xref: /dragonfly/sys/platform/pc64/x86_64/pmap.c (revision 3170ffd7)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1994 David Greenman
5  * Copyright (c) 2003 Peter Wemm
6  * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
7  * Copyright (c) 2008, 2009 The DragonFly Project.
8  * Copyright (c) 2008, 2009 Jordan Gordeev.
9  * Copyright (c) 2011-2012 Matthew Dillon
10  * All rights reserved.
11  *
12  * This code is derived from software contributed to Berkeley by
13  * the Systems Programming Group of the University of Utah Computer
14  * Science Department and William Jolitz of UUNET Technologies Inc.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  */
44 /*
45  * Manage physical address maps for x86-64 systems.
46  */
47 
48 #if JG
49 #include "opt_disable_pse.h"
50 #include "opt_pmap.h"
51 #endif
52 #include "opt_msgbuf.h"
53 
54 #include <sys/param.h>
55 #include <sys/systm.h>
56 #include <sys/kernel.h>
57 #include <sys/proc.h>
58 #include <sys/msgbuf.h>
59 #include <sys/vmmeter.h>
60 #include <sys/mman.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <sys/sysctl.h>
65 #include <sys/lock.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_object.h>
70 #include <vm/vm_extern.h>
71 #include <vm/vm_pageout.h>
72 #include <vm/vm_pager.h>
73 #include <vm/vm_zone.h>
74 
75 #include <sys/user.h>
76 #include <sys/thread2.h>
77 #include <sys/sysref2.h>
78 #include <sys/spinlock2.h>
79 #include <vm/vm_page2.h>
80 
81 #include <machine/cputypes.h>
82 #include <machine/md_var.h>
83 #include <machine/specialreg.h>
84 #include <machine/smp.h>
85 #include <machine_base/apic/apicreg.h>
86 #include <machine/globaldata.h>
87 #include <machine/pmap.h>
88 #include <machine/pmap_inval.h>
89 #include <machine/inttypes.h>
90 
91 #include <ddb/ddb.h>
92 
93 #define PMAP_KEEP_PDIRS
94 #ifndef PMAP_SHPGPERPROC
95 #define PMAP_SHPGPERPROC 2000
96 #endif
97 
98 #if defined(DIAGNOSTIC)
99 #define PMAP_DIAGNOSTIC
100 #endif
101 
102 #define MINPV 2048
103 
104 /*
105  * pmap debugging will report who owns a pv lock when blocking.
106  */
107 #ifdef PMAP_DEBUG
108 
109 #define PMAP_DEBUG_DECL		,const char *func, int lineno
110 #define PMAP_DEBUG_ARGS		, __func__, __LINE__
111 #define PMAP_DEBUG_COPY		, func, lineno
112 
113 #define pv_get(pmap, pindex)		_pv_get(pmap, pindex		\
114 							PMAP_DEBUG_ARGS)
115 #define pv_lock(pv)			_pv_lock(pv			\
116 							PMAP_DEBUG_ARGS)
117 #define pv_hold_try(pv)			_pv_hold_try(pv			\
118 							PMAP_DEBUG_ARGS)
119 #define pv_alloc(pmap, pindex, isnewp)	_pv_alloc(pmap, pindex, isnewp	\
120 							PMAP_DEBUG_ARGS)
121 
122 #else
123 
124 #define PMAP_DEBUG_DECL
125 #define PMAP_DEBUG_ARGS
126 #define PMAP_DEBUG_COPY
127 
128 #define pv_get(pmap, pindex)		_pv_get(pmap, pindex)
129 #define pv_lock(pv)			_pv_lock(pv)
130 #define pv_hold_try(pv)			_pv_hold_try(pv)
131 #define pv_alloc(pmap, pindex, isnewp)	_pv_alloc(pmap, pindex, isnewp)
132 
133 #endif
134 
135 /*
136  * Get PDEs and PTEs for user/kernel address space
137  */
138 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
139 
140 #define pmap_pde_v(pte)		((*(pd_entry_t *)pte & PG_V) != 0)
141 #define pmap_pte_w(pte)		((*(pt_entry_t *)pte & PG_W) != 0)
142 #define pmap_pte_m(pte)		((*(pt_entry_t *)pte & PG_M) != 0)
143 #define pmap_pte_u(pte)		((*(pt_entry_t *)pte & PG_A) != 0)
144 #define pmap_pte_v(pte)		((*(pt_entry_t *)pte & PG_V) != 0)
145 
146 /*
147  * Given a map and a machine independent protection code,
148  * convert to a vax protection code.
149  */
150 #define pte_prot(m, p)		\
151 	(protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
152 static int protection_codes[8];
153 
154 struct pmap kernel_pmap;
155 static TAILQ_HEAD(,pmap)	pmap_list = TAILQ_HEAD_INITIALIZER(pmap_list);
156 
157 MALLOC_DEFINE(M_OBJPMAP, "objpmap", "pmaps associated with VM objects");
158 
159 vm_paddr_t avail_start;		/* PA of first available physical page */
160 vm_paddr_t avail_end;		/* PA of last available physical page */
161 vm_offset_t virtual2_start;	/* cutout free area prior to kernel start */
162 vm_offset_t virtual2_end;
163 vm_offset_t virtual_start;	/* VA of first avail page (after kernel bss) */
164 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
165 vm_offset_t KvaStart;		/* VA start of KVA space */
166 vm_offset_t KvaEnd;		/* VA end of KVA space (non-inclusive) */
167 vm_offset_t KvaSize;		/* max size of kernel virtual address space */
168 static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
169 static int pgeflag;		/* PG_G or-in */
170 static int pseflag;		/* PG_PS or-in */
171 
172 static int ndmpdp;
173 static vm_paddr_t dmaplimit;
174 static int nkpt;
175 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
176 
177 static uint64_t KPTbase;
178 static uint64_t KPTphys;
179 static uint64_t	KPDphys;	/* phys addr of kernel level 2 */
180 static uint64_t	KPDbase;	/* phys addr of kernel level 2 @ KERNBASE */
181 uint64_t KPDPphys;	/* phys addr of kernel level 3 */
182 uint64_t KPML4phys;	/* phys addr of kernel level 4 */
183 
184 static uint64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
185 static uint64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
186 
187 /*
188  * Data for the pv entry allocation mechanism
189  */
190 static vm_zone_t pvzone;
191 static struct vm_zone pvzone_store;
192 static struct vm_object pvzone_obj;
193 static int pv_entry_max=0, pv_entry_high_water=0;
194 static int pmap_pagedaemon_waken = 0;
195 static struct pv_entry *pvinit;
196 
197 /*
198  * All those kernel PT submaps that BSD is so fond of
199  */
200 pt_entry_t *CMAP1 = NULL, *ptmmap;
201 caddr_t CADDR1 = NULL, ptvmmap = NULL;
202 static pt_entry_t *msgbufmap;
203 struct msgbuf *msgbufp=NULL;
204 
205 /*
206  * Crashdump maps.
207  */
208 static pt_entry_t *pt_crashdumpmap;
209 static caddr_t crashdumpmap;
210 
211 static int pmap_yield_count = 64;
212 SYSCTL_INT(_machdep, OID_AUTO, pmap_yield_count, CTLFLAG_RW,
213     &pmap_yield_count, 0, "Yield during init_pt/release");
214 static int pmap_mmu_optimize = 0;
215 SYSCTL_INT(_machdep, OID_AUTO, pmap_mmu_optimize, CTLFLAG_RW,
216     &pmap_mmu_optimize, 0, "Share page table pages when possible");
217 
218 #define DISABLE_PSE
219 
220 static void pv_hold(pv_entry_t pv);
221 static int _pv_hold_try(pv_entry_t pv
222 				PMAP_DEBUG_DECL);
223 static void pv_drop(pv_entry_t pv);
224 static void _pv_lock(pv_entry_t pv
225 				PMAP_DEBUG_DECL);
226 static void pv_unlock(pv_entry_t pv);
227 static pv_entry_t _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew
228 				PMAP_DEBUG_DECL);
229 static pv_entry_t _pv_get(pmap_t pmap, vm_pindex_t pindex
230 				PMAP_DEBUG_DECL);
231 static pv_entry_t pv_get_try(pmap_t pmap, vm_pindex_t pindex, int *errorp);
232 static pv_entry_t pv_find(pmap_t pmap, vm_pindex_t pindex);
233 static void pv_put(pv_entry_t pv);
234 static void pv_free(pv_entry_t pv);
235 static void *pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex);
236 static pv_entry_t pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex,
237 		      pv_entry_t *pvpp);
238 static pv_entry_t pmap_allocpte_seg(pmap_t pmap, vm_pindex_t ptepindex,
239 		      pv_entry_t *pvpp, vm_map_entry_t entry, vm_offset_t va);
240 static void pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp,
241 		      struct pmap_inval_info *info);
242 static vm_page_t pmap_remove_pv_page(pv_entry_t pv);
243 static int pmap_release_pv(pv_entry_t pv, pv_entry_t pvp);
244 
245 struct pmap_scan_info;
246 static void pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
247 		      pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
248 		      vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
249 static void pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
250 		      pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
251 		      vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
252 
253 static void i386_protection_init (void);
254 static void create_pagetables(vm_paddr_t *firstaddr);
255 static void pmap_remove_all (vm_page_t m);
256 static boolean_t pmap_testbit (vm_page_t m, int bit);
257 
258 static pt_entry_t * pmap_pte_quick (pmap_t pmap, vm_offset_t va);
259 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
260 
261 static unsigned pdir4mb;
262 
263 static int
264 pv_entry_compare(pv_entry_t pv1, pv_entry_t pv2)
265 {
266 	if (pv1->pv_pindex < pv2->pv_pindex)
267 		return(-1);
268 	if (pv1->pv_pindex > pv2->pv_pindex)
269 		return(1);
270 	return(0);
271 }
272 
273 RB_GENERATE2(pv_entry_rb_tree, pv_entry, pv_entry,
274              pv_entry_compare, vm_pindex_t, pv_pindex);
275 
276 /*
277  * Move the kernel virtual free pointer to the next
278  * 2MB.  This is used to help improve performance
279  * by using a large (2MB) page for much of the kernel
280  * (.text, .data, .bss)
281  */
282 static
283 vm_offset_t
284 pmap_kmem_choose(vm_offset_t addr)
285 {
286 	vm_offset_t newaddr = addr;
287 
288 	newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
289 	return newaddr;
290 }
291 
292 /*
293  * pmap_pte_quick:
294  *
295  *	Super fast pmap_pte routine best used when scanning the pv lists.
