xref: /dragonfly/sys/platform/pc64/x86_64/pmap.c (revision 10cbe914)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1994 David Greenman
7  * Copyright (c) 2003 Peter Wemm
8  * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
9  * Copyright (c) 2008, 2009 The DragonFly Project.
10  * Copyright (c) 2008, 2009 Jordan Gordeev.
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * the Systems Programming Group of the University of Utah Computer
15  * Science Department and William Jolitz of UUNET Technologies Inc.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  * 3. All advertising materials mentioning features or use of this software
26  *    must display the following acknowledgement:
27  *	This product includes software developed by the University of
28  *	California, Berkeley and its contributors.
29  * 4. Neither the name of the University nor the names of its contributors
30  *    may be used to endorse or promote products derived from this software
31  *    without specific prior written permission.
32  *
33  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43  * SUCH DAMAGE.
44  *
45  *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
46  * $FreeBSD: src/sys/i386/i386/pmap.c,v 1.250.2.18 2002/03/06 22:48:53 silby Exp $
47  */
48 
49 /*
50  *	Manages physical address maps.
51  *
52  *	In addition to hardware address maps, this
53  *	module is called upon to provide software-use-only
54  *	maps which may or may not be stored in the same
55  *	form as hardware maps.  These pseudo-maps are
56  *	used to store intermediate results from copy
57  *	operations to and from address spaces.
58  *
59  *	Since the information managed by this module is
60  *	also stored by the logical address mapping module,
61  *	this module may throw away valid virtual-to-physical
62  *	mappings at almost any time.  However, invalidations
63  *	of virtual-to-physical mappings must be done as
64  *	requested.
65  *
66  *	In order to cope with hardware architectures which
67  *	make virtual-to-physical map invalidates expensive,
68  *	this module may delay invalidate or reduced protection
69  *	operations until such time as they are actually
70  *	necessary.  This module is given full information as
71  *	to which processors are currently using which maps,
72  *	and to when physical maps must be made correct.
73  */
74 
75 #if JG
76 #include "opt_disable_pse.h"
77 #include "opt_pmap.h"
78 #endif
79 #include "opt_msgbuf.h"
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/kernel.h>
84 #include <sys/proc.h>
85 #include <sys/msgbuf.h>
86 #include <sys/vmmeter.h>
87 #include <sys/mman.h>
88 
89 #include <vm/vm.h>
90 #include <vm/vm_param.h>
91 #include <sys/sysctl.h>
92 #include <sys/lock.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_page.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_extern.h>
98 #include <vm/vm_pageout.h>
99 #include <vm/vm_pager.h>
100 #include <vm/vm_zone.h>
101 
102 #include <sys/user.h>
103 #include <sys/thread2.h>
104 #include <sys/sysref2.h>
105 
106 #include <machine/cputypes.h>
107 #include <machine/md_var.h>
108 #include <machine/specialreg.h>
109 #include <machine/smp.h>
110 #include <machine_base/apic/apicreg.h>
111 #include <machine/globaldata.h>
112 #include <machine/pmap.h>
113 #include <machine/pmap_inval.h>
114 
115 #include <ddb/ddb.h>
116 
117 #define PMAP_KEEP_PDIRS
118 #ifndef PMAP_SHPGPERPROC
119 #define PMAP_SHPGPERPROC 200
120 #endif
121 
122 #if defined(DIAGNOSTIC)
123 #define PMAP_DIAGNOSTIC
124 #endif
125 
126 #define MINPV 2048
127 
128 /*
129  * Get PDEs and PTEs for user/kernel address space
130  */
131 static pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va);
132 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
133 
134 #define pmap_pde_v(pte)		((*(pd_entry_t *)pte & PG_V) != 0)
135 #define pmap_pte_w(pte)		((*(pt_entry_t *)pte & PG_W) != 0)
136 #define pmap_pte_m(pte)		((*(pt_entry_t *)pte & PG_M) != 0)
137 #define pmap_pte_u(pte)		((*(pt_entry_t *)pte & PG_A) != 0)
138 #define pmap_pte_v(pte)		((*(pt_entry_t *)pte & PG_V) != 0)
139 
140 
141 /*
142  * Given a map and a machine independent protection code,
143  * convert to a vax protection code.
144  */
145 #define pte_prot(m, p)		\
146 	(protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
147 static int protection_codes[8];
148 
149 struct pmap kernel_pmap;
150 static TAILQ_HEAD(,pmap)	pmap_list = TAILQ_HEAD_INITIALIZER(pmap_list);
151 
152 vm_paddr_t avail_start;		/* PA of first available physical page */
153 vm_paddr_t avail_end;		/* PA of last available physical page */
154 vm_offset_t virtual2_start;	/* cutout free area prior to kernel start */
155 vm_offset_t virtual2_end;
156 vm_offset_t virtual_start;	/* VA of first avail page (after kernel bss) */
157 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
158 vm_offset_t KvaStart;		/* VA start of KVA space */
159 vm_offset_t KvaEnd;		/* VA end of KVA space (non-inclusive) */
160 vm_offset_t KvaSize;		/* max size of kernel virtual address space */
161 static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
162 static int pgeflag;		/* PG_G or-in */
163 static int pseflag;		/* PG_PS or-in */
164 
165 static vm_object_t kptobj;
166 
167 static int ndmpdp;
168 static vm_paddr_t dmaplimit;
169 static int nkpt;
170 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
171 
172 static uint64_t KPTbase;
173 static uint64_t KPTphys;
174 static uint64_t	KPDphys;	/* phys addr of kernel level 2 */
175 static uint64_t	KPDbase;	/* phys addr of kernel level 2 @ KERNBASE */
176 uint64_t KPDPphys;	/* phys addr of kernel level 3 */
177 uint64_t KPML4phys;	/* phys addr of kernel level 4 */
178 
179 static uint64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
180 static uint64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
181 
182 /*
183  * Data for the pv entry allocation mechanism
184  */
185 static vm_zone_t pvzone;
186 static struct vm_zone pvzone_store;
187 static struct vm_object pvzone_obj;
188 static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0;
189 static int pmap_pagedaemon_waken = 0;
190 static struct pv_entry *pvinit;
191 
192 /*
193  * All those kernel PT submaps that BSD is so fond of
194  */
195 pt_entry_t *CMAP1 = 0, *ptmmap;
196 caddr_t CADDR1 = 0, ptvmmap = 0;
197 static pt_entry_t *msgbufmap;
198 struct msgbuf *msgbufp=0;
199 
200 /*
201  * Crashdump maps.
202  */
203 static pt_entry_t *pt_crashdumpmap;
204 static caddr_t crashdumpmap;
205 
206 #define DISABLE_PSE
207 
208 static pv_entry_t get_pv_entry (void);
209 static void i386_protection_init (void);
210 static void create_pagetables(vm_paddr_t *firstaddr);
211 static void pmap_remove_all (vm_page_t m);
212 static int  pmap_remove_pte (struct pmap *pmap, pt_entry_t *ptq,
213 				vm_offset_t sva, pmap_inval_info_t info);
214 static void pmap_remove_page (struct pmap *pmap,
215 				vm_offset_t va, pmap_inval_info_t info);
216 static int  pmap_remove_entry (struct pmap *pmap, vm_page_t m,
217 				vm_offset_t va, pmap_inval_info_t info);
218 static boolean_t pmap_testbit (vm_page_t m, int bit);
219 static void pmap_insert_entry (pmap_t pmap, vm_offset_t va,
220 				vm_page_t mpte, vm_page_t m);
221 
222 static vm_page_t pmap_allocpte (pmap_t pmap, vm_offset_t va);
223 
224 static int pmap_release_free_page (pmap_t pmap, vm_page_t p);
225 static vm_page_t _pmap_allocpte (pmap_t pmap, vm_pindex_t ptepindex);
226 static pt_entry_t * pmap_pte_quick (pmap_t pmap, vm_offset_t va);
227 static vm_page_t pmap_page_lookup (vm_object_t object, vm_pindex_t pindex);
228 static int _pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m,
229 				pmap_inval_info_t info);
230 static int pmap_unuse_pt (pmap_t, vm_offset_t, vm_page_t, pmap_inval_info_t);
231 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
232 
233 static unsigned pdir4mb;
234 
235 /*
236  * Move the kernel virtual free pointer to the next
237  * 2MB.  This is used to help improve performance
238  * by using a large (2MB) page for much of the kernel
239  * (.text, .data, .bss)
240  */
241 static
242 vm_offset_t
243 pmap_kmem_choose(vm_offset_t addr)
244 {
245 	vm_offset_t newaddr = addr;
246 
247 	newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
248 	return newaddr;
249 }
250 
251 /*
252  * pmap_pte_quick:
253  *
254  *	Super fast pmap_pte routine best used when scanning the pv lists.
255  *	This eliminates many course-grained invltlb calls.  Note that many of
256  *	the pv list scans are across different pmaps and it is very wasteful
257  *	to do an entire invltlb when checking a single mapping.
258  *
259  *	Should only be called while in a critical section.
260  */
261 static __inline pt_entry_t *pmap_pte(pmap_t pmap, vm_offset_t va);
262 
263 static
264 pt_entry_t *
265 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
266 {
267 	return pmap_pte(pmap, va);
268 }
269 
270 /* Return a non-clipped PD index for a given VA */
271 static __inline
272 vm_pindex_t
273 pmap_pde_pindex(vm_offset_t va)
274 {
275 	return va >> PDRSHIFT;
276 }
277 
278 /* Return various clipped indexes for a given VA */
279 static __inline
280 vm_pindex_t
281 pmap_pte_index(vm_offset_t va)
282 {
283 
284 	return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
285 }
286 
287 static __inline
288 vm_pindex_t
289 pmap_pde_index(vm_offset_t va)
290 {
291 
292 	return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
293 }
294 
295 static __inline
296 vm_pindex_t
297 pmap_pdpe_index(vm_offset_t va)
298 {
299 
300 	return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
301 }
302 
303 static __inline
304 vm_pindex_t
305 pmap_pml4e_index(vm_offset_t va)
306 {
307 
308 	return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
309 }
310 
311 /* Return a pointer to the PML4 slot that corresponds to a VA */
312 static __inline
313 pml4_entry_t *
314 pmap_pml4e(pmap_t pmap, vm_offset_t va)
315 {
316 
317 	return (&pmap->pm_pml4[pmap_pml4e_index(va)]);
318 }
319 
320 /* Return a pointer to the PDP slot that corresponds to a VA */
321 static __inline
322 pdp_entry_t *
323 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
324 {
325 	pdp_entry_t *pdpe;
326 
327 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
328 	return (&pdpe[pmap_pdpe_index(va)]);
329 }
330 
331 /* Return a pointer to the PDP slot that corresponds to a VA */
332 static __inline
333 pdp_entry_t *
334 pmap_pdpe(pmap_t pmap, vm_offset_t va)
335 {
336 	pml4_entry_t *pml4e;
337 
338 	pml4e = pmap_pml4e(pmap, va);
339 	if ((*pml4e & PG_V) == 0)
340 		return NULL;
341 	return (pmap_pml4e_to_pdpe(pml4e, va));
342 }
343 
344 /* Return a pointer to the PD slot that corresponds to a VA */
345 static __inline
346 pd_entry_t *
347 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
348 {
349 	pd_entry_t *pde;
350 
351 	pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
352 	return (&pde[pmap_pde_index(va)]);
353 }
354 
355 /* Return a pointer to the PD slot that corresponds to a VA */
356 static __inline
357 pd_entry_t *
358 pmap_pde(pmap_t pmap, vm_offset_t va)
359 {
360 	pdp_entry_t *pdpe;
361 
362 	pdpe = pmap_pdpe(pmap, va);
363 	if (pdpe == NULL || (*pdpe & PG_V) == 0)
364 		 return NULL;
365 	return (pmap_pdpe_to_pde(pdpe, va));
366 }
367 
368 /* Return a pointer to the PT slot that corresponds to a VA */
369 static __inline
370 pt_entry_t *
371 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
372 {
373 	pt_entry_t *pte;
374 
375 	pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
376 	return (&pte[pmap_pte_index(va)]);
377 }
378 
379 /* Return a pointer to the PT slot that corresponds to a VA */
380 static __inline
381 pt_entry_t *
382 pmap_pte(pmap_t pmap, vm_offset_t va)
383 {
384 	pd_entry_t *pde;
385 
386 	pde = pmap_pde(pmap, va);
387 	if (pde == NULL || (*pde & PG_V) == 0)
388 		return NULL;
389 	if ((*pde & PG_PS) != 0)	/* compat with i386 pmap_pte() */
390 		return ((pt_entry_t *)pde);
391 	return (pmap_pde_to_pte(pde, va));
392 }
393 
394 static __inline
395 pt_entry_t *
396 vtopte(vm_offset_t va)
397 {
398 	uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
399 
400 	return (PTmap + ((va >> PAGE_SHIFT) & mask));
401 }
402 
403 static __inline
404 pd_entry_t *
405 vtopde(vm_offset_t va)
406 {
407 	uint64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
408 
409 	return (PDmap + ((va >> PDRSHIFT) & mask));
410 }
411 
412 static uint64_t
413 allocpages(vm_paddr_t *firstaddr, long n)
414 {
415 	uint64_t ret;
416 
417 	ret = *firstaddr;
418 	bzero((void *)ret, n * PAGE_SIZE);
419 	*firstaddr += n * PAGE_SIZE;
420 	return (ret);
421 }
422 
423 static
424 void
425 create_pagetables(vm_paddr_t *firstaddr)
426 {
427 	long i;		/* must be 64 bits */
428 	long nkpt_base;
429 	long nkpt_phys;
430 
431 	/*
432 	 * We are running (mostly) V=P at this point
433 	 *
434 	 * Calculate NKPT - number of kernel page tables.  We have to
435 	 * accomodoate prealloction of the vm_page_array, dump bitmap,
436 	 * MSGBUF_SIZE, and other stuff.  Be generous.
437 	 *
438 	 * Maxmem is in pages.
439 	 */
440 	ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
441 	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
442 		ndmpdp = 4;
443 
444 	/*
445 	 * Starting at the beginning of kvm (not KERNBASE).
446 	 */
447 	nkpt_phys = (Maxmem * sizeof(struct vm_page) + NBPDR - 1) / NBPDR;
448 	nkpt_phys += (Maxmem * sizeof(struct pv_entry) + NBPDR - 1) / NBPDR;
449 	nkpt_phys += ((nkpt + nkpt + 1 + NKPML4E + NKPDPE + NDMPML4E + ndmpdp) +
450 		     511) / 512;
451 	nkpt_phys += 128;
452 
453 	/*
454 	 * Starting at KERNBASE - map 2G worth of page table pages.
455 	 * KERNBASE is offset -2G from the end of kvm.
456 	 */
457 	nkpt_base = (NPDPEPG - KPDPI) * NPTEPG;	/* typically 2 x 512 */
458 
459 	/*
460 	 * Allocate pages
461 	 */
462 	KPTbase = allocpages(firstaddr, nkpt_base);
463 	KPTphys = allocpages(firstaddr, nkpt_phys);
464 	KPML4phys = allocpages(firstaddr, 1);
465 	KPDPphys = allocpages(firstaddr, NKPML4E);
466 	KPDphys = allocpages(firstaddr, NKPDPE);
467 
468 	/*
469 	 * Calculate the page directory base for KERNBASE,
470 	 * that is where we start populating the page table pages.
471 	 * Basically this is the end - 2.
472 	 */
473 	KPDbase = KPDphys + ((NKPDPE - (NPDPEPG - KPDPI)) << PAGE_SHIFT);
474 
475 	DMPDPphys = allocpages(firstaddr, NDMPML4E);
476 	if ((amd_feature & AMDID_PAGE1GB) == 0)
477 		DMPDphys = allocpages(firstaddr, ndmpdp);
478 	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
479 
480 	/*
481 	 * Fill in the underlying page table pages for the area around
482 	 * KERNBASE.  This remaps low physical memory to KERNBASE.
483 	 *
484 	 * Read-only from zero to physfree
485 	 * XXX not fully used, underneath 2M pages
486 	 */
487 	for (i = 0; (i << PAGE_SHIFT) < *firstaddr; i++) {
488 		((pt_entry_t *)KPTbase)[i] = i << PAGE_SHIFT;
489 		((pt_entry_t *)KPTbase)[i] |= PG_RW | PG_V | PG_G;
490 	}
491 
492 	/*
493 	 * Now map the initial kernel page tables.  One block of page
494 	 * tables is placed at the beginning of kernel virtual memory,
495 	 * and another block is placed at KERNBASE to map the kernel binary,
496 	 * data, bss, and initial pre-allocations.
