xref: /dragonfly/sys/platform/pc64/x86_64/pmap.c (revision 2983445f)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1994 David Greenman
7  * Copyright (c) 2003 Peter Wemm
8  * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
9  * Copyright (c) 2008, 2009 The DragonFly Project.
10  * Copyright (c) 2008, 2009 Jordan Gordeev.
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * the Systems Programming Group of the University of Utah Computer
15  * Science Department and William Jolitz of UUNET Technologies Inc.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  * 3. All advertising materials mentioning features or use of this software
26  *    must display the following acknowledgement:
27  *	This product includes software developed by the University of
28  *	California, Berkeley and its contributors.
29  * 4. Neither the name of the University nor the names of its contributors
30  *    may be used to endorse or promote products derived from this software
31  *    without specific prior written permission.
32  *
33  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43  * SUCH DAMAGE.
44  *
45  *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
46  * $FreeBSD: src/sys/i386/i386/pmap.c,v 1.250.2.18 2002/03/06 22:48:53 silby Exp $
47  */
48 
49 /*
50  *	Manages physical address maps.
51  *
52  *	In addition to hardware address maps, this
53  *	module is called upon to provide software-use-only
54  *	maps which may or may not be stored in the same
55  *	form as hardware maps.  These pseudo-maps are
56  *	used to store intermediate results from copy
57  *	operations to and from address spaces.
58  *
59  *	Since the information managed by this module is
60  *	also stored by the logical address mapping module,
61  *	this module may throw away valid virtual-to-physical
62  *	mappings at almost any time.  However, invalidations
63  *	of virtual-to-physical mappings must be done as
64  *	requested.
65  *
66  *	In order to cope with hardware architectures which
67  *	make virtual-to-physical map invalidates expensive,
68  *	this module may delay invalidate or reduced protection
69  *	operations until such time as they are actually
70  *	necessary.  This module is given full information as
71  *	to which processors are currently using which maps,
72  *	and to when physical maps must be made correct.
73  */
74 
75 #if JG
76 #include "opt_disable_pse.h"
77 #include "opt_pmap.h"
78 #endif
79 #include "opt_msgbuf.h"
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/kernel.h>
84 #include <sys/proc.h>
85 #include <sys/msgbuf.h>
86 #include <sys/vmmeter.h>
87 #include <sys/mman.h>
88 
89 #include <vm/vm.h>
90 #include <vm/vm_param.h>
91 #include <sys/sysctl.h>
92 #include <sys/lock.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_page.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_extern.h>
98 #include <vm/vm_pageout.h>
99 #include <vm/vm_pager.h>
100 #include <vm/vm_zone.h>
101 
102 #include <sys/user.h>
103 #include <sys/thread2.h>
104 #include <sys/sysref2.h>
105 
106 #include <machine/cputypes.h>
107 #include <machine/md_var.h>
108 #include <machine/specialreg.h>
109 #include <machine/smp.h>
110 #include <machine_base/apic/apicreg.h>
111 #include <machine/globaldata.h>
112 #include <machine/pmap.h>
113 #include <machine/pmap_inval.h>
114 
115 #include <ddb/ddb.h>
116 
117 #define PMAP_KEEP_PDIRS
118 #ifndef PMAP_SHPGPERPROC
119 #define PMAP_SHPGPERPROC 200
120 #endif
121 
122 #if defined(DIAGNOSTIC)
123 #define PMAP_DIAGNOSTIC
124 #endif
125 
126 #define MINPV 2048
127 
128 /*
129  * Get PDEs and PTEs for user/kernel address space
130  */
131 static pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va);
132 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
133 
134 #define pmap_pde_v(pte)		((*(pd_entry_t *)pte & PG_V) != 0)
135 #define pmap_pte_w(pte)		((*(pt_entry_t *)pte & PG_W) != 0)
136 #define pmap_pte_m(pte)		((*(pt_entry_t *)pte & PG_M) != 0)
137 #define pmap_pte_u(pte)		((*(pt_entry_t *)pte & PG_A) != 0)
138 #define pmap_pte_v(pte)		((*(pt_entry_t *)pte & PG_V) != 0)
139 
140 
141 /*
142  * Given a map and a machine independent protection code,
143  * convert to a vax protection code.
144  */
145 #define pte_prot(m, p)		\
146 	(protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
147 static int protection_codes[8];
148 
149 struct pmap kernel_pmap;
150 static TAILQ_HEAD(,pmap)	pmap_list = TAILQ_HEAD_INITIALIZER(pmap_list);
151 
152 vm_paddr_t avail_start;		/* PA of first available physical page */
153 vm_paddr_t avail_end;		/* PA of last available physical page */
154 vm_offset_t virtual2_start;	/* cutout free area prior to kernel start */
155 vm_offset_t virtual2_end;
156 vm_offset_t virtual_start;	/* VA of first avail page (after kernel bss) */
157 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
158 vm_offset_t KvaStart;		/* VA start of KVA space */
159 vm_offset_t KvaEnd;		/* VA end of KVA space (non-inclusive) */
160 vm_offset_t KvaSize;		/* max size of kernel virtual address space */
161 static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
162 static int pgeflag;		/* PG_G or-in */
163 static int pseflag;		/* PG_PS or-in */
164 
165 static vm_object_t kptobj;
166 
167 static int ndmpdp;
168 static vm_paddr_t dmaplimit;
169 static int nkpt;
170 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
171 
172 static uint64_t KPTbase;
173 static uint64_t KPTphys;
174 static uint64_t	KPDphys;	/* phys addr of kernel level 2 */
175 static uint64_t	KPDbase;	/* phys addr of kernel level 2 @ KERNBASE */
176 uint64_t KPDPphys;	/* phys addr of kernel level 3 */
177 uint64_t KPML4phys;	/* phys addr of kernel level 4 */
178 
179 static uint64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
180 static uint64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
181 
182 /*
183  * Data for the pv entry allocation mechanism
184  */
185 static vm_zone_t pvzone;
186 static struct vm_zone pvzone_store;
187 static struct vm_object pvzone_obj;
188 static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0;
189 static int pmap_pagedaemon_waken = 0;
190 static struct pv_entry *pvinit;
191 
192 /*
193  * All those kernel PT submaps that BSD is so fond of
194  */
195 pt_entry_t *CMAP1 = 0, *ptmmap;
196 caddr_t CADDR1 = 0, ptvmmap = 0;
197 static pt_entry_t *msgbufmap;
198 struct msgbuf *msgbufp=0;
199 
200 /*
201  * Crashdump maps.
202  */
203 static pt_entry_t *pt_crashdumpmap;
204 static caddr_t crashdumpmap;
205 
206 #define DISABLE_PSE
207 
208 static pv_entry_t get_pv_entry (void);
209 static void i386_protection_init (void);
210 static void create_pagetables(vm_paddr_t *firstaddr);
211 static void pmap_remove_all (vm_page_t m);
212 static int  pmap_remove_pte (struct pmap *pmap, pt_entry_t *ptq,
213 				vm_offset_t sva, pmap_inval_info_t info);
214 static void pmap_remove_page (struct pmap *pmap,
215 				vm_offset_t va, pmap_inval_info_t info);
216 static int  pmap_remove_entry (struct pmap *pmap, vm_page_t m,
217 				vm_offset_t va, pmap_inval_info_t info);
218 static boolean_t pmap_testbit (vm_page_t m, int bit);
219 static void pmap_insert_entry (pmap_t pmap, vm_offset_t va,
220 				vm_page_t mpte, vm_page_t m);
221 
222 static vm_page_t pmap_allocpte (pmap_t pmap, vm_offset_t va);
223 
224 static int pmap_release_free_page (pmap_t pmap, vm_page_t p);
225 static vm_page_t _pmap_allocpte (pmap_t pmap, vm_pindex_t ptepindex);
226 static pt_entry_t * pmap_pte_quick (pmap_t pmap, vm_offset_t va);
227 static vm_page_t pmap_page_lookup (vm_object_t object, vm_pindex_t pindex);
228 static int _pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m,
229 				pmap_inval_info_t info);
230 static int pmap_unuse_pt (pmap_t, vm_offset_t, vm_page_t, pmap_inval_info_t);
231 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
232 
233 static unsigned pdir4mb;
234 
235 /*
236  * Move the kernel virtual free pointer to the next
237  * 2MB.  This is used to help improve performance
238  * by using a large (2MB) page for much of the kernel
239  * (.text, .data, .bss)
240  */
241 static
242 vm_offset_t
243 pmap_kmem_choose(vm_offset_t addr)
244 {
245 	vm_offset_t newaddr = addr;
246 
247 	newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
248 	return newaddr;
249 }
250 
251 /*
252  * pmap_pte_quick:
253  *
254  *	Super fast pmap_pte routine best used when scanning the pv lists.
255  *	This eliminates many course-grained invltlb calls.  Note that many of
256  *	the pv list scans are across different pmaps and it is very wasteful
257  *	to do an entire invltlb when checking a single mapping.
258  *
259  *	Should only be called while in a critical section.
260  */
261 static __inline pt_entry_t *pmap_pte(pmap_t pmap, vm_offset_t va);
262 
263 static
264 pt_entry_t *
265 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
266 {
267 	return pmap_pte(pmap, va);
268 }
269 
270 /* Return a non-clipped PD index for a given VA */
271 static __inline
272 vm_pindex_t
273 pmap_pde_pindex(vm_offset_t va)
274 {
275 	return va >> PDRSHIFT;
276 }
277 
278 /* Return various clipped indexes for a given VA */
279 static __inline
280 vm_pindex_t
281 pmap_pte_index(vm_offset_t va)
282 {
283 
284 	return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
285 }
286 
287 static __inline
288 vm_pindex_t
289 pmap_pde_index(vm_offset_t va)
290 {
291 
292 	return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
293 }
294 
295 static __inline
296 vm_pindex_t
297 pmap_pdpe_index(vm_offset_t va)
298 {
299 
300 	return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
301 }
302 
303 static __inline
304 vm_pindex_t
305 pmap_pml4e_index(vm_offset_t va)
306 {
307 
308 	return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
309 }
310 
311 /* Return a pointer to the PML4 slot that corresponds to a VA */
312 static __inline
313 pml4_entry_t *
314 pmap_pml4e(pmap_t pmap, vm_offset_t va)
315 {
316 
317 	return (&pmap->pm_pml4[pmap_pml4e_index(va)]);
318 }
319 
320 /* Return a pointer to the PDP slot that corresponds to a VA */
321 static __inline
322 pdp_entry_t *
323 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
324 {
325 	pdp_entry_t *pdpe;
326 
327 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
328 	return (&pdpe[pmap_pdpe_index(va)]);
329 }
330 
331 /* Return a pointer to the PDP slot that corresponds to a VA */
332 static __inline
333 pdp_entry_t *
334 pmap_pdpe(pmap_t pmap, vm_offset_t va)
335 {
336 	pml4_entry_t *pml4e;
337 
338 	pml4e = pmap_pml4e(pmap, va);
339 	if ((*pml4e & PG_V) == 0)
340 		return NULL;
341 	return (pmap_pml4e_to_pdpe(pml4e, va));
342 }
343 
344 /* Return a pointer to the PD slot that corresponds to a VA */
345 static __inline
346 pd_entry_t *
347 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
348 {
349 	pd_entry_t *pde;
350 
351 	pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
352 	return (&pde[pmap_pde_index(va)]);
353 }
354 
355 /* Return a pointer to the PD slot that corresponds to a VA */
356 static __inline
357 pd_entry_t *
358 pmap_pde(pmap_t pmap, vm_offset_t va)
359 {
360 	pdp_entry_t *pdpe;
361 
362 	pdpe = pmap_pdpe(pmap, va);
363 	if (pdpe == NULL || (*pdpe & PG_V) == 0)
364 		 return NULL;
365 	return (pmap_pdpe_to_pde(pdpe, va));
366 }
367 
368 /* Return a pointer to the PT slot that corresponds to a VA */
369 static __inline
370 pt_entry_t *
371 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
372 {
373 	pt_entry_t *pte;
374 
375 	pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
376 	return (&pte[pmap_pte_index(va)]);
377 }
378 
379 /* Return a pointer to the PT slot that corresponds to a VA */
380 static __inline
381 pt_entry_t *
382 pmap_pte(pmap_t pmap, vm_offset_t va)
383 {
384 	pd_entry_t *pde;
385 
386 	pde = pmap_pde(pmap, va);
387 	if (pde == NULL || (*pde & PG_V) == 0)
388 		return NULL;
389 	if ((*pde & PG_PS) != 0)	/* compat with i386 pmap_pte() */
390 		return ((pt_entry_t *)pde);
391 	return (pmap_pde_to_pte(pde, va));
392 }
393 
394 static __inline
395 pt_entry_t *
396 vtopte(vm_offset_t va)
397 {
398 	uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
399 
400 	return (PTmap + ((va >> PAGE_SHIFT) & mask));
401 }
402 
403 static __inline
404 pd_entry_t *
405 vtopde(vm_offset_t va)
406 {
407 	uint64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
408 
409 	return (PDmap + ((va >> PDRSHIFT) & mask));
410 }
411 
412 static uint64_t
413 allocpages(vm_paddr_t *firstaddr, long n)
414 {
415 	uint64_t ret;
416 
417 	ret = *firstaddr;
418 	bzero((void *)ret, n * PAGE_SIZE);
419 	*firstaddr += n * PAGE_SIZE;
420 	return (ret);
421 }
422 
423 static
424 void
425 create_pagetables(vm_paddr_t *firstaddr)
426 {
427 	long i;		/* must be 64 bits */
428 	long nkpt_base;
429 	long nkpt_phys;
430 
431 	/*
432 	 * We are running (mostly) V=P at this point
433 	 *
434 	 * Calculate NKPT - number of kernel page tables.  We have to
435 	 * accomodoate prealloction of the vm_page_array, dump bitmap,
436 	 * MSGBUF_SIZE, and other stuff.  Be generous.
437 	 *
438 	 * Maxmem is in pages.
439 	 */
440 	ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
441 	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
442 		ndmpdp = 4;
443 
444 	/*
445 	 * Starting at the beginning of kvm (not KERNBASE).
446 	 */
447 	nkpt_phys = (Maxmem * sizeof(struct vm_page) + NBPDR - 1) / NBPDR;
448 	nkpt_phys += (Maxmem * sizeof(struct pv_entry) + NBPDR - 1) / NBPDR;
449 	nkpt_phys += ((nkpt + nkpt + 1 + NKPML4E + NKPDPE + NDMPML4E + ndmpdp) +
450 		     511) / 512;
451 	nkpt_phys += 128;
452 
453 	/*
454 	 * Starting at KERNBASE - map 2G worth of page table pages.
455 	 * KERNBASE is offset -2G from the end of kvm.
456 	 */
457 	nkpt_base = (NPDPEPG - KPDPI) * NPTEPG;	/* typically 2 x 512 */
458 
459 	/*
460 	 * Allocate pages
461 	 */
462 	KPTbase = allocpages(firstaddr, nkpt_base);
463 	KPTphys = allocpages(firstaddr, nkpt_phys);
464 	KPML4phys = allocpages(firstaddr, 1);
465 	KPDPphys = allocpages(firstaddr, NKPML4E);
466 	KPDphys = allocpages(firstaddr, NKPDPE);
467 
468 	/*
469 	 * Calculate the page directory base for KERNBASE,
470 	 * that is where we start populating the page table pages.
471 	 * Basically this is the end - 2.
472 	 */
473 	KPDbase = KPDphys + ((NKPDPE - (NPDPEPG - KPDPI)) << PAGE_SHIFT);
474 
475 	DMPDPphys = allocpages(firstaddr, NDMPML4E);
476 	if ((amd_feature & AMDID_PAGE1GB) == 0)
477 		DMPDphys = allocpages(firstaddr, ndmpdp);
478 	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
479 
480 	/*
481 	 * Fill in the underlying page table pages for the area around
482 	 * KERNBASE.  This remaps low physical memory to KERNBASE.
483 	 *
484 	 * Read-only from zero to physfree
485 	 * XXX not fully used, underneath 2M pages
486 	 */
487 	for (i = 0; (i << PAGE_SHIFT) < *firstaddr; i++) {
488 		((pt_entry_t *)KPTbase)[i] = i << PAGE_SHIFT;
489 		((pt_entry_t *)KPTbase)[i] |= PG_RW | PG_V | PG_G;
490 	}
491 
492 	/*
493 	 * Now map the initial kernel page tables.  One block of page
494 	 * tables is placed at the beginning of kernel virtual memory,
495 	 * and another block is placed at KERNBASE to map the kernel binary,
496 	 * data, bss, and initial pre-allocations.
