1 /*
2  * Copyright (c) 1996, by Steve Passe
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. The name of the developer may NOT be used to endorse or promote products
11  *    derived from this software without specific prior written permission.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  * $FreeBSD: src/sys/i386/i386/mp_machdep.c,v 1.115.2.15 2003/03/14 21:22:35 jhb Exp $
26  */
27 
28 #include "opt_cpu.h"
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/sysctl.h>
34 #include <sys/malloc.h>
35 #include <sys/memrange.h>
36 #include <sys/cons.h>	/* cngetc() */
37 #include <sys/machintr.h>
38 #include <sys/cpu_topology.h>
39 
40 #include <sys/mplock2.h>
41 
42 #include <vm/vm.h>
43 #include <vm/vm_param.h>
44 #include <vm/pmap.h>
45 #include <vm/vm_kern.h>
46 #include <vm/vm_extern.h>
47 #include <sys/lock.h>
48 #include <vm/vm_map.h>
49 #include <sys/user.h>
50 #ifdef GPROF
51 #include <sys/gmon.h>
52 #endif
53 
54 #include <machine/smp.h>
55 #include <machine_base/apic/apicreg.h>
56 #include <machine/atomic.h>
57 #include <machine/cpufunc.h>
58 #include <machine/cputypes.h>
59 #include <machine_base/apic/lapic.h>
60 #include <machine_base/apic/ioapic.h>
61 #include <machine/psl.h>
62 #include <machine/segments.h>
63 #include <machine/tss.h>
64 #include <machine/specialreg.h>
65 #include <machine/globaldata.h>
66 #include <machine/pmap_inval.h>
67 
68 #include <machine/md_var.h>		/* setidt() */
69 #include <machine_base/icu/icu.h>	/* IPIs */
70 #include <machine_base/icu/icu_var.h>
71 #include <machine_base/apic/ioapic_abi.h>
72 #include <machine/intr_machdep.h>	/* IPIs */
73 
74 #define WARMBOOT_TARGET		0
75 #define WARMBOOT_OFF		(KERNBASE + 0x0467)
76 #define WARMBOOT_SEG		(KERNBASE + 0x0469)
77 
78 #define CMOS_REG		(0x70)
79 #define CMOS_DATA		(0x71)
80 #define BIOS_RESET		(0x0f)
81 #define BIOS_WARM		(0x0a)
82 
83 /*
84  * this code MUST be enabled here and in mpboot.s.
85  * it follows the very early stages of AP boot by placing values in CMOS ram.
86  * it NORMALLY will never be needed and thus the primitive method for enabling.
87  *
88  */
89 #if defined(CHECK_POINTS)
90 #define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
91 #define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
92 
93 #define CHECK_INIT(D);				\
94 	CHECK_WRITE(0x34, (D));			\
95 	CHECK_WRITE(0x35, (D));			\
96 	CHECK_WRITE(0x36, (D));			\
97 	CHECK_WRITE(0x37, (D));			\
98 	CHECK_WRITE(0x38, (D));			\
99 	CHECK_WRITE(0x39, (D));
100 
101 #define CHECK_PRINT(S);				\
102 	kprintf("%s: %d, %d, %d, %d, %d, %d\n",	\
103 	   (S),					\
104 	   CHECK_READ(0x34),			\
105 	   CHECK_READ(0x35),			\
106 	   CHECK_READ(0x36),			\
107 	   CHECK_READ(0x37),			\
108 	   CHECK_READ(0x38),			\
109 	   CHECK_READ(0x39));
110 
111 #else				/* CHECK_POINTS */
112 
113 #define CHECK_INIT(D)
114 #define CHECK_PRINT(S)
115 
116 #endif				/* CHECK_POINTS */
117 
118 /*
119  * Values to send to the POST hardware.
120  */
121 #define MP_BOOTADDRESS_POST	0x10
122 #define MP_PROBE_POST		0x11
123 #define MPTABLE_PASS1_POST	0x12
124 
125 #define MP_START_POST		0x13
126 #define MP_ENABLE_POST		0x14
127 #define MPTABLE_PASS2_POST	0x15
128 
129 #define START_ALL_APS_POST	0x16
130 #define INSTALL_AP_TRAMP_POST	0x17
131 #define START_AP_POST		0x18
132 
133 #define MP_ANNOUNCE_POST	0x19
134 
135 /** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
136 int	current_postcode;
137 
138 /** XXX FIXME: what system files declare these??? */
139 extern struct region_descriptor r_gdt;
140 
141 extern int nkpt;
142 extern int naps;
143 
144 int64_t tsc0_offset;
145 extern int64_t tsc_offsets[];
146 
147 /* AP uses this during bootstrap.  Do not staticize.  */
148 char *bootSTK;
149 static int bootAP;
150 
151 struct pcb stoppcbs[MAXCPU];
152 
153 extern inthand_t IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
154 
155 /*
156  * Local data and functions.
157  */
158 
159 static u_int	boot_address;
160 static int	mp_finish;
161 static int	mp_finish_lapic;
162 
163 static int	start_all_aps(u_int boot_addr);
164 #if 0
165 static void	install_ap_tramp(u_int boot_addr);
166 #endif
167 static int	start_ap(struct mdglobaldata *gd, u_int boot_addr, int smibest);
168 static int	smitest(void);
169 static void	mp_bsp_simple_setup(void);
170 
171 static cpumask_t smp_startup_mask = 1;	/* which cpus have been started */
172 static cpumask_t smp_lapic_mask = 1;	/* which cpus have lapic been inited */
173 cpumask_t smp_active_mask = 1;	/* which cpus are ready for IPIs etc? */
174 SYSCTL_INT(_machdep, OID_AUTO, smp_active, CTLFLAG_RD, &smp_active_mask, 0, "");
175 static u_int	bootMP_size;
176 
177 /* Local data for detecting CPU TOPOLOGY */
178 static int core_bits = 0;
179 static int logical_CPU_bits = 0;
180 
181 
182 /*
183  * Calculate usable address in base memory for AP trampoline code.
