1 /*
2  * Copyright (c) 1996, by Steve Passe
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. The name of the developer may NOT be used to endorse or promote products
11  *    derived from this software without specific prior written permission.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  * $FreeBSD: src/sys/i386/i386/mp_machdep.c,v 1.115.2.15 2003/03/14 21:22:35 jhb Exp $
26  */
27 
28 #include "opt_cpu.h"
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/sysctl.h>
34 #include <sys/malloc.h>
35 #include <sys/memrange.h>
36 #include <sys/cons.h>	/* cngetc() */
37 #include <sys/machintr.h>
38 #include <sys/cpu_topology.h>
39 
40 #include <sys/mplock2.h>
41 
42 #include <vm/vm.h>
43 #include <vm/vm_param.h>
44 #include <vm/pmap.h>
45 #include <vm/vm_kern.h>
46 #include <vm/vm_extern.h>
47 #include <sys/lock.h>
48 #include <vm/vm_map.h>
49 #include <sys/user.h>
50 #ifdef GPROF
51 #include <sys/gmon.h>
52 #endif
53 
54 #include <machine/smp.h>
55 #include <machine_base/apic/apicreg.h>
56 #include <machine/atomic.h>
57 #include <machine/cpufunc.h>
58 #include <machine/cputypes.h>
59 #include <machine_base/apic/lapic.h>
60 #include <machine_base/apic/ioapic.h>
61 #include <machine_base/acpica/acpi_md_cpu.h>
62 #include <machine/psl.h>
63 #include <machine/segments.h>
64 #include <machine/tss.h>
65 #include <machine/specialreg.h>
66 #include <machine/globaldata.h>
67 #include <machine/pmap_inval.h>
68 
69 #include <machine/md_var.h>		/* setidt() */
70 #include <machine_base/icu/icu.h>	/* IPIs */
71 #include <machine_base/icu/icu_var.h>
72 #include <machine_base/apic/ioapic_abi.h>
73 #include <machine/intr_machdep.h>	/* IPIs */
74 
75 #define WARMBOOT_TARGET		0
76 #define WARMBOOT_OFF		(KERNBASE + 0x0467)
77 #define WARMBOOT_SEG		(KERNBASE + 0x0469)
78 
79 #define CMOS_REG		(0x70)
80 #define CMOS_DATA		(0x71)
81 #define BIOS_RESET		(0x0f)
82 #define BIOS_WARM		(0x0a)
83 
84 /*
85  * this code MUST be enabled here and in mpboot.s.
86  * it follows the very early stages of AP boot by placing values in CMOS ram.
87  * it NORMALLY will never be needed and thus the primitive method for enabling.
88  *
89  */
90 #if defined(CHECK_POINTS)
91 #define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
92 #define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
93 
94 #define CHECK_INIT(D);				\
95 	CHECK_WRITE(0x34, (D));			\
96 	CHECK_WRITE(0x35, (D));			\
97 	CHECK_WRITE(0x36, (D));			\
98 	CHECK_WRITE(0x37, (D));			\
99 	CHECK_WRITE(0x38, (D));			\
100 	CHECK_WRITE(0x39, (D));
101 
102 #define CHECK_PRINT(S);				\
103 	kprintf("%s: %d, %d, %d, %d, %d, %d\n",	\
104 	   (S),					\
105 	   CHECK_READ(0x34),			\
106 	   CHECK_READ(0x35),			\
107 	   CHECK_READ(0x36),			\
108 	   CHECK_READ(0x37),			\
109 	   CHECK_READ(0x38),			\
110 	   CHECK_READ(0x39));
111 
112 #else				/* CHECK_POINTS */
113 
114 #define CHECK_INIT(D)
115 #define CHECK_PRINT(S)
116 
117 #endif				/* CHECK_POINTS */
118 
119 /*
120  * Values to send to the POST hardware.
121  */
122 #define MP_BOOTADDRESS_POST	0x10
123 #define MP_PROBE_POST		0x11
124 #define MPTABLE_PASS1_POST	0x12
125 
126 #define MP_START_POST		0x13
127 #define MP_ENABLE_POST		0x14
128 #define MPTABLE_PASS2_POST	0x15
129 
130 #define START_ALL_APS_POST	0x16
131 #define INSTALL_AP_TRAMP_POST	0x17
132 #define START_AP_POST		0x18
133 
134 #define MP_ANNOUNCE_POST	0x19
135 
136 /** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
137 int	current_postcode;
138 
139 /** XXX FIXME: what system files declare these??? */
140 extern struct region_descriptor r_gdt;
141 
142 extern int nkpt;
143 extern int naps;
144 
145 int64_t tsc0_offset;
146 extern int64_t tsc_offsets[];
147 
148 /* AP uses this during bootstrap.  Do not staticize.  */
149 char *bootSTK;
150 static int bootAP;
151 
152 struct pcb stoppcbs[MAXCPU];
153 
154 extern inthand_t IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
155 
156 /*
157  * Local data and functions.
158  */
159 
160 static u_int	boot_address;
161 static int	mp_finish;
162 static int	mp_finish_lapic;
163 
164 static int	start_all_aps(u_int boot_addr);
165 #if 0
166 static void	install_ap_tramp(u_int boot_addr);
167 #endif
168 static int	start_ap(struct mdglobaldata *gd, u_int boot_addr, int smibest);
169 static int	smitest(void);
170 static void	mp_bsp_simple_setup(void);
171 
172 /* which cpus have been started */
173 static cpumask_t smp_startup_mask = CPUMASK_INITIALIZER_ONLYONE;
174 /* which cpus have lapic been inited */
175 static cpumask_t smp_lapic_mask = CPUMASK_INITIALIZER_ONLYONE;
176 /* which cpus are ready for IPIs etc? */
177 cpumask_t smp_active_mask = CPUMASK_INITIALIZER_ONLYONE;
178 cpumask_t smp_finalize_mask = CPUMASK_INITIALIZER_ONLYONE;
179 
180 SYSCTL_INT(_machdep, OID_AUTO, smp_active, CTLFLAG_RD, &smp_active_mask, 0, "");
181 static u_int	bootMP_size;
182 
183 /* Local data for detecting CPU TOPOLOGY */
184 static int core_bits = 0;
185 static int logical_CPU_bits = 0;
186 
187 
188 /*
189  * Calculate usable address in base memory for AP trampoline code.
190  */
191 u_int
192 mp_bootaddress(u_int basemem)
193 {
194 	POSTCODE(MP_BOOTADDRESS_POST);
195 
196 	bootMP_size = mptramp_end - mptramp_start;
197 	boot_address = trunc_page(basemem * 1024); /* round down to 4k boundary */
198 	if (((basemem * 1024) - boot_address) < bootMP_size)
199 		boot_address -= PAGE_SIZE;	/* not enough, lower by 4k */
200 	/* 3 levels of page table pages */
201 	mptramp_pagetables = boot_address - (PAGE_SIZE * 3);
202 
203 	return mptramp_pagetables;
204 }
205 
206 /*
207  * Print various information about the SMP system hardware and setup.