497 	 */
498 	for (i = 0; i < nkpt_base; i++) {
499 		((pd_entry_t *)KPDbase)[i] = KPTbase + (i << PAGE_SHIFT);
500 		((pd_entry_t *)KPDbase)[i] |= PG_RW | PG_V;
501 	}
502 	for (i = 0; i < nkpt_phys; i++) {
503 		((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
504 		((pd_entry_t *)KPDphys)[i] |= PG_RW | PG_V;
505 	}
506 
507 	/*
508 	 * Map from zero to end of allocations using 2M pages as an
509 	 * optimization.  This will bypass some of the KPTBase pages
510 	 * above in the KERNBASE area.
511 	 */
512 	for (i = 0; (i << PDRSHIFT) < *firstaddr; i++) {
513 		((pd_entry_t *)KPDbase)[i] = i << PDRSHIFT;
514 		((pd_entry_t *)KPDbase)[i] |= PG_RW | PG_V | PG_PS | PG_G;
515 	}
516 
517 	/*
518 	 * And connect up the PD to the PDP.  The kernel pmap is expected
519 	 * to pre-populate all of its PDs.  See NKPDPE in vmparam.h.
520 	 */
521 	for (i = 0; i < NKPDPE; i++) {
522 		((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] =
523 				KPDphys + (i << PAGE_SHIFT);
524 		((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] |=
525 				PG_RW | PG_V | PG_U;
526 	}
527 
528 	/* Now set up the direct map space using either 2MB or 1GB pages */
529 	/* Preset PG_M and PG_A because demotion expects it */
530 	if ((amd_feature & AMDID_PAGE1GB) == 0) {
531 		for (i = 0; i < NPDEPG * ndmpdp; i++) {
532 			((pd_entry_t *)DMPDphys)[i] = i << PDRSHIFT;
533 			((pd_entry_t *)DMPDphys)[i] |= PG_RW | PG_V | PG_PS |
534 			    PG_G | PG_M | PG_A;
535 		}
536 		/* And the direct map space's PDP */
537 		for (i = 0; i < ndmpdp; i++) {
538 			((pdp_entry_t *)DMPDPphys)[i] = DMPDphys +
539 			    (i << PAGE_SHIFT);
540 			((pdp_entry_t *)DMPDPphys)[i] |= PG_RW | PG_V | PG_U;
541 		}
542 	} else {
543 		for (i = 0; i < ndmpdp; i++) {
544 			((pdp_entry_t *)DMPDPphys)[i] =
545 			    (vm_paddr_t)i << PDPSHIFT;
546 			((pdp_entry_t *)DMPDPphys)[i] |= PG_RW | PG_V | PG_PS |
547 			    PG_G | PG_M | PG_A;
548 		}
549 	}
550 
551 	/* And recursively map PML4 to itself in order to get PTmap */
552 	((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
553 	((pdp_entry_t *)KPML4phys)[PML4PML4I] |= PG_RW | PG_V | PG_U;
554 
555 	/* Connect the Direct Map slot up to the PML4 */
556 	((pdp_entry_t *)KPML4phys)[DMPML4I] = DMPDPphys;
557 	((pdp_entry_t *)KPML4phys)[DMPML4I] |= PG_RW | PG_V | PG_U;
558 
559 	/* Connect the KVA slot up to the PML4 */
560 	((pdp_entry_t *)KPML4phys)[KPML4I] = KPDPphys;
561 	((pdp_entry_t *)KPML4phys)[KPML4I] |= PG_RW | PG_V | PG_U;
562 }
563 
564 /*
565  *	Bootstrap the system enough to run with virtual memory.
566  *
567  *	On the i386 this is called after mapping has already been enabled
568  *	and just syncs the pmap module with what has already been done.
569  *	[We can't call it easily with mapping off since the kernel is not
570  *	mapped with PA == VA, hence we would have to relocate every address
571  *	from the linked base (virtual) address "KERNBASE" to the actual
572  *	(physical) address starting relative to 0]
573  */
574 void
575 pmap_bootstrap(vm_paddr_t *firstaddr)
576 {
577 	vm_offset_t va;
578 	pt_entry_t *pte;
579 	struct mdglobaldata *gd;
580 	int pg;
581 
582 	KvaStart = VM_MIN_KERNEL_ADDRESS;
583 	KvaEnd = VM_MAX_KERNEL_ADDRESS;
584 	KvaSize = KvaEnd - KvaStart;
585 
586 	avail_start = *firstaddr;
587 
588 	/*
589 	 * Create an initial set of page tables to run the kernel in.
590 	 */
591 	create_pagetables(firstaddr);
592 
593 	virtual2_start = KvaStart;
594 	virtual2_end = PTOV_OFFSET;
595 
596 	virtual_start = (vm_offset_t) PTOV_OFFSET + *firstaddr;
597 	virtual_start = pmap_kmem_choose(virtual_start);
598 
599 	virtual_end = VM_MAX_KERNEL_ADDRESS;
600 
601 	/* XXX do %cr0 as well */
602 	load_cr4(rcr4() | CR4_PGE | CR4_PSE);
603 	load_cr3(KPML4phys);
604 
605 	/*
606 	 * Initialize protection array.
607 	 */
608 	i386_protection_init();
609 
610 	/*
611 	 * The kernel's pmap is statically allocated so we don't have to use
612 	 * pmap_create, which is unlikely to work correctly at this part of
613 	 * the boot sequence (XXX and which no longer exists).
614 	 */
615 	kernel_pmap.pm_pml4 = (pdp_entry_t *) (PTOV_OFFSET + KPML4phys);
616 	kernel_pmap.pm_count = 1;
617 	kernel_pmap.pm_active = (cpumask_t)-1 & ~CPUMASK_LOCK;
618 	TAILQ_INIT(&kernel_pmap.pm_pvlist);
619 
620 	/*
621 	 * Reserve some special page table entries/VA space for temporary
622 	 * mapping of pages.
623 	 */
624 #define	SYSMAP(c, p, v, n)	\
625 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
626 
627 	va = virtual_start;
628 	pte = vtopte(va);
629 
630 	/*
631 	 * CMAP1/CMAP2 are used for zeroing and copying pages.
632 	 */
633 	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
634 
635 	/*
636 	 * Crashdump maps.
637 	 */
638 	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
639 
640 	/*
641 	 * ptvmmap is used for reading arbitrary physical pages via
642 	 * /dev/mem.
643 	 */
644 	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
645 
646 	/*
647 	 * msgbufp is used to map the system message buffer.
648 	 * XXX msgbufmap is not used.
649 	 */
650 	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
651 	       atop(round_page(MSGBUF_SIZE)))
652 
653 	virtual_start = va;
654 
655 	*CMAP1 = 0;
656 
657 	/*
658 	 * PG_G is terribly broken on SMP because we IPI invltlb's in some
659 	 * cases rather then invl1pg.  Actually, I don't even know why it
660 	 * works under UP because self-referential page table mappings
661 	 */
662 #ifdef SMP
663 	pgeflag = 0;
664 #else
665 	if (cpu_feature & CPUID_PGE)
666 		pgeflag = PG_G;
667 #endif
668 
669 /*
670  * Initialize the 4MB page size flag
671  */
672 	pseflag = 0;
673 /*
674  * The 4MB page version of the initial
675  * kernel page mapping.
676  */
677 	pdir4mb = 0;
678 
679 #if !defined(DISABLE_PSE)
680 	if (cpu_feature & CPUID_PSE) {
681 		pt_entry_t ptditmp;
682 		/*
683 		 * Note that we have enabled PSE mode
684 		 */
685 		pseflag = PG_PS;
686 		ptditmp = *(PTmap + x86_64_btop(KERNBASE));
687 		ptditmp &= ~(NBPDR - 1);
688 		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
689 		pdir4mb = ptditmp;
690 
691 #ifndef SMP
692 		/*
693 		 * Enable the PSE mode.  If we are SMP we can't do this
694 		 * now because the APs will not be able to use it when
695 		 * they boot up.
696 		 */
697 		load_cr4(rcr4() | CR4_PSE);
698 
699 		/*
700 		 * We can do the mapping here for the single processor
701 		 * case.  We simply ignore the old page table page from
702 		 * now on.
703 		 */
704 		/*
705 		 * For SMP, we still need 4K pages to bootstrap APs,
706 		 * PSE will be enabled as soon as all APs are up.
707 		 */
708 		PTD[KPTDI] = (pd_entry_t)ptditmp;
709 		cpu_invltlb();
710 #endif
711 	}
712 #endif
713 
714 	/*
715 	 * We need to finish setting up the globaldata page for the BSP.
716 	 * locore has already populated the page table for the mdglobaldata
717 	 * portion.
718 	 */
719 	pg = MDGLOBALDATA_BASEALLOC_PAGES;
720 	gd = &CPU_prvspace[0].mdglobaldata;
721 
722 	cpu_invltlb();
723 }
724 
725 #ifdef SMP
726 /*
727  * Set 4mb pdir for mp startup
728  */
729 void
730 pmap_set_opt(void)
731 {
732 	if (pseflag && (cpu_feature & CPUID_PSE)) {
733 		load_cr4(rcr4() | CR4_PSE);
734 		if (pdir4mb && mycpu->gd_cpuid == 0) {	/* only on BSP */
735 			cpu_invltlb();
736 		}
737 	}
738 }
739 #endif
740 
741 /*
742  * XXX: Hack. Required by pmap_init()
743  */
744 extern vm_offset_t cpu_apic_addr;
745 
746 /*
747  *	Initialize the pmap module.
748  *	Called by vm_init, to initialize any structures that the pmap
749  *	system needs to map virtual memory.
750  *	pmap_init has been enhanced to support in a fairly consistant
751  *	way, discontiguous physical memory.
752  */
753 void
754 pmap_init(void)
755 {
756 	int i;
757 	int initial_pvs;
758 
759 	/*
760 	 * object for kernel page table pages
761 	 */
762 	/* JG I think the number can be arbitrary */
763 	kptobj = vm_object_allocate(OBJT_DEFAULT, 5);
764 
765 	/*
766 	 * Allocate memory for random pmap data structures.  Includes the
767 	 * pv_head_table.
768 	 */
769 
770 	for(i = 0; i < vm_page_array_size; i++) {
771 		vm_page_t m;
772 
773 		m = &vm_page_array[i];
774 		TAILQ_INIT(&m->md.pv_list);
775 		m->md.pv_list_count = 0;
776 	}
777 
778 	/*
779 	 * init the pv free list
780 	 */
781 	initial_pvs = vm_page_array_size;
782 	if (initial_pvs < MINPV)
783 		initial_pvs = MINPV;
784 	pvzone = &pvzone_store;
785 	pvinit = (void *)kmem_alloc(&kernel_map,
786 				    initial_pvs * sizeof (struct pv_entry));
787 	zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry),
788 		  pvinit, initial_pvs);
789 
790 	/*
791 	 * Now it is safe to enable pv_table recording.
792 	 */
793 	pmap_initialized = TRUE;
794 #ifdef SMP
795 	/*
796 	 * XXX: Hack
797 	 */
798 	lapic = pmap_mapdev_uncacheable(cpu_apic_addr, sizeof(struct LAPIC));
799 #endif
800 }
801 
802 /*
803  * Initialize the address space (zone) for the pv_entries.  Set a
804  * high water mark so that the system can recover from excessive
805  * numbers of pv entries.
806  */
807 void
808 pmap_init2(void)
809 {
810 	int shpgperproc = PMAP_SHPGPERPROC;
811 	int entry_max;
812 
813 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
814 	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
815 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
816 	pv_entry_high_water = 9 * (pv_entry_max / 10);
817 
818 	/*
819 	 * Subtract out pages already installed in the zone (hack)
820 	 */
821 	entry_max = pv_entry_max - vm_page_array_size;
822 	if (entry_max <= 0)
823 		entry_max = 1;
824 
825 	zinitna(pvzone, &pvzone_obj, NULL, 0, entry_max, ZONE_INTERRUPT, 1);
826 }
827 
828 
829 /***************************************************
830  * Low level helper routines.....
831  ***************************************************/
832 
833 #if defined(PMAP_DIAGNOSTIC)
834 
835 /*
836  * This code checks for non-writeable/modified pages.
837  * This should be an invalid condition.
838  */
839 static
840 int
841 pmap_nw_modified(pt_entry_t pte)
842 {
843 	if ((pte & (PG_M|PG_RW)) == PG_M)
844 		return 1;
845 	else
846 		return 0;
847 }
848 #endif
849 
850 
851 /*
852  * this routine defines the region(s) of memory that should
853  * not be tested for the modified bit.
854  */
855 static __inline
856 int
857 pmap_track_modified(vm_offset_t va)
858 {
859 	if ((va < clean_sva) || (va >= clean_eva))
860 		return 1;
861 	else
862 		return 0;
863 }
864 
865 /*
866  * Extract the physical page address associated with the map/VA pair.
867  *
868  * The caller must hold vm_token if non-blocking operation is desired.
869  */
870 vm_paddr_t
871 pmap_extract(pmap_t pmap, vm_offset_t va)
872 {
873 	vm_paddr_t rtval;
874 	pt_entry_t *pte;
875 	pd_entry_t pde, *pdep;
876 
877 	lwkt_gettoken(&vm_token);
878 	rtval = 0;
879 	pdep = pmap_pde(pmap, va);
880 	if (pdep != NULL) {
881 		pde = *pdep;
882 		if (pde) {
883 			if ((pde & PG_PS) != 0) {
884 				rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
885 			} else {
886 				pte = pmap_pde_to_pte(pdep, va);
887 				rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
888 			}
889 		}
890 	}
891 	lwkt_reltoken(&vm_token);
892 	return rtval;
893 }
894 
895 /*
896  * Extract the physical page address associated kernel virtual address.
897  */
898 vm_paddr_t
899 pmap_kextract(vm_offset_t va)
900 {
901 	pd_entry_t pde;
902 	vm_paddr_t pa;
903 
904 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
905 		pa = DMAP_TO_PHYS(va);
906 	} else {
907 		pde = *vtopde(va);
908 		if (pde & PG_PS) {
909 			pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
910 		} else {
911 			/*
912 			 * Beware of a concurrent promotion that changes the
913 			 * PDE at this point!  For example, vtopte() must not
914 			 * be used to access the PTE because it would use the
915 			 * new PDE.  It is, however, safe to use the old PDE
916 			 * because the page table page is preserved by the
917 			 * promotion.
918 			 */
919 			pa = *pmap_pde_to_pte(&pde, va);
920 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
921 		}
922 	}
923 	return pa;
924 }
925 
926 /***************************************************
927  * Low level mapping routines.....
928  ***************************************************/
929 
930 /*
931  * Routine: pmap_kenter
932  * Function:
933  *  	Add a wired page to the KVA
934  *  	NOTE! note that in order for the mapping to take effect -- you
935  *  	should do an invltlb after doing the pmap_kenter().
936  */
937 void
938 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
939 {
940 	pt_entry_t *pte;
941 	pt_entry_t npte;
942 	pmap_inval_info info;
943 
944 	pmap_inval_init(&info);
945 	npte = pa | PG_RW | PG_V | pgeflag;
946 	pte = vtopte(va);
947 	pmap_inval_interlock(&info, &kernel_pmap, va);
948 	*pte = npte;
949 	pmap_inval_deinterlock(&info, &kernel_pmap);
950 	pmap_inval_done(&info);
951 }
952 
953 /*
954  * Routine: pmap_kenter_quick
955  * Function:
956  *  	Similar to pmap_kenter(), except we only invalidate the
957  *  	mapping on the current CPU.
958  */
959 void
960 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
961 {
962 	pt_entry_t *pte;
963 	pt_entry_t npte;
964 
965 	npte = pa | PG_RW | PG_V | pgeflag;
966 	pte = vtopte(va);
967 	*pte = npte;
968 	cpu_invlpg((void *)va);
969 }
970 
971 void
972 pmap_kenter_sync(vm_offset_t va)
973 {
974 	pmap_inval_info info;
975 
976 	pmap_inval_init(&info);
977 	pmap_inval_interlock(&info, &kernel_pmap, va);
978 	pmap_inval_deinterlock(&info, &kernel_pmap);
979 	pmap_inval_done(&info);
980 }
981 
982 void
983 pmap_kenter_sync_quick(vm_offset_t va)
984 {
985 	cpu_invlpg((void *)va);
986 }
987 
988 /*
989  * remove a page from the kernel pagetables
990  */
991 void
992 pmap_kremove(vm_offset_t va)
993 {
994 	pt_entry_t *pte;
995 	pmap_inval_info info;
996 
997 	pmap_inval_init(&info);
998 	pte = vtopte(va);
999 	pmap_inval_interlock(&info, &kernel_pmap, va);
1000 	*pte = 0;
1001 	pmap_inval_deinterlock(&info, &kernel_pmap);
1002 	pmap_inval_done(&info);
1003 }
1004 
1005 void
1006 pmap_kremove_quick(vm_offset_t va)
1007 {
1008 	pt_entry_t *pte;
1009 	pte = vtopte(va);
1010 	*pte = 0;
1011 	cpu_invlpg((void *)va);
1012 }
1013 
1014 /*
1015  * XXX these need to be recoded.  They are not used in any critical path.
