1 /*
2  * Copyright (c) 1996, by Steve Passe
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. The name of the developer may NOT be used to endorse or promote products
11  *    derived from this software without specific prior written permission.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  * $FreeBSD: src/sys/i386/i386/mp_machdep.c,v 1.115.2.15 2003/03/14 21:22:35 jhb Exp $
26  */
27 
28 #include "opt_cpu.h"
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/sysctl.h>
34 #include <sys/malloc.h>
35 #include <sys/memrange.h>
36 #include <sys/cons.h>	/* cngetc() */
37 #include <sys/machintr.h>
38 #include <sys/cpu_topology.h>
39 
40 #include <sys/mplock2.h>
41 
42 #include <vm/vm.h>
43 #include <vm/vm_param.h>
44 #include <vm/pmap.h>
45 #include <vm/vm_kern.h>
46 #include <vm/vm_extern.h>
47 #include <sys/lock.h>
48 #include <vm/vm_map.h>
49 #include <sys/user.h>
50 #ifdef GPROF
51 #include <sys/gmon.h>
52 #endif
53 
54 #include <machine/smp.h>
55 #include <machine_base/apic/apicreg.h>
56 #include <machine/atomic.h>
57 #include <machine/cpufunc.h>
58 #include <machine/cputypes.h>
59 #include <machine_base/apic/lapic.h>
60 #include <machine_base/apic/ioapic.h>
61 #include <machine_base/acpica/acpi_md_cpu.h>
62 #include <machine/psl.h>
63 #include <machine/segments.h>
64 #include <machine/tss.h>
65 #include <machine/specialreg.h>
66 #include <machine/globaldata.h>
67 #include <machine/pmap_inval.h>
68 #include <machine/clock.h>
69 
70 #include <machine/md_var.h>		/* setidt() */
71 #include <machine_base/icu/icu.h>	/* IPIs */
72 #include <machine_base/icu/icu_var.h>
73 #include <machine_base/apic/ioapic_abi.h>
74 #include <machine/intr_machdep.h>	/* IPIs */
75 
76 #define WARMBOOT_TARGET		0
77 #define WARMBOOT_OFF		(KERNBASE + 0x0467)
78 #define WARMBOOT_SEG		(KERNBASE + 0x0469)
79 
80 #define CMOS_REG		(0x70)
81 #define CMOS_DATA		(0x71)
82 #define BIOS_RESET		(0x0f)
83 #define BIOS_WARM		(0x0a)
84 
85 /*
86  * this code MUST be enabled here and in mpboot.s.
87  * it follows the very early stages of AP boot by placing values in CMOS ram.
88  * it NORMALLY will never be needed and thus the primitive method for enabling.
89  *
90  */
91 #if defined(CHECK_POINTS)
92 #define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
93 #define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
94 
95 #define CHECK_INIT(D);				\
96 	CHECK_WRITE(0x34, (D));			\
97 	CHECK_WRITE(0x35, (D));			\
98 	CHECK_WRITE(0x36, (D));			\
99 	CHECK_WRITE(0x37, (D));			\
100 	CHECK_WRITE(0x38, (D));			\
101 	CHECK_WRITE(0x39, (D));
102 
103 #define CHECK_PRINT(S);				\
104 	kprintf("%s: %d, %d, %d, %d, %d, %d\n",	\
105 	   (S),					\
106 	   CHECK_READ(0x34),			\
107 	   CHECK_READ(0x35),			\
108 	   CHECK_READ(0x36),			\
109 	   CHECK_READ(0x37),			\
110 	   CHECK_READ(0x38),			\
111 	   CHECK_READ(0x39));
112 
113 #else				/* CHECK_POINTS */
114 
115 #define CHECK_INIT(D)
116 #define CHECK_PRINT(S)
117 
118 #endif				/* CHECK_POINTS */
119 
120 /*
121  * Values to send to the POST hardware.
122  */
123 #define MP_BOOTADDRESS_POST	0x10
124 #define MP_PROBE_POST		0x11
125 #define MPTABLE_PASS1_POST	0x12
126 
127 #define MP_START_POST		0x13
128 #define MP_ENABLE_POST		0x14
129 #define MPTABLE_PASS2_POST	0x15
130 
131 #define START_ALL_APS_POST	0x16
132 #define INSTALL_AP_TRAMP_POST	0x17
133 #define START_AP_POST		0x18
134 
135 #define MP_ANNOUNCE_POST	0x19
136 
137 /** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
138 int	current_postcode;
139 
140 /** XXX FIXME: what system files declare these??? */
141 extern struct region_descriptor r_gdt;
142 
143 extern int nkpt;
144 extern int naps;
145 
146 int64_t tsc0_offset;
147 extern int64_t tsc_offsets[];
148 
149 /* AP uses this during bootstrap.  Do not staticize.  */
150 char *bootSTK;
151 static int bootAP;
152 
153 struct pcb stoppcbs[MAXCPU];
154 
155 extern inthand_t IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
156 
157 /*
158  * Local data and functions.
159  */
160 
161 static u_int	boot_address;
162 static int	mp_finish;
163 static int	mp_finish_lapic;
164 
165 static int	start_all_aps(u_int boot_addr);
166 #if 0
167 static void	install_ap_tramp(u_int boot_addr);
168 #endif
169 static int	start_ap(struct mdglobaldata *gd, u_int boot_addr, int smibest);
170 static int	smitest(void);
171 static void	mp_bsp_simple_setup(void);
172 
173 /* which cpus have been started */
174 static cpumask_t smp_startup_mask = CPUMASK_INITIALIZER_ONLYONE;
175 /* which cpus have lapic been inited */
176 static cpumask_t smp_lapic_mask = CPUMASK_INITIALIZER_ONLYONE;
177 /* which cpus are ready for IPIs etc? */
178 cpumask_t smp_active_mask = CPUMASK_INITIALIZER_ONLYONE;
179 cpumask_t smp_finalize_mask = CPUMASK_INITIALIZER_ONLYONE;
180 
181 SYSCTL_OPAQUE(_machdep, OID_AUTO, smp_active, CTLFLAG_RD,
182 	      &smp_active_mask, sizeof(smp_active_mask), "LU", "");
183 static u_int	bootMP_size;
184 static u_int	report_invlpg_src;
185 SYSCTL_INT(_machdep, OID_AUTO, report_invlpg_src, CTLFLAG_RW,
186 	&report_invlpg_src, 0, "");
187 static u_int	report_invltlb_src;
188 SYSCTL_INT(_machdep, OID_AUTO, report_invltlb_src, CTLFLAG_RW,
189 	&report_invltlb_src, 0, "");
190 static int	optimized_invltlb;
191 SYSCTL_INT(_machdep, OID_AUTO, optimized_invltlb, CTLFLAG_RW,
192 	&optimized_invltlb, 0, "");
193 static int	all_but_self_ipi_enable = 1;
194 SYSCTL_INT(_machdep, OID_AUTO, all_but_self_ipi_enable, CTLFLAG_RW,
195 	&all_but_self_ipi_enable, 0, "");
196 
197 /* Local data for detecting CPU TOPOLOGY */
198 static int core_bits = 0;
199 static int logical_CPU_bits = 0;
200 
201 
202 /*
203  * Calculate usable address in base memory for AP trampoline code.
204  */
205 u_int
206 mp_bootaddress(u_int basemem)
207 {
208 	POSTCODE(MP_BOOTADDRESS_POST);
209 
210 	bootMP_size = mptramp_end - mptramp_start;
211 	boot_address = trunc_page(basemem * 1024); /* round down to 4k boundary */
212 	if (((basemem * 1024) - boot_address) < bootMP_size)
213 		boot_address -= PAGE_SIZE;	/* not enough, lower by 4k */
214 	/* 3 levels of page table pages */
215 	mptramp_pagetables = boot_address - (PAGE_SIZE * 3);
216 
217 	return mptramp_pagetables;
218 }
219 
220 /*
221  * Print various information about the SMP system hardware and setup.
222  */
223 void
224 mp_announce(void)
225 {
226 	int     x;
227 
228 	POSTCODE(MP_ANNOUNCE_POST);
229 
230 	kprintf("DragonFly/MP: Multiprocessor motherboard\n");
231 	kprintf(" cpu0 (BSP): apic id: %2d\n", CPUID_TO_APICID(0));
232 	for (x = 1; x <= naps; ++x)
233 		kprintf(" cpu%d (AP):  apic id: %2d\n", x, CPUID_TO_APICID(x));
234 
235 	if (!ioapic_enable)
236 		kprintf(" Warning: APIC I/O disabled\n");
237 }
238 
239 /*
240  * AP cpu's call this to sync up protected mode.
241  *
242  * WARNING! %gs is not set up on entry.  This routine sets up %gs.
