1 /*
2  * Copyright (c) 1996, by Steve Passe
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. The name of the developer may NOT be used to endorse or promote products
11  *    derived from this software without specific prior written permission.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  * $FreeBSD: src/sys/i386/i386/mp_machdep.c,v 1.115.2.15 2003/03/14 21:22:35 jhb Exp $
26  */
27 
28 #include "opt_cpu.h"
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/sysctl.h>
34 #include <sys/malloc.h>
35 #include <sys/memrange.h>
36 #include <sys/cons.h>	/* cngetc() */
37 #include <sys/machintr.h>
38 #include <sys/cpu_topology.h>
39 
40 #include <sys/mplock2.h>
41 
42 #include <vm/vm.h>
43 #include <vm/vm_param.h>
44 #include <vm/pmap.h>
45 #include <vm/vm_kern.h>
46 #include <vm/vm_extern.h>
47 #include <sys/lock.h>
48 #include <vm/vm_map.h>
49 #include <sys/user.h>
50 #ifdef GPROF
51 #include <sys/gmon.h>
52 #endif
53 
54 #include <machine/smp.h>
55 #include <machine_base/apic/apicreg.h>
56 #include <machine/atomic.h>
57 #include <machine/cpufunc.h>
58 #include <machine/cputypes.h>
59 #include <machine_base/apic/lapic.h>
60 #include <machine_base/apic/ioapic.h>
61 #include <machine/psl.h>
62 #include <machine/segments.h>
63 #include <machine/tss.h>
64 #include <machine/specialreg.h>
65 #include <machine/globaldata.h>
66 #include <machine/pmap_inval.h>
67 
68 #include <machine/md_var.h>		/* setidt() */
69 #include <machine_base/icu/icu.h>	/* IPIs */
70 #include <machine_base/icu/icu_var.h>
71 #include <machine_base/apic/ioapic_abi.h>
72 #include <machine/intr_machdep.h>	/* IPIs */
73 
74 #define WARMBOOT_TARGET		0
75 #define WARMBOOT_OFF		(KERNBASE + 0x0467)
76 #define WARMBOOT_SEG		(KERNBASE + 0x0469)
77 
78 #define CMOS_REG		(0x70)
79 #define CMOS_DATA		(0x71)
80 #define BIOS_RESET		(0x0f)
81 #define BIOS_WARM		(0x0a)
82 
83 /*
84  * this code MUST be enabled here and in mpboot.s.
85  * it follows the very early stages of AP boot by placing values in CMOS ram.
86  * it NORMALLY will never be needed and thus the primitive method for enabling.
87  *
88  */
89 #if defined(CHECK_POINTS)
90 #define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
91 #define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
92 
93 #define CHECK_INIT(D);				\
94 	CHECK_WRITE(0x34, (D));			\
95 	CHECK_WRITE(0x35, (D));			\
96 	CHECK_WRITE(0x36, (D));			\
97 	CHECK_WRITE(0x37, (D));			\
98 	CHECK_WRITE(0x38, (D));			\
99 	CHECK_WRITE(0x39, (D));
100 
101 #define CHECK_PRINT(S);				\
102 	kprintf("%s: %d, %d, %d, %d, %d, %d\n",	\
103 	   (S),					\
104 	   CHECK_READ(0x34),			\
105 	   CHECK_READ(0x35),			\
106 	   CHECK_READ(0x36),			\
107 	   CHECK_READ(0x37),			\
108 	   CHECK_READ(0x38),			\
109 	   CHECK_READ(0x39));
110 
111 #else				/* CHECK_POINTS */
112 
113 #define CHECK_INIT(D)
114 #define CHECK_PRINT(S)
115 
116 #endif				/* CHECK_POINTS */
117 
118 /*
119  * Values to send to the POST hardware.
120  */
121 #define MP_BOOTADDRESS_POST	0x10
122 #define MP_PROBE_POST		0x11
123 #define MPTABLE_PASS1_POST	0x12
124 
125 #define MP_START_POST		0x13
126 #define MP_ENABLE_POST		0x14
127 #define MPTABLE_PASS2_POST	0x15
128 
129 #define START_ALL_APS_POST	0x16
130 #define INSTALL_AP_TRAMP_POST	0x17
131 #define START_AP_POST		0x18
132 
133 #define MP_ANNOUNCE_POST	0x19
134 
135 /** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
136 int	current_postcode;
137 
138 /** XXX FIXME: what system files declare these??? */
139 extern struct region_descriptor r_gdt;
140 
141 extern int nkpt;
142 extern int naps;
143 
144 int64_t tsc0_offset;
145 extern int64_t tsc_offsets[];
146 
147 /* AP uses this during bootstrap.  Do not staticize.  */
148 char *bootSTK;
149 static int bootAP;
150 
151 struct pcb stoppcbs[MAXCPU];
152 
153 extern inthand_t IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
154 
155 /*
156  * Local data and functions.
157  */
158 
159 static u_int	boot_address;
160 static int	mp_finish;
161 static int	mp_finish_lapic;
162 
163 static int	start_all_aps(u_int boot_addr);
164 #if 0
165 static void	install_ap_tramp(u_int boot_addr);
166 #endif
167 static int	start_ap(struct mdglobaldata *gd, u_int boot_addr, int smibest);
168 static int	smitest(void);
169 static void	mp_bsp_simple_setup(void);
170 
171 /* which cpus have been started */
172 static cpumask_t smp_startup_mask = CPUMASK_INITIALIZER_ONLYONE;
173 /* which cpus have lapic been inited */
174 static cpumask_t smp_lapic_mask = CPUMASK_INITIALIZER_ONLYONE;
175 /* which cpus are ready for IPIs etc? */
176 cpumask_t smp_active_mask = CPUMASK_INITIALIZER_ONLYONE;
177 cpumask_t smp_finalize_mask = CPUMASK_INITIALIZER_ONLYONE;
178 
179 SYSCTL_INT(_machdep, OID_AUTO, smp_active, CTLFLAG_RD, &smp_active_mask, 0, "");
180 static u_int	bootMP_size;
181 
182 /* Local data for detecting CPU TOPOLOGY */
183 static int core_bits = 0;
184 static int logical_CPU_bits = 0;
185 
186 
187 /*
188  * Calculate usable address in base memory for AP trampoline code.
189  */
190 u_int
191 mp_bootaddress(u_int basemem)
192 {
193 	POSTCODE(MP_BOOTADDRESS_POST);
194 
195 	bootMP_size = mptramp_end - mptramp_start;
196 	boot_address = trunc_page(basemem * 1024); /* round down to 4k boundary */
197 	if (((basemem * 1024) - boot_address) < bootMP_size)
198 		boot_address -= PAGE_SIZE;	/* not enough, lower by 4k */
199 	/* 3 levels of page table pages */
200 	mptramp_pagetables = boot_address - (PAGE_SIZE * 3);
201 
202 	return mptramp_pagetables;
203 }
204 
205 /*
206  * Print various information about the SMP system hardware and setup.