1016  */
1017 void
1018 pmap_kmodify_rw(vm_offset_t va)
1019 {
1020 	*vtopte(va) |= PG_RW;
1021 	cpu_invlpg((void *)va);
1022 }
1023 
1024 void
1025 pmap_kmodify_nc(vm_offset_t va)
1026 {
1027 	*vtopte(va) |= PG_N;
1028 	cpu_invlpg((void *)va);
1029 }
1030 
1031 /*
1032  * Used to map a range of physical addresses into kernel virtual
1033  * address space during the low level boot, typically to map the
1034  * dump bitmap, message buffer, and vm_page_array.
1035  *
1036  * These mappings are typically made at some pointer after the end of the
1037  * kernel text+data.
1038  *
1039  * We could return PHYS_TO_DMAP(start) here and not allocate any
1040  * via (*virtp), but then kmem from userland and kernel dumps won't
1041  * have access to the related pointers.
1042  */
1043 vm_offset_t
1044 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
1045 {
1046 	vm_offset_t va;
1047 	vm_offset_t va_start;
1048 
1049 	/*return PHYS_TO_DMAP(start);*/
1050 
1051 	va_start = *virtp;
1052 	va = va_start;
1053 
1054 	while (start < end) {
1055 		pmap_kenter_quick(va, start);
1056 		va += PAGE_SIZE;
1057 		start += PAGE_SIZE;
1058 	}
1059 	*virtp = va;
1060 	return va_start;
1061 }
1062 
1063 
1064 /*
1065  * Add a list of wired pages to the kva
1066  * this routine is only used for temporary
1067  * kernel mappings that do not need to have
1068  * page modification or references recorded.
1069  * Note that old mappings are simply written
1070  * over.  The page *must* be wired.
1071  */
1072 void
1073 pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
1074 {
1075 	vm_offset_t end_va;
1076 
1077 	end_va = va + count * PAGE_SIZE;
1078 
1079 	while (va < end_va) {
1080 		pt_entry_t *pte;
1081 
1082 		pte = vtopte(va);
1083 		*pte = VM_PAGE_TO_PHYS(*m) | PG_RW | PG_V | pgeflag;
1084 		cpu_invlpg((void *)va);
1085 		va += PAGE_SIZE;
1086 		m++;
1087 	}
1088 	smp_invltlb();
1089 }
1090 
1091 /*
1092  * This routine jerks page mappings from the
1093  * kernel -- it is meant only for temporary mappings.
1094  *
1095  * MPSAFE, INTERRUPT SAFE (cluster callback)
1096  */
1097 void
1098 pmap_qremove(vm_offset_t va, int count)
1099 {
1100 	vm_offset_t end_va;
1101 
1102 	end_va = va + count * PAGE_SIZE;
1103 
1104 	while (va < end_va) {
1105 		pt_entry_t *pte;
1106 
1107 		pte = vtopte(va);
1108 		*pte = 0;
1109 		cpu_invlpg((void *)va);
1110 		va += PAGE_SIZE;
1111 	}
1112 	smp_invltlb();
1113 }
1114 
1115 /*
1116  * This routine works like vm_page_lookup() but also blocks as long as the
1117  * page is busy.  This routine does not busy the page it returns.
1118  *
1119  * Unless the caller is managing objects whos pages are in a known state,
1120  * the call should be made with a critical section held so the page's object
1121  * association remains valid on return.
1122  */
1123 static
1124 vm_page_t
1125 pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
1126 {
1127 	vm_page_t m;
1128 
1129 	do {
1130 		m = vm_page_lookup(object, pindex);
1131 	} while (m && vm_page_sleep_busy(m, FALSE, "pplookp"));
1132 
1133 	return(m);
1134 }
1135 
1136 /*
1137  * Create a new thread and optionally associate it with a (new) process.
1138  * NOTE! the new thread's cpu may not equal the current cpu.
1139  */
1140 void
1141 pmap_init_thread(thread_t td)
1142 {
1143 	/* enforce pcb placement & alignment */
1144 	td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
1145 	td->td_pcb = (struct pcb *)((intptr_t)td->td_pcb & ~(intptr_t)0xF);
1146 	td->td_savefpu = &td->td_pcb->pcb_save;
1147 	td->td_sp = (char *)td->td_pcb;	/* no -16 */
1148 }
1149 
1150 /*
1151  * This routine directly affects the fork perf for a process.
1152  */
1153 void
1154 pmap_init_proc(struct proc *p)
1155 {
1156 }
1157 
1158 /*
1159  * Dispose the UPAGES for a process that has exited.
1160  * This routine directly impacts the exit perf of a process.
1161  */
1162 void
1163 pmap_dispose_proc(struct proc *p)
1164 {
1165 	KASSERT(p->p_lock == 0, ("attempt to dispose referenced proc! %p", p));
1166 }
1167 
1168 /***************************************************
1169  * Page table page management routines.....
1170  ***************************************************/
1171 
1172 /*
1173  * This routine unholds page table pages, and if the hold count
1174  * drops to zero, then it decrements the wire count.
1175  */
1176 static __inline
1177 int
1178 pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m,
1179 		     pmap_inval_info_t info)
1180 {
1181 	KKASSERT(m->hold_count > 0);
1182 	if (m->hold_count > 1) {
1183 		vm_page_unhold(m);
1184 		return 0;
1185 	} else {
1186 		return _pmap_unwire_pte_hold(pmap, va, m, info);
1187 	}
1188 }
1189 
1190 static
1191 int
1192 _pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m,
1193 		      pmap_inval_info_t info)
1194 {
1195 	/*
1196 	 * Wait until we can busy the page ourselves.  We cannot have
1197 	 * any active flushes if we block.  We own one hold count on the
1198 	 * page so it cannot be freed out from under us.
1199 	 */
1200 	if (m->flags & PG_BUSY) {
1201 		pmap_inval_flush(info);
1202 		while (vm_page_sleep_busy(m, FALSE, "pmuwpt"))
1203 			;
1204 	}
1205 	KASSERT(m->queue == PQ_NONE,
1206 		("_pmap_unwire_pte_hold: %p->queue != PQ_NONE", m));
1207 
1208 	/*
1209 	 * This case can occur if new references were acquired while
1210 	 * we were blocked.
1211 	 */
1212 	if (m->hold_count > 1) {
1213 		KKASSERT(m->hold_count > 1);
1214 		vm_page_unhold(m);
1215 		return 0;
1216 	}
1217 
1218 	/*
1219 	 * Unmap the page table page
1220 	 */
1221 	KKASSERT(m->hold_count == 1);
1222 	vm_page_busy(m);
1223 	pmap_inval_interlock(info, pmap, -1);
1224 
1225 	if (m->pindex >= (NUPDE + NUPDPE)) {
1226 		/* PDP page */
1227 		pml4_entry_t *pml4;
1228 		pml4 = pmap_pml4e(pmap, va);
1229 		*pml4 = 0;
1230 	} else if (m->pindex >= NUPDE) {
1231 		/* PD page */
1232 		pdp_entry_t *pdp;
1233 		pdp = pmap_pdpe(pmap, va);
1234 		*pdp = 0;
1235 	} else {
1236 		/* PT page */
1237 		pd_entry_t *pd;
1238 		pd = pmap_pde(pmap, va);
1239 		*pd = 0;
1240 	}
1241 
1242 	KKASSERT(pmap->pm_stats.resident_count > 0);
1243 	--pmap->pm_stats.resident_count;
1244 
1245 	if (pmap->pm_ptphint == m)
1246 		pmap->pm_ptphint = NULL;
1247 	pmap_inval_deinterlock(info, pmap);
1248 
1249 	if (m->pindex < NUPDE) {
1250 		/* We just released a PT, unhold the matching PD */
1251 		vm_page_t pdpg;
1252 
1253 		pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
1254 		pmap_unwire_pte_hold(pmap, va, pdpg, info);
1255 	}
1256 	if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
1257 		/* We just released a PD, unhold the matching PDP */
1258 		vm_page_t pdppg;
1259 
1260 		pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
1261 		pmap_unwire_pte_hold(pmap, va, pdppg, info);
1262 	}
1263 
1264 	/*
1265 	 * This was our last hold, the page had better be unwired
1266 	 * after we decrement wire_count.
1267 	 *
1268 	 * FUTURE NOTE: shared page directory page could result in
1269 	 * multiple wire counts.
1270 	 */
1271 	vm_page_unhold(m);
1272 	--m->wire_count;
1273 	KKASSERT(m->wire_count == 0);
1274 	--vmstats.v_wire_count;
1275 	vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1276 	vm_page_flash(m);
1277 	vm_page_free_zero(m);
1278 
1279 	return 1;
1280 }
1281 
1282 /*
1283  * After removing a page table entry, this routine is used to
1284  * conditionally free the page, and manage the hold/wire counts.
1285  */
1286 static
1287 int
1288 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte,
1289 		pmap_inval_info_t info)
1290 {
1291 	vm_pindex_t ptepindex;
1292 
1293 	if (va >= VM_MAX_USER_ADDRESS)
1294 		return 0;
1295 
1296 	if (mpte == NULL) {
1297 		ptepindex = pmap_pde_pindex(va);
1298 #if JGHINT
1299 		if (pmap->pm_ptphint &&
1300 			(pmap->pm_ptphint->pindex == ptepindex)) {
1301 			mpte = pmap->pm_ptphint;
1302 		} else {
1303 #endif
1304 			pmap_inval_flush(info);
1305 			mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1306 			pmap->pm_ptphint = mpte;
1307 #if JGHINT
1308 		}
1309 #endif
1310 	}
1311 	return pmap_unwire_pte_hold(pmap, va, mpte, info);
1312 }
1313 
1314 /*
1315  * Initialize pmap0/vmspace0.  This pmap is not added to pmap_list because
1316  * it, and IdlePTD, represents the template used to update all other pmaps.
1317  *
1318  * On architectures where the kernel pmap is not integrated into the user
1319  * process pmap, this pmap represents the process pmap, not the kernel pmap.
1320  * kernel_pmap should be used to directly access the kernel_pmap.
1321  */
1322 void
1323 pmap_pinit0(struct pmap *pmap)
1324 {
1325 	pmap->pm_pml4 = (pml4_entry_t *)(PTOV_OFFSET + KPML4phys);
1326 	pmap->pm_count = 1;
1327 	pmap->pm_active = 0;
1328 	pmap->pm_ptphint = NULL;
1329 	TAILQ_INIT(&pmap->pm_pvlist);
1330 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1331 }
1332 
1333 /*
1334  * Initialize a preallocated and zeroed pmap structure,
1335  * such as one in a vmspace structure.
1336  */
1337 void
1338 pmap_pinit(struct pmap *pmap)
1339 {
1340 	vm_page_t ptdpg;
1341 
1342 	/*
1343 	 * No need to allocate page table space yet but we do need a valid
1344 	 * page directory table.
1345 	 */
1346 	if (pmap->pm_pml4 == NULL) {
1347 		pmap->pm_pml4 =
1348 		    (pml4_entry_t *)kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
1349 	}
1350 
1351 	/*
1352 	 * Allocate an object for the ptes
1353 	 */
1354 	if (pmap->pm_pteobj == NULL)
1355 		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, NUPDE + NUPDPE + PML4PML4I + 1);
1356 
1357 	/*
1358 	 * Allocate the page directory page, unless we already have
1359 	 * one cached.  If we used the cached page the wire_count will
1360 	 * already be set appropriately.
1361 	 */
1362 	if ((ptdpg = pmap->pm_pdirm) == NULL) {
1363 		ptdpg = vm_page_grab(pmap->pm_pteobj, NUPDE + NUPDPE + PML4PML4I,
1364 				     VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1365 		pmap->pm_pdirm = ptdpg;
1366 		vm_page_flag_clear(ptdpg, PG_MAPPED | PG_BUSY);
1367 		ptdpg->valid = VM_PAGE_BITS_ALL;
1368 		if (ptdpg->wire_count == 0)
1369 			++vmstats.v_wire_count;
1370 		ptdpg->wire_count = 1;
1371 		pmap_kenter((vm_offset_t)pmap->pm_pml4, VM_PAGE_TO_PHYS(ptdpg));
1372 	}
1373 	if ((ptdpg->flags & PG_ZERO) == 0)
1374 		bzero(pmap->pm_pml4, PAGE_SIZE);
1375 #ifdef PMAP_DEBUG
1376 	else
1377 		pmap_page_assertzero(VM_PAGE_TO_PHYS(ptdpg));
1378 #endif
1379 
1380 	pmap->pm_pml4[KPML4I] = KPDPphys | PG_RW | PG_V | PG_U;
1381 	pmap->pm_pml4[DMPML4I] = DMPDPphys | PG_RW | PG_V | PG_U;
1382 
1383 	/* install self-referential address mapping entry */
1384 	pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1385 
1386 	pmap->pm_count = 1;
1387 	pmap->pm_active = 0;
1388 	pmap->pm_ptphint = NULL;
1389 	TAILQ_INIT(&pmap->pm_pvlist);
1390 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1391 	pmap->pm_stats.resident_count = 1;
1392 }
1393 
1394 /*
1395  * Clean up a pmap structure so it can be physically freed.  This routine
1396  * is called by the vmspace dtor function.  A great deal of pmap data is
1397  * left passively mapped to improve vmspace management so we have a bit
1398  * of cleanup work to do here.
1399  */
1400 void
1401 pmap_puninit(pmap_t pmap)
1402 {
1403 	vm_page_t p;
1404 
1405 	KKASSERT(pmap->pm_active == 0);
1406 	lwkt_gettoken(&vm_token);
1407 	if ((p = pmap->pm_pdirm) != NULL) {
1408 		KKASSERT(pmap->pm_pml4 != NULL);
1409 		KKASSERT(pmap->pm_pml4 != (void *)(PTOV_OFFSET + KPML4phys));
1410 		pmap_kremove((vm_offset_t)pmap->pm_pml4);
1411 		p->wire_count--;
1412 		vmstats.v_wire_count--;
1413 		KKASSERT((p->flags & PG_BUSY) == 0);
1414 		vm_page_busy(p);
1415 		vm_page_free_zero(p);
1416 		pmap->pm_pdirm = NULL;
1417 	}
1418 	if (pmap->pm_pml4) {
1419 		KKASSERT(pmap->pm_pml4 != (void *)(PTOV_OFFSET + KPML4phys));
1420 		kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pml4, PAGE_SIZE);
1421 		pmap->pm_pml4 = NULL;
1422 	}
1423 	if (pmap->pm_pteobj) {
1424 		vm_object_deallocate(pmap->pm_pteobj);
1425 		pmap->pm_pteobj = NULL;
1426 	}
1427 	lwkt_reltoken(&vm_token);
1428 }
1429 
1430 /*
1431  * Wire in kernel global address entries.  To avoid a race condition
1432  * between pmap initialization and pmap_growkernel, this procedure
1433  * adds the pmap to the master list (which growkernel scans to update),
1434  * then copies the template.
1435  */
1436 void
1437 pmap_pinit2(struct pmap *pmap)
1438 {
1439 	crit_enter();
1440 	lwkt_gettoken(&vm_token);
1441 	TAILQ_INSERT_TAIL(&pmap_list, pmap, pm_pmnode);
1442 	/* XXX copies current process, does not fill in MPPTDI */
1443 	lwkt_reltoken(&vm_token);
1444 	crit_exit();
1445 }
1446 
1447 /*
1448  * Attempt to release and free a vm_page in a pmap.  Returns 1 on success,
1449  * 0 on failure (if the procedure had to sleep).
1450  *
1451  * When asked to remove the page directory page itself, we actually just
1452  * leave it cached so we do not have to incur the SMP inval overhead of
1453  * removing the kernel mapping.  pmap_puninit() will take care of it.
1454  */
1455 static
1456 int
1457 pmap_release_free_page(struct pmap *pmap, vm_page_t p)
1458 {
1459 	/*
1460 	 * This code optimizes the case of freeing non-busy
1461 	 * page-table pages.  Those pages are zero now, and
1462 	 * might as well be placed directly into the zero queue.
