1 /*
2  * Copyright (c) 1996, by Steve Passe
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. The name of the developer may NOT be used to endorse or promote products
11  *    derived from this software without specific prior written permission.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  * $FreeBSD: src/sys/i386/i386/mp_machdep.c,v 1.115.2.15 2003/03/14 21:22:35 jhb Exp $
26  */
27 
28 #include "opt_cpu.h"
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/sysctl.h>
34 #include <sys/malloc.h>
35 #include <sys/memrange.h>
36 #include <sys/cons.h>	/* cngetc() */
37 #include <sys/machintr.h>
38 #include <sys/cpu_topology.h>
39 
40 #include <sys/mplock2.h>
41 
42 #include <vm/vm.h>
43 #include <vm/vm_param.h>
44 #include <vm/pmap.h>
45 #include <vm/vm_kern.h>
46 #include <vm/vm_extern.h>
47 #include <sys/lock.h>
48 #include <vm/vm_map.h>
49 #include <sys/user.h>
50 
51 #include <machine/smp.h>
52 #include <machine_base/apic/apicreg.h>
53 #include <machine/atomic.h>
54 #include <machine/cpufunc.h>
55 #include <machine/cputypes.h>
56 #include <machine_base/apic/lapic.h>
57 #include <machine_base/apic/ioapic.h>
58 #include <machine_base/acpica/acpi_md_cpu.h>
59 #include <machine/psl.h>
60 #include <machine/segments.h>
61 #include <machine/tss.h>
62 #include <machine/specialreg.h>
63 #include <machine/globaldata.h>
64 #include <machine/pmap_inval.h>
65 #include <machine/clock.h>
66 
67 #include <machine/md_var.h>		/* setidt() */
68 #include <machine_base/icu/icu.h>	/* IPIs */
69 #include <machine_base/icu/icu_var.h>
70 #include <machine_base/apic/ioapic_abi.h>
71 #include <machine/intr_machdep.h>	/* IPIs */
72 
73 #define WARMBOOT_TARGET		0
74 #define WARMBOOT_OFF		(KERNBASE + 0x0467)
75 #define WARMBOOT_SEG		(KERNBASE + 0x0469)
76 
77 #define CMOS_REG		(0x70)
78 #define CMOS_DATA		(0x71)
79 #define BIOS_RESET		(0x0f)
80 #define BIOS_WARM		(0x0a)
81 
82 /*
83  * this code MUST be enabled here and in mpboot.s.
84  * it follows the very early stages of AP boot by placing values in CMOS ram.
85  * it NORMALLY will never be needed and thus the primitive method for enabling.
86  *
87  */
88 #if defined(CHECK_POINTS)
89 #define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
90 #define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
91 
92 #define CHECK_INIT(D);				\
93 	CHECK_WRITE(0x34, (D));			\
94 	CHECK_WRITE(0x35, (D));			\
95 	CHECK_WRITE(0x36, (D));			\
96 	CHECK_WRITE(0x37, (D));			\
97 	CHECK_WRITE(0x38, (D));			\
98 	CHECK_WRITE(0x39, (D));
99 
100 #define CHECK_PRINT(S);				\
101 	kprintf("%s: %d, %d, %d, %d, %d, %d\n",	\
102 	   (S),					\
103 	   CHECK_READ(0x34),			\
104 	   CHECK_READ(0x35),			\
105 	   CHECK_READ(0x36),			\
106 	   CHECK_READ(0x37),			\
107 	   CHECK_READ(0x38),			\
108 	   CHECK_READ(0x39));
109 
110 #else				/* CHECK_POINTS */
111 
112 #define CHECK_INIT(D)
113 #define CHECK_PRINT(S)
114 
115 #endif				/* CHECK_POINTS */
116 
117 /*
118  * Values to send to the POST hardware.
119  */
120 #define MP_BOOTADDRESS_POST	0x10
121 #define MP_PROBE_POST		0x11
122 #define MPTABLE_PASS1_POST	0x12
123 
124 #define MP_START_POST		0x13
125 #define MP_ENABLE_POST		0x14
126 #define MPTABLE_PASS2_POST	0x15
127 
128 #define START_ALL_APS_POST	0x16
129 #define INSTALL_AP_TRAMP_POST	0x17
130 #define START_AP_POST		0x18
131 
132 #define MP_ANNOUNCE_POST	0x19
133 
134 /** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
135 int	current_postcode;
136 
137 /** XXX FIXME: what system files declare these??? */
138 
139 extern int naps;
140 
141 int64_t tsc0_offset;
142 extern int64_t tsc_offsets[];
143 
144 /* AP uses this during bootstrap.  Do not staticize.  */
145 char *bootSTK;
146 static int bootAP;
147 
148 struct pcb stoppcbs[MAXCPU];
149 
150 extern inthand_t IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
151 
152 /*
153  * Local data and functions.
154  */
155 
156 static u_int	boot_address;
157 static int	mp_finish;
158 static int	mp_finish_lapic;
159 
160 static int	start_all_aps(u_int boot_addr);
161 #if 0
162 static void	install_ap_tramp(u_int boot_addr);
163 #endif
164 static int	start_ap(struct mdglobaldata *gd, u_int boot_addr, int smibest);
165 static int	smitest(void);
166 static void	mp_bsp_simple_setup(void);
167 
168 /* which cpus have been started */
169 static cpumask_t smp_startup_mask = CPUMASK_INITIALIZER_ONLYONE;
170 /* which cpus have lapic been inited */
171 static cpumask_t smp_lapic_mask = CPUMASK_INITIALIZER_ONLYONE;
172 /* which cpus are ready for IPIs etc? */
173 cpumask_t smp_active_mask = CPUMASK_INITIALIZER_ONLYONE;
174 cpumask_t smp_finalize_mask = CPUMASK_INITIALIZER_ONLYONE;
175 
176 SYSCTL_OPAQUE(_machdep, OID_AUTO, smp_active, CTLFLAG_RD,
177 	      &smp_active_mask, sizeof(smp_active_mask), "LU", "");
178 static u_int	bootMP_size;
179 static u_int	report_invlpg_src;
180 SYSCTL_INT(_machdep, OID_AUTO, report_invlpg_src, CTLFLAG_RW,
181 	&report_invlpg_src, 0, "");
182 static u_int	report_invltlb_src;
183 SYSCTL_INT(_machdep, OID_AUTO, report_invltlb_src, CTLFLAG_RW,
184 	&report_invltlb_src, 0, "");
185 static int	optimized_invltlb;
186 SYSCTL_INT(_machdep, OID_AUTO, optimized_invltlb, CTLFLAG_RW,
187 	&optimized_invltlb, 0, "");
188 static int	all_but_self_ipi_enable = 1;
189 SYSCTL_INT(_machdep, OID_AUTO, all_but_self_ipi_enable, CTLFLAG_RW,
190 	&all_but_self_ipi_enable, 0, "");
191 
192 /* Local data for detecting CPU TOPOLOGY */
193 static int core_bits = 0;
194 static int logical_CPU_bits = 0;
195 
196 
197 /*
198  * Calculate usable address in base memory for AP trampoline code.
199  */
200 u_int
201 mp_bootaddress(u_int basemem)
202 {
203 	POSTCODE(MP_BOOTADDRESS_POST);
204 
205 	bootMP_size = mptramp_end - mptramp_start;
206 	boot_address = trunc_page(basemem * 1024); /* round down to 4k boundary */
207 	if (((basemem * 1024) - boot_address) < bootMP_size)
208 		boot_address -= PAGE_SIZE;	/* not enough, lower by 4k */
209 	/* 3 levels of page table pages */
210 	mptramp_pagetables = boot_address - (PAGE_SIZE * 3);
211 
212 	return mptramp_pagetables;
213 }
214 
215 /*
216  * Print various information about the SMP system hardware and setup.
217  */
218 void
219 mp_announce(void)
220 {
221 	int     x;
222 
223 	POSTCODE(MP_ANNOUNCE_POST);
224 
225 	kprintf("DragonFly/MP: Multiprocessor motherboard\n");
226 	kprintf(" cpu0 (BSP): apic id: %2d\n", CPUID_TO_APICID(0));
227 	for (x = 1; x <= naps; ++x)
228 		kprintf(" cpu%d (AP):  apic id: %2d\n", x, CPUID_TO_APICID(x));
229 
230 	if (!ioapic_enable)
231 		kprintf(" Warning: APIC I/O disabled\n");
232 }
233 
234 /*
235  * AP cpu's call this to sync up protected mode.
236  *
237  * WARNING! %gs is not set up on entry.  This routine sets up %gs.