207  */
208 void
209 mp_announce(void)
210 {
211 	int     x;
212 
213 	POSTCODE(MP_ANNOUNCE_POST);
214 
215 	kprintf("DragonFly/MP: Multiprocessor motherboard\n");
216 	kprintf(" cpu0 (BSP): apic id: %2d\n", CPUID_TO_APICID(0));
217 	for (x = 1; x <= naps; ++x)
218 		kprintf(" cpu%d (AP):  apic id: %2d\n", x, CPUID_TO_APICID(x));
219 
220 	if (!ioapic_enable)
221 		kprintf(" Warning: APIC I/O disabled\n");
222 }
223 
224 /*
225  * AP cpu's call this to sync up protected mode.
226  *
227  * WARNING! %gs is not set up on entry.  This routine sets up %gs.
228  */
229 void
230 init_secondary(void)
231 {
232 	int	gsel_tss;
233 	int	x, myid = bootAP;
234 	u_int64_t msr, cr0;
235 	struct mdglobaldata *md;
236 	struct privatespace *ps;
237 
238 	ps = CPU_prvspace[myid];
239 
240 	gdt_segs[GPROC0_SEL].ssd_base =
241 		(long) &ps->mdglobaldata.gd_common_tss;
242 	ps->mdglobaldata.mi.gd_prvspace = ps;
243 
244 	/* We fill the 32-bit segment descriptors */
245 	for (x = 0; x < NGDT; x++) {
246 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
247 			ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x]);
248 	}
249 	/* And now a 64-bit one */
250 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
251 	    (struct system_segment_descriptor *)&gdt[myid * NGDT + GPROC0_SEL]);
252 
253 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
254 	r_gdt.rd_base = (long) &gdt[myid * NGDT];
255 	lgdt(&r_gdt);			/* does magic intra-segment return */
256 
257 	/* lgdt() destroys the GSBASE value, so we load GSBASE after lgdt() */
258 	wrmsr(MSR_FSBASE, 0);		/* User value */
259 	wrmsr(MSR_GSBASE, (u_int64_t)ps);
260 	wrmsr(MSR_KGSBASE, 0);		/* XXX User value while we're in the kernel */
261 
262 	lidt(&r_idt_arr[mdcpu->mi.gd_cpuid]);
263 
264 #if 0
265 	lldt(_default_ldt);
266 	mdcpu->gd_currentldt = _default_ldt;
267 #endif
268 
269 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
270 	gdt[myid * NGDT + GPROC0_SEL].sd_type = SDT_SYSTSS;
271 
272 	md = mdcpu;	/* loaded through %gs:0 (mdglobaldata.mi.gd_prvspace)*/
273 
274 	md->gd_common_tss.tss_rsp0 = 0;	/* not used until after switch */
275 #if 0 /* JG XXX */
276 	md->gd_common_tss.tss_ioopt = (sizeof md->gd_common_tss) << 16;
277 #endif
278 	md->gd_tss_gdt = &gdt[myid * NGDT + GPROC0_SEL];
279 	md->gd_common_tssd = *md->gd_tss_gdt;
280 
281 	/* double fault stack */
282 	md->gd_common_tss.tss_ist1 =
283 		(long)&md->mi.gd_prvspace->idlestack[
284 			sizeof(md->mi.gd_prvspace->idlestack)];
285 
286 	ltr(gsel_tss);
287 
288 	/*
289 	 * Set to a known state:
290 	 * Set by mpboot.s: CR0_PG, CR0_PE
291 	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
292 	 */
293 	cr0 = rcr0();
294 	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
295 	load_cr0(cr0);
296 
297 	/* Set up the fast syscall stuff */
298 	msr = rdmsr(MSR_EFER) | EFER_SCE;
299 	wrmsr(MSR_EFER, msr);
300 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
301 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
302 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
303 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
304 	wrmsr(MSR_STAR, msr);
305 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
306 
307 	pmap_set_opt();		/* PSE/4MB pages, etc */
308 	pmap_init_pat();	/* Page Attribute Table */
309 
310 	/* set up CPU registers and state */
311 	cpu_setregs();
312 
313 	/* set up SSE/NX registers */
314 	initializecpu(myid);
315 
316 	/* set up FPU state on the AP */
317 	npxinit();
318 
319 	/* disable the APIC, just to be SURE */
320 	lapic->svr &= ~APIC_SVR_ENABLE;
321 }
322 
323 /*******************************************************************
324  * local functions and data
325  */
326 
327 /*
328  * Start the SMP system
329  */
330 static void
331 mp_start_aps(void *dummy __unused)
332 {
333 	if (lapic_enable) {
334 		/* start each Application Processor */
335 		start_all_aps(boot_address);
336 	} else {
337 		mp_bsp_simple_setup();
338 	}
339 }
340 SYSINIT(startaps, SI_BOOT2_START_APS, SI_ORDER_FIRST, mp_start_aps, NULL)
341 
342 /*
343  * start each AP in our list
344  */
345 static int
346 start_all_aps(u_int boot_addr)
347 {
348 	vm_offset_t va = boot_address + KERNBASE;
349 	u_int64_t *pt4, *pt3, *pt2;
350 	int	pssize;
351 	int     x, i;
352 	int	shift;
353 	int	smicount;
354 	int	smibest;
355 	int	smilast;
356 	u_char  mpbiosreason;
357 	u_long  mpbioswarmvec;
358 	struct mdglobaldata *gd;
359 	struct privatespace *ps;
360 	size_t ipiq_size;
361 
362 	POSTCODE(START_ALL_APS_POST);
363 
364 	/* install the AP 1st level boot code */
365 	pmap_kenter(va, boot_address);
366 	cpu_invlpg((void *)va);		/* JG XXX */
367 	bcopy(mptramp_start, (void *)va, bootMP_size);
368 
369 	/* Locate the page tables, they'll be below the trampoline */
370 	pt4 = (u_int64_t *)(uintptr_t)(mptramp_pagetables + KERNBASE);
371 	pt3 = pt4 + (PAGE_SIZE) / sizeof(u_int64_t);
372 	pt2 = pt3 + (PAGE_SIZE) / sizeof(u_int64_t);
373 
374 	/* Create the initial 1GB replicated page tables */
375 	for (i = 0; i < 512; i++) {
376 		/* Each slot of the level 4 pages points to the same level 3 page */
377 		pt4[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + PAGE_SIZE);
378 		pt4[i] |= kernel_pmap.pmap_bits[PG_V_IDX] |
379 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
380 		    kernel_pmap.pmap_bits[PG_U_IDX];
381 
382 		/* Each slot of the level 3 pages points to the same level 2 page */
383 		pt3[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + (2 * PAGE_SIZE));
384 		pt3[i] |= kernel_pmap.pmap_bits[PG_V_IDX] |
385 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
386 		    kernel_pmap.pmap_bits[PG_U_IDX];
387 
388 		/* The level 2 page slots are mapped with 2MB pages for 1GB. */
389 		pt2[i] = i * (2 * 1024 * 1024);
390 		pt2[i] |= kernel_pmap.pmap_bits[PG_V_IDX] |
391 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
392 		    kernel_pmap.pmap_bits[PG_PS_IDX] |
393 		    kernel_pmap.pmap_bits[PG_U_IDX];
394 	}
395 
396 	/* save the current value of the warm-start vector */
397 	mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
398 	outb(CMOS_REG, BIOS_RESET);
399 	mpbiosreason = inb(CMOS_DATA);
400 
401 	/* setup a vector to our boot code */
402 	*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
403 	*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
404 	outb(CMOS_REG, BIOS_RESET);
405 	outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
406 
407 	/*
408 	 * If we have a TSC we can figure out the SMI interrupt rate.