296  *	This eliminates many course-grained invltlb calls.  Note that many of
297  *	the pv list scans are across different pmaps and it is very wasteful
298  *	to do an entire invltlb when checking a single mapping.
299  */
300 static __inline pt_entry_t *pmap_pte(pmap_t pmap, vm_offset_t va);
301 
302 static
303 pt_entry_t *
304 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
305 {
306 	return pmap_pte(pmap, va);
307 }
308 
309 /*
310  * Returns the pindex of a page table entry (representing a terminal page).
311  * There are NUPTE_TOTAL page table entries possible (a huge number)
312  *
313  * x86-64 has a 48-bit address space, where bit 47 is sign-extended out.
314  * We want to properly translate negative KVAs.
315  */
316 static __inline
317 vm_pindex_t
318 pmap_pte_pindex(vm_offset_t va)
319 {
320 	return ((va >> PAGE_SHIFT) & (NUPTE_TOTAL - 1));
321 }
322 
323 /*
324  * Returns the pindex of a page table.
325  */
326 static __inline
327 vm_pindex_t
328 pmap_pt_pindex(vm_offset_t va)
329 {
330 	return (NUPTE_TOTAL + ((va >> PDRSHIFT) & (NUPT_TOTAL - 1)));
331 }
332 
333 /*
334  * Returns the pindex of a page directory.
335  */
336 static __inline
337 vm_pindex_t
338 pmap_pd_pindex(vm_offset_t va)
339 {
340 	return (NUPTE_TOTAL + NUPT_TOTAL +
341 		((va >> PDPSHIFT) & (NUPD_TOTAL - 1)));
342 }
343 
344 static __inline
345 vm_pindex_t
346 pmap_pdp_pindex(vm_offset_t va)
347 {
348 	return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
349 		((va >> PML4SHIFT) & (NUPDP_TOTAL - 1)));
350 }
351 
352 static __inline
353 vm_pindex_t
354 pmap_pml4_pindex(void)
355 {
356 	return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL);
357 }
358 
359 /*
360  * Return various clipped indexes for a given VA
361  *
362  * Returns the index of a pte in a page table, representing a terminal
363  * page.
364  */
365 static __inline
366 vm_pindex_t
367 pmap_pte_index(vm_offset_t va)
368 {
369 	return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
370 }
371 
372 /*
373  * Returns the index of a pt in a page directory, representing a page
374  * table.
375  */
376 static __inline
377 vm_pindex_t
378 pmap_pt_index(vm_offset_t va)
379 {
380 	return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
381 }
382 
383 /*
384  * Returns the index of a pd in a page directory page, representing a page
385  * directory.
386  */
387 static __inline
388 vm_pindex_t
389 pmap_pd_index(vm_offset_t va)
390 {
391 	return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
392 }
393 
394 /*
395  * Returns the index of a pdp in the pml4 table, representing a page
396  * directory page.
397  */
398 static __inline
399 vm_pindex_t
400 pmap_pdp_index(vm_offset_t va)
401 {
402 	return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
403 }
404 
405 /*
406  * Generic procedure to index a pte from a pt, pd, or pdp.
407  *
408  * NOTE: Normally passed pindex as pmap_xx_index().  pmap_xx_pindex() is NOT
409  *	 a page table page index but is instead of PV lookup index.
410  */
411 static
412 void *
413 pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex)
414 {
415 	pt_entry_t *pte;
416 
417 	pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pv->pv_m));
418 	return(&pte[pindex]);
419 }
420 
421 /*
422  * Return pointer to PDP slot in the PML4
423  */
424 static __inline
425 pml4_entry_t *
426 pmap_pdp(pmap_t pmap, vm_offset_t va)
427 {
428 	return (&pmap->pm_pml4[pmap_pdp_index(va)]);
429 }
430 
431 /*
432  * Return pointer to PD slot in the PDP given a pointer to the PDP
433  */
434 static __inline
435 pdp_entry_t *
436 pmap_pdp_to_pd(pml4_entry_t pdp_pte, vm_offset_t va)
437 {
438 	pdp_entry_t *pd;
439 
440 	pd = (pdp_entry_t *)PHYS_TO_DMAP(pdp_pte & PG_FRAME);
441 	return (&pd[pmap_pd_index(va)]);
442 }
443 
444 /*
445  * Return pointer to PD slot in the PDP.
446  */
447 static __inline
448 pdp_entry_t *
449 pmap_pd(pmap_t pmap, vm_offset_t va)
450 {
451 	pml4_entry_t *pdp;
452 
453 	pdp = pmap_pdp(pmap, va);
454 	if ((*pdp & PG_V) == 0)
455 		return NULL;
456 	return (pmap_pdp_to_pd(*pdp, va));
457 }
458 
459 /*
460  * Return pointer to PT slot in the PD given a pointer to the PD
461  */
462 static __inline
463 pd_entry_t *
464 pmap_pd_to_pt(pdp_entry_t pd_pte, vm_offset_t va)
465 {
466 	pd_entry_t *pt;
467 
468 	pt = (pd_entry_t *)PHYS_TO_DMAP(pd_pte & PG_FRAME);
469 	return (&pt[pmap_pt_index(va)]);
470 }
471 
472 /*
473  * Return pointer to PT slot in the PD
474  *
475  * SIMPLE PMAP NOTE: Simple pmaps (embedded in objects) do not have PDPs,
476  *		     so we cannot lookup the PD via the PDP.  Instead we
477  *		     must look it up via the pmap.
478  */
479 static __inline
480 pd_entry_t *
481 pmap_pt(pmap_t pmap, vm_offset_t va)
482 {
483 	pdp_entry_t *pd;
484 	pv_entry_t pv;
485 	vm_pindex_t pd_pindex;
486 
487 	if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
488 		pd_pindex = pmap_pd_pindex(va);
489 		spin_lock(&pmap->pm_spin);
490 		pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pd_pindex);
491 		spin_unlock(&pmap->pm_spin);
492 		if (pv == NULL || pv->pv_m == NULL)
493 			return NULL;
494 		return (pmap_pd_to_pt(VM_PAGE_TO_PHYS(pv->pv_m), va));
495 	} else {
496 		pd = pmap_pd(pmap, va);
497 		if (pd == NULL || (*pd & PG_V) == 0)
498 			 return NULL;
499 		return (pmap_pd_to_pt(*pd, va));
500 	}
501 }
502 
503 /*
504  * Return pointer to PTE slot in the PT given a pointer to the PT
505  */
506 static __inline
507 pt_entry_t *
508 pmap_pt_to_pte(pd_entry_t pt_pte, vm_offset_t va)
509 {
510 	pt_entry_t *pte;
511 
512 	pte = (pt_entry_t *)PHYS_TO_DMAP(pt_pte & PG_FRAME);
513 	return (&pte[pmap_pte_index(va)]);
514 }
515 
516 /*
517  * Return pointer to PTE slot in the PT
518  */
519 static __inline
520 pt_entry_t *
521 pmap_pte(pmap_t pmap, vm_offset_t va)
522 {
523 	pd_entry_t *pt;
524 
525 	pt = pmap_pt(pmap, va);
526 	if (pt == NULL || (*pt & PG_V) == 0)
527 		 return NULL;
528 	if ((*pt & PG_PS) != 0)
529 		return ((pt_entry_t *)pt);
530 	return (pmap_pt_to_pte(*pt, va));
531 }
532 
533 /*
534  * Of all the layers (PTE, PT, PD, PDP, PML4) the best one to cache is
535  * the PT layer.  This will speed up core pmap operations considerably.
536  */
537 static __inline
538 void
539 pv_cache(pv_entry_t pv, vm_pindex_t pindex)
540 {
541 	if (pindex >= pmap_pt_pindex(0) && pindex <= pmap_pd_pindex(0))
542 		pv->pv_pmap->pm_pvhint = pv;
543 }
544 
545 
546 /*
547  * KVM - return address of PT slot in PD
548  */
549 static __inline
550 pd_entry_t *
551 vtopt(vm_offset_t va)
552 {
553 	uint64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
554 				  NPML4EPGSHIFT)) - 1);
555 
556 	return (PDmap + ((va >> PDRSHIFT) & mask));
557 }
558 
559 /*
560  * KVM - return address of PTE slot in PT
561  */
562 static __inline
563 pt_entry_t *
564 vtopte(vm_offset_t va)
565 {
566 	uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
567 				  NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
568 
569 	return (PTmap + ((va >> PAGE_SHIFT) & mask));
570 }
571 
572 static uint64_t
573 allocpages(vm_paddr_t *firstaddr, long n)
574 {
575 	uint64_t ret;
576 
577 	ret = *firstaddr;
578 	bzero((void *)ret, n * PAGE_SIZE);
579 	*firstaddr += n * PAGE_SIZE;
580 	return (ret);
581 }
582 
583 static
584 void
585 create_pagetables(vm_paddr_t *firstaddr)
586 {
587 	long i;		/* must be 64 bits */
588 	long nkpt_base;
589 	long nkpt_phys;
590 	int j;
591 
592 	/*
593 	 * We are running (mostly) V=P at this point
594 	 *
595 	 * Calculate NKPT - number of kernel page tables.  We have to
596 	 * accomodoate prealloction of the vm_page_array, dump bitmap,
597 	 * MSGBUF_SIZE, and other stuff.  Be generous.
598 	 *
599 	 * Maxmem is in pages.
600 	 *
601 	 * ndmpdp is the number of 1GB pages we wish to map.
602 	 */
603 	ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
604 	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
605 		ndmpdp = 4;
606 	KKASSERT(ndmpdp <= NKPDPE * NPDEPG);
607 
608 	/*
609 	 * Starting at the beginning of kvm (not KERNBASE).
610 	 */
611 	nkpt_phys = (Maxmem * sizeof(struct vm_page) + NBPDR - 1) / NBPDR;
612 	nkpt_phys += (Maxmem * sizeof(struct pv_entry) + NBPDR - 1) / NBPDR;
613 	nkpt_phys += ((nkpt + nkpt + 1 + NKPML4E + NKPDPE + NDMPML4E +
614 		       ndmpdp) + 511) / 512;
615 	nkpt_phys += 128;
616 
617 	/*
618 	 * Starting at KERNBASE - map 2G worth of page table pages.
619 	 * KERNBASE is offset -2G from the end of kvm.
620 	 */
621 	nkpt_base = (NPDPEPG - KPDPI) * NPTEPG;	/* typically 2 x 512 */
622 
623 	/*
624 	 * Allocate pages
625 	 */
626 	KPTbase = allocpages(firstaddr, nkpt_base);
627 	KPTphys = allocpages(firstaddr, nkpt_phys);
628 	KPML4phys = allocpages(firstaddr, 1);
629 	KPDPphys = allocpages(firstaddr, NKPML4E);
630 	KPDphys = allocpages(firstaddr, NKPDPE);
631 
632 	/*
633 	 * Calculate the page directory base for KERNBASE,
634 	 * that is where we start populating the page table pages.