1463 	 */
1464 	if (vm_page_sleep_busy(p, FALSE, "pmaprl"))
1465 		return 0;
1466 
1467 	vm_page_busy(p);
1468 
1469 	/*
1470 	 * Remove the page table page from the processes address space.
1471 	 */
1472 	if (p->pindex == NUPDE + NUPDPE + PML4PML4I) {
1473 		/*
1474 		 * We are the pml4 table itself.
1475 		 */
1476 		/* XXX anything to do here? */
1477 	} else if (p->pindex >= (NUPDE + NUPDPE)) {
1478 		/*
1479 		 * Remove a PDP page from the PML4.  We do not maintain
1480 		 * hold counts on the PML4 page.
1481 		 */
1482 		pml4_entry_t *pml4;
1483 		vm_page_t m4;
1484 		int idx;
1485 
1486 		m4 = vm_page_lookup(pmap->pm_pteobj, NUPDE + NUPDPE + PML4PML4I);
1487 		KKASSERT(m4 != NULL);
1488 		pml4 = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m4));
1489 		idx = (p->pindex - (NUPDE + NUPDPE)) % NPML4EPG;
1490 		KKASSERT(pml4[idx] != 0);
1491 		pml4[idx] = 0;
1492 	} else if (p->pindex >= NUPDE) {
1493 		/*
1494 		 * Remove a PD page from the PDP and drop the hold count
1495 		 * on the PDP.  The PDP is left cached in the pmap if
1496 		 * the hold count drops to 0 so the wire count remains
1497 		 * intact.
1498 		 */
1499 		vm_page_t m3;
1500 		pdp_entry_t *pdp;
1501 		int idx;
1502 
1503 		m3 = vm_page_lookup(pmap->pm_pteobj,
1504 				NUPDE + NUPDPE + (p->pindex - NUPDE) / NPDPEPG);
1505 		KKASSERT(m3 != NULL);
1506 		pdp = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m3));
1507 		idx = (p->pindex - NUPDE) % NPDPEPG;
1508 		KKASSERT(pdp[idx] != 0);
1509 		pdp[idx] = 0;
1510 		m3->hold_count--;
1511 	} else {
1512 		/*
1513 		 * Remove a PT page from the PD and drop the hold count
1514 		 * on the PD.  The PD is left cached in the pmap if
1515 		 * the hold count drops to 0 so the wire count remains
1516 		 * intact.
1517 		 */
1518 		vm_page_t m2;
1519 		pd_entry_t *pd;
1520 		int idx;
1521 
1522 		m2 = vm_page_lookup(pmap->pm_pteobj,
1523 				    NUPDE + p->pindex / NPDEPG);
1524 		KKASSERT(m2 != NULL);
1525 		pd = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m2));
1526 		idx = p->pindex % NPDEPG;
1527 		pd[idx] = 0;
1528 		m2->hold_count--;
1529 	}
1530 
1531 	/*
1532 	 * One fewer mappings in the pmap.  p's hold count had better
1533 	 * be zero.
1534 	 */
1535 	KKASSERT(pmap->pm_stats.resident_count > 0);
1536 	--pmap->pm_stats.resident_count;
1537 	if (p->hold_count)
1538 		panic("pmap_release: freeing held page table page");
1539 	if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1540 		pmap->pm_ptphint = NULL;
1541 
1542 	/*
1543 	 * We leave the top-level page table page cached, wired, and mapped in
1544 	 * the pmap until the dtor function (pmap_puninit()) gets called.
1545 	 * However, still clean it up so we can set PG_ZERO.
1546 	 */
1547 	if (p->pindex == NUPDE + NUPDPE + PML4PML4I) {
1548 		bzero(pmap->pm_pml4, PAGE_SIZE);
1549 		vm_page_flag_set(p, PG_ZERO);
1550 		vm_page_wakeup(p);
1551 	} else {
1552 		p->wire_count--;
1553 		KKASSERT(p->wire_count == 0);
1554 		vmstats.v_wire_count--;
1555 		/* JG eventually revert to using vm_page_free_zero() */
1556 		vm_page_free(p);
1557 	}
1558 	return 1;
1559 }
1560 
1561 /*
1562  * This routine is called when various levels in the page table need to
1563  * be populated.  This routine cannot fail.
1564  */
1565 static
1566 vm_page_t
1567 _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex)
1568 {
1569 	vm_page_t m;
1570 
1571 	/*
1572 	 * Find or fabricate a new pagetable page.  This will busy the page.
1573 	 */
1574 	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1575 			 VM_ALLOC_NORMAL | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1576 	if ((m->flags & PG_ZERO) == 0) {
1577 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
1578 	}
1579 #ifdef PMAP_DEBUG
1580 	else {
1581 		pmap_page_assertzero(VM_PAGE_TO_PHYS(m));
1582 	}
1583 #endif
1584 
1585 	KASSERT(m->queue == PQ_NONE,
1586 		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1587 
1588 	/*
1589 	 * Increment the hold count for the page we will be returning to
1590 	 * the caller.
1591 	 */
1592 	m->hold_count++;
1593 	if (m->wire_count++ == 0)
1594 		vmstats.v_wire_count++;
1595 	m->valid = VM_PAGE_BITS_ALL;
1596 	vm_page_flag_clear(m, PG_ZERO);
1597 
1598 	/*
1599 	 * Map the pagetable page into the process address space, if
1600 	 * it isn't already there.
1601 	 *
1602 	 * It is possible that someone else got in and mapped the page
1603 	 * directory page while we were blocked, if so just unbusy and
1604 	 * return the held page.
1605 	 */
1606 	if (ptepindex >= (NUPDE + NUPDPE)) {
1607 		/*
1608 		 * Wire up a new PDP page in the PML4
1609 		 */
1610 		vm_pindex_t pml4index;
1611 		pml4_entry_t *pml4;
1612 
1613 		pml4index = ptepindex - (NUPDE + NUPDPE);
1614 		pml4 = &pmap->pm_pml4[pml4index];
1615 		if (*pml4 & PG_V) {
1616 			if (--m->wire_count == 0)
1617 				--vmstats.v_wire_count;
1618 			vm_page_wakeup(m);
1619 			return(m);
1620 		}
1621 		*pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
1622 	} else if (ptepindex >= NUPDE) {
1623 		/*
1624 		 * Wire up a new PD page in the PDP
1625 		 */
1626 		vm_pindex_t pml4index;
1627 		vm_pindex_t pdpindex;
1628 		vm_page_t pdppg;
1629 		pml4_entry_t *pml4;
1630 		pdp_entry_t *pdp;
1631 
1632 		pdpindex = ptepindex - NUPDE;
1633 		pml4index = pdpindex >> NPML4EPGSHIFT;
1634 
1635 		pml4 = &pmap->pm_pml4[pml4index];
1636 		if ((*pml4 & PG_V) == 0) {
1637 			/*
1638 			 * Have to allocate a new PDP page, recurse.
1639 			 * This always succeeds.  Returned page will
1640 			 * be held.
1641 			 */
1642 			pdppg = _pmap_allocpte(pmap,
1643 					       NUPDE + NUPDPE + pml4index);
1644 		} else {
1645 			/*
1646 			 * Add a held reference to the PDP page.
1647 			 */
1648 			pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
1649 			pdppg->hold_count++;
1650 		}
1651 
1652 		/*
1653 		 * Now find the pdp_entry and map the PDP.  If the PDP
1654 		 * has already been mapped unwind and return the
1655 		 * already-mapped PDP held.
1656 		 *
1657 		 * pdppg is left held (hold_count is incremented for
1658 		 * each PD in the PDP).
1659 		 */
1660 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
1661 		pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1662 		if (*pdp & PG_V) {
1663 			vm_page_unhold(pdppg);
1664 			if (--m->wire_count == 0)
1665 				--vmstats.v_wire_count;
1666 			vm_page_wakeup(m);
1667 			return(m);
1668 		}
1669 		*pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
1670 	} else {
1671 		/*
1672 		 * Wire up the new PT page in the PD
1673 		 */
1674 		vm_pindex_t pml4index;
1675 		vm_pindex_t pdpindex;
1676 		pml4_entry_t *pml4;
1677 		pdp_entry_t *pdp;
1678 		pd_entry_t *pd;
1679 		vm_page_t pdpg;
1680 
1681 		pdpindex = ptepindex >> NPDPEPGSHIFT;
1682 		pml4index = pdpindex >> NPML4EPGSHIFT;
1683 
1684 		/*
1685 		 * Locate the PDP page in the PML4, then the PD page in
1686 		 * the PDP.  If either does not exist we simply recurse
1687 		 * to allocate them.
1688 		 *
1689 		 * We can just recurse on the PD page as it will recurse
1690 		 * on the PDP if necessary.
1691 		 */
1692 		pml4 = &pmap->pm_pml4[pml4index];
1693 		if ((*pml4 & PG_V) == 0) {
1694 			pdpg = _pmap_allocpte(pmap, NUPDE + pdpindex);
1695 			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
1696 			pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1697 		} else {
1698 			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
1699 			pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1700 			if ((*pdp & PG_V) == 0) {
1701 				pdpg = _pmap_allocpte(pmap, NUPDE + pdpindex);
1702 			} else {
1703 				pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
1704 				pdpg->hold_count++;
1705 			}
1706 		}
1707 
1708 		/*
1709 		 * Now fill in the pte in the PD.  If the pte already exists
1710 		 * (again, if we raced the grab), unhold pdpg and unwire
1711 		 * m, returning a held m.
1712 		 *
1713 		 * pdpg is left held (hold_count is incremented for
1714 		 * each PT in the PD).
1715 		 */
1716 		pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
1717 		pd = &pd[ptepindex & ((1ul << NPDEPGSHIFT) - 1)];
1718 		if (*pd != 0) {
1719 			vm_page_unhold(pdpg);
1720 			if (--m->wire_count == 0)
1721 				--vmstats.v_wire_count;
1722 			vm_page_wakeup(m);
1723 			return(m);
1724 		}
1725 		*pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
1726 	}
1727 
1728 	/*
1729 	 * We successfully loaded a PDP, PD, or PTE.  Set the page table hint,
1730 	 * valid bits, mapped flag, unbusy, and we're done.
1731 	 */
1732 	pmap->pm_ptphint = m;
1733 	++pmap->pm_stats.resident_count;
1734 
1735 #if 0
1736 	m->valid = VM_PAGE_BITS_ALL;
1737 	vm_page_flag_clear(m, PG_ZERO);
1738 #endif
1739 	vm_page_flag_set(m, PG_MAPPED);
1740 	vm_page_wakeup(m);
1741 
1742 	return (m);
1743 }
1744 
1745 static
1746 vm_page_t
1747 pmap_allocpte(pmap_t pmap, vm_offset_t va)
1748 {
1749 	vm_pindex_t ptepindex;
1750 	pd_entry_t *pd;
1751 	vm_page_t m;
1752 
1753 	/*
1754 	 * Calculate pagetable page index
1755 	 */
1756 	ptepindex = pmap_pde_pindex(va);
1757 
1758 	/*
1759 	 * Get the page directory entry
1760 	 */
1761 	pd = pmap_pde(pmap, va);
1762 
1763 	/*
1764 	 * This supports switching from a 2MB page to a
1765 	 * normal 4K page.
1766 	 */
1767 	if (pd != NULL && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
1768 		panic("no promotion/demotion yet");
1769 		*pd = 0;
1770 		pd = NULL;
1771 		cpu_invltlb();
1772 		smp_invltlb();
1773 	}
1774 
1775 	/*
1776 	 * If the page table page is mapped, we just increment the
1777 	 * hold count, and activate it.
1778 	 */
1779 	if (pd != NULL && (*pd & PG_V) != 0) {
1780 		/* YYY hint is used here on i386 */
1781 		m = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1782 		pmap->pm_ptphint = m;
1783 		m->hold_count++;
1784 		return m;
1785 	}
1786 	/*
1787 	 * Here if the pte page isn't mapped, or if it has been deallocated.
1788 	 */
1789 	return _pmap_allocpte(pmap, ptepindex);
1790 }
1791 
1792 
1793 /***************************************************
1794  * Pmap allocation/deallocation routines.
1795  ***************************************************/
1796 
1797 /*
1798  * Release any resources held by the given physical map.
1799  * Called when a pmap initialized by pmap_pinit is being released.
1800  * Should only be called if the map contains no valid mappings.
1801  */
1802 static int pmap_release_callback(struct vm_page *p, void *data);
1803 
1804 void
1805 pmap_release(struct pmap *pmap)
1806 {
1807 	vm_object_t object = pmap->pm_pteobj;
1808 	struct rb_vm_page_scan_info info;
1809 
1810 	KASSERT(pmap->pm_active == 0,
1811 		("pmap still active! %016jx", (uintmax_t)pmap->pm_active));
1812 #if defined(DIAGNOSTIC)
1813 	if (object->ref_count != 1)
1814 		panic("pmap_release: pteobj reference count != 1");
1815 #endif
1816 
1817 	info.pmap = pmap;
1818 	info.object = object;
1819 	crit_enter();
1820 	lwkt_gettoken(&vm_token);
1821 	TAILQ_REMOVE(&pmap_list, pmap, pm_pmnode);
1822 	crit_exit();
1823 
1824 	do {
1825 		crit_enter();
1826 		info.error = 0;
1827 		info.mpte = NULL;
1828 		info.limit = object->generation;
1829 
1830 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1831 				        pmap_release_callback, &info);
1832 		if (info.error == 0 && info.mpte) {
1833 			if (!pmap_release_free_page(pmap, info.mpte))
1834 				info.error = 1;
1835 		}
1836 		crit_exit();
1837 	} while (info.error);
1838 	lwkt_reltoken(&vm_token);
1839 }
1840 
1841 static
1842 int
1843 pmap_release_callback(struct vm_page *p, void *data)
1844 {
1845 	struct rb_vm_page_scan_info *info = data;
1846 
1847 	if (p->pindex == NUPDE + NUPDPE + PML4PML4I) {
1848 		info->mpte = p;
1849 		return(0);
1850 	}
1851 	if (!pmap_release_free_page(info->pmap, p)) {
1852 		info->error = 1;
1853 		return(-1);
1854 	}
1855 	if (info->object->generation != info->limit) {
1856 		info->error = 1;
1857 		return(-1);
1858 	}
1859 	return(0);
1860 }
1861 
1862 /*
1863  * Grow the number of kernel page table entries, if needed.
1864  *
1865  * This routine is always called to validate any address space
1866  * beyond KERNBASE (for kldloads).  kernel_vm_end only governs the address
1867  * space below KERNBASE.
1868  */
1869 void
1870 pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
1871 {
1872 	vm_paddr_t paddr;
1873 	vm_offset_t ptppaddr;
1874 	vm_page_t nkpg;
1875 	pd_entry_t *pde, newpdir;
1876 	pdp_entry_t newpdp;
1877 	int update_kernel_vm_end;
1878 
1879 	crit_enter();
1880 	lwkt_gettoken(&vm_token);
1881 
1882 	/*
1883 	 * bootstrap kernel_vm_end on first real VM use
1884 	 */
1885 	if (kernel_vm_end == 0) {
1886 		kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
1887 		nkpt = 0;
1888 		while ((*pmap_pde(&kernel_pmap, kernel_vm_end) & PG_V) != 0) {
1889 			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1890 					~(PAGE_SIZE * NPTEPG - 1);
1891 			nkpt++;
1892 			if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1893 				kernel_vm_end = kernel_map.max_offset;
1894 				break;
1895 			}
1896 		}
1897 	}
1898 
1899 	/*
1900 	 * Fill in the gaps.  kernel_vm_end is only adjusted for ranges
1901 	 * below KERNBASE.  Ranges above KERNBASE are kldloaded and we
1902 	 * do not want to force-fill 128G worth of page tables.