409 	 * The SMI does not necessarily use a constant rate.  Spend
410 	 * up to 250ms trying to figure it out.
411 	 */
412 	smibest = 0;
413 	if (cpu_feature & CPUID_TSC) {
414 		set_apic_timer(275000);
415 		smilast = read_apic_timer();
416 		for (x = 0; x < 20 && read_apic_timer(); ++x) {
417 			smicount = smitest();
418 			if (smibest == 0 || smilast - smicount < smibest)
419 				smibest = smilast - smicount;
420 			smilast = smicount;
421 		}
422 		if (smibest > 250000)
423 			smibest = 0;
424 		if (smibest) {
425 			smibest = smibest * (int64_t)1000000 /
426 				  get_apic_timer_frequency();
427 		}
428 	}
429 	if (smibest)
430 		kprintf("SMI Frequency (worst case): %d Hz (%d us)\n",
431 			1000000 / smibest, smibest);
432 
433 	/* start each AP */
434 	for (x = 1; x <= naps; ++x) {
435 		/* This is a bit verbose, it will go away soon.  */
436 
437 		pssize = sizeof(struct privatespace);
438 		ps = (void *)kmem_alloc(&kernel_map, pssize);
439 		CPU_prvspace[x] = ps;
440 #if 0
441 		kprintf("ps %d %p %d\n", x, ps, pssize);
442 #endif
443 		bzero(ps, pssize);
444 		gd = &ps->mdglobaldata;
445 		gd->mi.gd_prvspace = ps;
446 
447 		/* prime data page for it to use */
448 		mi_gdinit(&gd->mi, x);
449 		cpu_gdinit(gd, x);
450 		ipiq_size = sizeof(struct lwkt_ipiq) * (naps + 1);
451 		gd->mi.gd_ipiq = (void *)kmem_alloc(&kernel_map, ipiq_size);
452 		bzero(gd->mi.gd_ipiq, ipiq_size);
453 
454 		/* setup a vector to our boot code */
455 		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
456 		*((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4);
457 		outb(CMOS_REG, BIOS_RESET);
458 		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
459 
460 		/*
461 		 * Setup the AP boot stack
462 		 */
463 		bootSTK = &ps->idlestack[UPAGES * PAGE_SIZE - PAGE_SIZE];
464 		bootAP = x;
465 
466 		/* attempt to start the Application Processor */
467 		CHECK_INIT(99);	/* setup checkpoints */
468 		if (!start_ap(gd, boot_addr, smibest)) {
469 			kprintf("\nAP #%d (PHY# %d) failed!\n",
470 				x, CPUID_TO_APICID(x));
471 			CHECK_PRINT("trace");	/* show checkpoints */
472 			/* better panic as the AP may be running loose */
473 			kprintf("panic y/n? [y] ");
474 			if (cngetc() != 'n')
475 				panic("bye-bye");
476 		}
477 		CHECK_PRINT("trace");		/* show checkpoints */
478 	}
479 
480 	/* set ncpus to 1 + highest logical cpu.  Not all may have come up */
481 	ncpus = x;
482 
483 	/* ncpus2 -- ncpus rounded down to the nearest power of 2 */
484 	for (shift = 0; (1 << shift) <= ncpus; ++shift)
485 		;
486 	--shift;
487 	ncpus2_shift = shift;
488 	ncpus2 = 1 << shift;
489 	ncpus2_mask = ncpus2 - 1;
490 
491 	/* ncpus_fit -- ncpus rounded up to the nearest power of 2 */
492 	if ((1 << shift) < ncpus)
493 		++shift;
494 	ncpus_fit = 1 << shift;
495 	ncpus_fit_mask = ncpus_fit - 1;
496 
497 	/* build our map of 'other' CPUs */
498 	mycpu->gd_other_cpus = smp_startup_mask;
499 	CPUMASK_NANDBIT(mycpu->gd_other_cpus, mycpu->gd_cpuid);
500 
501 	ipiq_size = sizeof(struct lwkt_ipiq) * ncpus;
502 	mycpu->gd_ipiq = (void *)kmem_alloc(&kernel_map, ipiq_size);
503 	bzero(mycpu->gd_ipiq, ipiq_size);
504 
505 	/* restore the warmstart vector */
506 	*(u_long *) WARMBOOT_OFF = mpbioswarmvec;
507 	outb(CMOS_REG, BIOS_RESET);
508 	outb(CMOS_DATA, mpbiosreason);
509 
510 	/*
511 	 * NOTE!  The idlestack for the BSP was setup by locore.  Finish
512 	 * up, clean out the P==V mapping we did earlier.
513 	 */
514 	pmap_set_opt();
515 
516 	/*
517 	 * Wait all APs to finish initializing LAPIC
518 	 */
519 	if (bootverbose)
520 		kprintf("SMP: Waiting APs LAPIC initialization\n");
521 	if (cpu_feature & CPUID_TSC)
522 		tsc0_offset = rdtsc();
523 	tsc_offsets[0] = 0;
524 	mp_finish_lapic = 1;
525 	rel_mplock();
526 
527 	while (CPUMASK_CMPMASKNEQ(smp_lapic_mask, smp_startup_mask)) {
528 		cpu_pause();
529 		cpu_lfence();
530 		if (cpu_feature & CPUID_TSC)
531 			tsc0_offset = rdtsc();
532 	}
533 	while (try_mplock() == 0) {
534 		cpu_pause();
535 		cpu_lfence();
536 	}
537 
538 	/* number of APs actually started */
539 	return ncpus - 1;
540 }
541 
542 
543 /*
544  * load the 1st level AP boot code into base memory.