635 	 * Basically this is the end - 2.
636 	 */
637 	KPDbase = KPDphys + ((NKPDPE - (NPDPEPG - KPDPI)) << PAGE_SHIFT);
638 
639 	DMPDPphys = allocpages(firstaddr, NDMPML4E);
640 	if ((amd_feature & AMDID_PAGE1GB) == 0)
641 		DMPDphys = allocpages(firstaddr, ndmpdp);
642 	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
643 
644 	/*
645 	 * Fill in the underlying page table pages for the area around
646 	 * KERNBASE.  This remaps low physical memory to KERNBASE.
647 	 *
648 	 * Read-only from zero to physfree
649 	 * XXX not fully used, underneath 2M pages
650 	 */
651 	for (i = 0; (i << PAGE_SHIFT) < *firstaddr; i++) {
652 		((pt_entry_t *)KPTbase)[i] = i << PAGE_SHIFT;
653 		((pt_entry_t *)KPTbase)[i] |= PG_RW | PG_V | PG_G;
654 	}
655 
656 	/*
657 	 * Now map the initial kernel page tables.  One block of page
658 	 * tables is placed at the beginning of kernel virtual memory,
659 	 * and another block is placed at KERNBASE to map the kernel binary,
660 	 * data, bss, and initial pre-allocations.
661 	 */
662 	for (i = 0; i < nkpt_base; i++) {
663 		((pd_entry_t *)KPDbase)[i] = KPTbase + (i << PAGE_SHIFT);
664 		((pd_entry_t *)KPDbase)[i] |= PG_RW | PG_V;
665 	}
666 	for (i = 0; i < nkpt_phys; i++) {
667 		((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
668 		((pd_entry_t *)KPDphys)[i] |= PG_RW | PG_V;
669 	}
670 
671 	/*
672 	 * Map from zero to end of allocations using 2M pages as an
673 	 * optimization.  This will bypass some of the KPTBase pages
674 	 * above in the KERNBASE area.
675 	 */
676 	for (i = 0; (i << PDRSHIFT) < *firstaddr; i++) {
677 		((pd_entry_t *)KPDbase)[i] = i << PDRSHIFT;
678 		((pd_entry_t *)KPDbase)[i] |= PG_RW | PG_V | PG_PS | PG_G;
679 	}
680 
681 	/*
682 	 * And connect up the PD to the PDP.  The kernel pmap is expected
683 	 * to pre-populate all of its PDs.  See NKPDPE in vmparam.h.
684 	 */
685 	for (i = 0; i < NKPDPE; i++) {
686 		((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] =
687 				KPDphys + (i << PAGE_SHIFT);
688 		((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] |=
689 				PG_RW | PG_V | PG_U;
690 	}
691 
692 	/*
693 	 * Now set up the direct map space using either 2MB or 1GB pages
694 	 * Preset PG_M and PG_A because demotion expects it.
695 	 *
696 	 * When filling in entries in the PD pages make sure any excess
697 	 * entries are set to zero as we allocated enough PD pages
698 	 */
699 	if ((amd_feature & AMDID_PAGE1GB) == 0) {
700 		for (i = 0; i < NPDEPG * ndmpdp; i++) {
701 			((pd_entry_t *)DMPDphys)[i] = i << PDRSHIFT;
702 			((pd_entry_t *)DMPDphys)[i] |= PG_RW | PG_V | PG_PS |
703 						       PG_G | PG_M | PG_A;
704 		}
705 
706 		/*
707 		 * And the direct map space's PDP
708 		 */
709 		for (i = 0; i < ndmpdp; i++) {
710 			((pdp_entry_t *)DMPDPphys)[i] = DMPDphys +
711 							(i << PAGE_SHIFT);
712 			((pdp_entry_t *)DMPDPphys)[i] |= PG_RW | PG_V | PG_U;
713 		}
714 	} else {
715 		for (i = 0; i < ndmpdp; i++) {
716 			((pdp_entry_t *)DMPDPphys)[i] =
717 						(vm_paddr_t)i << PDPSHIFT;
718 			((pdp_entry_t *)DMPDPphys)[i] |= PG_RW | PG_V | PG_PS |
719 							 PG_G | PG_M | PG_A;
720 		}
721 	}
722 
723 	/* And recursively map PML4 to itself in order to get PTmap */
724 	((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
725 	((pdp_entry_t *)KPML4phys)[PML4PML4I] |= PG_RW | PG_V | PG_U;
726 
727 	/*
728 	 * Connect the Direct Map slots up to the PML4
729 	 */
730 	for (j = 0; j < NDMPML4E; ++j) {
731 		((pdp_entry_t *)KPML4phys)[DMPML4I + j] =
732 			(DMPDPphys + ((vm_paddr_t)j << PML4SHIFT)) |
733 			PG_RW | PG_V | PG_U;
734 	}
735 
736 	/*
737 	 * Connect the KVA slot up to the PML4
738 	 */
739 	((pdp_entry_t *)KPML4phys)[KPML4I] = KPDPphys;
740 	((pdp_entry_t *)KPML4phys)[KPML4I] |= PG_RW | PG_V | PG_U;
741 }
742 
743 /*
744  *	Bootstrap the system enough to run with virtual memory.
745  *
746  *	On the i386 this is called after mapping has already been enabled
747  *	and just syncs the pmap module with what has already been done.
748  *	[We can't call it easily with mapping off since the kernel is not
749  *	mapped with PA == VA, hence we would have to relocate every address
750  *	from the linked base (virtual) address "KERNBASE" to the actual
751  *	(physical) address starting relative to 0]
752  */
753 void
754 pmap_bootstrap(vm_paddr_t *firstaddr)
755 {
756 	vm_offset_t va;
757 	pt_entry_t *pte;
758 
759 	KvaStart = VM_MIN_KERNEL_ADDRESS;
760 	KvaEnd = VM_MAX_KERNEL_ADDRESS;
761 	KvaSize = KvaEnd - KvaStart;
762 
763 	avail_start = *firstaddr;
764 
765 	/*
766 	 * Create an initial set of page tables to run the kernel in.
767 	 */
768 	create_pagetables(firstaddr);
769 
770 	virtual2_start = KvaStart;
771 	virtual2_end = PTOV_OFFSET;
772 
773 	virtual_start = (vm_offset_t) PTOV_OFFSET + *firstaddr;
774 	virtual_start = pmap_kmem_choose(virtual_start);
775 
776 	virtual_end = VM_MAX_KERNEL_ADDRESS;
777 
778 	/* XXX do %cr0 as well */
779 	load_cr4(rcr4() | CR4_PGE | CR4_PSE);
780 	load_cr3(KPML4phys);
781 
782 	/*
783 	 * Initialize protection array.
784 	 */
785 	i386_protection_init();
786 
787 	/*
788 	 * The kernel's pmap is statically allocated so we don't have to use
789 	 * pmap_create, which is unlikely to work correctly at this part of
790 	 * the boot sequence (XXX and which no longer exists).
791 	 */
792 	kernel_pmap.pm_pml4 = (pdp_entry_t *) (PTOV_OFFSET + KPML4phys);
793 	kernel_pmap.pm_count = 1;
794 	kernel_pmap.pm_active = (cpumask_t)-1 & ~CPUMASK_LOCK;
795 	RB_INIT(&kernel_pmap.pm_pvroot);
796 	spin_init(&kernel_pmap.pm_spin);
797 	lwkt_token_init(&kernel_pmap.pm_token, "kpmap_tok");
798 
799 	/*
800 	 * Reserve some special page table entries/VA space for temporary
801 	 * mapping of pages.
802 	 */
803 #define	SYSMAP(c, p, v, n)	\
804 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
805 
806 	va = virtual_start;
807 	pte = vtopte(va);
808 
809 	/*
810 	 * CMAP1/CMAP2 are used for zeroing and copying pages.
811 	 */
812 	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
813 
814 	/*
815 	 * Crashdump maps.
816 	 */
817 	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
818 
819 	/*
820 	 * ptvmmap is used for reading arbitrary physical pages via
821 	 * /dev/mem.
822 	 */
823 	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
824 
825 	/*
826 	 * msgbufp is used to map the system message buffer.
827 	 * XXX msgbufmap is not used.
828 	 */
829 	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
830 	       atop(round_page(MSGBUF_SIZE)))
831 
832 	virtual_start = va;
833 
834 	*CMAP1 = 0;
835 
836 	/*
837 	 * PG_G is terribly broken on SMP because we IPI invltlb's in some
838 	 * cases rather then invl1pg.  Actually, I don't even know why it
839 	 * works under UP because self-referential page table mappings
840 	 */
841 	pgeflag = 0;
842 
843 /*
844  * Initialize the 4MB page size flag
845  */
846 	pseflag = 0;
847 /*
848  * The 4MB page version of the initial
849  * kernel page mapping.
850  */
851 	pdir4mb = 0;
852 
853 #if !defined(DISABLE_PSE)
854 	if (cpu_feature & CPUID_PSE) {
855 		pt_entry_t ptditmp;
856 		/*
857 		 * Note that we have enabled PSE mode
858 		 */
859 		pseflag = PG_PS;
860 		ptditmp = *(PTmap + x86_64_btop(KERNBASE));
861 		ptditmp &= ~(NBPDR - 1);
862 		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
863 		pdir4mb = ptditmp;
864 	}
865 #endif
866 	cpu_invltlb();
867 }
868 
869 /*
870  * Set 4mb pdir for mp startup
871  */
872 void
873 pmap_set_opt(void)
874 {
875 	if (pseflag && (cpu_feature & CPUID_PSE)) {
876 		load_cr4(rcr4() | CR4_PSE);
877 		if (pdir4mb && mycpu->gd_cpuid == 0) {	/* only on BSP */
878 			cpu_invltlb();
879 		}
880 	}
881 }
882 
883 /*
884  *	Initialize the pmap module.
885  *	Called by vm_init, to initialize any structures that the pmap
886  *	system needs to map virtual memory.
887  *	pmap_init has been enhanced to support in a fairly consistant
888  *	way, discontiguous physical memory.
889  */
890 void
891 pmap_init(void)
892 {
893 	int i;
894 	int initial_pvs;
895 
896 	/*
897 	 * Allocate memory for random pmap data structures.  Includes the
898 	 * pv_head_table.