208  */
209 void
210 mp_announce(void)
211 {
212 	int     x;
213 
214 	POSTCODE(MP_ANNOUNCE_POST);
215 
216 	kprintf("DragonFly/MP: Multiprocessor motherboard\n");
217 	kprintf(" cpu0 (BSP): apic id: %2d\n", CPUID_TO_APICID(0));
218 	for (x = 1; x <= naps; ++x)
219 		kprintf(" cpu%d (AP):  apic id: %2d\n", x, CPUID_TO_APICID(x));
220 
221 	if (!ioapic_enable)
222 		kprintf(" Warning: APIC I/O disabled\n");
223 }
224 
225 /*
226  * AP cpu's call this to sync up protected mode.
227  *
228  * WARNING! %gs is not set up on entry.  This routine sets up %gs.
229  */
230 void
231 init_secondary(void)
232 {
233 	int	gsel_tss;
234 	int	x, myid = bootAP;
235 	u_int64_t msr, cr0;
236 	struct mdglobaldata *md;
237 	struct privatespace *ps;
238 
239 	ps = CPU_prvspace[myid];
240 
241 	gdt_segs[GPROC0_SEL].ssd_base =
242 		(long) &ps->mdglobaldata.gd_common_tss;
243 	ps->mdglobaldata.mi.gd_prvspace = ps;
244 
245 	/* We fill the 32-bit segment descriptors */
246 	for (x = 0; x < NGDT; x++) {
247 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
248 			ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x]);
249 	}
250 	/* And now a 64-bit one */
251 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
252 	    (struct system_segment_descriptor *)&gdt[myid * NGDT + GPROC0_SEL]);
253 
254 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
255 	r_gdt.rd_base = (long) &gdt[myid * NGDT];
256 	lgdt(&r_gdt);			/* does magic intra-segment return */
257 
258 	/* lgdt() destroys the GSBASE value, so we load GSBASE after lgdt() */
259 	wrmsr(MSR_FSBASE, 0);		/* User value */
260 	wrmsr(MSR_GSBASE, (u_int64_t)ps);
261 	wrmsr(MSR_KGSBASE, 0);		/* XXX User value while we're in the kernel */
262 
263 	lidt(&r_idt_arr[mdcpu->mi.gd_cpuid]);
264 
265 #if 0
266 	lldt(_default_ldt);
267 	mdcpu->gd_currentldt = _default_ldt;
268 #endif
269 
270 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
271 	gdt[myid * NGDT + GPROC0_SEL].sd_type = SDT_SYSTSS;
272 
273 	md = mdcpu;	/* loaded through %gs:0 (mdglobaldata.mi.gd_prvspace)*/
274 
275 	md->gd_common_tss.tss_rsp0 = 0;	/* not used until after switch */
276 #if 0 /* JG XXX */
277 	md->gd_common_tss.tss_ioopt = (sizeof md->gd_common_tss) << 16;
278 #endif
279 	md->gd_tss_gdt = &gdt[myid * NGDT + GPROC0_SEL];
280 	md->gd_common_tssd = *md->gd_tss_gdt;
281 
282 	/* double fault stack */
283 	md->gd_common_tss.tss_ist1 =
284 		(long)&md->mi.gd_prvspace->idlestack[
285 			sizeof(md->mi.gd_prvspace->idlestack)];
286 
287 	ltr(gsel_tss);
288 
289 	/*
290 	 * Set to a known state:
291 	 * Set by mpboot.s: CR0_PG, CR0_PE
292 	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
293 	 */
294 	cr0 = rcr0();
295 	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
296 	load_cr0(cr0);
297 
298 	/* Set up the fast syscall stuff */
299 	msr = rdmsr(MSR_EFER) | EFER_SCE;
300 	wrmsr(MSR_EFER, msr);
301 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
302 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
303 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
304 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
305 	wrmsr(MSR_STAR, msr);
306 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
307 
308 	pmap_set_opt();		/* PSE/4MB pages, etc */
309 	pmap_init_pat();	/* Page Attribute Table */
310 
311 	/* set up CPU registers and state */
312 	cpu_setregs();
313 
314 	/* set up SSE/NX registers */
315 	initializecpu(myid);
316 
317 	/* set up FPU state on the AP */
318 	npxinit();
319 
320 	/* disable the APIC, just to be SURE */
321 	lapic->svr &= ~APIC_SVR_ENABLE;
322 }
323 
324 /*******************************************************************
325  * local functions and data
326  */
327 
328 /*
329  * Start the SMP system
330  */
331 static void
332 mp_start_aps(void *dummy __unused)
333 {
334 	if (lapic_enable) {
335 		/* start each Application Processor */
336 		start_all_aps(boot_address);
337 	} else {
338 		mp_bsp_simple_setup();
339 	}
340 }
341 SYSINIT(startaps, SI_BOOT2_START_APS, SI_ORDER_FIRST, mp_start_aps, NULL);
342 
343 /*
344  * start each AP in our list
345  */
346 static int
347 start_all_aps(u_int boot_addr)
348 {
349 	vm_offset_t va = boot_address + KERNBASE;
350 	u_int64_t *pt4, *pt3, *pt2;
351 	int	pssize;
352 	int     x, i;
353 	int	shift;
354 	int	smicount;
355 	int	smibest;
356 	int	smilast;
357 	u_char  mpbiosreason;
358 	u_long  mpbioswarmvec;
359 	struct mdglobaldata *gd;
360 	struct privatespace *ps;
361 	size_t ipiq_size;
362 
363 	POSTCODE(START_ALL_APS_POST);
364 
365 	/* install the AP 1st level boot code */
366 	pmap_kenter(va, boot_address);
367 	cpu_invlpg((void *)va);		/* JG XXX */
368 	bcopy(mptramp_start, (void *)va, bootMP_size);
369 
370 	/* Locate the page tables, they'll be below the trampoline */
371 	pt4 = (u_int64_t *)(uintptr_t)(mptramp_pagetables + KERNBASE);
372 	pt3 = pt4 + (PAGE_SIZE) / sizeof(u_int64_t);
373 	pt2 = pt3 + (PAGE_SIZE) / sizeof(u_int64_t);
374 
375 	/* Create the initial 1GB replicated page tables */
376 	for (i = 0; i < 512; i++) {
377 		/* Each slot of the level 4 pages points to the same level 3 page */
378 		pt4[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + PAGE_SIZE);
379 		pt4[i] |= kernel_pmap.pmap_bits[PG_V_IDX] |
380 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
381 		    kernel_pmap.pmap_bits[PG_U_IDX];
382 
383 		/* Each slot of the level 3 pages points to the same level 2 page */
384 		pt3[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + (2 * PAGE_SIZE));
385 		pt3[i] |= kernel_pmap.pmap_bits[PG_V_IDX] |
386 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
387 		    kernel_pmap.pmap_bits[PG_U_IDX];
388 
389 		/* The level 2 page slots are mapped with 2MB pages for 1GB. */
390 		pt2[i] = i * (2 * 1024 * 1024);
391 		pt2[i] |= kernel_pmap.pmap_bits[PG_V_IDX] |
392 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
393 		    kernel_pmap.pmap_bits[PG_PS_IDX] |
394 		    kernel_pmap.pmap_bits[PG_U_IDX];
395 	}
396 
397 	/* save the current value of the warm-start vector */
398 	mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
399 	outb(CMOS_REG, BIOS_RESET);
400 	mpbiosreason = inb(CMOS_DATA);
401 
402 	/* setup a vector to our boot code */
403 	*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
404 	*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
405 	outb(CMOS_REG, BIOS_RESET);
406 	outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
407 
408 	/*
409 	 * If we have a TSC we can figure out the SMI interrupt rate.