545  */
546 
547 /* targets for relocation */
548 extern void bigJump(void);
549 extern void bootCodeSeg(void);
550 extern void bootDataSeg(void);
551 extern void MPentry(void);
552 extern u_int MP_GDT;
553 extern u_int mp_gdtbase;
554 
555 #if 0
556 
557 static void
558 install_ap_tramp(u_int boot_addr)
559 {
560 	int     x;
561 	int     size = *(int *) ((u_long) & bootMP_size);
562 	u_char *src = (u_char *) ((u_long) bootMP);
563 	u_char *dst = (u_char *) boot_addr + KERNBASE;
564 	u_int   boot_base = (u_int) bootMP;
565 	u_int8_t *dst8;
566 	u_int16_t *dst16;
567 	u_int32_t *dst32;
568 
569 	POSTCODE(INSTALL_AP_TRAMP_POST);
570 
571 	for (x = 0; x < size; ++x)
572 		*dst++ = *src++;
573 
574 	/*
575 	 * modify addresses in code we just moved to basemem. unfortunately we
576 	 * need fairly detailed info about mpboot.s for this to work.  changes
577 	 * to mpboot.s might require changes here.
578 	 */
579 
580 	/* boot code is located in KERNEL space */
581 	dst = (u_char *) boot_addr + KERNBASE;
582 
583 	/* modify the lgdt arg */
584 	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
585 	*dst32 = boot_addr + ((u_int) & MP_GDT - boot_base);
586 
587 	/* modify the ljmp target for MPentry() */
588 	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
589 	*dst32 = ((u_int) MPentry - KERNBASE);
590 
591 	/* modify the target for boot code segment */
592 	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
593 	dst8 = (u_int8_t *) (dst16 + 1);
594 	*dst16 = (u_int) boot_addr & 0xffff;
595 	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
596 
597 	/* modify the target for boot data segment */
598 	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
599 	dst8 = (u_int8_t *) (dst16 + 1);
600 	*dst16 = (u_int) boot_addr & 0xffff;
601 	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
602 }
603 
604 #endif
605 
606 /*
607  * This function starts the AP (application processor) identified
608  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
609  * to accomplish this.  This is necessary because of the nuances
610  * of the different hardware we might encounter.  It ain't pretty,
611  * but it seems to work.
612  *
613  * NOTE: eventually an AP gets to ap_init(), which is called just
614  * before the AP goes into the LWKT scheduler's idle loop.
615  */
616 static int
617 start_ap(struct mdglobaldata *gd, u_int boot_addr, int smibest)
618 {
619 	int     physical_cpu;
620 	int     vector;
621 	u_long  icr_lo, icr_hi;
622 
623 	POSTCODE(START_AP_POST);
624 
625 	/* get the PHYSICAL APIC ID# */
626 	physical_cpu = CPUID_TO_APICID(gd->mi.gd_cpuid);
627 
628 	/* calculate the vector */
629 	vector = (boot_addr >> 12) & 0xff;
630 
631 	/* We don't want anything interfering */
632 	cpu_disable_intr();
633 
634 	/* Make sure the target cpu sees everything */
635 	wbinvd();
636 
637 	/*
638 	 * Try to detect when a SMI has occurred, wait up to 200ms.
639 	 *
640 	 * If a SMI occurs during an AP reset but before we issue
641 	 * the STARTUP command, the AP may brick.  To work around
642 	 * this problem we hold off doing the AP startup until
643 	 * after we have detected the SMI.  Hopefully another SMI
644 	 * will not occur before we finish the AP startup.
645 	 *
646 	 * Retries don't seem to help.  SMIs have a window of opportunity
647 	 * and if USB->legacy keyboard emulation is enabled in the BIOS
648 	 * the interrupt rate can be quite high.
649 	 *
650 	 * NOTE: Don't worry about the L1 cache load, it might bloat
651 	 *	 ldelta a little but ndelta will be so huge when the SMI
652 	 *	 occurs the detection logic will still work fine.
653 	 */
654 	if (smibest) {
655 		set_apic_timer(200000);
656 		smitest();
657 	}
658 
659 	/*
660 	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
661 	 * and running the target CPU. OR this INIT IPI might be latched (P5
662 	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
663 	 * ignored.
664 	 *
665 	 * see apic/apicreg.h for icr bit definitions.
666 	 *
667 	 * TIME CRITICAL CODE, DO NOT DO ANY KPRINTFS IN THE HOT PATH.
668 	 */
669 
670 	/*
671 	 * Setup the address for the target AP.  We can setup
672 	 * icr_hi once and then just trigger operations with
673 	 * icr_lo.
674 	 */
675 	icr_hi = lapic->icr_hi & ~APIC_ID_MASK;
676 	icr_hi |= (physical_cpu << 24);
677 	icr_lo = lapic->icr_lo & 0xfff00000;
678 	lapic->icr_hi = icr_hi;
679 
680 	/*
681 	 * Do an INIT IPI: assert RESET
682 	 *
683 	 * Use edge triggered mode to assert INIT
684 	 */
685 	lapic->icr_lo = icr_lo | 0x00004500;
686 	while (lapic->icr_lo & APIC_DELSTAT_MASK)
687 		 /* spin */ ;
688 
689 	/*
690 	 * The spec calls for a 10ms delay but we may have to use a
691 	 * MUCH lower delay to avoid bricking an AP due to a fast SMI
692 	 * interrupt.  We have other loops here too and dividing by 2
693 	 * doesn't seem to be enough even after subtracting 350us,
694 	 * so we divide by 4.
695 	 *
696 	 * Our minimum delay is 150uS, maximum is 10ms.  If no SMI
697 	 * interrupt was detected we use the full 10ms.
698 	 */
699 	if (smibest == 0)
700 		u_sleep(10000);
701 	else if (smibest < 150 * 4 + 350)
702 		u_sleep(150);
703 	else if ((smibest - 350) / 4 < 10000)
704 		u_sleep((smibest - 350) / 4);
705 	else
706 		u_sleep(10000);
707 
708 	/*
709 	 * Do an INIT IPI: deassert RESET
710 	 *
711 	 * Use level triggered mode to deassert.  It is unclear
712 	 * why we need to do this.
713 	 */
714 	lapic->icr_lo = icr_lo | 0x00008500;
715 	while (lapic->icr_lo & APIC_DELSTAT_MASK)
716 		 /* spin */ ;
717 	u_sleep(150);				/* wait 150us */
718 
719 	/*
720 	 * Next we do a STARTUP IPI: the previous INIT IPI might still be
721 	 * latched, (P5 bug) this 1st STARTUP would then terminate
722 	 * immediately, and the previously started INIT IPI would continue. OR
723 	 * the previous INIT IPI has already run. and this STARTUP IPI will
724 	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
725 	 * will run.
726 	 */
727 	lapic->icr_lo = icr_lo | 0x00000600 | vector;
728 	while (lapic->icr_lo & APIC_DELSTAT_MASK)
729 		 /* spin */ ;
730 	u_sleep(200);		/* wait ~200uS */
731 
732 	/*
733 	 * Finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
734 	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
735 	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
736 	 * recognized after hardware RESET or INIT IPI.