243  */
244 void
245 init_secondary(void)
246 {
247 	int	gsel_tss;
248 	int	x, myid = bootAP;
249 	u_int64_t msr, cr0;
250 	struct mdglobaldata *md;
251 	struct privatespace *ps;
252 
253 	ps = CPU_prvspace[myid];
254 
255 	gdt_segs[GPROC0_SEL].ssd_base =
256 		(long) &ps->mdglobaldata.gd_common_tss;
257 	ps->mdglobaldata.mi.gd_prvspace = ps;
258 
259 	/* We fill the 32-bit segment descriptors */
260 	for (x = 0; x < NGDT; x++) {
261 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
262 			ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x]);
263 	}
264 	/* And now a 64-bit one */
265 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
266 	    (struct system_segment_descriptor *)&gdt[myid * NGDT + GPROC0_SEL]);
267 
268 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
269 	r_gdt.rd_base = (long) &gdt[myid * NGDT];
270 	lgdt(&r_gdt);			/* does magic intra-segment return */
271 
272 	/* lgdt() destroys the GSBASE value, so we load GSBASE after lgdt() */
273 	wrmsr(MSR_FSBASE, 0);		/* User value */
274 	wrmsr(MSR_GSBASE, (u_int64_t)ps);
275 	wrmsr(MSR_KGSBASE, 0);		/* XXX User value while we're in the kernel */
276 
277 	lidt(&r_idt_arr[mdcpu->mi.gd_cpuid]);
278 
279 #if 0
280 	lldt(_default_ldt);
281 	mdcpu->gd_currentldt = _default_ldt;
282 #endif
283 
284 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
285 	gdt[myid * NGDT + GPROC0_SEL].sd_type = SDT_SYSTSS;
286 
287 	md = mdcpu;	/* loaded through %gs:0 (mdglobaldata.mi.gd_prvspace)*/
288 
289 	md->gd_common_tss.tss_rsp0 = 0;	/* not used until after switch */
290 #if 0 /* JG XXX */
291 	md->gd_common_tss.tss_ioopt = (sizeof md->gd_common_tss) << 16;
292 #endif
293 	md->gd_tss_gdt = &gdt[myid * NGDT + GPROC0_SEL];
294 	md->gd_common_tssd = *md->gd_tss_gdt;
295 
296 	/* double fault stack */
297 	md->gd_common_tss.tss_ist1 =
298 		(long)&md->mi.gd_prvspace->idlestack[
299 			sizeof(md->mi.gd_prvspace->idlestack)];
300 
301 	ltr(gsel_tss);
302 
303 	/*
304 	 * Set to a known state:
305 	 * Set by mpboot.s: CR0_PG, CR0_PE
306 	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
307 	 */
308 	cr0 = rcr0();
309 	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
310 	load_cr0(cr0);
311 
312 	/* Set up the fast syscall stuff */
313 	msr = rdmsr(MSR_EFER) | EFER_SCE;
314 	wrmsr(MSR_EFER, msr);
315 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
316 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
317 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
318 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
319 	wrmsr(MSR_STAR, msr);
320 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
321 
322 	pmap_set_opt();		/* PSE/4MB pages, etc */
323 	pmap_init_pat();	/* Page Attribute Table */
324 
325 	/* set up CPU registers and state */
326 	cpu_setregs();
327 
328 	/* set up SSE/NX registers */
329 	initializecpu(myid);
330 
331 	/* set up FPU state on the AP */
332 	npxinit();
333 
334 	/* disable the APIC, just to be SURE */
335 	lapic->svr &= ~APIC_SVR_ENABLE;
336 }
337 
338 /*******************************************************************
339  * local functions and data
340  */
341 
342 /*
343  * Start the SMP system
344  */
345 static void
346 mp_start_aps(void *dummy __unused)
347 {
348 	if (lapic_enable) {
349 		/* start each Application Processor */
350 		start_all_aps(boot_address);
351 	} else {
352 		mp_bsp_simple_setup();
353 	}
354 }
355 SYSINIT(startaps, SI_BOOT2_START_APS, SI_ORDER_FIRST, mp_start_aps, NULL);
356 
357 /*
358  * start each AP in our list
359  */
360 static int
361 start_all_aps(u_int boot_addr)
362 {
363 	vm_offset_t va = boot_address + KERNBASE;
364 	u_int64_t *pt4, *pt3, *pt2;
365 	int	pssize;
366 	int     x, i;
367 	int	shift;
368 	int	smicount;
369 	int	smibest;
370 	int	smilast;
371 	u_char  mpbiosreason;
372 	u_long  mpbioswarmvec;
373 	struct mdglobaldata *gd;
374 	struct privatespace *ps;
375 	size_t ipiq_size;
376 
377 	POSTCODE(START_ALL_APS_POST);
378 
379 	/* install the AP 1st level boot code */
380 	pmap_kenter(va, boot_address);
381 	cpu_invlpg((void *)va);		/* JG XXX */
382 	bcopy(mptramp_start, (void *)va, bootMP_size);
383 
384 	/* Locate the page tables, they'll be below the trampoline */
385 	pt4 = (u_int64_t *)(uintptr_t)(mptramp_pagetables + KERNBASE);
386 	pt3 = pt4 + (PAGE_SIZE) / sizeof(u_int64_t);
387 	pt2 = pt3 + (PAGE_SIZE) / sizeof(u_int64_t);
388 
389 	/* Create the initial 1GB replicated page tables */
390 	for (i = 0; i < 512; i++) {
391 		/* Each slot of the level 4 pages points to the same level 3 page */
392 		pt4[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + PAGE_SIZE);
393 		pt4[i] |= kernel_pmap.pmap_bits[PG_V_IDX] |
394 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
395 		    kernel_pmap.pmap_bits[PG_U_IDX];
396 
397 		/* Each slot of the level 3 pages points to the same level 2 page */
398 		pt3[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + (2 * PAGE_SIZE));
399 		pt3[i] |= kernel_pmap.pmap_bits[PG_V_IDX] |
400 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
401 		    kernel_pmap.pmap_bits[PG_U_IDX];
402 
403 		/* The level 2 page slots are mapped with 2MB pages for 1GB. */
404 		pt2[i] = i * (2 * 1024 * 1024);
405 		pt2[i] |= kernel_pmap.pmap_bits[PG_V_IDX] |
406 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
407 		    kernel_pmap.pmap_bits[PG_PS_IDX] |
408 		    kernel_pmap.pmap_bits[PG_U_IDX];
409 	}
410 
411 	/* save the current value of the warm-start vector */
412 	mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
413 	outb(CMOS_REG, BIOS_RESET);
414 	mpbiosreason = inb(CMOS_DATA);
415 
416 	/* setup a vector to our boot code */
417 	*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
418 	*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
419 	outb(CMOS_REG, BIOS_RESET);
420 	outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
421 
422 	/*
423 	 * If we have a TSC we can figure out the SMI interrupt rate.
424 	 * The SMI does not necessarily use a constant rate.  Spend
425 	 * up to 250ms trying to figure it out.