410 	 * The SMI does not necessarily use a constant rate.  Spend
411 	 * up to 250ms trying to figure it out.
412 	 */
413 	smibest = 0;
414 	if (cpu_feature & CPUID_TSC) {
415 		set_apic_timer(275000);
416 		smilast = read_apic_timer();
417 		for (x = 0; x < 20 && read_apic_timer(); ++x) {
418 			smicount = smitest();
419 			if (smibest == 0 || smilast - smicount < smibest)
420 				smibest = smilast - smicount;
421 			smilast = smicount;
422 		}
423 		if (smibest > 250000)
424 			smibest = 0;
425 		if (smibest) {
426 			smibest = smibest * (int64_t)1000000 /
427 				  get_apic_timer_frequency();
428 		}
429 	}
430 	if (smibest)
431 		kprintf("SMI Frequency (worst case): %d Hz (%d us)\n",
432 			1000000 / smibest, smibest);
433 
434 	/* start each AP */
435 	for (x = 1; x <= naps; ++x) {
436 		/* This is a bit verbose, it will go away soon.  */
437 
438 		pssize = sizeof(struct privatespace);
439 		ps = (void *)kmem_alloc(&kernel_map, pssize);
440 		CPU_prvspace[x] = ps;
441 #if 0
442 		kprintf("ps %d %p %d\n", x, ps, pssize);
443 #endif
444 		bzero(ps, pssize);
445 		gd = &ps->mdglobaldata;
446 		gd->mi.gd_prvspace = ps;
447 
448 		/* prime data page for it to use */
449 		mi_gdinit(&gd->mi, x);
450 		cpu_gdinit(gd, x);
451 		ipiq_size = sizeof(struct lwkt_ipiq) * (naps + 1);
452 		gd->mi.gd_ipiq = (void *)kmem_alloc(&kernel_map, ipiq_size);
453 		bzero(gd->mi.gd_ipiq, ipiq_size);
454 
455 		gd->gd_acpi_id = CPUID_TO_ACPIID(gd->mi.gd_cpuid);
456 
457 		/* setup a vector to our boot code */
458 		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
459 		*((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4);
460 		outb(CMOS_REG, BIOS_RESET);
461 		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
462 
463 		/*
464 		 * Setup the AP boot stack
465 		 */
466 		bootSTK = &ps->idlestack[UPAGES * PAGE_SIZE - PAGE_SIZE];
467 		bootAP = x;
468 
469 		/* attempt to start the Application Processor */
470 		CHECK_INIT(99);	/* setup checkpoints */
471 		if (!start_ap(gd, boot_addr, smibest)) {
472 			kprintf("\nAP #%d (PHY# %d) failed!\n",
473 				x, CPUID_TO_APICID(x));
474 			CHECK_PRINT("trace");	/* show checkpoints */
475 			/* better panic as the AP may be running loose */
476 			kprintf("panic y/n? [y] ");
477 			cnpoll(TRUE);
478 			if (cngetc() != 'n')
479 				panic("bye-bye");
480 			cnpoll(FALSE);
481 		}
482 		CHECK_PRINT("trace");		/* show checkpoints */
483 	}
484 
485 	/* set ncpus to 1 + highest logical cpu.  Not all may have come up */
486 	ncpus = x;
487 
488 	/* ncpus2 -- ncpus rounded down to the nearest power of 2 */
489 	for (shift = 0; (1 << shift) <= ncpus; ++shift)
490 		;
491 	--shift;
492 	ncpus2_shift = shift;
493 	ncpus2 = 1 << shift;
494 	ncpus2_mask = ncpus2 - 1;
495 
496 	/* ncpus_fit -- ncpus rounded up to the nearest power of 2 */
497 	if ((1 << shift) < ncpus)
498 		++shift;
499 	ncpus_fit = 1 << shift;
500 	ncpus_fit_mask = ncpus_fit - 1;
501 
502 	/* build our map of 'other' CPUs */
503 	mycpu->gd_other_cpus = smp_startup_mask;
504 	CPUMASK_NANDBIT(mycpu->gd_other_cpus, mycpu->gd_cpuid);
505 
506 	gd = (struct mdglobaldata *)mycpu;
507 	gd->gd_acpi_id = CPUID_TO_ACPIID(mycpu->gd_cpuid);
508 
509 	ipiq_size = sizeof(struct lwkt_ipiq) * ncpus;
510 	mycpu->gd_ipiq = (void *)kmem_alloc(&kernel_map, ipiq_size);
511 	bzero(mycpu->gd_ipiq, ipiq_size);
512 
513 	/* restore the warmstart vector */
514 	*(u_long *) WARMBOOT_OFF = mpbioswarmvec;
515 	outb(CMOS_REG, BIOS_RESET);
516 	outb(CMOS_DATA, mpbiosreason);
517 
518 	/*
519 	 * NOTE!  The idlestack for the BSP was setup by locore.  Finish
520 	 * up, clean out the P==V mapping we did earlier.
521 	 */
522 	pmap_set_opt();
523 
524 	/*
525 	 * Wait all APs to finish initializing LAPIC
526 	 */
527 	if (bootverbose)
528 		kprintf("SMP: Waiting APs LAPIC initialization\n");
529 	if (cpu_feature & CPUID_TSC)
530 		tsc0_offset = rdtsc();
531 	tsc_offsets[0] = 0;
532 	mp_finish_lapic = 1;
533 	rel_mplock();
534 
535 	while (CPUMASK_CMPMASKNEQ(smp_lapic_mask, smp_startup_mask)) {
536 		cpu_pause();
537 		cpu_lfence();
538 		if (cpu_feature & CPUID_TSC)
539 			tsc0_offset = rdtsc();
540 	}
541 	while (try_mplock() == 0) {
542 		cpu_pause();
543 		cpu_lfence();
544 	}
545 
546 	/* number of APs actually started */
547 	return ncpus - 1;
548 }
549 
550 
551 /*
552  * load the 1st level AP boot code into base memory.