184  */
185 u_int
186 mp_bootaddress(u_int basemem)
187 {
188 	POSTCODE(MP_BOOTADDRESS_POST);
189 
190 	bootMP_size = mptramp_end - mptramp_start;
191 	boot_address = trunc_page(basemem * 1024); /* round down to 4k boundary */
192 	if (((basemem * 1024) - boot_address) < bootMP_size)
193 		boot_address -= PAGE_SIZE;	/* not enough, lower by 4k */
194 	/* 3 levels of page table pages */
195 	mptramp_pagetables = boot_address - (PAGE_SIZE * 3);
196 
197 	return mptramp_pagetables;
198 }
199 
200 /*
201  * Print various information about the SMP system hardware and setup.
202  */
203 void
204 mp_announce(void)
205 {
206 	int     x;
207 
208 	POSTCODE(MP_ANNOUNCE_POST);
209 
210 	kprintf("DragonFly/MP: Multiprocessor motherboard\n");
211 	kprintf(" cpu0 (BSP): apic id: %2d\n", CPUID_TO_APICID(0));
212 	for (x = 1; x <= naps; ++x)
213 		kprintf(" cpu%d (AP):  apic id: %2d\n", x, CPUID_TO_APICID(x));
214 
215 	if (!ioapic_enable)
216 		kprintf(" Warning: APIC I/O disabled\n");
217 }
218 
219 /*
220  * AP cpu's call this to sync up protected mode.
221  *
222  * WARNING! %gs is not set up on entry.  This routine sets up %gs.
223  */
224 void
225 init_secondary(void)
226 {
227 	int	gsel_tss;
228 	int	x, myid = bootAP;
229 	u_int64_t msr, cr0;
230 	struct mdglobaldata *md;
231 	struct privatespace *ps;
232 
233 	ps = &CPU_prvspace[myid];
234 
235 	gdt_segs[GPROC0_SEL].ssd_base =
236 		(long) &ps->mdglobaldata.gd_common_tss;
237 	ps->mdglobaldata.mi.gd_prvspace = ps;
238 
239 	/* We fill the 32-bit segment descriptors */
240 	for (x = 0; x < NGDT; x++) {
241 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
242 			ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x]);
243 	}
244 	/* And now a 64-bit one */
245 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
246 	    (struct system_segment_descriptor *)&gdt[myid * NGDT + GPROC0_SEL]);
247 
248 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
249 	r_gdt.rd_base = (long) &gdt[myid * NGDT];
250 	lgdt(&r_gdt);			/* does magic intra-segment return */
251 
252 	/* lgdt() destroys the GSBASE value, so we load GSBASE after lgdt() */
253 	wrmsr(MSR_FSBASE, 0);		/* User value */
254 	wrmsr(MSR_GSBASE, (u_int64_t)ps);
255 	wrmsr(MSR_KGSBASE, 0);		/* XXX User value while we're in the kernel */
256 
257 	lidt(&r_idt_arr[mdcpu->mi.gd_cpuid]);
258 
259 #if 0
260 	lldt(_default_ldt);
261 	mdcpu->gd_currentldt = _default_ldt;
262 #endif
263 
264 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
265 	gdt[myid * NGDT + GPROC0_SEL].sd_type = SDT_SYSTSS;
266 
267 	md = mdcpu;	/* loaded through %gs:0 (mdglobaldata.mi.gd_prvspace)*/
268 
269 	md->gd_common_tss.tss_rsp0 = 0;	/* not used until after switch */
270 #if 0 /* JG XXX */
271 	md->gd_common_tss.tss_ioopt = (sizeof md->gd_common_tss) << 16;
272 #endif
273 	md->gd_tss_gdt = &gdt[myid * NGDT + GPROC0_SEL];
274 	md->gd_common_tssd = *md->gd_tss_gdt;
275 
276 	/* double fault stack */
277 	md->gd_common_tss.tss_ist1 =
278 		(long)&md->mi.gd_prvspace->idlestack[
279 			sizeof(md->mi.gd_prvspace->idlestack)];
280 
281 	ltr(gsel_tss);
282 
283 	/*
284 	 * Set to a known state:
285 	 * Set by mpboot.s: CR0_PG, CR0_PE
286 	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
287 	 */
288 	cr0 = rcr0();
289 	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
290 	load_cr0(cr0);
291 
292 	/* Set up the fast syscall stuff */
293 	msr = rdmsr(MSR_EFER) | EFER_SCE;
294 	wrmsr(MSR_EFER, msr);
295 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
296 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
297 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
298 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
299 	wrmsr(MSR_STAR, msr);
300 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
301 
302 	pmap_set_opt();		/* PSE/4MB pages, etc */
303 	pmap_init_pat();	/* Page Attribute Table */
304 
305 	/* set up CPU registers and state */
306 	cpu_setregs();
307 
308 	/* set up SSE/NX registers */
309 	initializecpu(myid);
310 
311 	/* set up FPU state on the AP */
312 	npxinit();
313 
314 	/* disable the APIC, just to be SURE */
315 	lapic->svr &= ~APIC_SVR_ENABLE;
316 }
317 
318 /*******************************************************************
319  * local functions and data
320  */
321 
322 /*
323  * Start the SMP system
324  */
325 static void
326 mp_start_aps(void *dummy __unused)
327 {
328 	if (lapic_enable) {
329 		/* start each Application Processor */
330 		start_all_aps(boot_address);
331 	} else {
332 		mp_bsp_simple_setup();
333 	}
334 }
335 SYSINIT(startaps, SI_BOOT2_START_APS, SI_ORDER_FIRST, mp_start_aps, NULL)
336 
337 /*
338  * start each AP in our list
339  */
340 static int
341 start_all_aps(u_int boot_addr)
342 {
343 	vm_offset_t va = boot_address + KERNBASE;
344 	u_int64_t *pt4, *pt3, *pt2;
345 	int     x, i;
346 	int	shift;
347 	int	smicount;
348 	int	smibest;
349 	int	smilast;
350 	u_char  mpbiosreason;
351 	u_long  mpbioswarmvec;
352 	struct mdglobaldata *gd;
353 	struct privatespace *ps;
354 
355 	POSTCODE(START_ALL_APS_POST);
356 
357 	/* install the AP 1st level boot code */
358 	pmap_kenter(va, boot_address);
359 	cpu_invlpg((void *)va);		/* JG XXX */
360 	bcopy(mptramp_start, (void *)va, bootMP_size);
361 
362 	/* Locate the page tables, they'll be below the trampoline */
363 	pt4 = (u_int64_t *)(uintptr_t)(mptramp_pagetables + KERNBASE);
364 	pt3 = pt4 + (PAGE_SIZE) / sizeof(u_int64_t);
365 	pt2 = pt3 + (PAGE_SIZE) / sizeof(u_int64_t);
366 
367 	/* Create the initial 1GB replicated page tables */
368 	for (i = 0; i < 512; i++) {
369 		/* Each slot of the level 4 pages points to the same level 3 page */
370 		pt4[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + PAGE_SIZE);
371 		pt4[i] |= kernel_pmap.pmap_bits[PG_V_IDX] |
372 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
373 		    kernel_pmap.pmap_bits[PG_U_IDX];
374 
375 		/* Each slot of the level 3 pages points to the same level 2 page */
376 		pt3[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + (2 * PAGE_SIZE));
377 		pt3[i] |= kernel_pmap.pmap_bits[PG_V_IDX] |
378 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
379 		    kernel_pmap.pmap_bits[PG_U_IDX];
380 
381 		/* The level 2 page slots are mapped with 2MB pages for 1GB. */
382 		pt2[i] = i * (2 * 1024 * 1024);
383 		pt2[i] |= kernel_pmap.pmap_bits[PG_V_IDX] |
384 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
385 		    kernel_pmap.pmap_bits[PG_PS_IDX] |
386 		    kernel_pmap.pmap_bits[PG_U_IDX];
387 	}
388 
389 	/* save the current value of the warm-start vector */
390 	mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
391 	outb(CMOS_REG, BIOS_RESET);
392 	mpbiosreason = inb(CMOS_DATA);
393 
394 	/* setup a vector to our boot code */
395 	*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
396 	*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
397 	outb(CMOS_REG, BIOS_RESET);
398 	outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
399 
400 	/*
401 	 * If we have a TSC we can figure out the SMI interrupt rate.