426 	 */
427 	smibest = 0;
428 	if (cpu_feature & CPUID_TSC) {
429 		set_apic_timer(275000);
430 		smilast = read_apic_timer();
431 		for (x = 0; x < 20 && read_apic_timer(); ++x) {
432 			smicount = smitest();
433 			if (smibest == 0 || smilast - smicount < smibest)
434 				smibest = smilast - smicount;
435 			smilast = smicount;
436 		}
437 		if (smibest > 250000)
438 			smibest = 0;
439 	}
440 	if (smibest)
441 		kprintf("SMI Frequency (worst case): %d Hz (%d us)\n",
442 			1000000 / smibest, smibest);
443 
444 	/* start each AP */
445 	for (x = 1; x <= naps; ++x) {
446 		/* This is a bit verbose, it will go away soon.  */
447 
448 		pssize = sizeof(struct privatespace);
449 		ps = (void *)kmem_alloc3(&kernel_map, pssize, VM_SUBSYS_GD,
450 					 KM_CPU(x));
451 		CPU_prvspace[x] = ps;
452 #if 0
453 		kprintf("ps %d %p %d\n", x, ps, pssize);
454 #endif
455 		bzero(ps, pssize);
456 		gd = &ps->mdglobaldata;
457 		gd->mi.gd_prvspace = ps;
458 
459 		/* prime data page for it to use */
460 		mi_gdinit(&gd->mi, x);
461 		cpu_gdinit(gd, x);
462 		ipiq_size = sizeof(struct lwkt_ipiq) * (naps + 1);
463 		gd->mi.gd_ipiq = (void *)kmem_alloc3(&kernel_map, ipiq_size,
464 						     VM_SUBSYS_IPIQ, KM_CPU(x));
465 		bzero(gd->mi.gd_ipiq, ipiq_size);
466 
467 		gd->gd_acpi_id = CPUID_TO_ACPIID(gd->mi.gd_cpuid);
468 
469 		/* initialize arc4random. */
470 		arc4_init_pcpu(x);
471 
472 		/* setup a vector to our boot code */
473 		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
474 		*((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4);
475 		outb(CMOS_REG, BIOS_RESET);
476 		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
477 
478 		/*
479 		 * Setup the AP boot stack
480 		 */
481 		bootSTK = &ps->idlestack[UPAGES * PAGE_SIZE - PAGE_SIZE];
482 		bootAP = x;
483 
484 		/* attempt to start the Application Processor */
485 		CHECK_INIT(99);	/* setup checkpoints */
486 		if (!start_ap(gd, boot_addr, smibest)) {
487 			kprintf("\nAP #%d (PHY# %d) failed!\n",
488 				x, CPUID_TO_APICID(x));
489 			CHECK_PRINT("trace");	/* show checkpoints */
490 			/* better panic as the AP may be running loose */
491 			kprintf("panic y/n? [y] ");
492 			cnpoll(TRUE);
493 			if (cngetc() != 'n')
494 				panic("bye-bye");
495 			cnpoll(FALSE);
496 		}
497 		CHECK_PRINT("trace");		/* show checkpoints */
498 	}
499 
500 	/* set ncpus to 1 + highest logical cpu.  Not all may have come up */
501 	ncpus = x;
502 
503 	for (shift = 0; (1 << shift) <= ncpus; ++shift)
504 		;
505 	--shift;
506 
507 	/* ncpus_fit -- ncpus rounded up to the nearest power of 2 */
508 	if ((1 << shift) < ncpus)
509 		++shift;
510 	ncpus_fit = 1 << shift;
511 	ncpus_fit_mask = ncpus_fit - 1;
512 
513 	/* build our map of 'other' CPUs */
514 	mycpu->gd_other_cpus = smp_startup_mask;
515 	CPUMASK_NANDBIT(mycpu->gd_other_cpus, mycpu->gd_cpuid);
516 
517 	gd = (struct mdglobaldata *)mycpu;
518 	gd->gd_acpi_id = CPUID_TO_ACPIID(mycpu->gd_cpuid);
519 
520 	ipiq_size = sizeof(struct lwkt_ipiq) * ncpus;
521 	mycpu->gd_ipiq = (void *)kmem_alloc3(&kernel_map, ipiq_size,
522 					     VM_SUBSYS_IPIQ, KM_CPU(0));
523 	bzero(mycpu->gd_ipiq, ipiq_size);
524 
525 	/* initialize arc4random. */
526 	arc4_init_pcpu(0);
527 
528 	/* restore the warmstart vector */
529 	*(u_long *) WARMBOOT_OFF = mpbioswarmvec;
530 	outb(CMOS_REG, BIOS_RESET);
531 	outb(CMOS_DATA, mpbiosreason);
532 
533 	/*
534 	 * NOTE!  The idlestack for the BSP was setup by locore.  Finish
535 	 * up, clean out the P==V mapping we did earlier.
536 	 */
537 	pmap_set_opt();
538 
539 	/*
540 	 * Wait all APs to finish initializing LAPIC
541 	 */
542 	if (bootverbose)
543 		kprintf("SMP: Waiting APs LAPIC initialization\n");
544 	if (cpu_feature & CPUID_TSC)
545 		tsc0_offset = rdtsc();
546 	tsc_offsets[0] = 0;
547 	mp_finish_lapic = 1;
548 	rel_mplock();
549 
550 	while (CPUMASK_CMPMASKNEQ(smp_lapic_mask, smp_startup_mask)) {
551 		cpu_pause();
552 		cpu_lfence();
553 		if (cpu_feature & CPUID_TSC)
554 			tsc0_offset = rdtsc();
555 	}
556 	while (try_mplock() == 0) {
557 		cpu_pause();
558 		cpu_lfence();
559 	}
560 
561 	/* number of APs actually started */
562 	return ncpus - 1;
563 }
564 
565 
566 /*
567  * load the 1st level AP boot code into base memory.
568  */
569 
570 /* targets for relocation */
571 extern void bigJump(void);
572 extern void bootCodeSeg(void);
573 extern void bootDataSeg(void);
574 extern void MPentry(void);
575 extern u_int MP_GDT;
576 extern u_int mp_gdtbase;
577 
578 #if 0
579 
580 static void
581 install_ap_tramp(u_int boot_addr)
582 {
583 	int     x;
584 	int     size = *(int *) ((u_long) & bootMP_size);
585 	u_char *src = (u_char *) ((u_long) bootMP);
586 	u_char *dst = (u_char *) boot_addr + KERNBASE;
587 	u_int   boot_base = (u_int) bootMP;
588 	u_int8_t *dst8;
589 	u_int16_t *dst16;
590 	u_int32_t *dst32;
591 
592 	POSTCODE(INSTALL_AP_TRAMP_POST);
593 
594 	for (x = 0; x < size; ++x)
595 		*dst++ = *src++;
596 
597 	/*
598 	 * modify addresses in code we just moved to basemem. unfortunately we
599 	 * need fairly detailed info about mpboot.s for this to work.  changes
600 	 * to mpboot.s might require changes here.
601 	 */
602 
603 	/* boot code is located in KERNEL space */
604 	dst = (u_char *) boot_addr + KERNBASE;
605 
606 	/* modify the lgdt arg */
607 	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
608 	*dst32 = boot_addr + ((u_int) & MP_GDT - boot_base);
609 
610 	/* modify the ljmp target for MPentry() */
611 	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
612 	*dst32 = ((u_int) MPentry - KERNBASE);
613 
614 	/* modify the target for boot code segment */
615 	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
616 	dst8 = (u_int8_t *) (dst16 + 1);
617 	*dst16 = (u_int) boot_addr & 0xffff;
618 	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
619 
620 	/* modify the target for boot data segment */
621 	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
622 	dst8 = (u_int8_t *) (dst16 + 1);
623 	*dst16 = (u_int) boot_addr & 0xffff;
624 	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
625 }
626 
627 #endif
628 
629 /*
630  * This function starts the AP (application processor) identified
631  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
632  * to accomplish this.  This is necessary because of the nuances
633  * of the different hardware we might encounter.  It ain't pretty,
634  * but it seems to work.
635  *
636  * NOTE: eventually an AP gets to ap_init(), which is called just
637  * before the AP goes into the LWKT scheduler's idle loop.
638  */
639 static int
640 start_ap(struct mdglobaldata *gd, u_int boot_addr, int smibest)
641 {
642 	int     physical_cpu;
643 	int     vector;
644 	u_long  icr_lo, icr_hi;
645 
646 	POSTCODE(START_AP_POST);
647 
648 	/* get the PHYSICAL APIC ID# */
649 	physical_cpu = CPUID_TO_APICID(gd->mi.gd_cpuid);
650 
651 	/* calculate the vector */
652 	vector = (boot_addr >> 12) & 0xff;
653 
654 	/* We don't want anything interfering */
655 	cpu_disable_intr();
656 
657 	/* Make sure the target cpu sees everything */
658 	wbinvd();
659 
660 	/*
661 	 * Try to detect when a SMI has occurred, wait up to 200ms.
662 	 *
663 	 * If a SMI occurs during an AP reset but before we issue
664 	 * the STARTUP command, the AP may brick.  To work around
665 	 * this problem we hold off doing the AP startup until
666 	 * after we have detected the SMI.  Hopefully another SMI
667 	 * will not occur before we finish the AP startup.
668 	 *
669 	 * Retries don't seem to help.  SMIs have a window of opportunity
670 	 * and if USB->legacy keyboard emulation is enabled in the BIOS
671 	 * the interrupt rate can be quite high.
672 	 *
673 	 * NOTE: Don't worry about the L1 cache load, it might bloat
674 	 *	 ldelta a little but ndelta will be so huge when the SMI
675 	 *	 occurs the detection logic will still work fine.
676 	 */
677 	if (smibest) {
678 		set_apic_timer(200000);
679 		smitest();
680 	}
681 
682 	/*
683 	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
684 	 * and running the target CPU. OR this INIT IPI might be latched (P5
685 	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
686 	 * ignored.
687 	 *
688 	 * see apic/apicreg.h for icr bit definitions.
689 	 *
690 	 * TIME CRITICAL CODE, DO NOT DO ANY KPRINTFS IN THE HOT PATH.
691 	 */
692 
693 	/*
694 	 * Setup the address for the target AP.  We can setup
695 	 * icr_hi once and then just trigger operations with
696 	 * icr_lo.
697 	 */
698 	icr_hi = lapic->icr_hi & ~APIC_ID_MASK;
699 	icr_hi |= (physical_cpu << 24);
700 	icr_lo = lapic->icr_lo & 0xfff00000;
701 	lapic->icr_hi = icr_hi;
702 
703 	/*
704 	 * Do an INIT IPI: assert RESET
705 	 *
706 	 * Use edge triggered mode to assert INIT
707 	 */
708 	lapic->icr_lo = icr_lo | 0x00004500;
709 	while (lapic->icr_lo & APIC_DELSTAT_MASK)
710 		 /* spin */ ;
711 
712 	/*
713 	 * The spec calls for a 10ms delay but we may have to use a
714 	 * MUCH lower delay to avoid bricking an AP due to a fast SMI
715 	 * interrupt.  We have other loops here too and dividing by 2
716 	 * doesn't seem to be enough even after subtracting 350us,
717 	 * so we divide by 4.