238  */
239 void
240 init_secondary(void)
241 {
242 	int	gsel_tss;
243 	int	x, myid = bootAP;
244 	u_int64_t msr, cr0;
245 	struct mdglobaldata *md;
246 	struct privatespace *ps;
247 
248 	ps = CPU_prvspace[myid];
249 
250 	gdt_segs[GPROC0_SEL].ssd_base = (long)&ps->common_tss;
251 	ps->mdglobaldata.mi.gd_prvspace = ps;
252 
253 	/* We fill the 32-bit segment descriptors */
254 	for (x = 0; x < NGDT; x++) {
255 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
256 			ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x]);
257 	}
258 	/* And now a 64-bit one */
259 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
260 	    (struct system_segment_descriptor *)&gdt[myid * NGDT + GPROC0_SEL]);
261 
262 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
263 	r_gdt.rd_base = (long) &gdt[myid * NGDT];
264 	lgdt(&r_gdt);			/* does magic intra-segment return */
265 
266 	/* lgdt() destroys the GSBASE value, so we load GSBASE after lgdt() */
267 	wrmsr(MSR_FSBASE, 0);		/* User value */
268 	wrmsr(MSR_GSBASE, (u_int64_t)ps);
269 	wrmsr(MSR_KGSBASE, 0);		/* XXX User value while we're in the kernel */
270 
271 	lidt(&r_idt_arr[mdcpu->mi.gd_cpuid]);
272 
273 #if 0
274 	lldt(_default_ldt);
275 	mdcpu->gd_currentldt = _default_ldt;
276 #endif
277 
278 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
279 	gdt[myid * NGDT + GPROC0_SEL].sd_type = SDT_SYSTSS;
280 
281 	md = mdcpu;	/* loaded through %gs:0 (mdglobaldata.mi.gd_prvspace)*/
282 
283 	/*
284 	 * TSS entry point for interrupts, traps, and exceptions
285 	 * (sans NMI).  This will always go to near the top of the pcpu
286 	 * trampoline area.  Hardware-pushed data will be copied into
287 	 * the trap-frame on entry, and (if necessary) returned to the
288 	 * trampoline on exit.
289 	 *
290 	 * We store some pcb data for the trampoline code above the
291 	 * stack the cpu hw pushes into, and arrange things so the
292 	 * address of tr_pcb_rsp is the same as the desired top of
293 	 * stack.
294 	 */
295 	ps->common_tss.tss_rsp0 = (register_t)&ps->trampoline.tr_pcb_rsp;
296 	ps->trampoline.tr_pcb_rsp = ps->common_tss.tss_rsp0;
297 	ps->trampoline.tr_pcb_gs_kernel = (register_t)md;
298 	ps->trampoline.tr_pcb_cr3 = KPML4phys;	/* adj to user cr3 live */
299 	ps->dbltramp.tr_pcb_gs_kernel = (register_t)md;
300 	ps->dbltramp.tr_pcb_cr3 = KPML4phys;
301 	ps->dbgtramp.tr_pcb_gs_kernel = (register_t)md;
302 	ps->dbgtramp.tr_pcb_cr3 = KPML4phys;
303 
304 #if 0 /* JG XXX */
305 	ps->common_tss.tss_ioopt = (sizeof ps->common_tss) << 16;
306 #endif
307 	md->gd_tss_gdt = &gdt[myid * NGDT + GPROC0_SEL];
308 	md->gd_common_tssd = *md->gd_tss_gdt;
309 
310 	/* double fault stack */
311 	ps->common_tss.tss_ist1 = (register_t)&ps->dbltramp.tr_pcb_rsp;
312 	ps->common_tss.tss_ist2 = (register_t)&ps->dbgtramp.tr_pcb_rsp;
313 
314 	ltr(gsel_tss);
315 
316 	/*
317 	 * Set to a known state:
318 	 * Set by mpboot.s: CR0_PG, CR0_PE
319 	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
320 	 */
321 	cr0 = rcr0();
322 	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
323 	load_cr0(cr0);
324 
325 	/* Set up the fast syscall stuff */
326 	msr = rdmsr(MSR_EFER) | EFER_SCE;
327 	wrmsr(MSR_EFER, msr);
328 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
329 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
330 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
331 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
332 	wrmsr(MSR_STAR, msr);
333 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
334 
335 	pmap_set_opt();		/* PSE/4MB pages, etc */
336 	pmap_init_pat();	/* Page Attribute Table */
337 
338 	/* set up CPU registers and state */
339 	cpu_setregs();
340 
341 	/* set up SSE/NX registers */
342 	initializecpu(myid);
343 
344 	/* set up FPU state on the AP */
345 	npxinit();
346 
347 	/* If BSP is in the X2APIC mode, put the AP into the X2APIC mode. */
348 	if (x2apic_enable)
349 		lapic_x2apic_enter(FALSE);
350 
351 	/* disable the APIC, just to be SURE */
352 	LAPIC_WRITE(svr, (LAPIC_READ(svr) & ~APIC_SVR_ENABLE));
353 }
354 
355 /*******************************************************************
356  * local functions and data
357  */
358 
359 /*
360  * Start the SMP system
361  */
362 static void
363 mp_start_aps(void *dummy __unused)
364 {
365 	if (lapic_enable) {
366 		/* start each Application Processor */
367 		start_all_aps(boot_address);
368 	} else {
369 		mp_bsp_simple_setup();
370 	}
371 }
372 SYSINIT(startaps, SI_BOOT2_START_APS, SI_ORDER_FIRST, mp_start_aps, NULL);
373 
374 /*
375  * start each AP in our list
376  */
377 static int
378 start_all_aps(u_int boot_addr)
379 {
380 	vm_offset_t va = boot_address + KERNBASE;
381 	u_int64_t *pt4, *pt3, *pt2;
382 	int	pssize;
383 	int     x, i;
384 	int	shift;
385 	int	smicount;
386 	int	smibest;
387 	int	smilast;
388 	u_char  mpbiosreason;
389 	u_long  mpbioswarmvec;
390 	struct mdglobaldata *gd;
391 	struct privatespace *ps;
392 	size_t ipiq_size;
393 
394 	POSTCODE(START_ALL_APS_POST);
395 
396 	/* install the AP 1st level boot code */
397 	pmap_kenter(va, boot_address);
398 	cpu_invlpg((void *)va);		/* JG XXX */
399 	bcopy(mptramp_start, (void *)va, bootMP_size);
400 
401 	/* Locate the page tables, they'll be below the trampoline */
402 	pt4 = (u_int64_t *)(uintptr_t)(mptramp_pagetables + KERNBASE);
403 	pt3 = pt4 + (PAGE_SIZE) / sizeof(u_int64_t);
404 	pt2 = pt3 + (PAGE_SIZE) / sizeof(u_int64_t);
405 
406 	/* Create the initial 1GB replicated page tables */
407 	for (i = 0; i < 512; i++) {
408 		/* Each slot of the level 4 pages points to the same level 3 page */
409 		pt4[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + PAGE_SIZE);
410 		pt4[i] |= kernel_pmap.pmap_bits[PG_V_IDX] |
411 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
412 		    kernel_pmap.pmap_bits[PG_U_IDX];
413 
414 		/* Each slot of the level 3 pages points to the same level 2 page */
415 		pt3[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + (2 * PAGE_SIZE));
416 		pt3[i] |= kernel_pmap.pmap_bits[PG_V_IDX] |
417 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
418 		    kernel_pmap.pmap_bits[PG_U_IDX];
419 
420 		/* The level 2 page slots are mapped with 2MB pages for 1GB. */
421 		pt2[i] = i * (2 * 1024 * 1024);
422 		pt2[i] |= kernel_pmap.pmap_bits[PG_V_IDX] |
423 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
424 		    kernel_pmap.pmap_bits[PG_PS_IDX] |
425 		    kernel_pmap.pmap_bits[PG_U_IDX];
426 	}
427 
428 	/* save the current value of the warm-start vector */
429 	mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
430 	outb(CMOS_REG, BIOS_RESET);
431 	mpbiosreason = inb(CMOS_DATA);
432 
433 	/* setup a vector to our boot code */
434 	*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
435 	*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
436 	outb(CMOS_REG, BIOS_RESET);
437 	outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
438 
439 	/*
440 	 * If we have a TSC we can figure out the SMI interrupt rate.
441 	 * The SMI does not necessarily use a constant rate.  Spend
442 	 * up to 250ms trying to figure it out.