402 	 * The SMI does not necessarily use a constant rate.  Spend
403 	 * up to 250ms trying to figure it out.
404 	 */
405 	smibest = 0;
406 	if (cpu_feature & CPUID_TSC) {
407 		set_apic_timer(275000);
408 		smilast = read_apic_timer();
409 		for (x = 0; x < 20 && read_apic_timer(); ++x) {
410 			smicount = smitest();
411 			if (smibest == 0 || smilast - smicount < smibest)
412 				smibest = smilast - smicount;
413 			smilast = smicount;
414 		}
415 		if (smibest > 250000)
416 			smibest = 0;
417 		if (smibest) {
418 			smibest = smibest * (int64_t)1000000 /
419 				  get_apic_timer_frequency();
420 		}
421 	}
422 	if (smibest)
423 		kprintf("SMI Frequency (worst case): %d Hz (%d us)\n",
424 			1000000 / smibest, smibest);
425 
426 	/* start each AP */
427 	for (x = 1; x <= naps; ++x) {
428 
429 		/* This is a bit verbose, it will go away soon.  */
430 
431 		/* allocate new private data page(s) */
432 		gd = (struct mdglobaldata *)kmem_alloc(&kernel_map,
433 				MDGLOBALDATA_BASEALLOC_SIZE);
434 
435 		gd = &CPU_prvspace[x].mdglobaldata;	/* official location */
436 		bzero(gd, sizeof(*gd));
437 		gd->mi.gd_prvspace = ps = &CPU_prvspace[x];
438 
439 		/* prime data page for it to use */
440 		mi_gdinit(&gd->mi, x);
441 		cpu_gdinit(gd, x);
442 		gd->mi.gd_ipiq = (void *)kmem_alloc(&kernel_map, sizeof(lwkt_ipiq) * (naps + 1));
443 		bzero(gd->mi.gd_ipiq, sizeof(lwkt_ipiq) * (naps + 1));
444 
445 		/* setup a vector to our boot code */
446 		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
447 		*((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4);
448 		outb(CMOS_REG, BIOS_RESET);
449 		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
450 
451 		/*
452 		 * Setup the AP boot stack
453 		 */
454 		bootSTK = &ps->idlestack[UPAGES*PAGE_SIZE/2];
455 		bootAP = x;
456 
457 		/* attempt to start the Application Processor */
458 		CHECK_INIT(99);	/* setup checkpoints */
459 		if (!start_ap(gd, boot_addr, smibest)) {
460 			kprintf("\nAP #%d (PHY# %d) failed!\n",
461 				x, CPUID_TO_APICID(x));
462 			CHECK_PRINT("trace");	/* show checkpoints */
463 			/* better panic as the AP may be running loose */
464 			kprintf("panic y/n? [y] ");
465 			if (cngetc() != 'n')
466 				panic("bye-bye");
467 		}
468 		CHECK_PRINT("trace");		/* show checkpoints */
469 	}
470 
471 	/* set ncpus to 1 + highest logical cpu.  Not all may have come up */
472 	ncpus = x;
473 
474 	/* ncpus2 -- ncpus rounded down to the nearest power of 2 */
475 	for (shift = 0; (1 << shift) <= ncpus; ++shift)
476 		;
477 	--shift;
478 	ncpus2_shift = shift;
479 	ncpus2 = 1 << shift;
480 	ncpus2_mask = ncpus2 - 1;
481 
482 	/* ncpus_fit -- ncpus rounded up to the nearest power of 2 */
483 	if ((1 << shift) < ncpus)
484 		++shift;
485 	ncpus_fit = 1 << shift;
486 	ncpus_fit_mask = ncpus_fit - 1;
487 
488 	/* build our map of 'other' CPUs */
489 	mycpu->gd_other_cpus = smp_startup_mask & ~CPUMASK(mycpu->gd_cpuid);
490 	mycpu->gd_ipiq = (void *)kmem_alloc(&kernel_map, sizeof(lwkt_ipiq) * ncpus);
491 	bzero(mycpu->gd_ipiq, sizeof(lwkt_ipiq) * ncpus);
492 
493 	/* restore the warmstart vector */
494 	*(u_long *) WARMBOOT_OFF = mpbioswarmvec;
495 	outb(CMOS_REG, BIOS_RESET);
496 	outb(CMOS_DATA, mpbiosreason);
497 
498 	/*
499 	 * NOTE!  The idlestack for the BSP was setup by locore.  Finish
500 	 * up, clean out the P==V mapping we did earlier.
