argument 3 */
788 
789 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
790 		/*
791 		 * Signal handler installed with SA_SIGINFO.
792 		 *
793 		 * action(signo, siginfo, ucontext)
794 		 */
795 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* argument 2 */
796 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
797 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
798 
799 		/* fill siginfo structure */
800 		sf.sf_si.si_signo = sig;
801 		sf.sf_si.si_pid = psp->ps_frominfo[sig].pid;
802 		sf.sf_si.si_uid = psp->ps_frominfo[sig].uid;
803 		sf.sf_si.si_code = code;
804 		sf.sf_si.si_addr = (void *)regs->tf_addr;
805 	} else {
806 		/*
807 		 * Old FreeBSD-style arguments.
808 		 *
809 		 * handler (signo, code, [uc], addr)
810 		 */
811 		regs->tf_rsi = (register_t)code;	/* argument 2 */
812 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
813 		sf.sf_ahu.sf_handler = catcher;
814 	}
815 
816 	/*
817 	 * If we're a vm86 process, we want to save the segment registers.
818 	 * We also change eflags to be our emulated eflags, not the actual
819 	 * eflags.
820 	 */
821 #if 0 /* JG */
822 	if (regs->tf_eflags & PSL_VM) {
823 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
824 		struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
825 
826 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
827 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
828 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
829 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
830 
831 		if (vm86->vm86_has_vme == 0)
832 			sf.sf_uc.uc_mcontext.mc_eflags =
833 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
834 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
835 
836 		/*
837 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
838 		 * syscalls made by the signal handler.  This just avoids
839 		 * wasting time for our lazy fixup of such faults.  PSL_NT
840 		 * does nothing in vm86 mode, but vm86 programs can set it
841 		 * almost legitimately in probes for old cpu types.
842 		 */
843 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
844 	}
845 #endif
846 
847 	/*
848 	 * Save the FPU state and reinit the FP unit
849 	 */
850 	npxpush(&sf.sf_uc.uc_mcontext);
851 
852 	/*
853 	 * Copy the sigframe out to the user's stack.
854 	 */
855 	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
856 		/*
857 		 * Something is wrong with the stack pointer.
858 		 * ...Kill the process.
859 		 */
860 		sigexit(lp, SIGILL);
861 	}
862 
863 	regs->tf_rsp = (register_t)sfp;
864 	regs->tf_rip = trunc_page64(PS_STRINGS - *(p->p_sysent->sv_szsigcode));
865 	regs->tf_rip -= SZSIGCODE_EXTRA_BYTES;
866 
867 	/*
868 	 * x86 abi specifies that the direction flag must be cleared
869 	 * on function entry
870 	 */
871 	regs->tf_rflags &= ~(PSL_T | PSL_D);
872 
873 	/*
874 	 * 64 bit mode has a code and stack selector but
875 	 * no data or extra selector.  %fs and %gs are not
876 	 * stored in-context.
877 	 */
878 	regs->tf_cs = _ucodesel;
879 	regs->tf_ss = _udatasel;
880 	clear_quickret();
881 }
882 
883 /*
884  * Sanitize the trapframe for a virtual kernel passing control to a custom
885  * VM context.  Remove any items that would otherwise create a privilage
886  * issue.
887  *
888  * XXX at the moment we allow userland to set the resume flag.  Is this a
889  * bad idea?
890  */
891 int
892 cpu_sanitize_frame(struct trapframe *frame)
893 {
894 	frame->tf_cs = _ucodesel;
895 	frame->tf_ss = _udatasel;
896 	/* XXX VM (8086) mode not supported? */
897 	frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
898 	frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
899 
900 	return(0);
901 }
902 
903 /*
904  * Sanitize the tls so loading the descriptor does not blow up
905  * on us.  For x86_64 we don't have to do anything.
906  */
907 int
908 cpu_sanitize_tls(struct savetls *tls)
909 {
910 	return(0);
911 }
912 
913 /*
914  * sigreturn(ucontext_t *sigcntxp)
915  *
916  * System call to cleanup state after a signal
917  * has been taken.  Reset signal mask and
918  * stack state from context left by sendsig (above).
919  * Return to previous pc and psl as specified by
920  * context left by sendsig. Check carefully to
921  * make sure that the user has not modified the
922  * state to gain improper privileges.
923  *
924  * MPSAFE
925  */
926 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
927 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
928 
929 int
930 sys_sigreturn(struct sigreturn_args *uap)
931 {
932 	struct lwp *lp = curthread->td_lwp;
933 	struct trapframe *regs;
934 	ucontext_t uc;
935 	ucontext_t *ucp;
936 	register_t rflags;
937 	int cs;
938 	int error;
939 
940 	/*
941 	 * We have to copy the information into kernel space so userland
942 	 * can't modify it while we are sniffing it.
943 	 */
944 	regs = lp->lwp_md.md_regs;
945 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
946 	if (error)
947 		return (error);
948 	ucp = &uc;
949 	rflags = ucp->uc_mcontext.mc_rflags;
950 
951 	/* VM (8086) mode not supported */
952 	rflags &= ~PSL_VM_UNSUPP;
953 
954 #if 0 /* JG */
955 	if (eflags & PSL_VM) {
956 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
957 		struct vm86_kernel *vm86;
958 
959 		/*
960 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
961 		 * set up the vm86 area, and we can't enter vm86 mode.
962 		 */
963 		if (lp->lwp_thread->td_pcb->pcb_ext == 0)
964 			return (EINVAL);
965 		vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
966 		if (vm86->vm86_inited == 0)
967 			return (EINVAL);
968 
969 		/* go back to user mode if both flags are set */
970 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
971 			trapsignal(lp, SIGBUS, 0);
972 
973 		if (vm86->vm86_has_vme) {
974 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
975 			    (eflags & VME_USERCHANGE) | PSL_VM;
976 		} else {
977 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
978 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
979 			    (eflags & VM_USERCHANGE) | PSL_VM;
980 		}
981 		bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
982 		tf->tf_eflags = eflags;
983 		tf->tf_vm86_ds = tf->tf_ds;
984 		tf->tf_vm86_es = tf->tf_es;
985 		tf->tf_vm86_fs = tf->tf_fs;
986 		tf->tf_vm86_gs = tf->tf_gs;
987 		tf->tf_ds = _udatasel;
988 		tf->tf_es = _udatasel;
989 		tf->tf_fs = _udatasel;
990 		tf->tf_gs = _udatasel;
991 	} else
992 #endif
993 	{
994 		/*
995 		 * Don't allow users to change privileged or reserved flags.
996 		 */
997 		/*
998 		 * XXX do allow users to change the privileged flag PSL_RF.
999 		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
1000 		 * should sometimes set it there too.  tf_eflags is kept in
1001 		 * the signal context during signal handling and there is no
1002 		 * other place to remember it, so the PSL_RF bit may be
1003 		 * corrupted by the signal handler without us knowing.
1004 		 * Corruption of the PSL_RF bit at worst causes one more or
1005 		 * one less debugger trap, so allowing it is fairly harmless.
1006 		 */
1007 		if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
1008 			kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
1009 			return(EINVAL);
1010 		}
1011 
1012 		/*
1013 		 * Don't allow users to load a valid privileged %cs.  Let the
1014 		 * hardware check for invalid selectors, excess privilege in
1015 		 * other selectors, invalid %eip's and invalid %esp's.
1016 		 */
1017 		cs = ucp->uc_mcontext.mc_cs;
1018 		if (!CS_SECURE(cs)) {
1019 			kprintf("sigreturn: cs = 0x%x\n", cs);
1020 			trapsignal(lp, SIGBUS, T_PROTFLT);
1021 			return(EINVAL);
1022 		}
1023 		/* gcc errors out on optimized bcopy */
1024 		_bcopy(&ucp->uc_mcontext.mc_rdi, regs,
1025 		       sizeof(struct trapframe));
1026 	}
1027 
1028 	/*
1029 	 * Restore the FPU state from the frame
1030 	 */
1031 	crit_enter();
1032 	npxpop(&ucp->uc_mcontext);
1033 
1034 	if (ucp->uc_mcontext.mc_onstack & 1)
1035 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
1036 	else
1037 		lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
1038 
1039 	lp->lwp_sigmask = ucp->uc_sigmask;
1040 	SIG_CANTMASK(lp->lwp_sigmask);
1041 	clear_quickret();
1042 	crit_exit();
1043 	return(EJUSTRETURN);
1044 }
1045 
1046 /*
1047  * Machine dependent boot() routine
1048  *
1049  * I haven't seen anything to put here yet
1050  * Possibly some stuff might be grafted back here from boot()
1051  */
1052 void
1053 cpu_boot(int howto)
1054 {
1055 }
1056 
1057 /*
1058  * Shutdown the CPU as much as possible
1059  */
1060 void
1061 cpu_halt(void)
1062 {
1063 	for (;;)
1064 		__asm__ __volatile("hlt");
1065 }
1066 
1067 /*
1068  * cpu_idle() represents the idle LWKT.  You cannot return from this function
1069  * (unless you want to blow things up!).  Instead we look for runnable threads
1070  * and loop or halt as appropriate.  Giant is not held on entry to the thread.
1071  *
1072  * The main loop is entered with a critical section held, we must release
1073  * the critical section before doing anything else.  lwkt_switch() will
1074  * check for pending interrupts due to entering and exiting its own
1075  * critical section.
1076  *
1077  * NOTE: On an SMP system we rely on a scheduler IPI to wake a HLTed cpu up.
1078  *	 However, there are cases where the idlethread will be entered with
1079  *	 the possibility that no IPI will occur and in such cases
1080  *	 lwkt_switch() sets TDF_IDLE_NOHLT.
1081  *
1082  * NOTE: cpu_idle_repeat determines how many entries into the idle thread
1083  *	 must occur before it starts using ACPI halt.
1084  *
1085  * NOTE: Value overridden in hammer_time().
1086  */
1087 static int	cpu_idle_hlt = 2;
1088 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
1089     &cpu_idle_hlt, 0, "Idle loop HLT enable");
1090 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_repeat, CTLFLAG_RW,
1091     &cpu_idle_repeat, 0, "Idle entries before acpi hlt");
1092 
1093 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_hltcnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1094     0, CPU_IDLE_STAT_HALT, sysctl_cpu_idle_cnt, "Q", "Idle loop entry halts");
1095 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_spincnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1096     0, CPU_IDLE_STAT_SPIN, sysctl_cpu_idle_cnt, "Q", "Idle loop entry spins");
1097 
1098 static void
1099 cpu_idle_default_hook(void)
1100 {
1101 	/*
1102 	 * We must guarentee that hlt is exactly the instruction
1103 	 * following the sti.
1104 	 */
1105 	__asm __volatile("sti; hlt");
1106 }
1107 
1108 /* Other subsystems (e.g., ACPI) can hook this later. */
1109 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
1110 
1111 static __inline int
1112 cpu_mwait_cx_hint(struct cpu_idle_stat *stat)
1113 {
1114 	int hint, cx_idx;
1115 	u_int idx;
1116 
1117 	hint = stat->hint;
1118 	if (hint >= 0)
1119 		goto done;
1120 
1121 	idx = (stat->repeat + stat->repeat_last + stat->repeat_delta) >>
1122 	    cpu_mwait_repeat_shift;
1123 	if (idx >= cpu_mwait_c1_hints_cnt) {
1124 		/* Step up faster, once we walked through all C1 states */
1125 		stat->repeat_delta += 1 << (cpu_mwait_repeat_shift + 1);
1126 	}
1127 	if (hint == CPU_MWAIT_HINT_AUTODEEP) {
1128 		if (idx >= cpu_mwait_deep_hints_cnt)
1129 			idx = cpu_mwait_deep_hints_cnt - 1;
1130 		hint = cpu_mwait_deep_hints[idx];
1131 	} else {
1132 		if (idx >= cpu_mwait_hints_cnt)
1133 			idx = cpu_mwait_hints_cnt - 1;
1134 		hint = cpu_mwait_hints[idx];
1135 	}
1136 done:
1137 	cx_idx = MWAIT_EAX_TO_CX(hint);
1138 	if (cx_idx >= 0 && cx_idx < CPU_MWAIT_CX_MAX)
1139 		stat->mwait_cx[cx_idx]++;
1140 	return hint;
1141 }
1142 
1143 void
1144 cpu_idle(void)
1145 {
1146 	globaldata_t gd = mycpu;
1147 	struct cpu_idle_stat *stat = &cpu_idle_stats[gd->gd_cpuid];
1148 	struct thread *td __debugvar = gd->gd_curthread;
1149 	int reqflags;
1150 
1151 	stat->repeat = stat->repeat_last = cpu_idle_repeat_max;
1152 
1153 	crit_exit();
1154 	KKASSERT(td->td_critcount == 0);
1155 
1156 	for (;;) {
1157 		/*
1158 		 * See if there are any LWKTs ready to go.