1903 	 */
1904 	if (kstart < KERNBASE) {
1905 		if (kstart > kernel_vm_end)
1906 			kstart = kernel_vm_end;
1907 		KKASSERT(kend <= KERNBASE);
1908 		update_kernel_vm_end = 1;
1909 	} else {
1910 		update_kernel_vm_end = 0;
1911 	}
1912 
1913 	kstart = rounddown2(kstart, PAGE_SIZE * NPTEPG);
1914 	kend = roundup2(kend, PAGE_SIZE * NPTEPG);
1915 
1916 	if (kend - 1 >= kernel_map.max_offset)
1917 		kend = kernel_map.max_offset;
1918 
1919 	while (kstart < kend) {
1920 		pde = pmap_pde(&kernel_pmap, kstart);
1921 		if (pde == NULL) {
1922 			/* We need a new PDP entry */
1923 			nkpg = vm_page_alloc(kptobj, nkpt,
1924 			                     VM_ALLOC_NORMAL |
1925 					     VM_ALLOC_SYSTEM |
1926 					     VM_ALLOC_INTERRUPT);
1927 			if (nkpg == NULL) {
1928 				panic("pmap_growkernel: no memory to grow "
1929 				      "kernel");
1930 			}
1931 			paddr = VM_PAGE_TO_PHYS(nkpg);
1932 			if ((nkpg->flags & PG_ZERO) == 0)
1933 				pmap_zero_page(paddr);
1934 			vm_page_flag_clear(nkpg, PG_ZERO);
1935 			newpdp = (pdp_entry_t)
1936 				(paddr | PG_V | PG_RW | PG_A | PG_M);
1937 			*pmap_pdpe(&kernel_pmap, kstart) = newpdp;
1938 			nkpt++;
1939 			continue; /* try again */
1940 		}
1941 		if ((*pde & PG_V) != 0) {
1942 			kstart = (kstart + PAGE_SIZE * NPTEPG) &
1943 				 ~(PAGE_SIZE * NPTEPG - 1);
1944 			if (kstart - 1 >= kernel_map.max_offset) {
1945 				kstart = kernel_map.max_offset;
1946 				break;
1947 			}
1948 			continue;
1949 		}
1950 
1951 		/*
1952 		 * This index is bogus, but out of the way
1953 		 */
1954 		nkpg = vm_page_alloc(kptobj, nkpt,
1955 				     VM_ALLOC_NORMAL |
1956 				     VM_ALLOC_SYSTEM |
1957 				     VM_ALLOC_INTERRUPT);
1958 		if (nkpg == NULL)
1959 			panic("pmap_growkernel: no memory to grow kernel");
1960 
1961 		vm_page_wire(nkpg);
1962 		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1963 		pmap_zero_page(ptppaddr);
1964 		vm_page_flag_clear(nkpg, PG_ZERO);
1965 		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1966 		*pmap_pde(&kernel_pmap, kstart) = newpdir;
1967 		nkpt++;
1968 
1969 		kstart = (kstart + PAGE_SIZE * NPTEPG) &
1970 			  ~(PAGE_SIZE * NPTEPG - 1);
1971 
1972 		if (kstart - 1 >= kernel_map.max_offset) {
1973 			kstart = kernel_map.max_offset;
1974 			break;
1975 		}
1976 	}
1977 
1978 	/*
1979 	 * Only update kernel_vm_end for areas below KERNBASE.
1980 	 */
1981 	if (update_kernel_vm_end && kernel_vm_end < kstart)
1982 		kernel_vm_end = kstart;
1983 
1984 	lwkt_reltoken(&vm_token);
1985 	crit_exit();
1986 }
1987 
1988 /*
1989  *	Retire the given physical map from service.
1990  *	Should only be called if the map contains
1991  *	no valid mappings.
1992  */
1993 void
1994 pmap_destroy(pmap_t pmap)
1995 {
1996 	int count;
1997 
1998 	if (pmap == NULL)
1999 		return;
2000 
2001 	lwkt_gettoken(&vm_token);
2002 	count = --pmap->pm_count;
2003 	if (count == 0) {
2004 		pmap_release(pmap);
2005 		panic("destroying a pmap is not yet implemented");
2006 	}
2007 	lwkt_reltoken(&vm_token);
2008 }
2009 
2010 /*
2011  *	Add a reference to the specified pmap.
2012  */
2013 void
2014 pmap_reference(pmap_t pmap)
2015 {
2016 	if (pmap != NULL) {
2017 		lwkt_gettoken(&vm_token);
2018 		pmap->pm_count++;
2019 		lwkt_reltoken(&vm_token);
2020 	}
2021 }
2022 
2023 /***************************************************
2024 * page management routines.
2025  ***************************************************/
2026 
2027 /*
2028  * free the pv_entry back to the free list.  This function may be
2029  * called from an interrupt.
2030  */
2031 static __inline
2032 void
2033 free_pv_entry(pv_entry_t pv)
2034 {
2035 	pv_entry_count--;
2036 	KKASSERT(pv_entry_count >= 0);
2037 	zfree(pvzone, pv);
2038 }
2039 
2040 /*
2041  * get a new pv_entry, allocating a block from the system
2042  * when needed.  This function may be called from an interrupt.
2043  */
2044 static
2045 pv_entry_t
2046 get_pv_entry(void)
2047 {
2048 	pv_entry_count++;
2049 	if (pv_entry_high_water &&
2050 		(pv_entry_count > pv_entry_high_water) &&
2051 		(pmap_pagedaemon_waken == 0)) {
2052 		pmap_pagedaemon_waken = 1;
2053 		wakeup(&vm_pages_needed);
2054 	}
2055 	return zalloc(pvzone);
2056 }
2057 
2058 /*
2059  * This routine is very drastic, but can save the system
2060  * in a pinch.
2061  */
2062 void
2063 pmap_collect(void)
2064 {
2065 	int i;
2066 	vm_page_t m;
2067 	static int warningdone=0;
2068 
2069 	if (pmap_pagedaemon_waken == 0)
2070 		return;
2071 	lwkt_gettoken(&vm_token);
2072 	if (warningdone < 5) {
2073 		kprintf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
2074 		warningdone++;
2075 	}
2076 
2077 	for(i = 0; i < vm_page_array_size; i++) {
2078 		m = &vm_page_array[i];
2079 		if (m->wire_count || m->hold_count || m->busy ||
2080 		    (m->flags & PG_BUSY))
2081 			continue;
2082 		pmap_remove_all(m);
2083 	}
2084 	pmap_pagedaemon_waken = 0;
2085 	lwkt_reltoken(&vm_token);
2086 }
2087 
2088 
2089 /*
2090  * If it is the first entry on the list, it is actually
2091  * in the header and we must copy the following entry up
2092  * to the header.  Otherwise we must search the list for
2093  * the entry.  In either case we free the now unused entry.
2094  */
2095 static
2096 int
2097 pmap_remove_entry(struct pmap *pmap, vm_page_t m,
2098 			vm_offset_t va, pmap_inval_info_t info)
2099 {
2100 	pv_entry_t pv;
2101 	int rtval;
2102 
2103 	crit_enter();
2104 	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
2105 		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2106 			if (pmap == pv->pv_pmap && va == pv->pv_va)
2107 				break;
2108 		}
2109 	} else {
2110 		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
2111 			if (va == pv->pv_va)
2112 				break;
2113 		}
2114 	}
2115 
2116 	rtval = 0;
2117 	KKASSERT(pv);
2118 
2119 	TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2120 	m->md.pv_list_count--;
2121 	m->object->agg_pv_list_count--;
2122 	KKASSERT(m->md.pv_list_count >= 0);
2123 	if (TAILQ_EMPTY(&m->md.pv_list))
2124 		vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2125 	TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
2126 	++pmap->pm_generation;
2127 	rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem, info);
2128 	free_pv_entry(pv);
2129 
2130 	crit_exit();
2131 	return rtval;
2132 }
2133 
2134 /*
2135  * Create a pv entry for page at pa for
2136  * (pmap, va).
2137  */
2138 static
2139 void
2140 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
2141 {
2142 	pv_entry_t pv;
2143 
2144 	crit_enter();
2145 	pv = get_pv_entry();
2146 	pv->pv_va = va;
2147 	pv->pv_pmap = pmap;
2148 	pv->pv_ptem = mpte;
2149 
2150 	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
2151 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2152 	++pmap->pm_generation;
2153 	m->md.pv_list_count++;
2154 	m->object->agg_pv_list_count++;
2155 
2156 	crit_exit();
2157 }
2158 
2159 /*
2160  * pmap_remove_pte: do the things to unmap a page in a process
2161  */
2162 static
2163 int
2164 pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va,
2165 	pmap_inval_info_t info)
2166 {
2167 	pt_entry_t oldpte;
2168 	vm_page_t m;
2169 
2170 	pmap_inval_interlock(info, pmap, va);
2171 	oldpte = pte_load_clear(ptq);
2172 	pmap_inval_deinterlock(info, pmap);
2173 	if (oldpte & PG_W)
2174 		pmap->pm_stats.wired_count -= 1;
2175 	/*
2176 	 * Machines that don't support invlpg, also don't support
2177 	 * PG_G.  XXX PG_G is disabled for SMP so don't worry about
2178 	 * the SMP case.
2179 	 */
2180 	if (oldpte & PG_G)
2181 		cpu_invlpg((void *)va);
2182 	KKASSERT(pmap->pm_stats.resident_count > 0);
2183 	--pmap->pm_stats.resident_count;
2184 	if (oldpte & PG_MANAGED) {
2185 		m = PHYS_TO_VM_PAGE(oldpte);
2186 		if (oldpte & PG_M) {
2187 #if defined(PMAP_DIAGNOSTIC)
2188 			if (pmap_nw_modified((pt_entry_t) oldpte)) {
2189 				kprintf(
2190 	"pmap_remove: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
2191 				    va, oldpte);
2192 			}
2193 #endif
2194 			if (pmap_track_modified(va))
2195 				vm_page_dirty(m);
2196 		}
2197 		if (oldpte & PG_A)
2198 			vm_page_flag_set(m, PG_REFERENCED);
2199 		return pmap_remove_entry(pmap, m, va, info);
2200 	} else {
2201 		return pmap_unuse_pt(pmap, va, NULL, info);
2202 	}
2203 
2204 	return 0;
2205 }
2206 
2207 /*
2208  * pmap_remove_page:
2209  *
2210  *	Remove a single page from a process address space.
2211  *
2212  *	This function may not be called from an interrupt if the pmap is
2213  *	not kernel_pmap.
2214  */
2215 static
2216 void
2217 pmap_remove_page(struct pmap *pmap, vm_offset_t va, pmap_inval_info_t info)
2218 {
2219 	pt_entry_t *pte;
2220 
2221 	pte = pmap_pte(pmap, va);
2222 	if (pte == NULL)
2223 		return;
2224 	if ((*pte & PG_V) == 0)
2225 		return;
2226 	pmap_remove_pte(pmap, pte, va, info);
2227 }
2228 
2229 /*
2230  * pmap_remove:
2231  *
2232  *	Remove the given range of addresses from the specified map.
2233  *
2234  *	It is assumed that the start and end are properly
2235  *	rounded to the page size.
2236  *
2237  *	This function may not be called from an interrupt if the pmap is
2238  *	not kernel_pmap.
2239  */
2240 void
2241 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
2242 {
2243 	vm_offset_t va_next;
2244 	pml4_entry_t *pml4e;
2245 	pdp_entry_t *pdpe;
2246 	pd_entry_t ptpaddr, *pde;
2247 	pt_entry_t *pte;
2248 	struct pmap_inval_info info;
2249 
2250 	if (pmap == NULL)
2251 		return;
2252 
2253 	lwkt_gettoken(&vm_token);
2254 	if (pmap->pm_stats.resident_count == 0) {
2255 		lwkt_reltoken(&vm_token);
2256 		return;
2257 	}
2258 
2259 	pmap_inval_init(&info);
2260 
2261 	/*
2262 	 * special handling of removing one page.  a very
2263 	 * common operation and easy to short circuit some
2264 	 * code.
2265 	 */
2266 	if (sva + PAGE_SIZE == eva) {
2267 		pde = pmap_pde(pmap, sva);
2268 		if (pde && (*pde & PG_PS) == 0) {
2269 			pmap_remove_page(pmap, sva, &info);
2270 			pmap_inval_done(&info);
2271 			lwkt_reltoken(&vm_token);
2272 			return;
2273 		}
2274 	}
2275 
2276 	for (; sva < eva; sva = va_next) {
2277 		pml4e = pmap_pml4e(pmap, sva);
2278 		if ((*pml4e & PG_V) == 0) {
2279 			va_next = (sva + NBPML4) & ~PML4MASK;
2280 			if (va_next < sva)
2281 				va_next = eva;
2282 			continue;
2283 		}
2284 
2285 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
2286 		if ((*pdpe & PG_V) == 0) {
2287 			va_next = (sva + NBPDP) & ~PDPMASK;
2288 			if (va_next < sva)
2289 				va_next = eva;
2290 			continue;
2291 		}
2292 
2293 		/*
2294 		 * Calculate index for next page table.
2295 		 */
2296 		va_next = (sva + NBPDR) & ~PDRMASK;
2297 		if (va_next < sva)
2298 			va_next = eva;
2299 
2300 		pde = pmap_pdpe_to_pde(pdpe, sva);
2301 		ptpaddr = *pde;
2302 
2303 		/*
2304 		 * Weed out invalid mappings.
2305 		 */
2306 		if (ptpaddr == 0)
2307 			continue;
2308 
2309 		/*
2310 		 * Check for large page.
2311 		 */
2312 		if ((ptpaddr & PG_PS) != 0) {
2313 			/* JG FreeBSD has more complex treatment here */
2314 			pmap_inval_interlock(&info, pmap, -1);
2315 			*pde = 0;
2316 			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2317 			pmap_inval_deinterlock(&info, pmap);
2318 			continue;
2319 		}
2320 
2321 		/*
2322 		 * Limit our scan to either the end of the va represented
2323 		 * by the current page table page, or to the end of the
2324 		 * range being removed.
2325 		 */
2326 		if (va_next > eva)
2327 			va_next = eva;
2328 
2329 		/*
2330 		 * NOTE: pmap_remove_pte() can block.
2331 		 */
2332 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2333 		    sva += PAGE_SIZE) {
2334 			if (*pte == 0)
2335 				continue;
2336 			if (pmap_remove_pte(pmap, pte, sva, &info))
2337 				break;
2338 		}
2339 	}
2340 	pmap_inval_done(&info);
2341 	lwkt_reltoken(&vm_token);
2342 }
2343 
2344 /*
2345  * pmap_remove_all:
2346  *
2347  *	Removes this physical page from all physical maps in which it resides.
2348  *	Reflects back modify bits to the pager.
2349  *
2350  *	This routine may not be called from an interrupt.
2351  */
2352 
2353 static
2354 void
2355 pmap_remove_all(vm_page_t m)
2356 {
2357 	struct pmap_inval_info info;
2358 	pt_entry_t *pte, tpte;
2359 	pv_entry_t pv;
2360 
2361 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2362 		return;
2363 
2364 	lwkt_gettoken(&vm_token);
2365 	pmap_inval_init(&info);
2366 	crit_enter();
2367 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2368 		KKASSERT(pv->pv_pmap->pm_stats.resident_count > 0);
2369 		--pv->pv_pmap->pm_stats.resident_count;
2370 
2371 		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2372 		pmap_inval_interlock(&info, pv->pv_pmap, pv->pv_va);
2373 		tpte = pte_load_clear(pte);
2374 		if (tpte & PG_W)
2375 			pv->pv_pmap->pm_stats.wired_count--;
2376 		pmap_inval_deinterlock(&info, pv->pv_pmap);
2377 		if (tpte & PG_A)
2378 			vm_page_flag_set(m, PG_REFERENCED);
2379 
2380 		/*
2381 		 * Update the vm_page_t clean and reference bits.
2382 		 */
2383 		if (tpte & PG_M) {
2384 #if defined(PMAP_DIAGNOSTIC)
2385 			if (pmap_nw_modified(tpte)) {
2386 				kprintf(
2387 	"pmap_remove_all: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
2388 				    pv->pv_va, tpte);
2389 			}
2390 #endif
2391 			if (pmap_track_modified(pv->pv_va))
2392 				vm_page_dirty(m);
2393 		}
2394 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2395 		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2396 		++pv->pv_pmap->pm_generation;
2397 		m->md.pv_list_count--;
2398 		m->object->agg_pv_list_count--;
2399 		KKASSERT(m->md.pv_list_count >= 0);
2400 		if (TAILQ_EMPTY(&m->md.pv_list))
2401 			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2402 		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem, &info);
2403 		free_pv_entry(pv);
2404 	}
2405 	crit_exit();
2406 	KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
2407 	pmap_inval_done(&info);
2408 	lwkt_reltoken(&vm_token);
2409 }
2410 
2411 /*
2412  * pmap_protect:
2413  *
2414  *	Set the physical protection on the specified range of this map
2415  *	as requested.
2416  *
2417  *	This function may not be called from an interrupt if the map is
2418  *	not the kernel_pmap.