443 	 */
444 	smibest = 0;
445 	if (cpu_feature & CPUID_TSC) {
446 		set_apic_timer(275000);
447 		smilast = read_apic_timer();
448 		for (x = 0; x < 20 && read_apic_timer(); ++x) {
449 			smicount = smitest();
450 			if (smibest == 0 || smilast - smicount < smibest)
451 				smibest = smilast - smicount;
452 			smilast = smicount;
453 		}
454 		if (smibest > 250000)
455 			smibest = 0;
456 	}
457 	if (smibest)
458 		kprintf("SMI Frequency (worst case): %d Hz (%d us)\n",
459 			1000000 / smibest, smibest);
460 
461 	/* start each AP */
462 	for (x = 1; x <= naps; ++x) {
463 		/* This is a bit verbose, it will go away soon.  */
464 
465 		pssize = sizeof(struct privatespace);
466 		ps = (void *)kmem_alloc3(&kernel_map, pssize, VM_SUBSYS_GD,
467 					 KM_CPU(x));
468 		CPU_prvspace[x] = ps;
469 #if 0
470 		kprintf("ps %d %p %d\n", x, ps, pssize);
471 #endif
472 		bzero(ps, pssize);
473 		gd = &ps->mdglobaldata;
474 		gd->mi.gd_prvspace = ps;
475 
476 		/* prime data page for it to use */
477 		mi_gdinit(&gd->mi, x);
478 		cpu_gdinit(gd, x);
479 		ipiq_size = sizeof(struct lwkt_ipiq) * (naps + 1);
480 		gd->mi.gd_ipiq = (void *)kmem_alloc3(&kernel_map, ipiq_size,
481 						     VM_SUBSYS_IPIQ, KM_CPU(x));
482 		bzero(gd->mi.gd_ipiq, ipiq_size);
483 
484 		gd->gd_acpi_id = CPUID_TO_ACPIID(gd->mi.gd_cpuid);
485 
486 		/* initialize arc4random. */
487 		arc4_init_pcpu(x);
488 
489 		/* setup a vector to our boot code */
490 		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
491 		*((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4);
492 		outb(CMOS_REG, BIOS_RESET);
493 		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
494 
495 		/*
496 		 * Setup the AP boot stack
497 		 */
498 		bootSTK = &ps->idlestack[UPAGES * PAGE_SIZE - PAGE_SIZE];
499 		bootAP = x;
500 
501 		/* attempt to start the Application Processor */
502 		CHECK_INIT(99);	/* setup checkpoints */
503 		if (!start_ap(gd, boot_addr, smibest)) {
504 			kprintf("\nAP #%d (PHY# %d) failed!\n",
505 				x, CPUID_TO_APICID(x));
506 			CHECK_PRINT("trace");	/* show checkpoints */
507 			/* better panic as the AP may be running loose */
508 			kprintf("panic y/n? [y] ");
509 			cnpoll(TRUE);
510 			if (cngetc() != 'n')
511 				panic("bye-bye");
512 			cnpoll(FALSE);
513 		}
514 		CHECK_PRINT("trace");		/* show checkpoints */
515 	}
516 
517 	/* set ncpus to 1 + highest logical cpu.  Not all may have come up */
518 	ncpus = x;
519 
520 	for (shift = 0; (1 << shift) <= ncpus; ++shift)
521 		;
522 	--shift;
523 
524 	/* ncpus_fit -- ncpus rounded up to the nearest power of 2 */
525 	if ((1 << shift) < ncpus)
526 		++shift;
527 	ncpus_fit = 1 << shift;
528 	ncpus_fit_mask = ncpus_fit - 1;
529 
530 	/* build our map of 'other' CPUs */
531 	mycpu->gd_other_cpus = smp_startup_mask;
532 	CPUMASK_NANDBIT(mycpu->gd_other_cpus, mycpu->gd_cpuid);
533 
534 	gd = (struct mdglobaldata *)mycpu;
535 	gd->gd_acpi_id = CPUID_TO_ACPIID(mycpu->gd_cpuid);
536 
537 	ipiq_size = sizeof(struct lwkt_ipiq) * ncpus;
538 	mycpu->gd_ipiq = (void *)kmem_alloc3(&kernel_map, ipiq_size,
539 					     VM_SUBSYS_IPIQ, KM_CPU(0));
540 	bzero(mycpu->gd_ipiq, ipiq_size);
541 
542 	/* initialize arc4random. */
543 	arc4_init_pcpu(0);
544 
545 	/* restore the warmstart vector */
546 	*(u_long *) WARMBOOT_OFF = mpbioswarmvec;
547 	outb(CMOS_REG, BIOS_RESET);
548 	outb(CMOS_DATA, mpbiosreason);
549 
550 	/*
551 	 * NOTE!  The idlestack for the BSP was setup by locore.  Finish
552 	 * up, clean out the P==V mapping we did earlier.
553 	 */
554 	pmap_set_opt();
555 
556 	/*
557 	 * Wait all APs to finish initializing LAPIC
558 	 */
559 	if (bootverbose)
560 		kprintf("SMP: Waiting APs LAPIC initialization\n");
561 	if (cpu_feature & CPUID_TSC)
562 		tsc0_offset = rdtsc();
563 	tsc_offsets[0] = 0;
564 	mp_finish_lapic = 1;
565 	rel_mplock();
566 
567 	while (CPUMASK_CMPMASKNEQ(smp_lapic_mask, smp_startup_mask)) {
568 		cpu_pause();
569 		cpu_lfence();
570 		if (cpu_feature & CPUID_TSC)
571 			tsc0_offset = rdtsc();
572 	}
573 	while (try_mplock() == 0) {
574 		cpu_pause();
575 		cpu_lfence();
576 	}
577 
578 	/* number of APs actually started */
579 	return ncpus - 1;
580 }
581 
582 
583 /*
584  * load the 1st level AP boot code into base memory.
585  */
586 
587 /* targets for relocation */
588 extern void bigJump(void);
589 extern void bootCodeSeg(void);
590 extern void bootDataSeg(void);
591 extern void MPentry(void);
592 extern u_int MP_GDT;
593 extern u_int mp_gdtbase;
594 
595 #if 0
596 
597 static void
598 install_ap_tramp(u_int boot_addr)
599 {
600 	int     x;
601 	int     size = *(int *) ((u_long) & bootMP_size);
602 	u_char *src = (u_char *) ((u_long) bootMP);
603 	u_char *dst = (u_char *) boot_addr + KERNBASE;
604 	u_int   boot_base = (u_int) bootMP;
605 	u_int8_t *dst8;
606 	u_int16_t *dst16;
607 	u_int32_t *dst32;
608 
609 	POSTCODE(INSTALL_AP_TRAMP_POST);
610 
611 	for (x = 0; x < size; ++x)
612 		*dst++ = *src++;
613 
614 	/*
615 	 * modify addresses in code we just moved to basemem. unfortunately we
616 	 * need fairly detailed info about mpboot.s for this to work.  changes
617 	 * to mpboot.s might require changes here.
618 	 */
619 
620 	/* boot code is located in KERNEL space */
621 	dst = (u_char *) boot_addr + KERNBASE;
622 
623 	/* modify the lgdt arg */
624 	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
625 	*dst32 = boot_addr + ((u_int) & MP_GDT - boot_base);
626 
627 	/* modify the ljmp target for MPentry() */
628 	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
629 	*dst32 = ((u_int) MPentry - KERNBASE);
630 
631 	/* modify the target for boot code segment */
632 	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
633 	dst8 = (u_int8_t *) (dst16 + 1);
634 	*dst16 = (u_int) boot_addr & 0xffff;
635 	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
636 
637 	/* modify the target for boot data segment */
638 	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
639 	dst8 = (u_int8_t *) (dst16 + 1);
640 	*dst16 = (u_int) boot_addr & 0xffff;
641 	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
642 }
643 
644 #endif
645 
646 /*
647  * This function starts the AP (application processor) identified
648  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
649  * to accomplish this.  This is necessary because of the nuances
650  * of the different hardware we might encounter.  It ain't pretty,
651  * but it seems to work.
652  *
653  * NOTE: eventually an AP gets to ap_init(), which is called just
654  * before the AP goes into the LWKT scheduler's idle loop.
655  */
656 static int
657 start_ap(struct mdglobaldata *gd, u_int boot_addr, int smibest)
658 {
659 	int     physical_cpu;
660 	int     vector;
661 
662 	POSTCODE(START_AP_POST);
663 
664 	/* get the PHYSICAL APIC ID# */
665 	physical_cpu = CPUID_TO_APICID(gd->mi.gd_cpuid);
666 
667 	/* calculate the vector */
668 	vector = (boot_addr >> 12) & 0xff;
669 
670 	/* We don't want anything interfering */
671 	cpu_disable_intr();
672 
673 	/* Make sure the target cpu sees everything */
674 	wbinvd();
675 
676 	/*
677 	 * Try to detect when a SMI has occurred, wait up to 200ms.
678 	 *
679 	 * If a SMI occurs during an AP reset but before we issue
680 	 * the STARTUP command, the AP may brick.  To work around
681 	 * this problem we hold off doing the AP startup until
682 	 * after we have detected the SMI.  Hopefully another SMI
683 	 * will not occur before we finish the AP startup.
684 	 *
685 	 * Retries don't seem to help.  SMIs have a window of opportunity
686 	 * and if USB->legacy keyboard emulation is enabled in the BIOS
687 	 * the interrupt rate can be quite high.
688 	 *
689 	 * NOTE: Don't worry about the L1 cache load, it might bloat
690 	 *	 ldelta a little but ndelta will be so huge when the SMI
691 	 *	 occurs the detection logic will still work fine.
692 	 */
693 	if (smibest) {
694 		set_apic_timer(200000);
695 		smitest();
696 	}
697 
698 	/*
699 	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
700 	 * and running the target CPU. OR this INIT IPI might be latched (P5
701 	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
702 	 * ignored.
703 	 *
704 	 * see apic/apicreg.h for icr bit definitions.
705 	 *
706 	 * TIME CRITICAL CODE, DO NOT DO ANY KPRINTFS IN THE HOT PATH.
707 	 */
708 
709 	/*
710 	 * Do an INIT IPI: assert RESET
711 	 *
712 	 * Use edge triggered mode to assert INIT
713 	 */
714 	lapic_seticr_sync(physical_cpu,
715 	    APIC_DESTMODE_PHY |
716 	    APIC_DEST_DESTFLD |
717 	    APIC_TRIGMOD_EDGE |
718 	    APIC_LEVEL_ASSERT |
719 	    APIC_DELMODE_INIT);
720 
721 	/*
722 	 * The spec calls for a 10ms delay but we may have to use a
723 	 * MUCH lower delay to avoid bricking an AP due to a fast SMI
724 	 * interrupt.  We have other loops here too and dividing by 2
725 	 * doesn't seem to be enough even after subtracting 350us,
726 	 * so we divide by 4.
727 	 *
728 	 * Our minimum delay is 150uS, maximum is 10ms.  If no SMI
729 	 * interrupt was detected we use the full 10ms.
730 	 */
731 	if (smibest == 0)
732 		u_sleep(10000);
733 	else if (smibest < 150 * 4 + 350)
734 		u_sleep(150);
735 	else if ((smibest - 350) / 4 < 10000)
736 		u_sleep((smibest - 350) / 4);
737 	else
738 		u_sleep(10000);
739 
740 	/*
741 	 * Do an INIT IPI: deassert RESET
742 	 *
743 	 * Use level triggered mode to deassert.  It is unclear
744 	 * why we need to do this.