497 	 */
498 	for (i = 0; i < nkpt_base; i++) {
499 		((pd_entry_t *)KPDbase)[i] = KPTbase + (i << PAGE_SHIFT);
500 		((pd_entry_t *)KPDbase)[i] |= PG_RW | PG_V;
501 	}
502 	for (i = 0; i < nkpt_phys; i++) {
503 		((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
504 		((pd_entry_t *)KPDphys)[i] |= PG_RW | PG_V;
505 	}
506 
507 	/*
508 	 * Map from zero to end of allocations using 2M pages as an
509 	 * optimization.  This will bypass some of the KPTBase pages
510 	 * above in the KERNBASE area.
511 	 */
512 	for (i = 0; (i << PDRSHIFT) < *firstaddr; i++) {
513 		((pd_entry_t *)KPDbase)[i] = i << PDRSHIFT;
514 		((pd_entry_t *)KPDbase)[i] |= PG_RW | PG_V | PG_PS | PG_G;
515 	}
516 
517 	/*
518 	 * And connect up the PD to the PDP.  The kernel pmap is expected
519 	 * to pre-populate all of its PDs.  See NKPDPE in vmparam.h.
520 	 */
521 	for (i = 0; i < NKPDPE; i++) {
522 		((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] =
523 				KPDphys + (i << PAGE_SHIFT);
524 		((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] |=
525 				PG_RW | PG_V | PG_U;
526 	}
527 
528 	/* Now set up the direct map space using either 2MB or 1GB pages */
529 	/* Preset PG_M and PG_A because demotion expects it */
530 	if ((amd_feature & AMDID_PAGE1GB) == 0) {
531 		for (i = 0; i < NPDEPG * ndmpdp; i++) {
532 			((pd_entry_t *)DMPDphys)[i] = i << PDRSHIFT;
533 			((pd_entry_t *)DMPDphys)[i] |= PG_RW | PG_V | PG_PS |
534 			    PG_G | PG_M | PG_A;
535 		}
536 		/* And the direct map space's PDP */
537 		for (i = 0; i < ndmpdp; i++) {
538 			((pdp_entry_t *)DMPDPphys)[i] = DMPDphys +
539 			    (i << PAGE_SHIFT);
540 			((pdp_entry_t *)DMPDPphys)[i] |= PG_RW | PG_V | PG_U;
541 		}
542 	} else {
543 		for (i = 0; i < ndmpdp; i++) {
544 			((pdp_entry_t *)DMPDPphys)[i] =
545 			    (vm_paddr_t)i << PDPSHIFT;
546 			((pdp_entry_t *)DMPDPphys)[i] |= PG_RW | PG_V | PG_PS |
547 			    PG_G | PG_M | PG_A;
548 		}
549 	}
550 
551 	/* And recursively map PML4 to itself in order to get PTmap */
552 	((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
553 	((pdp_entry_t *)KPML4phys)[PML4PML4I] |= PG_RW | PG_V | PG_U;
554 
555 	/* Connect the Direct Map slot up to the PML4 */
556 	((pdp_entry_t *)KPML4phys)[DMPML4I] = DMPDPphys;
557 	((pdp_entry_t *)KPML4phys)[DMPML4I] |= PG_RW | PG_V | PG_U;
558 
559 	/* Connect the KVA slot up to the PML4 */
560 	((pdp_entry_t *)KPML4phys)[KPML4I] = KPDPphys;
561 	((pdp_entry_t *)KPML4phys)[KPML4I] |= PG_RW | PG_V | PG_U;
562 }
563 
564 /*
565  *	Bootstrap the system enough to run with virtual memory.
566  *
567  *	On the i386 this is called after mapping has already been enabled
568  *	and just syncs the pmap module with what has already been done.
569  *	[We can't call it easily with mapping off since the kernel is not
570  *	mapped with PA == VA, hence we would have to relocate every address
571  *	from the linked base (virtual) address "KERNBASE" to the actual
572  *	(physical) address starting relative to 0]
573  */
574 void
575 pmap_bootstrap(vm_paddr_t *firstaddr)
576 {
577 	vm_offset_t va;
578 	pt_entry_t *pte;
579 	struct mdglobaldata *gd;
580 	int pg;
581 
582 	KvaStart = VM_MIN_KERNEL_ADDRESS;
583 	KvaEnd = VM_MAX_KERNEL_ADDRESS;
584 	KvaSize = KvaEnd - KvaStart;
585 
586 	avail_start = *firstaddr;
587 
588 	/*
589 	 * Create an initial set of page tables to run the kernel in.
590 	 */
591 	create_pagetables(firstaddr);
592 
593 	virtual2_start = KvaStart;
594 	virtual2_end = PTOV_OFFSET;
595 
596 	virtual_start = (vm_offset_t) PTOV_OFFSET + *firstaddr;
597 	virtual_start = pmap_kmem_choose(virtual_start);
598 
599 	virtual_end = VM_MAX_KERNEL_ADDRESS;
600 
601 	/* XXX do %cr0 as well */
602 	load_cr4(rcr4() | CR4_PGE | CR4_PSE);
603 	load_cr3(KPML4phys);
604 
605 	/*
606 	 * Initialize protection array.
607 	 */
608 	i386_protection_init();
609 
610 	/*
611 	 * The kernel's pmap is statically allocated so we don't have to use
612 	 * pmap_create, which is unlikely to work correctly at this part of
613 	 * the boot sequence (XXX and which no longer exists).
614 	 */
615 	kernel_pmap.pm_pml4 = (pdp_entry_t *) (PTOV_OFFSET + KPML4phys);
616 	kernel_pmap.pm_count = 1;
617 	kernel_pmap.pm_active = (cpumask_t)-1 & ~CPUMASK_LOCK;
618 	TAILQ_INIT(&kernel_pmap.pm_pvlist);
619 
620 	/*
621 	 * Reserve some special page table entries/VA space for temporary
622 	 * mapping of pages.
623 	 */
624 #define	SYSMAP(c, p, v, n)	\
625 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
626 
627 	va = virtual_start;
628 	pte = vtopte(va);
629 
630 	/*
631 	 * CMAP1/CMAP2 are used for zeroing and copying pages.
632 	 */
633 	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
634 
635 	/*
636 	 * Crashdump maps.
637 	 */
638 	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
639 
640 	/*
641 	 * ptvmmap is used for reading arbitrary physical pages via
642 	 * /dev/mem.
643 	 */
644 	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
645 
646 	/*
647 	 * msgbufp is used to map the system message buffer.
648 	 * XXX msgbufmap is not used.
649 	 */
650 	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
651 	       atop(round_page(MSGBUF_SIZE)))
652 
653 	virtual_start = va;
654 
655 	*CMAP1 = 0;
656 
657 	/*
658 	 * PG_G is terribly broken on SMP because we IPI invltlb's in some
659 	 * cases rather then invl1pg.  Actually, I don't even know why it
660 	 * works under UP because self-referential page table mappings
661 	 */
662 #ifdef SMP
663 	pgeflag = 0;
664 #else
665 	if (cpu_feature & CPUID_PGE)
666 		pgeflag = PG_G;
667 #endif
668 
669 /*
670  * Initialize the 4MB page size flag
671  */
672 	pseflag = 0;
673 /*
674  * The 4MB page version of the initial
675  * kernel page mapping.
676  */
677 	pdir4mb = 0;
678 
679 #if !defined(DISABLE_PSE)
680 	if (cpu_feature & CPUID_PSE) {
681 		pt_entry_t ptditmp;
682 		/*
683 		 * Note that we have enabled PSE mode
684 		 */
685 		pseflag = PG_PS;
686 		ptditmp = *(PTmap + x86_64_btop(KERNBASE));
687 		ptditmp &= ~(NBPDR - 1);
688 		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
689 		pdir4mb = ptditmp;
690 
691 #ifndef SMP
692 		/*
693 		 * Enable the PSE mode.  If we are SMP we can't do this
694 		 * now because the APs will not be able to use it when
695 		 * they boot up.
696 		 */
697 		load_cr4(rcr4() | CR4_PSE);
698 
699 		/*
700 		 * We can do the mapping here for the single processor
701 		 * case.  We simply ignore the old page table page from
702 		 * now on.
703 		 */
704 		/*
705 		 * For SMP, we still need 4K pages to bootstrap APs,
706 		 * PSE will be enabled as soon as all APs are up.
707 		 */
708 		PTD[KPTDI] = (pd_entry_t)ptditmp;
709 		cpu_invltlb();
710 #endif
711 	}
712 #endif
713 
714 	/*
715 	 * We need to finish setting up the globaldata page for the BSP.
716 	 * locore has already populated the page table for the mdglobaldata
717 	 * portion.
718 	 */
719 	pg = MDGLOBALDATA_BASEALLOC_PAGES;
720 	gd = &CPU_prvspace[0].mdglobaldata;
721 
722 	cpu_invltlb();
723 }
724 
725 #ifdef SMP
726 /*
727  * Set 4mb pdir for mp startup
728  */
729 void
730 pmap_set_opt(void)
731 {
732 	if (pseflag && (cpu_feature & CPUID_PSE)) {
733 		load_cr4(rcr4() | CR4_PSE);
734 		if (pdir4mb && mycpu->gd_cpuid == 0) {	/* only on BSP */
735 			cpu_invltlb();
736 		}
737 	}
738 }
739 #endif
740 
741 /*
742  * XXX: Hack. Required by pmap_init()
743  */
744 extern vm_offset_t cpu_apic_addr;
745 
746 /*
747  *	Initialize the pmap module.
748  *	Called by vm_init, to initialize any structures that the pmap
749  *	system needs to map virtual memory.
750  *	pmap_init has been enhanced to support in a fairly consistant
751  *	way, discontiguous physical memory.
752  */
753 void
754 pmap_init(void)
755 {
756 	int i;
757 	int initial_pvs;
758 
759 	/*
760 	 * object for kernel page table pages
761 	 */
762 	/* JG I think the number can be arbitrary */
763 	kptobj = vm_object_allocate(OBJT_DEFAULT, 5);
764 
765 	/*
766 	 * Allocate memory for random pmap data structures.  Includes the
767 	 * pv_head_table.
768 	 */
769 
770 	for(i = 0; i < vm_page_array_size; i++) {
771 		vm_page_t m;
772 
773 		m = &vm_page_array[i];
774 		TAILQ_INIT(&m->md.pv_list);
775 		m->md.pv_list_count = 0;
776 	}
777 
778 	/*
779 	 * init the pv free list
780 	 */
781 	initial_pvs = vm_page_array_size;
782 	if (initial_pvs < MINPV)
783 		initial_pvs = MINPV;
784 	pvzone = &pvzone_store;
785 	pvinit = (void *)kmem_alloc(&kernel_map,
786 				    initial_pvs * sizeof (struct pv_entry));
787 	zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry),
788 		  pvinit, initial_pvs);
789 
790 	/*
791 	 * Now it is safe to enable pv_table recording.
792 	 */
793 	pmap_initialized = TRUE;
794 #ifdef SMP
795 	/*
796 	 * XXX: Hack
797 	 */
798 	lapic = pmap_mapdev_uncacheable(cpu_apic_addr, sizeof(struct LAPIC));
799 #endif
800 }
801 
802 /*
803  * Initialize the address space (zone) for the pv_entries.  Set a
804  * high water mark so that the system can recover from excessive
805  * numbers of pv entries.
806  */
807 void
808 pmap_init2(void)
809 {
810 	int shpgperproc = PMAP_SHPGPERPROC;
811 	int entry_max;
812 
813 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
814 	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
815 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
816 	pv_entry_high_water = 9 * (pv_entry_max / 10);
817 
818 	/*
819 	 * Subtract out pages already installed in the zone (hack)
820 	 */
821 	entry_max = pv_entry_max - vm_page_array_size;
822 	if (entry_max <= 0)
823 		entry_max = 1;
824 
825 	zinitna(pvzone, &pvzone_obj, NULL, 0, entry_max, ZONE_INTERRUPT, 1);
826 }
827 
828 
829 /***************************************************
830  * Low level helper routines.....
831  ***************************************************/
832 
833 #if defined(PMAP_DIAGNOSTIC)
834 
835 /*
836  * This code checks for non-writeable/modified pages.
837  * This should be an invalid condition.
838  */
839 static
840 int
841 pmap_nw_modified(pt_entry_t pte)
842 {
843 	if ((pte & (PG_M|PG_RW)) == PG_M)
844 		return 1;
845 	else
846 		return 0;
847 }
848 #endif
849 
850 
851 /*
852  * this routine defines the region(s) of memory that should
853  * not be tested for the modified bit.
854  */
855 static __inline
856 int
857 pmap_track_modified(vm_offset_t va)
858 {
859 	if ((va < clean_sva) || (va >= clean_eva))
860 		return 1;
861 	else
862 		return 0;
863 }
864 
865 /*
866  * Extract the physical page address associated with the map/VA pair.
867  *
868  * The caller must hold vm_token if non-blocking operation is desired.
869  */
870 vm_paddr_t
871 pmap_extract(pmap_t pmap, vm_offset_t va)
872 {
873 	vm_paddr_t rtval;
874 	pt_entry_t *pte;
875 	pd_entry_t pde, *pdep;
876 
877 	lwkt_gettoken(&vm_token);
878 	rtval = 0;
879 	pdep = pmap_pde(pmap, va);
880 	if (pdep != NULL) {
881 		pde = *pdep;
882 		if (pde) {
883 			if ((pde & PG_PS) != 0) {
884 				rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
885 			} else {
886 				pte = pmap_pde_to_pte(pdep, va);
887 				rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
888 			}
889 		}
890 	}
891 	lwkt_reltoken(&vm_token);
892 	return rtval;
893 }
894 
895 /*
896  * Extract the physical page address associated kernel virtual address.
897  */
898 vm_paddr_t
899 pmap_kextract(vm_offset_t va)
900 {
901 	pd_entry_t pde;
902 	vm_paddr_t pa;
903 
904 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
905 		pa = DMAP_TO_PHYS(va);
906 	} else {
907 		pde = *vtopde(va);
908 		if (pde & PG_PS) {
909 			pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
910 		} else {
911 			/*
912 			 * Beware of a concurrent promotion that changes the
913 			 * PDE at this point!  For example, vtopte() must not
914 			 * be used to access the PTE because it would use the
915 			 * new PDE.  It is, however, safe to use the old PDE
916 			 * because the page table page is preserved by the
917 			 * promotion.
918 			 */
919 			pa = *pmap_pde_to_pte(&pde, va);
920 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
921 		}
922 	}
923 	return pa;
924 }
925 
926 /***************************************************
927  * Low level mapping routines.....
928  ***************************************************/
929 
930 /*
931  * Routine: pmap_kenter
932  * Function:
933  *  	Add a wired page to the KVA
934  *  	NOTE! note that in order for the mapping to take effect -- you
935  *  	should do an invltlb after doing the pmap_kenter().
936  */
937 void
938 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
939 {
940 	pt_entry_t *pte;
941 	pt_entry_t npte;
942 	pmap_inval_info info;
943 
944 	pmap_inval_init(&info);
945 	npte = pa | PG_RW | PG_V | pgeflag;
946 	pte = vtopte(va);
947 	pmap_inval_interlock(&info, &kernel_pmap, va);
948 	*pte = npte;
949 	pmap_inval_deinterlock(&info, &kernel_pmap);
950 	pmap_inval_done(&info);
951 }
952 
953 /*
954  * Routine: pmap_kenter_quick
955  * Function:
956  *  	Similar to pmap_kenter(), except we only invalidate the
957  *  	mapping on the current CPU.
958  */
959 void
960 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
961 {
962 	pt_entry_t *pte;
963 	pt_entry_t npte;
964 
965 	npte = pa | PG_RW | PG_V | pgeflag;
966 	pte = vtopte(va);
967 	*pte = npte;
968 	cpu_invlpg((void *)va);
969 }
970 
971 void
972 pmap_kenter_sync(vm_offset_t va)
973 {
974 	pmap_inval_info info;
975 
976 	pmap_inval_init(&info);
977 	pmap_inval_interlock(&info, &kernel_pmap, va);
978 	pmap_inval_deinterlock(&info, &kernel_pmap);
979 	pmap_inval_done(&info);
980 }
981 
982 void
983 pmap_kenter_sync_quick(vm_offset_t va)
984 {
985 	cpu_invlpg((void *)va);
986 }
987 
988 /*
989  * remove a page from the kernel pagetables
990  */
991 void
992 pmap_kremove(vm_offset_t va)
993 {
994 	pt_entry_t *pte;
995 	pmap_inval_info info;
996 
997 	pmap_inval_init(&info);
998 	pte = vtopte(va);
999 	pmap_inval_interlock(&info, &kernel_pmap, va);
1000 	*pte = 0;
1001 	pmap_inval_deinterlock(&info, &kernel_pmap);
1002 	pmap_inval_done(&info);
1003 }
1004 
1005 void
1006 pmap_kremove_quick(vm_offset_t va)
1007 {
1008 	pt_entry_t *pte;
1009 	pte = vtopte(va);
1010 	*pte = 0;
1011 	cpu_invlpg((void *)va);
1012 }
1013 
1014 /*
1015  * XXX these need to be recoded.  They are not used in any critical path.