718 	 *
719 	 * Our minimum delay is 150uS, maximum is 10ms.  If no SMI
720 	 * interrupt was detected we use the full 10ms.
721 	 */
722 	if (smibest == 0)
723 		u_sleep(10000);
724 	else if (smibest < 150 * 4 + 350)
725 		u_sleep(150);
726 	else if ((smibest - 350) / 4 < 10000)
727 		u_sleep((smibest - 350) / 4);
728 	else
729 		u_sleep(10000);
730 
731 	/*
732 	 * Do an INIT IPI: deassert RESET
733 	 *
734 	 * Use level triggered mode to deassert.  It is unclear
735 	 * why we need to do this.
736 	 */
737 	lapic->icr_lo = icr_lo | 0x00008500;
738 	while (lapic->icr_lo & APIC_DELSTAT_MASK)
739 		 /* spin */ ;
740 	u_sleep(150);				/* wait 150us */
741 
742 	/*
743 	 * Next we do a STARTUP IPI: the previous INIT IPI might still be
744 	 * latched, (P5 bug) this 1st STARTUP would then terminate
745 	 * immediately, and the previously started INIT IPI would continue. OR
746 	 * the previous INIT IPI has already run. and this STARTUP IPI will
747 	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
748 	 * will run.
749 	 */
750 	lapic->icr_lo = icr_lo | 0x00000600 | vector;
751 	while (lapic->icr_lo & APIC_DELSTAT_MASK)
752 		 /* spin */ ;
753 	u_sleep(200);		/* wait ~200uS */
754 
755 	/*
756 	 * Finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
757 	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
758 	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
759 	 * recognized after hardware RESET or INIT IPI.
760 	 */
761 	lapic->icr_lo = icr_lo | 0x00000600 | vector;
762 	while (lapic->icr_lo & APIC_DELSTAT_MASK)
763 		 /* spin */ ;
764 
765 	/* Resume normal operation */
766 	cpu_enable_intr();
767 
768 	/* wait for it to start, see ap_init() */
769 	set_apic_timer(5000000);/* == 5 seconds */
770 	while (read_apic_timer()) {
771 		if (CPUMASK_TESTBIT(smp_startup_mask, gd->mi.gd_cpuid))
772 			return 1;	/* return SUCCESS */
773 	}
774 
775 	return 0;		/* return FAILURE */
776 }
777 
778 static
779 int
780 smitest(void)
781 {
782 	int64_t	ltsc;
783 	int64_t	ntsc;
784 	int64_t	ldelta;
785 	int64_t	ndelta;
786 	int count;
787 
788 	ldelta = 0;
789 	ndelta = 0;
790 	while (read_apic_timer()) {
791 		ltsc = rdtsc();
792 		for (count = 0; count < 100; ++count)
793 			ntsc = rdtsc();	/* force loop to occur */
794 		if (ldelta) {
795 			ndelta = ntsc - ltsc;
796 			if (ldelta > ndelta)
797 				ldelta = ndelta;
798 			if (ndelta > ldelta * 2)
799 				break;
800 		} else {
801 			ldelta = ntsc - ltsc;
802 		}
803 	}
804 	return(read_apic_timer());
805 }
806 
807 /*
808  * Synchronously flush the TLB on all other CPU's.  The current cpu's
809  * TLB is not flushed.  If the caller wishes to flush the current cpu's
810  * TLB the caller must call cpu_invltlb() in addition to smp_invltlb().
811  *
812  * This routine may be called concurrently from multiple cpus.  When this
813  * happens, smp_invltlb() can wind up sticking around in the confirmation
814  * while() loop at the end as additional cpus are added to the global
815  * cpumask, until they are acknowledged by another IPI.
816  *
817  * NOTE: If for some reason we were unable to start all cpus we cannot
818  *	 safely use broadcast IPIs.
819  */
820 
821 cpumask_t smp_smurf_mask;
822 static cpumask_t smp_invltlb_mask;
823 #define LOOPRECOVER
824 #define LOOPMASK_IN
825 #ifdef LOOPMASK_IN
826 cpumask_t smp_in_mask;
827 #endif
828 cpumask_t smp_invmask;
829 extern cpumask_t smp_idleinvl_mask;
830 extern cpumask_t smp_idleinvl_reqs;
831 
832 /*
833  * Atomically OR bits in *mask to smp_smurf_mask.  Adjust *mask to remove
834  * bits that do not need to be IPId.  These bits are still part of the command,
835  * but the target cpus have already been signalled and do not need to be
836  * sigalled again.
837  */
838 #include <sys/spinlock.h>
839 #include <sys/spinlock2.h>
840 
841 static __noinline
842 void
843 smp_smurf_fetchset(cpumask_t *mask)
844 {
845 	cpumask_t omask;
846 	int i;
847 	__uint64_t obits;
848 	__uint64_t nbits;
849 
850 	i = 0;
851 	while (i < CPUMASK_ELEMENTS) {
852 		obits = smp_smurf_mask.ary[i];
853 		cpu_ccfence();
854 		nbits = obits | mask->ary[i];
855 		if (atomic_cmpset_long(&smp_smurf_mask.ary[i], obits, nbits)) {
856 			omask.ary[i] = obits;
857 			++i;
858 		}
859 	}
860 	CPUMASK_NANDMASK(*mask, omask);
861 }
862 
863 /*
864  * This is a mechanism which guarantees that cpu_invltlb() will be executed
865  * on idle cpus without having to signal or wake them up.  The invltlb will be
866  * executed when they wake up, prior to any scheduling or interrupt thread.
867  *
868  * (*mask) is modified to remove the cpus we successfully negotiate this
869  * function with.  This function may only be used with semi-synchronous
870  * commands (typically invltlb's or semi-synchronous invalidations which
871  * are usually associated only with kernel memory).
872  */
873 void
874 smp_smurf_idleinvlclr(cpumask_t *mask)
875 {
876 	if (optimized_invltlb) {
877 		ATOMIC_CPUMASK_ORMASK(smp_idleinvl_reqs, *mask);
878 		/* cpu_lfence() not needed */
879 		CPUMASK_NANDMASK(*mask, smp_idleinvl_mask);
880 	}
881 }
882 
883 /*
884  * Issue cpu_invltlb() across all cpus except the current cpu.
885  *
886  * This function will arrange to avoid idle cpus, but still gurantee that
887  * invltlb is run on them when they wake up prior to any scheduling or
888  * nominal interrupt.
889  */
890 void
891 smp_invltlb(void)
892 {
893 	struct mdglobaldata *md = mdcpu;
894 	cpumask_t mask;
895 	unsigned long rflags;
896 #ifdef LOOPRECOVER
897 	tsc_uclock_t tsc_base = rdtsc();
898 	int repeats = 0;
899 #endif
900 
901 	if (report_invltlb_src > 0) {
902 		if (--report_invltlb_src <= 0)
903 			print_backtrace(8);
904 	}
905 
906 	/*
907 	 * Disallow normal interrupts, set all active cpus except our own
908 	 * in the global smp_invltlb_mask.
909 	 */
910 	++md->mi.gd_cnt.v_smpinvltlb;
911 	crit_enter_gd(&md->mi);
912 
913 	/*
914 	 * Bits we want to set in smp_invltlb_mask.  We do not want to signal
915 	 * our own cpu.  Also try to remove bits associated with idle cpus
916 	 * that we can flag for auto-invltlb.
917 	 */
918 	mask = smp_active_mask;
919 	CPUMASK_NANDBIT(mask, md->mi.gd_cpuid);
920 	smp_smurf_idleinvlclr(&mask);
921 
922 	rflags = read_rflags();
923 	cpu_disable_intr();
924 	ATOMIC_CPUMASK_ORMASK(smp_invltlb_mask, mask);
925 
926 	/*
927 	 * IPI non-idle cpus represented by mask.  The omask calculation
928 	 * removes cpus from the mask which already have a Xinvltlb IPI
929 	 * pending (avoid double-queueing the IPI).
930 	 *
931 	 * We must disable real interrupts when setting the smurf flags or
932 	 * we might race a XINVLTLB before we manage to send the ipi's for
933 	 * the bits we set.
934 	 *
935 	 * NOTE: We are not signalling ourselves, mask already does NOT
936 	 * include our own cpu.
937 	 */
938 	smp_smurf_fetchset(&mask);
939 
940 	/*
941 	 * Issue the IPI.  Note that the XINVLTLB IPI runs regardless of
942 	 * the critical section count on the target cpus.
943 	 */
944 	CPUMASK_ORMASK(mask, md->mi.gd_cpumask);
945 	if (all_but_self_ipi_enable &&
946 	    (all_but_self_ipi_enable >= 2 ||
947 	     CPUMASK_CMPMASKEQ(smp_startup_mask, mask))) {
948 		all_but_self_ipi(XINVLTLB_OFFSET);
949 	} else {
950 		CPUMASK_NANDMASK(mask, md->mi.gd_cpumask);
951 		selected_apic_ipi(mask, XINVLTLB_OFFSET, APIC_DELMODE_FIXED);
952 	}
953 
954 	/*
955 	 * Wait for acknowledgement by all cpus.  smp_inval_intr() will
956 	 * temporarily enable interrupts to avoid deadlocking the lapic,
957 	 * and will also handle running cpu_invltlb() and remote invlpg
958 	 * command son our cpu if some other cpu requests it of us.