553  */
554 
555 /* targets for relocation */
556 extern void bigJump(void);
557 extern void bootCodeSeg(void);
558 extern void bootDataSeg(void);
559 extern void MPentry(void);
560 extern u_int MP_GDT;
561 extern u_int mp_gdtbase;
562 
563 #if 0
564 
565 static void
566 install_ap_tramp(u_int boot_addr)
567 {
568 	int     x;
569 	int     size = *(int *) ((u_long) & bootMP_size);
570 	u_char *src = (u_char *) ((u_long) bootMP);
571 	u_char *dst = (u_char *) boot_addr + KERNBASE;
572 	u_int   boot_base = (u_int) bootMP;
573 	u_int8_t *dst8;
574 	u_int16_t *dst16;
575 	u_int32_t *dst32;
576 
577 	POSTCODE(INSTALL_AP_TRAMP_POST);
578 
579 	for (x = 0; x < size; ++x)
580 		*dst++ = *src++;
581 
582 	/*
583 	 * modify addresses in code we just moved to basemem. unfortunately we
584 	 * need fairly detailed info about mpboot.s for this to work.  changes
585 	 * to mpboot.s might require changes here.
586 	 */
587 
588 	/* boot code is located in KERNEL space */
589 	dst = (u_char *) boot_addr + KERNBASE;
590 
591 	/* modify the lgdt arg */
592 	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
593 	*dst32 = boot_addr + ((u_int) & MP_GDT - boot_base);
594 
595 	/* modify the ljmp target for MPentry() */
596 	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
597 	*dst32 = ((u_int) MPentry - KERNBASE);
598 
599 	/* modify the target for boot code segment */
600 	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
601 	dst8 = (u_int8_t *) (dst16 + 1);
602 	*dst16 = (u_int) boot_addr & 0xffff;
603 	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
604 
605 	/* modify the target for boot data segment */
606 	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
607 	dst8 = (u_int8_t *) (dst16 + 1);
608 	*dst16 = (u_int) boot_addr & 0xffff;
609 	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
610 }
611 
612 #endif
613 
614 /*
615  * This function starts the AP (application processor) identified
616  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
617  * to accomplish this.  This is necessary because of the nuances
618  * of the different hardware we might encounter.  It ain't pretty,
619  * but it seems to work.
620  *
621  * NOTE: eventually an AP gets to ap_init(), which is called just
622  * before the AP goes into the LWKT scheduler's idle loop.
623  */
624 static int
625 start_ap(struct mdglobaldata *gd, u_int boot_addr, int smibest)
626 {
627 	int     physical_cpu;
628 	int     vector;
629 	u_long  icr_lo, icr_hi;
630 
631 	POSTCODE(START_AP_POST);
632 
633 	/* get the PHYSICAL APIC ID# */
634 	physical_cpu = CPUID_TO_APICID(gd->mi.gd_cpuid);
635 
636 	/* calculate the vector */
637 	vector = (boot_addr >> 12) & 0xff;
638 
639 	/* We don't want anything interfering */
640 	cpu_disable_intr();
641 
642 	/* Make sure the target cpu sees everything */
643 	wbinvd();
644 
645 	/*
646 	 * Try to detect when a SMI has occurred, wait up to 200ms.
647 	 *
648 	 * If a SMI occurs during an AP reset but before we issue
649 	 * the STARTUP command, the AP may brick.  To work around
650 	 * this problem we hold off doing the AP startup until
651 	 * after we have detected the SMI.  Hopefully another SMI
652 	 * will not occur before we finish the AP startup.
653 	 *
654 	 * Retries don't seem to help.  SMIs have a window of opportunity
655 	 * and if USB->legacy keyboard emulation is enabled in the BIOS
656 	 * the interrupt rate can be quite high.
657 	 *
658 	 * NOTE: Don't worry about the L1 cache load, it might bloat
659 	 *	 ldelta a little but ndelta will be so huge when the SMI
660 	 *	 occurs the detection logic will still work fine.
661 	 */
662 	if (smibest) {
663 		set_apic_timer(200000);
664 		smitest();
665 	}
666 
667 	/*
668 	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
669 	 * and running the target CPU. OR this INIT IPI might be latched (P5
670 	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
671 	 * ignored.
672 	 *
673 	 * see apic/apicreg.h for icr bit definitions.
674 	 *
675 	 * TIME CRITICAL CODE, DO NOT DO ANY KPRINTFS IN THE HOT PATH.
676 	 */
677 
678 	/*
679 	 * Setup the address for the target AP.  We can setup
680 	 * icr_hi once and then just trigger operations with
681 	 * icr_lo.
682 	 */
683 	icr_hi = lapic->icr_hi & ~APIC_ID_MASK;
684 	icr_hi |= (physical_cpu << 24);
685 	icr_lo = lapic->icr_lo & 0xfff00000;
686 	lapic->icr_hi = icr_hi;
687 
688 	/*
689 	 * Do an INIT IPI: assert RESET
690 	 *
691 	 * Use edge triggered mode to assert INIT
692 	 */
693 	lapic->icr_lo = icr_lo | 0x00004500;
694 	while (lapic->icr_lo & APIC_DELSTAT_MASK)
695 		 /* spin */ ;
696 
697 	/*
698 	 * The spec calls for a 10ms delay but we may have to use a
699 	 * MUCH lower delay to avoid bricking an AP due to a fast SMI
700 	 * interrupt.  We have other loops here too and dividing by 2
701 	 * doesn't seem to be enough even after subtracting 350us,
702 	 * so we divide by 4.
703 	 *
704 	 * Our minimum delay is 150uS, maximum is 10ms.  If no SMI
705 	 * interrupt was detected we use the full 10ms.
706 	 */
707 	if (smibest == 0)
708 		u_sleep(10000);
709 	else if (smibest < 150 * 4 + 350)
710 		u_sleep(150);
711 	else if ((smibest - 350) / 4 < 10000)
712 		u_sleep((smibest - 350) / 4);
713 	else
714 		u_sleep(10000);
715 
716 	/*
717 	 * Do an INIT IPI: deassert RESET
718 	 *
719 	 * Use level triggered mode to deassert.  It is unclear
720 	 * why we need to do this.
721 	 */
722 	lapic->icr_lo = icr_lo | 0x00008500;
723 	while (lapic->icr_lo & APIC_DELSTAT_MASK)
724 		 /* spin */ ;
725 	u_sleep(150);				/* wait 150us */
726 
727 	/*
728 	 * Next we do a STARTUP IPI: the previous INIT IPI might still be
729 	 * latched, (P5 bug) this 1st STARTUP would then terminate
730 	 * immediately, and the previously started INIT IPI would continue. OR
731 	 * the previous INIT IPI has already run. and this STARTUP IPI will
732 	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
733 	 * will run.
734 	 */
735 	lapic->icr_lo = icr_lo | 0x00000600 | vector;
736 	while (lapic->icr_lo & APIC_DELSTAT_MASK)
737 		 /* spin */ ;
738 	u_sleep(200);		/* wait ~200uS */
739 
740 	/*
741 	 * Finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
742 	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
743 	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
744 	 * recognized after hardware RESET or INIT IPI.