501 	 */
502 	pmap_set_opt();
503 
504 	/*
505 	 * Wait all APs to finish initializing LAPIC
506 	 */
507 	mp_finish_lapic = 1;
508 	if (bootverbose)
509 		kprintf("SMP: Waiting APs LAPIC initialization\n");
510 	if (cpu_feature & CPUID_TSC)
511 		tsc0_offset = rdtsc();
512 	tsc_offsets[0] = 0;
513 	rel_mplock();
514 	while (smp_lapic_mask != smp_startup_mask) {
515 		cpu_lfence();
516 		if (cpu_feature & CPUID_TSC)
517 			tsc0_offset = rdtsc();
518 	}
519 	while (try_mplock() == 0)
520 		;
521 
522 	/* number of APs actually started */
523 	return ncpus - 1;
524 }
525 
526 
527 /*
528  * load the 1st level AP boot code into base memory.
529  */
530 
531 /* targets for relocation */
532 extern void bigJump(void);
533 extern void bootCodeSeg(void);
534 extern void bootDataSeg(void);
535 extern void MPentry(void);
536 extern u_int MP_GDT;
537 extern u_int mp_gdtbase;
538 
539 #if 0
540 
541 static void
542 install_ap_tramp(u_int boot_addr)
543 {
544 	int     x;
545 	int     size = *(int *) ((u_long) & bootMP_size);
546 	u_char *src = (u_char *) ((u_long) bootMP);
547 	u_char *dst = (u_char *) boot_addr + KERNBASE;
548 	u_int   boot_base = (u_int) bootMP;
549 	u_int8_t *dst8;
550 	u_int16_t *dst16;
551 	u_int32_t *dst32;
552 
553 	POSTCODE(INSTALL_AP_TRAMP_POST);
554 
555 	for (x = 0; x < size; ++x)
556 		*dst++ = *src++;
557 
558 	/*
559 	 * modify addresses in code we just moved to basemem. unfortunately we
560 	 * need fairly detailed info about mpboot.s for this to work.  changes
561 	 * to mpboot.s might require changes here.
562 	 */
563 
564 	/* boot code is located in KERNEL space */
565 	dst = (u_char *) boot_addr + KERNBASE;
566 
567 	/* modify the lgdt arg */
568 	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
569 	*dst32 = boot_addr + ((u_int) & MP_GDT - boot_base);
570 
571 	/* modify the ljmp target for MPentry() */
572 	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
573 	*dst32 = ((u_int) MPentry - KERNBASE);
574 
575 	/* modify the target for boot code segment */
576 	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
577 	dst8 = (u_int8_t *) (dst16 + 1);
578 	*dst16 = (u_int) boot_addr & 0xffff;
579 	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
580 
581 	/* modify the target for boot data segment */
582 	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
583 	dst8 = (u_int8_t *) (dst16 + 1);
584 	*dst16 = (u_int) boot_addr & 0xffff;
585 	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
586 }
587 
588 #endif
589 
590 /*
591  * This function starts the AP (application processor) identified
592  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
593  * to accomplish this.  This is necessary because of the nuances
594  * of the different hardware we might encounter.  It ain't pretty,
595  * but it seems to work.
596  *
597  * NOTE: eventually an AP gets to ap_init(), which is called just
598  * before the AP goes into the LWKT scheduler's idle loop.
599  */
600 static int
601 start_ap(struct mdglobaldata *gd, u_int boot_addr, int smibest)
602 {
603 	int     physical_cpu;
604 	int     vector;
605 	u_long  icr_lo, icr_hi;
606 
607 	POSTCODE(START_AP_POST);
608 
609 	/* get the PHYSICAL APIC ID# */
610 	physical_cpu = CPUID_TO_APICID(gd->mi.gd_cpuid);
611 
612 	/* calculate the vector */
613 	vector = (boot_addr >> 12) & 0xff;
614 
615 	/* We don't want anything interfering */
616 	cpu_disable_intr();
617 
618 	/* Make sure the target cpu sees everything */
619 	wbinvd();
620 
621 	/*
622 	 * Try to detect when a SMI has occurred, wait up to 200ms.
623 	 *
624 	 * If a SMI occurs during an AP reset but before we issue
625 	 * the STARTUP command, the AP may brick.  To work around
626 	 * this problem we hold off doing the AP startup until
627 	 * after we have detected the SMI.  Hopefully another SMI
628 	 * will not occur before we finish the AP startup.
629 	 *
630 	 * Retries don't seem to help.  SMIs have a window of opportunity
631 	 * and if USB->legacy keyboard emulation is enabled in the BIOS
632 	 * the interrupt rate can be quite high.
633 	 *
634 	 * NOTE: Don't worry about the L1 cache load, it might bloat
635 	 *	 ldelta a little but ndelta will be so huge when the SMI
636 	 *	 occurs the detection logic will still work fine.
637 	 */
638 	if (smibest) {
639 		set_apic_timer(200000);
640 		smitest();
641 	}
642 
643 	/*
644 	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
645 	 * and running the target CPU. OR this INIT IPI might be latched (P5
646 	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
647 	 * ignored.
648 	 *
649 	 * see apic/apicreg.h for icr bit definitions.
650 	 *
651 	 * TIME CRITICAL CODE, DO NOT DO ANY KPRINTFS IN THE HOT PATH.
652 	 */
653 
654 	/*
655 	 * Setup the address for the target AP.  We can setup
656 	 * icr_hi once and then just trigger operations with
657 	 * icr_lo.
658 	 */
659 	icr_hi = lapic->icr_hi & ~APIC_ID_MASK;
660 	icr_hi |= (physical_cpu << 24);
661 	icr_lo = lapic->icr_lo & 0xfff00000;
662 	lapic->icr_hi = icr_hi;
663 
664 	/*
665 	 * Do an INIT IPI: assert RESET
666 	 *
667 	 * Use edge triggered mode to assert INIT
668 	 */
669 	lapic->icr_lo = icr_lo | 0x00004500;
670 	while (lapic->icr_lo & APIC_DELSTAT_MASK)
671 		 /* spin */ ;
672 
673 	/*
674 	 * The spec calls for a 10ms delay but we may have to use a
675 	 * MUCH lower delay to avoid bricking an AP due to a fast SMI
676 	 * interrupt.  We have other loops here too and dividing by 2
677 	 * doesn't seem to be enough even after subtracting 350us,
678 	 * so we divide by 4.