2419  */
2420 void
2421 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2422 {
2423 	vm_offset_t va_next;
2424 	pml4_entry_t *pml4e;
2425 	pdp_entry_t *pdpe;
2426 	pd_entry_t ptpaddr, *pde;
2427 	pt_entry_t *pte;
2428 	pmap_inval_info info;
2429 
2430 	/* JG review for NX */
2431 
2432 	if (pmap == NULL)
2433 		return;
2434 
2435 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2436 		pmap_remove(pmap, sva, eva);
2437 		return;
2438 	}
2439 
2440 	if (prot & VM_PROT_WRITE)
2441 		return;
2442 
2443 	lwkt_gettoken(&vm_token);
2444 	pmap_inval_init(&info);
2445 
2446 	for (; sva < eva; sva = va_next) {
2447 
2448 		pml4e = pmap_pml4e(pmap, sva);
2449 		if ((*pml4e & PG_V) == 0) {
2450 			va_next = (sva + NBPML4) & ~PML4MASK;
2451 			if (va_next < sva)
2452 				va_next = eva;
2453 			continue;
2454 		}
2455 
2456 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
2457 		if ((*pdpe & PG_V) == 0) {
2458 			va_next = (sva + NBPDP) & ~PDPMASK;
2459 			if (va_next < sva)
2460 				va_next = eva;
2461 			continue;
2462 		}
2463 
2464 		va_next = (sva + NBPDR) & ~PDRMASK;
2465 		if (va_next < sva)
2466 			va_next = eva;
2467 
2468 		pde = pmap_pdpe_to_pde(pdpe, sva);
2469 		ptpaddr = *pde;
2470 
2471 		/*
2472 		 * Check for large page.
2473 		 */
2474 		if ((ptpaddr & PG_PS) != 0) {
2475 			pmap_inval_interlock(&info, pmap, -1);
2476 			*pde &= ~(PG_M|PG_RW);
2477 			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2478 			pmap_inval_deinterlock(&info, pmap);
2479 			continue;
2480 		}
2481 
2482 		/*
2483 		 * Weed out invalid mappings. Note: we assume that the page
2484 		 * directory table is always allocated, and in kernel virtual.
2485 		 */
2486 		if (ptpaddr == 0)
2487 			continue;
2488 
2489 		if (va_next > eva)
2490 			va_next = eva;
2491 
2492 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2493 		     sva += PAGE_SIZE) {
2494 			pt_entry_t pbits;
2495 			pt_entry_t cbits;
2496 			vm_page_t m;
2497 
2498 			/*
2499 			 * XXX non-optimal.  Note also that there can be
2500 			 * no pmap_inval_flush() calls until after we modify
2501 			 * ptbase[sindex] (or otherwise we have to do another
2502 			 * pmap_inval_add() call).
2503 			 */
2504 			pmap_inval_interlock(&info, pmap, sva);
2505 again:
2506 			pbits = *pte;
2507 			cbits = pbits;
2508 			if ((pbits & PG_V) == 0) {
2509 				pmap_inval_deinterlock(&info, pmap);
2510 				continue;
2511 			}
2512 			if (pbits & PG_MANAGED) {
2513 				m = NULL;
2514 				if (pbits & PG_A) {
2515 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2516 					vm_page_flag_set(m, PG_REFERENCED);
2517 					cbits &= ~PG_A;
2518 				}
2519 				if (pbits & PG_M) {
2520 					if (pmap_track_modified(sva)) {
2521 						if (m == NULL)
2522 							m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2523 						vm_page_dirty(m);
2524 						cbits &= ~PG_M;
2525 					}
2526 				}
2527 			}
2528 			cbits &= ~PG_RW;
2529 			if (pbits != cbits &&
2530 			    !atomic_cmpset_long(pte, pbits, cbits)) {
2531 				goto again;
2532 			}
2533 			pmap_inval_deinterlock(&info, pmap);
2534 		}
2535 	}
2536 	pmap_inval_done(&info);
2537 	lwkt_reltoken(&vm_token);
2538 }
2539 
2540 /*
2541  *	Insert the given physical page (p) at
2542  *	the specified virtual address (v) in the
2543  *	target physical map with the protection requested.
2544  *
2545  *	If specified, the page will be wired down, meaning
2546  *	that the related pte can not be reclaimed.
2547  *
2548  *	NB:  This is the only routine which MAY NOT lazy-evaluate
2549  *	or lose information.  That is, this routine must actually
2550  *	insert this page into the given map NOW.
2551  */
2552 void
2553 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2554 	   boolean_t wired)
2555 {
2556 	vm_paddr_t pa;
2557 	pd_entry_t *pde;
2558 	pt_entry_t *pte;
2559 	vm_paddr_t opa;
2560 	pt_entry_t origpte, newpte;
2561 	vm_page_t mpte;
2562 	pmap_inval_info info;
2563 
2564 	if (pmap == NULL)
2565 		return;
2566 
2567 	va = trunc_page(va);
2568 #ifdef PMAP_DIAGNOSTIC
2569 	if (va >= KvaEnd)
2570 		panic("pmap_enter: toobig");
2571 	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2572 		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)", va);
2573 #endif
2574 	if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
2575 		kprintf("Warning: pmap_enter called on UVA with kernel_pmap\n");
2576 #ifdef DDB
2577 		db_print_backtrace();
2578 #endif
2579 	}
2580 	if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
2581 		kprintf("Warning: pmap_enter called on KVA without kernel_pmap\n");
2582 #ifdef DDB
2583 		db_print_backtrace();
2584 #endif
2585 	}
2586 
2587 	lwkt_gettoken(&vm_token);
2588 
2589 	/*
2590 	 * In the case that a page table page is not
2591 	 * resident, we are creating it here.
2592 	 */
2593 	if (va < VM_MAX_USER_ADDRESS)
2594 		mpte = pmap_allocpte(pmap, va);
2595 	else
2596 		mpte = NULL;
2597 
2598 	pmap_inval_init(&info);
2599 	pde = pmap_pde(pmap, va);
2600 	if (pde != NULL && (*pde & PG_V) != 0) {
2601 		if ((*pde & PG_PS) != 0)
2602 			panic("pmap_enter: attempted pmap_enter on 2MB page");
2603 		pte = pmap_pde_to_pte(pde, va);
2604 	} else
2605 		panic("pmap_enter: invalid page directory va=%#lx", va);
2606 
2607 	KKASSERT(pte != NULL);
2608 	pa = VM_PAGE_TO_PHYS(m);
2609 	origpte = *pte;
2610 	opa = origpte & PG_FRAME;
2611 
2612 	/*
2613 	 * Mapping has not changed, must be protection or wiring change.
2614 	 */
2615 	if (origpte && (opa == pa)) {
2616 		/*
2617 		 * Wiring change, just update stats. We don't worry about
2618 		 * wiring PT pages as they remain resident as long as there
2619 		 * are valid mappings in them. Hence, if a user page is wired,
2620 		 * the PT page will be also.
2621 		 */
2622 		if (wired && ((origpte & PG_W) == 0))
2623 			pmap->pm_stats.wired_count++;
2624 		else if (!wired && (origpte & PG_W))
2625 			pmap->pm_stats.wired_count--;
2626 
2627 #if defined(PMAP_DIAGNOSTIC)
2628 		if (pmap_nw_modified(origpte)) {
2629 			kprintf(
2630 	"pmap_enter: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
2631 			    va, origpte);
2632 		}
2633 #endif
2634 
2635 		/*
2636 		 * Remove the extra pte reference.  Note that we cannot
2637 		 * optimize the RO->RW case because we have adjusted the
2638 		 * wiring count above and may need to adjust the wiring
2639 		 * bits below.
2640 		 */
2641 		if (mpte)
2642 			mpte->hold_count--;
2643 
2644 		/*
2645 		 * We might be turning off write access to the page,
2646 		 * so we go ahead and sense modify status.
2647 		 */
2648 		if (origpte & PG_MANAGED) {
2649 			if ((origpte & PG_M) && pmap_track_modified(va)) {
2650 				vm_page_t om;
2651 				om = PHYS_TO_VM_PAGE(opa);
2652 				vm_page_dirty(om);
2653 			}
2654 			pa |= PG_MANAGED;
2655 			KKASSERT(m->flags & PG_MAPPED);
2656 		}
2657 		goto validate;
2658 	}
2659 	/*
2660 	 * Mapping has changed, invalidate old range and fall through to
2661 	 * handle validating new mapping.
2662 	 */
2663 	while (opa) {
2664 		int err;
2665 		err = pmap_remove_pte(pmap, pte, va, &info);
2666 		if (err)
2667 			panic("pmap_enter: pte vanished, va: 0x%lx", va);
2668 		origpte = *pte;
2669 		opa = origpte & PG_FRAME;
2670 		if (opa) {
2671 			kprintf("pmap_enter: Warning, raced pmap %p va %p\n",
2672 				pmap, (void *)va);
2673 		}
2674 	}
2675 
2676 	/*
2677 	 * Enter on the PV list if part of our managed memory. Note that we
2678 	 * raise IPL while manipulating pv_table since pmap_enter can be
2679 	 * called at interrupt time.
2680 	 */
2681 	if (pmap_initialized &&
2682 	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2683 		pmap_insert_entry(pmap, va, mpte, m);
2684 		pa |= PG_MANAGED;
2685 		vm_page_flag_set(m, PG_MAPPED);
2686 	}
2687 
2688 	/*
2689 	 * Increment counters
2690 	 */
2691 	++pmap->pm_stats.resident_count;
2692 	if (wired)
2693 		pmap->pm_stats.wired_count++;
2694 
2695 validate:
2696 	/*
2697 	 * Now validate mapping with desired protection/wiring.
2698 	 */
2699 	newpte = (pt_entry_t) (pa | pte_prot(pmap, prot) | PG_V);
2700 
2701 	if (wired)
2702 		newpte |= PG_W;
2703 	if (va < VM_MAX_USER_ADDRESS)
2704 		newpte |= PG_U;
2705 	if (pmap == &kernel_pmap)
2706 		newpte |= pgeflag;
2707 
2708 	/*
2709 	 * if the mapping or permission bits are different, we need
2710 	 * to update the pte.
2711 	 */
2712 	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2713 		pmap_inval_interlock(&info, pmap, va);
2714 		*pte = newpte | PG_A;
2715 		pmap_inval_deinterlock(&info, pmap);
2716 		if (newpte & PG_RW)
2717 			vm_page_flag_set(m, PG_WRITEABLE);
2718 	}
2719 	KKASSERT((newpte & PG_MANAGED) == 0 || (m->flags & PG_MAPPED));
2720 	pmap_inval_done(&info);
2721 	lwkt_reltoken(&vm_token);
2722 }
2723 
2724 /*
2725  * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
2726  * This code also assumes that the pmap has no pre-existing entry for this
2727  * VA.
2728  *
2729  * This code currently may only be used on user pmaps, not kernel_pmap.
2730  */
2731 void
2732 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
2733 {
2734 	pt_entry_t *pte;
2735 	vm_paddr_t pa;
2736 	vm_page_t mpte;
2737 	vm_pindex_t ptepindex;
2738 	pd_entry_t *ptepa;
2739 	pmap_inval_info info;
2740 
2741 	lwkt_gettoken(&vm_token);
2742 	pmap_inval_init(&info);
2743 
2744 	if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
2745 		kprintf("Warning: pmap_enter_quick called on UVA with kernel_pmap\n");
2746 #ifdef DDB
2747 		db_print_backtrace();
2748 #endif
2749 	}
2750 	if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
2751 		kprintf("Warning: pmap_enter_quick called on KVA without kernel_pmap\n");
2752 #ifdef DDB
2753 		db_print_backtrace();
2754 #endif
2755 	}
2756 
2757 	KKASSERT(va < UPT_MIN_ADDRESS);	/* assert used on user pmaps only */
2758 
2759 	/*
2760 	 * Calculate the page table page (mpte), allocating it if necessary.
2761 	 *
2762 	 * A held page table page (mpte), or NULL, is passed onto the
2763 	 * section following.
2764 	 */
2765 	if (va < VM_MAX_USER_ADDRESS) {
2766 		/*
2767 		 * Calculate pagetable page index
2768 		 */
2769 		ptepindex = pmap_pde_pindex(va);
2770 
2771 		do {
2772 			/*
2773 			 * Get the page directory entry
2774 			 */
2775 			ptepa = pmap_pde(pmap, va);
2776 
2777 			/*
2778 			 * If the page table page is mapped, we just increment
2779 			 * the hold count, and activate it.
2780 			 */
2781 			if (ptepa && (*ptepa & PG_V) != 0) {
2782 				if (*ptepa & PG_PS)
2783 					panic("pmap_enter_quick: unexpected mapping into 2MB page");
2784 //				if (pmap->pm_ptphint &&
2785 //				    (pmap->pm_ptphint->pindex == ptepindex)) {
2786 //					mpte = pmap->pm_ptphint;
2787 //				} else {
2788 					mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
2789 					pmap->pm_ptphint = mpte;
2790 //				}
2791 				if (mpte)
2792 					mpte->hold_count++;
2793 			} else {
2794 				mpte = _pmap_allocpte(pmap, ptepindex);
2795 			}
2796 		} while (mpte == NULL);
2797 	} else {
2798 		mpte = NULL;
2799 		/* this code path is not yet used */
2800 	}
2801 
2802 	/*
2803 	 * With a valid (and held) page directory page, we can just use
2804 	 * vtopte() to get to the pte.  If the pte is already present
2805 	 * we do not disturb it.
2806 	 */
2807 	pte = vtopte(va);
2808 	if (*pte & PG_V) {
2809 		if (mpte)
2810 			pmap_unwire_pte_hold(pmap, va, mpte, &info);
2811 		pa = VM_PAGE_TO_PHYS(m);
2812 		KKASSERT(((*pte ^ pa) & PG_FRAME) == 0);
2813 		pmap_inval_done(&info);
2814 		lwkt_reltoken(&vm_token);
2815 		return;
2816 	}
2817 
2818 	/*
2819 	 * Enter on the PV list if part of our managed memory
2820 	 */
2821 	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2822 		pmap_insert_entry(pmap, va, mpte, m);
2823 		vm_page_flag_set(m, PG_MAPPED);
2824 	}
2825 
2826 	/*
2827 	 * Increment counters
2828 	 */
2829 	++pmap->pm_stats.resident_count;
2830 
2831 	pa = VM_PAGE_TO_PHYS(m);
2832 
2833 	/*
2834 	 * Now validate mapping with RO protection
2835 	 */
2836 	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2837 		*pte = pa | PG_V | PG_U;
2838 	else
2839 		*pte = pa | PG_V | PG_U | PG_MANAGED;
2840 /*	pmap_inval_add(&info, pmap, va); shouldn't be needed inval->valid */
2841 	pmap_inval_done(&info);
2842 	lwkt_reltoken(&vm_token);
2843 }
2844 
2845 /*
2846  * Make a temporary mapping for a physical address.  This is only intended
2847  * to be used for panic dumps.
2848  */
2849 /* JG Needed on x86_64? */
2850 void *
2851 pmap_kenter_temporary(vm_paddr_t pa, long i)
2852 {
2853 	pmap_kenter((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
2854 	return ((void *)crashdumpmap);
2855 }
2856 
2857 #define MAX_INIT_PT (96)
2858 
2859 /*
2860  * This routine preloads the ptes for a given object into the specified pmap.
2861  * This eliminates the blast of soft faults on process startup and
2862  * immediately after an mmap.
2863  */
2864 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
2865 
2866 void
2867 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
2868 		    vm_object_t object, vm_pindex_t pindex,
2869 		    vm_size_t size, int limit)
2870 {
2871 	struct rb_vm_page_scan_info info;
2872 	struct lwp *lp;
2873 	vm_size_t psize;
2874 
2875 	/*
2876 	 * We can't preinit if read access isn't set or there is no pmap
2877 	 * or object.
2878 	 */
2879 	if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
2880 		return;
2881 
2882 	/*
2883 	 * We can't preinit if the pmap is not the current pmap
2884 	 */
2885 	lp = curthread->td_lwp;
2886 	if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
2887 		return;
2888 
2889 	psize = x86_64_btop(size);
2890 
2891 	if ((object->type != OBJT_VNODE) ||
2892 		((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2893 			(object->resident_page_count > MAX_INIT_PT))) {
2894 		return;
2895 	}
2896 
2897 	if (psize + pindex > object->size) {
2898 		if (object->size < pindex)
2899 			return;
2900 		psize = object->size - pindex;
2901 	}
2902 
2903 	if (psize == 0)
2904 		return;
2905 
2906 	/*
2907 	 * Use a red-black scan to traverse the requested range and load
2908 	 * any valid pages found into the pmap.
2909 	 *
2910 	 * We cannot safely scan the object's memq unless we are in a
2911 	 * critical section since interrupts can remove pages from objects.