1016  */
1017 void
1018 pmap_kmodify_rw(vm_offset_t va)
1019 {
1020 	*vtopte(va) |= PG_RW;
1021 	cpu_invlpg((void *)va);
1022 }
1023 
1024 void
1025 pmap_kmodify_nc(vm_offset_t va)
1026 {
1027 	*vtopte(va) |= PG_N;
1028 	cpu_invlpg((void *)va);
1029 }
1030 
1031 /*
1032  * Used to map a range of physical addresses into kernel virtual
1033  * address space during the low level boot, typically to map the
1034  * dump bitmap, message buffer, and vm_page_array.
1035  *
1036  * These mappings are typically made at some pointer after the end of the
1037  * kernel text+data.
1038  *
1039  * We could return PHYS_TO_DMAP(start) here and not allocate any
1040  * via (*virtp), but then kmem from userland and kernel dumps won't
1041  * have access to the related pointers.
1042  */
1043 vm_offset_t
1044 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
1045 {
1046 	vm_offset_t va;
1047 	vm_offset_t va_start;
1048 
1049 	/*return PHYS_TO_DMAP(start);*/
1050 
1051 	va_start = *virtp;
1052 	va = va_start;
1053 
1054 	while (start < end) {
1055 		pmap_kenter_quick(va, start);
1056 		va += PAGE_SIZE;
1057 		start += PAGE_SIZE;
1058 	}
1059 	*virtp = va;
1060 	return va_start;
1061 }
1062 
1063 
1064 /*
1065  * Add a list of wired pages to the kva
1066  * this routine is only used for temporary
1067  * kernel mappings that do not need to have
1068  * page modification or references recorded.
1069  * Note that old mappings are simply written
1070  * over.  The page *must* be wired.
1071  */
1072 void
1073 pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
1074 {
1075 	vm_offset_t end_va;
1076 
1077 	end_va = va + count * PAGE_SIZE;
1078 
1079 	while (va < end_va) {
1080 		pt_entry_t *pte;
1081 
1082 		pte = vtopte(va);
1083 		*pte = VM_PAGE_TO_PHYS(*m) | PG_RW | PG_V | pgeflag;
1084 		cpu_invlpg((void *)va);
1085 		va += PAGE_SIZE;
1086 		m++;
1087 	}
1088 	smp_invltlb();
1089 }
1090 
1091 /*
1092  * This routine jerks page mappings from the
1093  * kernel -- it is meant only for temporary mappings.
1094  *
1095  * MPSAFE, INTERRUPT SAFE (cluster callback)
1096  */
1097 void
1098 pmap_qremove(vm_offset_t va, int count)
1099 {
1100 	vm_offset_t end_va;
1101 
1102 	end_va = va + count * PAGE_SIZE;
1103 
1104 	while (va < end_va) {
1105 		pt_entry_t *pte;
1106 
1107 		pte = vtopte(va);
1108 		*pte = 0;
1109 		cpu_invlpg((void *)va);
1110 		va += PAGE_SIZE;
1111 	}
1112 	smp_invltlb();
1113 }
1114 
1115 /*
1116  * This routine works like vm_page_lookup() but also blocks as long as the
1117  * page is busy.  This routine does not busy the page it returns.
1118  *
1119  * Unless the caller is managing objects whos pages are in a known state,
1120  * the call should be made with a critical section held so the page's object
1121  * association remains valid on return.
1122  */
1123 static
1124 vm_page_t
1125 pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
1126 {
1127 	vm_page_t m;
1128 
1129 	do {
1130 		m = vm_page_lookup(object, pindex);
1131 	} while (m && vm_page_sleep_busy(m, FALSE, "pplookp"));
1132 
1133 	return(m);
1134 }
1135 
1136 /*
1137  * Create a new thread and optionally associate it with a (new) process.
1138  * NOTE! the new thread's cpu may not equal the current cpu.
1139  */
1140 void
1141 pmap_init_thread(thread_t td)
1142 {
1143 	/* enforce pcb placement & alignment */
1144 	td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
1145 	td->td_pcb = (struct pcb *)((intptr_t)td->td_pcb & ~(intptr_t)0xF);
1146 	td->td_savefpu = &td->td_pcb->pcb_save;
1147 	td->td_sp = (char *)td->td_pcb;	/* no -16 */
1148 }
1149 
1150 /*
1151  * This routine directly affects the fork perf for a process.
1152  */
1153 void
1154 pmap_init_proc(struct proc *p)
1155 {
1156 }
1157 
1158 /*
1159  * Dispose the UPAGES for a process that has exited.
1160  * This routine directly impacts the exit perf of a process.
1161  */
1162 void
1163 pmap_dispose_proc(struct proc *p)
1164 {
1165 	KASSERT(p->p_lock == 0, ("attempt to dispose referenced proc! %p", p));
1166 }
1167 
1168 /***************************************************
1169  * Page table page management routines.....
1170  ***************************************************/
1171 
1172 /*
1173  * This routine unholds page table pages, and if the hold count
1174  * drops to zero, then it decrements the wire count.
1175  */
1176 static __inline
1177 int
1178 pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m,
1179 		     pmap_inval_info_t info)
1180 {
1181 	KKASSERT(m->hold_count > 0);
1182 	if (m->hold_count > 1) {
1183 		vm_page_unhold(m);
1184 		return 0;
1185 	} else {
1186 		return _pmap_unwire_pte_hold(pmap, va, m, info);
1187 	}
1188 }
1189 
1190 static
1191 int
1192 _pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m,
1193 		      pmap_inval_info_t info)
1194 {
1195 	/*
1196 	 * Wait until we can busy the page ourselves.  We cannot have
1197 	 * any active flushes if we block.  We own one hold count on the
1198 	 * page so it cannot be freed out from under us.
1199 	 */
1200 	if (m->flags & PG_BUSY) {
1201 		while (vm_page_sleep_busy(m, FALSE, "pmuwpt"))
1202 			;
1203 	}
1204 	KASSERT(m->queue == PQ_NONE,
1205 		("_pmap_unwire_pte_hold: %p->queue != PQ_NONE", m));
1206 
1207 	/*
1208 	 * This case can occur if new references were acquired while
1209 	 * we were blocked.
1210 	 */
1211 	if (m->hold_count > 1) {
1212 		KKASSERT(m->hold_count > 1);
1213 		vm_page_unhold(m);
1214 		return 0;
1215 	}
1216 
1217 	/*
1218 	 * Unmap the page table page
1219 	 */
1220 	KKASSERT(m->hold_count == 1);
1221 	vm_page_busy(m);
1222 	pmap_inval_interlock(info, pmap, -1);
1223 
1224 	if (m->pindex >= (NUPDE + NUPDPE)) {
1225 		/* PDP page */
1226 		pml4_entry_t *pml4;
1227 		pml4 = pmap_pml4e(pmap, va);
1228 		*pml4 = 0;
1229 	} else if (m->pindex >= NUPDE) {
1230 		/* PD page */
1231 		pdp_entry_t *pdp;
1232 		pdp = pmap_pdpe(pmap, va);
1233 		*pdp = 0;
1234 	} else {
1235 		/* PT page */
1236 		pd_entry_t *pd;
1237 		pd = pmap_pde(pmap, va);
1238 		*pd = 0;
1239 	}
1240 
1241 	KKASSERT(pmap->pm_stats.resident_count > 0);
1242 	--pmap->pm_stats.resident_count;
1243 
1244 	if (pmap->pm_ptphint == m)
1245 		pmap->pm_ptphint = NULL;
1246 	pmap_inval_deinterlock(info, pmap);
1247 
1248 	if (m->pindex < NUPDE) {
1249 		/* We just released a PT, unhold the matching PD */
1250 		vm_page_t pdpg;
1251 
1252 		pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
1253 		pmap_unwire_pte_hold(pmap, va, pdpg, info);
1254 	}
1255 	if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
1256 		/* We just released a PD, unhold the matching PDP */
1257 		vm_page_t pdppg;
1258 
1259 		pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
1260 		pmap_unwire_pte_hold(pmap, va, pdppg, info);
1261 	}
1262 
1263 	/*
1264 	 * This was our last hold, the page had better be unwired
1265 	 * after we decrement wire_count.
1266 	 *
1267 	 * FUTURE NOTE: shared page directory page could result in
1268 	 * multiple wire counts.
1269 	 */
1270 	vm_page_unhold(m);
1271 	--m->wire_count;
1272 	KKASSERT(m->wire_count == 0);
1273 	--vmstats.v_wire_count;
1274 	vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1275 	vm_page_flash(m);
1276 	vm_page_free_zero(m);
1277 
1278 	return 1;
1279 }
1280 
1281 /*
1282  * After removing a page table entry, this routine is used to
1283  * conditionally free the page, and manage the hold/wire counts.
1284  */
1285 static
1286 int
1287 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte,
1288 		pmap_inval_info_t info)
1289 {
1290 	vm_pindex_t ptepindex;
1291 
1292 	if (va >= VM_MAX_USER_ADDRESS)
1293 		return 0;
1294 
1295 	if (mpte == NULL) {
1296 		ptepindex = pmap_pde_pindex(va);
1297 #if JGHINT
1298 		if (pmap->pm_ptphint &&
1299 			(pmap->pm_ptphint->pindex == ptepindex)) {
1300 			mpte = pmap->pm_ptphint;
1301 		} else {
1302 #endif
1303 			mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1304 			pmap->pm_ptphint = mpte;
1305 #if JGHINT
1306 		}
1307 #endif
1308 	}
1309 	return pmap_unwire_pte_hold(pmap, va, mpte, info);
1310 }
1311 
1312 /*
1313  * Initialize pmap0/vmspace0.  This pmap is not added to pmap_list because
1314  * it, and IdlePTD, represents the template used to update all other pmaps.
1315  *
1316  * On architectures where the kernel pmap is not integrated into the user
1317  * process pmap, this pmap represents the process pmap, not the kernel pmap.
1318  * kernel_pmap should be used to directly access the kernel_pmap.
1319  */
1320 void
1321 pmap_pinit0(struct pmap *pmap)
1322 {
1323 	pmap->pm_pml4 = (pml4_entry_t *)(PTOV_OFFSET + KPML4phys);
1324 	pmap->pm_count = 1;
1325 	pmap->pm_active = 0;
1326 	pmap->pm_ptphint = NULL;
1327 	TAILQ_INIT(&pmap->pm_pvlist);
1328 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1329 }
1330 
1331 /*
1332  * Initialize a preallocated and zeroed pmap structure,
1333  * such as one in a vmspace structure.
1334  */
1335 void
1336 pmap_pinit(struct pmap *pmap)
1337 {
1338 	vm_page_t ptdpg;
1339 
1340 	/*
1341 	 * No need to allocate page table space yet but we do need a valid
1342 	 * page directory table.
1343 	 */
1344 	if (pmap->pm_pml4 == NULL) {
1345 		pmap->pm_pml4 =
1346 		    (pml4_entry_t *)kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
1347 	}
1348 
1349 	/*
1350 	 * Allocate an object for the ptes
1351 	 */
1352 	if (pmap->pm_pteobj == NULL)
1353 		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, NUPDE + NUPDPE + PML4PML4I + 1);
1354 
1355 	/*
1356 	 * Allocate the page directory page, unless we already have
1357 	 * one cached.  If we used the cached page the wire_count will
1358 	 * already be set appropriately.
1359 	 */
1360 	if ((ptdpg = pmap->pm_pdirm) == NULL) {
1361 		ptdpg = vm_page_grab(pmap->pm_pteobj, NUPDE + NUPDPE + PML4PML4I,
1362 				     VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1363 		pmap->pm_pdirm = ptdpg;
1364 		vm_page_flag_clear(ptdpg, PG_MAPPED | PG_BUSY);
1365 		ptdpg->valid = VM_PAGE_BITS_ALL;
1366 		if (ptdpg->wire_count == 0)
1367 			++vmstats.v_wire_count;
1368 		ptdpg->wire_count = 1;
1369 		pmap_kenter((vm_offset_t)pmap->pm_pml4, VM_PAGE_TO_PHYS(ptdpg));
1370 	}
1371 	if ((ptdpg->flags & PG_ZERO) == 0)
1372 		bzero(pmap->pm_pml4, PAGE_SIZE);
1373 #ifdef PMAP_DEBUG
1374 	else
1375 		pmap_page_assertzero(VM_PAGE_TO_PHYS(ptdpg));
1376 #endif
1377 
1378 	pmap->pm_pml4[KPML4I] = KPDPphys | PG_RW | PG_V | PG_U;
1379 	pmap->pm_pml4[DMPML4I] = DMPDPphys | PG_RW | PG_V | PG_U;
1380 
1381 	/* install self-referential address mapping entry */
1382 	pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1383 
1384 	pmap->pm_count = 1;
1385 	pmap->pm_active = 0;
1386 	pmap->pm_ptphint = NULL;
1387 	TAILQ_INIT(&pmap->pm_pvlist);
1388 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1389 	pmap->pm_stats.resident_count = 1;
1390 }
1391 
1392 /*
1393  * Clean up a pmap structure so it can be physically freed.  This routine
1394  * is called by the vmspace dtor function.  A great deal of pmap data is
1395  * left passively mapped to improve vmspace management so we have a bit
1396  * of cleanup work to do here.
1397  */
1398 void
1399 pmap_puninit(pmap_t pmap)
1400 {
1401 	vm_page_t p;
1402 
1403 	KKASSERT(pmap->pm_active == 0);
1404 	lwkt_gettoken(&vm_token);
1405 	if ((p = pmap->pm_pdirm) != NULL) {
1406 		KKASSERT(pmap->pm_pml4 != NULL);
1407 		KKASSERT(pmap->pm_pml4 != (void *)(PTOV_OFFSET + KPML4phys));
1408 		pmap_kremove((vm_offset_t)pmap->pm_pml4);
1409 		p->wire_count--;
1410 		vmstats.v_wire_count--;
1411 		KKASSERT((p->flags & PG_BUSY) == 0);
1412 		vm_page_busy(p);
1413 		vm_page_free_zero(p);
1414 		pmap->pm_pdirm = NULL;
1415 	}
1416 	if (pmap->pm_pml4) {
1417 		KKASSERT(pmap->pm_pml4 != (void *)(PTOV_OFFSET + KPML4phys));
1418 		kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pml4, PAGE_SIZE);
1419 		pmap->pm_pml4 = NULL;
1420 	}
1421 	if (pmap->pm_pteobj) {
1422 		vm_object_deallocate(pmap->pm_pteobj);
1423 		pmap->pm_pteobj = NULL;
1424 	}
1425 	lwkt_reltoken(&vm_token);
1426 }
1427 
1428 /*
1429  * Wire in kernel global address entries.  To avoid a race condition
1430  * between pmap initialization and pmap_growkernel, this procedure
1431  * adds the pmap to the master list (which growkernel scans to update),
1432  * then copies the template.
1433  */
1434 void
1435 pmap_pinit2(struct pmap *pmap)
1436 {
1437 	crit_enter();
1438 	lwkt_gettoken(&vm_token);
1439 	TAILQ_INSERT_TAIL(&pmap_list, pmap, pm_pmnode);
1440 	/* XXX copies current process, does not fill in MPPTDI */
1441 	lwkt_reltoken(&vm_token);
1442 	crit_exit();
1443 }
1444 
1445 /*
1446  * Attempt to release and free a vm_page in a pmap.  Returns 1 on success,
1447  * 0 on failure (if the procedure had to sleep).
1448  *
1449  * When asked to remove the page directory page itself, we actually just
1450  * leave it cached so we do not have to incur the SMP inval overhead of
1451  * removing the kernel mapping.  pmap_puninit() will take care of it.
1452  */
1453 static
1454 int
1455 pmap_release_free_page(struct pmap *pmap, vm_page_t p)
1456 {
1457 	/*
1458 	 * This code optimizes the case of freeing non-busy
1459 	 * page-table pages.  Those pages are zero now, and
1460 	 * might as well be placed directly into the zero queue.