679 	 *
680 	 * Our minimum delay is 150uS, maximum is 10ms.  If no SMI
681 	 * interrupt was detected we use the full 10ms.
682 	 */
683 	if (smibest == 0)
684 		u_sleep(10000);
685 	else if (smibest < 150 * 4 + 350)
686 		u_sleep(150);
687 	else if ((smibest - 350) / 4 < 10000)
688 		u_sleep((smibest - 350) / 4);
689 	else
690 		u_sleep(10000);
691 
692 	/*
693 	 * Do an INIT IPI: deassert RESET
694 	 *
695 	 * Use level triggered mode to deassert.  It is unclear
696 	 * why we need to do this.
697 	 */
698 	lapic->icr_lo = icr_lo | 0x00008500;
699 	while (lapic->icr_lo & APIC_DELSTAT_MASK)
700 		 /* spin */ ;
701 	u_sleep(150);				/* wait 150us */
702 
703 	/*
704 	 * Next we do a STARTUP IPI: the previous INIT IPI might still be
705 	 * latched, (P5 bug) this 1st STARTUP would then terminate
706 	 * immediately, and the previously started INIT IPI would continue. OR
707 	 * the previous INIT IPI has already run. and this STARTUP IPI will
708 	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
709 	 * will run.
710 	 */
711 	lapic->icr_lo = icr_lo | 0x00000600 | vector;
712 	while (lapic->icr_lo & APIC_DELSTAT_MASK)
713 		 /* spin */ ;
714 	u_sleep(200);		/* wait ~200uS */
715 
716 	/*
717 	 * Finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
718 	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
719 	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
720 	 * recognized after hardware RESET or INIT IPI.
721 	 */
722 	lapic->icr_lo = icr_lo | 0x00000600 | vector;
723 	while (lapic->icr_lo & APIC_DELSTAT_MASK)
724 		 /* spin */ ;
725 
726 	/* Resume normal operation */
727 	cpu_enable_intr();
728 
729 	/* wait for it to start, see ap_init() */
730 	set_apic_timer(5000000);/* == 5 seconds */
731 	while (read_apic_timer()) {
732 		if (smp_startup_mask & CPUMASK(gd->mi.gd_cpuid))
733 			return 1;	/* return SUCCESS */
734 	}
735 
736 	return 0;		/* return FAILURE */
737 }
738 
739 static
740 int
741 smitest(void)
742 {
743 	int64_t	ltsc;
744 	int64_t	ntsc;
745 	int64_t	ldelta;
746 	int64_t	ndelta;
747 	int count;
748 
749 	ldelta = 0;
750 	ndelta = 0;
751 	while (read_apic_timer()) {
752 		ltsc = rdtsc();
753 		for (count = 0; count < 100; ++count)
754 			ntsc = rdtsc();	/* force loop to occur */
755 		if (ldelta) {
756 			ndelta = ntsc - ltsc;
757 			if (ldelta > ndelta)
758 				ldelta = ndelta;
759 			if (ndelta > ldelta * 2)
760 				break;
761 		} else {
762 			ldelta = ntsc - ltsc;
763 		}
764 	}
765 	return(read_apic_timer());
766 }
767 
768 /*
769  * Synchronously flush the TLB on all other CPU's.  The current cpu's
770  * TLB is not flushed.  If the caller wishes to flush the current cpu's
771  * TLB the caller must call cpu_invltlb() in addition to smp_invltlb().
772  *
773  * NOTE: If for some reason we were unable to start all cpus we cannot
774  *	 safely use broadcast IPIs.
775  */
776 
777 static cpumask_t smp_invltlb_req;
778 
779 #define SMP_INVLTLB_DEBUG
780 
781 void
782 smp_invltlb(void)
783 {
784 	struct mdglobaldata *md = mdcpu;
785 #ifdef SMP_INVLTLB_DEBUG
786 	long count = 0;
787 	long xcount = 0;
788 #endif
789 
790 	crit_enter_gd(&md->mi);
791 	md->gd_invltlb_ret = 0;
792 	++md->mi.gd_cnt.v_smpinvltlb;
793 	atomic_set_cpumask(&smp_invltlb_req, md->mi.gd_cpumask);
794 #ifdef SMP_INVLTLB_DEBUG
795 again:
796 #endif
797 	if (smp_startup_mask == smp_active_mask) {
798 		all_but_self_ipi(XINVLTLB_OFFSET);
799 	} else {
800 		selected_apic_ipi(smp_active_mask & ~md->mi.gd_cpumask,
801 				  XINVLTLB_OFFSET, APIC_DELMODE_FIXED);
802 	}
803 
804 #ifdef SMP_INVLTLB_DEBUG
805 	if (xcount)
806 		kprintf("smp_invltlb: ipi sent\n");
807 #endif
808 	while ((md->gd_invltlb_ret & smp_active_mask & ~md->mi.gd_cpumask) !=
809 	       (smp_active_mask & ~md->mi.gd_cpumask)) {
810 		cpu_mfence();
811 		cpu_pause();
812 #ifdef SMP_INVLTLB_DEBUG
813 		/* DEBUGGING */
814 		if (++count == 400000000) {
815 			print_backtrace(-1);
816 			kprintf("smp_invltlb: endless loop %08lx %08lx, "
817 				"rflags %016jx retry",
818 			      (long)md->gd_invltlb_ret,
819 			      (long)smp_invltlb_req,
820 			      (intmax_t)read_rflags());
821 			__asm __volatile ("sti");
822 			++xcount;
823 			if (xcount > 2)
824 				lwkt_process_ipiq();
825 			if (xcount > 3) {
826 				int bcpu = BSFCPUMASK(~md->gd_invltlb_ret &
827 						      ~md->mi.gd_cpumask &
828 						      smp_active_mask);
829 				globaldata_t xgd;
830 
831 				kprintf("bcpu %d\n", bcpu);
832 				xgd = globaldata_find(bcpu);
833 				kprintf("thread %p %s\n", xgd->gd_curthread, xgd->gd_curthread->td_comm);
834 			}
835 			if (xcount > 5)
836 				Debugger("giving up");
837 			count = 0;
838 			goto again;
839 		}
840 #endif
841 	}
842 	atomic_clear_cpumask(&smp_invltlb_req, md->mi.gd_cpumask);
843 	crit_exit_gd(&md->mi);
844 }
845 
846 /*
847  * Called from Xinvltlb assembly with interrupts disabled.  We didn't
848  * bother to bump the critical section count or nested interrupt count
849  * so only do very low level operations here.