737 	 */
738 	lapic->icr_lo = icr_lo | 0x00000600 | vector;
739 	while (lapic->icr_lo & APIC_DELSTAT_MASK)
740 		 /* spin */ ;
741 
742 	/* Resume normal operation */
743 	cpu_enable_intr();
744 
745 	/* wait for it to start, see ap_init() */
746 	set_apic_timer(5000000);/* == 5 seconds */
747 	while (read_apic_timer()) {
748 		if (CPUMASK_TESTBIT(smp_startup_mask, gd->mi.gd_cpuid))
749 			return 1;	/* return SUCCESS */
750 	}
751 
752 	return 0;		/* return FAILURE */
753 }
754 
755 static
756 int
757 smitest(void)
758 {
759 	int64_t	ltsc;
760 	int64_t	ntsc;
761 	int64_t	ldelta;
762 	int64_t	ndelta;
763 	int count;
764 
765 	ldelta = 0;
766 	ndelta = 0;
767 	while (read_apic_timer()) {
768 		ltsc = rdtsc();
769 		for (count = 0; count < 100; ++count)
770 			ntsc = rdtsc();	/* force loop to occur */
771 		if (ldelta) {
772 			ndelta = ntsc - ltsc;
773 			if (ldelta > ndelta)
774 				ldelta = ndelta;
775 			if (ndelta > ldelta * 2)
776 				break;
777 		} else {
778 			ldelta = ntsc - ltsc;
779 		}
780 	}
781 	return(read_apic_timer());
782 }
783 
784 /*
785  * Synchronously flush the TLB on all other CPU's.  The current cpu's
786  * TLB is not flushed.  If the caller wishes to flush the current cpu's
787  * TLB the caller must call cpu_invltlb() in addition to smp_invltlb().
788  *
789  * NOTE: If for some reason we were unable to start all cpus we cannot
790  *	 safely use broadcast IPIs.
791  */
792 
793 static cpumask_t smp_invltlb_req;
794 
795 #define SMP_INVLTLB_DEBUG
796 
797 void
798 smp_invltlb(void)
799 {
800 	struct mdglobaldata *md = mdcpu;
801 #ifdef SMP_INVLTLB_DEBUG
802 	long count = 0;
803 	long xcount = 0;
804 #endif
805 	cpumask_t tmpmask;
806 	cpumask_t tmpmask2;
807 
808 	crit_enter_gd(&md->mi);
809 	CPUMASK_ASSZERO(md->gd_invltlb_ret);
810 	++md->mi.gd_cnt.v_smpinvltlb;
811 	ATOMIC_CPUMASK_ORBIT(smp_invltlb_req, md->mi.gd_cpuid);
812 #ifdef SMP_INVLTLB_DEBUG
813 again:
814 #endif
815 	if (CPUMASK_CMPMASKEQ(smp_startup_mask, smp_active_mask)) {
816 		all_but_self_ipi(XINVLTLB_OFFSET);
817 	} else {
818 		tmpmask = smp_active_mask;
819 		CPUMASK_NANDMASK(tmpmask, md->mi.gd_cpumask);
820 		selected_apic_ipi(tmpmask, XINVLTLB_OFFSET, APIC_DELMODE_FIXED);
821 	}
822 
823 #ifdef SMP_INVLTLB_DEBUG
824 	if (xcount)
825 		kprintf("smp_invltlb: ipi sent\n");
826 #endif
827 	for (;;) {
828 		tmpmask = smp_active_mask;
829 		tmpmask2 = tmpmask;
830 		CPUMASK_ANDMASK(tmpmask, md->gd_invltlb_ret);
831 		CPUMASK_NANDMASK(tmpmask, md->mi.gd_cpumask);
832 		CPUMASK_NANDMASK(tmpmask2, md->mi.gd_cpumask);
833 
834 		if (CPUMASK_CMPMASKEQ(tmpmask, tmpmask2))
835 			break;
836 		cpu_mfence();
837 		cpu_pause();
838 #ifdef SMP_INVLTLB_DEBUG
839 		/* DEBUGGING */
840 		if (++count == 400000000) {
841 			print_backtrace(-1);
842 			kprintf("smp_invltlb: endless loop %08lx %08lx, "
843 				"rflags %016jx retry",
844 			      (long)CPUMASK_LOWMASK(md->gd_invltlb_ret),
845 			      (long)CPUMASK_LOWMASK(smp_invltlb_req),
846 			      (intmax_t)read_rflags());
847 			__asm __volatile ("sti");
848 			++xcount;
849 			if (xcount > 2)
850 				lwkt_process_ipiq();
851 			if (xcount > 3) {
852 				int bcpu;
853 				globaldata_t xgd;
854 
855 				tmpmask = smp_active_mask;
856 				CPUMASK_NANDMASK(tmpmask, md->gd_invltlb_ret);
857 				CPUMASK_NANDMASK(tmpmask, md->mi.gd_cpumask);
858 				bcpu = BSFCPUMASK(tmpmask);
859 
860 				kprintf("bcpu %d\n", bcpu);
861 				xgd = globaldata_find(bcpu);
862 				kprintf("thread %p %s\n", xgd->gd_curthread, xgd->gd_curthread->td_comm);
863 			}
864 			if (xcount > 5)
865 				Debugger("giving up");
866 			count = 0;
867 			goto again;
868 		}
869 #endif
870 	}
871 	ATOMIC_CPUMASK_NANDBIT(smp_invltlb_req, md->mi.gd_cpuid);
872 	crit_exit_gd(&md->mi);
873 }
874 
875 /*
876  * Called from Xinvltlb assembly with interrupts disabled.  We didn't
877  * bother to bump the critical section count or nested interrupt count
878  * so only do very low level operations here.
879  */
880 void
881 smp_invltlb_intr(void)
882 {
883 	struct mdglobaldata *md = mdcpu;
884 	struct mdglobaldata *omd;
885 	cpumask_t mask;
886 	int cpu;
887 
888 	cpu_mfence();
889 	mask = smp_invltlb_req;
890 	cpu_invltlb();
891 	while (CPUMASK_TESTNZERO(mask)) {
892 		cpu = BSFCPUMASK(mask);
893 		CPUMASK_NANDBIT(mask, cpu);
894 		omd = (struct mdglobaldata *)globaldata_find(cpu);
895 		ATOMIC_CPUMASK_ORBIT(omd->gd_invltlb_ret, md->mi.gd_cpuid);
896 	}
897 }
898 
899 void
900 cpu_wbinvd_on_all_cpus_callback(void *arg)
901 {
902     wbinvd();
903 }
904 
905 void
906 smp_invlpg_range_cpusync(void *arg)
907 {
908 	vm_offset_t eva, sva, addr;
909 	sva = ((struct smp_invlpg_range_cpusync_arg *)arg)->sva;
910 	eva = ((struct smp_invlpg_range_cpusync_arg *)arg)->eva;
911 
912 	for (addr = sva; addr < eva; addr += PAGE_SIZE) {
913 		cpu_invlpg((void *)addr);
914 	}
915 }
916 
917 /*
918  * When called the executing CPU will send an IPI to all other CPUs
919  *  requesting that they halt execution.