899 	 */
900 
901 	for (i = 0; i < vm_page_array_size; i++) {
902 		vm_page_t m;
903 
904 		m = &vm_page_array[i];
905 		TAILQ_INIT(&m->md.pv_list);
906 	}
907 
908 	/*
909 	 * init the pv free list
910 	 */
911 	initial_pvs = vm_page_array_size;
912 	if (initial_pvs < MINPV)
913 		initial_pvs = MINPV;
914 	pvzone = &pvzone_store;
915 	pvinit = (void *)kmem_alloc(&kernel_map,
916 				    initial_pvs * sizeof (struct pv_entry));
917 	zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry),
918 		  pvinit, initial_pvs);
919 
920 	/*
921 	 * Now it is safe to enable pv_table recording.
922 	 */
923 	pmap_initialized = TRUE;
924 }
925 
926 /*
927  * Initialize the address space (zone) for the pv_entries.  Set a
928  * high water mark so that the system can recover from excessive
929  * numbers of pv entries.
930  */
931 void
932 pmap_init2(void)
933 {
934 	int shpgperproc = PMAP_SHPGPERPROC;
935 	int entry_max;
936 
937 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
938 	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
939 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
940 	pv_entry_high_water = 9 * (pv_entry_max / 10);
941 
942 	/*
943 	 * Subtract out pages already installed in the zone (hack)
944 	 */
945 	entry_max = pv_entry_max - vm_page_array_size;
946 	if (entry_max <= 0)
947 		entry_max = 1;
948 
949 	zinitna(pvzone, &pvzone_obj, NULL, 0, entry_max, ZONE_INTERRUPT, 1);
950 }
951 
952 
953 /***************************************************
954  * Low level helper routines.....
955  ***************************************************/
956 
957 /*
958  * this routine defines the region(s) of memory that should
959  * not be tested for the modified bit.
960  */
961 static __inline
962 int
963 pmap_track_modified(vm_pindex_t pindex)
964 {
965 	vm_offset_t va = (vm_offset_t)pindex << PAGE_SHIFT;
966 	if ((va < clean_sva) || (va >= clean_eva))
967 		return 1;
968 	else
969 		return 0;
970 }
971 
972 /*
973  * Extract the physical page address associated with the map/VA pair.
974  * The page must be wired for this to work reliably.
975  *
976  * XXX for the moment we're using pv_find() instead of pv_get(), as
977  *     callers might be expecting non-blocking operation.
978  */
979 vm_paddr_t
980 pmap_extract(pmap_t pmap, vm_offset_t va)
981 {
982 	vm_paddr_t rtval;
983 	pv_entry_t pt_pv;
984 	pt_entry_t *ptep;
985 
986 	rtval = 0;
987 	if (va >= VM_MAX_USER_ADDRESS) {
988 		/*
989 		 * Kernel page directories might be direct-mapped and
990 		 * there is typically no PV tracking of pte's
991 		 */
992 		pd_entry_t *pt;
993 
994 		pt = pmap_pt(pmap, va);
995 		if (pt && (*pt & PG_V)) {
996 			if (*pt & PG_PS) {
997 				rtval = *pt & PG_PS_FRAME;
998 				rtval |= va & PDRMASK;
999 			} else {
1000 				ptep = pmap_pt_to_pte(*pt, va);
1001 				if (*pt & PG_V) {
1002 					rtval = *ptep & PG_FRAME;
1003 					rtval |= va & PAGE_MASK;
1004 				}
1005 			}
1006 		}
1007 	} else {
1008 		/*
1009 		 * User pages currently do not direct-map the page directory
1010 		 * and some pages might not used managed PVs.  But all PT's
1011 		 * will have a PV.
1012 		 */
1013 		pt_pv = pv_find(pmap, pmap_pt_pindex(va));
1014 		if (pt_pv) {
1015 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1016 			if (*ptep & PG_V) {
1017 				rtval = *ptep & PG_FRAME;
1018 				rtval |= va & PAGE_MASK;
1019 			}
1020 			pv_drop(pt_pv);
1021 		}
1022 	}
1023 	return rtval;
1024 }
1025 
1026 /*
1027  * Extract the physical page address associated kernel virtual address.
1028  */
1029 vm_paddr_t
1030 pmap_kextract(vm_offset_t va)
1031 {
1032 	pd_entry_t pt;		/* pt entry in pd */
1033 	vm_paddr_t pa;
1034 
1035 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
1036 		pa = DMAP_TO_PHYS(va);
1037 	} else {
1038 		pt = *vtopt(va);
1039 		if (pt & PG_PS) {
1040 			pa = (pt & PG_PS_FRAME) | (va & PDRMASK);
1041 		} else {
1042 			/*
1043 			 * Beware of a concurrent promotion that changes the
1044 			 * PDE at this point!  For example, vtopte() must not
1045 			 * be used to access the PTE because it would use the
1046 			 * new PDE.  It is, however, safe to use the old PDE
1047 			 * because the page table page is preserved by the
1048 			 * promotion.
1049 			 */
1050 			pa = *pmap_pt_to_pte(pt, va);
1051 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
1052 		}
1053 	}
1054 	return pa;
1055 }
1056 
1057 /***************************************************
1058  * Low level mapping routines.....
1059  ***************************************************/
1060 
1061 /*
1062  * Routine: pmap_kenter
1063  * Function:
1064  *  	Add a wired page to the KVA
1065  *  	NOTE! note that in order for the mapping to take effect -- you
1066  *  	should do an invltlb after doing the pmap_kenter().
1067  */
1068 void
1069 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1070 {
1071 	pt_entry_t *pte;
1072 	pt_entry_t npte;
1073 	pmap_inval_info info;
1074 
1075 	pmap_inval_init(&info);				/* XXX remove */
1076 	npte = pa | PG_RW | PG_V | pgeflag;
1077 	pte = vtopte(va);
1078 	pmap_inval_interlock(&info, &kernel_pmap, va);	/* XXX remove */
1079 	*pte = npte;
1080 	pmap_inval_deinterlock(&info, &kernel_pmap);	/* XXX remove */
1081 	pmap_inval_done(&info);				/* XXX remove */
1082 }
1083 
1084 /*
1085  * Routine: pmap_kenter_quick
1086  * Function:
1087  *  	Similar to pmap_kenter(), except we only invalidate the
1088  *  	mapping on the current CPU.
1089  */
1090 void
1091 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
1092 {
1093 	pt_entry_t *pte;
1094 	pt_entry_t npte;
1095 
1096 	npte = pa | PG_RW | PG_V | pgeflag;
1097 	pte = vtopte(va);
1098 	*pte = npte;
1099 	cpu_invlpg((void *)va);
1100 }
1101 
1102 void
1103 pmap_kenter_sync(vm_offset_t va)
1104 {
1105 	pmap_inval_info info;
1106 
1107 	pmap_inval_init(&info);
1108 	pmap_inval_interlock(&info, &kernel_pmap, va);
1109 	pmap_inval_deinterlock(&info, &kernel_pmap);
1110 	pmap_inval_done(&info);
1111 }
1112 
1113 void
1114 pmap_kenter_sync_quick(vm_offset_t va)
1115 {
1116 	cpu_invlpg((void *)va);
1117 }
1118 
1119 /*
1120  * remove a page from the kernel pagetables
1121  */
1122 void
1123 pmap_kremove(vm_offset_t va)
1124 {
1125 	pt_entry_t *pte;
1126 	pmap_inval_info info;
1127 
1128 	pmap_inval_init(&info);
1129 	pte = vtopte(va);
1130 	pmap_inval_interlock(&info, &kernel_pmap, va);
1131 	(void)pte_load_clear(pte);
1132 	pmap_inval_deinterlock(&info, &kernel_pmap);
1133 	pmap_inval_done(&info);
1134 }
1135 
1136 void
1137 pmap_kremove_quick(vm_offset_t va)
1138 {
1139 	pt_entry_t *pte;
1140 	pte = vtopte(va);
1141 	(void)pte_load_clear(pte);
1142 	cpu_invlpg((void *)va);
1143 }
1144 
1145 /*
1146  * XXX these need to be recoded.  They are not used in any critical path.
1147  */
1148 void
1149 pmap_kmodify_rw(vm_offset_t va)
1150 {
1151 	atomic_set_long(vtopte(va), PG_RW);
1152 	cpu_invlpg((void *)va);
1153 }
1154 
1155 void
1156 pmap_kmodify_nc(vm_offset_t va)
1157 {
1158 	atomic_set_long(vtopte(va), PG_N);
1159 	cpu_invlpg((void *)va);
1160 }
1161 
1162 /*
1163  * Used to map a range of physical addresses into kernel virtual
1164  * address space during the low level boot, typically to map the
1165  * dump bitmap, message buffer, and vm_page_array.
1166  *
1167  * These mappings are typically made at some pointer after the end of the
1168  * kernel text+data.
1169  *
1170  * We could return PHYS_TO_DMAP(start) here and not allocate any
1171  * via (*virtp), but then kmem from userland and kernel dumps won't
1172  * have access to the related pointers.
1173  */
1174 vm_offset_t
1175 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
1176 {
1177 	vm_offset_t va;
1178 	vm_offset_t va_start;
1179 
1180 	/*return PHYS_TO_DMAP(start);*/
1181 
1182 	va_start = *virtp;
1183 	va = va_start;
1184 
1185 	while (start < end) {
1186 		pmap_kenter_quick(va, start);
1187 		va += PAGE_SIZE;
1188 		start += PAGE_SIZE;
1189 	}
1190 	*virtp = va;
1191 	return va_start;
1192 }
1193 
1194 
1195 /*
1196  * Add a list of wired pages to the kva
1197  * this routine is only used for temporary
1198  * kernel mappings that do not need to have
1199  * page modification or references recorded.
1200  * Note that old mappings are simply written
1201  * over.  The page *must* be wired.
1202  */
1203 void
1204 pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
1205 {
1206 	vm_offset_t end_va;
1207 
1208 	end_va = va + count * PAGE_SIZE;
1209 
1210 	while (va < end_va) {
1211 		pt_entry_t *pte;
1212 
1213 		pte = vtopte(va);
1214 		*pte = VM_PAGE_TO_PHYS(*m) | PG_RW | PG_V | pgeflag;
1215 		cpu_invlpg((void *)va);
1216 		va += PAGE_SIZE;
1217 		m++;
1218 	}
1219 	smp_invltlb();
1220 }
1221 
1222 /*
1223  * This routine jerks page mappings from the
1224  * kernel -- it is meant only for temporary mappings.