745 	 */
746 	lapic_seticr_sync(physical_cpu,
747 	    APIC_DESTMODE_PHY |
748 	    APIC_DEST_DESTFLD |
749 	    APIC_TRIGMOD_LEVEL |
750 	    APIC_LEVEL_DEASSERT |
751 	    APIC_DELMODE_INIT);
752 	u_sleep(150);				/* wait 150us */
753 
754 	/*
755 	 * Next we do a STARTUP IPI: the previous INIT IPI might still be
756 	 * latched, (P5 bug) this 1st STARTUP would then terminate
757 	 * immediately, and the previously started INIT IPI would continue. OR
758 	 * the previous INIT IPI has already run. and this STARTUP IPI will
759 	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
760 	 * will run.
761 	 *
762 	 * XXX set APIC_LEVEL_ASSERT
763 	 */
764 	lapic_seticr_sync(physical_cpu,
765 	    APIC_DESTMODE_PHY |
766 	    APIC_DEST_DESTFLD |
767 	    APIC_DELMODE_STARTUP |
768 	    vector);
769 	u_sleep(200);		/* wait ~200uS */
770 
771 	/*
772 	 * Finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
773 	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
774 	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
775 	 * recognized after hardware RESET or INIT IPI.
776 	 *
777 	 * XXX set APIC_LEVEL_ASSERT
778 	 */
779 	lapic_seticr_sync(physical_cpu,
780 	    APIC_DESTMODE_PHY |
781 	    APIC_DEST_DESTFLD |
782 	    APIC_DELMODE_STARTUP |
783 	    vector);
784 
785 	/* Resume normal operation */
786 	cpu_enable_intr();
787 
788 	/* wait for it to start, see ap_init() */
789 	set_apic_timer(5000000);/* == 5 seconds */
790 	while (read_apic_timer()) {
791 		if (CPUMASK_TESTBIT(smp_startup_mask, gd->mi.gd_cpuid))
792 			return 1;	/* return SUCCESS */
793 	}
794 
795 	return 0;		/* return FAILURE */
796 }
797 
798 static
799 int
800 smitest(void)
801 {
802 	int64_t	ltsc;
803 	int64_t	ntsc;
804 	int64_t	ldelta;
805 	int64_t	ndelta;
806 	int count;
807 
808 	ldelta = 0;
809 	ndelta = 0;
810 	while (read_apic_timer()) {
811 		ltsc = rdtsc();
812 		for (count = 0; count < 100; ++count)
813 			ntsc = rdtsc();	/* force loop to occur */
814 		if (ldelta) {
815 			ndelta = ntsc - ltsc;
816 			if (ldelta > ndelta)
817 				ldelta = ndelta;
818 			if (ndelta > ldelta * 2)
819 				break;
820 		} else {
821 			ldelta = ntsc - ltsc;
822 		}
823 	}
824 	return(read_apic_timer());
825 }
826 
827 /*
828  * Synchronously flush the TLB on all other CPU's.  The current cpu's
829  * TLB is not flushed.  If the caller wishes to flush the current cpu's
830  * TLB the caller must call cpu_invltlb() in addition to smp_invltlb().
831  *
832  * This routine may be called concurrently from multiple cpus.  When this
833  * happens, smp_invltlb() can wind up sticking around in the confirmation
834  * while() loop at the end as additional cpus are added to the global
835  * cpumask, until they are acknowledged by another IPI.
836  *
837  * NOTE: If for some reason we were unable to start all cpus we cannot
838  *	 safely use broadcast IPIs.
839  */
840 
841 cpumask_t smp_smurf_mask;
842 static cpumask_t smp_invltlb_mask;
843 #define LOOPRECOVER
844 #define LOOPMASK_IN
845 #ifdef LOOPMASK_IN
846 cpumask_t smp_in_mask;
847 #endif
848 cpumask_t smp_invmask;
849 extern cpumask_t smp_idleinvl_mask;
850 extern cpumask_t smp_idleinvl_reqs;
851 
852 /*
853  * Atomically OR bits in *mask to smp_smurf_mask.  Adjust *mask to remove
854  * bits that do not need to be IPId.  These bits are still part of the command,
855  * but the target cpus have already been signalled and do not need to be
856  * sigalled again.
857  */
858 #include <sys/spinlock.h>
859 #include <sys/spinlock2.h>
860 
861 static __noinline
862 void
863 smp_smurf_fetchset(cpumask_t *mask)
864 {
865 	cpumask_t omask;
866 	int i;
867 	__uint64_t obits;
868 	__uint64_t nbits;
869 
870 	i = 0;
871 	while (i < CPUMASK_ELEMENTS) {
872 		obits = smp_smurf_mask.ary[i];
873 		cpu_ccfence();
874 		nbits = obits | mask->ary[i];
875 		if (atomic_cmpset_long(&smp_smurf_mask.ary[i], obits, nbits)) {
876 			omask.ary[i] = obits;
877 			++i;
878 		}
879 	}
880 	CPUMASK_NANDMASK(*mask, omask);
881 }
882 
883 /*
884  * This is a mechanism which guarantees that cpu_invltlb() will be executed
885  * on idle cpus without having to signal or wake them up.  The invltlb will be
886  * executed when they wake up, prior to any scheduling or interrupt thread.
887  *
888  * (*mask) is modified to remove the cpus we successfully negotiate this
889  * function with.  This function may only be used with semi-synchronous
890  * commands (typically invltlb's or semi-synchronous invalidations which
891  * are usually associated only with kernel memory).
892  */
893 void
894 smp_smurf_idleinvlclr(cpumask_t *mask)
895 {
896 	if (optimized_invltlb) {
897 		ATOMIC_CPUMASK_ORMASK(smp_idleinvl_reqs, *mask);
898 		/* cpu_lfence() not needed */
899 		CPUMASK_NANDMASK(*mask, smp_idleinvl_mask);
900 	}
901 }
902 
903 /*
904  * Issue cpu_invltlb() across all cpus except the current cpu.
905  *
906  * This function will arrange to avoid idle cpus, but still gurantee that
907  * invltlb is run on them when they wake up prior to any scheduling or
908  * nominal interrupt.
909  */
910 void
911 smp_invltlb(void)
912 {
913 	struct mdglobaldata *md = mdcpu;
914 	cpumask_t mask;
915 	unsigned long rflags;
916 #ifdef LOOPRECOVER
917 	tsc_uclock_t tsc_base = rdtsc();
918 	int repeats = 0;
919 #endif
920 
921 	if (report_invltlb_src > 0) {
922 		if (--report_invltlb_src <= 0)
923 			print_backtrace(8);
924 	}
925 
926 	/*
927 	 * Disallow normal interrupts, set all active cpus except our own
928 	 * in the global smp_invltlb_mask.
929 	 */
930 	++md->mi.gd_cnt.v_smpinvltlb;
931 	crit_enter_gd(&md->mi);
932 
933 	/*
934 	 * Bits we want to set in smp_invltlb_mask.  We do not want to signal
935 	 * our own cpu.  Also try to remove bits associated with idle cpus
936 	 * that we can flag for auto-invltlb.
937 	 */
938 	mask = smp_active_mask;
939 	CPUMASK_NANDBIT(mask, md->mi.gd_cpuid);
940 	smp_smurf_idleinvlclr(&mask);
941 
942 	rflags = read_rflags();
943 	cpu_disable_intr();
944 	ATOMIC_CPUMASK_ORMASK(smp_invltlb_mask, mask);
945 
946 	/*
947 	 * IPI non-idle cpus represented by mask.  The omask calculation
948 	 * removes cpus from the mask which already have a Xinvltlb IPI
949 	 * pending (avoid double-queueing the IPI).
950 	 *
951 	 * We must disable real interrupts when setting the smurf flags or
952 	 * we might race a XINVLTLB before we manage to send the ipi's for
953 	 * the bits we set.
954 	 *
955 	 * NOTE: We are not signalling ourselves, mask already does NOT
956 	 * include our own cpu.
957 	 */
958 	smp_smurf_fetchset(&mask);
959 
960 	/*
961 	 * Issue the IPI.  Note that the XINVLTLB IPI runs regardless of
962 	 * the critical section count on the target cpus.
963 	 */
964 	CPUMASK_ORMASK(mask, md->mi.gd_cpumask);
965 	if (all_but_self_ipi_enable &&
966 	    (all_but_self_ipi_enable >= 2 ||
967 	     CPUMASK_CMPMASKEQ(smp_startup_mask, mask))) {
968 		all_but_self_ipi(XINVLTLB_OFFSET);
969 	} else {
970 		CPUMASK_NANDMASK(mask, md->mi.gd_cpumask);
971 		selected_apic_ipi(mask, XINVLTLB_OFFSET, APIC_DELMODE_FIXED);
972 	}
973 
974 	/*
975 	 * Wait for acknowledgement by all cpus.  smp_inval_intr() will
976 	 * temporarily enable interrupts to avoid deadlocking the lapic,
977 	 * and will also handle running cpu_invltlb() and remote invlpg
978 	 * command son our cpu if some other cpu requests it of us.
979 	 *
980 	 * WARNING! I originally tried to implement this as a hard loop
981 	 *	    checking only smp_invltlb_mask (and issuing a local
982 	 *	    cpu_invltlb() if requested), with interrupts enabled
983 	 *	    and without calling smp_inval_intr().  This DID NOT WORK.