850  */
851 void
852 smp_invltlb_intr(void)
853 {
854 	struct mdglobaldata *md = mdcpu;
855 	struct mdglobaldata *omd;
856 	cpumask_t mask;
857 	int cpu;
858 
859 	cpu_mfence();
860 	mask = smp_invltlb_req;
861 	cpu_invltlb();
862 	while (mask) {
863 		cpu = BSFCPUMASK(mask);
864 		mask &= ~CPUMASK(cpu);
865 		omd = (struct mdglobaldata *)globaldata_find(cpu);
866 		atomic_set_cpumask(&omd->gd_invltlb_ret, md->mi.gd_cpumask);
867 	}
868 }
869 
870 void
871 cpu_wbinvd_on_all_cpus_callback(void *arg)
872 {
873     wbinvd();
874 }
875 
876 void
877 smp_invlpg_range_cpusync(void *arg)
878 {
879 	vm_offset_t eva, sva, addr;
880 	sva = ((struct smp_invlpg_range_cpusync_arg *)arg)->sva;
881 	eva = ((struct smp_invlpg_range_cpusync_arg *)arg)->eva;
882 
883 	for (addr = sva; addr < eva; addr += PAGE_SIZE) {
884 		cpu_invlpg((void *)addr);
885 	}
886 }
887 
888 /*
889  * When called the executing CPU will send an IPI to all other CPUs
890  *  requesting that they halt execution.
891  *
892  * Usually (but not necessarily) called with 'other_cpus' as its arg.
893  *
894  *  - Signals all CPUs in map to stop.
895  *  - Waits for each to stop.
896  *
897  * Returns:
898  *  -1: error
899  *   0: NA
900  *   1: ok
901  *
902  * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
903  *            from executing at same time.
904  */
905 int
906 stop_cpus(cpumask_t map)
907 {
908 	map &= smp_active_mask;
909 
910 	/* send the Xcpustop IPI to all CPUs in map */
911 	selected_apic_ipi(map, XCPUSTOP_OFFSET, APIC_DELMODE_FIXED);
912 
913 	while ((stopped_cpus & map) != map)
914 		/* spin */ ;
915 
916 	return 1;
917 }
918 
919 
920 /*
921  * Called by a CPU to restart stopped CPUs.
922  *
923  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
924  *
925  *  - Signals all CPUs in map to restart.
926  *  - Waits for each to restart.
927  *
928  * Returns:
929  *  -1: error
930  *   0: NA
931  *   1: ok
932  */
933 int
934 restart_cpus(cpumask_t map)
935 {
936 	/* signal other cpus to restart */
937 	started_cpus = map & smp_active_mask;
938 
939 	while ((stopped_cpus & map) != 0) /* wait for each to clear its bit */
940 		/* spin */ ;
941 
942 	return 1;
943 }
944 
945 /*
946  * This is called once the mpboot code has gotten us properly relocated
947  * and the MMU turned on, etc.   ap_init() is actually the idle thread,
948  * and when it returns the scheduler will call the real cpu_idle() main
949  * loop for the idlethread.  Interrupts are disabled on entry and should
950  * remain disabled at return.
951  */
952 void
953 ap_init(void)
954 {
955 	int	cpu_id;
956 
957 	/*
958 	 * Adjust smp_startup_mask to signal the BSP that we have started
959 	 * up successfully.  Note that we do not yet hold the BGL.  The BSP
960 	 * is waiting for our signal.
961 	 *
962 	 * We can't set our bit in smp_active_mask yet because we are holding
963 	 * interrupts physically disabled and remote cpus could deadlock
964 	 * trying to send us an IPI.
965 	 */
966 	smp_startup_mask |= CPUMASK(mycpu->gd_cpuid);
967 	cpu_mfence();
968 
969 	/*
970 	 * Interlock for LAPIC initialization.  Wait until mp_finish_lapic is
971 	 * non-zero, then get the MP lock.
972 	 *
973 	 * Note: We are in a critical section.
974 	 *
975 	 * Note: we are the idle thread, we can only spin.
976 	 *
977 	 * Note: The load fence is memory volatile and prevents the compiler
978 	 * from improperly caching mp_finish_lapic, and the cpu from improperly
979 	 * caching it.
980 	 */
981 	while (mp_finish_lapic == 0)
982 		cpu_lfence();
983 	while (try_mplock() == 0)
984 		;
985 
986 	if (cpu_feature & CPUID_TSC) {
987 		/*
988 		 * The BSP is constantly updating tsc0_offset, figure out
989 		 * the relative difference to synchronize ktrdump.
990 		 */
991 		tsc_offsets[mycpu->gd_cpuid] = rdtsc() - tsc0_offset;
992 	}
993 
994 	/* BSP may have changed PTD while we're waiting for the lock */
995 	cpu_invltlb();
996 
997 	/* Build our map of 'other' CPUs. */
998 	mycpu->gd_other_cpus = smp_startup_mask & ~CPUMASK(mycpu->gd_cpuid);
999 
1000 	/* A quick check from sanity claus */
1001 	cpu_id = APICID_TO_CPUID((lapic->id & 0xff000000) >> 24);
1002 	if (mycpu->gd_cpuid != cpu_id) {
1003 		kprintf("SMP: assigned cpuid = %d\n", mycpu->gd_cpuid);
1004 		kprintf("SMP: actual cpuid = %d lapicid %d\n",
1005 			cpu_id, (lapic->id & 0xff000000) >> 24);
1006 #if JGXXX
1007 		kprintf("PTD[MPPTDI] = %p\n", (void *)PTD[MPPTDI]);
1008 #endif
1009 		panic("cpuid mismatch! boom!!");
1010 	}
1011 
1012 	/* Initialize AP's local APIC for irq's */
1013 	lapic_init(FALSE);
1014 
1015 	/* LAPIC initialization is done */
1016 	smp_lapic_mask |= CPUMASK(mycpu->gd_cpuid);
1017 	cpu_mfence();
1018 
1019 	/* Let BSP move onto the next initialization stage */
1020 	rel_mplock();
1021 
1022 	/*
1023 	 * Interlock for finalization.  Wait until mp_finish is non-zero,
1024 	 * then get the MP lock.