745 	 */
746 	lapic->icr_lo = icr_lo | 0x00000600 | vector;
747 	while (lapic->icr_lo & APIC_DELSTAT_MASK)
748 		 /* spin */ ;
749 
750 	/* Resume normal operation */
751 	cpu_enable_intr();
752 
753 	/* wait for it to start, see ap_init() */
754 	set_apic_timer(5000000);/* == 5 seconds */
755 	while (read_apic_timer()) {
756 		if (CPUMASK_TESTBIT(smp_startup_mask, gd->mi.gd_cpuid))
757 			return 1;	/* return SUCCESS */
758 	}
759 
760 	return 0;		/* return FAILURE */
761 }
762 
763 static
764 int
765 smitest(void)
766 {
767 	int64_t	ltsc;
768 	int64_t	ntsc;
769 	int64_t	ldelta;
770 	int64_t	ndelta;
771 	int count;
772 
773 	ldelta = 0;
774 	ndelta = 0;
775 	while (read_apic_timer()) {
776 		ltsc = rdtsc();
777 		for (count = 0; count < 100; ++count)
778 			ntsc = rdtsc();	/* force loop to occur */
779 		if (ldelta) {
780 			ndelta = ntsc - ltsc;
781 			if (ldelta > ndelta)
782 				ldelta = ndelta;
783 			if (ndelta > ldelta * 2)
784 				break;
785 		} else {
786 			ldelta = ntsc - ltsc;
787 		}
788 	}
789 	return(read_apic_timer());
790 }
791 
792 /*
793  * Synchronously flush the TLB on all other CPU's.  The current cpu's
794  * TLB is not flushed.  If the caller wishes to flush the current cpu's
795  * TLB the caller must call cpu_invltlb() in addition to smp_invltlb().
796  *
797  * NOTE: If for some reason we were unable to start all cpus we cannot
798  *	 safely use broadcast IPIs.
799  */
800 
801 static cpumask_t smp_invltlb_req;
802 
803 #define SMP_INVLTLB_DEBUG
804 
805 void
806 smp_invltlb(void)
807 {
808 	struct mdglobaldata *md = mdcpu;
809 #ifdef SMP_INVLTLB_DEBUG
810 	long count = 0;
811 	long xcount = 0;
812 #endif
813 	cpumask_t tmpmask;
814 	cpumask_t tmpmask2;
815 
816 	crit_enter_gd(&md->mi);
817 	CPUMASK_ASSZERO(md->gd_invltlb_ret);
818 	++md->mi.gd_cnt.v_smpinvltlb;
819 	ATOMIC_CPUMASK_ORBIT(smp_invltlb_req, md->mi.gd_cpuid);
820 #ifdef SMP_INVLTLB_DEBUG
821 again:
822 #endif
823 	if (CPUMASK_CMPMASKEQ(smp_startup_mask, smp_active_mask)) {
824 		all_but_self_ipi(XINVLTLB_OFFSET);
825 	} else {
826 		tmpmask = smp_active_mask;
827 		CPUMASK_NANDMASK(tmpmask, md->mi.gd_cpumask);
828 		selected_apic_ipi(tmpmask, XINVLTLB_OFFSET, APIC_DELMODE_FIXED);
829 	}
830 
831 #ifdef SMP_INVLTLB_DEBUG
832 	if (xcount)
833 		kprintf("smp_invltlb: ipi sent\n");
834 #endif
835 	for (;;) {
836 		tmpmask = smp_active_mask;
837 		tmpmask2 = tmpmask;
838 		CPUMASK_ANDMASK(tmpmask, md->gd_invltlb_ret);
839 		CPUMASK_NANDMASK(tmpmask, md->mi.gd_cpumask);
840 		CPUMASK_NANDMASK(tmpmask2, md->mi.gd_cpumask);
841 
842 		if (CPUMASK_CMPMASKEQ(tmpmask, tmpmask2))
843 			break;
844 		cpu_mfence();
845 		cpu_pause();
846 #ifdef SMP_INVLTLB_DEBUG
847 		/* DEBUGGING */
848 		if (++count == 400000000) {
849 			print_backtrace(-1);
850 			kprintf("smp_invltlb: endless loop %08lx %08lx, "
851 				"rflags %016jx retry",
852 			      (long)CPUMASK_LOWMASK(md->gd_invltlb_ret),
853 			      (long)CPUMASK_LOWMASK(smp_invltlb_req),
854 			      (intmax_t)read_rflags());
855 			__asm __volatile ("sti");
856 			++xcount;
857 			if (xcount > 2)
858 				lwkt_process_ipiq();
859 			if (xcount > 3) {
860 				int bcpu;
861 				globaldata_t xgd;
862 
863 				tmpmask = smp_active_mask;
864 				CPUMASK_NANDMASK(tmpmask, md->gd_invltlb_ret);
865 				CPUMASK_NANDMASK(tmpmask, md->mi.gd_cpumask);
866 				bcpu = BSFCPUMASK(tmpmask);
867 
868 				kprintf("bcpu %d\n", bcpu);
869 				xgd = globaldata_find(bcpu);
870 				kprintf("thread %p %s\n", xgd->gd_curthread, xgd->gd_curthread->td_comm);
871 			}
872 			if (xcount > 5)
873 				Debugger("giving up");
874 			count = 0;
875 			goto again;
876 		}
877 #endif
878 	}
879 	ATOMIC_CPUMASK_NANDBIT(smp_invltlb_req, md->mi.gd_cpuid);
880 	crit_exit_gd(&md->mi);
881 }
882 
883 /*
884  * Called from Xinvltlb assembly with interrupts disabled.  We didn't
885  * bother to bump the critical section count or nested interrupt count
886  * so only do very low level operations here.
887  */
888 void
889 smp_invltlb_intr(void)
890 {
891 	struct mdglobaldata *md = mdcpu;
892 	struct mdglobaldata *omd;
893 	cpumask_t mask;
894 	int cpu;
895 
896 	cpu_mfence();
897 	mask = smp_invltlb_req;
898 	cpu_invltlb();
899 	while (CPUMASK_TESTNZERO(mask)) {
900 		cpu = BSFCPUMASK(mask);
901 		CPUMASK_NANDBIT(mask, cpu);
902 		omd = (struct mdglobaldata *)globaldata_find(cpu);
903 		ATOMIC_CPUMASK_ORBIT(omd->gd_invltlb_ret, md->mi.gd_cpuid);
904 	}
905 }
906 
907 void
908 cpu_wbinvd_on_all_cpus_callback(void *arg)
909 {
910     wbinvd();
911 }
912 
913 void
914 smp_invlpg_range_cpusync(void *arg)
915 {
916 	vm_offset_t eva, sva, addr;
917 	sva = ((struct smp_invlpg_range_cpusync_arg *)arg)->sva;
918 	eva = ((struct smp_invlpg_range_cpusync_arg *)arg)->eva;
919 
920 	for (addr = sva; addr < eva; addr += PAGE_SIZE) {
921 		cpu_invlpg((void *)addr);
922 	}
923 }
924 
925 /*
926  * When called the executing CPU will send an IPI to all other CPUs
927  *  requesting that they halt execution.