2912 	 */
2913 	info.start_pindex = pindex;
2914 	info.end_pindex = pindex + psize - 1;
2915 	info.limit = limit;
2916 	info.mpte = NULL;
2917 	info.addr = addr;
2918 	info.pmap = pmap;
2919 
2920 	crit_enter();
2921 	lwkt_gettoken(&vm_token);
2922 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2923 				pmap_object_init_pt_callback, &info);
2924 	lwkt_reltoken(&vm_token);
2925 	crit_exit();
2926 }
2927 
2928 static
2929 int
2930 pmap_object_init_pt_callback(vm_page_t p, void *data)
2931 {
2932 	struct rb_vm_page_scan_info *info = data;
2933 	vm_pindex_t rel_index;
2934 	/*
2935 	 * don't allow an madvise to blow away our really
2936 	 * free pages allocating pv entries.
2937 	 */
2938 	if ((info->limit & MAP_PREFAULT_MADVISE) &&
2939 		vmstats.v_free_count < vmstats.v_free_reserved) {
2940 		    return(-1);
2941 	}
2942 	if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2943 	    (p->busy == 0) && (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2944 		if ((p->queue - p->pc) == PQ_CACHE)
2945 			vm_page_deactivate(p);
2946 		vm_page_busy(p);
2947 		rel_index = p->pindex - info->start_pindex;
2948 		pmap_enter_quick(info->pmap,
2949 				 info->addr + x86_64_ptob(rel_index), p);
2950 		vm_page_wakeup(p);
2951 	}
2952 	return(0);
2953 }
2954 
2955 /*
2956  * Return TRUE if the pmap is in shape to trivially
2957  * pre-fault the specified address.
2958  *
2959  * Returns FALSE if it would be non-trivial or if a
2960  * pte is already loaded into the slot.
2961  */
2962 int
2963 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
2964 {
2965 	pt_entry_t *pte;
2966 	pd_entry_t *pde;
2967 	int ret;
2968 
2969 	lwkt_gettoken(&vm_token);
2970 	pde = pmap_pde(pmap, addr);
2971 	if (pde == NULL || *pde == 0) {
2972 		ret = 0;
2973 	} else {
2974 		pte = vtopte(addr);
2975 		ret = (*pte) ? 0 : 1;
2976 	}
2977 	lwkt_reltoken(&vm_token);
2978 	return(ret);
2979 }
2980 
2981 /*
2982  *	Routine:	pmap_change_wiring
2983  *	Function:	Change the wiring attribute for a map/virtual-address
2984  *			pair.
2985  *	In/out conditions:
2986  *			The mapping must already exist in the pmap.
2987  */
2988 void
2989 pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2990 {
2991 	pt_entry_t *pte;
2992 
2993 	if (pmap == NULL)
2994 		return;
2995 
2996 	lwkt_gettoken(&vm_token);
2997 	pte = pmap_pte(pmap, va);
2998 
2999 	if (wired && !pmap_pte_w(pte))
3000 		pmap->pm_stats.wired_count++;
3001 	else if (!wired && pmap_pte_w(pte))
3002 		pmap->pm_stats.wired_count--;
3003 
3004 	/*
3005 	 * Wiring is not a hardware characteristic so there is no need to
3006 	 * invalidate TLB.  However, in an SMP environment we must use
3007 	 * a locked bus cycle to update the pte (if we are not using
3008 	 * the pmap_inval_*() API that is)... it's ok to do this for simple
3009 	 * wiring changes.
3010 	 */
3011 #ifdef SMP
3012 	if (wired)
3013 		atomic_set_long(pte, PG_W);
3014 	else
3015 		atomic_clear_long(pte, PG_W);
3016 #else
3017 	if (wired)
3018 		atomic_set_long_nonlocked(pte, PG_W);
3019 	else
3020 		atomic_clear_long_nonlocked(pte, PG_W);
3021 #endif
3022 	lwkt_reltoken(&vm_token);
3023 }
3024 
3025 
3026 
3027 /*
3028  *	Copy the range specified by src_addr/len
3029  *	from the source map to the range dst_addr/len
3030  *	in the destination map.
3031  *
3032  *	This routine is only advisory and need not do anything.
3033  */
3034 void
3035 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
3036 	  vm_size_t len, vm_offset_t src_addr)
3037 {
3038 	return;
3039 #if 0
3040 	pmap_inval_info info;
3041 	vm_offset_t addr;
3042 	vm_offset_t end_addr = src_addr + len;
3043 	vm_offset_t pdnxt;
3044 	pd_entry_t src_frame, dst_frame;
3045 	vm_page_t m;
3046 
3047 	if (dst_addr != src_addr)
3048 		return;
3049 #if JGPMAP32
3050 	src_frame = src_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
3051 	if (src_frame != (PTDpde & PG_FRAME)) {
3052 		return;
3053 	}
3054 
3055 	dst_frame = dst_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
3056 	if (dst_frame != (APTDpde & PG_FRAME)) {
3057 		APTDpde = (pd_entry_t) (dst_frame | PG_RW | PG_V);
3058 		/* The page directory is not shared between CPUs */
3059 		cpu_invltlb();
3060 	}
3061 #endif
3062 	pmap_inval_init(&info);
3063 	pmap_inval_add(&info, dst_pmap, -1);
3064 	pmap_inval_add(&info, src_pmap, -1);
3065 
3066 	/*
3067 	 * critical section protection is required to maintain the page/object
3068 	 * association, interrupts can free pages and remove them from
3069 	 * their objects.
3070 	 */
3071 	crit_enter();
3072 	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3073 		pt_entry_t *src_pte, *dst_pte;
3074 		vm_page_t dstmpte, srcmpte;
3075 		vm_offset_t srcptepaddr;
3076 		vm_pindex_t ptepindex;
3077 
3078 		if (addr >= UPT_MIN_ADDRESS)
3079 			panic("pmap_copy: invalid to pmap_copy page tables\n");
3080 
3081 		/*
3082 		 * Don't let optional prefaulting of pages make us go
3083 		 * way below the low water mark of free pages or way
3084 		 * above high water mark of used pv entries.
3085 		 */
3086 		if (vmstats.v_free_count < vmstats.v_free_reserved ||
3087 		    pv_entry_count > pv_entry_high_water)
3088 			break;
3089 
3090 		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
3091 		ptepindex = addr >> PDRSHIFT;
3092 
3093 #if JGPMAP32
3094 		srcptepaddr = (vm_offset_t) src_pmap->pm_pdir[ptepindex];
3095 #endif
3096 		if (srcptepaddr == 0)
3097 			continue;
3098 
3099 		if (srcptepaddr & PG_PS) {
3100 #if JGPMAP32
3101 			if (dst_pmap->pm_pdir[ptepindex] == 0) {
3102 				dst_pmap->pm_pdir[ptepindex] = (pd_entry_t) srcptepaddr;
3103 				dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
3104 			}
3105 #endif
3106 			continue;
3107 		}
3108 
3109 		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
3110 		if ((srcmpte == NULL) || (srcmpte->hold_count == 0) ||
3111 		    (srcmpte->flags & PG_BUSY)) {
3112 			continue;
3113 		}
3114 
3115 		if (pdnxt > end_addr)
3116 			pdnxt = end_addr;
3117 
3118 		src_pte = vtopte(addr);
3119 #if JGPMAP32
3120 		dst_pte = avtopte(addr);
3121 #endif
3122 		while (addr < pdnxt) {
3123 			pt_entry_t ptetemp;
3124 
3125 			ptetemp = *src_pte;
3126 			/*
3127 			 * we only virtual copy managed pages
3128 			 */
3129 			if ((ptetemp & PG_MANAGED) != 0) {
3130 				/*
3131 				 * We have to check after allocpte for the
3132 				 * pte still being around...  allocpte can
3133 				 * block.
3134 				 *
3135 				 * pmap_allocpte() can block.  If we lose
3136 				 * our page directory mappings we stop.
3137 				 */
3138 				dstmpte = pmap_allocpte(dst_pmap, addr);
3139 
3140 #if JGPMAP32
3141 				if (src_frame != (PTDpde & PG_FRAME) ||
3142 				    dst_frame != (APTDpde & PG_FRAME)
3143 				) {
3144 					kprintf("WARNING: pmap_copy: detected and corrected race\n");
3145 					pmap_unwire_pte_hold(dst_pmap, dstmpte, &info);
3146 					goto failed;
3147 				} else if ((*dst_pte == 0) &&
3148 					   (ptetemp = *src_pte) != 0 &&
3149 					   (ptetemp & PG_MANAGED)) {
3150 					/*
3151 					 * Clear the modified and
3152 					 * accessed (referenced) bits
3153 					 * during the copy.
3154 					 */
3155 					m = PHYS_TO_VM_PAGE(ptetemp);
3156 					*dst_pte = ptetemp & ~(PG_M | PG_A);
3157 					++dst_pmap->pm_stats.resident_count;
3158 					pmap_insert_entry(dst_pmap, addr,
3159 						dstmpte, m);
3160 					KKASSERT(m->flags & PG_MAPPED);
3161 	 			} else {
3162 					kprintf("WARNING: pmap_copy: dst_pte race detected and corrected\n");
3163 					pmap_unwire_pte_hold(dst_pmap, dstmpte, &info);
3164 					goto failed;
3165 				}
3166 #endif
3167 				if (dstmpte->hold_count >= srcmpte->hold_count)
3168 					break;
3169 			}
3170 			addr += PAGE_SIZE;
3171 			src_pte++;
3172 			dst_pte++;
3173 		}
3174 	}
3175 failed:
3176 	crit_exit();
3177 	pmap_inval_done(&info);
3178 #endif
3179 }
3180 
3181 /*
3182  * pmap_zero_page:
3183  *
3184  *	Zero the specified physical page.
3185  *
3186  *	This function may be called from an interrupt and no locking is
3187  *	required.
3188  */
3189 void
3190 pmap_zero_page(vm_paddr_t phys)
3191 {
3192 	vm_offset_t va = PHYS_TO_DMAP(phys);
3193 
3194 	pagezero((void *)va);
3195 }
3196 
3197 /*
3198  * pmap_page_assertzero:
3199  *
3200  *	Assert that a page is empty, panic if it isn't.
3201  */
3202 void
3203 pmap_page_assertzero(vm_paddr_t phys)
3204 {
3205 	vm_offset_t va = PHYS_TO_DMAP(phys);
3206 	size_t i;
3207 
3208 	for (i = 0; i < PAGE_SIZE; i += sizeof(long)) {
3209 		if (*(long *)((char *)va + i) != 0) {
3210 			panic("pmap_page_assertzero() @ %p not zero!\n",
3211 			      (void *)(intptr_t)va);
3212 		}
3213 	}
3214 }
3215 
3216 /*
3217  * pmap_zero_page:
3218  *
3219  *	Zero part of a physical page by mapping it into memory and clearing
3220  *	its contents with bzero.
3221  *
3222  *	off and size may not cover an area beyond a single hardware page.
3223  */
3224 void
3225 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
3226 {
3227 	vm_offset_t virt = PHYS_TO_DMAP(phys);
3228 
3229 	bzero((char *)virt + off, size);
3230 }
3231 
3232 /*
3233  * pmap_copy_page:
3234  *
3235  *	Copy the physical page from the source PA to the target PA.
3236  *	This function may be called from an interrupt.  No locking
3237  *	is required.
3238  */
3239 void
3240 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
3241 {
3242 	vm_offset_t src_virt, dst_virt;
3243 
3244 	src_virt = PHYS_TO_DMAP(src);
3245 	dst_virt = PHYS_TO_DMAP(dst);
3246 	bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
3247 }
3248 
3249 /*
3250  * pmap_copy_page_frag:
3251  *
3252  *	Copy the physical page from the source PA to the target PA.
3253  *	This function may be called from an interrupt.  No locking
3254  *	is required.
3255  */
3256 void
3257 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
3258 {
3259 	vm_offset_t src_virt, dst_virt;
3260 
3261 	src_virt = PHYS_TO_DMAP(src);
3262 	dst_virt = PHYS_TO_DMAP(dst);
3263 
3264 	bcopy((char *)src_virt + (src & PAGE_MASK),
3265 	      (char *)dst_virt + (dst & PAGE_MASK),
3266 	      bytes);
3267 }
3268 
3269 /*
3270  * Returns true if the pmap's pv is one of the first
3271  * 16 pvs linked to from this page.  This count may
3272  * be changed upwards or downwards in the future; it
3273  * is only necessary that true be returned for a small
3274  * subset of pmaps for proper page aging.
3275  */
3276 boolean_t
3277 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3278 {
3279 	pv_entry_t pv;
3280 	int loops = 0;
3281 
3282 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3283 		return FALSE;
3284 
3285 	crit_enter();
3286 	lwkt_gettoken(&vm_token);
3287 
3288 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3289 		if (pv->pv_pmap == pmap) {
3290 			lwkt_reltoken(&vm_token);
3291 			crit_exit();
3292 			return TRUE;
3293 		}
3294 		loops++;
3295 		if (loops >= 16)
3296 			break;
3297 	}
3298 	lwkt_reltoken(&vm_token);
3299 	crit_exit();
3300 	return (FALSE);
3301 }
3302 
3303 /*
3304  * Remove all pages from specified address space
3305  * this aids process exit speeds.  Also, this code
3306  * is special cased for current process only, but
3307  * can have the more generic (and slightly slower)
3308  * mode enabled.  This is much faster than pmap_remove
3309  * in the case of running down an entire address space.
3310  */
3311 void
3312 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3313 {
3314 	struct lwp *lp;
3315 	pt_entry_t *pte, tpte;
3316 	pv_entry_t pv, npv;
3317 	vm_page_t m;
3318 	pmap_inval_info info;
3319 	int iscurrentpmap;
3320 	int save_generation;
3321 
3322 	lp = curthread->td_lwp;
3323 	if (lp && pmap == vmspace_pmap(lp->lwp_vmspace))
3324 		iscurrentpmap = 1;
3325 	else
3326 		iscurrentpmap = 0;
3327 
3328 	lwkt_gettoken(&vm_token);
3329 	pmap_inval_init(&info);
3330 	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
3331 		if (pv->pv_va >= eva || pv->pv_va < sva) {
3332 			npv = TAILQ_NEXT(pv, pv_plist);
3333 			continue;
3334 		}
3335 
3336 		KKASSERT(pmap == pv->pv_pmap);
3337 
3338 		if (iscurrentpmap)
3339 			pte = vtopte(pv->pv_va);
3340 		else
3341 			pte = pmap_pte_quick(pmap, pv->pv_va);
3342 		pmap_inval_interlock(&info, pmap, pv->pv_va);
3343 
3344 		/*
3345 		 * We cannot remove wired pages from a process' mapping
3346 		 * at this time
3347 		 */
3348 		if (*pte & PG_W) {
3349 			pmap_inval_deinterlock(&info, pmap);
3350 			npv = TAILQ_NEXT(pv, pv_plist);
3351 			continue;
3352 		}
3353 		tpte = pte_load_clear(pte);
3354 
3355 		m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3356 
3357 		KASSERT(m < &vm_page_array[vm_page_array_size],
3358 			("pmap_remove_pages: bad tpte %lx", tpte));
3359 
3360 		KKASSERT(pmap->pm_stats.resident_count > 0);
3361 		--pmap->pm_stats.resident_count;
3362 		pmap_inval_deinterlock(&info, pmap);
3363 
3364 		/*
3365 		 * Update the vm_page_t clean and reference bits.
3366 		 */
3367 		if (tpte & PG_M) {
3368 			vm_page_dirty(m);
3369 		}
3370 
3371 		npv = TAILQ_NEXT(pv, pv_plist);
3372 		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
3373 		save_generation = ++pmap->pm_generation;
3374 
3375 		m->md.pv_list_count--;
3376 		m->object->agg_pv_list_count--;
3377 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3378 		if (TAILQ_EMPTY(&m->md.pv_list))
3379 			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
3380 
3381 		pmap_unuse_pt(pmap, pv->pv_va, pv->pv_ptem, &info);
3382 		free_pv_entry(pv);
3383 
3384 		/*
3385 		 * Restart the scan if we blocked during the unuse or free
3386 		 * calls and other removals were made.
3387 		 */
3388 		if (save_generation != pmap->pm_generation) {
3389 			kprintf("Warning: pmap_remove_pages race-A avoided\n");
3390 			npv = TAILQ_FIRST(&pmap->pm_pvlist);
3391 		}
3392 	}
3393 	pmap_inval_done(&info);
3394 	lwkt_reltoken(&vm_token);
3395 }
3396 
3397 /*
3398  * pmap_testbit tests bits in pte's
3399  * note that the testbit/clearbit routines are inline,
3400  * and a lot of things compile-time evaluate.