959 	 *
960 	 * WARNING! I originally tried to implement this as a hard loop
961 	 *	    checking only smp_invltlb_mask (and issuing a local
962 	 *	    cpu_invltlb() if requested), with interrupts enabled
963 	 *	    and without calling smp_inval_intr().  This DID NOT WORK.
964 	 *	    It resulted in weird races where smurf bits would get
965 	 *	    cleared without any action being taken.
966 	 */
967 	smp_inval_intr();
968 	CPUMASK_ASSZERO(mask);
969 	while (CPUMASK_CMPMASKNEQ(smp_invltlb_mask, mask)) {
970 		smp_inval_intr();
971 		cpu_pause();
972 #ifdef LOOPRECOVER
973 		if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
974 			/*
975 			 * cpuid 	- cpu doing the waiting
976 			 * invltlb_mask - IPI in progress
977 			 */
978 			kprintf("smp_invltlb %d: waited too long inv=%08jx "
979 				"smurf=%08jx "
980 #ifdef LOOPMASK_IN
981 				"in=%08jx "
982 #endif
983 				"idle=%08jx/%08jx\n",
984 				md->mi.gd_cpuid,
985 				smp_invltlb_mask.ary[0],
986 				smp_smurf_mask.ary[0],
987 #ifdef LOOPMASK_IN
988 				smp_in_mask.ary[0],
989 #endif
990 				smp_idleinvl_mask.ary[0],
991 				smp_idleinvl_reqs.ary[0]);
992 			mdcpu->gd_xinvaltlb = 0;
993 			ATOMIC_CPUMASK_NANDMASK(smp_smurf_mask,
994 						smp_invltlb_mask);
995 			smp_invlpg(&smp_active_mask);
996 			tsc_base = rdtsc();
997 			if (++repeats > 10) {
998 				kprintf("smp_invltlb: giving up\n");
999 				CPUMASK_ASSZERO(smp_invltlb_mask);
1000 			}
1001 		}
1002 #endif
1003 	}
1004 	write_rflags(rflags);
1005 	crit_exit_gd(&md->mi);
1006 }
1007 
1008 /*
1009  * Called from a critical section with interrupts hard-disabled.
1010  * This function issues an XINVLTLB IPI and then executes any pending
1011  * command on the current cpu before returning.
1012  */
1013 void
1014 smp_invlpg(cpumask_t *cmdmask)
1015 {
1016 	struct mdglobaldata *md = mdcpu;
1017 	cpumask_t mask;
1018 
1019 	if (report_invlpg_src > 0) {
1020 		if (--report_invlpg_src <= 0)
1021 			print_backtrace(8);
1022 	}
1023 
1024 	/*
1025 	 * Disallow normal interrupts, set all active cpus in the pmap,
1026 	 * plus our own for completion processing (it might or might not
1027 	 * be part of the set).
1028 	 */
1029 	mask = smp_active_mask;
1030 	CPUMASK_ANDMASK(mask, *cmdmask);
1031 	CPUMASK_ORMASK(mask, md->mi.gd_cpumask);
1032 
1033 	/*
1034 	 * Avoid double-queuing IPIs, which can deadlock us.  We must disable
1035 	 * real interrupts when setting the smurf flags or we might race a
1036 	 * XINVLTLB before we manage to send the ipi's for the bits we set.
1037 	 *
1038 	 * NOTE: We might be including our own cpu in the smurf mask.
1039 	 */
1040 	smp_smurf_fetchset(&mask);
1041 
1042 	/*
1043 	 * Issue the IPI.  Note that the XINVLTLB IPI runs regardless of
1044 	 * the critical section count on the target cpus.
1045 	 *
1046 	 * We do not include our own cpu when issuing the IPI.
1047 	 */
1048 	if (all_but_self_ipi_enable &&
1049 	    (all_but_self_ipi_enable >= 2 ||
1050 	     CPUMASK_CMPMASKEQ(smp_startup_mask, mask))) {
1051 		all_but_self_ipi(XINVLTLB_OFFSET);
1052 	} else {
1053 		CPUMASK_NANDMASK(mask, md->mi.gd_cpumask);
1054 		selected_apic_ipi(mask, XINVLTLB_OFFSET, APIC_DELMODE_FIXED);
1055 	}
1056 
1057 	/*
1058 	 * This will synchronously wait for our command to complete,
1059 	 * as well as process commands from other cpus.  It also handles
1060 	 * reentrancy.
1061 	 *
1062 	 * (interrupts are disabled and we are in a critical section here)
1063 	 */
1064 	smp_inval_intr();
1065 }
1066 
1067 void
1068 smp_sniff(void)
1069 {
1070 	globaldata_t gd = mycpu;
1071 	int dummy;
1072 	register_t rflags;
1073 
1074 	/*
1075 	 * Ignore all_but_self_ipi_enable here and just use it.
1076 	 */
1077 	rflags = read_rflags();
1078 	cpu_disable_intr();
1079 	all_but_self_ipi(XSNIFF_OFFSET);
1080 	gd->gd_sample_pc = smp_sniff;
1081 	gd->gd_sample_sp = &dummy;
1082 	write_rflags(rflags);
1083 }
1084 
1085 void
1086 cpu_sniff(int dcpu)
1087 {
1088 	globaldata_t rgd = globaldata_find(dcpu);
1089 	register_t rflags;
1090 	int dummy;
1091 
1092 	/*
1093 	 * Ignore all_but_self_ipi_enable here and just use it.
1094 	 */
1095 	rflags = read_rflags();
1096 	cpu_disable_intr();
1097 	single_apic_ipi(dcpu, XSNIFF_OFFSET, APIC_DELMODE_FIXED);
1098 	rgd->gd_sample_pc = cpu_sniff;
1099 	rgd->gd_sample_sp = &dummy;
1100 	write_rflags(rflags);
1101 }
1102 
1103 /*
1104  * Called from Xinvltlb assembly with interrupts hard-disabled and in a
1105  * critical section.  gd_intr_nesting_level may or may not be bumped
1106  * depending on entry.
1107  *
1108  * THIS CODE IS INTENDED TO EXPLICITLY IGNORE THE CRITICAL SECTION COUNT.
1109  * THAT IS, THE INTERRUPT IS INTENDED TO FUNCTION EVEN WHEN MAINLINE CODE
1110  * IS IN A CRITICAL SECTION.
1111  */
1112 void
1113 smp_inval_intr(void)
1114 {
1115 	struct mdglobaldata *md = mdcpu;
1116 	cpumask_t cpumask;
1117 #ifdef LOOPRECOVER
1118 	tsc_uclock_t tsc_base = rdtsc();
1119 #endif
1120 
1121 #if 0
1122 	/*
1123 	 * The idle code is in a critical section, but that doesn't stop
1124 	 * Xinvltlb from executing, so deal with the race which can occur
1125 	 * in that situation.  Otherwise r-m-w operations by pmap_inval_intr()
1126 	 * may have problems.
1127 	 */
1128 	if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs, md->mi.gd_cpuid)) {
1129 		ATOMIC_CPUMASK_NANDBIT(smp_invltlb_mask, md->mi.gd_cpuid);
1130 		cpu_invltlb();
1131 		cpu_mfence();
1132 	}
1133 #endif
1134 
1135 	/*
1136 	 * This is a real mess.  I'd like to just leave interrupts disabled
1137 	 * but it can cause the lapic to deadlock if too many interrupts queue
1138 	 * to it, due to the idiotic design of the lapic.  So instead we have
1139 	 * to enter a critical section so normal interrupts are made pending
1140 	 * and track whether this one was reentered.
1141 	 */
1142 	if (md->gd_xinvaltlb) {		/* reentrant on cpu */
1143 		md->gd_xinvaltlb = 2;
1144 		return;
1145 	}
1146 	md->gd_xinvaltlb = 1;
1147 
1148 	/*
1149 	 * Check only those cpus with active Xinvl* commands pending.
1150 	 *
1151 	 * We are going to enable interrupts so make sure we are in a
1152 	 * critical section.  This is necessary to avoid deadlocking
1153 	 * the lapic and to ensure that we execute our commands prior to
1154 	 * any nominal interrupt or preemption.
1155 	 *
1156 	 * WARNING! It is very important that we only clear out but in
1157 	 *	    smp_smurf_mask once for each interrupt we take.  In
1158 	 *	    this case, we clear it on initial entry and only loop
1159 	 *	    on the reentrancy detect (caused by another interrupt).