1225  *
1226  * MPSAFE, INTERRUPT SAFE (cluster callback)
1227  */
1228 void
1229 pmap_qremove(vm_offset_t va, int count)
1230 {
1231 	vm_offset_t end_va;
1232 
1233 	end_va = va + count * PAGE_SIZE;
1234 
1235 	while (va < end_va) {
1236 		pt_entry_t *pte;
1237 
1238 		pte = vtopte(va);
1239 		(void)pte_load_clear(pte);
1240 		cpu_invlpg((void *)va);
1241 		va += PAGE_SIZE;
1242 	}
1243 	smp_invltlb();
1244 }
1245 
1246 /*
1247  * Create a new thread and optionally associate it with a (new) process.
1248  * NOTE! the new thread's cpu may not equal the current cpu.
1249  */
1250 void
1251 pmap_init_thread(thread_t td)
1252 {
1253 	/* enforce pcb placement & alignment */
1254 	td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
1255 	td->td_pcb = (struct pcb *)((intptr_t)td->td_pcb & ~(intptr_t)0xF);
1256 	td->td_savefpu = &td->td_pcb->pcb_save;
1257 	td->td_sp = (char *)td->td_pcb;	/* no -16 */
1258 }
1259 
1260 /*
1261  * This routine directly affects the fork perf for a process.
1262  */
1263 void
1264 pmap_init_proc(struct proc *p)
1265 {
1266 }
1267 
1268 /*
1269  * Initialize pmap0/vmspace0.  This pmap is not added to pmap_list because
1270  * it, and IdlePTD, represents the template used to update all other pmaps.
1271  *
1272  * On architectures where the kernel pmap is not integrated into the user
1273  * process pmap, this pmap represents the process pmap, not the kernel pmap.
1274  * kernel_pmap should be used to directly access the kernel_pmap.
1275  */
1276 void
1277 pmap_pinit0(struct pmap *pmap)
1278 {
1279 	pmap->pm_pml4 = (pml4_entry_t *)(PTOV_OFFSET + KPML4phys);
1280 	pmap->pm_count = 1;
1281 	pmap->pm_active = 0;
1282 	pmap->pm_pvhint = NULL;
1283 	RB_INIT(&pmap->pm_pvroot);
1284 	spin_init(&pmap->pm_spin);
1285 	lwkt_token_init(&pmap->pm_token, "pmap_tok");
1286 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1287 }
1288 
1289 /*
1290  * Initialize a preallocated and zeroed pmap structure,
1291  * such as one in a vmspace structure.
1292  */
1293 static void
1294 pmap_pinit_simple(struct pmap *pmap)
1295 {
1296 	/*
1297 	 * Misc initialization
1298 	 */
1299 	pmap->pm_count = 1;
1300 	pmap->pm_active = 0;
1301 	pmap->pm_pvhint = NULL;
1302 	pmap->pm_flags = PMAP_FLAG_SIMPLE;
1303 
1304 	/*
1305 	 * Don't blow up locks/tokens on re-use (XXX fix/use drop code
1306 	 * for this).
1307 	 */
1308 	if (pmap->pm_pmlpv == NULL) {
1309 		RB_INIT(&pmap->pm_pvroot);
1310 		bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1311 		spin_init(&pmap->pm_spin);
1312 		lwkt_token_init(&pmap->pm_token, "pmap_tok");
1313 	}
1314 }
1315 
1316 void
1317 pmap_pinit(struct pmap *pmap)
1318 {
1319 	pv_entry_t pv;
1320 	int j;
1321 
1322 	pmap_pinit_simple(pmap);
1323 	pmap->pm_flags &= ~PMAP_FLAG_SIMPLE;
1324 
1325 	/*
1326 	 * No need to allocate page table space yet but we do need a valid
1327 	 * page directory table.
1328 	 */
1329 	if (pmap->pm_pml4 == NULL) {
1330 		pmap->pm_pml4 =
1331 		    (pml4_entry_t *)kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
1332 	}
1333 
1334 	/*
1335 	 * Allocate the page directory page, which wires it even though
1336 	 * it isn't being entered into some higher level page table (it
1337 	 * being the highest level).  If one is already cached we don't
1338 	 * have to do anything.
1339 	 */
1340 	if ((pv = pmap->pm_pmlpv) == NULL) {
1341 		pv = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
1342 		pmap->pm_pmlpv = pv;
1343 		pmap_kenter((vm_offset_t)pmap->pm_pml4,
1344 			    VM_PAGE_TO_PHYS(pv->pv_m));
1345 		pv_put(pv);
1346 
1347 		/*
1348 		 * Install DMAP and KMAP.
1349 		 */
1350 		for (j = 0; j < NDMPML4E; ++j) {
1351 			pmap->pm_pml4[DMPML4I + j] =
1352 				(DMPDPphys + ((vm_paddr_t)j << PML4SHIFT)) |
1353 				PG_RW | PG_V | PG_U;
1354 		}
1355 		pmap->pm_pml4[KPML4I] = KPDPphys | PG_RW | PG_V | PG_U;
1356 
1357 		/*
1358 		 * install self-referential address mapping entry
1359 		 */
1360 		pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pv->pv_m) |
1361 					   PG_V | PG_RW | PG_A | PG_M;
1362 	} else {
1363 		KKASSERT(pv->pv_m->flags & PG_MAPPED);
1364 		KKASSERT(pv->pv_m->flags & PG_WRITEABLE);
1365 	}
1366 	KKASSERT(pmap->pm_pml4[255] == 0);
1367 	KKASSERT(RB_ROOT(&pmap->pm_pvroot) == pv);
1368 	KKASSERT(pv->pv_entry.rbe_left == NULL);
1369 	KKASSERT(pv->pv_entry.rbe_right == NULL);
1370 }
1371 
1372 /*
1373  * Clean up a pmap structure so it can be physically freed.  This routine
1374  * is called by the vmspace dtor function.  A great deal of pmap data is
1375  * left passively mapped to improve vmspace management so we have a bit
1376  * of cleanup work to do here.
1377  */
1378 void
1379 pmap_puninit(pmap_t pmap)
1380 {
1381 	pv_entry_t pv;
1382 	vm_page_t p;
1383 
1384 	KKASSERT(pmap->pm_active == 0);
1385 	if ((pv = pmap->pm_pmlpv) != NULL) {
1386 		if (pv_hold_try(pv) == 0)
1387 			pv_lock(pv);
1388 		p = pmap_remove_pv_page(pv);
1389 		pv_free(pv);
1390 		pmap_kremove((vm_offset_t)pmap->pm_pml4);
1391 		vm_page_busy_wait(p, FALSE, "pgpun");
1392 		KKASSERT(p->flags & (PG_FICTITIOUS|PG_UNMANAGED));
1393 		vm_page_unwire(p, 0);
1394 		vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
1395 
1396 		/*
1397 		 * XXX eventually clean out PML4 static entries and
1398 		 * use vm_page_free_zero()
1399 		 */
1400 		vm_page_free(p);
1401 		pmap->pm_pmlpv = NULL;
1402 	}
1403 	if (pmap->pm_pml4) {
1404 		KKASSERT(pmap->pm_pml4 != (void *)(PTOV_OFFSET + KPML4phys));
1405 		kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pml4, PAGE_SIZE);
1406 		pmap->pm_pml4 = NULL;
1407 	}
1408 	KKASSERT(pmap->pm_stats.resident_count == 0);
1409 	KKASSERT(pmap->pm_stats.wired_count == 0);
1410 }
1411 
1412 /*
1413  * Wire in kernel global address entries.  To avoid a race condition
1414  * between pmap initialization and pmap_growkernel, this procedure
1415  * adds the pmap to the master list (which growkernel scans to update),
1416  * then copies the template.
1417  */
1418 void
1419 pmap_pinit2(struct pmap *pmap)
1420 {
1421 	spin_lock(&pmap_spin);
1422 	TAILQ_INSERT_TAIL(&pmap_list, pmap, pm_pmnode);
1423 	spin_unlock(&pmap_spin);
1424 }
1425 
1426 /*
1427  * This routine is called when various levels in the page table need to
1428  * be populated.  This routine cannot fail.
1429  *
1430  * This function returns two locked pv_entry's, one representing the
1431  * requested pv and one representing the requested pv's parent pv.  If
1432  * the pv did not previously exist it will be mapped into its parent
1433  * and wired, otherwise no additional wire count will be added.
1434  */
1435 static
1436 pv_entry_t
1437 pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp)
1438 {
1439 	pt_entry_t *ptep;
1440 	pv_entry_t pv;
1441 	pv_entry_t pvp;
1442 	vm_pindex_t pt_pindex;
1443 	vm_page_t m;
1444 	int isnew;
1445 	int ispt;
1446 
1447 	/*
1448 	 * If the pv already exists and we aren't being asked for the
1449 	 * parent page table page we can just return it.  A locked+held pv
1450 	 * is returned.
1451 	 */
1452 	ispt = 0;
1453 	pv = pv_alloc(pmap, ptepindex, &isnew);
1454 	if (isnew == 0 && pvpp == NULL)
1455 		return(pv);
1456 
1457 	/*
1458 	 * This is a new PV, we have to resolve its parent page table and
1459 	 * add an additional wiring to the page if necessary.
1460 	 */
1461 
1462 	/*
1463 	 * Special case terminal PVs.  These are not page table pages so
1464 	 * no vm_page is allocated (the caller supplied the vm_page).  If
1465 	 * pvpp is non-NULL we are being asked to also removed the pt_pv
1466 	 * for this pv.
1467 	 *
1468 	 * Note that pt_pv's are only returned for user VAs. We assert that
1469 	 * a pt_pv is not being requested for kernel VAs.
1470 	 */
1471 	if (ptepindex < pmap_pt_pindex(0)) {
1472 		if (ptepindex >= NUPTE_USER)
1473 			KKASSERT(pvpp == NULL);
1474 		else
1475 			KKASSERT(pvpp != NULL);
1476 		if (pvpp) {
1477 			pt_pindex = NUPTE_TOTAL + (ptepindex >> NPTEPGSHIFT);
1478 			pvp = pmap_allocpte(pmap, pt_pindex, NULL);
1479 			if (isnew)
1480 				vm_page_wire_quick(pvp->pv_m);
1481 			*pvpp = pvp;
1482 		} else {
1483 			pvp = NULL;
1484 		}
1485 		return(pv);
1486 	}
1487 
1488 	/*
1489 	 * Non-terminal PVs allocate a VM page to represent the page table,
1490 	 * so we have to resolve pvp and calculate ptepindex for the pvp
1491 	 * and then for the page table entry index in the pvp for
1492 	 * fall-through.