1159 		 */
1160 		lwkt_switch();
1161 
1162 		/*
1163 		 * When halting inside a cli we must check for reqflags
1164 		 * races, particularly [re]schedule requests.  Running
1165 		 * splz() does the job.
1166 		 *
1167 		 * cpu_idle_hlt:
1168 		 *	0	Never halt, just spin
1169 		 *
1170 		 *	1	Always use MONITOR/MWAIT if avail, HLT
1171 		 *		otherwise.
1172 		 *
1173 		 *		Better default for modern (Haswell+) Intel
1174 		 *		cpus.
1175 		 *
1176 		 *	2	Use HLT/MONITOR/MWAIT up to a point and then
1177 		 *		use the ACPI halt (default).  This is a hybrid
1178 		 *		approach.  See machdep.cpu_idle_repeat.
1179 		 *
1180 		 *		Better default for modern AMD cpus and older
1181 		 *		Intel cpus.
1182 		 *
1183 		 *	3	Always use the ACPI halt.  This typically
1184 		 *		eats the least amount of power but the cpu
1185 		 *		will be slow waking up.  Slows down e.g.
1186 		 *		compiles and other pipe/event oriented stuff.
1187 		 *
1188 		 *		Usually the best default for AMD cpus.
1189 		 *
1190 		 *	4	Always use HLT.
1191 		 *
1192 		 *	5	Always spin.
1193 		 *
1194 		 * NOTE: Interrupts are enabled and we are not in a critical
1195 		 *	 section.
1196 		 *
1197 		 * NOTE: Preemptions do not reset gd_idle_repeat.   Also we
1198 		 *	 don't bother capping gd_idle_repeat, it is ok if
1199 		 *	 it overflows (we do make it unsigned, however).
1200 		 *
1201 		 * Implement optimized invltlb operations when halted
1202 		 * in idle.  By setting the bit in smp_idleinvl_mask
1203 		 * we inform other cpus that they can set _reqs to
1204 		 * request an invltlb.  Current the code to do that
1205 		 * sets the bits in _reqs anyway, but then check _mask
1206 		 * to determine if they can assume the invltlb will execute.
1207 		 *
1208 		 * A critical section is required to ensure that interrupts
1209 		 * do not fully run until after we've had a chance to execute
1210 		 * the request.
1211 		 */
1212 		if (gd->gd_idle_repeat == 0) {
1213 			stat->repeat = (stat->repeat + stat->repeat_last) >> 1;
1214 			if (stat->repeat > cpu_idle_repeat_max)
1215 				stat->repeat = cpu_idle_repeat_max;
1216 			stat->repeat_last = 0;
1217 			stat->repeat_delta = 0;
1218 		}
1219 		++stat->repeat_last;
1220 
1221 		/*
1222 		 * General idle thread halt code
1223 		 *
1224 		 * IBRS NOTES - IBRS is a SPECTRE mitigation.  When going
1225 		 *		idle, disable IBRS to reduce hyperthread
1226 		 *		overhead.
1227 		 */
1228 		++gd->gd_idle_repeat;
1229 
1230 		switch(cpu_idle_hlt) {
1231 		default:
1232 		case 0:
1233 			/*
1234 			 * Always spin
1235 			 */
1236 			;
1237 do_spin:
1238 			splz();
1239 			__asm __volatile("sti");
1240 			stat->spin++;
1241 			crit_enter_gd(gd);
1242 			crit_exit_gd(gd);
1243 			break;
1244 		case 2:
1245 			/*
1246 			 * Use MONITOR/MWAIT (or HLT) for a few cycles,
1247 			 * then start using the ACPI halt code if we
1248 			 * continue to be idle.
1249 			 */
1250 			if (gd->gd_idle_repeat >= cpu_idle_repeat)
1251 				goto do_acpi;
1252 			/* FALL THROUGH */
1253 		case 1:
1254 			/*
1255 			 * Always use MONITOR/MWAIT (will use HLT if
1256 			 * MONITOR/MWAIT not available).
1257 			 */
1258 			if (cpu_mi_feature & CPU_MI_MONITOR) {
1259 				splz(); /* XXX */
1260 				reqflags = gd->gd_reqflags;
1261 				if (reqflags & RQF_IDLECHECK_WK_MASK)
1262 					goto do_spin;
1263 				crit_enter_gd(gd);
1264 				ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask, gd->gd_cpuid);
1265 				/*
1266 				 * IBRS/STIBP
1267 				 */
1268 				if (pscpu->trampoline.tr_pcb_spec_ctrl[1] &
1269 				    SPEC_CTRL_DUMMY_ENABLE) {
1270 					wrmsr(MSR_SPEC_CTRL, pscpu->trampoline.tr_pcb_spec_ctrl[1] & (SPEC_CTRL_IBRS|SPEC_CTRL_STIBP));
1271 				}
1272 				cpu_mmw_pause_int(&gd->gd_reqflags, reqflags,
1273 						  cpu_mwait_cx_hint(stat), 0);
1274 				if (pscpu->trampoline.tr_pcb_spec_ctrl[0] &
1275 				    SPEC_CTRL_DUMMY_ENABLE) {
1276 					wrmsr(MSR_SPEC_CTRL, pscpu->trampoline.tr_pcb_spec_ctrl[0] & (SPEC_CTRL_IBRS|SPEC_CTRL_STIBP));
1277 				}
1278 				stat->halt++;
1279 				ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask, gd->gd_cpuid);
1280 				if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1281 							      gd->gd_cpuid)) {
1282 					cpu_invltlb();
1283 					cpu_mfence();
1284 				}
1285 				crit_exit_gd(gd);
1286 				break;
1287 			}
1288 			/* FALLTHROUGH */
1289 		case 4:
1290 			/*
1291 			 * Use HLT
1292 			 */
1293 			__asm __volatile("cli");
1294 			splz();
1295 			crit_enter_gd(gd);
1296 			if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1297 				ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask,
1298 						     gd->gd_cpuid);
1299 				if (pscpu->trampoline.tr_pcb_spec_ctrl[1] &
1300 				    SPEC_CTRL_DUMMY_ENABLE) {
1301 					wrmsr(MSR_SPEC_CTRL, pscpu->trampoline.tr_pcb_spec_ctrl[1] & (SPEC_CTRL_IBRS|SPEC_CTRL_STIBP));
1302 				}
1303 				cpu_idle_default_hook();
1304 				if (pscpu->trampoline.tr_pcb_spec_ctrl[0] &
1305 				    SPEC_CTRL_DUMMY_ENABLE) {
1306 					wrmsr(MSR_SPEC_CTRL, pscpu->trampoline.tr_pcb_spec_ctrl[0] & (SPEC_CTRL_IBRS|SPEC_CTRL_STIBP));
1307 				}
1308 				ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask,
1309 						       gd->gd_cpuid);
1310 				if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1311 							      gd->gd_cpuid)) {
1312 					cpu_invltlb();
1313 					cpu_mfence();
1314 				}
1315 			}
1316 			__asm __volatile("sti");
1317 			stat->halt++;
1318 			crit_exit_gd(gd);
1319 			break;
1320 		case 3:
1321 			/*
1322 			 * Use ACPI halt
1323 			 */
1324 			;
1325 do_acpi:
1326 			__asm __volatile("cli");
1327 			splz();
1328 			crit_enter_gd(gd);
1329 			if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1330 				ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask,
1331 						     gd->gd_cpuid);
1332 				if (pscpu->trampoline.tr_pcb_spec_ctrl[1] &
1333 				    SPEC_CTRL_DUMMY_ENABLE) {
1334 					wrmsr(MSR_SPEC_CTRL, pscpu->trampoline.tr_pcb_spec_ctrl[1] & (SPEC_CTRL_IBRS|SPEC_CTRL_STIBP));
1335 				}
1336 				cpu_idle_hook();
1337 				if (pscpu->trampoline.tr_pcb_spec_ctrl[0] &
1338 				    SPEC_CTRL_DUMMY_ENABLE) {
1339 					wrmsr(MSR_SPEC_CTRL, pscpu->trampoline.tr_pcb_spec_ctrl[0] & (SPEC_CTRL_IBRS|SPEC_CTRL_STIBP));
1340 				}
1341 				ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask,
1342 						       gd->gd_cpuid);
1343 				if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1344 							      gd->gd_cpuid)) {
1345 					cpu_invltlb();
1346 					cpu_mfence();
1347 				}
1348 			}
1349 			__asm __volatile("sti");
1350 			stat->halt++;
1351 			crit_exit_gd(gd);
1352 			break;
1353 		}
1354 	}
1355 }
1356 
1357 /*
1358  * Called from deep ACPI via cpu_idle_hook() (see above) to actually halt
1359  * the cpu in C1.  ACPI might use other halt methods for deeper states
1360  * and not reach here.
1361  *
1362  * For now we always use HLT as we are not sure what ACPI may have actually
1363  * done.  MONITOR/MWAIT might not be appropriate.
1364  *
1365  * NOTE: MONITOR/MWAIT does not appear to throttle AMD cpus, while HLT
1366  *	 does.  On Intel, MONITOR/MWAIT does appear to throttle the cpu.
1367  */
1368 void
1369 cpu_idle_halt(void)
1370 {
1371 	globaldata_t gd;
1372 
1373 	gd = mycpu;
1374 #if 0
1375 	/* DISABLED FOR NOW */
1376 	struct cpu_idle_stat *stat;
1377 	int reqflags;
1378 
1379 
1380 	if ((cpu_idle_hlt == 1 || cpu_idle_hlt == 2) &&
1381 	    (cpu_mi_feature & CPU_MI_MONITOR) &&
1382 	    cpu_vendor_id != CPU_VENDOR_AMD) {
1383 		/*
1384 		 * Use MONITOR/MWAIT
1385 		 *
1386 		 * (NOTE: On ryzen, MWAIT does not throttle clocks, so we
1387 		 *	  have to use HLT)
1388 		 */
1389 		stat = &cpu_idle_stats[gd->gd_cpuid];
1390 		reqflags = gd->gd_reqflags;
1391 		if ((reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1392 			__asm __volatile("sti");
1393 			cpu_mmw_pause_int(&gd->gd_reqflags, reqflags,
1394 					  cpu_mwait_cx_hint(stat), 0);
1395 		} else {
1396 			__asm __volatile("sti; pause");
1397 		}
1398 	} else
1399 #endif
1400 	{
1401 		/*
1402 		 * Use HLT
1403 		 */
1404 		if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0)
1405 			__asm __volatile("sti; hlt");
1406 		else
1407 			__asm __volatile("sti; pause");
1408 	}
1409 }
1410 
1411 
1412 /*
1413  * Called in a loop indirectly via Xcpustop
1414  */
1415 void
1416 cpu_smp_stopped(void)
1417 {
1418 	globaldata_t gd = mycpu;
1419 	volatile __uint64_t *ptr;
1420 	__uint64_t ovalue;
1421 
1422 	ptr = CPUMASK_ADDR(started_cpus, gd->gd_cpuid);
1423 	ovalue = *ptr;
1424 	if ((ovalue & CPUMASK_SIMPLE(gd->gd_cpuid & 63)) == 0) {
1425 		if (cpu_mi_feature & CPU_MI_MONITOR) {
1426 			if (cpu_mwait_hints) {
1427 				cpu_mmw_pause_long(__DEVOLATILE(void *, ptr),
1428 					   ovalue,
1429 					   cpu_mwait_hints[
1430 						cpu_mwait_hints_cnt - 1], 0);
1431 			} else {
1432 				cpu_mmw_pause_long(__DEVOLATILE(void *, ptr),
1433 					   ovalue, 0, 0);
1434 			}
1435 		} else {
1436 			cpu_halt();	/* depend on lapic timer */
1437 		}
1438 	}
1439 }
1440 
1441 /*
1442  * This routine is called if a spinlock has been held through the
1443  * exponential backoff period and is seriously contested.  On a real cpu
1444  * we let it spin.