1461 	 */
1462 	if (vm_page_sleep_busy(p, FALSE, "pmaprl"))
1463 		return 0;
1464 
1465 	vm_page_busy(p);
1466 
1467 	/*
1468 	 * Remove the page table page from the processes address space.
1469 	 */
1470 	if (p->pindex == NUPDE + NUPDPE + PML4PML4I) {
1471 		/*
1472 		 * We are the pml4 table itself.
1473 		 */
1474 		/* XXX anything to do here? */
1475 	} else if (p->pindex >= (NUPDE + NUPDPE)) {
1476 		/*
1477 		 * Remove a PDP page from the PML4.  We do not maintain
1478 		 * hold counts on the PML4 page.
1479 		 */
1480 		pml4_entry_t *pml4;
1481 		vm_page_t m4;
1482 		int idx;
1483 
1484 		m4 = vm_page_lookup(pmap->pm_pteobj, NUPDE + NUPDPE + PML4PML4I);
1485 		KKASSERT(m4 != NULL);
1486 		pml4 = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m4));
1487 		idx = (p->pindex - (NUPDE + NUPDPE)) % NPML4EPG;
1488 		KKASSERT(pml4[idx] != 0);
1489 		pml4[idx] = 0;
1490 	} else if (p->pindex >= NUPDE) {
1491 		/*
1492 		 * Remove a PD page from the PDP and drop the hold count
1493 		 * on the PDP.  The PDP is left cached in the pmap if
1494 		 * the hold count drops to 0 so the wire count remains
1495 		 * intact.
1496 		 */
1497 		vm_page_t m3;
1498 		pdp_entry_t *pdp;
1499 		int idx;
1500 
1501 		m3 = vm_page_lookup(pmap->pm_pteobj,
1502 				NUPDE + NUPDPE + (p->pindex - NUPDE) / NPDPEPG);
1503 		KKASSERT(m3 != NULL);
1504 		pdp = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m3));
1505 		idx = (p->pindex - NUPDE) % NPDPEPG;
1506 		KKASSERT(pdp[idx] != 0);
1507 		pdp[idx] = 0;
1508 		m3->hold_count--;
1509 	} else {
1510 		/*
1511 		 * Remove a PT page from the PD and drop the hold count
1512 		 * on the PD.  The PD is left cached in the pmap if
1513 		 * the hold count drops to 0 so the wire count remains
1514 		 * intact.
1515 		 */
1516 		vm_page_t m2;
1517 		pd_entry_t *pd;
1518 		int idx;
1519 
1520 		m2 = vm_page_lookup(pmap->pm_pteobj,
1521 				    NUPDE + p->pindex / NPDEPG);
1522 		KKASSERT(m2 != NULL);
1523 		pd = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m2));
1524 		idx = p->pindex % NPDEPG;
1525 		pd[idx] = 0;
1526 		m2->hold_count--;
1527 	}
1528 
1529 	/*
1530 	 * One fewer mappings in the pmap.  p's hold count had better
1531 	 * be zero.
1532 	 */
1533 	KKASSERT(pmap->pm_stats.resident_count > 0);
1534 	--pmap->pm_stats.resident_count;
1535 	if (p->hold_count)
1536 		panic("pmap_release: freeing held page table page");
1537 	if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1538 		pmap->pm_ptphint = NULL;
1539 
1540 	/*
1541 	 * We leave the top-level page table page cached, wired, and mapped in
1542 	 * the pmap until the dtor function (pmap_puninit()) gets called.
1543 	 * However, still clean it up so we can set PG_ZERO.
1544 	 */
1545 	if (p->pindex == NUPDE + NUPDPE + PML4PML4I) {
1546 		bzero(pmap->pm_pml4, PAGE_SIZE);
1547 		vm_page_flag_set(p, PG_ZERO);
1548 		vm_page_wakeup(p);
1549 	} else {
1550 		p->wire_count--;
1551 		KKASSERT(p->wire_count == 0);
1552 		vmstats.v_wire_count--;
1553 		/* JG eventually revert to using vm_page_free_zero() */
1554 		vm_page_free(p);
1555 	}
1556 	return 1;
1557 }
1558 
1559 /*
1560  * This routine is called when various levels in the page table need to
1561  * be populated.  This routine cannot fail.
1562  */
1563 static
1564 vm_page_t
1565 _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex)
1566 {
1567 	vm_page_t m;
1568 
1569 	/*
1570 	 * Find or fabricate a new pagetable page.  This will busy the page.
1571 	 */
1572 	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1573 			 VM_ALLOC_NORMAL | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1574 	if ((m->flags & PG_ZERO) == 0) {
1575 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
1576 	}
1577 #ifdef PMAP_DEBUG
1578 	else {
1579 		pmap_page_assertzero(VM_PAGE_TO_PHYS(m));
1580 	}
1581 #endif
1582 
1583 	KASSERT(m->queue == PQ_NONE,
1584 		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1585 
1586 	/*
1587 	 * Increment the hold count for the page we will be returning to
1588 	 * the caller.
1589 	 */
1590 	m->hold_count++;
1591 	if (m->wire_count++ == 0)
1592 		vmstats.v_wire_count++;
1593 	m->valid = VM_PAGE_BITS_ALL;
1594 	vm_page_flag_clear(m, PG_ZERO);
1595 
1596 	/*
1597 	 * Map the pagetable page into the process address space, if
1598 	 * it isn't already there.
1599 	 *
1600 	 * It is possible that someone else got in and mapped the page
1601 	 * directory page while we were blocked, if so just unbusy and
1602 	 * return the held page.
1603 	 */
1604 	if (ptepindex >= (NUPDE + NUPDPE)) {
1605 		/*
1606 		 * Wire up a new PDP page in the PML4
1607 		 */
1608 		vm_pindex_t pml4index;
1609 		pml4_entry_t *pml4;
1610 
1611 		pml4index = ptepindex - (NUPDE + NUPDPE);
1612 		pml4 = &pmap->pm_pml4[pml4index];
1613 		if (*pml4 & PG_V) {
1614 			if (--m->wire_count == 0)
1615 				--vmstats.v_wire_count;
1616 			vm_page_wakeup(m);
1617 			return(m);
1618 		}
1619 		*pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
1620 	} else if (ptepindex >= NUPDE) {
1621 		/*
1622 		 * Wire up a new PD page in the PDP
1623 		 */
1624 		vm_pindex_t pml4index;
1625 		vm_pindex_t pdpindex;
1626 		vm_page_t pdppg;
1627 		pml4_entry_t *pml4;
1628 		pdp_entry_t *pdp;
1629 
1630 		pdpindex = ptepindex - NUPDE;
1631 		pml4index = pdpindex >> NPML4EPGSHIFT;
1632 
1633 		pml4 = &pmap->pm_pml4[pml4index];
1634 		if ((*pml4 & PG_V) == 0) {
1635 			/*
1636 			 * Have to allocate a new PDP page, recurse.
1637 			 * This always succeeds.  Returned page will
1638 			 * be held.
1639 			 */
1640 			pdppg = _pmap_allocpte(pmap,
1641 					       NUPDE + NUPDPE + pml4index);
1642 		} else {
1643 			/*
1644 			 * Add a held reference to the PDP page.
1645 			 */
1646 			pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
1647 			pdppg->hold_count++;
1648 		}
1649 
1650 		/*
1651 		 * Now find the pdp_entry and map the PDP.  If the PDP
1652 		 * has already been mapped unwind and return the
1653 		 * already-mapped PDP held.
1654 		 *
1655 		 * pdppg is left held (hold_count is incremented for
1656 		 * each PD in the PDP).
1657 		 */
1658 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
1659 		pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1660 		if (*pdp & PG_V) {
1661 			vm_page_unhold(pdppg);
1662 			if (--m->wire_count == 0)
1663 				--vmstats.v_wire_count;
1664 			vm_page_wakeup(m);
1665 			return(m);
1666 		}
1667 		*pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
1668 	} else {
1669 		/*
1670 		 * Wire up the new PT page in the PD
1671 		 */
1672 		vm_pindex_t pml4index;
1673 		vm_pindex_t pdpindex;
1674 		pml4_entry_t *pml4;
1675 		pdp_entry_t *pdp;
1676 		pd_entry_t *pd;
1677 		vm_page_t pdpg;
1678 
1679 		pdpindex = ptepindex >> NPDPEPGSHIFT;
1680 		pml4index = pdpindex >> NPML4EPGSHIFT;
1681 
1682 		/*
1683 		 * Locate the PDP page in the PML4, then the PD page in
1684 		 * the PDP.  If either does not exist we simply recurse
1685 		 * to allocate them.
1686 		 *
1687 		 * We can just recurse on the PD page as it will recurse
1688 		 * on the PDP if necessary.
1689 		 */
1690 		pml4 = &pmap->pm_pml4[pml4index];
1691 		if ((*pml4 & PG_V) == 0) {
1692 			pdpg = _pmap_allocpte(pmap, NUPDE + pdpindex);
1693 			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
1694 			pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1695 		} else {
1696 			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
1697 			pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1698 			if ((*pdp & PG_V) == 0) {
1699 				pdpg = _pmap_allocpte(pmap, NUPDE + pdpindex);
1700 			} else {
1701 				pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
1702 				pdpg->hold_count++;
1703 			}
1704 		}
1705 
1706 		/*
1707 		 * Now fill in the pte in the PD.  If the pte already exists
1708 		 * (again, if we raced the grab), unhold pdpg and unwire
1709 		 * m, returning a held m.
1710 		 *
1711 		 * pdpg is left held (hold_count is incremented for
1712 		 * each PT in the PD).
1713 		 */
1714 		pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
1715 		pd = &pd[ptepindex & ((1ul << NPDEPGSHIFT) - 1)];
1716 		if (*pd != 0) {
1717 			vm_page_unhold(pdpg);
1718 			if (--m->wire_count == 0)
1719 				--vmstats.v_wire_count;
1720 			vm_page_wakeup(m);
1721 			return(m);
1722 		}
1723 		*pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
1724 	}
1725 
1726 	/*
1727 	 * We successfully loaded a PDP, PD, or PTE.  Set the page table hint,
1728 	 * valid bits, mapped flag, unbusy, and we're done.
1729 	 */
1730 	pmap->pm_ptphint = m;
1731 	++pmap->pm_stats.resident_count;
1732 
1733 #if 0
1734 	m->valid = VM_PAGE_BITS_ALL;
1735 	vm_page_flag_clear(m, PG_ZERO);
1736 #endif
1737 	vm_page_flag_set(m, PG_MAPPED);
1738 	vm_page_wakeup(m);
1739 
1740 	return (m);
1741 }
1742 
1743 static
1744 vm_page_t
1745 pmap_allocpte(pmap_t pmap, vm_offset_t va)
1746 {
1747 	vm_pindex_t ptepindex;
1748 	pd_entry_t *pd;
1749 	vm_page_t m;
1750 
1751 	/*
1752 	 * Calculate pagetable page index
1753 	 */
1754 	ptepindex = pmap_pde_pindex(va);
1755 
1756 	/*
1757 	 * Get the page directory entry
1758 	 */
1759 	pd = pmap_pde(pmap, va);
1760 
1761 	/*
1762 	 * This supports switching from a 2MB page to a
1763 	 * normal 4K page.
1764 	 */
1765 	if (pd != NULL && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
1766 		panic("no promotion/demotion yet");
1767 		*pd = 0;
1768 		pd = NULL;
1769 		cpu_invltlb();
1770 		smp_invltlb();
1771 	}
1772 
1773 	/*
1774 	 * If the page table page is mapped, we just increment the
1775 	 * hold count, and activate it.
1776 	 */
1777 	if (pd != NULL && (*pd & PG_V) != 0) {
1778 		/* YYY hint is used here on i386 */
1779 		m = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1780 		pmap->pm_ptphint = m;
1781 		m->hold_count++;
1782 		return m;
1783 	}
1784 	/*
1785 	 * Here if the pte page isn't mapped, or if it has been deallocated.
1786 	 */
1787 	return _pmap_allocpte(pmap, ptepindex);
1788 }
1789 
1790 
1791 /***************************************************
1792  * Pmap allocation/deallocation routines.
1793  ***************************************************/
1794 
1795 /*
1796  * Release any resources held by the given physical map.
1797  * Called when a pmap initialized by pmap_pinit is being released.
1798  * Should only be called if the map contains no valid mappings.
1799  */
1800 static int pmap_release_callback(struct vm_page *p, void *data);
1801 
1802 void
1803 pmap_release(struct pmap *pmap)
1804 {
1805 	vm_object_t object = pmap->pm_pteobj;
1806 	struct rb_vm_page_scan_info info;
1807 
1808 	KASSERT(pmap->pm_active == 0,
1809 		("pmap still active! %016jx", (uintmax_t)pmap->pm_active));
1810 #if defined(DIAGNOSTIC)
1811 	if (object->ref_count != 1)
1812 		panic("pmap_release: pteobj reference count != 1");
1813 #endif
1814 
1815 	info.pmap = pmap;
1816 	info.object = object;
1817 	crit_enter();
1818 	lwkt_gettoken(&vm_token);
1819 	TAILQ_REMOVE(&pmap_list, pmap, pm_pmnode);
1820 	crit_exit();
1821 
1822 	do {
1823 		crit_enter();
1824 		info.error = 0;
1825 		info.mpte = NULL;
1826 		info.limit = object->generation;
1827 
1828 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1829 				        pmap_release_callback, &info);
1830 		if (info.error == 0 && info.mpte) {
1831 			if (!pmap_release_free_page(pmap, info.mpte))
1832 				info.error = 1;
1833 		}
1834 		crit_exit();
1835 	} while (info.error);
1836 	lwkt_reltoken(&vm_token);
1837 }
1838 
1839 static
1840 int
1841 pmap_release_callback(struct vm_page *p, void *data)
1842 {
1843 	struct rb_vm_page_scan_info *info = data;
1844 
1845 	if (p->pindex == NUPDE + NUPDPE + PML4PML4I) {
1846 		info->mpte = p;
1847 		return(0);
1848 	}
1849 	if (!pmap_release_free_page(info->pmap, p)) {
1850 		info->error = 1;
1851 		return(-1);
1852 	}
1853 	if (info->object->generation != info->limit) {
1854 		info->error = 1;
1855 		return(-1);
1856 	}
1857 	return(0);
1858 }
1859 
1860 /*
1861  * Grow the number of kernel page table entries, if needed.
1862  *
1863  * This routine is always called to validate any address space
1864  * beyond KERNBASE (for kldloads).  kernel_vm_end only governs the address
1865  * space below KERNBASE.
1866  */
1867 void
1868 pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
1869 {
1870 	vm_paddr_t paddr;
1871 	vm_offset_t ptppaddr;
1872 	vm_page_t nkpg;
1873 	pd_entry_t *pde, newpdir;
1874 	pdp_entry_t newpdp;
1875 	int update_kernel_vm_end;
1876 
1877 	crit_enter();
1878 	lwkt_gettoken(&vm_token);
1879 
1880 	/*
1881 	 * bootstrap kernel_vm_end on first real VM use
1882 	 */
1883 	if (kernel_vm_end == 0) {
1884 		kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
1885 		nkpt = 0;
1886 		while ((*pmap_pde(&kernel_pmap, kernel_vm_end) & PG_V) != 0) {
1887 			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1888 					~(PAGE_SIZE * NPTEPG - 1);
1889 			nkpt++;
1890 			if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1891 				kernel_vm_end = kernel_map.max_offset;
1892 				break;
1893 			}
1894 		}
1895 	}
1896 
1897 	/*
1898 	 * Fill in the gaps.  kernel_vm_end is only adjusted for ranges
1899 	 * below KERNBASE.  Ranges above KERNBASE are kldloaded and we
1900 	 * do not want to force-fill 128G worth of page tables.