1025 	 *
1026 	 * Note: We are in a critical section.
1027 	 *
1028 	 * Note: we are the idle thread, we can only spin.
1029 	 *
1030 	 * Note: The load fence is memory volatile and prevents the compiler
1031 	 * from improperly caching mp_finish, and the cpu from improperly
1032 	 * caching it.
1033 	 */
1034 	while (mp_finish == 0)
1035 		cpu_lfence();
1036 	while (try_mplock() == 0)
1037 		;
1038 
1039 	/* BSP may have changed PTD while we're waiting for the lock */
1040 	cpu_invltlb();
1041 
1042 	/* Set memory range attributes for this CPU to match the BSP */
1043 	mem_range_AP_init();
1044 
1045 	/*
1046 	 * Once we go active we must process any IPIQ messages that may
1047 	 * have been queued, because no actual IPI will occur until we
1048 	 * set our bit in the smp_active_mask.  If we don't the IPI
1049 	 * message interlock could be left set which would also prevent
1050 	 * further IPIs.
1051 	 *
1052 	 * The idle loop doesn't expect the BGL to be held and while
1053 	 * lwkt_switch() normally cleans things up this is a special case
1054 	 * because we returning almost directly into the idle loop.
1055 	 *
1056 	 * The idle thread is never placed on the runq, make sure
1057 	 * nothing we've done put it there.
1058 	 */
1059 	KKASSERT(get_mplock_count(curthread) == 1);
1060 	smp_active_mask |= CPUMASK(mycpu->gd_cpuid);
1061 
1062 	/*
1063 	 * Enable interrupts here.  idle_restore will also do it, but
1064 	 * doing it here lets us clean up any strays that got posted to
1065 	 * the CPU during the AP boot while we are still in a critical
1066 	 * section.
1067 	 */
1068 	__asm __volatile("sti; pause; pause"::);
1069 	bzero(mdcpu->gd_ipending, sizeof(mdcpu->gd_ipending));
1070 
1071 	initclocks_pcpu();	/* clock interrupts (via IPIs) */
1072 	lwkt_process_ipiq();
1073 
1074 	/*
1075 	 * Releasing the mp lock lets the BSP finish up the SMP init
1076 	 */
1077 	rel_mplock();
1078 	KKASSERT((curthread->td_flags & TDF_RUNQ) == 0);
1079 }
1080 
1081 /*
1082  * Get SMP fully working before we start initializing devices.
1083  */
1084 static
1085 void
1086 ap_finish(void)
1087 {
1088 	mp_finish = 1;
1089 	if (bootverbose)
1090 		kprintf("Finish MP startup\n");
1091 	rel_mplock();
1092 	while (smp_active_mask != smp_startup_mask)
1093 		cpu_lfence();
1094 	while (try_mplock() == 0)
1095 		;
1096 	if (bootverbose) {
1097 		kprintf("Active CPU Mask: %016jx\n",
1098 			(uintmax_t)smp_active_mask);
1099 	}
1100 }
1101 
1102 SYSINIT(finishsmp, SI_BOOT2_FINISH_SMP, SI_ORDER_FIRST, ap_finish, NULL)
1103 
1104 void
1105 cpu_send_ipiq(int dcpu)
1106 {
1107         if (CPUMASK(dcpu) & smp_active_mask)
1108                 single_apic_ipi(dcpu, XIPIQ_OFFSET, APIC_DELMODE_FIXED);
1109 }
1110 
1111 #if 0	/* single_apic_ipi_passive() not working yet */
1112 /*
1113  * Returns 0 on failure, 1 on success
1114  */
1115 int
1116 cpu_send_ipiq_passive(int dcpu)
1117 {
1118         int r = 0;
1119         if (CPUMASK(dcpu) & smp_active_mask) {
1120                 r = single_apic_ipi_passive(dcpu, XIPIQ_OFFSET,
1121                                         APIC_DELMODE_FIXED);
1122         }
1123 	return(r);
1124 }
1125 #endif
1126 
1127 static void
1128 mp_bsp_simple_setup(void)
1129 {
1130 	/* build our map of 'other' CPUs */
1131 	mycpu->gd_other_cpus = smp_startup_mask & ~CPUMASK(mycpu->gd_cpuid);
1132 	mycpu->gd_ipiq = (void *)kmem_alloc(&kernel_map, sizeof(lwkt_ipiq) * ncpus);
1133 	bzero(mycpu->gd_ipiq, sizeof(lwkt_ipiq) * ncpus);
1134 
1135 	pmap_set_opt();
1136 
1137 	if (cpu_feature & CPUID_TSC)
1138 		tsc0_offset = rdtsc();
1139 }
1140 
1141 
1142 /*
1143  * CPU TOPOLOGY DETECTION FUNCTIONS
1144  */
1145 
1146 /* Detect intel topology using CPUID
1147  * Ref: http://www.intel.com/Assets/PDF/appnote/241618.pdf, pg 41
1148  */
1149 static void
1150 detect_intel_topology(int count_htt_cores)
1151 {
1152 	int shift = 0;
1153 	int ecx_index = 0;
1154 	int core_plus_logical_bits = 0;
1155 	int cores_per_package;
1156 	int logical_per_package;
1157 	int logical_per_core;
1158 	unsigned int p[4];
1159 
1160 	if (cpu_high >= 0xb) {
1161 		goto FUNC_B;
1162 
1163 	} else if (cpu_high >= 0x4) {
1164 		goto FUNC_4;
1165 
1166 	} else {
1167 		core_bits = 0;
1168 		for (shift = 0; (1 << shift) < count_htt_cores; ++shift)
1169 			;
1170 		logical_CPU_bits = 1 << shift;
1171 		return;
1172 	}
1173 
1174 FUNC_B:
1175 	cpuid_count(0xb, FUNC_B_THREAD_LEVEL, p);
1176 
1177 	/* if 0xb not supported - fallback to 0x4 */
1178 	if (p[1] == 0 || (FUNC_B_TYPE(p[2]) != FUNC_B_THREAD_TYPE)) {
1179 		goto FUNC_4;
1180 	}
1181 