1160 	 */
1161 	cpumask = smp_invmask;
1162 #ifdef LOOPMASK_IN
1163 	ATOMIC_CPUMASK_ORBIT(smp_in_mask, md->mi.gd_cpuid);
1164 #endif
1165 loop:
1166 	cpu_enable_intr();
1167 	ATOMIC_CPUMASK_NANDBIT(smp_smurf_mask, md->mi.gd_cpuid);
1168 
1169 	/*
1170 	 * Specific page request(s), and we can't return until all bits
1171 	 * are zero.
1172 	 */
1173 	for (;;) {
1174 		int toolong;
1175 
1176 		/*
1177 		 * Also execute any pending full invalidation request in
1178 		 * this loop.
1179 		 */
1180 		if (CPUMASK_TESTBIT(smp_invltlb_mask, md->mi.gd_cpuid)) {
1181 			ATOMIC_CPUMASK_NANDBIT(smp_invltlb_mask,
1182 					       md->mi.gd_cpuid);
1183 			cpu_invltlb();
1184 			cpu_mfence();
1185 		}
1186 
1187 #ifdef LOOPRECOVER
1188 		if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
1189 			/*
1190 			 * cpuid 	- cpu doing the waiting
1191 			 * invmask	- IPI in progress
1192 			 * invltlb_mask - which ones are TLB invalidations?
1193 			 */
1194 			kprintf("smp_inval_intr %d inv=%08jx tlbm=%08jx "
1195 				"smurf=%08jx "
1196 #ifdef LOOPMASK_IN
1197 				"in=%08jx "
1198 #endif
1199 				"idle=%08jx/%08jx\n",
1200 				md->mi.gd_cpuid,
1201 				smp_invmask.ary[0],
1202 				smp_invltlb_mask.ary[0],
1203 				smp_smurf_mask.ary[0],
1204 #ifdef LOOPMASK_IN
1205 				smp_in_mask.ary[0],
1206 #endif
1207 				smp_idleinvl_mask.ary[0],
1208 				smp_idleinvl_reqs.ary[0]);
1209 			tsc_base = rdtsc();
1210 			toolong = 1;
1211 		} else {
1212 			toolong = 0;
1213 		}
1214 #else
1215 		toolong = 0;
1216 #endif
1217 
1218 		/*
1219 		 * We can only add bits to the cpumask to test during the
1220 		 * loop because the smp_invmask bit is cleared once the
1221 		 * originator completes the command (the targets may still
1222 		 * be cycling their own completions in this loop, afterwords).
1223 		 *
1224 		 * lfence required prior to all tests as this Xinvltlb
1225 		 * interrupt could race the originator (already be in progress
1226 		 * wnen the originator decides to issue, due to an issue by
1227 		 * another cpu).
1228 		 */
1229 		cpu_lfence();
1230 		CPUMASK_ORMASK(cpumask, smp_invmask);
1231 		/*cpumask = smp_active_mask;*/	/* XXX */
1232 		cpu_lfence();
1233 
1234 		if (pmap_inval_intr(&cpumask, toolong) == 0) {
1235 			/*
1236 			 * Clear our smurf mask to allow new IPIs, but deal
1237 			 * with potential races.
1238 			 */
1239 			break;
1240 		}
1241 
1242 		/*
1243 		 * Test if someone sent us another invalidation IPI, break
1244 		 * out so we can take it to avoid deadlocking the lapic
1245 		 * interrupt queue (? stupid intel, amd).
1246 		 */
1247 		if (md->gd_xinvaltlb == 2)
1248 			break;
1249 		/*
1250 		if (CPUMASK_TESTBIT(smp_smurf_mask, md->mi.gd_cpuid))
1251 			break;
1252 		*/
1253 	}
1254 
1255 	/*
1256 	 * Full invalidation request
1257 	 */
1258 	if (CPUMASK_TESTBIT(smp_invltlb_mask, md->mi.gd_cpuid)) {
1259 		ATOMIC_CPUMASK_NANDBIT(smp_invltlb_mask,
1260 				       md->mi.gd_cpuid);
1261 		cpu_invltlb();
1262 		cpu_mfence();
1263 	}
1264 
1265 	/*
1266 	 * Check to see if another Xinvltlb interrupt occurred and loop up
1267 	 * if it did.
1268 	 */
1269 	cpu_disable_intr();
1270 	if (md->gd_xinvaltlb == 2) {
1271 		md->gd_xinvaltlb = 1;
1272 		goto loop;
1273 	}
1274 #ifdef LOOPMASK_IN
1275 	ATOMIC_CPUMASK_NANDBIT(smp_in_mask, md->mi.gd_cpuid);
1276 #endif
1277 	md->gd_xinvaltlb = 0;
1278 }
1279 
1280 void
1281 cpu_wbinvd_on_all_cpus_callback(void *arg)
1282 {
1283 	wbinvd();
1284 }
1285 
1286 /*
1287  * When called the executing CPU will send an IPI to all other CPUs
1288  * requesting that they halt execution.
1289  *
1290  * Usually (but not necessarily) called with 'other_cpus' as its arg.
1291  *
1292  *  - Signals all CPUs in map to stop.
1293  *  - Waits for each to stop.
1294  *
1295  * Returns:
1296  *  -1: error
1297  *   0: NA
1298  *   1: ok
1299  *
1300  * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
1301  *            from executing at same time.
1302  */
1303 int
1304 stop_cpus(cpumask_t map)
1305 {
1306 	cpumask_t mask;
1307 
1308 	CPUMASK_ANDMASK(map, smp_active_mask);
1309 
1310 	/* send the Xcpustop IPI to all CPUs in map */
1311 	selected_apic_ipi(map, XCPUSTOP_OFFSET, APIC_DELMODE_FIXED);
1312 
1313 	do {
1314 		mask = stopped_cpus;
1315 		CPUMASK_ANDMASK(mask, map);
1316 		/* spin */
1317 	} while (CPUMASK_CMPMASKNEQ(mask, map));
1318 
1319 	return 1;
1320 }
1321 
1322 
1323 /*
1324  * Called by a CPU to restart stopped CPUs.
1325  *
1326  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
1327  *
1328  *  - Signals all CPUs in map to restart.
1329  *  - Waits for each to restart.
1330  *
1331  * Returns:
1332  *  -1: error
1333  *   0: NA
1334  *   1: ok
1335  */
1336 int
1337 restart_cpus(cpumask_t map)
1338 {
1339 	cpumask_t mask;
1340 
1341 	/* signal other cpus to restart */
1342 	mask = map;
1343 	CPUMASK_ANDMASK(mask, smp_active_mask);
1344 	cpu_ccfence();
1345 	started_cpus = mask;
1346 	cpu_ccfence();
1347 
1348 	/* wait for each to clear its bit */
1349 	while (CPUMASK_CMPMASKNEQ(stopped_cpus, map))
1350 		cpu_pause();
1351 
1352 	return 1;
1353 }
1354 
1355 /*
1356  * This is called once the mpboot code has gotten us properly relocated
1357  * and the MMU turned on, etc.   ap_init() is actually the idle thread,
1358  * and when it returns the scheduler will call the real cpu_idle() main
1359  * loop for the idlethread.  Interrupts are disabled on entry and should
1360  * remain disabled at return.
1361  */
1362 void
1363 ap_init(void)
1364 {
1365 	int	cpu_id;
1366 
1367 	/*
1368 	 * Adjust smp_startup_mask to signal the BSP that we have started
1369 	 * up successfully.  Note that we do not yet hold the BGL.  The BSP
1370 	 * is waiting for our signal.
1371 	 *
1372 	 * We can't set our bit in smp_active_mask yet because we are holding
1373 	 * interrupts physically disabled and remote cpus could deadlock
1374 	 * trying to send us an IPI.
1375 	 */
1376 	ATOMIC_CPUMASK_ORBIT(smp_startup_mask, mycpu->gd_cpuid);
1377 	cpu_mfence();
1378 
1379 	/*
1380 	 * Interlock for LAPIC initialization.  Wait until mp_finish_lapic is
1381 	 * non-zero, then get the MP lock.
1382 	 *
1383 	 * Note: We are in a critical section.
1384 	 *
1385 	 * Note: we are the idle thread, we can only spin.
1386 	 *
1387 	 * Note: The load fence is memory volatile and prevents the compiler
1388 	 * from improperly caching mp_finish_lapic, and the cpu from improperly
1389 	 * caching it.
1390 	 */
1391 	while (mp_finish_lapic == 0) {
1392 		cpu_pause();
1393 		cpu_lfence();
1394 	}
1395 #if 0
1396 	while (try_mplock() == 0) {
1397 		cpu_pause();
1398 		cpu_lfence();
1399 	}
1400 #endif
1401 
1402 	if (cpu_feature & CPUID_TSC) {
1403 		/*
1404 		 * The BSP is constantly updating tsc0_offset, figure out
1405 		 * the relative difference to synchronize ktrdump.