1901 	 */
1902 	if (kstart < KERNBASE) {
1903 		if (kstart > kernel_vm_end)
1904 			kstart = kernel_vm_end;
1905 		KKASSERT(kend <= KERNBASE);
1906 		update_kernel_vm_end = 1;
1907 	} else {
1908 		update_kernel_vm_end = 0;
1909 	}
1910 
1911 	kstart = rounddown2(kstart, PAGE_SIZE * NPTEPG);
1912 	kend = roundup2(kend, PAGE_SIZE * NPTEPG);
1913 
1914 	if (kend - 1 >= kernel_map.max_offset)
1915 		kend = kernel_map.max_offset;
1916 
1917 	while (kstart < kend) {
1918 		pde = pmap_pde(&kernel_pmap, kstart);
1919 		if (pde == NULL) {
1920 			/* We need a new PDP entry */
1921 			nkpg = vm_page_alloc(kptobj, nkpt,
1922 			                     VM_ALLOC_NORMAL |
1923 					     VM_ALLOC_SYSTEM |
1924 					     VM_ALLOC_INTERRUPT);
1925 			if (nkpg == NULL) {
1926 				panic("pmap_growkernel: no memory to grow "
1927 				      "kernel");
1928 			}
1929 			paddr = VM_PAGE_TO_PHYS(nkpg);
1930 			if ((nkpg->flags & PG_ZERO) == 0)
1931 				pmap_zero_page(paddr);
1932 			vm_page_flag_clear(nkpg, PG_ZERO);
1933 			newpdp = (pdp_entry_t)
1934 				(paddr | PG_V | PG_RW | PG_A | PG_M);
1935 			*pmap_pdpe(&kernel_pmap, kstart) = newpdp;
1936 			nkpt++;
1937 			continue; /* try again */
1938 		}
1939 		if ((*pde & PG_V) != 0) {
1940 			kstart = (kstart + PAGE_SIZE * NPTEPG) &
1941 				 ~(PAGE_SIZE * NPTEPG - 1);
1942 			if (kstart - 1 >= kernel_map.max_offset) {
1943 				kstart = kernel_map.max_offset;
1944 				break;
1945 			}
1946 			continue;
1947 		}
1948 
1949 		/*
1950 		 * This index is bogus, but out of the way
1951 		 */
1952 		nkpg = vm_page_alloc(kptobj, nkpt,
1953 				     VM_ALLOC_NORMAL |
1954 				     VM_ALLOC_SYSTEM |
1955 				     VM_ALLOC_INTERRUPT);
1956 		if (nkpg == NULL)
1957 			panic("pmap_growkernel: no memory to grow kernel");
1958 
1959 		vm_page_wire(nkpg);
1960 		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1961 		pmap_zero_page(ptppaddr);
1962 		vm_page_flag_clear(nkpg, PG_ZERO);
1963 		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1964 		*pmap_pde(&kernel_pmap, kstart) = newpdir;
1965 		nkpt++;
1966 
1967 		kstart = (kstart + PAGE_SIZE * NPTEPG) &
1968 			  ~(PAGE_SIZE * NPTEPG - 1);
1969 
1970 		if (kstart - 1 >= kernel_map.max_offset) {
1971 			kstart = kernel_map.max_offset;
1972 			break;
1973 		}
1974 	}
1975 
1976 	/*
1977 	 * Only update kernel_vm_end for areas below KERNBASE.
1978 	 */
1979 	if (update_kernel_vm_end && kernel_vm_end < kstart)
1980 		kernel_vm_end = kstart;
1981 
1982 	lwkt_reltoken(&vm_token);
1983 	crit_exit();
1984 }
1985 
1986 /*
1987  *	Retire the given physical map from service.
1988  *	Should only be called if the map contains
1989  *	no valid mappings.
1990  */
1991 void
1992 pmap_destroy(pmap_t pmap)
1993 {
1994 	int count;
1995 
1996 	if (pmap == NULL)
1997 		return;
1998 
1999 	lwkt_gettoken(&vm_token);
2000 	count = --pmap->pm_count;
2001 	if (count == 0) {
2002 		pmap_release(pmap);
2003 		panic("destroying a pmap is not yet implemented");
2004 	}
2005 	lwkt_reltoken(&vm_token);
2006 }
2007 
2008 /*
2009  *	Add a reference to the specified pmap.
2010  */
2011 void
2012 pmap_reference(pmap_t pmap)
2013 {
2014 	if (pmap != NULL) {
2015 		lwkt_gettoken(&vm_token);
2016 		pmap->pm_count++;
2017 		lwkt_reltoken(&vm_token);
2018 	}
2019 }
2020 
2021 /***************************************************
2022 * page management routines.
2023  ***************************************************/
2024 
2025 /*
2026  * free the pv_entry back to the free list.  This function may be
2027  * called from an interrupt.
2028  */
2029 static __inline
2030 void
2031 free_pv_entry(pv_entry_t pv)
2032 {
2033 	pv_entry_count--;
2034 	KKASSERT(pv_entry_count >= 0);
2035 	zfree(pvzone, pv);
2036 }
2037 
2038 /*
2039  * get a new pv_entry, allocating a block from the system
2040  * when needed.  This function may be called from an interrupt.
2041  */
2042 static
2043 pv_entry_t
2044 get_pv_entry(void)
2045 {
2046 	pv_entry_count++;
2047 	if (pv_entry_high_water &&
2048 		(pv_entry_count > pv_entry_high_water) &&
2049 		(pmap_pagedaemon_waken == 0)) {
2050 		pmap_pagedaemon_waken = 1;
2051 		wakeup(&vm_pages_needed);
2052 	}
2053 	return zalloc(pvzone);
2054 }
2055 
2056 /*
2057  * This routine is very drastic, but can save the system
2058  * in a pinch.
2059  */
2060 void
2061 pmap_collect(void)
2062 {
2063 	int i;
2064 	vm_page_t m;
2065 	static int warningdone=0;
2066 
2067 	if (pmap_pagedaemon_waken == 0)
2068 		return;
2069 	lwkt_gettoken(&vm_token);
2070 	if (warningdone < 5) {
2071 		kprintf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
2072 		warningdone++;
2073 	}
2074 
2075 	for(i = 0; i < vm_page_array_size; i++) {
2076 		m = &vm_page_array[i];
2077 		if (m->wire_count || m->hold_count || m->busy ||
2078 		    (m->flags & PG_BUSY))
2079 			continue;
2080 		pmap_remove_all(m);
2081 	}
2082 	pmap_pagedaemon_waken = 0;
2083 	lwkt_reltoken(&vm_token);
2084 }
2085 
2086 
2087 /*
2088  * If it is the first entry on the list, it is actually
2089  * in the header and we must copy the following entry up
2090  * to the header.  Otherwise we must search the list for
2091  * the entry.  In either case we free the now unused entry.
2092  */
2093 static
2094 int
2095 pmap_remove_entry(struct pmap *pmap, vm_page_t m,
2096 			vm_offset_t va, pmap_inval_info_t info)
2097 {
2098 	pv_entry_t pv;
2099 	int rtval;
2100 
2101 	crit_enter();
2102 	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
2103 		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2104 			if (pmap == pv->pv_pmap && va == pv->pv_va)
2105 				break;
2106 		}
2107 	} else {
2108 		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
2109 			if (va == pv->pv_va)
2110 				break;
2111 		}
2112 	}
2113 
2114 	rtval = 0;
2115 	KKASSERT(pv);
2116 
2117 	TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2118 	m->md.pv_list_count--;
2119 	m->object->agg_pv_list_count--;
2120 	KKASSERT(m->md.pv_list_count >= 0);
2121 	if (TAILQ_EMPTY(&m->md.pv_list))
2122 		vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2123 	TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
2124 	++pmap->pm_generation;
2125 	rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem, info);
2126 	free_pv_entry(pv);
2127 
2128 	crit_exit();
2129 	return rtval;
2130 }
2131 
2132 /*
2133  * Create a pv entry for page at pa for
2134  * (pmap, va).
2135  */
2136 static
2137 void
2138 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
2139 {
2140 	pv_entry_t pv;
2141 
2142 	crit_enter();
2143 	pv = get_pv_entry();
2144 	pv->pv_va = va;
2145 	pv->pv_pmap = pmap;
2146 	pv->pv_ptem = mpte;
2147 
2148 	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
2149 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2150 	++pmap->pm_generation;
2151 	m->md.pv_list_count++;
2152 	m->object->agg_pv_list_count++;
2153 
2154 	crit_exit();
2155 }
2156 
2157 /*
2158  * pmap_remove_pte: do the things to unmap a page in a process
2159  */
2160 static
2161 int
2162 pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va,
2163 	pmap_inval_info_t info)
2164 {
2165 	pt_entry_t oldpte;
2166 	vm_page_t m;
2167 
2168 	pmap_inval_interlock(info, pmap, va);
2169 	oldpte = pte_load_clear(ptq);
2170 	pmap_inval_deinterlock(info, pmap);
2171 	if (oldpte & PG_W)
2172 		pmap->pm_stats.wired_count -= 1;
2173 	/*
2174 	 * Machines that don't support invlpg, also don't support
2175 	 * PG_G.  XXX PG_G is disabled for SMP so don't worry about
2176 	 * the SMP case.
2177 	 */
2178 	if (oldpte & PG_G)
2179 		cpu_invlpg((void *)va);
2180 	KKASSERT(pmap->pm_stats.resident_count > 0);
2181 	--pmap->pm_stats.resident_count;
2182 	if (oldpte & PG_MANAGED) {
2183 		m = PHYS_TO_VM_PAGE(oldpte);
2184 		if (oldpte & PG_M) {
2185 #if defined(PMAP_DIAGNOSTIC)
2186 			if (pmap_nw_modified((pt_entry_t) oldpte)) {
2187 				kprintf(
2188 	"pmap_remove: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
2189 				    va, oldpte);
2190 			}
2191 #endif
2192 			if (pmap_track_modified(va))
2193 				vm_page_dirty(m);
2194 		}
2195 		if (oldpte & PG_A)
2196 			vm_page_flag_set(m, PG_REFERENCED);
2197 		return pmap_remove_entry(pmap, m, va, info);
2198 	} else {
2199 		return pmap_unuse_pt(pmap, va, NULL, info);
2200 	}
2201 
2202 	return 0;
2203 }
2204 
2205 /*
2206  * pmap_remove_page:
2207  *
2208  *	Remove a single page from a process address space.
2209  *
2210  *	This function may not be called from an interrupt if the pmap is
2211  *	not kernel_pmap.
2212  */
2213 static
2214 void
2215 pmap_remove_page(struct pmap *pmap, vm_offset_t va, pmap_inval_info_t info)
2216 {
2217 	pt_entry_t *pte;
2218 
2219 	pte = pmap_pte(pmap, va);
2220 	if (pte == NULL)
2221 		return;
2222 	if ((*pte & PG_V) == 0)
2223 		return;
2224 	pmap_remove_pte(pmap, pte, va, info);
2225 }
2226 
2227 /*
2228  * pmap_remove:
2229  *
2230  *	Remove the given range of addresses from the specified map.
2231  *
2232  *	It is assumed that the start and end are properly
2233  *	rounded to the page size.
2234  *
2235  *	This function may not be called from an interrupt if the pmap is
2236  *	not kernel_pmap.
2237  */
2238 void
2239 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
2240 {
2241 	vm_offset_t va_next;
2242 	pml4_entry_t *pml4e;
2243 	pdp_entry_t *pdpe;
2244 	pd_entry_t ptpaddr, *pde;
2245 	pt_entry_t *pte;
2246 	struct pmap_inval_info info;
2247 
2248 	if (pmap == NULL)
2249 		return;
2250 
2251 	lwkt_gettoken(&vm_token);
2252 	if (pmap->pm_stats.resident_count == 0) {
2253 		lwkt_reltoken(&vm_token);
2254 		return;
2255 	}
2256 
2257 	pmap_inval_init(&info);
2258 
2259 	/*
2260 	 * special handling of removing one page.  a very
2261 	 * common operation and easy to short circuit some
2262 	 * code.
2263 	 */
2264 	if (sva + PAGE_SIZE == eva) {
2265 		pde = pmap_pde(pmap, sva);
2266 		if (pde && (*pde & PG_PS) == 0) {
2267 			pmap_remove_page(pmap, sva, &info);
2268 			pmap_inval_done(&info);
2269 			lwkt_reltoken(&vm_token);
2270 			return;
2271 		}
2272 	}
2273 
2274 	for (; sva < eva; sva = va_next) {
2275 		pml4e = pmap_pml4e(pmap, sva);
2276 		if ((*pml4e & PG_V) == 0) {
2277 			va_next = (sva + NBPML4) & ~PML4MASK;
2278 			if (va_next < sva)
2279 				va_next = eva;
2280 			continue;
2281 		}
2282 
2283 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
2284 		if ((*pdpe & PG_V) == 0) {
2285 			va_next = (sva + NBPDP) & ~PDPMASK;
2286 			if (va_next < sva)
2287 				va_next = eva;
2288 			continue;
2289 		}
2290 
2291 		/*
2292 		 * Calculate index for next page table.
2293 		 */
2294 		va_next = (sva + NBPDR) & ~PDRMASK;
2295 		if (va_next < sva)
2296 			va_next = eva;
2297 
2298 		pde = pmap_pdpe_to_pde(pdpe, sva);
2299 		ptpaddr = *pde;
2300 
2301 		/*
2302 		 * Weed out invalid mappings.
2303 		 */
2304 		if (ptpaddr == 0)
2305 			continue;
2306 
2307 		/*
2308 		 * Check for large page.
2309 		 */
2310 		if ((ptpaddr & PG_PS) != 0) {
2311 			/* JG FreeBSD has more complex treatment here */
2312 			pmap_inval_interlock(&info, pmap, -1);
2313 			*pde = 0;
2314 			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2315 			pmap_inval_deinterlock(&info, pmap);
2316 			continue;
2317 		}
2318 
2319 		/*
2320 		 * Limit our scan to either the end of the va represented
2321 		 * by the current page table page, or to the end of the
2322 		 * range being removed.
2323 		 */
2324 		if (va_next > eva)
2325 			va_next = eva;
2326 
2327 		/*
2328 		 * NOTE: pmap_remove_pte() can block.
2329 		 */
2330 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2331 		    sva += PAGE_SIZE) {
2332 			if (*pte == 0)
2333 				continue;
2334 			if (pmap_remove_pte(pmap, pte, sva, &info))
2335 				break;
2336 		}
2337 	}
2338 	pmap_inval_done(&info);
2339 	lwkt_reltoken(&vm_token);
2340 }
2341 
2342 /*
2343  * pmap_remove_all:
2344  *
2345  *	Removes this physical page from all physical maps in which it resides.
2346  *	Reflects back modify bits to the pager.
2347  *
2348  *	This routine may not be called from an interrupt.
2349  */
2350 
2351 static
2352 void
2353 pmap_remove_all(vm_page_t m)
2354 {
2355 	struct pmap_inval_info info;
2356 	pt_entry_t *pte, tpte;
2357 	pv_entry_t pv;
2358 
2359 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2360 		return;
2361 
2362 	lwkt_gettoken(&vm_token);
2363 	pmap_inval_init(&info);
2364 	crit_enter();
2365 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2366 		KKASSERT(pv->pv_pmap->pm_stats.resident_count > 0);
2367 		--pv->pv_pmap->pm_stats.resident_count;
2368 
2369 		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2370 		pmap_inval_interlock(&info, pv->pv_pmap, pv->pv_va);
2371 		tpte = pte_load_clear(pte);
2372 		if (tpte & PG_W)
2373 			pv->pv_pmap->pm_stats.wired_count--;
2374 		pmap_inval_deinterlock(&info, pv->pv_pmap);
2375 		if (tpte & PG_A)
2376 			vm_page_flag_set(m, PG_REFERENCED);
2377 
2378 		/*
2379 		 * Update the vm_page_t clean and reference bits.
2380 		 */
2381 		if (tpte & PG_M) {
2382 #if defined(PMAP_DIAGNOSTIC)
2383 			if (pmap_nw_modified(tpte)) {
2384 				kprintf(
2385 	"pmap_remove_all: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
2386 				    pv->pv_va, tpte);
2387 			}
2388 #endif
2389 			if (pmap_track_modified(pv->pv_va))
2390 				vm_page_dirty(m);
2391 		}
2392 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2393 		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2394 		++pv->pv_pmap->pm_generation;
2395 		m->md.pv_list_count--;
2396 		m->object->agg_pv_list_count--;
2397 		KKASSERT(m->md.pv_list_count >= 0);
2398 		if (TAILQ_EMPTY(&m->md.pv_list))
2399 			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2400 		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem, &info);
2401 		free_pv_entry(pv);
2402 	}
2403 	crit_exit();
2404 	KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
2405 	pmap_inval_done(&info);
2406 	lwkt_reltoken(&vm_token);
2407 }
2408 
2409 /*
2410  * pmap_protect:
2411  *
2412  *	Set the physical protection on the specified range of this map
2413  *	as requested.
2414  *
2415  *	This function may not be called from an interrupt if the map is
2416  *	not the kernel_pmap.