1182 	logical_CPU_bits = FUNC_B_BITS_SHIFT_NEXT_LEVEL(p[0]);
1183 
1184 	ecx_index = FUNC_B_THREAD_LEVEL + 1;
1185 	do {
1186 		cpuid_count(0xb, ecx_index, p);
1187 
1188 		/* Check for the Core type in the implemented sub leaves. */
1189 		if (FUNC_B_TYPE(p[2]) == FUNC_B_CORE_TYPE) {
1190 			core_plus_logical_bits = FUNC_B_BITS_SHIFT_NEXT_LEVEL(p[0]);
1191 			break;
1192 		}
1193 
1194 		ecx_index++;
1195 
1196 	} while (FUNC_B_TYPE(p[2]) != FUNC_B_INVALID_TYPE);
1197 
1198 	core_bits = core_plus_logical_bits - logical_CPU_bits;
1199 
1200 	return;
1201 
1202 FUNC_4:
1203 	cpuid_count(0x4, 0, p);
1204 	cores_per_package = FUNC_4_MAX_CORE_NO(p[0]) + 1;
1205 
1206 	logical_per_package = count_htt_cores;
1207 	logical_per_core = logical_per_package / cores_per_package;
1208 
1209 	for (shift = 0; (1 << shift) < logical_per_core; ++shift)
1210 		;
1211 	logical_CPU_bits = shift;
1212 
1213 	for (shift = 0; (1 << shift) < cores_per_package; ++shift)
1214 		;
1215 	core_bits = shift;
1216 
1217 	return;
1218 }
1219 
1220 /* Detect AMD topology using CPUID
1221  * Ref: http://support.amd.com/us/Embedded_TechDocs/25481.pdf, last page
1222  */
1223 static void
1224 detect_amd_topology(int count_htt_cores)
1225 {
1226 	int shift = 0;
1227 	if ((cpu_feature & CPUID_HTT)
1228 			&& (amd_feature2 & AMDID2_CMP)) {
1229 
1230 		if (cpu_procinfo2 & AMDID_COREID_SIZE) {
1231 			core_bits = (cpu_procinfo2 & AMDID_COREID_SIZE)
1232 			    >> AMDID_COREID_SIZE_SHIFT;
1233 		} else {
1234 			core_bits = (cpu_procinfo2 & AMDID_CMP_CORES) + 1;
1235 			for (shift = 0; (1 << shift) < core_bits; ++shift)
1236 				;
1237 			core_bits = shift;
1238 		}
1239 
1240 		logical_CPU_bits = count_htt_cores >> core_bits;
1241 		for (shift = 0; (1 << shift) < logical_CPU_bits; ++shift)
1242 			;
1243 		logical_CPU_bits = shift;
1244 	} else {
1245 		for (shift = 0; (1 << shift) < count_htt_cores; ++shift)
1246 			;
1247 		core_bits = shift;
1248 		logical_CPU_bits = 0;
1249 	}
1250 }
1251 
1252 static void
1253 amd_get_compute_unit_id(void *arg)
1254 {
1255 	u_int regs[4];
1256 
1257 	do_cpuid(0x8000001e, regs);
1258 	cpu_node_t * mynode = get_cpu_node_by_cpuid(mycpuid);
1259 	/*
1260 	 * AMD - CPUID Specification September 2010
1261 	 * page 34 - //ComputeUnitID = ebx[0:7]//
1262 	 */
1263 	mynode->compute_unit_id = regs[1] & 0xff;
1264 }
1265 
1266 int
1267 fix_amd_topology(void)
1268 {
1269 	if (cpu_vendor_id != CPU_VENDOR_AMD)
1270 		return -1;
1271 	if ((amd_feature2 & AMDID2_TOPOEXT) == 0)
1272 		return -1;
1273 
1274 	lwkt_cpusync_simple(-1, amd_get_compute_unit_id, NULL);
1275 
1276 	kprintf("Compute unit iDS:\n");
1277 	int i;
1278 	for (i = 0; i < ncpus; i++)
1279 		kprintf("%d-%d; \n", i, get_cpu_node_by_cpuid(i)->compute_unit_id);
1280 
1281 	return 0;
1282 }
1283 
1284 /* Calculate
1285  * - logical_CPU_bits
1286  * - core_bits
1287  * With the values above (for AMD or INTEL) we are able to generally
1288  * detect the CPU topology (number of cores for each level):
1289  * Ref: http://wiki.osdev.org/Detecting_CPU_Topology_(80x86)
1290  * Ref: http://www.multicoreinfo.com/research/papers/whitepapers/Intel-detect-topology.pdf
1291  */
1292 void
1293 detect_cpu_topology(void)
1294 {
1295 	static int topology_detected = 0;
1296 	int count = 0;
1297 
1298 	if (topology_detected) {
1299 		goto OUT;
1300 	}
1301 
1302 	if ((cpu_feature & CPUID_HTT) == 0) {
1303 		core_bits = 0;
1304 		logical_CPU_bits = 0;
1305 		goto OUT;
1306 	} else {
1307 		count = (cpu_procinfo & CPUID_HTT_CORES)
1308 		    >> CPUID_HTT_CORE_SHIFT;
1309 	}
1310 
1311 	if (cpu_vendor_id == CPU_VENDOR_INTEL) {
1312 		detect_intel_topology(count);
1313 	} else if (cpu_vendor_id == CPU_VENDOR_AMD) {
1314 		detect_amd_topology(count);
1315 	}
1316 
1317 OUT:
1318 	if (bootverbose)
1319 		kprintf("Bits within APICID: logical_CPU_bits: %d; core_bits: %d\n",
1320 		    logical_CPU_bits, core_bits);
1321 
1322 	topology_detected = 1;
1323 }
1324 
1325 /* Interface functions to calculate chip_ID,
1326  * core_number and logical_number
1327  * Ref: http://wiki.osdev.org/Detecting_CPU_Topology_(80x86)
1328  */
1329 int
1330 get_chip_ID(int cpuid)
1331 {
1332 	return get_apicid_from_cpuid(cpuid) >>
1333 	    (logical_CPU_bits + core_bits);
1334 }
1335 
1336 int
1337 get_core_number_within_chip(int cpuid)
1338 {
1339 	return (get_apicid_from_cpuid(cpuid) >> logical_CPU_bits) &
1340 	    ( (1 << core_bits) -1);
1341 }
1342 
1343 int
1344 get_logical_CPU_number_within_core(int cpuid)
1345 {
1346 	return get_apicid_from_cpuid(cpuid) &
1347 	    ( (1 << logical_CPU_bits) -1);
1348 }
1349