1493 	 */
1494 	if (ptepindex < pmap_pd_pindex(0)) {
1495 		/*
1496 		 * pv is PT, pvp is PD
1497 		 */
1498 		ptepindex = (ptepindex - pmap_pt_pindex(0)) >> NPDEPGSHIFT;
1499 		ptepindex += NUPTE_TOTAL + NUPT_TOTAL;
1500 		pvp = pmap_allocpte(pmap, ptepindex, NULL);
1501 		if (!isnew)
1502 			goto notnew;
1503 
1504 		/*
1505 		 * PT index in PD
1506 		 */
1507 		ptepindex = pv->pv_pindex - pmap_pt_pindex(0);
1508 		ptepindex &= ((1ul << NPDEPGSHIFT) - 1);
1509 		ispt = 1;
1510 	} else if (ptepindex < pmap_pdp_pindex(0)) {
1511 		/*
1512 		 * pv is PD, pvp is PDP
1513 		 *
1514 		 * SIMPLE PMAP NOTE: Simple pmaps do not allocate above
1515 		 *		     the PD.
1516 		 */
1517 		ptepindex = (ptepindex - pmap_pd_pindex(0)) >> NPDPEPGSHIFT;
1518 		ptepindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
1519 
1520 		if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
1521 			KKASSERT(pvpp == NULL);
1522 			pvp = NULL;
1523 		} else {
1524 			pvp = pmap_allocpte(pmap, ptepindex, NULL);
1525 		}
1526 		if (!isnew)
1527 			goto notnew;
1528 
1529 		/*
1530 		 * PD index in PDP
1531 		 */
1532 		ptepindex = pv->pv_pindex - pmap_pd_pindex(0);
1533 		ptepindex &= ((1ul << NPDPEPGSHIFT) - 1);
1534 	} else if (ptepindex < pmap_pml4_pindex()) {
1535 		/*
1536 		 * pv is PDP, pvp is the root pml4 table
1537 		 */
1538 		pvp = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
1539 		if (!isnew)
1540 			goto notnew;
1541 
1542 		/*
1543 		 * PDP index in PML4
1544 		 */
1545 		ptepindex = pv->pv_pindex - pmap_pdp_pindex(0);
1546 		ptepindex &= ((1ul << NPML4EPGSHIFT) - 1);
1547 	} else {
1548 		/*
1549 		 * pv represents the top-level PML4, there is no parent.
1550 		 */
1551 		pvp = NULL;
1552 		if (!isnew)
1553 			goto notnew;
1554 	}
1555 
1556 	/*
1557 	 * This code is only reached if isnew is TRUE and this is not a
1558 	 * terminal PV.  We need to allocate a vm_page for the page table
1559 	 * at this level and enter it into the parent page table.
1560 	 *
1561 	 * page table pages are marked PG_WRITEABLE and PG_MAPPED.
1562 	 */
1563 	for (;;) {
1564 		m = vm_page_alloc(NULL, pv->pv_pindex,
1565 				  VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
1566 				  VM_ALLOC_INTERRUPT);
1567 		if (m)
1568 			break;
1569 		vm_wait(0);
1570 	}
1571 	vm_page_spin_lock(m);
1572 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1573 	pv->pv_m = m;
1574 	vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1575 	vm_page_spin_unlock(m);
1576 	vm_page_unmanage(m);	/* m must be spinunlocked */
1577 
1578 	if ((m->flags & PG_ZERO) == 0) {
1579 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
1580 	}
1581 #ifdef PMAP_DEBUG
1582 	else {
1583 		pmap_page_assertzero(VM_PAGE_TO_PHYS(m));
1584 	}
1585 #endif
1586 	m->valid = VM_PAGE_BITS_ALL;
1587 	vm_page_flag_clear(m, PG_ZERO);
1588 	vm_page_wire(m);	/* wire for mapping in parent */
1589 
1590 	/*
1591 	 * Wire the page into pvp, bump the wire-count for pvp's page table
1592 	 * page.  Bump the resident_count for the pmap.  There is no pvp
1593 	 * for the top level, address the pm_pml4[] array directly.
1594 	 *
1595 	 * If the caller wants the parent we return it, otherwise
1596 	 * we just put it away.
1597 	 *
1598 	 * No interlock is needed for pte 0 -> non-zero.
1599 	 *
1600 	 * In the situation where *ptep is valid we might have an unmanaged
1601 	 * page table page shared from another page table which we need to
1602 	 * unshare before installing our private page table page.
1603 	 */
1604 	if (pvp) {
1605 		ptep = pv_pte_lookup(pvp, ptepindex);
1606 		if (*ptep & PG_V) {
1607 			pt_entry_t pte;
1608 			pmap_inval_info info;
1609 
1610 			if (ispt == 0) {
1611 				panic("pmap_allocpte: unexpected pte %p/%d",
1612 				      pvp, (int)ptepindex);
1613 			}
1614 			pmap_inval_init(&info);
1615 			pmap_inval_interlock(&info, pmap, (vm_offset_t)-1);
1616 			pte = pte_load_clear(ptep);
1617 			pmap_inval_deinterlock(&info, pmap);
1618 			pmap_inval_done(&info);
1619 			if (vm_page_unwire_quick(
1620 					PHYS_TO_VM_PAGE(pte & PG_FRAME))) {
1621 				panic("pmap_allocpte: shared pgtable "
1622 				      "pg bad wirecount");
1623 			}
1624 			atomic_add_long(&pmap->pm_stats.resident_count, -1);
1625 		} else {
1626 			vm_page_wire_quick(pvp->pv_m);
1627 		}
1628 		*ptep = VM_PAGE_TO_PHYS(m) | (PG_U | PG_RW | PG_V |
1629 					      PG_A | PG_M);
1630 	}
1631 	vm_page_wakeup(m);
1632 notnew:
1633 	if (pvpp)
1634 		*pvpp = pvp;
1635 	else if (pvp)
1636 		pv_put(pvp);
1637 	return (pv);
1638 }
1639 
1640 /*
1641  * This version of pmap_allocpte() checks for possible segment optimizations
1642  * that would allow page-table sharing.  It can be called for terminal
1643  * page or page table page ptepindex's.
1644  *
1645  * The function is called with page table page ptepindex's for fictitious
1646  * and unmanaged terminal pages.  That is, we don't want to allocate a
1647  * terminal pv, we just want the pt_pv.  pvpp is usually passed as NULL
1648  * for this case.
1649  *
1650  * This function can return a pv and *pvpp associated with the passed in pmap
1651  * OR a pv and *pvpp associated with the shared pmap.  In the latter case
1652  * an unmanaged page table page will be entered into the pass in pmap.
1653  */
1654 static
1655 pv_entry_t
1656 pmap_allocpte_seg(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp,
1657 		  vm_map_entry_t entry, vm_offset_t va)
1658 {
1659 	struct pmap_inval_info info;
1660 	vm_object_t object;
1661 	pmap_t obpmap;
1662 	pmap_t *obpmapp;
1663 	vm_offset_t b;
1664 	pv_entry_t pte_pv;	/* in original or shared pmap */
1665 	pv_entry_t pt_pv;	/* in original or shared pmap */
1666 	pv_entry_t proc_pd_pv;	/* in original pmap */
1667 	pv_entry_t proc_pt_pv;	/* in original pmap */
1668 	pv_entry_t xpv;		/* PT in shared pmap */
1669 	pd_entry_t *pt;		/* PT entry in PD of original pmap */
1670 	pd_entry_t opte;	/* contents of *pt */
1671 	pd_entry_t npte;	/* contents of *pt */
1672 	vm_page_t m;
1673 
1674 retry:
1675 	/*
1676 	 * Basic tests, require a non-NULL vm_map_entry, require proper
1677 	 * alignment and type for the vm_map_entry, require that the
1678 	 * underlying object already be allocated.
1679 	 *
1680 	 * We currently allow any type of object to use this optimization.
1681 	 * The object itself does NOT have to be sized to a multiple of the
1682 	 * segment size, but the memory mapping does.
1683 	 */
1684 	if (entry == NULL ||
1685 	    pmap_mmu_optimize == 0 ||			/* not enabled */
1686 	    ptepindex >= pmap_pd_pindex(0) ||		/* not terminal */
1687 	    entry->inheritance != VM_INHERIT_SHARE ||	/* not shared */
1688 	    entry->maptype != VM_MAPTYPE_NORMAL ||	/* weird map type */
1689 	    entry->object.vm_object == NULL ||		/* needs VM object */
1690 	    (entry->offset & SEG_MASK) ||		/* must be aligned */
1691 	    (entry->start & SEG_MASK)) {
1692 		return(pmap_allocpte(pmap, ptepindex, pvpp));
1693 	}
1694 
1695 	/*
1696 	 * Make sure the full segment can be represented.
1697 	 */
1698 	b = va & ~(vm_offset_t)SEG_MASK;
1699 	if (b < entry->start && b + SEG_SIZE > entry->end)
1700 		return(pmap_allocpte(pmap, ptepindex, pvpp));
1701 
1702 	/*
1703 	 * If the full segment can be represented dive the VM object's
1704 	 * shared pmap, allocating as required.
1705 	 */
1706 	object = entry->object.vm_object;
1707 
1708 	if (entry->protection & VM_PROT_WRITE)
1709 		obpmapp = &object->md.pmap_rw;
1710 	else
1711 		obpmapp = &object->md.pmap_ro;
1712 
1713 	/*
1714 	 * We allocate what appears to be a normal pmap but because portions
1715 	 * of this pmap are shared with other unrelated pmaps we have to
1716 	 * set pm_active to point to all cpus.
1717 	 *
1718 	 * XXX Currently using pmap_spin to interlock the update, can't use
1719 	 *     vm_object_hold/drop because the token might already be held
1720 	 *     shared OR exclusive and we don't know.
1721 	 */
1722 	while ((obpmap = *obpmapp) == NULL) {
1723 		obpmap = kmalloc(sizeof(*obpmap), M_OBJPMAP, M_WAITOK|M_ZERO);
1724 		pmap_pinit_simple(obpmap);
1725 		pmap_pinit2(obpmap);
1726 		spin_lock(&pmap_spin);
1727 		if (*obpmapp != NULL) {
1728 			/*
1729 			 * Handle race
1730 			 */
1731 			spin_unlock(&pmap_spin);
1732 			pmap_release(obpmap);
1733 			pmap_puninit(obpmap);
1734 			kfree(obpmap, M_OBJPMAP);
1735 		} else {
1736 			obpmap->pm_active = smp_active_mask;
1737 			*obpmapp = obpmap;
1738 			spin_unlock(&pmap_spin);
1739 		}
1740 	}
1741 
1742 	/*
1743 	 * Layering is: PTE, PT, PD, PDP, PML4.  We have to return the
1744 	 * pte/pt using the shared pmap from the object but also adjust
1745 	 * the process pmap's page table page as a side effect.