2417  */
2418 void
2419 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2420 {
2421 	vm_offset_t va_next;
2422 	pml4_entry_t *pml4e;
2423 	pdp_entry_t *pdpe;
2424 	pd_entry_t ptpaddr, *pde;
2425 	pt_entry_t *pte;
2426 	pmap_inval_info info;
2427 
2428 	/* JG review for NX */
2429 
2430 	if (pmap == NULL)
2431 		return;
2432 
2433 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2434 		pmap_remove(pmap, sva, eva);
2435 		return;
2436 	}
2437 
2438 	if (prot & VM_PROT_WRITE)
2439 		return;
2440 
2441 	lwkt_gettoken(&vm_token);
2442 	pmap_inval_init(&info);
2443 
2444 	for (; sva < eva; sva = va_next) {
2445 
2446 		pml4e = pmap_pml4e(pmap, sva);
2447 		if ((*pml4e & PG_V) == 0) {
2448 			va_next = (sva + NBPML4) & ~PML4MASK;
2449 			if (va_next < sva)
2450 				va_next = eva;
2451 			continue;
2452 		}
2453 
2454 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
2455 		if ((*pdpe & PG_V) == 0) {
2456 			va_next = (sva + NBPDP) & ~PDPMASK;
2457 			if (va_next < sva)
2458 				va_next = eva;
2459 			continue;
2460 		}
2461 
2462 		va_next = (sva + NBPDR) & ~PDRMASK;
2463 		if (va_next < sva)
2464 			va_next = eva;
2465 
2466 		pde = pmap_pdpe_to_pde(pdpe, sva);
2467 		ptpaddr = *pde;
2468 
2469 		/*
2470 		 * Check for large page.
2471 		 */
2472 		if ((ptpaddr & PG_PS) != 0) {
2473 			pmap_inval_interlock(&info, pmap, -1);
2474 			*pde &= ~(PG_M|PG_RW);
2475 			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2476 			pmap_inval_deinterlock(&info, pmap);
2477 			continue;
2478 		}
2479 
2480 		/*
2481 		 * Weed out invalid mappings. Note: we assume that the page
2482 		 * directory table is always allocated, and in kernel virtual.
2483 		 */
2484 		if (ptpaddr == 0)
2485 			continue;
2486 
2487 		if (va_next > eva)
2488 			va_next = eva;
2489 
2490 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2491 		     sva += PAGE_SIZE) {
2492 			pt_entry_t pbits;
2493 			pt_entry_t cbits;
2494 			vm_page_t m;
2495 
2496 			/*
2497 			 * XXX non-optimal.
2498 			 */
2499 			pmap_inval_interlock(&info, pmap, sva);
2500 again:
2501 			pbits = *pte;
2502 			cbits = pbits;
2503 			if ((pbits & PG_V) == 0) {
2504 				pmap_inval_deinterlock(&info, pmap);
2505 				continue;
2506 			}
2507 			if (pbits & PG_MANAGED) {
2508 				m = NULL;
2509 				if (pbits & PG_A) {
2510 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2511 					vm_page_flag_set(m, PG_REFERENCED);
2512 					cbits &= ~PG_A;
2513 				}
2514 				if (pbits & PG_M) {
2515 					if (pmap_track_modified(sva)) {
2516 						if (m == NULL)
2517 							m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2518 						vm_page_dirty(m);
2519 						cbits &= ~PG_M;
2520 					}
2521 				}
2522 			}
2523 			cbits &= ~PG_RW;
2524 			if (pbits != cbits &&
2525 			    !atomic_cmpset_long(pte, pbits, cbits)) {
2526 				goto again;
2527 			}
2528 			pmap_inval_deinterlock(&info, pmap);
2529 		}
2530 	}
2531 	pmap_inval_done(&info);
2532 	lwkt_reltoken(&vm_token);
2533 }
2534 
2535 /*
2536  *	Insert the given physical page (p) at
2537  *	the specified virtual address (v) in the
2538  *	target physical map with the protection requested.
2539  *
2540  *	If specified, the page will be wired down, meaning
2541  *	that the related pte can not be reclaimed.
2542  *
2543  *	NB:  This is the only routine which MAY NOT lazy-evaluate
2544  *	or lose information.  That is, this routine must actually
2545  *	insert this page into the given map NOW.
2546  */
2547 void
2548 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2549 	   boolean_t wired)
2550 {
2551 	vm_paddr_t pa;
2552 	pd_entry_t *pde;
2553 	pt_entry_t *pte;
2554 	vm_paddr_t opa;
2555 	pt_entry_t origpte, newpte;
2556 	vm_page_t mpte;
2557 	pmap_inval_info info;
2558 
2559 	if (pmap == NULL)
2560 		return;
2561 
2562 	va = trunc_page(va);
2563 #ifdef PMAP_DIAGNOSTIC
2564 	if (va >= KvaEnd)
2565 		panic("pmap_enter: toobig");
2566 	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2567 		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)", va);
2568 #endif
2569 	if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
2570 		kprintf("Warning: pmap_enter called on UVA with kernel_pmap\n");
2571 #ifdef DDB
2572 		db_print_backtrace();
2573 #endif
2574 	}
2575 	if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
2576 		kprintf("Warning: pmap_enter called on KVA without kernel_pmap\n");
2577 #ifdef DDB
2578 		db_print_backtrace();
2579 #endif
2580 	}
2581 
2582 	lwkt_gettoken(&vm_token);
2583 
2584 	/*
2585 	 * In the case that a page table page is not
2586 	 * resident, we are creating it here.
2587 	 */
2588 	if (va < VM_MAX_USER_ADDRESS)
2589 		mpte = pmap_allocpte(pmap, va);
2590 	else
2591 		mpte = NULL;
2592 
2593 	pmap_inval_init(&info);
2594 	pde = pmap_pde(pmap, va);
2595 	if (pde != NULL && (*pde & PG_V) != 0) {
2596 		if ((*pde & PG_PS) != 0)
2597 			panic("pmap_enter: attempted pmap_enter on 2MB page");
2598 		pte = pmap_pde_to_pte(pde, va);
2599 	} else
2600 		panic("pmap_enter: invalid page directory va=%#lx", va);
2601 
2602 	KKASSERT(pte != NULL);
2603 	pa = VM_PAGE_TO_PHYS(m);
2604 	origpte = *pte;
2605 	opa = origpte & PG_FRAME;
2606 
2607 	/*
2608 	 * Mapping has not changed, must be protection or wiring change.
2609 	 */
2610 	if (origpte && (opa == pa)) {
2611 		/*
2612 		 * Wiring change, just update stats. We don't worry about
2613 		 * wiring PT pages as they remain resident as long as there
2614 		 * are valid mappings in them. Hence, if a user page is wired,
2615 		 * the PT page will be also.
2616 		 */
2617 		if (wired && ((origpte & PG_W) == 0))
2618 			pmap->pm_stats.wired_count++;
2619 		else if (!wired && (origpte & PG_W))
2620 			pmap->pm_stats.wired_count--;
2621 
2622 #if defined(PMAP_DIAGNOSTIC)
2623 		if (pmap_nw_modified(origpte)) {
2624 			kprintf(
2625 	"pmap_enter: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
2626 			    va, origpte);
2627 		}
2628 #endif
2629 
2630 		/*
2631 		 * Remove the extra pte reference.  Note that we cannot
2632 		 * optimize the RO->RW case because we have adjusted the
2633 		 * wiring count above and may need to adjust the wiring
2634 		 * bits below.
2635 		 */
2636 		if (mpte)
2637 			mpte->hold_count--;
2638 
2639 		/*
2640 		 * We might be turning off write access to the page,
2641 		 * so we go ahead and sense modify status.
2642 		 */
2643 		if (origpte & PG_MANAGED) {
2644 			if ((origpte & PG_M) && pmap_track_modified(va)) {
2645 				vm_page_t om;
2646 				om = PHYS_TO_VM_PAGE(opa);
2647 				vm_page_dirty(om);
2648 			}
2649 			pa |= PG_MANAGED;
2650 			KKASSERT(m->flags & PG_MAPPED);
2651 		}
2652 		goto validate;
2653 	}
2654 	/*
2655 	 * Mapping has changed, invalidate old range and fall through to
2656 	 * handle validating new mapping.
2657 	 */
2658 	while (opa) {
2659 		int err;
2660 		err = pmap_remove_pte(pmap, pte, va, &info);
2661 		if (err)
2662 			panic("pmap_enter: pte vanished, va: 0x%lx", va);
2663 		origpte = *pte;
2664 		opa = origpte & PG_FRAME;
2665 		if (opa) {
2666 			kprintf("pmap_enter: Warning, raced pmap %p va %p\n",
2667 				pmap, (void *)va);
2668 		}
2669 	}
2670 
2671 	/*
2672 	 * Enter on the PV list if part of our managed memory. Note that we
2673 	 * raise IPL while manipulating pv_table since pmap_enter can be
2674 	 * called at interrupt time.
2675 	 */
2676 	if (pmap_initialized &&
2677 	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2678 		pmap_insert_entry(pmap, va, mpte, m);
2679 		pa |= PG_MANAGED;
2680 		vm_page_flag_set(m, PG_MAPPED);
2681 	}
2682 
2683 	/*
2684 	 * Increment counters
2685 	 */
2686 	++pmap->pm_stats.resident_count;
2687 	if (wired)
2688 		pmap->pm_stats.wired_count++;
2689 
2690 validate:
2691 	/*
2692 	 * Now validate mapping with desired protection/wiring.
2693 	 */
2694 	newpte = (pt_entry_t) (pa | pte_prot(pmap, prot) | PG_V);
2695 
2696 	if (wired)
2697 		newpte |= PG_W;
2698 	if (va < VM_MAX_USER_ADDRESS)
2699 		newpte |= PG_U;
2700 	if (pmap == &kernel_pmap)
2701 		newpte |= pgeflag;
2702 
2703 	/*
2704 	 * if the mapping or permission bits are different, we need
2705 	 * to update the pte.
2706 	 */
2707 	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2708 		pmap_inval_interlock(&info, pmap, va);
2709 		*pte = newpte | PG_A;
2710 		pmap_inval_deinterlock(&info, pmap);
2711 		if (newpte & PG_RW)
2712 			vm_page_flag_set(m, PG_WRITEABLE);
2713 	}
2714 	KKASSERT((newpte & PG_MANAGED) == 0 || (m->flags & PG_MAPPED));
2715 	pmap_inval_done(&info);
2716 	lwkt_reltoken(&vm_token);
2717 }
2718 
2719 /*
2720  * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
2721  * This code also assumes that the pmap has no pre-existing entry for this
2722  * VA.
2723  *
2724  * This code currently may only be used on user pmaps, not kernel_pmap.
2725  */
2726 void
2727 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
2728 {
2729 	pt_entry_t *pte;
2730 	vm_paddr_t pa;
2731 	vm_page_t mpte;
2732 	vm_pindex_t ptepindex;
2733 	pd_entry_t *ptepa;
2734 	pmap_inval_info info;
2735 
2736 	lwkt_gettoken(&vm_token);
2737 	pmap_inval_init(&info);
2738 
2739 	if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
2740 		kprintf("Warning: pmap_enter_quick called on UVA with kernel_pmap\n");
2741 #ifdef DDB
2742 		db_print_backtrace();
2743 #endif
2744 	}
2745 	if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
2746 		kprintf("Warning: pmap_enter_quick called on KVA without kernel_pmap\n");
2747 #ifdef DDB
2748 		db_print_backtrace();
2749 #endif
2750 	}
2751 
2752 	KKASSERT(va < UPT_MIN_ADDRESS);	/* assert used on user pmaps only */
2753 
2754 	/*
2755 	 * Calculate the page table page (mpte), allocating it if necessary.
2756 	 *
2757 	 * A held page table page (mpte), or NULL, is passed onto the
2758 	 * section following.
2759 	 */
2760 	if (va < VM_MAX_USER_ADDRESS) {
2761 		/*
2762 		 * Calculate pagetable page index
2763 		 */
2764 		ptepindex = pmap_pde_pindex(va);
2765 
2766 		do {
2767 			/*
2768 			 * Get the page directory entry
2769 			 */
2770 			ptepa = pmap_pde(pmap, va);
2771 
2772 			/*
2773 			 * If the page table page is mapped, we just increment
2774 			 * the hold count, and activate it.
2775 			 */
2776 			if (ptepa && (*ptepa & PG_V) != 0) {
2777 				if (*ptepa & PG_PS)
2778 					panic("pmap_enter_quick: unexpected mapping into 2MB page");
2779 //				if (pmap->pm_ptphint &&
2780 //				    (pmap->pm_ptphint->pindex == ptepindex)) {
2781 //					mpte = pmap->pm_ptphint;
2782 //				} else {
2783 					mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
2784 					pmap->pm_ptphint = mpte;
2785 //				}
2786 				if (mpte)
2787 					mpte->hold_count++;
2788 			} else {
2789 				mpte = _pmap_allocpte(pmap, ptepindex);
2790 			}
2791 		} while (mpte == NULL);
2792 	} else {
2793 		mpte = NULL;
2794 		/* this code path is not yet used */
2795 	}
2796 
2797 	/*
2798 	 * With a valid (and held) page directory page, we can just use
2799 	 * vtopte() to get to the pte.  If the pte is already present
2800 	 * we do not disturb it.
2801 	 */
2802 	pte = vtopte(va);
2803 	if (*pte & PG_V) {
2804 		if (mpte)
2805 			pmap_unwire_pte_hold(pmap, va, mpte, &info);
2806 		pa = VM_PAGE_TO_PHYS(m);
2807 		KKASSERT(((*pte ^ pa) & PG_FRAME) == 0);
2808 		pmap_inval_done(&info);
2809 		lwkt_reltoken(&vm_token);
2810 		return;
2811 	}
2812 
2813 	/*
2814 	 * Enter on the PV list if part of our managed memory
2815 	 */
2816 	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2817 		pmap_insert_entry(pmap, va, mpte, m);
2818 		vm_page_flag_set(m, PG_MAPPED);
2819 	}
2820 
2821 	/*
2822 	 * Increment counters
2823 	 */
2824 	++pmap->pm_stats.resident_count;
2825 
2826 	pa = VM_PAGE_TO_PHYS(m);
2827 
2828 	/*
2829 	 * Now validate mapping with RO protection
2830 	 */
2831 	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2832 		*pte = pa | PG_V | PG_U;
2833 	else
2834 		*pte = pa | PG_V | PG_U | PG_MANAGED;
2835 /*	pmap_inval_add(&info, pmap, va); shouldn't be needed inval->valid */
2836 	pmap_inval_done(&info);
2837 	lwkt_reltoken(&vm_token);
2838 }
2839 
2840 /*
2841  * Make a temporary mapping for a physical address.  This is only intended
2842  * to be used for panic dumps.
2843  */
2844 /* JG Needed on x86_64? */
2845 void *
2846 pmap_kenter_temporary(vm_paddr_t pa, long i)
2847 {
2848 	pmap_kenter((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
2849 	return ((void *)crashdumpmap);
2850 }
2851 
2852 #define MAX_INIT_PT (96)
2853 
2854 /*
2855  * This routine preloads the ptes for a given object into the specified pmap.
2856  * This eliminates the blast of soft faults on process startup and
2857  * immediately after an mmap.
2858  */
2859 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
2860 
2861 void
2862 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
2863 		    vm_object_t object, vm_pindex_t pindex,
2864 		    vm_size_t size, int limit)
2865 {
2866 	struct rb_vm_page_scan_info info;
2867 	struct lwp *lp;
2868 	vm_size_t psize;
2869 
2870 	/*
2871 	 * We can't preinit if read access isn't set or there is no pmap
2872 	 * or object.
2873 	 */
2874 	if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
2875 		return;
2876 
2877 	/*
2878 	 * We can't preinit if the pmap is not the current pmap
2879 	 */
2880 	lp = curthread->td_lwp;
2881 	if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
2882 		return;
2883 
2884 	psize = x86_64_btop(size);
2885 
2886 	if ((object->type != OBJT_VNODE) ||
2887 		((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2888 			(object->resident_page_count > MAX_INIT_PT))) {
2889 		return;
2890 	}
2891 
2892 	if (psize + pindex > object->size) {
2893 		if (object->size < pindex)
2894 			return;
2895 		psize = object->size - pindex;
2896 	}
2897 
2898 	if (psize == 0)
2899 		return;
2900 
2901 	/*
2902 	 * Use a red-black scan to traverse the requested range and load
2903 	 * any valid pages found into the pmap.
2904 	 *
2905 	 * We cannot safely scan the object's memq unless we are in a
2906 	 * critical section since interrupts can remove pages from objects.