984 	 *	    It resulted in weird races where smurf bits would get
985 	 *	    cleared without any action being taken.
986 	 */
987 	smp_inval_intr();
988 	CPUMASK_ASSZERO(mask);
989 	while (CPUMASK_CMPMASKNEQ(smp_invltlb_mask, mask)) {
990 		smp_inval_intr();
991 		cpu_pause();
992 #ifdef LOOPRECOVER
993 		if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
994 			/*
995 			 * cpuid 	- cpu doing the waiting
996 			 * invltlb_mask - IPI in progress
997 			 */
998 			kprintf("smp_invltlb %d: waited too long inv=%08jx "
999 				"smurf=%08jx "
1000 #ifdef LOOPMASK_IN
1001 				"in=%08jx "
1002 #endif
1003 				"idle=%08jx/%08jx\n",
1004 				md->mi.gd_cpuid,
1005 				smp_invltlb_mask.ary[0],
1006 				smp_smurf_mask.ary[0],
1007 #ifdef LOOPMASK_IN
1008 				smp_in_mask.ary[0],
1009 #endif
1010 				smp_idleinvl_mask.ary[0],
1011 				smp_idleinvl_reqs.ary[0]);
1012 			mdcpu->gd_xinvaltlb = 0;
1013 			ATOMIC_CPUMASK_NANDMASK(smp_smurf_mask,
1014 						smp_invltlb_mask);
1015 			smp_invlpg(&smp_active_mask);
1016 			tsc_base = rdtsc();
1017 			if (++repeats > 10) {
1018 				kprintf("smp_invltlb: giving up\n");
1019 				CPUMASK_ASSZERO(smp_invltlb_mask);
1020 			}
1021 		}
1022 #endif
1023 	}
1024 	write_rflags(rflags);
1025 	crit_exit_gd(&md->mi);
1026 }
1027 
1028 /*
1029  * Called from a critical section with interrupts hard-disabled.
1030  * This function issues an XINVLTLB IPI and then executes any pending
1031  * command on the current cpu before returning.
1032  */
1033 void
1034 smp_invlpg(cpumask_t *cmdmask)
1035 {
1036 	struct mdglobaldata *md = mdcpu;
1037 	cpumask_t mask;
1038 
1039 	if (report_invlpg_src > 0) {
1040 		if (--report_invlpg_src <= 0)
1041 			print_backtrace(8);
1042 	}
1043 
1044 	/*
1045 	 * Disallow normal interrupts, set all active cpus in the pmap,
1046 	 * plus our own for completion processing (it might or might not
1047 	 * be part of the set).
1048 	 */
1049 	mask = smp_active_mask;
1050 	CPUMASK_ANDMASK(mask, *cmdmask);
1051 	CPUMASK_ORMASK(mask, md->mi.gd_cpumask);
1052 
1053 	/*
1054 	 * Avoid double-queuing IPIs, which can deadlock us.  We must disable
1055 	 * real interrupts when setting the smurf flags or we might race a
1056 	 * XINVLTLB before we manage to send the ipi's for the bits we set.
1057 	 *
1058 	 * NOTE: We might be including our own cpu in the smurf mask.
1059 	 */
1060 	smp_smurf_fetchset(&mask);
1061 
1062 	/*
1063 	 * Issue the IPI.  Note that the XINVLTLB IPI runs regardless of
1064 	 * the critical section count on the target cpus.
1065 	 *
1066 	 * We do not include our own cpu when issuing the IPI.
1067 	 */
1068 	if (all_but_self_ipi_enable &&
1069 	    (all_but_self_ipi_enable >= 2 ||
1070 	     CPUMASK_CMPMASKEQ(smp_startup_mask, mask))) {
1071 		all_but_self_ipi(XINVLTLB_OFFSET);
1072 	} else {
1073 		CPUMASK_NANDMASK(mask, md->mi.gd_cpumask);
1074 		selected_apic_ipi(mask, XINVLTLB_OFFSET, APIC_DELMODE_FIXED);
1075 	}
1076 
1077 	/*
1078 	 * This will synchronously wait for our command to complete,
1079 	 * as well as process commands from other cpus.  It also handles
1080 	 * reentrancy.
1081 	 *
1082 	 * (interrupts are disabled and we are in a critical section here)
1083 	 */
1084 	smp_inval_intr();
1085 }
1086 
1087 void
1088 smp_sniff(void)
1089 {
1090 	globaldata_t gd = mycpu;
1091 	int dummy;
1092 	register_t rflags;
1093 
1094 	/*
1095 	 * Ignore all_but_self_ipi_enable here and just use it.
1096 	 */
1097 	rflags = read_rflags();
1098 	cpu_disable_intr();
1099 	all_but_self_ipi(XSNIFF_OFFSET);
1100 	gd->gd_sample_pc = smp_sniff;
1101 	gd->gd_sample_sp = &dummy;
1102 	write_rflags(rflags);
1103 }
1104 
1105 void
1106 cpu_sniff(int dcpu)
1107 {
1108 	globaldata_t rgd = globaldata_find(dcpu);
1109 	register_t rflags;
1110 	int dummy;
1111 
1112 	/*
1113 	 * Ignore all_but_self_ipi_enable here and just use it.
1114 	 */
1115 	rflags = read_rflags();
1116 	cpu_disable_intr();
1117 	single_apic_ipi(dcpu, XSNIFF_OFFSET, APIC_DELMODE_FIXED);
1118 	rgd->gd_sample_pc = cpu_sniff;
1119 	rgd->gd_sample_sp = &dummy;
1120 	write_rflags(rflags);
1121 }
1122 
1123 /*
1124  * Called from Xinvltlb assembly with interrupts hard-disabled and in a
1125  * critical section.  gd_intr_nesting_level may or may not be bumped
1126  * depending on entry.
1127  *
1128  * THIS CODE IS INTENDED TO EXPLICITLY IGNORE THE CRITICAL SECTION COUNT.
1129  * THAT IS, THE INTERRUPT IS INTENDED TO FUNCTION EVEN WHEN MAINLINE CODE
1130  * IS IN A CRITICAL SECTION.
1131  */
1132 void
1133 smp_inval_intr(void)
1134 {
1135 	struct mdglobaldata *md = mdcpu;
1136 	cpumask_t cpumask;
1137 #ifdef LOOPRECOVER
1138 	tsc_uclock_t tsc_base = rdtsc();
1139 #endif
1140 
1141 #if 0
1142 	/*
1143 	 * The idle code is in a critical section, but that doesn't stop
1144 	 * Xinvltlb from executing, so deal with the race which can occur
1145 	 * in that situation.  Otherwise r-m-w operations by pmap_inval_intr()
1146 	 * may have problems.
1147 	 */
1148 	if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs, md->mi.gd_cpuid)) {
1149 		ATOMIC_CPUMASK_NANDBIT(smp_invltlb_mask, md->mi.gd_cpuid);
1150 		cpu_invltlb();
1151 		cpu_mfence();
1152 	}
1153 #endif
1154 
1155 	/*
1156 	 * This is a real mess.  I'd like to just leave interrupts disabled
1157 	 * but it can cause the lapic to deadlock if too many interrupts queue
1158 	 * to it, due to the idiotic design of the lapic.  So instead we have
1159 	 * to enter a critical section so normal interrupts are made pending
1160 	 * and track whether this one was reentered.
1161 	 */
1162 	if (md->gd_xinvaltlb) {		/* reentrant on cpu */
1163 		md->gd_xinvaltlb = 2;
1164 		return;
1165 	}
1166 	md->gd_xinvaltlb = 1;
1167 
1168 	/*
1169 	 * Check only those cpus with active Xinvl* commands pending.
1170 	 *
1171 	 * We are going to enable interrupts so make sure we are in a
1172 	 * critical section.  This is necessary to avoid deadlocking
1173 	 * the lapic and to ensure that we execute our commands prior to
1174 	 * any nominal interrupt or preemption.
1175 	 *
1176 	 * WARNING! It is very important that we only clear out but in
1177 	 *	    smp_smurf_mask once for each interrupt we take.  In
1178 	 *	    this case, we clear it on initial entry and only loop
1179 	 *	    on the reentrancy detect (caused by another interrupt).
1180 	 */
1181 	cpumask = smp_invmask;
1182 #ifdef LOOPMASK_IN
1183 	ATOMIC_CPUMASK_ORBIT(smp_in_mask, md->mi.gd_cpuid);
1184 #endif
1185 loop:
1186 	cpu_enable_intr();
1187 	ATOMIC_CPUMASK_NANDBIT(smp_smurf_mask, md->mi.gd_cpuid);
1188 
1189 	/*
1190 	 * Specific page request(s), and we can't return until all bits
1191 	 * are zero.
1192 	 */
1193 	for (;;) {
1194 		int toolong;
1195 
1196 		/*
1197 		 * Also execute any pending full invalidation request in
1198 		 * this loop.
1199 		 */
1200 		if (CPUMASK_TESTBIT(smp_invltlb_mask, md->mi.gd_cpuid)) {
1201 			ATOMIC_CPUMASK_NANDBIT(smp_invltlb_mask,
1202 					       md->mi.gd_cpuid);
1203 			cpu_invltlb();
1204 			cpu_mfence();
1205 		}
1206 
1207 #ifdef LOOPRECOVER
1208 		if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
1209 			/*
1210 			 * cpuid 	- cpu doing the waiting
1211 			 * invmask	- IPI in progress
1212 			 * invltlb_mask - which ones are TLB invalidations?