1406 		 */
1407 		tsc_offsets[mycpu->gd_cpuid] = rdtsc() - tsc0_offset;
1408 	}
1409 
1410 	/* BSP may have changed PTD while we're waiting for the lock */
1411 	cpu_invltlb();
1412 
1413 	/* Build our map of 'other' CPUs. */
1414 	mycpu->gd_other_cpus = smp_startup_mask;
1415 	ATOMIC_CPUMASK_NANDBIT(mycpu->gd_other_cpus, mycpu->gd_cpuid);
1416 
1417 	/* A quick check from sanity claus */
1418 	cpu_id = APICID_TO_CPUID((lapic->id & 0xff000000) >> 24);
1419 	if (mycpu->gd_cpuid != cpu_id) {
1420 		kprintf("SMP: assigned cpuid = %d\n", mycpu->gd_cpuid);
1421 		kprintf("SMP: actual cpuid = %d lapicid %d\n",
1422 			cpu_id, (lapic->id & 0xff000000) >> 24);
1423 #if 0 /* JGXXX */
1424 		kprintf("PTD[MPPTDI] = %p\n", (void *)PTD[MPPTDI]);
1425 #endif
1426 		panic("cpuid mismatch! boom!!");
1427 	}
1428 
1429 	/* Initialize AP's local APIC for irq's */
1430 	lapic_init(FALSE);
1431 
1432 	/* LAPIC initialization is done */
1433 	ATOMIC_CPUMASK_ORBIT(smp_lapic_mask, mycpu->gd_cpuid);
1434 	cpu_mfence();
1435 
1436 #if 0
1437 	/* Let BSP move onto the next initialization stage */
1438 	rel_mplock();
1439 #endif
1440 
1441 	/*
1442 	 * Interlock for finalization.  Wait until mp_finish is non-zero,
1443 	 * then get the MP lock.
1444 	 *
1445 	 * Note: We are in a critical section.
1446 	 *
1447 	 * Note: we are the idle thread, we can only spin.
1448 	 *
1449 	 * Note: The load fence is memory volatile and prevents the compiler
1450 	 * from improperly caching mp_finish, and the cpu from improperly
1451 	 * caching it.
1452 	 */
1453 	while (mp_finish == 0) {
1454 		cpu_pause();
1455 		cpu_lfence();
1456 	}
1457 
1458 	/* BSP may have changed PTD while we're waiting for the lock */
1459 	cpu_invltlb();
1460 
1461 	/* Set memory range attributes for this CPU to match the BSP */
1462 	mem_range_AP_init();
1463 
1464 	/*
1465 	 * Once we go active we must process any IPIQ messages that may
1466 	 * have been queued, because no actual IPI will occur until we
1467 	 * set our bit in the smp_active_mask.  If we don't the IPI
1468 	 * message interlock could be left set which would also prevent
1469 	 * further IPIs.
1470 	 *
1471 	 * The idle loop doesn't expect the BGL to be held and while
1472 	 * lwkt_switch() normally cleans things up this is a special case
1473 	 * because we returning almost directly into the idle loop.
1474 	 *
1475 	 * The idle thread is never placed on the runq, make sure
1476 	 * nothing we've done put it there.
1477 	 */
1478 
1479 	/*
1480 	 * Hold a critical section and allow real interrupts to occur.  Zero
1481 	 * any spurious interrupts which have accumulated, then set our
1482 	 * smp_active_mask indicating that we are fully operational.
1483 	 */
1484 	crit_enter();
1485 	__asm __volatile("sti; pause; pause"::);
1486 	bzero(mdcpu->gd_ipending, sizeof(mdcpu->gd_ipending));
1487 	ATOMIC_CPUMASK_ORBIT(smp_active_mask, mycpu->gd_cpuid);
1488 
1489 	/*
1490 	 * Wait until all cpus have set their smp_active_mask and have fully
1491 	 * operational interrupts before proceeding.
1492 	 *
1493 	 * We need a final cpu_invltlb() because we would not have received
1494 	 * any until we set our bit in smp_active_mask.
1495 	 */
1496 	while (mp_finish == 1) {
1497 		cpu_pause();
1498 		cpu_lfence();
1499 	}
1500 	cpu_invltlb();
1501 
1502 	/*
1503 	 * Initialize per-cpu clocks and do other per-cpu initialization.
1504 	 * At this point code is expected to be able to use the full kernel
1505 	 * API.
1506 	 */
1507 	initclocks_pcpu();	/* clock interrupts (via IPIs) */
1508 
1509 	/*
1510 	 * Since we may have cleaned up the interrupt triggers, manually
1511 	 * process any pending IPIs before exiting our critical section.
1512 	 * Once the critical section has exited, normal interrupt processing
1513 	 * may occur.
1514 	 */
1515 	atomic_swap_int(&mycpu->gd_npoll, 0);
1516 	lwkt_process_ipiq();
1517 	crit_exit();
1518 
1519 	/*
1520 	 * Final final, allow the waiting BSP to resume the boot process,
1521 	 * return 'into' the idle thread bootstrap.
1522 	 */
1523 	ATOMIC_CPUMASK_ORBIT(smp_finalize_mask, mycpu->gd_cpuid);
1524 	KKASSERT((curthread->td_flags & TDF_RUNQ) == 0);
1525 }
1526 
1527 /*
1528  * Get SMP fully working before we start initializing devices.
1529  */
1530 static
1531 void
1532 ap_finish(void)
1533 {
1534 	if (bootverbose)
1535 		kprintf("Finish MP startup\n");
1536 	rel_mplock();
1537 
1538 	/*
1539 	 * Wait for the active mask to complete, after which all cpus will
1540 	 * be accepting interrupts.
1541 	 */
1542 	mp_finish = 1;
1543 	while (CPUMASK_CMPMASKNEQ(smp_active_mask, smp_startup_mask)) {
1544 		cpu_pause();
1545 		cpu_lfence();
1546 	}
1547 
1548 	/*
1549 	 * Wait for the finalization mask to complete, after which all cpus
1550 	 * have completely finished initializing and are entering or are in
1551 	 * their idle thread.
1552 	 *
1553 	 * BSP should have received all required invltlbs but do another
1554 	 * one just in case.
1555 	 */
1556 	cpu_invltlb();
1557 	mp_finish = 2;
1558 	while (CPUMASK_CMPMASKNEQ(smp_finalize_mask, smp_startup_mask)) {
1559 		cpu_pause();
1560 		cpu_lfence();
1561 	}
1562 
1563 	while (try_mplock() == 0) {
1564 		cpu_pause();
1565 		cpu_lfence();
1566 	}
1567 
1568 	if (bootverbose) {
1569 		kprintf("Active CPU Mask: %016jx\n",
1570 			(uintmax_t)CPUMASK_LOWMASK(smp_active_mask));
1571 	}
1572 }
1573 
1574 SYSINIT(finishsmp, SI_BOOT2_FINISH_SMP, SI_ORDER_FIRST, ap_finish, NULL);
1575 
1576 /*
1577  * Interrupts must be hard-disabled by caller
1578  */
1579 void
1580 cpu_send_ipiq(int dcpu)
1581 {
1582 	if (CPUMASK_TESTBIT(smp_active_mask, dcpu))
1583                 single_apic_ipi(dcpu, XIPIQ_OFFSET, APIC_DELMODE_FIXED);
1584 }
1585 
1586 #if 0	/* single_apic_ipi_passive() not working yet */
1587 /*
1588  * Returns 0 on failure, 1 on success
1589  */
1590 int
1591 cpu_send_ipiq_passive(int dcpu)
1592 {
1593         int r = 0;
1594 	if (CPUMASK_TESTBIT(smp_active_mask, dcpu)) {
1595                 r = single_apic_ipi_passive(dcpu, XIPIQ_OFFSET,
1596                                         APIC_DELMODE_FIXED);
1597         }
1598 	return(r);
1599 }
1600 #endif
1601 
1602 static void
1603 mp_bsp_simple_setup(void)
1604 {
1605 	struct mdglobaldata *gd;
1606 	size_t ipiq_size;
1607 
1608 	/* build our map of 'other' CPUs */
1609 	mycpu->gd_other_cpus = smp_startup_mask;
1610 	CPUMASK_NANDBIT(mycpu->gd_other_cpus, mycpu->gd_cpuid);
1611 
1612 	gd = (struct mdglobaldata *)mycpu;
1613 	gd->gd_acpi_id = CPUID_TO_ACPIID(mycpu->gd_cpuid);
1614 
1615 	ipiq_size = sizeof(struct lwkt_ipiq) * ncpus;
1616 	mycpu->gd_ipiq = (void *)kmem_alloc(&kernel_map, ipiq_size,
1617 					    VM_SUBSYS_IPIQ);
1618 	bzero(mycpu->gd_ipiq, ipiq_size);