920  *
921  * Usually (but not necessarily) called with 'other_cpus' as its arg.
922  *
923  *  - Signals all CPUs in map to stop.
924  *  - Waits for each to stop.
925  *
926  * Returns:
927  *  -1: error
928  *   0: NA
929  *   1: ok
930  *
931  * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
932  *            from executing at same time.
933  */
934 int
935 stop_cpus(cpumask_t map)
936 {
937 	cpumask_t mask;
938 
939 	CPUMASK_ANDMASK(map, smp_active_mask);
940 
941 	/* send the Xcpustop IPI to all CPUs in map */
942 	selected_apic_ipi(map, XCPUSTOP_OFFSET, APIC_DELMODE_FIXED);
943 
944 	do {
945 		mask = stopped_cpus;
946 		CPUMASK_ANDMASK(mask, map);
947 		/* spin */
948 	} while (CPUMASK_CMPMASKNEQ(mask, map));
949 
950 	return 1;
951 }
952 
953 
954 /*
955  * Called by a CPU to restart stopped CPUs.
956  *
957  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
958  *
959  *  - Signals all CPUs in map to restart.
960  *  - Waits for each to restart.
961  *
962  * Returns:
963  *  -1: error
964  *   0: NA
965  *   1: ok
966  */
967 int
968 restart_cpus(cpumask_t map)
969 {
970 	cpumask_t mask;
971 
972 	/* signal other cpus to restart */
973 	mask = map;
974 	CPUMASK_ANDMASK(mask, smp_active_mask);
975 	cpu_ccfence();
976 	started_cpus = mask;
977 	cpu_ccfence();
978 
979 	/* wait for each to clear its bit */
980 	while (CPUMASK_CMPMASKNEQ(stopped_cpus, map))
981 		cpu_pause();
982 
983 	return 1;
984 }
985 
986 /*
987  * This is called once the mpboot code has gotten us properly relocated
988  * and the MMU turned on, etc.   ap_init() is actually the idle thread,
989  * and when it returns the scheduler will call the real cpu_idle() main
990  * loop for the idlethread.  Interrupts are disabled on entry and should
991  * remain disabled at return.
992  */
993 void
994 ap_init(void)
995 {
996 	int	cpu_id;
997 
998 	/*
999 	 * Adjust smp_startup_mask to signal the BSP that we have started
1000 	 * up successfully.  Note that we do not yet hold the BGL.  The BSP
1001 	 * is waiting for our signal.
1002 	 *
1003 	 * We can't set our bit in smp_active_mask yet because we are holding
1004 	 * interrupts physically disabled and remote cpus could deadlock
1005 	 * trying to send us an IPI.
1006 	 */
1007 	ATOMIC_CPUMASK_ORBIT(smp_startup_mask, mycpu->gd_cpuid);
1008 	cpu_mfence();
1009 
1010 	/*
1011 	 * Interlock for LAPIC initialization.  Wait until mp_finish_lapic is
1012 	 * non-zero, then get the MP lock.
1013 	 *
1014 	 * Note: We are in a critical section.
1015 	 *
1016 	 * Note: we are the idle thread, we can only spin.
1017 	 *
1018 	 * Note: The load fence is memory volatile and prevents the compiler
1019 	 * from improperly caching mp_finish_lapic, and the cpu from improperly
1020 	 * caching it.
1021 	 */
1022 	while (mp_finish_lapic == 0) {
1023 		cpu_pause();
1024 		cpu_lfence();
1025 	}
1026 #if 0
1027 	while (try_mplock() == 0) {
1028 		cpu_pause();
1029 		cpu_lfence();
1030 	}
1031 #endif
1032 
1033 	if (cpu_feature & CPUID_TSC) {
1034 		/*
1035 		 * The BSP is constantly updating tsc0_offset, figure out
1036 		 * the relative difference to synchronize ktrdump.
1037 		 */
1038 		tsc_offsets[mycpu->gd_cpuid] = rdtsc() - tsc0_offset;
1039 	}
1040 
1041 	/* BSP may have changed PTD while we're waiting for the lock */
1042 	cpu_invltlb();
1043 
1044 	/* Build our map of 'other' CPUs. */
1045 	mycpu->gd_other_cpus = smp_startup_mask;
1046 	ATOMIC_CPUMASK_NANDBIT(mycpu->gd_other_cpus, mycpu->gd_cpuid);
1047 
1048 	/* A quick check from sanity claus */
1049 	cpu_id = APICID_TO_CPUID((lapic->id & 0xff000000) >> 24);
1050 	if (mycpu->gd_cpuid != cpu_id) {
1051 		kprintf("SMP: assigned cpuid = %d\n", mycpu->gd_cpuid);
1052 		kprintf("SMP: actual cpuid = %d lapicid %d\n",
1053 			cpu_id, (lapic->id & 0xff000000) >> 24);
1054 #if JGXXX
1055 		kprintf("PTD[MPPTDI] = %p\n", (void *)PTD[MPPTDI]);
1056 #endif
1057 		panic("cpuid mismatch! boom!!");
1058 	}
1059 
1060 	/* Initialize AP's local APIC for irq's */
1061 	lapic_init(FALSE);
1062 
1063 	/* LAPIC initialization is done */
1064 	ATOMIC_CPUMASK_ORBIT(smp_lapic_mask, mycpu->gd_cpuid);
1065 	cpu_mfence();
1066 
1067 #if 0
1068 	/* Let BSP move onto the next initialization stage */
1069 	rel_mplock();
1070 #endif
1071 
1072 	/*
1073 	 * Interlock for finalization.  Wait until mp_finish is non-zero,
1074 	 * then get the MP lock.
1075 	 *
1076 	 * Note: We are in a critical section.
1077 	 *
1078 	 * Note: we are the idle thread, we can only spin.
1079 	 *
1080 	 * Note: The load fence is memory volatile and prevents the compiler
1081 	 * from improperly caching mp_finish, and the cpu from improperly
1082 	 * caching it.
1083 	 */
1084 	while (mp_finish == 0) {
1085 		cpu_pause();
1086 		cpu_lfence();
1087 	}
1088 
1089 	/* BSP may have changed PTD while we're waiting for the lock */
1090 	cpu_invltlb();
1091 
1092 	/* Set memory range attributes for this CPU to match the BSP */
1093 	mem_range_AP_init();
1094 
1095 	/*
1096 	 * Once we go active we must process any IPIQ messages that may
1097 	 * have been queued, because no actual IPI will occur until we
1098 	 * set our bit in the smp_active_mask.  If we don't the IPI
1099 	 * message interlock could be left set which would also prevent
1100 	 * further IPIs.
1101 	 *
1102 	 * The idle loop doesn't expect the BGL to be held and while
1103 	 * lwkt_switch() normally cleans things up this is a special case
1104 	 * because we returning almost directly into the idle loop.