1445  */
1446 void
1447 cpu_spinlock_contested(void)
1448 {
1449 	cpu_pause();
1450 }
1451 
1452 /*
1453  * Clear registers on exec
1454  */
1455 void
1456 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
1457 {
1458 	struct thread *td = curthread;
1459 	struct lwp *lp = td->td_lwp;
1460 	struct pcb *pcb = td->td_pcb;
1461 	struct trapframe *regs = lp->lwp_md.md_regs;
1462 
1463 	user_ldt_free(pcb);
1464 
1465 	clear_quickret();
1466 	bzero((char *)regs, sizeof(struct trapframe));
1467 	regs->tf_rip = entry;
1468 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
1469 	regs->tf_rdi = stack;		/* argv */
1470 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
1471 	regs->tf_ss = _udatasel;
1472 	regs->tf_cs = _ucodesel;
1473 	regs->tf_rbx = ps_strings;
1474 
1475 	/*
1476 	 * Reset the hardware debug registers if they were in use.
1477 	 * They won't have any meaning for the newly exec'd process.
1478 	 */
1479 	if (pcb->pcb_flags & PCB_DBREGS) {
1480 		pcb->pcb_dr0 = 0;
1481 		pcb->pcb_dr1 = 0;
1482 		pcb->pcb_dr2 = 0;
1483 		pcb->pcb_dr3 = 0;
1484 		pcb->pcb_dr6 = 0;
1485 		pcb->pcb_dr7 = 0; /* JG set bit 10? */
1486 		if (pcb == td->td_pcb) {
1487 			/*
1488 			 * Clear the debug registers on the running
1489 			 * CPU, otherwise they will end up affecting
1490 			 * the next process we switch to.
1491 			 */
1492 			reset_dbregs();
1493 		}
1494 		pcb->pcb_flags &= ~PCB_DBREGS;
1495 	}
1496 
1497 	/*
1498 	 * Initialize the math emulator (if any) for the current process.
1499 	 * Actually, just clear the bit that says that the emulator has
1500 	 * been initialized.  Initialization is delayed until the process
1501 	 * traps to the emulator (if it is done at all) mainly because
1502 	 * emulators don't provide an entry point for initialization.
1503 	 */
1504 	pcb->pcb_flags &= ~FP_SOFTFP;
1505 
1506 	/*
1507 	 * NOTE: do not set CR0_TS here.  npxinit() must do it after clearing
1508 	 *	 gd_npxthread.  Otherwise a preemptive interrupt thread
1509 	 *	 may panic in npxdna().
1510 	 */
1511 	crit_enter();
1512 	load_cr0(rcr0() | CR0_MP);
1513 
1514 	/*
1515 	 * NOTE: The MSR values must be correct so we can return to
1516 	 *	 userland.  gd_user_fs/gs must be correct so the switch
1517 	 *	 code knows what the current MSR values are.
1518 	 */
1519 	pcb->pcb_fsbase = 0;	/* Values loaded from PCB on switch */
1520 	pcb->pcb_gsbase = 0;
1521 	mdcpu->gd_user_fs = 0;	/* Cache of current MSR values */
1522 	mdcpu->gd_user_gs = 0;
1523 	wrmsr(MSR_FSBASE, 0);	/* Set MSR values for return to userland */
1524 	wrmsr(MSR_KGSBASE, 0);
1525 
1526 	/* Initialize the npx (if any) for the current process. */
1527 	npxinit();
1528 	crit_exit();
1529 
1530 	pcb->pcb_ds = _udatasel;
1531 	pcb->pcb_es = _udatasel;
1532 	pcb->pcb_fs = _udatasel;
1533 	pcb->pcb_gs = _udatasel;
1534 }
1535 
1536 void
1537 cpu_setregs(void)
1538 {
1539 	register_t cr0;
1540 
1541 	cr0 = rcr0();
1542 	cr0 |= CR0_NE;			/* Done by npxinit() */
1543 	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1544 	cr0 |= CR0_WP | CR0_AM;
1545 	load_cr0(cr0);
1546 	load_gs(_udatasel);
1547 }
1548 
1549 static int
1550 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1551 {
1552 	int error;
1553 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1554 		req);
1555 	if (!error && req->newptr)
1556 		resettodr();
1557 	return (error);
1558 }
1559 
1560 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1561 	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1562 
1563 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1564 	CTLFLAG_RW, &disable_rtc_set, 0, "");
1565 
1566 #if 0 /* JG */
1567 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1568 	CTLFLAG_RD, &bootinfo, bootinfo, "");
1569 #endif
1570 
1571 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1572 	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1573 
1574 static int
1575 efi_map_sysctl_handler(SYSCTL_HANDLER_ARGS)
1576 {
1577 	struct efi_map_header *efihdr;
1578 	caddr_t kmdp;
1579 	uint32_t efisize;
1580 
1581 	kmdp = preload_search_by_type("elf kernel");
1582 	if (kmdp == NULL)
1583 		kmdp = preload_search_by_type("elf64 kernel");
1584 	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
1585 	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
1586 	if (efihdr == NULL)
1587 		return (0);
1588 	efisize = *((uint32_t *)efihdr - 1);
1589 	return (SYSCTL_OUT(req, efihdr, efisize));
1590 }
1591 SYSCTL_PROC(_machdep, OID_AUTO, efi_map, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
1592     efi_map_sysctl_handler, "S,efi_map_header", "Raw EFI Memory Map");
1593 
1594 /*
1595  * Initialize x86 and configure to run kernel
1596  */
1597 
1598 /*
1599  * Initialize segments & interrupt table
1600  */
1601 
1602 int _default_ldt;
1603 struct user_segment_descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1604 struct gate_descriptor idt_arr[MAXCPU][NIDT];
1605 #if 0 /* JG */
1606 union descriptor ldt[NLDT];		/* local descriptor table */
1607 #endif
1608 
1609 /* table descriptors - used to load tables by cpu */
1610 struct region_descriptor r_gdt;
1611 struct region_descriptor r_idt_arr[MAXCPU];
1612 
1613 /* JG proc0paddr is a virtual address */
1614 void *proc0paddr;
1615 /* JG alignment? */
1616 char proc0paddr_buff[LWKT_THREAD_STACK];
1617 
1618 
1619 /* software prototypes -- in more palatable form */
1620 struct soft_segment_descriptor gdt_segs[] = {
1621 /* GNULL_SEL	0 Null Descriptor */
1622 {	0x0,			/* segment base address  */
1623 	0x0,			/* length */
1624 	0,			/* segment type */
1625 	0,			/* segment descriptor priority level */
1626 	0,			/* segment descriptor present */
1627 	0,			/* long */
1628 	0,			/* default 32 vs 16 bit size */
1629 	0			/* limit granularity (byte/page units)*/ },
1630 /* GCODE_SEL	1 Code Descriptor for kernel */
1631 {	0x0,			/* segment base address  */
1632 	0xfffff,		/* length - all address space */
1633 	SDT_MEMERA,		/* segment type */
1634 	SEL_KPL,		/* segment descriptor priority level */
1635 	1,			/* segment descriptor present */
1636 	1,			/* long */
1637 	0,			/* default 32 vs 16 bit size */
1638 	1			/* limit granularity (byte/page units)*/ },
1639 /* GDATA_SEL	2 Data Descriptor for kernel */
1640 {	0x0,			/* segment base address  */
1641 	0xfffff,		/* length - all address space */
1642 	SDT_MEMRWA,		/* segment type */
1643 	SEL_KPL,		/* segment descriptor priority level */
1644 	1,			/* segment descriptor present */
1645 	1,			/* long */
1646 	0,			/* default 32 vs 16 bit size */
1647 	1			/* limit granularity (byte/page units)*/ },
1648 /* GUCODE32_SEL	3 32 bit Code Descriptor for user */
1649 {	0x0,			/* segment base address  */
1650 	0xfffff,		/* length - all address space */
1651 	SDT_MEMERA,		/* segment type */
1652 	SEL_UPL,		/* segment descriptor priority level */
1653 	1,			/* segment descriptor present */
1654 	0,			/* long */
1655 	1,			/* default 32 vs 16 bit size */
1656 	1			/* limit granularity (byte/page units)*/ },
1657 /* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
1658 {	0x0,			/* segment base address  */
1659 	0xfffff,		/* length - all address space */
1660 	SDT_MEMRWA,		/* segment type */
1661 	SEL_UPL,		/* segment descriptor priority level */
1662 	1,			/* segment descriptor present */
1663 	0,			/* long */
1664 	1,			/* default 32 vs 16 bit size */
1665 	1			/* limit granularity (byte/page units)*/ },
1666 /* GUCODE_SEL	5 64 bit Code Descriptor for user */
1667 {	0x0,			/* segment base address  */
1668 	0xfffff,		/* length - all address space */
1669 	SDT_MEMERA,		/* segment type */
1670 	SEL_UPL,		/* segment descriptor priority level */
1671 	1,			/* segment descriptor present */
1672 	1,			/* long */
1673 	0,			/* default 32 vs 16 bit size */
1674 	1			/* limit granularity (byte/page units)*/ },
1675 /* GPROC0_SEL	6 Proc 0 Tss Descriptor */
1676 {
1677 	0x0,			/* segment base address */
1678 	sizeof(struct x86_64tss)-1,/* length - all address space */
1679 	SDT_SYSTSS,		/* segment type */
1680 	SEL_KPL,		/* segment descriptor priority level */
1681 	1,			/* segment descriptor present */
1682 	0,			/* long */
1683 	0,			/* unused - default 32 vs 16 bit size */
1684 	0			/* limit granularity (byte/page units)*/ },
1685 /* Actually, the TSS is a system descriptor which is double size */
1686 {	0x0,			/* segment base address  */
1687 	0x0,			/* length */
1688 	0,			/* segment type */
1689 	0,			/* segment descriptor priority level */
1690 	0,			/* segment descriptor present */
1691 	0,			/* long */
1692 	0,			/* default 32 vs 16 bit size */
1693 	0			/* limit granularity (byte/page units)*/ },
1694 /* GUGS32_SEL	8 32 bit GS Descriptor for user */
1695 {	0x0,			/* segment base address  */
1696 	0xfffff,		/* length - all address space */
1697 	SDT_MEMRWA,		/* segment type */
1698 	SEL_UPL,		/* segment descriptor priority level */
1699 	1,			/* segment descriptor present */
1700 	0,			/* long */
1701 	1,			/* default 32 vs 16 bit size */
1702 	1			/* limit granularity (byte/page units)*/ },
1703 };
1704 
1705 void
1706 setidt_global(int idx, inthand_t *func, int typ, int dpl, int ist)
1707 {
1708 	int cpu;
1709 
1710 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
1711 		struct gate_descriptor *ip = &idt_arr[cpu][idx];
1712 
1713 		ip->gd_looffset = (uintptr_t)func;
1714 		ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1715 		ip->gd_ist = ist;
1716 		ip->gd_xx = 0;
1717 		ip->gd_type = typ;
1718 		ip->gd_dpl = dpl;
1719 		ip->gd_p = 1;
1720 		ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1721 	}
1722 }
1723 
1724 void
1725 setidt(int idx, inthand_t *func, int typ, int dpl, int ist, int cpu)
1726 {
1727 	struct gate_descriptor *ip;
1728 
1729 	KASSERT(cpu >= 0 && cpu < ncpus, ("invalid cpu %d", cpu));
1730 
1731 	ip = &idt_arr[cpu][idx];
1732 	ip->gd_looffset = (uintptr_t)func;
1733 	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1734 	ip->gd_ist = ist;
1735 	ip->gd_xx = 0;
1736 	ip->gd_type = typ;
1737 	ip->gd_dpl = dpl;
1738 	ip->gd_p = 1;
1739 	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1740 }
1741 
1742 #define	IDTVEC(name)	__CONCAT(X,name)
1743 
1744 extern inthand_t
1745 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1746 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1747 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1748 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1749 	IDTVEC(xmm), IDTVEC(dblfault),
1750 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1751 
1752 void
1753 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1754 {
1755 	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1756 	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1757 	ssd->ssd_type  = sd->sd_type;
1758 	ssd->ssd_dpl   = sd->sd_dpl;
1759 	ssd->ssd_p     = sd->sd_p;
1760 	ssd->ssd_def32 = sd->sd_def32;
1761 	ssd->ssd_gran  = sd->sd_gran;
1762 }
1763 
1764 void
1765 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1766 {
1767 
1768 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1769 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1770 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1771 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1772 	sd->sd_type  = ssd->ssd_type;
1773 	sd->sd_dpl   = ssd->ssd_dpl;
1774 	sd->sd_p     = ssd->ssd_p;
1775 	sd->sd_long  = ssd->ssd_long;
1776 	sd->sd_def32 = ssd->ssd_def32;
1777 	sd->sd_gran  = ssd->ssd_gran;
1778 }
1779 
1780 void
1781 ssdtosyssd(struct soft_segment_descriptor *ssd,
1782     struct system_segment_descriptor *sd)
1783 {
1784 
1785 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1786 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1787 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1788 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1789 	sd->sd_type  = ssd->ssd_type;
1790 	sd->sd_dpl   = ssd->ssd_dpl;
1791 	sd->sd_p     = ssd->ssd_p;
1792 	sd->sd_gran  = ssd->ssd_gran;
1793 }
1794 
1795 /*
1796  * Populate the (physmap) array with base/bound pairs describing the
1797  * available physical memory in the system, then test this memory and
1798  * build the phys_avail array describing the actually-available memory.