928  *
929  * Usually (but not necessarily) called with 'other_cpus' as its arg.
930  *
931  *  - Signals all CPUs in map to stop.
932  *  - Waits for each to stop.
933  *
934  * Returns:
935  *  -1: error
936  *   0: NA
937  *   1: ok
938  *
939  * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
940  *            from executing at same time.
941  */
942 int
943 stop_cpus(cpumask_t map)
944 {
945 	cpumask_t mask;
946 
947 	CPUMASK_ANDMASK(map, smp_active_mask);
948 
949 	/* send the Xcpustop IPI to all CPUs in map */
950 	selected_apic_ipi(map, XCPUSTOP_OFFSET, APIC_DELMODE_FIXED);
951 
952 	do {
953 		mask = stopped_cpus;
954 		CPUMASK_ANDMASK(mask, map);
955 		/* spin */
956 	} while (CPUMASK_CMPMASKNEQ(mask, map));
957 
958 	return 1;
959 }
960 
961 
962 /*
963  * Called by a CPU to restart stopped CPUs.
964  *
965  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
966  *
967  *  - Signals all CPUs in map to restart.
968  *  - Waits for each to restart.
969  *
970  * Returns:
971  *  -1: error
972  *   0: NA
973  *   1: ok
974  */
975 int
976 restart_cpus(cpumask_t map)
977 {
978 	cpumask_t mask;
979 
980 	/* signal other cpus to restart */
981 	mask = map;
982 	CPUMASK_ANDMASK(mask, smp_active_mask);
983 	cpu_ccfence();
984 	started_cpus = mask;
985 	cpu_ccfence();
986 
987 	/* wait for each to clear its bit */
988 	while (CPUMASK_CMPMASKNEQ(stopped_cpus, map))
989 		cpu_pause();
990 
991 	return 1;
992 }
993 
994 /*
995  * This is called once the mpboot code has gotten us properly relocated
996  * and the MMU turned on, etc.   ap_init() is actually the idle thread,
997  * and when it returns the scheduler will call the real cpu_idle() main
998  * loop for the idlethread.  Interrupts are disabled on entry and should
999  * remain disabled at return.
1000  */
1001 void
1002 ap_init(void)
1003 {
1004 	int	cpu_id;
1005 
1006 	/*
1007 	 * Adjust smp_startup_mask to signal the BSP that we have started
1008 	 * up successfully.  Note that we do not yet hold the BGL.  The BSP
1009 	 * is waiting for our signal.
1010 	 *
1011 	 * We can't set our bit in smp_active_mask yet because we are holding
1012 	 * interrupts physically disabled and remote cpus could deadlock
1013 	 * trying to send us an IPI.
1014 	 */
1015 	ATOMIC_CPUMASK_ORBIT(smp_startup_mask, mycpu->gd_cpuid);
1016 	cpu_mfence();
1017 
1018 	/*
1019 	 * Interlock for LAPIC initialization.  Wait until mp_finish_lapic is
1020 	 * non-zero, then get the MP lock.
1021 	 *
1022 	 * Note: We are in a critical section.
1023 	 *
1024 	 * Note: we are the idle thread, we can only spin.
1025 	 *
1026 	 * Note: The load fence is memory volatile and prevents the compiler
1027 	 * from improperly caching mp_finish_lapic, and the cpu from improperly
1028 	 * caching it.
1029 	 */
1030 	while (mp_finish_lapic == 0) {
1031 		cpu_pause();
1032 		cpu_lfence();
1033 	}
1034 #if 0
1035 	while (try_mplock() == 0) {
1036 		cpu_pause();
1037 		cpu_lfence();
1038 	}
1039 #endif
1040 
1041 	if (cpu_feature & CPUID_TSC) {
1042 		/*
1043 		 * The BSP is constantly updating tsc0_offset, figure out
1044 		 * the relative difference to synchronize ktrdump.
1045 		 */
1046 		tsc_offsets[mycpu->gd_cpuid] = rdtsc() - tsc0_offset;
1047 	}
1048 
1049 	/* BSP may have changed PTD while we're waiting for the lock */
1050 	cpu_invltlb();
1051 
1052 	/* Build our map of 'other' CPUs. */
1053 	mycpu->gd_other_cpus = smp_startup_mask;
1054 	ATOMIC_CPUMASK_NANDBIT(mycpu->gd_other_cpus, mycpu->gd_cpuid);
1055 
1056 	/* A quick check from sanity claus */
1057 	cpu_id = APICID_TO_CPUID((lapic->id & 0xff000000) >> 24);
1058 	if (mycpu->gd_cpuid != cpu_id) {
1059 		kprintf("SMP: assigned cpuid = %d\n", mycpu->gd_cpuid);
1060 		kprintf("SMP: actual cpuid = %d lapicid %d\n",
1061 			cpu_id, (lapic->id & 0xff000000) >> 24);
1062 #if 0 /* JGXXX */
1063 		kprintf("PTD[MPPTDI] = %p\n", (void *)PTD[MPPTDI]);
1064 #endif
1065 		panic("cpuid mismatch! boom!!");
1066 	}
1067 
1068 	/* Initialize AP's local APIC for irq's */
1069 	lapic_init(FALSE);
1070 
1071 	/* LAPIC initialization is done */
1072 	ATOMIC_CPUMASK_ORBIT(smp_lapic_mask, mycpu->gd_cpuid);
1073 	cpu_mfence();
1074 
1075 #if 0
1076 	/* Let BSP move onto the next initialization stage */
1077 	rel_mplock();
1078 #endif
1079 
1080 	/*
1081 	 * Interlock for finalization.  Wait until mp_finish is non-zero,
1082 	 * then get the MP lock.
1083 	 *
1084 	 * Note: We are in a critical section.
1085 	 *
1086 	 * Note: we are the idle thread, we can only spin.
1087 	 *
1088 	 * Note: The load fence is memory volatile and prevents the compiler
1089 	 * from improperly caching mp_finish, and the cpu from improperly
1090 	 * caching it.
1091 	 */
1092 	while (mp_finish == 0) {
1093 		cpu_pause();
1094 		cpu_lfence();
1095 	}
1096 
1097 	/* BSP may have changed PTD while we're waiting for the lock */
1098 	cpu_invltlb();
1099 
1100 	/* Set memory range attributes for this CPU to match the BSP */
1101 	mem_range_AP_init();
1102 
1103 	/*
1104 	 * Once we go active we must process any IPIQ messages that may
1105 	 * have been queued, because no actual IPI will occur until we
1106 	 * set our bit in the smp_active_mask.  If we don't the IPI
1107 	 * message interlock could be left set which would also prevent
1108 	 * further IPIs.
1109 	 *
1110 	 * The idle loop doesn't expect the BGL to be held and while
1111 	 * lwkt_switch() normally cleans things up this is a special case
1112 	 * because we returning almost directly into the idle loop.