1619 
1620 	/* initialize arc4random. */
1621 	arc4_init_pcpu(0);
1622 
1623 	pmap_set_opt();
1624 
1625 	if (cpu_feature & CPUID_TSC)
1626 		tsc0_offset = rdtsc();
1627 }
1628 
1629 
1630 /*
1631  * CPU TOPOLOGY DETECTION FUNCTIONS
1632  */
1633 
1634 /* Detect intel topology using CPUID
1635  * Ref: http://www.intel.com/Assets/PDF/appnote/241618.pdf, pg 41
1636  */
1637 static void
1638 detect_intel_topology(int count_htt_cores)
1639 {
1640 	int shift = 0;
1641 	int ecx_index = 0;
1642 	int core_plus_logical_bits = 0;
1643 	int cores_per_package;
1644 	int logical_per_package;
1645 	int logical_per_core;
1646 	unsigned int p[4];
1647 
1648 	if (cpu_high >= 0xb) {
1649 		goto FUNC_B;
1650 
1651 	} else if (cpu_high >= 0x4) {
1652 		goto FUNC_4;
1653 
1654 	} else {
1655 		core_bits = 0;
1656 		for (shift = 0; (1 << shift) < count_htt_cores; ++shift)
1657 			;
1658 		logical_CPU_bits = 1 << shift;
1659 		return;
1660 	}
1661 
1662 FUNC_B:
1663 	cpuid_count(0xb, FUNC_B_THREAD_LEVEL, p);
1664 
1665 	/* if 0xb not supported - fallback to 0x4 */
1666 	if (p[1] == 0 || (FUNC_B_TYPE(p[2]) != FUNC_B_THREAD_TYPE)) {
1667 		goto FUNC_4;
1668 	}
1669 
1670 	logical_CPU_bits = FUNC_B_BITS_SHIFT_NEXT_LEVEL(p[0]);
1671 
1672 	ecx_index = FUNC_B_THREAD_LEVEL + 1;
1673 	do {
1674 		cpuid_count(0xb, ecx_index, p);
1675 
1676 		/* Check for the Core type in the implemented sub leaves. */
1677 		if (FUNC_B_TYPE(p[2]) == FUNC_B_CORE_TYPE) {
1678 			core_plus_logical_bits = FUNC_B_BITS_SHIFT_NEXT_LEVEL(p[0]);
1679 			break;
1680 		}
1681 
1682 		ecx_index++;
1683 
1684 	} while (FUNC_B_TYPE(p[2]) != FUNC_B_INVALID_TYPE);
1685 
1686 	core_bits = core_plus_logical_bits - logical_CPU_bits;
1687 
1688 	return;
1689 
1690 FUNC_4:
1691 	cpuid_count(0x4, 0, p);
1692 	cores_per_package = FUNC_4_MAX_CORE_NO(p[0]) + 1;
1693 
1694 	logical_per_package = count_htt_cores;
1695 	logical_per_core = logical_per_package / cores_per_package;
1696 
1697 	for (shift = 0; (1 << shift) < logical_per_core; ++shift)
1698 		;
1699 	logical_CPU_bits = shift;
1700 
1701 	for (shift = 0; (1 << shift) < cores_per_package; ++shift)
1702 		;
1703 	core_bits = shift;
1704 
1705 	return;
1706 }
1707 
1708 /* Detect AMD topology using CPUID
1709  * Ref: http://support.amd.com/us/Embedded_TechDocs/25481.pdf, last page
1710  */
1711 static void
1712 detect_amd_topology(int count_htt_cores)
1713 {
1714 	int shift = 0;
1715 	if ((cpu_feature & CPUID_HTT) && (amd_feature2 & AMDID2_CMP)) {
1716 		if (cpu_procinfo2 & AMDID_COREID_SIZE) {
1717 			core_bits = (cpu_procinfo2 & AMDID_COREID_SIZE) >>
1718 				    AMDID_COREID_SIZE_SHIFT;
1719 		} else {
1720 			core_bits = (cpu_procinfo2 & AMDID_CMP_CORES) + 1;
1721 			for (shift = 0; (1 << shift) < core_bits; ++shift)
1722 				;
1723 			core_bits = shift;
1724 		}
1725 
1726 		if (amd_feature2 & AMDID2_TOPOEXT) {
1727 			u_int p[4];
1728 			int i;
1729 			int type;
1730 			int level;
1731 			int share_count;
1732 			for (i = 0; i < 256; ++i)  {
1733 				cpuid_count(0x8000001d, i, p);
1734 				type = p[0] & 0x1f;
1735 				level = (p[0] >> 5) & 0x7;
1736 				share_count = 1 + ((p[0] >> 14) & 0xfff);
1737 
1738 				if (type == 0)
1739 					break;
1740 				if (bootverbose)
1741 					kprintf("Topology probe i=%2d type=%d level=%d share_count=%d\n",
1742 						i, type, level, share_count);
1743 				if (type == 1 && share_count) {	/* CPUID_TYPE_SMT */
1744 					for (shift = 0; (1 << shift) < count_htt_cores / share_count; ++shift)
1745 						;
1746 					core_bits = shift;
1747 					break;
1748 				}
1749 			}
1750 		}
1751 
1752 		logical_CPU_bits = count_htt_cores >> core_bits;
1753 		for (shift = 0; (1 << shift) < logical_CPU_bits; ++shift)
1754 			;
1755 		logical_CPU_bits = shift;
1756 	} else {
1757 		for (shift = 0; (1 << shift) < count_htt_cores; ++shift)
1758 			;
1759 		core_bits = shift;
1760 		logical_CPU_bits = 0;
1761 	}
1762 }
1763 
1764 static void
1765 amd_get_compute_unit_id(void *arg)
1766 {
1767 	u_int regs[4];
1768 
1769 	do_cpuid(0x8000001e, regs);
1770 	cpu_node_t * mynode = get_cpu_node_by_cpuid(mycpuid);
1771 
1772 	/*
1773 	 * AMD - CPUID Specification September 2010
1774 	 * page 34 - //ComputeUnitID = ebx[0:7]//
1775 	 */
1776 	mynode->compute_unit_id = regs[1] & 0xff;
1777 }
1778 
1779 int
1780 fix_amd_topology(void)
1781 {
1782 	cpumask_t mask;
1783 
1784 	if (cpu_vendor_id != CPU_VENDOR_AMD)
1785 		return -1;
1786 	if ((amd_feature2 & AMDID2_TOPOEXT) == 0)
1787 		return -1;
1788 
1789 	CPUMASK_ASSALLONES(mask);
1790 	lwkt_cpusync_simple(mask, amd_get_compute_unit_id, NULL);
1791 
1792 	kprintf("Compute unit iDS:\n");
1793 	int i;
1794 	for (i = 0; i < ncpus; i++) {
1795 		kprintf("%d-%d; \n",
1796 			i, get_cpu_node_by_cpuid(i)->compute_unit_id);
1797 	}
1798 	return 0;
1799 }
1800 
1801 /*
1802  * Calculate
1803  * - logical_CPU_bits
1804  * - core_bits
1805  * With the values above (for AMD or INTEL) we are able to generally
1806  * detect the CPU topology (number of cores for each level):
1807  * Ref: http://wiki.osdev.org/Detecting_CPU_Topology_(80x86)
1808  * Ref: http://www.multicoreinfo.com/research/papers/whitepapers/Intel-detect-topology.pdf
1809  */
1810 void
1811 detect_cpu_topology(void)
1812 {
1813 	static int topology_detected = 0;
1814 	int count = 0;
1815 
1816 	if (topology_detected)
1817 		goto OUT;
1818 	if ((cpu_feature & CPUID_HTT) == 0) {
1819 		core_bits = 0;
1820 		logical_CPU_bits = 0;
1821 		goto OUT;
1822 	}
1823 	count = (cpu_procinfo & CPUID_HTT_CORES) >> CPUID_HTT_CORE_SHIFT;
1824 
1825 	if (cpu_vendor_id == CPU_VENDOR_INTEL)
1826 		detect_intel_topology(count);
1827 	else if (cpu_vendor_id == CPU_VENDOR_AMD)
1828 		detect_amd_topology(count);
1829 	topology_detected = 1;
1830 
1831 OUT:
1832 	if (bootverbose) {
1833 		kprintf("Bits within APICID: logical_CPU_bits: %d; "
1834 			"core_bits: %d\n",
1835 			logical_CPU_bits, core_bits);
1836 	}
1837 }
1838 
1839 /*
1840  * Interface functions to calculate chip_ID,
1841  * core_number and logical_number
1842  * Ref: http://wiki.osdev.org/Detecting_CPU_Topology_(80x86)
1843  */
1844 int
1845 get_chip_ID(int cpuid)
1846 {
1847 	return get_apicid_from_cpuid(cpuid) >>
1848 	    (logical_CPU_bits + core_bits);
1849 }
1850 
1851 int
1852 get_chip_ID_from_APICID(int apicid)
1853 {
1854 	return apicid >> (logical_CPU_bits + core_bits);
1855 }
1856 
1857 int
1858 get_core_number_within_chip(int cpuid)
1859 {
1860 	return ((get_apicid_from_cpuid(cpuid) >> logical_CPU_bits) &
1861 		((1 << core_bits) - 1));
1862 }
1863 
1864 int
1865 get_logical_CPU_number_within_core(int cpuid)
1866 {
1867 	return (get_apicid_from_cpuid(cpuid) &
1868 		((1 << logical_CPU_bits) - 1));
1869 }
1870