1105 	 *
1106 	 * The idle thread is never placed on the runq, make sure
1107 	 * nothing we've done put it there.
1108 	 */
1109 
1110 	/*
1111 	 * Hold a critical section and allow real interrupts to occur.  Zero
1112 	 * any spurious interrupts which have accumulated, then set our
1113 	 * smp_active_mask indicating that we are fully operational.
1114 	 */
1115 	crit_enter();
1116 	__asm __volatile("sti; pause; pause"::);
1117 	bzero(mdcpu->gd_ipending, sizeof(mdcpu->gd_ipending));
1118 	ATOMIC_CPUMASK_ORBIT(smp_active_mask, mycpu->gd_cpuid);
1119 
1120 	/*
1121 	 * Wait until all cpus have set their smp_active_mask and have fully
1122 	 * operational interrupts before proceeding.
1123 	 *
1124 	 * We need a final cpu_invltlb() because we would not have received
1125 	 * any until we set our bit in smp_active_mask.
1126 	 */
1127 	while (mp_finish == 1) {
1128 		cpu_pause();
1129 		cpu_lfence();
1130 	}
1131 	cpu_invltlb();
1132 
1133 	/*
1134 	 * Initialize per-cpu clocks and do other per-cpu initialization.
1135 	 * At this point code is expected to be able to use the full kernel
1136 	 * API.
1137 	 */
1138 	initclocks_pcpu();	/* clock interrupts (via IPIs) */
1139 
1140 	/*
1141 	 * Since we may have cleaned up the interrupt triggers, manually
1142 	 * process any pending IPIs before exiting our critical section.
1143 	 * Once the critical section has exited, normal interrupt processing
1144 	 * may occur.
1145 	 */
1146 	lwkt_process_ipiq();
1147 	crit_exit_noyield(mycpu->gd_curthread);
1148 
1149 	/*
1150 	 * Final final, allow the waiting BSP to resume the boot process,
1151 	 * return 'into' the idle thread bootstrap.
1152 	 */
1153 	ATOMIC_CPUMASK_ORBIT(smp_finalize_mask, mycpu->gd_cpuid);
1154 	KKASSERT((curthread->td_flags & TDF_RUNQ) == 0);
1155 }
1156 
1157 /*
1158  * Get SMP fully working before we start initializing devices.
1159  */
1160 static
1161 void
1162 ap_finish(void)
1163 {
1164 	if (bootverbose)
1165 		kprintf("Finish MP startup\n");
1166 	rel_mplock();
1167 
1168 	/*
1169 	 * Wait for the active mask to complete, after which all cpus will
1170 	 * be accepting interrupts.
1171 	 */
1172 	mp_finish = 1;
1173 	while (CPUMASK_CMPMASKNEQ(smp_active_mask, smp_startup_mask)) {
1174 		cpu_pause();
1175 		cpu_lfence();
1176 	}
1177 
1178 	/*
1179 	 * Wait for the finalization mask to complete, after which all cpus
1180 	 * have completely finished initializing and are entering or are in
1181 	 * their idle thread.
1182 	 *
1183 	 * BSP should have received all required invltlbs but do another
1184 	 * one just in case.
1185 	 */
1186 	cpu_invltlb();
1187 	mp_finish = 2;
1188 	while (CPUMASK_CMPMASKNEQ(smp_finalize_mask, smp_startup_mask)) {
1189 		cpu_pause();
1190 		cpu_lfence();
1191 	}
1192 
1193 	while (try_mplock() == 0) {
1194 		cpu_pause();
1195 		cpu_lfence();
1196 	}
1197 
1198 	if (bootverbose) {
1199 		kprintf("Active CPU Mask: %016jx\n",
1200 			(uintmax_t)CPUMASK_LOWMASK(smp_active_mask));
1201 	}
1202 }
1203 
1204 SYSINIT(finishsmp, SI_BOOT2_FINISH_SMP, SI_ORDER_FIRST, ap_finish, NULL)
1205 
1206 void
1207 cpu_send_ipiq(int dcpu)
1208 {
1209 	if (CPUMASK_TESTBIT(smp_active_mask, dcpu))
1210                 single_apic_ipi(dcpu, XIPIQ_OFFSET, APIC_DELMODE_FIXED);
1211 }
1212 
1213 #if 0	/* single_apic_ipi_passive() not working yet */
1214 /*
1215  * Returns 0 on failure, 1 on success
1216  */
1217 int
1218 cpu_send_ipiq_passive(int dcpu)
1219 {
1220         int r = 0;
1221 	if (CPUMASK_TESTBIT(smp_active_mask, dcpu)) {
1222                 r = single_apic_ipi_passive(dcpu, XIPIQ_OFFSET,
1223                                         APIC_DELMODE_FIXED);
1224         }
1225 	return(r);
1226 }
1227 #endif
1228 
1229 static void
1230 mp_bsp_simple_setup(void)
1231 {
1232 	size_t ipiq_size;
1233 
1234 	/* build our map of 'other' CPUs */
1235 	mycpu->gd_other_cpus = smp_startup_mask;
1236 	CPUMASK_NANDBIT(mycpu->gd_other_cpus, mycpu->gd_cpuid);
1237 
1238 	ipiq_size = sizeof(struct lwkt_ipiq) * ncpus;
1239 	mycpu->gd_ipiq = (void *)kmem_alloc(&kernel_map, ipiq_size);
1240 	bzero(mycpu->gd_ipiq, ipiq_size);
1241 
1242 	pmap_set_opt();
1243 
1244 	if (cpu_feature & CPUID_TSC)
1245 		tsc0_offset = rdtsc();
1246 }
1247 
1248 
1249 /*
1250  * CPU TOPOLOGY DETECTION FUNCTIONS
1251  */
1252 
1253 /* Detect intel topology using CPUID
1254  * Ref: http://www.intel.com/Assets/PDF/appnote/241618.pdf, pg 41
1255  */
1256 static void
1257 detect_intel_topology(int count_htt_cores)
1258 {
1259 	int shift = 0;
1260 	int ecx_index = 0;
1261 	int core_plus_logical_bits = 0;
1262 	int cores_per_package;
1263 	int logical_per_package;
1264 	int logical_per_core;
1265 	unsigned int p[4];
1266 
1267 	if (cpu_high >= 0xb) {
1268 		goto FUNC_B;
1269 
1270 	} else if (cpu_high >= 0x4) {
1271 		goto FUNC_4;
1272 
1273 	} else {
1274 		core_bits = 0;
1275 		for (shift = 0; (1 << shift) < count_htt_cores; ++shift)
1276 			;
1277 		logical_CPU_bits = 1 << shift;