1746 	 */
1747 
1748 	/*
1749 	 * Resolve the terminal PTE and PT in the shared pmap.  This is what
1750 	 * we will return.  This is true if ptepindex represents a terminal
1751 	 * page, otherwise pte_pv is actually the PT and pt_pv is actually
1752 	 * the PD.
1753 	 */
1754 	pt_pv = NULL;
1755 	pte_pv = pmap_allocpte(obpmap, ptepindex, &pt_pv);
1756 	if (ptepindex >= pmap_pt_pindex(0))
1757 		xpv = pte_pv;
1758 	else
1759 		xpv = pt_pv;
1760 
1761 	/*
1762 	 * Resolve the PD in the process pmap so we can properly share the
1763 	 * page table page.  Lock order is bottom-up (leaf first)!
1764 	 *
1765 	 * NOTE: proc_pt_pv can be NULL.
1766 	 */
1767 	proc_pt_pv = pv_get(pmap, pmap_pt_pindex(b));
1768 	proc_pd_pv = pmap_allocpte(pmap, pmap_pd_pindex(b), NULL);
1769 
1770 	/*
1771 	 * xpv is the page table page pv from the shared object
1772 	 * (for convenience).
1773 	 *
1774 	 * Calculate the pte value for the PT to load into the process PD.
1775 	 * If we have to change it we must properly dispose of the previous
1776 	 * entry.
1777 	 */
1778 	pt = pv_pte_lookup(proc_pd_pv, pmap_pt_index(b));
1779 	npte = VM_PAGE_TO_PHYS(xpv->pv_m) |
1780 	       (PG_U | PG_RW | PG_V | PG_A | PG_M);
1781 
1782 	/*
1783 	 * Dispose of previous page table page if it was local to the
1784 	 * process pmap.  If the old pt is not empty we cannot dispose of it
1785 	 * until we clean it out.  This case should not arise very often so
1786 	 * it is not optimized.
1787 	 */
1788 	if (proc_pt_pv) {
1789 		if (proc_pt_pv->pv_m->wire_count != 1) {
1790 			pv_put(proc_pd_pv);
1791 			pv_put(proc_pt_pv);
1792 			pv_put(pt_pv);
1793 			pv_put(pte_pv);
1794 			pmap_remove(pmap,
1795 				    va & ~(vm_offset_t)SEG_MASK,
1796 				    (va + SEG_SIZE) & ~(vm_offset_t)SEG_MASK);
1797 			goto retry;
1798 		}
1799 		pmap_release_pv(proc_pt_pv, proc_pd_pv);
1800 		proc_pt_pv = NULL;
1801 		/* relookup */
1802 		pt = pv_pte_lookup(proc_pd_pv, pmap_pt_index(b));
1803 	}
1804 
1805 	/*
1806 	 * Handle remaining cases.
1807 	 */
1808 	if (*pt == 0) {
1809 		*pt = npte;
1810 		vm_page_wire_quick(xpv->pv_m);
1811 		vm_page_wire_quick(proc_pd_pv->pv_m);
1812 		atomic_add_long(&pmap->pm_stats.resident_count, 1);
1813 	} else if (*pt != npte) {
1814 		pmap_inval_init(&info);
1815 		pmap_inval_interlock(&info, pmap, (vm_offset_t)-1);
1816 
1817 		opte = pte_load_clear(pt);
1818 		KKASSERT(opte && opte != npte);
1819 
1820 		*pt = npte;
1821 		vm_page_wire_quick(xpv->pv_m);	/* pgtable pg that is npte */
1822 
1823 		/*
1824 		 * Clean up opte, bump the wire_count for the process
1825 		 * PD page representing the new entry if it was
1826 		 * previously empty.
1827 		 *
1828 		 * If the entry was not previously empty and we have
1829 		 * a PT in the proc pmap then opte must match that
1830 		 * pt.  The proc pt must be retired (this is done
1831 		 * later on in this procedure).
1832 		 *
1833 		 * NOTE: replacing valid pte, wire_count on proc_pd_pv
1834 		 * stays the same.
1835 		 */
1836 		KKASSERT(opte & PG_V);
1837 		m = PHYS_TO_VM_PAGE(opte & PG_FRAME);
1838 		if (vm_page_unwire_quick(m)) {
1839 			panic("pmap_allocpte_seg: "
1840 			      "bad wire count %p",
1841 			      m);
1842 		}
1843 
1844 		pmap_inval_deinterlock(&info, pmap);
1845 		pmap_inval_done(&info);
1846 	}
1847 
1848 	/*
1849 	 * The existing process page table was replaced and must be destroyed
1850 	 * here.
1851 	 */
1852 	if (proc_pd_pv)
1853 		pv_put(proc_pd_pv);
1854 	if (pvpp)
1855 		*pvpp = pt_pv;
1856 	else
1857 		pv_put(pt_pv);
1858 
1859 	return (pte_pv);
1860 }
1861 
1862 /*
1863  * Release any resources held by the given physical map.
1864  *
1865  * Called when a pmap initialized by pmap_pinit is being released.  Should
1866  * only be called if the map contains no valid mappings.
1867  *
1868  * Caller must hold pmap->pm_token
1869  */
1870 struct pmap_release_info {
1871 	pmap_t	pmap;
1872 	int	retry;
1873 };
1874 
1875 static int pmap_release_callback(pv_entry_t pv, void *data);
1876 
1877 void
1878 pmap_release(struct pmap *pmap)
1879 {
1880 	struct pmap_release_info info;
1881 
1882 	KASSERT(pmap->pm_active == 0,
1883 		("pmap still active! %016jx", (uintmax_t)pmap->pm_active));
1884 
1885 	spin_lock(&pmap_spin);
1886 	TAILQ_REMOVE(&pmap_list, pmap, pm_pmnode);
1887 	spin_unlock(&pmap_spin);
1888 
1889 	/*
1890 	 * Pull pv's off the RB tree in order from low to high and release
1891 	 * each page.
1892 	 */
1893 	info.pmap = pmap;
1894 	do {
1895 		info.retry = 0;
1896 		spin_lock(&pmap->pm_spin);
1897 		RB_SCAN(pv_entry_rb_tree, &pmap->pm_pvroot, NULL,
1898 			pmap_release_callback, &info);
1899 		spin_unlock(&pmap->pm_spin);
1900 	} while (info.retry);
1901 
1902 
1903 	/*
1904 	 * One resident page (the pml4 page) should remain.
1905 	 * No wired pages should remain.
1906 	 */
1907 	KKASSERT(pmap->pm_stats.resident_count ==
1908 		 ((pmap->pm_flags & PMAP_FLAG_SIMPLE) ? 0 : 1));
1909 
1910 	KKASSERT(pmap->pm_stats.wired_count == 0);
1911 }
1912 
1913 static int
1914 pmap_release_callback(pv_entry_t pv, void *data)
1915 {
1916 	struct pmap_release_info *info = data;
1917 	pmap_t pmap = info->pmap;
1918 	int r;
1919 
1920 	if (pv_hold_try(pv)) {
1921 		spin_unlock(&pmap->pm_spin);
1922 	} else {
1923 		spin_unlock(&pmap->pm_spin);
1924 		pv_lock(pv);
1925 		if (pv->pv_pmap != pmap) {
1926 			pv_put(pv);
1927 			spin_lock(&pmap->pm_spin);
1928 			info->retry = 1;
1929 			return(-1);
1930 		}
1931 	}
1932 	r = pmap_release_pv(pv, NULL);
1933 	spin_lock(&pmap->pm_spin);
1934 	return(r);
1935 }
1936 
1937 /*
1938  * Called with held (i.e. also locked) pv.  This function will dispose of
1939  * the lock along with the pv.
1940  *
1941  * If the caller already holds the locked parent page table for pv it
1942  * must pass it as pvp, allowing us to avoid a deadlock, else it can
1943  * pass NULL for pvp.
1944  */
1945 static int
1946 pmap_release_pv(pv_entry_t pv, pv_entry_t pvp)
1947 {
1948 	vm_page_t p;
1949 
1950 	/*
1951 	 * The pmap is currently not spinlocked, pv is held+locked.
1952 	 * Remove the pv's page from its parent's page table.  The
1953 	 * parent's page table page's wire_count will be decremented.
1954 	 */
1955 	pmap_remove_pv_pte(pv, pvp, NULL);
1956 
1957 	/*
1958 	 * Terminal pvs are unhooked from their vm_pages.  Because
1959 	 * terminal pages aren't page table pages they aren't wired
1960 	 * by us, so we have to be sure not to unwire them either.
1961 	 */
1962 	if (pv->pv_pindex < pmap_pt_pindex(0)) {
1963 		pmap_remove_pv_page(pv);
1964 		goto skip;
1965 	}
1966 
1967 	/*
1968 	 * We leave the top-level page table page cached, wired, and
1969 	 * mapped in the pmap until the dtor function (pmap_puninit())
1970 	 * gets called.
1971 	 *
1972 	 * Since we are leaving the top-level pv intact we need
1973 	 * to break out of what would otherwise be an infinite loop.
1974 	 */
1975 	if (pv->pv_pindex == pmap_pml4_pindex()) {
1976 		pv_put(pv);
1977 		return(-1);
1978 	}
1979 
1980 	/*
1981 	 * For page table pages (other than the top-level page),
1982 	 * remove and free the vm_page.  The representitive mapping
1983 	 * removed above by pmap_remove_pv_pte() did not undo the
1984 	 * last wire_count so we have to do that as well.
1985 	 */
1986 	p = pmap_remove_pv_page(pv);
1987 	vm_page_busy_wait(p, FALSE, "pmaprl");
1988 	if (p->wire_count != 1) {
1989 		kprintf("p->wire_count was %016lx %d\n",
1990 			pv->pv_pindex, p->wire_count);
1991 	}
1992 	KKASSERT(p->wire_count == 1);
1993 	KKASSERT(p->flags & PG_UNMANAGED);
1994 
1995 	vm_page_unwire(p, 0);
1996 	KKASSERT(p->wire_count == 0);
1997 
1998 	/*
1999 	 * Theoretically this page, if not the pml4 page, should contain
2000 	 * all-zeros.  But its just too dangerous to mark it PG_ZERO.  Free
2001 	 * normally.
2002 	 */
2003 	vm_page_free(p);
2004 skip:
2005 	pv_free(pv);
2006 	return 0;
2007 }
2008 
2009 /*
2010  * This function will remove the pte associated with a pv from its parent.