1213 			 */
1214 			kprintf("smp_inval_intr %d inv=%08jx tlbm=%08jx "
1215 				"smurf=%08jx "
1216 #ifdef LOOPMASK_IN
1217 				"in=%08jx "
1218 #endif
1219 				"idle=%08jx/%08jx\n",
1220 				md->mi.gd_cpuid,
1221 				smp_invmask.ary[0],
1222 				smp_invltlb_mask.ary[0],
1223 				smp_smurf_mask.ary[0],
1224 #ifdef LOOPMASK_IN
1225 				smp_in_mask.ary[0],
1226 #endif
1227 				smp_idleinvl_mask.ary[0],
1228 				smp_idleinvl_reqs.ary[0]);
1229 			tsc_base = rdtsc();
1230 			toolong = 1;
1231 		} else {
1232 			toolong = 0;
1233 		}
1234 #else
1235 		toolong = 0;
1236 #endif
1237 
1238 		/*
1239 		 * We can only add bits to the cpumask to test during the
1240 		 * loop because the smp_invmask bit is cleared once the
1241 		 * originator completes the command (the targets may still
1242 		 * be cycling their own completions in this loop, afterwords).
1243 		 *
1244 		 * lfence required prior to all tests as this Xinvltlb
1245 		 * interrupt could race the originator (already be in progress
1246 		 * wnen the originator decides to issue, due to an issue by
1247 		 * another cpu).
1248 		 */
1249 		cpu_lfence();
1250 		CPUMASK_ORMASK(cpumask, smp_invmask);
1251 		/*cpumask = smp_active_mask;*/	/* XXX */
1252 		cpu_lfence();
1253 
1254 		if (pmap_inval_intr(&cpumask, toolong) == 0) {
1255 			/*
1256 			 * Clear our smurf mask to allow new IPIs, but deal
1257 			 * with potential races.
1258 			 */
1259 			break;
1260 		}
1261 
1262 		/*
1263 		 * Test if someone sent us another invalidation IPI, break
1264 		 * out so we can take it to avoid deadlocking the lapic
1265 		 * interrupt queue (? stupid intel, amd).
1266 		 */
1267 		if (md->gd_xinvaltlb == 2)
1268 			break;
1269 		/*
1270 		if (CPUMASK_TESTBIT(smp_smurf_mask, md->mi.gd_cpuid))
1271 			break;
1272 		*/
1273 	}
1274 
1275 	/*
1276 	 * Full invalidation request
1277 	 */
1278 	if (CPUMASK_TESTBIT(smp_invltlb_mask, md->mi.gd_cpuid)) {
1279 		ATOMIC_CPUMASK_NANDBIT(smp_invltlb_mask,
1280 				       md->mi.gd_cpuid);
1281 		cpu_invltlb();
1282 		cpu_mfence();
1283 	}
1284 
1285 	/*
1286 	 * Check to see if another Xinvltlb interrupt occurred and loop up
1287 	 * if it did.
1288 	 */
1289 	cpu_disable_intr();
1290 	if (md->gd_xinvaltlb == 2) {
1291 		md->gd_xinvaltlb = 1;
1292 		goto loop;
1293 	}
1294 #ifdef LOOPMASK_IN
1295 	ATOMIC_CPUMASK_NANDBIT(smp_in_mask, md->mi.gd_cpuid);
1296 #endif
1297 	md->gd_xinvaltlb = 0;
1298 }
1299 
1300 void
1301 cpu_wbinvd_on_all_cpus_callback(void *arg)
1302 {
1303 	wbinvd();
1304 }
1305 
1306 /*
1307  * When called the executing CPU will send an IPI to all other CPUs
1308  * requesting that they halt execution.
1309  *
1310  * Usually (but not necessarily) called with 'other_cpus' as its arg.
1311  *
1312  *  - Signals all CPUs in map to stop.
1313  *  - Waits for each to stop.
1314  *
1315  * Returns:
1316  *  -1: error
1317  *   0: NA
1318  *   1: ok
1319  *
1320  * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
1321  *            from executing at same time.
1322  */
1323 int
1324 stop_cpus(cpumask_t map)
1325 {
1326 	cpumask_t mask;
1327 
1328 	CPUMASK_ANDMASK(map, smp_active_mask);
1329 
1330 	/* send the Xcpustop IPI to all CPUs in map */
1331 	selected_apic_ipi(map, XCPUSTOP_OFFSET, APIC_DELMODE_FIXED);
1332 
1333 	do {
1334 		mask = stopped_cpus;
1335 		CPUMASK_ANDMASK(mask, map);
1336 		/* spin */
1337 	} while (CPUMASK_CMPMASKNEQ(mask, map));
1338 
1339 	return 1;
1340 }
1341 
1342 
1343 /*
1344  * Called by a CPU to restart stopped CPUs.
1345  *
1346  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
1347  *
1348  *  - Signals all CPUs in map to restart.
1349  *  - Waits for each to restart.
1350  *
1351  * Returns:
1352  *  -1: error
1353  *   0: NA
1354  *   1: ok
1355  */
1356 int
1357 restart_cpus(cpumask_t map)
1358 {
1359 	cpumask_t mask;
1360 
1361 	/* signal other cpus to restart */
1362 	mask = map;
1363 	CPUMASK_ANDMASK(mask, smp_active_mask);
1364 	cpu_ccfence();
1365 	started_cpus = mask;
1366 	cpu_ccfence();
1367 
1368 	/* wait for each to clear its bit */
1369 	while (CPUMASK_CMPMASKNEQ(stopped_cpus, map))
1370 		cpu_pause();
1371 
1372 	return 1;
1373 }
1374 
1375 /*
1376  * This is called once the mpboot code has gotten us properly relocated
1377  * and the MMU turned on, etc.   ap_init() is actually the idle thread,
1378  * and when it returns the scheduler will call the real cpu_idle() main
1379  * loop for the idlethread.  Interrupts are disabled on entry and should
1380  * remain disabled at return.
1381  */
1382 void
1383 ap_init(void)
1384 {
1385 	int	cpu_id;
1386 
1387 	/*
1388 	 * Adjust smp_startup_mask to signal the BSP that we have started
1389 	 * up successfully.  Note that we do not yet hold the BGL.  The BSP
1390 	 * is waiting for our signal.
1391 	 *
1392 	 * We can't set our bit in smp_active_mask yet because we are holding
1393 	 * interrupts physically disabled and remote cpus could deadlock
1394 	 * trying to send us an IPI.
1395 	 */
1396 	ATOMIC_CPUMASK_ORBIT(smp_startup_mask, mycpu->gd_cpuid);
1397 	cpu_mfence();
1398 
1399 	/*
1400 	 * Interlock for LAPIC initialization.  Wait until mp_finish_lapic is
1401 	 * non-zero, then get the MP lock.
1402 	 *
1403 	 * Note: We are in a critical section.
1404 	 *
1405 	 * Note: we are the idle thread, we can only spin.
1406 	 *
1407 	 * Note: The load fence is memory volatile and prevents the compiler
1408 	 * from improperly caching mp_finish_lapic, and the cpu from improperly
1409 	 * caching it.
1410 	 */
1411 	while (mp_finish_lapic == 0) {
1412 		cpu_pause();
1413 		cpu_lfence();
1414 	}
1415 #if 0
1416 	while (try_mplock() == 0) {
1417 		cpu_pause();
1418 		cpu_lfence();
1419 	}
1420 #endif
1421 
1422 	if (cpu_feature & CPUID_TSC) {
1423 		/*
1424 		 * The BSP is constantly updating tsc0_offset, figure out
1425 		 * the relative difference to synchronize ktrdump.
1426 		 */
1427 		tsc_offsets[mycpu->gd_cpuid] = rdtsc() - tsc0_offset;
1428 	}
1429 
1430 	/* BSP may have changed PTD while we're waiting for the lock */
1431 	cpu_invltlb();
1432 
1433 	/* Build our map of 'other' CPUs. */
1434 	mycpu->gd_other_cpus = smp_startup_mask;
1435 	ATOMIC_CPUMASK_NANDBIT(mycpu->gd_other_cpus, mycpu->gd_cpuid);
1436 
1437 	/* A quick check from sanity claus */
1438 	cpu_id = APICID_TO_CPUID(LAPIC_READID);
1439 	if (mycpu->gd_cpuid != cpu_id) {
1440 		kprintf("SMP: assigned cpuid = %d\n", mycpu->gd_cpuid);
1441 		kprintf("SMP: actual cpuid = %d lapicid %d\n",
1442 			cpu_id, LAPIC_READID);
1443 #if 0 /* JGXXX */
1444 		kprintf("PTD[MPPTDI] = %p\n", (void *)PTD[MPPTDI]);
1445 #endif
1446 		panic("cpuid mismatch! boom!!");
1447 	}
1448 
1449 	/* Initialize AP's local APIC for irq's */
1450 	lapic_init(FALSE);
1451 
1452 	/* LAPIC initialization is done */
1453 	ATOMIC_CPUMASK_ORBIT(smp_lapic_mask, mycpu->gd_cpuid);
1454 	cpu_mfence();
1455 
1456 #if 0
1457 	/* Let BSP move onto the next initialization stage */
1458 	rel_mplock();
1459 #endif
1460 
1461 	/*
1462 	 * Interlock for finalization.  Wait until mp_finish is non-zero,
1463 	 * then get the MP lock.
1464 	 *
1465 	 * Note: We are in a critical section.