1278 		return;
1279 	}
1280 
1281 FUNC_B:
1282 	cpuid_count(0xb, FUNC_B_THREAD_LEVEL, p);
1283 
1284 	/* if 0xb not supported - fallback to 0x4 */
1285 	if (p[1] == 0 || (FUNC_B_TYPE(p[2]) != FUNC_B_THREAD_TYPE)) {
1286 		goto FUNC_4;
1287 	}
1288 
1289 	logical_CPU_bits = FUNC_B_BITS_SHIFT_NEXT_LEVEL(p[0]);
1290 
1291 	ecx_index = FUNC_B_THREAD_LEVEL + 1;
1292 	do {
1293 		cpuid_count(0xb, ecx_index, p);
1294 
1295 		/* Check for the Core type in the implemented sub leaves. */
1296 		if (FUNC_B_TYPE(p[2]) == FUNC_B_CORE_TYPE) {
1297 			core_plus_logical_bits = FUNC_B_BITS_SHIFT_NEXT_LEVEL(p[0]);
1298 			break;
1299 		}
1300 
1301 		ecx_index++;
1302 
1303 	} while (FUNC_B_TYPE(p[2]) != FUNC_B_INVALID_TYPE);
1304 
1305 	core_bits = core_plus_logical_bits - logical_CPU_bits;
1306 
1307 	return;
1308 
1309 FUNC_4:
1310 	cpuid_count(0x4, 0, p);
1311 	cores_per_package = FUNC_4_MAX_CORE_NO(p[0]) + 1;
1312 
1313 	logical_per_package = count_htt_cores;
1314 	logical_per_core = logical_per_package / cores_per_package;
1315 
1316 	for (shift = 0; (1 << shift) < logical_per_core; ++shift)
1317 		;
1318 	logical_CPU_bits = shift;
1319 
1320 	for (shift = 0; (1 << shift) < cores_per_package; ++shift)
1321 		;
1322 	core_bits = shift;
1323 
1324 	return;
1325 }
1326 
1327 /* Detect AMD topology using CPUID
1328  * Ref: http://support.amd.com/us/Embedded_TechDocs/25481.pdf, last page
1329  */
1330 static void
1331 detect_amd_topology(int count_htt_cores)
1332 {
1333 	int shift = 0;
1334 	if ((cpu_feature & CPUID_HTT)
1335 			&& (amd_feature2 & AMDID2_CMP)) {
1336 
1337 		if (cpu_procinfo2 & AMDID_COREID_SIZE) {
1338 			core_bits = (cpu_procinfo2 & AMDID_COREID_SIZE)
1339 			    >> AMDID_COREID_SIZE_SHIFT;
1340 		} else {
1341 			core_bits = (cpu_procinfo2 & AMDID_CMP_CORES) + 1;
1342 			for (shift = 0; (1 << shift) < core_bits; ++shift)
1343 				;
1344 			core_bits = shift;
1345 		}
1346 
1347 		logical_CPU_bits = count_htt_cores >> core_bits;
1348 		for (shift = 0; (1 << shift) < logical_CPU_bits; ++shift)
1349 			;
1350 		logical_CPU_bits = shift;
1351 	} else {
1352 		for (shift = 0; (1 << shift) < count_htt_cores; ++shift)
1353 			;
1354 		core_bits = shift;
1355 		logical_CPU_bits = 0;
1356 	}
1357 }
1358 
1359 static void
1360 amd_get_compute_unit_id(void *arg)
1361 {
1362 	u_int regs[4];
1363 
1364 	do_cpuid(0x8000001e, regs);
1365 	cpu_node_t * mynode = get_cpu_node_by_cpuid(mycpuid);
1366 	/*
1367 	 * AMD - CPUID Specification September 2010
1368 	 * page 34 - //ComputeUnitID = ebx[0:7]//
1369 	 */
1370 	mynode->compute_unit_id = regs[1] & 0xff;
1371 }
1372 
1373 int
1374 fix_amd_topology(void)
1375 {
1376 	cpumask_t mask;
1377 
1378 	if (cpu_vendor_id != CPU_VENDOR_AMD)
1379 		return -1;
1380 	if ((amd_feature2 & AMDID2_TOPOEXT) == 0)
1381 		return -1;
1382 
1383 	CPUMASK_ASSALLONES(mask);
1384 	lwkt_cpusync_simple(mask, amd_get_compute_unit_id, NULL);
1385 
1386 	kprintf("Compute unit iDS:\n");
1387 	int i;
1388 	for (i = 0; i < ncpus; i++) {
1389 		kprintf("%d-%d; \n",
1390 			i, get_cpu_node_by_cpuid(i)->compute_unit_id);
1391 	}
1392 
1393 	return 0;
1394 }
1395 
1396 /* Calculate
1397  * - logical_CPU_bits
1398  * - core_bits
1399  * With the values above (for AMD or INTEL) we are able to generally
1400  * detect the CPU topology (number of cores for each level):
1401  * Ref: http://wiki.osdev.org/Detecting_CPU_Topology_(80x86)
1402  * Ref: http://www.multicoreinfo.com/research/papers/whitepapers/Intel-detect-topology.pdf
1403  */
1404 void
1405 detect_cpu_topology(void)
1406 {
1407 	static int topology_detected = 0;
1408 	int count = 0;
1409 
1410 	if (topology_detected) {
1411 		goto OUT;
1412 	}
1413 
1414 	if ((cpu_feature & CPUID_HTT) == 0) {
1415 		core_bits = 0;
1416 		logical_CPU_bits = 0;
1417 		goto OUT;
1418 	} else {
1419 		count = (cpu_procinfo & CPUID_HTT_CORES)
1420 		    >> CPUID_HTT_CORE_SHIFT;
1421 	}
1422 
1423 	if (cpu_vendor_id == CPU_VENDOR_INTEL) {
1424 		detect_intel_topology(count);
1425 	} else if (cpu_vendor_id == CPU_VENDOR_AMD) {
1426 		detect_amd_topology(count);
1427 	}
1428 
1429 OUT:
1430 	if (bootverbose)
1431 		kprintf("Bits within APICID: logical_CPU_bits: %d; core_bits: %d\n",
1432 		    logical_CPU_bits, core_bits);
1433 
1434 	topology_detected = 1;
1435 }
1436 
1437 /* Interface functions to calculate chip_ID,
1438  * core_number and logical_number
1439  * Ref: http://wiki.osdev.org/Detecting_CPU_Topology_(80x86)
1440  */
1441 int
1442 get_chip_ID(int cpuid)
1443 {
1444 	return get_apicid_from_cpuid(cpuid) >>
1445 	    (logical_CPU_bits + core_bits);
1446 }
1447 
1448 int
1449 get_core_number_within_chip(int cpuid)
1450 {
1451 	return (get_apicid_from_cpuid(cpuid) >> logical_CPU_bits) &
1452 	    ( (1 << core_bits) -1);
1453 }
1454 
1455 int
1456 get_logical_CPU_number_within_core(int cpuid)
1457 {
1458 	return get_apicid_from_cpuid(cpuid) &
1459 	    ( (1 << logical_CPU_bits) -1);
1460 }
1461