1113 	 *
1114 	 * The idle thread is never placed on the runq, make sure
1115 	 * nothing we've done put it there.
1116 	 */
1117 
1118 	/*
1119 	 * Hold a critical section and allow real interrupts to occur.  Zero
1120 	 * any spurious interrupts which have accumulated, then set our
1121 	 * smp_active_mask indicating that we are fully operational.
1122 	 */
1123 	crit_enter();
1124 	__asm __volatile("sti; pause; pause"::);
1125 	bzero(mdcpu->gd_ipending, sizeof(mdcpu->gd_ipending));
1126 	ATOMIC_CPUMASK_ORBIT(smp_active_mask, mycpu->gd_cpuid);
1127 
1128 	/*
1129 	 * Wait until all cpus have set their smp_active_mask and have fully
1130 	 * operational interrupts before proceeding.
1131 	 *
1132 	 * We need a final cpu_invltlb() because we would not have received
1133 	 * any until we set our bit in smp_active_mask.
1134 	 */
1135 	while (mp_finish == 1) {
1136 		cpu_pause();
1137 		cpu_lfence();
1138 	}
1139 	cpu_invltlb();
1140 
1141 	/*
1142 	 * Initialize per-cpu clocks and do other per-cpu initialization.
1143 	 * At this point code is expected to be able to use the full kernel
1144 	 * API.
1145 	 */
1146 	initclocks_pcpu();	/* clock interrupts (via IPIs) */
1147 
1148 	/*
1149 	 * Since we may have cleaned up the interrupt triggers, manually
1150 	 * process any pending IPIs before exiting our critical section.
1151 	 * Once the critical section has exited, normal interrupt processing
1152 	 * may occur.
1153 	 */
1154 	lwkt_process_ipiq();
1155 	crit_exit_noyield(mycpu->gd_curthread);
1156 
1157 	/*
1158 	 * Final final, allow the waiting BSP to resume the boot process,
1159 	 * return 'into' the idle thread bootstrap.
1160 	 */
1161 	ATOMIC_CPUMASK_ORBIT(smp_finalize_mask, mycpu->gd_cpuid);
1162 	KKASSERT((curthread->td_flags & TDF_RUNQ) == 0);
1163 }
1164 
1165 /*
1166  * Get SMP fully working before we start initializing devices.
1167  */
1168 static
1169 void
1170 ap_finish(void)
1171 {
1172 	if (bootverbose)
1173 		kprintf("Finish MP startup\n");
1174 	rel_mplock();
1175 
1176 	/*
1177 	 * Wait for the active mask to complete, after which all cpus will
1178 	 * be accepting interrupts.
1179 	 */
1180 	mp_finish = 1;
1181 	while (CPUMASK_CMPMASKNEQ(smp_active_mask, smp_startup_mask)) {
1182 		cpu_pause();
1183 		cpu_lfence();
1184 	}
1185 
1186 	/*
1187 	 * Wait for the finalization mask to complete, after which all cpus
1188 	 * have completely finished initializing and are entering or are in
1189 	 * their idle thread.
1190 	 *
1191 	 * BSP should have received all required invltlbs but do another
1192 	 * one just in case.
1193 	 */
1194 	cpu_invltlb();
1195 	mp_finish = 2;
1196 	while (CPUMASK_CMPMASKNEQ(smp_finalize_mask, smp_startup_mask)) {
1197 		cpu_pause();
1198 		cpu_lfence();
1199 	}
1200 
1201 	while (try_mplock() == 0) {
1202 		cpu_pause();
1203 		cpu_lfence();
1204 	}
1205 
1206 	if (bootverbose) {
1207 		kprintf("Active CPU Mask: %016jx\n",
1208 			(uintmax_t)CPUMASK_LOWMASK(smp_active_mask));
1209 	}
1210 }
1211 
1212 SYSINIT(finishsmp, SI_BOOT2_FINISH_SMP, SI_ORDER_FIRST, ap_finish, NULL);
1213 
1214 void
1215 cpu_send_ipiq(int dcpu)
1216 {
1217 	if (CPUMASK_TESTBIT(smp_active_mask, dcpu))
1218                 single_apic_ipi(dcpu, XIPIQ_OFFSET, APIC_DELMODE_FIXED);
1219 }
1220 
1221 #if 0	/* single_apic_ipi_passive() not working yet */
1222 /*
1223  * Returns 0 on failure, 1 on success
1224  */
1225 int
1226 cpu_send_ipiq_passive(int dcpu)
1227 {
1228         int r = 0;
1229 	if (CPUMASK_TESTBIT(smp_active_mask, dcpu)) {
1230                 r = single_apic_ipi_passive(dcpu, XIPIQ_OFFSET,
1231                                         APIC_DELMODE_FIXED);
1232         }
1233 	return(r);
1234 }
1235 #endif
1236 
1237 static void
1238 mp_bsp_simple_setup(void)
1239 {
1240 	struct mdglobaldata *gd;
1241 	size_t ipiq_size;
1242 
1243 	/* build our map of 'other' CPUs */
1244 	mycpu->gd_other_cpus = smp_startup_mask;
1245 	CPUMASK_NANDBIT(mycpu->gd_other_cpus, mycpu->gd_cpuid);
1246 
1247 	gd = (struct mdglobaldata *)mycpu;
1248 	gd->gd_acpi_id = CPUID_TO_ACPIID(mycpu->gd_cpuid);
1249 
1250 	ipiq_size = sizeof(struct lwkt_ipiq) * ncpus;
1251 	mycpu->gd_ipiq = (void *)kmem_alloc(&kernel_map, ipiq_size);
1252 	bzero(mycpu->gd_ipiq, ipiq_size);
1253 
1254 	pmap_set_opt();
1255 
1256 	if (cpu_feature & CPUID_TSC)
1257 		tsc0_offset = rdtsc();
1258 }
1259 
1260 
1261 /*
1262  * CPU TOPOLOGY DETECTION FUNCTIONS
1263  */
1264 
1265 /* Detect intel topology using CPUID
1266  * Ref: http://www.intel.com/Assets/PDF/appnote/241618.pdf, pg 41
1267  */
1268 static void
1269 detect_intel_topology(int count_htt_cores)
1270 {
1271 	int shift = 0;
1272 	int ecx_index = 0;
1273 	int core_plus_logical_bits = 0;
1274 	int cores_per_package;
1275 	int logical_per_package;
1276 	int logical_per_core;
1277 	unsigned int p[4];
1278 
1279 	if (cpu_high >= 0xb) {
1280 		goto FUNC_B;
1281 
1282 	} else if (cpu_high >= 0x4) {
1283 		goto FUNC_4;
1284 
1285 	} else {
1286 		core_bits = 0;