1466 	 *
1467 	 * Note: we are the idle thread, we can only spin.
1468 	 *
1469 	 * Note: The load fence is memory volatile and prevents the compiler
1470 	 * from improperly caching mp_finish, and the cpu from improperly
1471 	 * caching it.
1472 	 */
1473 	while (mp_finish == 0) {
1474 		cpu_pause();
1475 		cpu_lfence();
1476 	}
1477 
1478 	/* BSP may have changed PTD while we're waiting for the lock */
1479 	cpu_invltlb();
1480 
1481 	/* Set memory range attributes for this CPU to match the BSP */
1482 	mem_range_AP_init();
1483 
1484 	/*
1485 	 * Once we go active we must process any IPIQ messages that may
1486 	 * have been queued, because no actual IPI will occur until we
1487 	 * set our bit in the smp_active_mask.  If we don't the IPI
1488 	 * message interlock could be left set which would also prevent
1489 	 * further IPIs.
1490 	 *
1491 	 * The idle loop doesn't expect the BGL to be held and while
1492 	 * lwkt_switch() normally cleans things up this is a special case
1493 	 * because we returning almost directly into the idle loop.
1494 	 *
1495 	 * The idle thread is never placed on the runq, make sure
1496 	 * nothing we've done put it there.
1497 	 */
1498 
1499 	/*
1500 	 * Hold a critical section and allow real interrupts to occur.  Zero
1501 	 * any spurious interrupts which have accumulated, then set our
1502 	 * smp_active_mask indicating that we are fully operational.
1503 	 */
1504 	crit_enter();
1505 	__asm __volatile("sti; pause; pause"::);
1506 	bzero(mdcpu->gd_ipending, sizeof(mdcpu->gd_ipending));
1507 	ATOMIC_CPUMASK_ORBIT(smp_active_mask, mycpu->gd_cpuid);
1508 
1509 	/*
1510 	 * Wait until all cpus have set their smp_active_mask and have fully
1511 	 * operational interrupts before proceeding.
1512 	 *
1513 	 * We need a final cpu_invltlb() because we would not have received
1514 	 * any until we set our bit in smp_active_mask.
1515 	 */
1516 	while (mp_finish == 1) {
1517 		cpu_pause();
1518 		cpu_lfence();
1519 	}
1520 	cpu_invltlb();
1521 
1522 	/*
1523 	 * Initialize per-cpu clocks and do other per-cpu initialization.
1524 	 * At this point code is expected to be able to use the full kernel
1525 	 * API.
1526 	 */
1527 	initclocks_pcpu();	/* clock interrupts (via IPIs) */
1528 
1529 	/*
1530 	 * Since we may have cleaned up the interrupt triggers, manually
1531 	 * process any pending IPIs before exiting our critical section.
1532 	 * Once the critical section has exited, normal interrupt processing
1533 	 * may occur.
1534 	 */
1535 	atomic_swap_int(&mycpu->gd_npoll, 0);
1536 	lwkt_process_ipiq();
1537 	crit_exit();
1538 
1539 	/*
1540 	 * Final final, allow the waiting BSP to resume the boot process,
1541 	 * return 'into' the idle thread bootstrap.
1542 	 */
1543 	ATOMIC_CPUMASK_ORBIT(smp_finalize_mask, mycpu->gd_cpuid);
1544 	KKASSERT((curthread->td_flags & TDF_RUNQ) == 0);
1545 }
1546 
1547 /*
1548  * Get SMP fully working before we start initializing devices.
1549  */
1550 static
1551 void
1552 ap_finish(void)
1553 {
1554 	if (bootverbose)
1555 		kprintf("Finish MP startup\n");
1556 	rel_mplock();
1557 
1558 	/*
1559 	 * Wait for the active mask to complete, after which all cpus will
1560 	 * be accepting interrupts.
1561 	 */
1562 	mp_finish = 1;
1563 	while (CPUMASK_CMPMASKNEQ(smp_active_mask, smp_startup_mask)) {
1564 		cpu_pause();
1565 		cpu_lfence();
1566 	}
1567 
1568 	/*
1569 	 * Wait for the finalization mask to complete, after which all cpus
1570 	 * have completely finished initializing and are entering or are in
1571 	 * their idle thread.
1572 	 *
1573 	 * BSP should have received all required invltlbs but do another
1574 	 * one just in case.
1575 	 */
1576 	cpu_invltlb();
1577 	mp_finish = 2;
1578 	while (CPUMASK_CMPMASKNEQ(smp_finalize_mask, smp_startup_mask)) {
1579 		cpu_pause();
1580 		cpu_lfence();
1581 	}
1582 
1583 	while (try_mplock() == 0) {
1584 		cpu_pause();
1585 		cpu_lfence();
1586 	}
1587 
1588 	if (bootverbose) {
1589 		kprintf("Active CPU Mask: %016jx\n",
1590 			(uintmax_t)CPUMASK_LOWMASK(smp_active_mask));
1591 	}
1592 }
1593 
1594 SYSINIT(finishsmp, SI_BOOT2_FINISH_SMP, SI_ORDER_FIRST, ap_finish, NULL);
1595 
1596 /*
1597  * Interrupts must be hard-disabled by caller
1598  */
1599 void
1600 cpu_send_ipiq(int dcpu)
1601 {
1602 	if (CPUMASK_TESTBIT(smp_active_mask, dcpu))
1603                 single_apic_ipi(dcpu, XIPIQ_OFFSET, APIC_DELMODE_FIXED);
1604 }
1605 
1606 #if 0	/* single_apic_ipi_passive() not working yet */
1607 /*
1608  * Returns 0 on failure, 1 on success
1609  */
1610 int
1611 cpu_send_ipiq_passive(int dcpu)
1612 {
1613         int r = 0;
1614 	if (CPUMASK_TESTBIT(smp_active_mask, dcpu)) {
1615                 r = single_apic_ipi_passive(dcpu, XIPIQ_OFFSET,
1616                                         APIC_DELMODE_FIXED);
1617         }
1618 	return(r);
1619 }
1620 #endif
1621 
1622 static void
1623 mp_bsp_simple_setup(void)
1624 {
1625 	struct mdglobaldata *gd;
1626 	size_t ipiq_size;
1627 
1628 	/* build our map of 'other' CPUs */
1629 	mycpu->gd_other_cpus = smp_startup_mask;
1630 	CPUMASK_NANDBIT(mycpu->gd_other_cpus, mycpu->gd_cpuid);
1631 
1632 	gd = (struct mdglobaldata *)mycpu;
1633 	gd->gd_acpi_id = CPUID_TO_ACPIID(mycpu->gd_cpuid);
1634 
1635 	ipiq_size = sizeof(struct lwkt_ipiq) * ncpus;
1636 	mycpu->gd_ipiq = (void *)kmem_alloc(&kernel_map, ipiq_size,
1637 					    VM_SUBSYS_IPIQ);
1638 	bzero(mycpu->gd_ipiq, ipiq_size);
1639 
1640 	/* initialize arc4random. */
1641 	arc4_init_pcpu(0);
1642 
1643 	pmap_set_opt();
1644 
1645 	if (cpu_feature & CPUID_TSC)
1646 		tsc0_offset = rdtsc();
1647 }
1648 
1649 
1650 /*
1651  * CPU TOPOLOGY DETECTION FUNCTIONS
1652  */
1653 
1654 /* Detect intel topology using CPUID
1655  * Ref: http://www.intel.com/Assets/PDF/appnote/241618.pdf, pg 41
1656  */
1657 static void
1658 detect_intel_topology(int count_htt_cores)
1659 {
1660 	int shift = 0;
1661 	int ecx_index = 0;
1662 	int core_plus_logical_bits = 0;
1663 	int cores_per_package;
1664 	int logical_per_package;
1665 	int logical_per_core;
1666 	unsigned int p[4];
1667 
1668 	if (cpu_high >= 0xb) {
1669 		goto FUNC_B;
1670 
1671 	} else if (cpu_high >= 0x4) {
1672 		goto FUNC_4;
1673 
1674 	} else {
1675 		core_bits = 0;
1676 		for (shift = 0; (1 << shift) < count_htt_cores; ++shift)
1677 			;
1678 		logical_CPU_bits = 1 << shift;
1679 		return;
1680 	}
1681 
1682 FUNC_B:
1683 	cpuid_count(0xb, FUNC_B_THREAD_LEVEL, p);
1684 
1685 	/* if 0xb not supported - fallback to 0x4 */
1686 	if (p[1] == 0 || (FUNC_B_TYPE(p[2]) != FUNC_B_THREAD_TYPE)) {
1687 		goto FUNC_4;
1688 	}
1689 
1690 	logical_CPU_bits = FUNC_B_BITS_SHIFT_NEXT_LEVEL(p[0]);
1691 
1692 	ecx_index = FUNC_B_THREAD_LEVEL + 1;
1693 	do {
1694 		cpuid_count(0xb, ecx_index, p);
1695 
1696 		/* Check for the Core type in the implemented sub leaves. */
1697 		if (FUNC_B_TYPE(p[2]) == FUNC_B_CORE_TYPE) {
1698 			core_plus_logical_bits = FUNC_B_BITS_SHIFT_NEXT_LEVEL(p[0]);
1699 			break;
1700 		}
1701 
1702 		ecx_index++;
1703 
1704 	} while (FUNC_B_TYPE(p[2]) != FUNC_B_INVALID_TYPE);
1705 
1706 	core_bits = core_plus_logical_bits - logical_CPU_bits;
1707 
1708 	return;
1709 
1710 FUNC_4:
1711 	cpuid_count(0x4, 0, p);
1712 	cores_per_package = FUNC_4_MAX_CORE_NO(p[0]) + 1;
1713 
1714 	logical_per_package = count_htt_cores;
1715 	logical_per_core = logical_per_package / cores_per_package;
1716 
1717 	for (shift = 0; (1 << shift) < logical_per_core; ++shift)
1718 		;
1719 	logical_CPU_bits = shift;
1720 
1721 	for (shift = 0; (1 << shift) < cores_per_package; ++shift)
1722 		;
1723 	core_bits = shift;
1724 
1725 	return;
1726 }
1727 
1728 /* Detect AMD topology using CPUID
1729  * Ref: http://support.amd.com/us/Embedded_TechDocs/25481.pdf, last page
1730  */
1731 static void
1732 detect_amd_topology(int count_htt_cores)
1733 {
1734 	int shift = 0;
1735 	if ((cpu_feature & CPUID_HTT) && (amd_feature2 & AMDID2_CMP)) {
1736 		if (cpu_procinfo2 & AMDID_COREID_SIZE) {
1737 			core_bits = (cpu_procinfo2 & AMDID_COREID_SIZE) >>
1738 				    AMDID_COREID_SIZE_SHIFT;
1739 		} else {
1740 			core_bits = (cpu_procinfo2 & AMDID_CMP_CORES) + 1;
1741 			for (shift = 0; (1 << shift) < core_bits; ++shift)
1742 				;
1743 			core_bits = shift;
1744 		}
1745 		logical_CPU_bits = count_htt_cores >> core_bits;
1746 		for (shift = 0; (1 << shift) < logical_CPU_bits; ++shift)
1747 			;
1748 		logical_CPU_bits = shift;
1749 
1750 		kprintf("core_bits %d logical_CPU_bits %d\n",
1751 			core_bits - logical_CPU_bits, logical_CPU_bits);
1752 
1753 		if (amd_feature2 & AMDID2_TOPOEXT) {
1754 			u_int p[4];	/* eax,ebx,ecx,edx */
1755 			int nodes;
1756 
1757 			cpuid_count(0x8000001e, 0, p);
1758 
1759 			switch(((p[1] >> 8) & 3) + 1) {
1760 			case 1:
1761 				logical_CPU_bits = 0;
1762 				break;
1763 			case 2:
1764 				logical_CPU_bits = 1;
1765 				break;
1766 			case 3:
1767 			case 4:
1768 				logical_CPU_bits = 2;
1769 				break;
1770 			}
1771 
1772 			/*
1773 			 * Nodes are kind of a stand-in for packages*sockets,
1774 			 * but can be thought of in terms of Numa domains.