1799  *
1800  * If we cannot accurately determine the physical memory map, then use
1801  * value from the 0xE801 call, and failing that, the RTC.
1802  *
1803  * Total memory size may be set by the kernel environment variable
1804  * hw.physmem or the compile-time define MAXMEM.
1805  *
1806  * Memory is aligned to PHYSMAP_ALIGN which must be a multiple
1807  * of PAGE_SIZE.  This also greatly reduces the memory test time
1808  * which would otherwise be excessive on machines with > 8G of ram.
1809  *
1810  * XXX first should be vm_paddr_t.
1811  */
1812 
1813 #define PHYSMAP_ALIGN		(vm_paddr_t)(128 * 1024)
1814 #define PHYSMAP_ALIGN_MASK	(vm_paddr_t)(PHYSMAP_ALIGN - 1)
1815 #define PHYSMAP_SIZE		VM_PHYSSEG_MAX
1816 
1817 vm_paddr_t physmap[PHYSMAP_SIZE];
1818 struct bios_smap *smapbase, *smap, *smapend;
1819 struct efi_map_header *efihdrbase;
1820 u_int32_t smapsize;
1821 
1822 #define PHYSMAP_HANDWAVE	(vm_paddr_t)(2 * 1024 * 1024)
1823 #define PHYSMAP_HANDWAVE_MASK	(PHYSMAP_HANDWAVE - 1)
1824 
1825 static void
1826 add_smap_entries(int *physmap_idx)
1827 {
1828 	int i;
1829 
1830 	smapsize = *((u_int32_t *)smapbase - 1);
1831 	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1832 
1833 	for (smap = smapbase; smap < smapend; smap++) {
1834 		if (boothowto & RB_VERBOSE)
1835 			kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1836 			    smap->type, smap->base, smap->length);
1837 
1838 		if (smap->type != SMAP_TYPE_MEMORY)
1839 			continue;
1840 
1841 		if (smap->length == 0)
1842 			continue;
1843 
1844 		for (i = 0; i <= *physmap_idx; i += 2) {
1845 			if (smap->base < physmap[i + 1]) {
1846 				if (boothowto & RB_VERBOSE) {
1847 					kprintf("Overlapping or non-monotonic "
1848 						"memory region, ignoring "
1849 						"second region\n");
1850 				}
1851 				break;
1852 			}
1853 		}
1854 		if (i <= *physmap_idx)
1855 			continue;
1856 
1857 		Realmem += smap->length;
1858 
1859 		if (smap->base == physmap[*physmap_idx + 1]) {
1860 			physmap[*physmap_idx + 1] += smap->length;
1861 			continue;
1862 		}
1863 
1864 		*physmap_idx += 2;
1865 		if (*physmap_idx == PHYSMAP_SIZE) {
1866 			kprintf("Too many segments in the physical "
1867 				"address map, giving up\n");
1868 			break;
1869 		}
1870 		physmap[*physmap_idx] = smap->base;
1871 		physmap[*physmap_idx + 1] = smap->base + smap->length;
1872 	}
1873 }
1874 
1875 static void
1876 add_efi_map_entries(int *physmap_idx)
1877 {
1878 	struct efi_md *map, *p;
1879 	const char *type;
1880 	size_t efisz;
1881 	int i, ndesc;
1882 
1883 	static const char *types[] = {
1884 		"Reserved",
1885 		"LoaderCode",
1886 		"LoaderData",
1887 		"BootServicesCode",
1888 		"BootServicesData",
1889 		"RuntimeServicesCode",
1890 		"RuntimeServicesData",
1891 		"ConventionalMemory",
1892 		"UnusableMemory",
1893 		"ACPIReclaimMemory",
1894 		"ACPIMemoryNVS",
1895 		"MemoryMappedIO",
1896 		"MemoryMappedIOPortSpace",
1897 		"PalCode"
1898 	 };
1899 
1900 	/*
1901 	 * Memory map data provided by UEFI via the GetMemoryMap
1902 	 * Boot Services API.
1903 	 */
1904 	efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
1905 	map = (struct efi_md *)((uint8_t *)efihdrbase + efisz);
1906 
1907 	if (efihdrbase->descriptor_size == 0)
1908 		return;
1909 	ndesc = efihdrbase->memory_size / efihdrbase->descriptor_size;
1910 
1911 	if (boothowto & RB_VERBOSE)
1912 		kprintf("%23s %12s %12s %8s %4s\n",
1913 		    "Type", "Physical", "Virtual", "#Pages", "Attr");
1914 
1915 	for (i = 0, p = map; i < ndesc; i++,
1916 	    p = efi_next_descriptor(p, efihdrbase->descriptor_size)) {
1917 		if (boothowto & RB_VERBOSE) {
1918 			if (p->md_type <= EFI_MD_TYPE_PALCODE)
1919 				type = types[p->md_type];
1920 			else
1921 				type = "<INVALID>";
1922 			kprintf("%23s %012lx %12p %08lx ", type, p->md_phys,
1923 			    p->md_virt, p->md_pages);
1924 			if (p->md_attr & EFI_MD_ATTR_UC)
1925 				kprintf("UC ");
1926 			if (p->md_attr & EFI_MD_ATTR_WC)
1927 				kprintf("WC ");
1928 			if (p->md_attr & EFI_MD_ATTR_WT)
1929 				kprintf("WT ");
1930 			if (p->md_attr & EFI_MD_ATTR_WB)
1931 				kprintf("WB ");
1932 			if (p->md_attr & EFI_MD_ATTR_UCE)
1933 				kprintf("UCE ");
1934 			if (p->md_attr & EFI_MD_ATTR_WP)
1935 				kprintf("WP ");
1936 			if (p->md_attr & EFI_MD_ATTR_RP)
1937 				kprintf("RP ");
1938 			if (p->md_attr & EFI_MD_ATTR_XP)
1939 				kprintf("XP ");
1940 			if (p->md_attr & EFI_MD_ATTR_RT)
1941 				kprintf("RUNTIME");
1942 			kprintf("\n");
1943 		}
1944 
1945 		switch (p->md_type) {
1946 		case EFI_MD_TYPE_CODE:
1947 		case EFI_MD_TYPE_DATA:
1948 		case EFI_MD_TYPE_BS_CODE:
1949 		case EFI_MD_TYPE_BS_DATA:
1950 		case EFI_MD_TYPE_FREE:
1951 			/*
1952 			 * We're allowed to use any entry with these types.
1953 			 */
1954 			break;
1955 		default:
1956 			continue;
1957 		}
1958 
1959 		Realmem += p->md_pages * PAGE_SIZE;
1960 
1961 		if (p->md_phys == physmap[*physmap_idx + 1]) {
1962 			physmap[*physmap_idx + 1] += p->md_pages * PAGE_SIZE;
1963 			continue;
1964 		}
1965 
1966 		*physmap_idx += 2;
1967 		if (*physmap_idx == PHYSMAP_SIZE) {
1968 			kprintf("Too many segments in the physical "
1969 				"address map, giving up\n");
1970 			break;
1971 		}
1972 		physmap[*physmap_idx] = p->md_phys;
1973 		physmap[*physmap_idx + 1] = p->md_phys + p->md_pages * PAGE_SIZE;
1974 	 }
1975 }
1976 
1977 struct fb_info efi_fb_info;
1978 static int have_efi_framebuffer = 0;
1979 
1980 static void
1981 efi_fb_init_vaddr(int direct_map)
1982 {
1983 	uint64_t sz;
1984 	vm_offset_t addr, v;
1985 
1986 	v = efi_fb_info.vaddr;
1987 	sz = efi_fb_info.stride * efi_fb_info.height;
1988 
1989 	if (direct_map) {
1990 		addr = PHYS_TO_DMAP(efi_fb_info.paddr);
1991 		if (addr >= DMAP_MIN_ADDRESS && addr + sz < DMAP_MAX_ADDRESS)
1992 			efi_fb_info.vaddr = addr;
1993 	} else {
1994 		efi_fb_info.vaddr = (vm_offset_t)pmap_mapdev_attr(
1995 		    efi_fb_info.paddr, sz, PAT_WRITE_COMBINING);
1996 	}
1997 }
1998 
1999 static u_int
2000 efifb_color_depth(struct efi_fb *efifb)
2001 {
2002 	uint32_t mask;
2003 	u_int depth;
2004 
2005 	mask = efifb->fb_mask_red | efifb->fb_mask_green |
2006 	    efifb->fb_mask_blue | efifb->fb_mask_reserved;
2007 	if (mask == 0)
2008 		return (0);
2009 	for (depth = 1; mask != 1; depth++)
2010 		mask >>= 1;
2011 	return (depth);
2012 }
2013 
2014 int
2015 probe_efi_fb(int early)
2016 {
2017 	struct efi_fb	*efifb;
2018 	caddr_t		kmdp;
2019 	u_int		depth;
2020 
2021 	if (have_efi_framebuffer) {
2022 		if (!early &&
2023 		    (efi_fb_info.vaddr == 0 ||
2024 		     efi_fb_info.vaddr == PHYS_TO_DMAP(efi_fb_info.paddr)))
2025 			efi_fb_init_vaddr(0);
2026 		return 0;
2027 	}
2028 
2029 	kmdp = preload_search_by_type("elf kernel");
2030 	if (kmdp == NULL)
2031 		kmdp = preload_search_by_type("elf64 kernel");
2032 	efifb = (struct efi_fb *)preload_search_info(kmdp,
2033 	    MODINFO_METADATA | MODINFOMD_EFI_FB);
2034 	if (efifb == NULL)
2035 		return 1;
2036 
2037 	depth = efifb_color_depth(efifb);
2038 	/*
2039 	 * Our bootloader should already notice, when we won't be able to
2040 	 * use the UEFI framebuffer.
2041 	 */
2042 	if (depth != 24 && depth != 32)
2043 		return 1;
2044 
2045 	have_efi_framebuffer = 1;
2046 
2047 	efi_fb_info.is_vga_boot_display = 1;
2048 	efi_fb_info.width = efifb->fb_width;
2049 	efi_fb_info.height = efifb->fb_height;
2050 	efi_fb_info.depth = depth;
2051 	efi_fb_info.stride = efifb->fb_stride * (depth / 8);
2052 	efi_fb_info.paddr = efifb->fb_addr;
2053 	if (early) {
2054 		efi_fb_info.vaddr = 0;
2055 	} else {
2056 		efi_fb_init_vaddr(0);
2057 	}
2058 	efi_fb_info.fbops.fb_set_par = NULL;
2059 	efi_fb_info.fbops.fb_blank = NULL;
2060 	efi_fb_info.fbops.fb_debug_enter = NULL;
2061 	efi_fb_info.device = NULL;
2062 
2063 	return 0;
2064 }
2065 
2066 static void
2067 efifb_startup(void *arg)
2068 {
2069 	probe_efi_fb(0);
2070 }
2071 
2072 SYSINIT(efi_fb_info, SI_BOOT1_POST, SI_ORDER_FIRST, efifb_startup, NULL);
2073 
2074 static void
2075 getmemsize(caddr_t kmdp, u_int64_t first)
2076 {
2077 	int off, physmap_idx, pa_indx, da_indx;
2078 	int i, j;
2079 	vm_paddr_t pa;
2080 	vm_paddr_t msgbuf_size;
2081 	u_long physmem_tunable;
2082 	pt_entry_t *pte;
2083 	quad_t dcons_addr, dcons_size;
2084 
2085 	bzero(physmap, sizeof(physmap));
2086 	physmap_idx = 0;
2087 
2088 	/*
2089 	 * get memory map from INT 15:E820, kindly supplied by the loader.
2090 	 *
2091 	 * subr_module.c says:
2092 	 * "Consumer may safely assume that size value precedes data."
2093 	 * ie: an int32_t immediately precedes smap.