1287 		for (shift = 0; (1 << shift) < count_htt_cores; ++shift)
1288 			;
1289 		logical_CPU_bits = 1 << shift;
1290 		return;
1291 	}
1292 
1293 FUNC_B:
1294 	cpuid_count(0xb, FUNC_B_THREAD_LEVEL, p);
1295 
1296 	/* if 0xb not supported - fallback to 0x4 */
1297 	if (p[1] == 0 || (FUNC_B_TYPE(p[2]) != FUNC_B_THREAD_TYPE)) {
1298 		goto FUNC_4;
1299 	}
1300 
1301 	logical_CPU_bits = FUNC_B_BITS_SHIFT_NEXT_LEVEL(p[0]);
1302 
1303 	ecx_index = FUNC_B_THREAD_LEVEL + 1;
1304 	do {
1305 		cpuid_count(0xb, ecx_index, p);
1306 
1307 		/* Check for the Core type in the implemented sub leaves. */
1308 		if (FUNC_B_TYPE(p[2]) == FUNC_B_CORE_TYPE) {
1309 			core_plus_logical_bits = FUNC_B_BITS_SHIFT_NEXT_LEVEL(p[0]);
1310 			break;
1311 		}
1312 
1313 		ecx_index++;
1314 
1315 	} while (FUNC_B_TYPE(p[2]) != FUNC_B_INVALID_TYPE);
1316 
1317 	core_bits = core_plus_logical_bits - logical_CPU_bits;
1318 
1319 	return;
1320 
1321 FUNC_4:
1322 	cpuid_count(0x4, 0, p);
1323 	cores_per_package = FUNC_4_MAX_CORE_NO(p[0]) + 1;
1324 
1325 	logical_per_package = count_htt_cores;
1326 	logical_per_core = logical_per_package / cores_per_package;
1327 
1328 	for (shift = 0; (1 << shift) < logical_per_core; ++shift)
1329 		;
1330 	logical_CPU_bits = shift;
1331 
1332 	for (shift = 0; (1 << shift) < cores_per_package; ++shift)
1333 		;
1334 	core_bits = shift;
1335 
1336 	return;
1337 }
1338 
1339 /* Detect AMD topology using CPUID
1340  * Ref: http://support.amd.com/us/Embedded_TechDocs/25481.pdf, last page
1341  */
1342 static void
1343 detect_amd_topology(int count_htt_cores)
1344 {
1345 	int shift = 0;
1346 	if ((cpu_feature & CPUID_HTT)
1347 			&& (amd_feature2 & AMDID2_CMP)) {
1348 
1349 		if (cpu_procinfo2 & AMDID_COREID_SIZE) {
1350 			core_bits = (cpu_procinfo2 & AMDID_COREID_SIZE)
1351 			    >> AMDID_COREID_SIZE_SHIFT;
1352 		} else {
1353 			core_bits = (cpu_procinfo2 & AMDID_CMP_CORES) + 1;
1354 			for (shift = 0; (1 << shift) < core_bits; ++shift)
1355 				;
1356 			core_bits = shift;
1357 		}
1358 
1359 		logical_CPU_bits = count_htt_cores >> core_bits;
1360 		for (shift = 0; (1 << shift) < logical_CPU_bits; ++shift)
1361 			;
1362 		logical_CPU_bits = shift;
1363 	} else {
1364 		for (shift = 0; (1 << shift) < count_htt_cores; ++shift)
1365 			;
1366 		core_bits = shift;
1367 		logical_CPU_bits = 0;
1368 	}
1369 }
1370 
1371 static void
1372 amd_get_compute_unit_id(void *arg)
1373 {
1374 	u_int regs[4];
1375 
1376 	do_cpuid(0x8000001e, regs);
1377 	cpu_node_t * mynode = get_cpu_node_by_cpuid(mycpuid);
1378 	/*
1379 	 * AMD - CPUID Specification September 2010
1380 	 * page 34 - //ComputeUnitID = ebx[0:7]//
1381 	 */
1382 	mynode->compute_unit_id = regs[1] & 0xff;
1383 }
1384 
1385 int
1386 fix_amd_topology(void)
1387 {
1388 	cpumask_t mask;
1389 
1390 	if (cpu_vendor_id != CPU_VENDOR_AMD)
1391 		return -1;
1392 	if ((amd_feature2 & AMDID2_TOPOEXT) == 0)
1393 		return -1;
1394 
1395 	CPUMASK_ASSALLONES(mask);
1396 	lwkt_cpusync_simple(mask, amd_get_compute_unit_id, NULL);
1397 
1398 	kprintf("Compute unit iDS:\n");
1399 	int i;
1400 	for (i = 0; i < ncpus; i++) {
1401 		kprintf("%d-%d; \n",
1402 			i, get_cpu_node_by_cpuid(i)->compute_unit_id);
1403 	}
1404 
1405 	return 0;
1406 }
1407 
1408 /* Calculate
1409  * - logical_CPU_bits
1410  * - core_bits
1411  * With the values above (for AMD or INTEL) we are able to generally
1412  * detect the CPU topology (number of cores for each level):
1413  * Ref: http://wiki.osdev.org/Detecting_CPU_Topology_(80x86)
1414  * Ref: http://www.multicoreinfo.com/research/papers/whitepapers/Intel-detect-topology.pdf
1415  */
1416 void
1417 detect_cpu_topology(void)
1418 {
1419 	static int topology_detected = 0;
1420 	int count = 0;
1421 
1422 	if (topology_detected) {
1423 		goto OUT;
1424 	}
1425 
1426 	if ((cpu_feature & CPUID_HTT) == 0) {
1427 		core_bits = 0;
1428 		logical_CPU_bits = 0;
1429 		goto OUT;
1430 	} else {
1431 		count = (cpu_procinfo & CPUID_HTT_CORES)
1432 		    >> CPUID_HTT_CORE_SHIFT;
1433 	}
1434 
1435 	if (cpu_vendor_id == CPU_VENDOR_INTEL) {
1436 		detect_intel_topology(count);
1437 	} else if (cpu_vendor_id == CPU_VENDOR_AMD) {
1438 		detect_amd_topology(count);
1439 	}
1440 
1441 OUT:
1442 	if (bootverbose)
1443 		kprintf("Bits within APICID: logical_CPU_bits: %d; core_bits: %d\n",
1444 		    logical_CPU_bits, core_bits);
1445 
1446 	topology_detected = 1;
1447 }
1448 
1449 /* Interface functions to calculate chip_ID,
1450  * core_number and logical_number
1451  * Ref: http://wiki.osdev.org/Detecting_CPU_Topology_(80x86)
1452  */
1453 int
1454 get_chip_ID(int cpuid)
1455 {
1456 	return get_apicid_from_cpuid(cpuid) >>
1457 	    (logical_CPU_bits + core_bits);
1458 }
1459 
1460 int
1461 get_core_number_within_chip(int cpuid)
1462 {
1463 	return (get_apicid_from_cpuid(cpuid) >> logical_CPU_bits) &
1464 	    ( (1 << core_bits) -1);
1465 }
1466 
1467 int
1468 get_logical_CPU_number_within_core(int cpuid)
1469 {
1470 	return get_apicid_from_cpuid(cpuid) &
1471 	    ( (1 << logical_CPU_bits) -1);
1472 }
1473