2907 	 */
2908 	info.start_pindex = pindex;
2909 	info.end_pindex = pindex + psize - 1;
2910 	info.limit = limit;
2911 	info.mpte = NULL;
2912 	info.addr = addr;
2913 	info.pmap = pmap;
2914 
2915 	crit_enter();
2916 	lwkt_gettoken(&vm_token);
2917 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2918 				pmap_object_init_pt_callback, &info);
2919 	lwkt_reltoken(&vm_token);
2920 	crit_exit();
2921 }
2922 
2923 static
2924 int
2925 pmap_object_init_pt_callback(vm_page_t p, void *data)
2926 {
2927 	struct rb_vm_page_scan_info *info = data;
2928 	vm_pindex_t rel_index;
2929 	/*
2930 	 * don't allow an madvise to blow away our really
2931 	 * free pages allocating pv entries.
2932 	 */
2933 	if ((info->limit & MAP_PREFAULT_MADVISE) &&
2934 		vmstats.v_free_count < vmstats.v_free_reserved) {
2935 		    return(-1);
2936 	}
2937 	if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2938 	    (p->busy == 0) && (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2939 		vm_page_busy(p);
2940 		if ((p->queue - p->pc) == PQ_CACHE)
2941 			vm_page_deactivate(p);
2942 		rel_index = p->pindex - info->start_pindex;
2943 		pmap_enter_quick(info->pmap,
2944 				 info->addr + x86_64_ptob(rel_index), p);
2945 		vm_page_wakeup(p);
2946 	}
2947 	return(0);
2948 }
2949 
2950 /*
2951  * Return TRUE if the pmap is in shape to trivially
2952  * pre-fault the specified address.
2953  *
2954  * Returns FALSE if it would be non-trivial or if a
2955  * pte is already loaded into the slot.
2956  */
2957 int
2958 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
2959 {
2960 	pt_entry_t *pte;
2961 	pd_entry_t *pde;
2962 	int ret;
2963 
2964 	lwkt_gettoken(&vm_token);
2965 	pde = pmap_pde(pmap, addr);
2966 	if (pde == NULL || *pde == 0) {
2967 		ret = 0;
2968 	} else {
2969 		pte = vtopte(addr);
2970 		ret = (*pte) ? 0 : 1;
2971 	}
2972 	lwkt_reltoken(&vm_token);
2973 	return(ret);
2974 }
2975 
2976 /*
2977  *	Routine:	pmap_change_wiring
2978  *	Function:	Change the wiring attribute for a map/virtual-address
2979  *			pair.
2980  *	In/out conditions:
2981  *			The mapping must already exist in the pmap.
2982  */
2983 void
2984 pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2985 {
2986 	pt_entry_t *pte;
2987 
2988 	if (pmap == NULL)
2989 		return;
2990 
2991 	lwkt_gettoken(&vm_token);
2992 	pte = pmap_pte(pmap, va);
2993 
2994 	if (wired && !pmap_pte_w(pte))
2995 		pmap->pm_stats.wired_count++;
2996 	else if (!wired && pmap_pte_w(pte))
2997 		pmap->pm_stats.wired_count--;
2998 
2999 	/*
3000 	 * Wiring is not a hardware characteristic so there is no need to
3001 	 * invalidate TLB.  However, in an SMP environment we must use
3002 	 * a locked bus cycle to update the pte (if we are not using
3003 	 * the pmap_inval_*() API that is)... it's ok to do this for simple
3004 	 * wiring changes.
3005 	 */
3006 #ifdef SMP
3007 	if (wired)
3008 		atomic_set_long(pte, PG_W);
3009 	else
3010 		atomic_clear_long(pte, PG_W);
3011 #else
3012 	if (wired)
3013 		atomic_set_long_nonlocked(pte, PG_W);
3014 	else
3015 		atomic_clear_long_nonlocked(pte, PG_W);
3016 #endif
3017 	lwkt_reltoken(&vm_token);
3018 }
3019 
3020 
3021 
3022 /*
3023  *	Copy the range specified by src_addr/len
3024  *	from the source map to the range dst_addr/len
3025  *	in the destination map.
3026  *
3027  *	This routine is only advisory and need not do anything.
3028  */
3029 void
3030 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
3031 	  vm_size_t len, vm_offset_t src_addr)
3032 {
3033 	return;
3034 #if 0
3035 	pmap_inval_info info;
3036 	vm_offset_t addr;
3037 	vm_offset_t end_addr = src_addr + len;
3038 	vm_offset_t pdnxt;
3039 	pd_entry_t src_frame, dst_frame;
3040 	vm_page_t m;
3041 
3042 	if (dst_addr != src_addr)
3043 		return;
3044 #if JGPMAP32
3045 	src_frame = src_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
3046 	if (src_frame != (PTDpde & PG_FRAME)) {
3047 		return;
3048 	}
3049 
3050 	dst_frame = dst_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
3051 	if (dst_frame != (APTDpde & PG_FRAME)) {
3052 		APTDpde = (pd_entry_t) (dst_frame | PG_RW | PG_V);
3053 		/* The page directory is not shared between CPUs */
3054 		cpu_invltlb();
3055 	}
3056 #endif
3057 	pmap_inval_init(&info);
3058 	pmap_inval_add(&info, dst_pmap, -1);
3059 	pmap_inval_add(&info, src_pmap, -1);
3060 
3061 	/*
3062 	 * critical section protection is required to maintain the page/object
3063 	 * association, interrupts can free pages and remove them from
3064 	 * their objects.
3065 	 */
3066 	crit_enter();
3067 	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3068 		pt_entry_t *src_pte, *dst_pte;
3069 		vm_page_t dstmpte, srcmpte;
3070 		vm_offset_t srcptepaddr;
3071 		vm_pindex_t ptepindex;
3072 
3073 		if (addr >= UPT_MIN_ADDRESS)
3074 			panic("pmap_copy: invalid to pmap_copy page tables\n");
3075 
3076 		/*
3077 		 * Don't let optional prefaulting of pages make us go
3078 		 * way below the low water mark of free pages or way
3079 		 * above high water mark of used pv entries.
3080 		 */
3081 		if (vmstats.v_free_count < vmstats.v_free_reserved ||
3082 		    pv_entry_count > pv_entry_high_water)
3083 			break;
3084 
3085 		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
3086 		ptepindex = addr >> PDRSHIFT;
3087 
3088 #if JGPMAP32
3089 		srcptepaddr = (vm_offset_t) src_pmap->pm_pdir[ptepindex];
3090 #endif
3091 		if (srcptepaddr == 0)
3092 			continue;
3093 
3094 		if (srcptepaddr & PG_PS) {
3095 #if JGPMAP32
3096 			if (dst_pmap->pm_pdir[ptepindex] == 0) {
3097 				dst_pmap->pm_pdir[ptepindex] = (pd_entry_t) srcptepaddr;
3098 				dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
3099 			}
3100 #endif
3101 			continue;
3102 		}
3103 
3104 		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
3105 		if ((srcmpte == NULL) || (srcmpte->hold_count == 0) ||
3106 		    (srcmpte->flags & PG_BUSY)) {
3107 			continue;
3108 		}
3109 
3110 		if (pdnxt > end_addr)
3111 			pdnxt = end_addr;
3112 
3113 		src_pte = vtopte(addr);
3114 #if JGPMAP32
3115 		dst_pte = avtopte(addr);
3116 #endif
3117 		while (addr < pdnxt) {
3118 			pt_entry_t ptetemp;
3119 
3120 			ptetemp = *src_pte;
3121 			/*
3122 			 * we only virtual copy managed pages
3123 			 */
3124 			if ((ptetemp & PG_MANAGED) != 0) {
3125 				/*
3126 				 * We have to check after allocpte for the
3127 				 * pte still being around...  allocpte can
3128 				 * block.
3129 				 *
3130 				 * pmap_allocpte() can block.  If we lose
3131 				 * our page directory mappings we stop.
3132 				 */
3133 				dstmpte = pmap_allocpte(dst_pmap, addr);
3134 
3135 #if JGPMAP32
3136 				if (src_frame != (PTDpde & PG_FRAME) ||
3137 				    dst_frame != (APTDpde & PG_FRAME)
3138 				) {
3139 					kprintf("WARNING: pmap_copy: detected and corrected race\n");
3140 					pmap_unwire_pte_hold(dst_pmap, dstmpte, &info);
3141 					goto failed;
3142 				} else if ((*dst_pte == 0) &&
3143 					   (ptetemp = *src_pte) != 0 &&
3144 					   (ptetemp & PG_MANAGED)) {
3145 					/*
3146 					 * Clear the modified and
3147 					 * accessed (referenced) bits
3148 					 * during the copy.
3149 					 */
3150 					m = PHYS_TO_VM_PAGE(ptetemp);
3151 					*dst_pte = ptetemp & ~(PG_M | PG_A);
3152 					++dst_pmap->pm_stats.resident_count;
3153 					pmap_insert_entry(dst_pmap, addr,
3154 						dstmpte, m);
3155 					KKASSERT(m->flags & PG_MAPPED);
3156 	 			} else {
3157 					kprintf("WARNING: pmap_copy: dst_pte race detected and corrected\n");
3158 					pmap_unwire_pte_hold(dst_pmap, dstmpte, &info);
3159 					goto failed;
3160 				}
3161 #endif
3162 				if (dstmpte->hold_count >= srcmpte->hold_count)
3163 					break;
3164 			}
3165 			addr += PAGE_SIZE;
3166 			src_pte++;
3167 			dst_pte++;
3168 		}
3169 	}
3170 failed:
3171 	crit_exit();
3172 	pmap_inval_done(&info);
3173 #endif
3174 }
3175 
3176 /*
3177  * pmap_zero_page:
3178  *
3179  *	Zero the specified physical page.
3180  *
3181  *	This function may be called from an interrupt and no locking is
3182  *	required.
3183  */
3184 void
3185 pmap_zero_page(vm_paddr_t phys)
3186 {
3187 	vm_offset_t va = PHYS_TO_DMAP(phys);
3188 
3189 	pagezero((void *)va);
3190 }
3191 
3192 /*
3193  * pmap_page_assertzero:
3194  *
3195  *	Assert that a page is empty, panic if it isn't.
3196  */
3197 void
3198 pmap_page_assertzero(vm_paddr_t phys)
3199 {
3200 	vm_offset_t va = PHYS_TO_DMAP(phys);
3201 	size_t i;
3202 
3203 	for (i = 0; i < PAGE_SIZE; i += sizeof(long)) {
3204 		if (*(long *)((char *)va + i) != 0) {
3205 			panic("pmap_page_assertzero() @ %p not zero!\n",
3206 			      (void *)(intptr_t)va);
3207 		}
3208 	}
3209 }
3210 
3211 /*
3212  * pmap_zero_page:
3213  *
3214  *	Zero part of a physical page by mapping it into memory and clearing
3215  *	its contents with bzero.
3216  *
3217  *	off and size may not cover an area beyond a single hardware page.
3218  */
3219 void
3220 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
3221 {
3222 	vm_offset_t virt = PHYS_TO_DMAP(phys);
3223 
3224 	bzero((char *)virt + off, size);
3225 }
3226 
3227 /*
3228  * pmap_copy_page:
3229  *
3230  *	Copy the physical page from the source PA to the target PA.
3231  *	This function may be called from an interrupt.  No locking
3232  *	is required.
3233  */
3234 void
3235 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
3236 {
3237 	vm_offset_t src_virt, dst_virt;
3238 
3239 	src_virt = PHYS_TO_DMAP(src);
3240 	dst_virt = PHYS_TO_DMAP(dst);
3241 	bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
3242 }
3243 
3244 /*
3245  * pmap_copy_page_frag:
3246  *
3247  *	Copy the physical page from the source PA to the target PA.
3248  *	This function may be called from an interrupt.  No locking
3249  *	is required.
3250  */
3251 void
3252 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
3253 {
3254 	vm_offset_t src_virt, dst_virt;
3255 
3256 	src_virt = PHYS_TO_DMAP(src);
3257 	dst_virt = PHYS_TO_DMAP(dst);
3258 
3259 	bcopy((char *)src_virt + (src & PAGE_MASK),
3260 	      (char *)dst_virt + (dst & PAGE_MASK),
3261 	      bytes);
3262 }
3263 
3264 /*
3265  * Returns true if the pmap's pv is one of the first
3266  * 16 pvs linked to from this page.  This count may
3267  * be changed upwards or downwards in the future; it
3268  * is only necessary that true be returned for a small
3269  * subset of pmaps for proper page aging.
3270  */
3271 boolean_t
3272 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3273 {
3274 	pv_entry_t pv;
3275 	int loops = 0;
3276 
3277 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3278 		return FALSE;
3279 
3280 	crit_enter();
3281 	lwkt_gettoken(&vm_token);
3282 
3283 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3284 		if (pv->pv_pmap == pmap) {
3285 			lwkt_reltoken(&vm_token);
3286 			crit_exit();
3287 			return TRUE;
3288 		}
3289 		loops++;
3290 		if (loops >= 16)
3291 			break;
3292 	}
3293 	lwkt_reltoken(&vm_token);
3294 	crit_exit();
3295 	return (FALSE);
3296 }
3297 
3298 /*
3299  * Remove all pages from specified address space
3300  * this aids process exit speeds.  Also, this code
3301  * is special cased for current process only, but
3302  * can have the more generic (and slightly slower)
3303  * mode enabled.  This is much faster than pmap_remove
3304  * in the case of running down an entire address space.
3305  */
3306 void
3307 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3308 {
3309 	struct lwp *lp;
3310 	pt_entry_t *pte, tpte;
3311 	pv_entry_t pv, npv;
3312 	vm_page_t m;
3313 	pmap_inval_info info;
3314 	int iscurrentpmap;
3315 	int save_generation;
3316 
3317 	lp = curthread->td_lwp;
3318 	if (lp && pmap == vmspace_pmap(lp->lwp_vmspace))
3319 		iscurrentpmap = 1;
3320 	else
3321 		iscurrentpmap = 0;
3322 
3323 	lwkt_gettoken(&vm_token);
3324 	pmap_inval_init(&info);
3325 	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
3326 		if (pv->pv_va >= eva || pv->pv_va < sva) {
3327 			npv = TAILQ_NEXT(pv, pv_plist);
3328 			continue;
3329 		}
3330 
3331 		KKASSERT(pmap == pv->pv_pmap);
3332 
3333 		if (iscurrentpmap)
3334 			pte = vtopte(pv->pv_va);
3335 		else
3336 			pte = pmap_pte_quick(pmap, pv->pv_va);
3337 		pmap_inval_interlock(&info, pmap, pv->pv_va);
3338 
3339 		/*
3340 		 * We cannot remove wired pages from a process' mapping
3341 		 * at this time
3342 		 */
3343 		if (*pte & PG_W) {
3344 			pmap_inval_deinterlock(&info, pmap);
3345 			npv = TAILQ_NEXT(pv, pv_plist);
3346 			continue;
3347 		}
3348 		tpte = pte_load_clear(pte);
3349 
3350 		m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3351 
3352 		KASSERT(m < &vm_page_array[vm_page_array_size],
3353 			("pmap_remove_pages: bad tpte %lx", tpte));
3354 
3355 		KKASSERT(pmap->pm_stats.resident_count > 0);
3356 		--pmap->pm_stats.resident_count;
3357 		pmap_inval_deinterlock(&info, pmap);
3358 
3359 		/*
3360 		 * Update the vm_page_t clean and reference bits.
3361 		 */
3362 		if (tpte & PG_M) {
3363 			vm_page_dirty(m);
3364 		}
3365 
3366 		npv = TAILQ_NEXT(pv, pv_plist);
3367 		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
3368 		save_generation = ++pmap->pm_generation;
3369 
3370 		m->md.pv_list_count--;
3371 		m->object->agg_pv_list_count--;
3372 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3373 		if (TAILQ_EMPTY(&m->md.pv_list))
3374 			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
3375 
3376 		pmap_unuse_pt(pmap, pv->pv_va, pv->pv_ptem, &info);
3377 		free_pv_entry(pv);
3378 
3379 		/*
3380 		 * Restart the scan if we blocked during the unuse or free
3381 		 * calls and other removals were made.
3382 		 */
3383 		if (save_generation != pmap->pm_generation) {
3384 			kprintf("Warning: pmap_remove_pages race-A avoided\n");
3385 			npv = TAILQ_FIRST(&pmap->pm_pvlist);
3386 		}
3387 	}
3388 	pmap_inval_done(&info);
3389 	lwkt_reltoken(&vm_token);
3390 }
3391 
3392 /*
3393  * pmap_testbit tests bits in pte's
3394  * note that the testbit/clearbit routines are inline,
3395  * and a lot of things compile-time evaluate.
3396  */
3397 static
3398 boolean_t
3399 pmap_testbit(vm_page_t m, int bit)
3400 {
3401 	pv_entry_t pv;
3402 	pt_entry_t *pte;
3403 
3404 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3405 		return FALSE;
3406 
3407 	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
3408 		return FALSE;
3409 
3410 	crit_enter();
3411 
3412 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3413 		/*
3414 		 * if the bit being tested is the modified bit, then
3415 		 * mark clean_map and ptes as never
3416 		 * modified.