2094 	 */
2095 	efihdrbase = (struct efi_map_header *)preload_search_info(kmdp,
2096 		     MODINFO_METADATA | MODINFOMD_EFI_MAP);
2097 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
2098 		   MODINFO_METADATA | MODINFOMD_SMAP);
2099 	if (smapbase == NULL && efihdrbase == NULL)
2100 		panic("No BIOS smap or EFI map info from loader!");
2101 
2102 	if (efihdrbase == NULL)
2103 		add_smap_entries(&physmap_idx);
2104 	else
2105 		add_efi_map_entries(&physmap_idx);
2106 
2107 	base_memory = physmap[1] / 1024;
2108 	/* make hole for AP bootstrap code */
2109 	physmap[1] = mp_bootaddress(base_memory);
2110 
2111 	/* Save EBDA address, if any */
2112 	ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
2113 	ebda_addr <<= 4;
2114 
2115 	/*
2116 	 * Maxmem isn't the "maximum memory", it's one larger than the
2117 	 * highest page of the physical address space.  It should be
2118 	 * called something like "Maxphyspage".  We may adjust this
2119 	 * based on ``hw.physmem'' and the results of the memory test.
2120 	 */
2121 	Maxmem = atop(physmap[physmap_idx + 1]);
2122 
2123 #ifdef MAXMEM
2124 	Maxmem = MAXMEM / 4;
2125 #endif
2126 
2127 	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
2128 		Maxmem = atop(physmem_tunable);
2129 
2130 	/*
2131 	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
2132 	 * in the system.
2133 	 */
2134 	if (Maxmem > atop(physmap[physmap_idx + 1]))
2135 		Maxmem = atop(physmap[physmap_idx + 1]);
2136 
2137 	/*
2138 	 * Blowing out the DMAP will blow up the system.
2139 	 */
2140 	if (Maxmem > atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS)) {
2141 		kprintf("Limiting Maxmem due to DMAP size\n");
2142 		Maxmem = atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS);
2143 	}
2144 
2145 	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
2146 	    (boothowto & RB_VERBOSE)) {
2147 		kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
2148 	}
2149 
2150 	/*
2151 	 * Call pmap initialization to make new kernel address space
2152 	 *
2153 	 * Mask off page 0.
2154 	 */
2155 	pmap_bootstrap(&first);
2156 	physmap[0] = PAGE_SIZE;
2157 
2158 	/*
2159 	 * Align the physmap to PHYSMAP_ALIGN and cut out anything
2160 	 * exceeding Maxmem.
2161 	 */
2162 	for (i = j = 0; i <= physmap_idx; i += 2) {
2163 		if (physmap[i+1] > ptoa(Maxmem))
2164 			physmap[i+1] = ptoa(Maxmem);
2165 		physmap[i] = (physmap[i] + PHYSMAP_ALIGN_MASK) &
2166 			     ~PHYSMAP_ALIGN_MASK;
2167 		physmap[i+1] = physmap[i+1] & ~PHYSMAP_ALIGN_MASK;
2168 
2169 		physmap[j] = physmap[i];
2170 		physmap[j+1] = physmap[i+1];
2171 
2172 		if (physmap[i] < physmap[i+1])
2173 			j += 2;
2174 	}
2175 	physmap_idx = j - 2;
2176 
2177 	/*
2178 	 * Align anything else used in the validation loop.
2179 	 *
2180 	 * Also make sure that our 2MB kernel text+data+bss mappings
2181 	 * do not overlap potentially allocatable space.
2182 	 */
2183 	first = (first + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
2184 
2185 	/*
2186 	 * Size up each available chunk of physical memory.
2187 	 */
2188 	pa_indx = 0;
2189 	da_indx = 0;
2190 	phys_avail[pa_indx].phys_beg = physmap[0];
2191 	phys_avail[pa_indx].phys_end = physmap[0];
2192 	dump_avail[da_indx].phys_beg = 0;
2193 	dump_avail[da_indx].phys_end = physmap[0];
2194 	pte = CMAP1;
2195 
2196 	/*
2197 	 * Get dcons buffer address
2198 	 */
2199 	if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
2200 	    kgetenv_quad("dcons.size", &dcons_size) == 0)
2201 		dcons_addr = 0;
2202 
2203 	/*
2204 	 * Validate the physical memory.  The physical memory segments
2205 	 * have already been aligned to PHYSMAP_ALIGN which is a multiple
2206 	 * of PAGE_SIZE.
2207 	 *
2208 	 * We no longer perform an exhaustive memory test.  Instead we
2209 	 * simply test the first and last word in each physmap[]
2210 	 * segment.
2211 	 */
2212 	for (i = 0; i <= physmap_idx; i += 2) {
2213 		vm_paddr_t end;
2214 		vm_paddr_t incr;
2215 
2216 		end = physmap[i + 1];
2217 
2218 		for (pa = physmap[i]; pa < end; pa += incr) {
2219 			int page_bad, full;
2220 			volatile uint64_t *ptr = (uint64_t *)CADDR1;
2221 			uint64_t tmp;
2222 
2223 			full = FALSE;
2224 
2225 			/*
2226 			 * Calculate incr.  Just test the first and
2227 			 * last page in each physmap[] segment.
2228 			 */
2229 			if (pa == end - PAGE_SIZE)
2230 				incr = PAGE_SIZE;
2231 			else
2232 				incr = end - pa - PAGE_SIZE;
2233 
2234 			/*
2235 			 * Make sure we don't skip blacked out areas.
2236 			 */
2237 			if (pa < 0x200000 && 0x200000 < end) {
2238 				incr = 0x200000 - pa;
2239 			}
2240 			if (dcons_addr > 0 &&
2241 			    pa < dcons_addr &&
2242 			    dcons_addr < end) {
2243 				incr = dcons_addr - pa;
2244 			}
2245 
2246 			/*
2247 			 * Block out kernel memory as not available.
2248 			 */
2249 			if (pa >= 0x200000 && pa < first) {
2250 				incr = first - pa;
2251 				if (pa + incr > end)
2252 					incr = end - pa;
2253 				goto do_dump_avail;
2254 			}
2255 
2256 			/*
2257 			 * Block out the dcons buffer if it exists.
2258 			 */
2259 			if (dcons_addr > 0 &&
2260 			    pa >= trunc_page(dcons_addr) &&
2261 			    pa < dcons_addr + dcons_size) {
2262 				incr = dcons_addr + dcons_size - pa;
2263 				incr = (incr + PAGE_MASK) &
2264 				       ~(vm_paddr_t)PAGE_MASK;
2265 				if (pa + incr > end)
2266 					incr = end - pa;
2267 				goto do_dump_avail;
2268 			}
2269 
2270 			page_bad = FALSE;
2271 
2272 			/*
2273 			 * Map the page non-cacheable for the memory
2274 			 * test.
2275 			 */
2276 			*pte = pa |
2277 			    kernel_pmap.pmap_bits[PG_V_IDX] |
2278 			    kernel_pmap.pmap_bits[PG_RW_IDX] |
2279 			    kernel_pmap.pmap_bits[PG_N_IDX];
2280 			cpu_invlpg(__DEVOLATILE(void *, ptr));
2281 			cpu_mfence();
2282 
2283 			/*
2284 			 * Save original value for restoration later.
2285 			 */
2286 			tmp = *ptr;
2287 
2288 			/*
2289 			 * Test for alternating 1's and 0's
2290 			 */
2291 			*ptr = 0xaaaaaaaaaaaaaaaaLLU;
2292 			cpu_mfence();
2293 			if (*ptr != 0xaaaaaaaaaaaaaaaaLLU)
2294 				page_bad = TRUE;
2295 			/*
2296 			 * Test for alternating 0's and 1's
2297 			 */
2298 			*ptr = 0x5555555555555555LLU;
2299 			cpu_mfence();
2300 			if (*ptr != 0x5555555555555555LLU)
2301 				page_bad = TRUE;
2302 			/*
2303 			 * Test for all 1's
2304 			 */
2305 			*ptr = 0xffffffffffffffffLLU;
2306 			cpu_mfence();
2307 			if (*ptr != 0xffffffffffffffffLLU)
2308 				page_bad = TRUE;
2309 			/*
2310 			 * Test for all 0's
2311 			 */
2312 			*ptr = 0x0;
2313 			cpu_mfence();
2314 			if (*ptr != 0x0)
2315 				page_bad = TRUE;
2316 
2317 			/*
2318 			 * Restore original value.
2319 			 */
2320 			*ptr = tmp;
2321 
2322 			/*
2323 			 * Adjust array of valid/good pages.
2324 			 */
2325 			if (page_bad == TRUE) {
2326 				incr = PAGE_SIZE;
2327 				continue;
2328 			}
2329 
2330 			/*
2331 			 * Collapse page address into phys_avail[].  Do a
2332 			 * continuation of the current phys_avail[] index
2333 			 * when possible.
2334 			 */
2335 			if (phys_avail[pa_indx].phys_end == pa) {
2336 				/*
2337 				 * Continuation
2338 				 */
2339 				phys_avail[pa_indx].phys_end += incr;
2340 			} else if (phys_avail[pa_indx].phys_beg ==
2341 				   phys_avail[pa_indx].phys_end) {
2342 				/*
2343 				 * Current phys_avail is completely empty,
2344 				 * reuse the index.
2345 				 */
2346 				phys_avail[pa_indx].phys_beg = pa;
2347 				phys_avail[pa_indx].phys_end = pa + incr;
2348 			} else {
2349 				/*
2350 				 * Allocate next phys_avail index.
2351 				 */
2352 				++pa_indx;
2353 				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
2354 					kprintf(
2355 		"Too many holes in the physical address space, giving up\n");
2356 					--pa_indx;
2357 					full = TRUE;
2358 					goto do_dump_avail;
2359 				}
2360 				phys_avail[pa_indx].phys_beg = pa;
2361 				phys_avail[pa_indx].phys_end = pa + incr;
2362 			}
2363 			physmem += incr / PAGE_SIZE;
2364 
2365 			/*
2366 			 * pa available for dumping
2367 			 */
2368 do_dump_avail:
2369 			if (dump_avail[da_indx].phys_end == pa) {
2370 				dump_avail[da_indx].phys_end += incr;
2371 			} else {
2372 				++da_indx;
2373 				if (da_indx == DUMP_AVAIL_ARRAY_END) {
2374 					--da_indx;
2375 					goto do_next;
2376 				}
2377 				dump_avail[da_indx].phys_beg = pa;
2378 				dump_avail[da_indx].phys_end = pa + incr;
2379 			}
2380 do_next:
2381 			if (full)
2382 				break;
2383 		}
2384 	}
2385 	*pte = 0;
2386 	cpu_invltlb();
2387 	cpu_mfence();
2388 
2389 	/*
2390 	 * The last chunk must contain at least one page plus the message
2391 	 * buffer to avoid complicating other code (message buffer address
2392 	 * calculation, etc.).
2393 	 */
2394 	msgbuf_size = (MSGBUF_SIZE + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
2395 
2396 	while (phys_avail[pa_indx].phys_beg + PHYSMAP_ALIGN + msgbuf_size >=
2397 	       phys_avail[pa_indx].phys_end) {
2398 		physmem -= atop(phys_avail[pa_indx].phys_end -
2399 				phys_avail[pa_indx].phys_beg);
2400 		phys_avail[pa_indx].phys_beg = 0;
2401 		phys_avail[pa_indx].phys_end = 0;
2402 		--pa_indx;
2403 	}
2404 
2405 	Maxmem = atop(phys_avail[pa_indx].phys_end);
2406 
2407 	/* Trim off space for the message buffer. */
2408 	phys_avail[pa_indx].phys_end -= msgbuf_size;
2409 
2410 	avail_end = phys_avail[pa_indx].phys_end;
2411 
2412 	/* Map the message buffer. */
2413 	for (off = 0; off < msgbuf_size; off += PAGE_SIZE) {
2414 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2415 	}
2416 
2417 	/* Try to get EFI framebuffer working as early as possible */
2418 	{
2419 		/*
2420 		 * HACK: Setting machdep.hack_efifb_probe_early=1 works around
2421 		 * an issue that occurs on some recent systems where there is
2422 		 * no system console when booting via UEFI. Bug #3167.
2423 		 *
2424 		 * NOTE: This is not intended to be a permant fix.