3401  */
3402 static
3403 boolean_t
3404 pmap_testbit(vm_page_t m, int bit)
3405 {
3406 	pv_entry_t pv;
3407 	pt_entry_t *pte;
3408 
3409 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3410 		return FALSE;
3411 
3412 	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
3413 		return FALSE;
3414 
3415 	crit_enter();
3416 
3417 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3418 		/*
3419 		 * if the bit being tested is the modified bit, then
3420 		 * mark clean_map and ptes as never
3421 		 * modified.
3422 		 */
3423 		if (bit & (PG_A|PG_M)) {
3424 			if (!pmap_track_modified(pv->pv_va))
3425 				continue;
3426 		}
3427 
3428 #if defined(PMAP_DIAGNOSTIC)
3429 		if (pv->pv_pmap == NULL) {
3430 			kprintf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
3431 			continue;
3432 		}
3433 #endif
3434 		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3435 		if (*pte & bit) {
3436 			crit_exit();
3437 			return TRUE;
3438 		}
3439 	}
3440 	crit_exit();
3441 	return (FALSE);
3442 }
3443 
3444 /*
3445  * this routine is used to modify bits in ptes
3446  */
3447 static __inline
3448 void
3449 pmap_clearbit(vm_page_t m, int bit)
3450 {
3451 	struct pmap_inval_info info;
3452 	pv_entry_t pv;
3453 	pt_entry_t *pte;
3454 	pt_entry_t pbits;
3455 
3456 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3457 		return;
3458 
3459 	pmap_inval_init(&info);
3460 
3461 	/*
3462 	 * Loop over all current mappings setting/clearing as appropos If
3463 	 * setting RO do we need to clear the VAC?
3464 	 */
3465 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3466 		/*
3467 		 * don't write protect pager mappings
3468 		 */
3469 		if (bit == PG_RW) {
3470 			if (!pmap_track_modified(pv->pv_va))
3471 				continue;
3472 		}
3473 
3474 #if defined(PMAP_DIAGNOSTIC)
3475 		if (pv->pv_pmap == NULL) {
3476 			kprintf("Null pmap (cb) at va: 0x%lx\n", pv->pv_va);
3477 			continue;
3478 		}
3479 #endif
3480 
3481 		/*
3482 		 * Careful here.  We can use a locked bus instruction to
3483 		 * clear PG_A or PG_M safely but we need to synchronize
3484 		 * with the target cpus when we mess with PG_RW.
3485 		 *
3486 		 * We do not have to force synchronization when clearing
3487 		 * PG_M even for PTEs generated via virtual memory maps,
3488 		 * because the virtual kernel will invalidate the pmap
3489 		 * entry when/if it needs to resynchronize the Modify bit.
3490 		 */
3491 		if (bit & PG_RW)
3492 			pmap_inval_interlock(&info, pv->pv_pmap, pv->pv_va);
3493 		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3494 again:
3495 		pbits = *pte;
3496 		if (pbits & bit) {
3497 			if (bit == PG_RW) {
3498 				if (pbits & PG_M) {
3499 					vm_page_dirty(m);
3500 					atomic_clear_long(pte, PG_M|PG_RW);
3501 				} else {
3502 					/*
3503 					 * The cpu may be trying to set PG_M
3504 					 * simultaniously with our clearing
3505 					 * of PG_RW.
3506 					 */
3507 					if (!atomic_cmpset_long(pte, pbits,
3508 							       pbits & ~PG_RW))
3509 						goto again;
3510 				}
3511 			} else if (bit == PG_M) {
3512 				/*
3513 				 * We could also clear PG_RW here to force
3514 				 * a fault on write to redetect PG_M for
3515 				 * virtual kernels, but it isn't necessary
3516 				 * since virtual kernels invalidate the pte
3517 				 * when they clear the VPTE_M bit in their
3518 				 * virtual page tables.
3519 				 */
3520 				atomic_clear_long(pte, PG_M);
3521 			} else {
3522 				atomic_clear_long(pte, bit);
3523 			}
3524 		}
3525 		if (bit & PG_RW)
3526 			pmap_inval_deinterlock(&info, pv->pv_pmap);
3527 	}
3528 	pmap_inval_done(&info);
3529 }
3530 
3531 /*
3532  *      pmap_page_protect:
3533  *
3534  *      Lower the permission for all mappings to a given page.
3535  */
3536 void
3537 pmap_page_protect(vm_page_t m, vm_prot_t prot)
3538 {
3539 	/* JG NX support? */
3540 	if ((prot & VM_PROT_WRITE) == 0) {
3541 		lwkt_gettoken(&vm_token);
3542 		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3543 			pmap_clearbit(m, PG_RW);
3544 			vm_page_flag_clear(m, PG_WRITEABLE);
3545 		} else {
3546 			pmap_remove_all(m);
3547 		}
3548 		lwkt_reltoken(&vm_token);
3549 	}
3550 }
3551 
3552 vm_paddr_t
3553 pmap_phys_address(vm_pindex_t ppn)
3554 {
3555 	return (x86_64_ptob(ppn));
3556 }
3557 
3558 /*
3559  *	pmap_ts_referenced:
3560  *
3561  *	Return a count of reference bits for a page, clearing those bits.
3562  *	It is not necessary for every reference bit to be cleared, but it
3563  *	is necessary that 0 only be returned when there are truly no
3564  *	reference bits set.
3565  *
3566  *	XXX: The exact number of bits to check and clear is a matter that
3567  *	should be tested and standardized at some point in the future for
3568  *	optimal aging of shared pages.
3569  */
3570 int
3571 pmap_ts_referenced(vm_page_t m)
3572 {
3573 	pv_entry_t pv, pvf, pvn;
3574 	pt_entry_t *pte;
3575 	int rtval = 0;
3576 
3577 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3578 		return (rtval);
3579 
3580 	crit_enter();
3581 	lwkt_gettoken(&vm_token);
3582 
3583 	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3584 
3585 		pvf = pv;
3586 
3587 		do {
3588 			pvn = TAILQ_NEXT(pv, pv_list);
3589 
3590 			crit_enter();
3591 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3592 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3593 			crit_exit();
3594 
3595 			if (!pmap_track_modified(pv->pv_va))
3596 				continue;
3597 
3598 			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3599 
3600 			if (pte && (*pte & PG_A)) {
3601 #ifdef SMP
3602 				atomic_clear_long(pte, PG_A);
3603 #else
3604 				atomic_clear_long_nonlocked(pte, PG_A);
3605 #endif
3606 				rtval++;
3607 				if (rtval > 4) {
3608 					break;
3609 				}
3610 			}
3611 		} while ((pv = pvn) != NULL && pv != pvf);
3612 	}
3613 	lwkt_reltoken(&vm_token);
3614 	crit_exit();
3615 
3616 	return (rtval);
3617 }
3618 
3619 /*
3620  *	pmap_is_modified:
3621  *
3622  *	Return whether or not the specified physical page was modified
3623  *	in any physical maps.
3624  */
3625 boolean_t
3626 pmap_is_modified(vm_page_t m)
3627 {
3628 	boolean_t res;
3629 
3630 	lwkt_gettoken(&vm_token);
3631 	res = pmap_testbit(m, PG_M);
3632 	lwkt_reltoken(&vm_token);
3633 	return (res);
3634 }
3635 
3636 /*
3637  *	Clear the modify bits on the specified physical page.
3638  */
3639 void
3640 pmap_clear_modify(vm_page_t m)
3641 {
3642 	lwkt_gettoken(&vm_token);
3643 	pmap_clearbit(m, PG_M);
3644 	lwkt_reltoken(&vm_token);
3645 }
3646 
3647 /*
3648  *	pmap_clear_reference:
3649  *
3650  *	Clear the reference bit on the specified physical page.
3651  */
3652 void
3653 pmap_clear_reference(vm_page_t m)
3654 {
3655 	lwkt_gettoken(&vm_token);
3656 	pmap_clearbit(m, PG_A);
3657 	lwkt_reltoken(&vm_token);
3658 }
3659 
3660 /*
3661  * Miscellaneous support routines follow
3662  */
3663 
3664 static
3665 void
3666 i386_protection_init(void)
3667 {
3668 	int *kp, prot;
3669 
3670 	/* JG NX support may go here; No VM_PROT_EXECUTE ==> set NX bit  */
3671 	kp = protection_codes;
3672 	for (prot = 0; prot < 8; prot++) {
3673 		switch (prot) {
3674 		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3675 			/*
3676 			 * Read access is also 0. There isn't any execute bit,
3677 			 * so just make it readable.
3678 			 */
3679 		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3680 		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3681 		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3682 			*kp++ = 0;
3683 			break;
3684 		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3685 		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3686 		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3687 		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3688 			*kp++ = PG_RW;
3689 			break;
3690 		}
3691 	}
3692 }
3693 
3694 /*
3695  * Map a set of physical memory pages into the kernel virtual
3696  * address space. Return a pointer to where it is mapped. This
3697  * routine is intended to be used for mapping device memory,
3698  * NOT real memory.
3699  *
3700  * NOTE: we can't use pgeflag unless we invalidate the pages one at
3701  * a time.
3702  */
3703 void *
3704 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3705 {
3706 	vm_offset_t va, tmpva, offset;
3707 	pt_entry_t *pte;
3708 
3709 	offset = pa & PAGE_MASK;
3710 	size = roundup(offset + size, PAGE_SIZE);
3711 
3712 	va = kmem_alloc_nofault(&kernel_map, size, PAGE_SIZE);
3713 	if (va == 0)
3714 		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3715 
3716 	pa = pa & ~PAGE_MASK;
3717 	for (tmpva = va; size > 0;) {
3718 		pte = vtopte(tmpva);
3719 		*pte = pa | PG_RW | PG_V; /* | pgeflag; */
3720 		size -= PAGE_SIZE;
3721 		tmpva += PAGE_SIZE;
3722 		pa += PAGE_SIZE;
3723 	}
3724 	cpu_invltlb();
3725 	smp_invltlb();
3726 
3727 	return ((void *)(va + offset));
3728 }
3729 
3730 void *
3731 pmap_mapdev_uncacheable(vm_paddr_t pa, vm_size_t size)
3732 {
3733 	vm_offset_t va, tmpva, offset;
3734 	pt_entry_t *pte;
3735 
3736 	offset = pa & PAGE_MASK;
3737 	size = roundup(offset + size, PAGE_SIZE);
3738 
3739 	va = kmem_alloc_nofault(&kernel_map, size, PAGE_SIZE);
3740 	if (va == 0)
3741 		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3742 
3743 	pa = pa & ~PAGE_MASK;
3744 	for (tmpva = va; size > 0;) {
3745 		pte = vtopte(tmpva);
3746 		*pte = pa | PG_RW | PG_V | PG_N; /* | pgeflag; */
3747 		size -= PAGE_SIZE;
3748 		tmpva += PAGE_SIZE;
3749 		pa += PAGE_SIZE;
3750 	}
3751 	cpu_invltlb();
3752 	smp_invltlb();
3753 
3754 	return ((void *)(va + offset));
3755 }
3756 
3757 void
3758 pmap_unmapdev(vm_offset_t va, vm_size_t size)
3759 {
3760 	vm_offset_t base, offset;
3761 
3762 	base = va & ~PAGE_MASK;
3763 	offset = va & PAGE_MASK;
3764 	size = roundup(offset + size, PAGE_SIZE);
3765 	pmap_qremove(va, size >> PAGE_SHIFT);
3766 	kmem_free(&kernel_map, base, size);
3767 }
3768 
3769 /*
3770  * perform the pmap work for mincore
3771  */
3772 int
3773 pmap_mincore(pmap_t pmap, vm_offset_t addr)
3774 {
3775 	pt_entry_t *ptep, pte;
3776 	vm_page_t m;
3777 	int val = 0;
3778 
3779 	lwkt_gettoken(&vm_token);
3780 	ptep = pmap_pte(pmap, addr);
3781 
3782 	if (ptep && (pte = *ptep) != 0) {
3783 		vm_offset_t pa;
3784 
3785 		val = MINCORE_INCORE;
3786 		if ((pte & PG_MANAGED) == 0)
3787 			goto done;
3788 
3789 		pa = pte & PG_FRAME;
3790 
3791 		m = PHYS_TO_VM_PAGE(pa);
3792 
3793 		/*
3794 		 * Modified by us
3795 		 */
3796 		if (pte & PG_M)
3797 			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3798 		/*
3799 		 * Modified by someone
3800 		 */
3801 		else if (m->dirty || pmap_is_modified(m))
3802 			val |= MINCORE_MODIFIED_OTHER;
3803 		/*
3804 		 * Referenced by us
3805 		 */
3806 		if (pte & PG_A)
3807 			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3808 
3809 		/*
3810 		 * Referenced by someone
3811 		 */
3812 		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3813 			val |= MINCORE_REFERENCED_OTHER;
3814 			vm_page_flag_set(m, PG_REFERENCED);
3815 		}
3816 	}
3817 done:
3818 	lwkt_reltoken(&vm_token);
3819 	return val;
3820 }
3821 
3822 /*
3823  * Replace p->p_vmspace with a new one.  If adjrefs is non-zero the new
3824  * vmspace will be ref'd and the old one will be deref'd.
3825  *
3826  * The vmspace for all lwps associated with the process will be adjusted
3827  * and cr3 will be reloaded if any lwp is the current lwp.
3828  */
3829 void
3830 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
3831 {
3832 	struct vmspace *oldvm;
3833 	struct lwp *lp;
3834 
3835 	crit_enter();
3836 	oldvm = p->p_vmspace;
3837 	if (oldvm != newvm) {
3838 		p->p_vmspace = newvm;
3839 		KKASSERT(p->p_nthreads == 1);
3840 		lp = RB_ROOT(&p->p_lwp_tree);
3841 		pmap_setlwpvm(lp, newvm);
3842 		if (adjrefs) {
3843 			sysref_get(&newvm->vm_sysref);
3844 			sysref_put(&oldvm->vm_sysref);
3845 		}
3846 	}
3847 	crit_exit();
3848 }
3849 
3850 /*
3851  * Set the vmspace for a LWP.  The vmspace is almost universally set the
3852  * same as the process vmspace, but virtual kernels need to swap out contexts
3853  * on a per-lwp basis.
3854  */
3855 void
3856 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
3857 {
3858 	struct vmspace *oldvm;
3859 	struct pmap *pmap;
3860 
3861 	crit_enter();
3862 	oldvm = lp->lwp_vmspace;
3863 
3864 	if (oldvm != newvm) {
3865 		lp->lwp_vmspace = newvm;
3866 		if (curthread->td_lwp == lp) {
3867 			pmap = vmspace_pmap(newvm);
3868 #if defined(SMP)
3869 			atomic_set_cpumask(&pmap->pm_active, mycpu->gd_cpumask);
3870 			if (pmap->pm_active & CPUMASK_LOCK)
3871 				pmap_interlock_wait(newvm);
3872 #else
3873 			pmap->pm_active |= 1;
3874 #endif
3875 #if defined(SWTCH_OPTIM_STATS)
3876 			tlb_flush_count++;
3877 #endif
3878 			curthread->td_pcb->pcb_cr3 = vtophys(pmap->pm_pml4);
3879 			curthread->td_pcb->pcb_cr3 |= PG_RW | PG_U | PG_V;
3880 			load_cr3(curthread->td_pcb->pcb_cr3);
3881 			pmap = vmspace_pmap(oldvm);
3882 #if defined(SMP)
3883 			atomic_clear_cpumask(&pmap->pm_active, mycpu->gd_cpumask);
3884 #else
3885 			pmap->pm_active &= ~(cpumask_t)1;
3886 #endif
3887 		}
3888 	}
3889 	crit_exit();
3890 }
3891 
3892 #ifdef SMP
3893 
3894 /*
3895  * Called when switching to a locked pmap
3896  */
3897 void
3898 pmap_interlock_wait(struct vmspace *vm)
3899 {
3900 	struct pmap *pmap = &vm->vm_pmap;
3901 
3902 	if (pmap->pm_active & CPUMASK_LOCK) {
3903 		while (pmap->pm_active & CPUMASK_LOCK) {
3904 			cpu_pause();
3905 			cpu_ccfence();
3906 			lwkt_process_ipiq();
3907 		}
3908 	}
3909 }
3910 
3911 #endif
3912 
3913 vm_offset_t
3914 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3915 {
3916 
3917 	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3918 		return addr;
3919 	}
3920 
3921 	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3922 	return addr;
3923 }
3924 
3925 /*
3926  * Used by kmalloc/kfree, page already exists at va
3927  */
3928 vm_page_t
3929 pmap_kvtom(vm_offset_t va)
3930 {
3931 	return(PHYS_TO_VM_PAGE(*vtopte(va) & PG_FRAME));
3932 }
3933