3417 		 */
3418 		if (bit & (PG_A|PG_M)) {
3419 			if (!pmap_track_modified(pv->pv_va))
3420 				continue;
3421 		}
3422 
3423 #if defined(PMAP_DIAGNOSTIC)
3424 		if (pv->pv_pmap == NULL) {
3425 			kprintf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
3426 			continue;
3427 		}
3428 #endif
3429 		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3430 		if (*pte & bit) {
3431 			crit_exit();
3432 			return TRUE;
3433 		}
3434 	}
3435 	crit_exit();
3436 	return (FALSE);
3437 }
3438 
3439 /*
3440  * this routine is used to modify bits in ptes
3441  */
3442 static __inline
3443 void
3444 pmap_clearbit(vm_page_t m, int bit)
3445 {
3446 	struct pmap_inval_info info;
3447 	pv_entry_t pv;
3448 	pt_entry_t *pte;
3449 	pt_entry_t pbits;
3450 
3451 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3452 		return;
3453 
3454 	pmap_inval_init(&info);
3455 
3456 	/*
3457 	 * Loop over all current mappings setting/clearing as appropos If
3458 	 * setting RO do we need to clear the VAC?
3459 	 */
3460 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3461 		/*
3462 		 * don't write protect pager mappings
3463 		 */
3464 		if (bit == PG_RW) {
3465 			if (!pmap_track_modified(pv->pv_va))
3466 				continue;
3467 		}
3468 
3469 #if defined(PMAP_DIAGNOSTIC)
3470 		if (pv->pv_pmap == NULL) {
3471 			kprintf("Null pmap (cb) at va: 0x%lx\n", pv->pv_va);
3472 			continue;
3473 		}
3474 #endif
3475 
3476 		/*
3477 		 * Careful here.  We can use a locked bus instruction to
3478 		 * clear PG_A or PG_M safely but we need to synchronize
3479 		 * with the target cpus when we mess with PG_RW.
3480 		 *
3481 		 * We do not have to force synchronization when clearing
3482 		 * PG_M even for PTEs generated via virtual memory maps,
3483 		 * because the virtual kernel will invalidate the pmap
3484 		 * entry when/if it needs to resynchronize the Modify bit.
3485 		 */
3486 		if (bit & PG_RW)
3487 			pmap_inval_interlock(&info, pv->pv_pmap, pv->pv_va);
3488 		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3489 again:
3490 		pbits = *pte;
3491 		if (pbits & bit) {
3492 			if (bit == PG_RW) {
3493 				if (pbits & PG_M) {
3494 					vm_page_dirty(m);
3495 					atomic_clear_long(pte, PG_M|PG_RW);
3496 				} else {
3497 					/*
3498 					 * The cpu may be trying to set PG_M
3499 					 * simultaniously with our clearing
3500 					 * of PG_RW.
3501 					 */
3502 					if (!atomic_cmpset_long(pte, pbits,
3503 							       pbits & ~PG_RW))
3504 						goto again;
3505 				}
3506 			} else if (bit == PG_M) {
3507 				/*
3508 				 * We could also clear PG_RW here to force
3509 				 * a fault on write to redetect PG_M for
3510 				 * virtual kernels, but it isn't necessary
3511 				 * since virtual kernels invalidate the pte
3512 				 * when they clear the VPTE_M bit in their
3513 				 * virtual page tables.
3514 				 */
3515 				atomic_clear_long(pte, PG_M);
3516 			} else {
3517 				atomic_clear_long(pte, bit);
3518 			}
3519 		}
3520 		if (bit & PG_RW)
3521 			pmap_inval_deinterlock(&info, pv->pv_pmap);
3522 	}
3523 	pmap_inval_done(&info);
3524 }
3525 
3526 /*
3527  *      pmap_page_protect:
3528  *
3529  *      Lower the permission for all mappings to a given page.
3530  */
3531 void
3532 pmap_page_protect(vm_page_t m, vm_prot_t prot)
3533 {
3534 	/* JG NX support? */
3535 	if ((prot & VM_PROT_WRITE) == 0) {
3536 		lwkt_gettoken(&vm_token);
3537 		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3538 			pmap_clearbit(m, PG_RW);
3539 			vm_page_flag_clear(m, PG_WRITEABLE);
3540 		} else {
3541 			pmap_remove_all(m);
3542 		}
3543 		lwkt_reltoken(&vm_token);
3544 	}
3545 }
3546 
3547 vm_paddr_t
3548 pmap_phys_address(vm_pindex_t ppn)
3549 {
3550 	return (x86_64_ptob(ppn));
3551 }
3552 
3553 /*
3554  *	pmap_ts_referenced:
3555  *
3556  *	Return a count of reference bits for a page, clearing those bits.
3557  *	It is not necessary for every reference bit to be cleared, but it
3558  *	is necessary that 0 only be returned when there are truly no
3559  *	reference bits set.
3560  *
3561  *	XXX: The exact number of bits to check and clear is a matter that
3562  *	should be tested and standardized at some point in the future for
3563  *	optimal aging of shared pages.
3564  */
3565 int
3566 pmap_ts_referenced(vm_page_t m)
3567 {
3568 	pv_entry_t pv, pvf, pvn;
3569 	pt_entry_t *pte;
3570 	int rtval = 0;
3571 
3572 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3573 		return (rtval);
3574 
3575 	crit_enter();
3576 	lwkt_gettoken(&vm_token);
3577 
3578 	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3579 
3580 		pvf = pv;
3581 
3582 		do {
3583 			pvn = TAILQ_NEXT(pv, pv_list);
3584 
3585 			crit_enter();
3586 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3587 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3588 			crit_exit();
3589 
3590 			if (!pmap_track_modified(pv->pv_va))
3591 				continue;
3592 
3593 			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3594 
3595 			if (pte && (*pte & PG_A)) {
3596 #ifdef SMP
3597 				atomic_clear_long(pte, PG_A);
3598 #else
3599 				atomic_clear_long_nonlocked(pte, PG_A);
3600 #endif
3601 				rtval++;
3602 				if (rtval > 4) {
3603 					break;
3604 				}
3605 			}
3606 		} while ((pv = pvn) != NULL && pv != pvf);
3607 	}
3608 	lwkt_reltoken(&vm_token);
3609 	crit_exit();
3610 
3611 	return (rtval);
3612 }
3613 
3614 /*
3615  *	pmap_is_modified:
3616  *
3617  *	Return whether or not the specified physical page was modified
3618  *	in any physical maps.
3619  */
3620 boolean_t
3621 pmap_is_modified(vm_page_t m)
3622 {
3623 	boolean_t res;
3624 
3625 	lwkt_gettoken(&vm_token);
3626 	res = pmap_testbit(m, PG_M);
3627 	lwkt_reltoken(&vm_token);
3628 	return (res);
3629 }
3630 
3631 /*
3632  *	Clear the modify bits on the specified physical page.
3633  */
3634 void
3635 pmap_clear_modify(vm_page_t m)
3636 {
3637 	lwkt_gettoken(&vm_token);
3638 	pmap_clearbit(m, PG_M);
3639 	lwkt_reltoken(&vm_token);
3640 }
3641 
3642 /*
3643  *	pmap_clear_reference:
3644  *
3645  *	Clear the reference bit on the specified physical page.
3646  */
3647 void
3648 pmap_clear_reference(vm_page_t m)
3649 {
3650 	lwkt_gettoken(&vm_token);
3651 	pmap_clearbit(m, PG_A);
3652 	lwkt_reltoken(&vm_token);
3653 }
3654 
3655 /*
3656  * Miscellaneous support routines follow
3657  */
3658 
3659 static
3660 void
3661 i386_protection_init(void)
3662 {
3663 	int *kp, prot;
3664 
3665 	/* JG NX support may go here; No VM_PROT_EXECUTE ==> set NX bit  */
3666 	kp = protection_codes;
3667 	for (prot = 0; prot < 8; prot++) {
3668 		switch (prot) {
3669 		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3670 			/*
3671 			 * Read access is also 0. There isn't any execute bit,
3672 			 * so just make it readable.
3673 			 */
3674 		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3675 		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3676 		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3677 			*kp++ = 0;
3678 			break;
3679 		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3680 		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3681 		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3682 		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3683 			*kp++ = PG_RW;
3684 			break;
3685 		}
3686 	}
3687 }
3688 
3689 /*
3690  * Map a set of physical memory pages into the kernel virtual
3691  * address space. Return a pointer to where it is mapped. This
3692  * routine is intended to be used for mapping device memory,
3693  * NOT real memory.
3694  *
3695  * NOTE: we can't use pgeflag unless we invalidate the pages one at
3696  * a time.
3697  */
3698 void *
3699 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3700 {
3701 	vm_offset_t va, tmpva, offset;
3702 	pt_entry_t *pte;
3703 
3704 	offset = pa & PAGE_MASK;
3705 	size = roundup(offset + size, PAGE_SIZE);
3706 
3707 	va = kmem_alloc_nofault(&kernel_map, size, PAGE_SIZE);
3708 	if (va == 0)
3709 		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3710 
3711 	pa = pa & ~PAGE_MASK;
3712 	for (tmpva = va; size > 0;) {
3713 		pte = vtopte(tmpva);
3714 		*pte = pa | PG_RW | PG_V; /* | pgeflag; */
3715 		size -= PAGE_SIZE;
3716 		tmpva += PAGE_SIZE;
3717 		pa += PAGE_SIZE;
3718 	}
3719 	cpu_invltlb();
3720 	smp_invltlb();
3721 
3722 	return ((void *)(va + offset));
3723 }
3724 
3725 void *
3726 pmap_mapdev_uncacheable(vm_paddr_t pa, vm_size_t size)
3727 {
3728 	vm_offset_t va, tmpva, offset;
3729 	pt_entry_t *pte;
3730 
3731 	offset = pa & PAGE_MASK;
3732 	size = roundup(offset + size, PAGE_SIZE);
3733 
3734 	va = kmem_alloc_nofault(&kernel_map, size, PAGE_SIZE);
3735 	if (va == 0)
3736 		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3737 
3738 	pa = pa & ~PAGE_MASK;
3739 	for (tmpva = va; size > 0;) {
3740 		pte = vtopte(tmpva);
3741 		*pte = pa | PG_RW | PG_V | PG_N; /* | pgeflag; */
3742 		size -= PAGE_SIZE;
3743 		tmpva += PAGE_SIZE;
3744 		pa += PAGE_SIZE;
3745 	}
3746 	cpu_invltlb();
3747 	smp_invltlb();
3748 
3749 	return ((void *)(va + offset));
3750 }
3751 
3752 void
3753 pmap_unmapdev(vm_offset_t va, vm_size_t size)
3754 {
3755 	vm_offset_t base, offset;
3756 
3757 	base = va & ~PAGE_MASK;
3758 	offset = va & PAGE_MASK;
3759 	size = roundup(offset + size, PAGE_SIZE);
3760 	pmap_qremove(va, size >> PAGE_SHIFT);
3761 	kmem_free(&kernel_map, base, size);
3762 }
3763 
3764 /*
3765  * perform the pmap work for mincore
3766  */
3767 int
3768 pmap_mincore(pmap_t pmap, vm_offset_t addr)
3769 {
3770 	pt_entry_t *ptep, pte;
3771 	vm_page_t m;
3772 	int val = 0;
3773 
3774 	lwkt_gettoken(&vm_token);
3775 	ptep = pmap_pte(pmap, addr);
3776 
3777 	if (ptep && (pte = *ptep) != 0) {
3778 		vm_offset_t pa;
3779 
3780 		val = MINCORE_INCORE;
3781 		if ((pte & PG_MANAGED) == 0)
3782 			goto done;
3783 
3784 		pa = pte & PG_FRAME;
3785 
3786 		m = PHYS_TO_VM_PAGE(pa);
3787 
3788 		/*
3789 		 * Modified by us
3790 		 */
3791 		if (pte & PG_M)
3792 			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3793 		/*
3794 		 * Modified by someone
3795 		 */
3796 		else if (m->dirty || pmap_is_modified(m))
3797 			val |= MINCORE_MODIFIED_OTHER;
3798 		/*
3799 		 * Referenced by us
3800 		 */
3801 		if (pte & PG_A)
3802 			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3803 
3804 		/*
3805 		 * Referenced by someone
3806 		 */
3807 		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3808 			val |= MINCORE_REFERENCED_OTHER;
3809 			vm_page_flag_set(m, PG_REFERENCED);
3810 		}
3811 	}
3812 done:
3813 	lwkt_reltoken(&vm_token);
3814 	return val;
3815 }
3816 
3817 /*
3818  * Replace p->p_vmspace with a new one.  If adjrefs is non-zero the new
3819  * vmspace will be ref'd and the old one will be deref'd.
3820  *
3821  * The vmspace for all lwps associated with the process will be adjusted
3822  * and cr3 will be reloaded if any lwp is the current lwp.
3823  */
3824 void
3825 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
3826 {
3827 	struct vmspace *oldvm;
3828 	struct lwp *lp;
3829 
3830 	crit_enter();
3831 	oldvm = p->p_vmspace;
3832 	if (oldvm != newvm) {
3833 		p->p_vmspace = newvm;
3834 		KKASSERT(p->p_nthreads == 1);
3835 		lp = RB_ROOT(&p->p_lwp_tree);
3836 		pmap_setlwpvm(lp, newvm);
3837 		if (adjrefs) {
3838 			sysref_get(&newvm->vm_sysref);
3839 			sysref_put(&oldvm->vm_sysref);
3840 		}
3841 	}
3842 	crit_exit();
3843 }
3844 
3845 /*
3846  * Set the vmspace for a LWP.  The vmspace is almost universally set the
3847  * same as the process vmspace, but virtual kernels need to swap out contexts
3848  * on a per-lwp basis.
3849  */
3850 void
3851 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
3852 {
3853 	struct vmspace *oldvm;
3854 	struct pmap *pmap;
3855 
3856 	crit_enter();
3857 	oldvm = lp->lwp_vmspace;
3858 
3859 	if (oldvm != newvm) {
3860 		lp->lwp_vmspace = newvm;
3861 		if (curthread->td_lwp == lp) {
3862 			pmap = vmspace_pmap(newvm);
3863 #if defined(SMP)
3864 			atomic_set_cpumask(&pmap->pm_active, mycpu->gd_cpumask);
3865 			if (pmap->pm_active & CPUMASK_LOCK)
3866 				pmap_interlock_wait(newvm);
3867 #else
3868 			pmap->pm_active |= 1;
3869 #endif
3870 #if defined(SWTCH_OPTIM_STATS)
3871 			tlb_flush_count++;
3872 #endif
3873 			curthread->td_pcb->pcb_cr3 = vtophys(pmap->pm_pml4);
3874 			curthread->td_pcb->pcb_cr3 |= PG_RW | PG_U | PG_V;
3875 			load_cr3(curthread->td_pcb->pcb_cr3);
3876 			pmap = vmspace_pmap(oldvm);
3877 #if defined(SMP)
3878 			atomic_clear_cpumask(&pmap->pm_active, mycpu->gd_cpumask);
3879 #else
3880 			pmap->pm_active &= ~(cpumask_t)1;
3881 #endif
3882 		}
3883 	}
3884 	crit_exit();
3885 }
3886 
3887 #ifdef SMP
3888 
3889 /*
3890  * Called when switching to a locked pmap
3891  */
3892 void
3893 pmap_interlock_wait(struct vmspace *vm)
3894 {
3895 	struct pmap *pmap = &vm->vm_pmap;
3896 
3897 	if (pmap->pm_active & CPUMASK_LOCK) {
3898 		DEBUG_PUSH_INFO("pmap_interlock_wait");
3899 		while (pmap->pm_active & CPUMASK_LOCK) {
3900 			cpu_pause();
3901 			cpu_ccfence();
3902 			lwkt_process_ipiq();
3903 		}
3904 		DEBUG_POP_INFO();
3905 	}
3906 }
3907 
3908 #endif
3909 
3910 vm_offset_t
3911 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3912 {
3913 
3914 	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3915 		return addr;
3916 	}
3917 
3918 	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3919 	return addr;
3920 }
3921 
3922 /*
3923  * Used by kmalloc/kfree, page already exists at va
3924  */
3925 vm_page_t
3926 pmap_kvtom(vm_offset_t va)
3927 {
3928 	return(PHYS_TO_VM_PAGE(*vtopte(va) & PG_FRAME));
3929 }
3930