2425 		 */
2426 
2427 		int hack_efifb_probe_early = 0;
2428 		TUNABLE_INT_FETCH("machdep.hack_efifb_probe_early", &hack_efifb_probe_early);
2429 
2430 		if (hack_efifb_probe_early)
2431 			probe_efi_fb(1);
2432 		else if (have_efi_framebuffer)
2433 			efi_fb_init_vaddr(1);
2434 	}
2435 }
2436 
2437 struct machintr_abi MachIntrABI;
2438 
2439 /*
2440  * IDT VECTORS:
2441  *	0	Divide by zero
2442  *	1	Debug
2443  *	2	NMI
2444  *	3	BreakPoint
2445  *	4	OverFlow
2446  *	5	Bound-Range
2447  *	6	Invalid OpCode
2448  *	7	Device Not Available (x87)
2449  *	8	Double-Fault
2450  *	9	Coprocessor Segment overrun (unsupported, reserved)
2451  *	10	Invalid-TSS
2452  *	11	Segment not present
2453  *	12	Stack
2454  *	13	General Protection
2455  *	14	Page Fault
2456  *	15	Reserved
2457  *	16	x87 FP Exception pending
2458  *	17	Alignment Check
2459  *	18	Machine Check
2460  *	19	SIMD floating point
2461  *	20-31	reserved
2462  *	32-255	INTn/external sources
2463  */
2464 u_int64_t
2465 hammer_time(u_int64_t modulep, u_int64_t physfree)
2466 {
2467 	caddr_t kmdp;
2468 	int gsel_tss, x, cpu;
2469 #if 0 /* JG */
2470 	int metadata_missing, off;
2471 #endif
2472 	struct mdglobaldata *gd;
2473 	struct privatespace *ps;
2474 	u_int64_t msr;
2475 
2476 	/*
2477 	 * Prevent lowering of the ipl if we call tsleep() early.
2478 	 */
2479 	gd = &CPU_prvspace[0]->mdglobaldata;
2480 	ps = (struct privatespace *)gd;
2481 	bzero(gd, sizeof(*gd));
2482 	bzero(&ps->common_tss, sizeof(ps->common_tss));
2483 
2484 	/*
2485 	 * Note: on both UP and SMP curthread must be set non-NULL
2486 	 * early in the boot sequence because the system assumes
2487 	 * that 'curthread' is never NULL.
2488 	 */
2489 
2490 	gd->mi.gd_curthread = &thread0;
2491 	thread0.td_gd = &gd->mi;
2492 
2493 	atdevbase = ISA_HOLE_START + PTOV_OFFSET;
2494 
2495 #if 0 /* JG */
2496 	metadata_missing = 0;
2497 	if (bootinfo.bi_modulep) {
2498 		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
2499 		preload_bootstrap_relocate(KERNBASE);
2500 	} else {
2501 		metadata_missing = 1;
2502 	}
2503 	if (bootinfo.bi_envp)
2504 		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
2505 #endif
2506 
2507 	preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
2508 	preload_bootstrap_relocate(PTOV_OFFSET);
2509 	kmdp = preload_search_by_type("elf kernel");
2510 	if (kmdp == NULL)
2511 		kmdp = preload_search_by_type("elf64 kernel");
2512 	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
2513 	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
2514 #ifdef DDB
2515 	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
2516 	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
2517 #endif
2518 	efi_systbl_phys = MD_FETCH(kmdp, MODINFOMD_FW_HANDLE, vm_paddr_t);
2519 
2520 	if (boothowto & RB_VERBOSE)
2521 		bootverbose++;
2522 
2523 	/*
2524 	 * Default MachIntrABI to ICU
2525 	 */
2526 	MachIntrABI = MachIntrABI_ICU;
2527 
2528 	/*
2529 	 * start with one cpu.  Note: with one cpu, ncpus_fit_mask remain 0.
2530 	 */
2531 	ncpus = 1;
2532 	ncpus_fit = 1;
2533 	/* Init basic tunables, hz etc */
2534 	init_param1();
2535 
2536 	/*
2537 	 * make gdt memory segments
2538 	 */
2539 	gdt_segs[GPROC0_SEL].ssd_base =
2540 		(uintptr_t) &CPU_prvspace[0]->common_tss;
2541 
2542 	gd->mi.gd_prvspace = CPU_prvspace[0];
2543 
2544 	for (x = 0; x < NGDT; x++) {
2545 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
2546 			ssdtosd(&gdt_segs[x], &gdt[x]);
2547 	}
2548 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2549 	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
2550 
2551 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
2552 	r_gdt.rd_base =  (long) gdt;
2553 	lgdt(&r_gdt);
2554 
2555 	wrmsr(MSR_FSBASE, 0);		/* User value */
2556 	wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
2557 	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
2558 
2559 	mi_gdinit(&gd->mi, 0);
2560 	cpu_gdinit(gd, 0);
2561 	proc0paddr = proc0paddr_buff;
2562 	mi_proc0init(&gd->mi, proc0paddr);
2563 	safepri = TDPRI_MAX;
2564 
2565 	/* spinlocks and the BGL */
2566 	init_locks();
2567 
2568 	/* exceptions */
2569 	for (x = 0; x < NIDT; x++)
2570 		setidt_global(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
2571 	setidt_global(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
2572 	setidt_global(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 2);
2573 	setidt_global(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 1);
2574 	setidt_global(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
2575 	setidt_global(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
2576 	setidt_global(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
2577 	setidt_global(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
2578 	setidt_global(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
2579 	setidt_global(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
2580 	setidt_global(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
2581 	setidt_global(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
2582 	setidt_global(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
2583 	setidt_global(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
2584 	setidt_global(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
2585 	setidt_global(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
2586 	setidt_global(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
2587 	setidt_global(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
2588 	setidt_global(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
2589 	setidt_global(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
2590 
2591 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
2592 		r_idt_arr[cpu].rd_limit = sizeof(idt_arr[cpu]) - 1;
2593 		r_idt_arr[cpu].rd_base = (long) &idt_arr[cpu][0];
2594 	}
2595 
2596 	lidt(&r_idt_arr[0]);
2597 
2598 	/*
2599 	 * Initialize the console before we print anything out.
2600 	 */
2601 	cninit();
2602 
2603 #if 0 /* JG */
2604 	if (metadata_missing)
2605 		kprintf("WARNING: loader(8) metadata is missing!\n");
2606 #endif
2607 
2608 #if	NISA >0
2609 	elcr_probe();
2610 	isa_defaultirq();
2611 #endif
2612 	rand_initialize();
2613 
2614 	/*
2615 	 * Initialize IRQ mapping
2616 	 *
2617 	 * NOTE:
2618 	 * SHOULD be after elcr_probe()
2619 	 */
2620 	MachIntrABI_ICU.initmap();
2621 	MachIntrABI_IOAPIC.initmap();
2622 
2623 #ifdef DDB
2624 	kdb_init();
2625 	if (boothowto & RB_KDB)
2626 		Debugger("Boot flags requested debugger");
2627 #endif
2628 
2629 	identify_cpu();		/* Final stage of CPU initialization */
2630 	initializecpu(0);	/* Initialize CPU registers */
2631 
2632 	/*
2633 	 * On modern Intel cpus, haswell or later, cpu_idle_hlt=1 is better
2634 	 * because the cpu does significant power management in MWAIT
2635 	 * (also suggested is to set sysctl machdep.mwait.CX.idle=AUTODEEP).
2636 	 *
2637 	 * On many AMD cpus cpu_idle_hlt=3 is better, because the cpu does
2638 	 * significant power management only when using ACPI halt mode.
2639 	 * (However, on Ryzen, mode 4 (HLT) also does power management).
2640 	 *
2641 	 * On older AMD or Intel cpus, cpu_idle_hlt=2 is better because ACPI
2642 	 * is needed to reduce power consumption, but wakeup times are often
2643 	 * too long.
2644 	 */
2645 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
2646 	    CPUID_TO_MODEL(cpu_id) >= 0x3C) {	/* Haswell or later */
2647 		cpu_idle_hlt = 1;
2648 	}
2649 	if (cpu_vendor_id == CPU_VENDOR_AMD) {
2650 		if (CPUID_TO_FAMILY(cpu_id) >= 0x17) {
2651 			/* Ryzen or later */
2652 			cpu_idle_hlt = 3;
2653 		} else if (CPUID_TO_FAMILY(cpu_id) >= 0x14) {
2654 			/* Bobcat or later */
2655 			cpu_idle_hlt = 3;
2656 		}
2657 	}
2658 
2659 	TUNABLE_INT_FETCH("hw.apic_io_enable", &ioapic_enable); /* for compat */
2660 	TUNABLE_INT_FETCH("hw.ioapic_enable", &ioapic_enable);
2661 	TUNABLE_INT_FETCH("hw.lapic_enable", &lapic_enable);
2662 	TUNABLE_INT_FETCH("machdep.cpu_idle_hlt", &cpu_idle_hlt);
2663 
2664 	/*
2665 	 * Some of the virtual machines do not work w/ I/O APIC
2666 	 * enabled.  If the user does not explicitly enable or
2667 	 * disable the I/O APIC (ioapic_enable < 0), then we
2668 	 * disable I/O APIC on all virtual machines.
2669 	 *
2670 	 * NOTE:
2671 	 * This must be done after identify_cpu(), which sets
2672 	 * 'cpu_feature2'
2673 	 */
2674 	if (ioapic_enable < 0) {
2675 		if (cpu_feature2 & CPUID2_VMM)
2676 			ioapic_enable = 0;
2677 		else
2678 			ioapic_enable = 1;
2679 	}
2680 
2681 	/*
2682 	 * TSS entry point for interrupts, traps, and exceptions
2683 	 * (sans NMI).  This will always go to near the top of the pcpu
2684 	 * trampoline area.  Hardware-pushed data will be copied into
2685 	 * the trap-frame on entry, and (if necessary) returned to the
2686 	 * trampoline on exit.
2687 	 *
2688 	 * We store some pcb data for the trampoline code above the
2689 	 * stack the cpu hw pushes into, and arrange things so the
2690 	 * address of tr_pcb_rsp is the same as the desired top of
2691 	 * stack.
2692 	 */
2693 	ps->common_tss.tss_rsp0 = (register_t)&ps->trampoline.tr_pcb_rsp;
2694 	ps->trampoline.tr_pcb_rsp = ps->common_tss.tss_rsp0;
2695 	ps->trampoline.tr_pcb_gs_kernel = (register_t)gd;
2696 	ps->trampoline.tr_pcb_cr3 = KPML4phys;	/* adj to user cr3 live */
2697 	ps->dbltramp.tr_pcb_gs_kernel = (register_t)gd;
2698 	ps->dbltramp.tr_pcb_cr3 = KPML4phys;
2699 	ps->dbgtramp.tr_pcb_gs_kernel = (register_t)gd;
2700 	ps->dbgtramp.tr_pcb_cr3 = KPML4phys;
2701 
2702 	/* double fault stack */
2703 	ps->common_tss.tss_ist1 = (register_t)&ps->dbltramp.tr_pcb_rsp;
2704 	/* #DB debugger needs its own stack */
2705 	ps->common_tss.tss_ist2 = (register_t)&ps->dbgtramp.tr_pcb_rsp;
2706 
2707 	/* Set the IO permission bitmap (empty due to tss seg limit) */
2708 	ps->common_tss.tss_iobase = sizeof(struct x86_64tss);
2709 
2710 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2711 	gd->gd_tss_gdt = &gdt[GPROC0_SEL];
2712 	gd->gd_common_tssd = *gd->gd_tss_gdt;
2713 	ltr(gsel_tss);
2714 
2715 	/* Set up the fast syscall stuff */
2716 	msr = rdmsr(MSR_EFER) | EFER_SCE;
2717 	wrmsr(MSR_EFER, msr);
2718 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
2719 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
2720 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
2721 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
2722 	wrmsr(MSR_STAR, msr);
2723 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
2724 
2725 	getmemsize(kmdp, physfree);
2726 	init_param2(physmem);
2727 
2728 	/* now running on new page tables, configured,and u/iom is accessible */
2729 
2730 	/* Map the message buffer. */
2731 #if 0 /* JG */
2732 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2733 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2734 #endif
2735 
2736 	msgbufinit(msgbufp, MSGBUF_SIZE);
2737 
2738 
2739 	/* transfer to user mode */
2740 
2741 	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2742 	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2743 	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
2744 
2745 	load_ds(_udatasel);
2746 	load_es(_udatasel);
2747 	load_fs(_udatasel);
2748 
2749 	/* setup proc 0's pcb */
2750 	thread0.td_pcb->pcb_flags = 0;
2751 	thread0.td_pcb->pcb_cr3 = KPML4phys;
2752 	thread0.td_pcb->pcb_cr3_iso = 0;
2753 	thread0.td_pcb->pcb_ext = NULL;
2754 	lwp0.lwp_md.md_regs = &proc0_tf;	/* XXX needed? */
2755 
2756 	/* Location of kernel stack for locore */
2757 	return ((u_int64_t)thread0.td_pcb);
2758 }
2759 
2760 /*
2761  * Initialize machine-dependant portions of the global data structure.
2762  * Note that the global data area and cpu0's idlestack in the private
2763  * data space were allocated in locore.