1775 			 */
1776 			nodes = ((p[2] >> 8) & 7) + 1;
1777 			switch(nodes) {
1778 			case 8:
1779 			case 7:
1780 			case 6:
1781 			case 5:
1782 				--core_bits;
1783 				/* fallthrough */
1784 			case 4:
1785 			case 3:
1786 				--core_bits;
1787 				/* fallthrough */
1788 			case 2:
1789 				--core_bits;
1790 				/* fallthrough */
1791 			case 1:
1792 				break;
1793 			}
1794 			core_bits -= logical_CPU_bits;
1795 			kprintf("%d-way htt, %d Nodes, %d cores/node\n",
1796 				(int)(((p[1] >> 8) & 3) + 1),
1797 				nodes,
1798 				1 << core_bits);
1799 
1800 		}
1801 #if 0
1802 		if (amd_feature2 & AMDID2_TOPOEXT) {
1803 			u_int p[4];
1804 			int i;
1805 			int type;
1806 			int level;
1807 			int share_count;
1808 
1809 			logical_CPU_bits = 0;
1810 			core_bits = 0;
1811 
1812 			for (i = 0; i < 256; ++i)  {
1813 				cpuid_count(0x8000001d, i, p);
1814 				type = p[0] & 0x1f;
1815 				level = (p[0] >> 5) & 0x7;
1816 				share_count = 1 + ((p[0] >> 14) & 0xfff);
1817 
1818 				if (type == 0)
1819 					break;
1820 				kprintf("Topology probe i=%2d type=%d "
1821 					"level=%d share_count=%d\n",
1822 					i, type, level, share_count);
1823 				shift = 0;
1824 				while ((1 << shift) < share_count)
1825 					++shift;
1826 
1827 				switch(type) {
1828 				case 1:
1829 					/*
1830 					 * CPUID_TYPE_SMT
1831 					 *
1832 					 * Logical CPU (SMT)
1833 					 */
1834 					logical_CPU_bits = shift;
1835 					break;
1836 				case 2:
1837 					/*
1838 					 * CPUID_TYPE_CORE
1839 					 *
1840 					 * Physical subdivision of a package
1841 					 */
1842 					core_bits = logical_CPU_bits +
1843 						    shift;
1844 					break;
1845 				case 3:
1846 					/*
1847 					 * CPUID_TYPE_CACHE
1848 					 *
1849 					 * CPU L1/L2/L3 cache
1850 					 */
1851 					break;
1852 				case 4:
1853 					/*
1854 					 * CPUID_TYPE_PKG
1855 					 *
1856 					 * Package aka chip, equivalent to
1857 					 * socket
1858 					 */
1859 					break;
1860 				}
1861 			}
1862 		}
1863 #endif
1864 	} else {
1865 		for (shift = 0; (1 << shift) < count_htt_cores; ++shift)
1866 			;
1867 		core_bits = shift;
1868 		logical_CPU_bits = 0;
1869 	}
1870 }
1871 
1872 static void
1873 amd_get_compute_unit_id(void *arg)
1874 {
1875 	u_int regs[4];
1876 
1877 	do_cpuid(0x8000001e, regs);
1878 	cpu_node_t * mynode = get_cpu_node_by_cpuid(mycpuid);
1879 
1880 	/*
1881 	 * AMD - CPUID Specification September 2010
1882 	 * page 34 - //ComputeUnitID = ebx[0:7]//
1883 	 */
1884 	mynode->compute_unit_id = regs[1] & 0xff;
1885 }
1886 
1887 int
1888 fix_amd_topology(void)
1889 {
1890 	cpumask_t mask;
1891 
1892 	if (cpu_vendor_id != CPU_VENDOR_AMD)
1893 		return -1;
1894 	if ((amd_feature2 & AMDID2_TOPOEXT) == 0)
1895 		return -1;
1896 
1897 	CPUMASK_ASSALLONES(mask);
1898 	lwkt_cpusync_simple(mask, amd_get_compute_unit_id, NULL);
1899 
1900 	kprintf("Compute unit iDS:\n");
1901 	int i;
1902 	for (i = 0; i < ncpus; i++) {
1903 		kprintf("%d-%d; \n",
1904 			i, get_cpu_node_by_cpuid(i)->compute_unit_id);
1905 	}
1906 	return 0;
1907 }
1908 
1909 /*
1910  * Calculate
1911  * - logical_CPU_bits
1912  * - core_bits
1913  * With the values above (for AMD or INTEL) we are able to generally
1914  * detect the CPU topology (number of cores for each level):
1915  * Ref: http://wiki.osdev.org/Detecting_CPU_Topology_(80x86)
1916  * Ref: http://www.multicoreinfo.com/research/papers/whitepapers/Intel-detect-topology.pdf
1917  */
1918 void
1919 detect_cpu_topology(void)
1920 {
1921 	static int topology_detected = 0;
1922 	int count = 0;
1923 
1924 	if (topology_detected)
1925 		goto OUT;
1926 	if ((cpu_feature & CPUID_HTT) == 0) {
1927 		core_bits = 0;
1928 		logical_CPU_bits = 0;
1929 		goto OUT;
1930 	}
1931 	count = (cpu_procinfo & CPUID_HTT_CORES) >> CPUID_HTT_CORE_SHIFT;
1932 
1933 	if (cpu_vendor_id == CPU_VENDOR_INTEL)
1934 		detect_intel_topology(count);
1935 	else if (cpu_vendor_id == CPU_VENDOR_AMD)
1936 		detect_amd_topology(count);
1937 	topology_detected = 1;
1938 
1939 OUT:
1940 	if (bootverbose) {
1941 		kprintf("Bits within APICID: logical_CPU_bits: %d; "
1942 			"core_bits: %d\n",
1943 			logical_CPU_bits, core_bits);
1944 	}
1945 }
1946 
1947 /*
1948  * Interface functions to calculate chip_ID,
1949  * core_number and logical_number
1950  * Ref: http://wiki.osdev.org/Detecting_CPU_Topology_(80x86)
1951  */
1952 int
1953 get_chip_ID(int cpuid)
1954 {
1955 	return get_apicid_from_cpuid(cpuid) >>
1956 	    (logical_CPU_bits + core_bits);
1957 }
1958 
1959 int
1960 get_chip_ID_from_APICID(int apicid)
1961 {
1962 	return apicid >> (logical_CPU_bits + core_bits);
1963 }
1964 
1965 int
1966 get_core_number_within_chip(int cpuid)
1967 {
1968 	return ((get_apicid_from_cpuid(cpuid) >> logical_CPU_bits) &
1969 		((1 << core_bits) - 1));
1970 }
1971 
1972 int
1973 get_logical_CPU_number_within_core(int cpuid)
1974 {
1975 	return (get_apicid_from_cpuid(cpuid) &
1976 		((1 << logical_CPU_bits) - 1));
1977 }
1978