2764  *
2765  * Note: the idlethread's cpl is 0
2766  *
2767  * WARNING!  Called from early boot, 'mycpu' may not work yet.
2768  */
2769 void
2770 cpu_gdinit(struct mdglobaldata *gd, int cpu)
2771 {
2772 	if (cpu)
2773 		gd->mi.gd_curthread = &gd->mi.gd_idlethread;
2774 
2775 	lwkt_init_thread(&gd->mi.gd_idlethread,
2776 			gd->mi.gd_prvspace->idlestack,
2777 			sizeof(gd->mi.gd_prvspace->idlestack),
2778 			0, &gd->mi);
2779 	lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
2780 	gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
2781 	gd->mi.gd_idlethread.td_sp -= sizeof(void *);
2782 	*(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
2783 }
2784 
2785 /*
2786  * We only have to check for DMAP bounds, the globaldata space is
2787  * actually part of the kernel_map so we don't have to waste time
2788  * checking CPU_prvspace[*].
2789  */
2790 int
2791 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
2792 {
2793 #if 0
2794 	if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
2795 	    eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
2796 		return (TRUE);
2797 	}
2798 #endif
2799 	if (saddr >= DMAP_MIN_ADDRESS && eaddr <= DMAP_MAX_ADDRESS)
2800 		return (TRUE);
2801 	return (FALSE);
2802 }
2803 
2804 struct globaldata *
2805 globaldata_find(int cpu)
2806 {
2807 	KKASSERT(cpu >= 0 && cpu < ncpus);
2808 	return(&CPU_prvspace[cpu]->mdglobaldata.mi);
2809 }
2810 
2811 /*
2812  * This path should be safe from the SYSRET issue because only stopped threads
2813  * can have their %rip adjusted this way (and all heavy weight thread switches
2814  * clear QUICKREF and thus do not use SYSRET).  However, the code path is
2815  * convoluted so add a safety by forcing %rip to be cannonical.
2816  */
2817 int
2818 ptrace_set_pc(struct lwp *lp, unsigned long addr)
2819 {
2820 	if (addr & 0x0000800000000000LLU)
2821 		lp->lwp_md.md_regs->tf_rip = addr | 0xFFFF000000000000LLU;
2822 	else
2823 		lp->lwp_md.md_regs->tf_rip = addr & 0x0000FFFFFFFFFFFFLLU;
2824 	return (0);
2825 }
2826 
2827 int
2828 ptrace_single_step(struct lwp *lp)
2829 {
2830 	lp->lwp_md.md_regs->tf_rflags |= PSL_T;
2831 	return (0);
2832 }
2833 
2834 int
2835 fill_regs(struct lwp *lp, struct reg *regs)
2836 {
2837 	struct trapframe *tp;
2838 
2839 	if ((tp = lp->lwp_md.md_regs) == NULL)
2840 		return EINVAL;
2841 	bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
2842 	return (0);
2843 }
2844 
2845 int
2846 set_regs(struct lwp *lp, struct reg *regs)
2847 {
2848 	struct trapframe *tp;
2849 
2850 	tp = lp->lwp_md.md_regs;
2851 	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
2852 	    !CS_SECURE(regs->r_cs))
2853 		return (EINVAL);
2854 	bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
2855 	clear_quickret();
2856 	return (0);
2857 }
2858 
2859 static void
2860 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2861 {
2862 	struct env87 *penv_87 = &sv_87->sv_env;
2863 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2864 	int i;
2865 
2866 	/* FPU control/status */
2867 	penv_87->en_cw = penv_xmm->en_cw;
2868 	penv_87->en_sw = penv_xmm->en_sw;
2869 	penv_87->en_tw = penv_xmm->en_tw;
2870 	penv_87->en_fip = penv_xmm->en_fip;
2871 	penv_87->en_fcs = penv_xmm->en_fcs;
2872 	penv_87->en_opcode = penv_xmm->en_opcode;
2873 	penv_87->en_foo = penv_xmm->en_foo;
2874 	penv_87->en_fos = penv_xmm->en_fos;
2875 
2876 	/* FPU registers */
2877 	for (i = 0; i < 8; ++i)
2878 		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2879 }
2880 
2881 static void
2882 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2883 {
2884 	struct env87 *penv_87 = &sv_87->sv_env;
2885 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2886 	int i;
2887 
2888 	/* FPU control/status */
2889 	penv_xmm->en_cw = penv_87->en_cw;
2890 	penv_xmm->en_sw = penv_87->en_sw;
2891 	penv_xmm->en_tw = penv_87->en_tw;
2892 	penv_xmm->en_fip = penv_87->en_fip;
2893 	penv_xmm->en_fcs = penv_87->en_fcs;
2894 	penv_xmm->en_opcode = penv_87->en_opcode;
2895 	penv_xmm->en_foo = penv_87->en_foo;
2896 	penv_xmm->en_fos = penv_87->en_fos;
2897 
2898 	/* FPU registers */
2899 	for (i = 0; i < 8; ++i)
2900 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2901 }
2902 
2903 int
2904 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2905 {
2906 	if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
2907 		return EINVAL;
2908 	if (cpu_fxsr) {
2909 		fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2910 				(struct save87 *)fpregs);
2911 		return (0);
2912 	}
2913 	bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2914 	return (0);
2915 }
2916 
2917 int
2918 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2919 {
2920 	if (cpu_fxsr) {
2921 		set_fpregs_xmm((struct save87 *)fpregs,
2922 			       &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2923 		return (0);
2924 	}
2925 	bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2926 	return (0);
2927 }
2928 
2929 int
2930 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2931 {
2932 	struct pcb *pcb;
2933 
2934         if (lp == NULL) {
2935                 dbregs->dr[0] = rdr0();
2936                 dbregs->dr[1] = rdr1();
2937                 dbregs->dr[2] = rdr2();
2938                 dbregs->dr[3] = rdr3();
2939                 dbregs->dr[4] = rdr4();
2940                 dbregs->dr[5] = rdr5();
2941                 dbregs->dr[6] = rdr6();
2942                 dbregs->dr[7] = rdr7();
2943 		return (0);
2944         }
2945 	if (lp->lwp_thread == NULL || (pcb = lp->lwp_thread->td_pcb) == NULL)
2946 		return EINVAL;
2947 	dbregs->dr[0] = pcb->pcb_dr0;
2948 	dbregs->dr[1] = pcb->pcb_dr1;
2949 	dbregs->dr[2] = pcb->pcb_dr2;
2950 	dbregs->dr[3] = pcb->pcb_dr3;
2951 	dbregs->dr[4] = 0;
2952 	dbregs->dr[5] = 0;
2953 	dbregs->dr[6] = pcb->pcb_dr6;
2954 	dbregs->dr[7] = pcb->pcb_dr7;
2955 	return (0);
2956 }
2957 
2958 int
2959 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2960 {
2961 	if (lp == NULL) {
2962 		load_dr0(dbregs->dr[0]);
2963 		load_dr1(dbregs->dr[1]);
2964 		load_dr2(dbregs->dr[2]);
2965 		load_dr3(dbregs->dr[3]);
2966 		load_dr4(dbregs->dr[4]);
2967 		load_dr5(dbregs->dr[5]);
2968 		load_dr6(dbregs->dr[6]);
2969 		load_dr7(dbregs->dr[7]);
2970 	} else {
2971 		struct pcb *pcb;
2972 		struct ucred *ucred;
2973 		int i;
2974 		uint64_t mask1, mask2;
2975 
2976 		/*
2977 		 * Don't let an illegal value for dr7 get set.	Specifically,
2978 		 * check for undefined settings.  Setting these bit patterns
2979 		 * result in undefined behaviour and can lead to an unexpected
2980 		 * TRCTRAP.
2981 		 */
2982 		/* JG this loop looks unreadable */
2983 		/* Check 4 2-bit fields for invalid patterns.
2984 		 * These fields are R/Wi, for i = 0..3
2985 		 */
2986 		/* Is 10 in LENi allowed when running in compatibility mode? */
2987 		/* Pattern 10 in R/Wi might be used to indicate
2988 		 * breakpoint on I/O. Further analysis should be
2989 		 * carried to decide if it is safe and useful to
2990 		 * provide access to that capability
2991 		 */
2992 		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2993 		     i++, mask1 <<= 4, mask2 <<= 4)
2994 			if ((dbregs->dr[7] & mask1) == mask2)
2995 				return (EINVAL);
2996 
2997 		pcb = lp->lwp_thread->td_pcb;
2998 		ucred = lp->lwp_proc->p_ucred;
2999 
3000 		/*
3001 		 * Don't let a process set a breakpoint that is not within the
3002 		 * process's address space.  If a process could do this, it
3003 		 * could halt the system by setting a breakpoint in the kernel
3004 		 * (if ddb was enabled).  Thus, we need to check to make sure
3005 		 * that no breakpoints are being enabled for addresses outside
3006 		 * process's address space, unless, perhaps, we were called by
3007 		 * uid 0.
3008 		 *
3009 		 * XXX - what about when the watched area of the user's
3010 		 * address space is written into from within the kernel
3011 		 * ... wouldn't that still cause a breakpoint to be generated
3012 		 * from within kernel mode?
3013 		 */
3014 
3015 		if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
3016 			if (dbregs->dr[7] & 0x3) {
3017 				/* dr0 is enabled */
3018 				if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
3019 					return (EINVAL);
3020 			}
3021 
3022 			if (dbregs->dr[7] & (0x3<<2)) {
3023 				/* dr1 is enabled */
3024 				if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
3025 					return (EINVAL);
3026 			}
3027 
3028 			if (dbregs->dr[7] & (0x3<<4)) {
3029 				/* dr2 is enabled */
3030 				if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
3031 					return (EINVAL);
3032 			}
3033 
3034 			if (dbregs->dr[7] & (0x3<<6)) {
3035 				/* dr3 is enabled */
3036 				if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
3037 					return (EINVAL);
3038 			}
3039 		}
3040 
3041 		pcb->pcb_dr0 = dbregs->dr[0];
3042 		pcb->pcb_dr1 = dbregs->dr[1];
3043 		pcb->pcb_dr2 = dbregs->dr[2];
3044 		pcb->pcb_dr3 = dbregs->dr[3];
3045 		pcb->pcb_dr6 = dbregs->dr[6];
3046 		pcb->pcb_dr7 = dbregs->dr[7];
3047 
3048 		pcb->pcb_flags |= PCB_DBREGS;
3049 	}
3050 
3051 	return (0);
3052 }
3053 
3054 /*
3055  * Return > 0 if a hardware breakpoint has been hit, and the
3056  * breakpoint was in user space.  Return 0, otherwise.
3057  */
3058 int
3059 user_dbreg_trap(void)
3060 {
3061         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
3062         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
3063         int nbp;            /* number of breakpoints that triggered */
3064         caddr_t addr[4];    /* breakpoint addresses */
3065         int i;
3066 
3067         dr7 = rdr7();
3068         if ((dr7 & 0xff) == 0) {
3069                 /*
3070                  * all GE and LE bits in the dr7 register are zero,
3071                  * thus the trap couldn't have been caused by the
3072                  * hardware debug registers
3073                  */
3074                 return 0;
3075         }
3076 
3077         nbp = 0;
3078         dr6 = rdr6();
3079         bp = dr6 & 0xf;
3080 
3081         if (bp == 0) {
3082                 /*
3083                  * None of the breakpoint bits are set meaning this
3084                  * trap was not caused by any of the debug registers
3085                  */
3086                 return 0;
3087         }
3088 
3089         /*
3090          * at least one of the breakpoints were hit, check to see
3091          * which ones and if any of them are user space addresses
3092          */
3093 
3094         if (bp & 0x01) {
3095                 addr[nbp++] = (caddr_t)rdr0();
3096         }
3097         if (bp & 0x02) {
3098                 addr[nbp++] = (caddr_t)rdr1();
3099         }
3100         if (bp & 0x04) {
3101                 addr[nbp++] = (caddr_t)rdr2();
3102         }
3103         if (bp & 0x08) {
3104                 addr[nbp++] = (caddr_t)rdr3();
3105         }
3106 
3107         for (i = 0; i < nbp; i++) {
3108                 if (addr[i] < (caddr_t)VM_MAX_USER_ADDRESS) {
3109                         /*
3110                          * addr[i] is in user space
3111                          */
3112                         return nbp;
3113                 }
3114         }
3115 
3116         /*
3117          * None of the breakpoints are in user space.
3118          */
3119         return 0;
3120 }
3121 
3122 
3123 #ifndef DDB
3124 void
3125 Debugger(const char *msg)
3126 {
3127 	kprintf("Debugger(\"%s\") called.\n", msg);
3128 }
3129 #endif /* no DDB */
3130 
3131 #ifdef DDB
3132 
3133 /*
3134  * Provide inb() and outb() as functions.  They are normally only
3135  * available as macros calling inlined functions, thus cannot be
3136  * called inside DDB.
3137  *
3138  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
3139  */
3140 
3141 #undef inb
3142 #undef outb
3143 
3144 /* silence compiler warnings */
3145 u_char inb(u_int);
3146 void outb(u_int, u_char);
3147 
3148 u_char
3149 inb(u_int port)
3150 {
3151 	u_char	data;
3152 	/*
3153 	 * We use %%dx and not %1 here because i/o is done at %dx and not at
3154 	 * %edx, while gcc generates inferior code (movw instead of movl)
3155 	 * if we tell it to load (u_short) port.
3156 	 */
3157 	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
3158 	return (data);
3159 }
3160 
3161 void
3162 outb(u_int port, u_char data)
3163 {
3164 	u_char	al;
3165 	/*
3166 	 * Use an unnecessary assignment to help gcc's register allocator.
3167 	 * This make a large difference for gcc-1.40 and a tiny difference
3168 	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
3169 	 * best results.  gcc-2.6.0 can't handle this.
3170 	 */
3171 	al = data;
3172 	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
3173 }
3174 
3175 #endif /* DDB */
3176 
3177 
3178 
3179 /*
3180  * initialize all the SMP locks
3181  */
3182 
3183 /* critical region when masking or unmasking interupts */
3184 struct spinlock_deprecated imen_spinlock;
3185 
3186 /* locks com (tty) data/hardware accesses: a FASTINTR() */
3187 struct spinlock_deprecated com_spinlock;
3188 
3189 /* lock regions around the clock hardware */
3190 struct spinlock_deprecated clock_spinlock;
3191 
3192 static void
3193 init_locks(void)
3194 {
3195 	/*
3196 	 * Get the initial mplock with a count of 1 for the BSP.
3197 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
3198 	 */
3199 	cpu_get_initial_mplock();
3200 	/* DEPRECATED */
3201 	spin_init_deprecated(&imen_spinlock);
3202 	spin_init_deprecated(&com_spinlock);
3203 	spin_init_deprecated(&clock_spinlock);
3204 
3205 	/* our token pool needs to work early */
3206 	lwkt_token_pool_init();
3207 }
3208 
3209 boolean_t
3210 cpu_mwait_hint_valid(uint32_t hint)
3211 {
3212 	int cx_idx, sub;
3213 
3214 	cx_idx = MWAIT_EAX_TO_CX(hint);
3215 	if (cx_idx >= CPU_MWAIT_CX_MAX)
3216 		return FALSE;
3217 
3218 	sub = MWAIT_EAX_TO_CX_SUB(hint);
3219 	if (sub >= cpu_mwait_cx_info[cx_idx].subcnt)
3220 		return FALSE;
3221 
3222 	return TRUE;
3223 }
3224 
3225 void
3226 cpu_mwait_cx_no_bmsts(void)
3227 {
3228 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_STS);
3229 }
3230 
3231 void
3232 cpu_mwait_cx_no_bmarb(void)
3233 {
3234 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_ARB);
3235 }
3236 
3237 static int
3238 cpu_mwait_cx_hint2name(int hint, char *name, int namelen, boolean_t allow_auto)
3239 {
3240 	int old_cx_idx, sub = 0;
3241 
3242 	if (hint >= 0) {
3243 		old_cx_idx = MWAIT_EAX_TO_CX(hint);
3244 		sub = MWAIT_EAX_TO_CX_SUB(hint);
3245 	} else if (hint == CPU_MWAIT_HINT_AUTO) {
3246 		old_cx_idx = allow_auto ? CPU_MWAIT_C2 : CPU_MWAIT_CX_MAX;
3247 	} else if (hint == CPU_MWAIT_HINT_AUTODEEP) {
3248 		old_cx_idx = allow_auto ? CPU_MWAIT_C3 : CPU_MWAIT_CX_MAX;
3249 	} else {
3250 		old_cx_idx = CPU_MWAIT_CX_MAX;
3251 	}
3252 
3253 	if (!CPU_MWAIT_HAS_CX)
3254 		strlcpy(name, "NONE", namelen);
3255 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTO)
3256 		strlcpy(name, "AUTO", namelen);
3257 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTODEEP)
3258 		strlcpy(name, "AUTODEEP", namelen);
3259 	else if (old_cx_idx >= CPU_MWAIT_CX_MAX ||
3260 	    sub >= cpu_mwait_cx_info[old_cx_idx].subcnt)
3261 		strlcpy(name, "INVALID", namelen);
3262 	else
3263 		ksnprintf(name, namelen, "C%d/%d", old_cx_idx, sub);
3264 
3265 	return old_cx_idx;
3266 }
3267 
3268 static int
3269 cpu_mwait_cx_name2hint(char *name, int *hint0, boolean_t allow_auto)
3270 {
3271 	int cx_idx, sub, hint;
3272 	char *ptr, *start;
3273 
3274 	if (allow_auto && strcmp(name, "AUTO") == 0) {
3275 		hint = CPU_MWAIT_HINT_AUTO;
3276 		cx_idx = CPU_MWAIT_C2;
3277 		goto done;
3278 	}
3279 	if (allow_auto && strcmp(name, "AUTODEEP") == 0) {
3280 		hint = CPU_MWAIT_HINT_AUTODEEP;
3281 		cx_idx = CPU_MWAIT_C3;
3282 		goto done;
3283 	}
3284 
3285 	if (strlen(name) < 4 || toupper(name[0]) != 'C')
3286 		return -1;
3287 	start = &name[1];
3288 	ptr = NULL;
3289 
3290 	cx_idx = strtol(start, &ptr, 10);
3291 	if (ptr == start || *ptr != '/')
3292 		return -1;
3293 	if (cx_idx < 0 || cx_idx >= CPU_MWAIT_CX_MAX)
3294 		return -1;
3295 
3296 	start = ptr + 1;
3297 	ptr = NULL;
3298 
3299 	sub = strtol(start, &ptr, 10);
3300 	if (*ptr != '\0')
3301 		return -1;
3302 	if (sub < 0 || sub >= cpu_mwait_cx_info[cx_idx].subcnt)
3303 		return -1;
3304 
3305 	hint = MWAIT_EAX_HINT(cx_idx, sub);
3306 done:
3307 	*hint0 = hint;
3308 	return cx_idx;
3309 }
3310 
3311 static int
3312 cpu_mwait_cx_transit(int old_cx_idx, int cx_idx)
3313 {
3314 	if (cx_idx >= CPU_MWAIT_C3 && cpu_mwait_c3_preamble)
3315 		return EOPNOTSUPP;
3316 	if (old_cx_idx < CPU_MWAIT_C3 && cx_idx >= CPU_MWAIT_C3) {
3317 		int error;
3318 
3319 		error = cputimer_intr_powersave_addreq();
3320 		if (error)
3321 			return error;
3322 	} else if (old_cx_idx >= CPU_MWAIT_C3 && cx_idx < CPU_MWAIT_C3) {
3323 		cputimer_intr_powersave_remreq();
3324 	}
3325 	return 0;
3326 }
3327 
3328 static int
3329 cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS, int *hint0,
3330     boolean_t allow_auto)
3331 {
3332 	int error, cx_idx, old_cx_idx, hint;
3333 	char name[CPU_MWAIT_CX_NAMELEN];
3334 
3335 	hint = *hint0;
3336 	old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name),
3337 	    allow_auto);
3338 
3339 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
3340 	if (error != 0 || req->newptr == NULL)
3341 		return error;
3342 
3343 	if (!CPU_MWAIT_HAS_CX)
3344 		return EOPNOTSUPP;
3345 
3346 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, allow_auto);
3347 	if (cx_idx < 0)
3348 		return EINVAL;
3349 
3350 	error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3351 	if (error)
3352 		return error;
3353 
3354 	*hint0 = hint;
3355 	return 0;
3356 }
3357 
3358 static int
3359 cpu_mwait_cx_setname(struct cpu_idle_stat *stat, const char *cx_name)
3360 {
3361 	int error, cx_idx, old_cx_idx, hint;
3362 	char name[CPU_MWAIT_CX_NAMELEN];
3363 
3364 	KASSERT(CPU_MWAIT_HAS_CX, ("cpu does not support mwait CX extension"));
3365 
3366 	hint = stat->hint;
3367 	old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3368 
3369 	strlcpy(name, cx_name, sizeof(name));
3370 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3371 	if (cx_idx < 0)
3372 		return EINVAL;
3373 
3374 	error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3375 	if (error)
3376 		return error;
3377 
3378 	stat->hint = hint;
3379 	return 0;
3380 }
3381 
3382 static int
3383 cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS)
3384 {
3385 	int hint = cpu_mwait_halt_global;
3386 	int error, cx_idx, cpu;
3387 	char name[CPU_MWAIT_CX_NAMELEN], cx_name[CPU_MWAIT_CX_NAMELEN];
3388 
3389 	cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3390 
3391 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
3392 	if (error != 0 || req->newptr == NULL)
3393 		return error;
3394 
3395 	if (!CPU_MWAIT_HAS_CX)
3396 		return EOPNOTSUPP;
3397 
3398 	/* Save name for later per-cpu CX configuration */
3399 	strlcpy(cx_name, name, sizeof(cx_name));
3400 
3401 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3402 	if (cx_idx < 0)
3403 		return EINVAL;
3404 
3405 	/* Change per-cpu CX configuration */
3406 	for (cpu = 0; cpu < ncpus; ++cpu) {
3407 		error = cpu_mwait_cx_setname(&cpu_idle_stats[cpu], cx_name);
3408 		if (error)
3409 			return error;
3410 	}
3411 
3412 	cpu_mwait_halt_global = hint;
3413 	return 0;
3414 }
3415 
3416 static int
3417 cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS)
3418 {
3419 	struct cpu_idle_stat *stat = arg1;
3420 	int error;
3421 
3422 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3423 	    &stat->hint, TRUE);
3424 	return error;
3425 }
3426 
3427 static int
3428 cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS)
3429 {
3430 	int error;
3431 
3432 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3433 	    &cpu_mwait_spin, FALSE);
3434 	return error;
3435 }
3436 
3437 /*
3438  * This manual debugging code is called unconditionally from Xtimer
3439  * (the per-cpu timer interrupt) whether the current thread is in a
3440  * critical section or not) and can be useful in tracking down lockups.
3441  *
3442  * NOTE: MANUAL DEBUG CODE
3443  */
3444 #if 0
3445 static int saveticks[SMP_MAXCPU];
3446 static int savecounts[SMP_MAXCPU];
3447 #endif
3448 
3449 void
3450 pcpu_timer_always(struct intrframe *frame)
3451 {
3452 #if 0
3453 	globaldata_t gd = mycpu;
3454 	int cpu = gd->gd_cpuid;
3455 	char buf[64];
3456 	short *gptr;
3457 	int i;
3458 
3459 	if (cpu <= 20) {
3460 		gptr = (short *)0xFFFFFFFF800b8000 + 80 * cpu;
3461 		*gptr = ((*gptr + 1) & 0x00FF) | 0x0700;
3462 		++gptr;
3463 
3464 		ksnprintf(buf, sizeof(buf), " %p %16s %d %16s ",
3465 		    (void *)frame->if_rip, gd->gd_curthread->td_comm, ticks,
3466 		    gd->gd_infomsg);
3467 		for (i = 0; buf[i]; ++i) {
3468 			gptr[i] = 0x0700 | (unsigned char)buf[i];
3469 		}
3470 	}
3471 #if 0
3472 	if (saveticks[gd->gd_cpuid] != ticks) {
3473 		saveticks[gd->gd_cpuid] = ticks;
3474 		savecounts[gd->gd_cpuid] = 0;
3475 	}
3476 	++savecounts[gd->gd_cpuid];
3477 	if (savecounts[gd->gd_cpuid] > 2000 && panicstr == NULL) {
3478 		panic("cpud %d panicing on ticks failure",
3479 			gd->gd_cpuid);
3480 	}
3481 	for (i = 0; i < ncpus; ++i) {
3482 		int delta;
3483 		if (saveticks[i] && panicstr == NULL) {
3484 			delta = saveticks[i] - ticks;
3485 			if (delta < -10 || delta > 10) {
3486 				panic("cpu %d panicing on cpu %d watchdog",
3487 				      gd->gd_cpuid, i);
3488 			}
3489 		}
3490 	}
3491 #endif
3492 #endif
3493 }
3494