2011  * Terminal pv's are supported.  The removal will be interlocked if info
2012  * is non-NULL.  The caller must dispose of pv instead of just unlocking
2013  * it.
2014  *
2015  * The wire count will be dropped on the parent page table.  The wire
2016  * count on the page being removed (pv->pv_m) from the parent page table
2017  * is NOT touched.  Note that terminal pages will not have any additional
2018  * wire counts while page table pages will have at least one representing
2019  * the mapping, plus others representing sub-mappings.
2020  *
2021  * NOTE: Cannot be called on kernel page table pages, only KVM terminal
2022  *	 pages and user page table and terminal pages.
2023  *
2024  * The pv must be locked.
2025  *
2026  * XXX must lock parent pv's if they exist to remove pte XXX
2027  */
2028 static
2029 void
2030 pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp, struct pmap_inval_info *info)
2031 {
2032 	vm_pindex_t ptepindex = pv->pv_pindex;
2033 	pmap_t pmap = pv->pv_pmap;
2034 	vm_page_t p;
2035 	int gotpvp = 0;
2036 
2037 	KKASSERT(pmap);
2038 
2039 	if (ptepindex == pmap_pml4_pindex()) {
2040 		/*
2041 		 * We are the top level pml4 table, there is no parent.
2042 		 */
2043 		p = pmap->pm_pmlpv->pv_m;
2044 	} else if (ptepindex >= pmap_pdp_pindex(0)) {
2045 		/*
2046 		 * Remove a PDP page from the pml4e.  This can only occur
2047 		 * with user page tables.  We do not have to lock the
2048 		 * pml4 PV so just ignore pvp.
2049 		 */
2050 		vm_pindex_t pml4_pindex;
2051 		vm_pindex_t pdp_index;
2052 		pml4_entry_t *pdp;
2053 
2054 		pdp_index = ptepindex - pmap_pdp_pindex(0);
2055 		if (pvp == NULL) {
2056 			pml4_pindex = pmap_pml4_pindex();
2057 			pvp = pv_get(pv->pv_pmap, pml4_pindex);
2058 			KKASSERT(pvp);
2059 			gotpvp = 1;
2060 		}
2061 		pdp = &pmap->pm_pml4[pdp_index & ((1ul << NPML4EPGSHIFT) - 1)];
2062 		KKASSERT((*pdp & PG_V) != 0);
2063 		p = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
2064 		*pdp = 0;
2065 		KKASSERT(info == NULL);
2066 	} else if (ptepindex >= pmap_pd_pindex(0)) {
2067 		/*
2068 		 * Remove a PD page from the pdp
2069 		 *
2070 		 * SIMPLE PMAP NOTE: Non-existant pvp's are ok in the case
2071 		 *		     of a simple pmap because it stops at
2072 		 *		     the PD page.
2073 		 */
2074 		vm_pindex_t pdp_pindex;
2075 		vm_pindex_t pd_index;
2076 		pdp_entry_t *pd;
2077 
2078 		pd_index = ptepindex - pmap_pd_pindex(0);
2079 
2080 		if (pvp == NULL) {
2081 			pdp_pindex = NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
2082 				     (pd_index >> NPML4EPGSHIFT);
2083 			pvp = pv_get(pv->pv_pmap, pdp_pindex);
2084 			if (pvp)
2085 				gotpvp = 1;
2086 		}
2087 		if (pvp) {
2088 			pd = pv_pte_lookup(pvp, pd_index &
2089 						((1ul << NPDPEPGSHIFT) - 1));
2090 			KKASSERT((*pd & PG_V) != 0);
2091 			p = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
2092 			*pd = 0;
2093 		} else {
2094 			KKASSERT(pmap->pm_flags & PMAP_FLAG_SIMPLE);
2095 			p = pv->pv_m;		/* degenerate test later */
2096 		}
2097 		KKASSERT(info == NULL);
2098 	} else if (ptepindex >= pmap_pt_pindex(0)) {
2099 		/*
2100 		 *  Remove a PT page from the pd
2101 		 */
2102 		vm_pindex_t pd_pindex;
2103 		vm_pindex_t pt_index;
2104 		pd_entry_t *pt;
2105 
2106 		pt_index = ptepindex - pmap_pt_pindex(0);
2107 
2108 		if (pvp == NULL) {
2109 			pd_pindex = NUPTE_TOTAL + NUPT_TOTAL +
2110 				    (pt_index >> NPDPEPGSHIFT);
2111 			pvp = pv_get(pv->pv_pmap, pd_pindex);
2112 			KKASSERT(pvp);
2113 			gotpvp = 1;
2114 		}
2115 		pt = pv_pte_lookup(pvp, pt_index & ((1ul << NPDPEPGSHIFT) - 1));
2116 		KKASSERT((*pt & PG_V) != 0);
2117 		p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
2118 		*pt = 0;
2119 		KKASSERT(info == NULL);
2120 	} else {
2121 		/*
2122 		 * Remove a PTE from the PT page
2123 		 *
2124 		 * NOTE: pv's must be locked bottom-up to avoid deadlocking.
2125 		 *	 pv is a pte_pv so we can safely lock pt_pv.
2126 		 */
2127 		vm_pindex_t pt_pindex;
2128 		pt_entry_t *ptep;
2129 		pt_entry_t pte;
2130 		vm_offset_t va;
2131 
2132 		pt_pindex = ptepindex >> NPTEPGSHIFT;
2133 		va = (vm_offset_t)ptepindex << PAGE_SHIFT;
2134 
2135 		if (ptepindex >= NUPTE_USER) {
2136 			ptep = vtopte(ptepindex << PAGE_SHIFT);
2137 			KKASSERT(pvp == NULL);
2138 		} else {
2139 			if (pvp == NULL) {
2140 				pt_pindex = NUPTE_TOTAL +
2141 					    (ptepindex >> NPDPEPGSHIFT);
2142 				pvp = pv_get(pv->pv_pmap, pt_pindex);
2143 				KKASSERT(pvp);
2144 				gotpvp = 1;
2145 			}
2146 			ptep = pv_pte_lookup(pvp, ptepindex &
2147 						  ((1ul << NPDPEPGSHIFT) - 1));
2148 		}
2149 
2150 		if (info)
2151 			pmap_inval_interlock(info, pmap, va);
2152 		pte = pte_load_clear(ptep);
2153 		if (info)
2154 			pmap_inval_deinterlock(info, pmap);
2155 		else
2156 			cpu_invlpg((void *)va);
2157 
2158 		/*
2159 		 * Now update the vm_page_t
2160 		 */
2161 		if ((pte & (PG_MANAGED|PG_V)) != (PG_MANAGED|PG_V)) {
2162 			kprintf("remove_pte badpte %016lx %016lx %d\n",
2163 				pte, pv->pv_pindex,
2164 				pv->pv_pindex < pmap_pt_pindex(0));
2165 		}
2166 		/*KKASSERT((pte & (PG_MANAGED|PG_V)) == (PG_MANAGED|PG_V));*/
2167 		p = PHYS_TO_VM_PAGE(pte & PG_FRAME);
2168 
2169 		if (pte & PG_M) {
2170 			if (pmap_track_modified(ptepindex))
2171 				vm_page_dirty(p);
2172 		}
2173 		if (pte & PG_A) {
2174 			vm_page_flag_set(p, PG_REFERENCED);
2175 		}
2176 		if (pte & PG_W)
2177 			atomic_add_long(&pmap->pm_stats.wired_count, -1);
2178 		if (pte & PG_G)
2179 			cpu_invlpg((void *)va);
2180 	}
2181 
2182 	/*
2183 	 * Unwire the parent page table page.  The wire_count cannot go below
2184 	 * 1 here because the parent page table page is itself still mapped.
2185 	 *
2186 	 * XXX remove the assertions later.
2187 	 */
2188 	KKASSERT(pv->pv_m == p);
2189 	if (pvp && vm_page_unwire_quick(pvp->pv_m))
2190 		panic("pmap_remove_pv_pte: Insufficient wire_count");
2191 
2192 	if (gotpvp)
2193 		pv_put(pvp);
2194 }
2195 
2196 static
2197 vm_page_t
2198 pmap_remove_pv_page(pv_entry_t pv)
2199 {
2200 	vm_page_t m;
2201 
2202 	m = pv->pv_m;
2203 	KKASSERT(m);
2204 	vm_page_spin_lock(m);
2205 	pv->pv_m = NULL;
2206 	TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2207 	/*
2208 	if (m->object)
2209 		atomic_add_int(&m->object->agg_pv_list_count, -1);
2210 	*/
2211 	if (TAILQ_EMPTY(&m->md.pv_list))
2212 		vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2213 	vm_page_spin_unlock(m);
2214 	return(m);
2215 }
2216 
2217 /*
2218  * Grow the number of kernel page table entries, if needed.
2219  *
2220  * This routine is always called to validate any address space
2221  * beyond KERNBASE (for kldloads).  kernel_vm_end only governs the address
2222  * space below KERNBASE.
2223  */
2224 void
2225 pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
2226 {
2227 	vm_paddr_t paddr;
2228 	vm_offset_t ptppaddr;
2229 	vm_page_t nkpg;
2230 	pd_entry_t *pt, newpt;
2231 	pdp_entry_t newpd;
2232 	int update_kernel_vm_end;
2233 
2234 	/*
2235 	 * bootstrap kernel_vm_end on first real VM use
2236 	 */
2237 	if (kernel_vm_end == 0) {
2238 		kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
2239 		nkpt = 0;
2240 		while ((*pmap_pt(&kernel_pmap, kernel_vm_end) & PG_V) != 0) {
2241 			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
2242 					~(PAGE_SIZE * NPTEPG - 1);
2243 			nkpt++;
2244 			if (kernel_vm_end - 1 >= kernel_map.max_offset) {
2245 				kernel_vm_end = kernel_map.max_offset;
2246 				break;
2247 			}
2248 		}
2249 	}
2250 
2251 	/*
2252 	 * Fill in the gaps.  kernel_vm_end is only adjusted for ranges
2253 	 * below KERNBASE.  Ranges above KERNBASE are kldloaded and we
2254 	 * do not want to force-fill 128G worth of page tables.
2255 	 */
2256 	if (kstart < KERNBASE) {
2257 		if (kstart > kernel_vm_end)
2258 			kstart = kernel_vm_end;
2259 		KKASSERT(kend <= KERNBASE);
2260 		update_kernel_vm_end = 1;
2261 	} else {
2262 		update_kernel_vm_end = 0;
2263 	}
2264 
2265 	kstart = rounddown2(kstart, PAGE_SIZE * NPTEPG);
2266 	kend = roundup2(kend, PAGE_SIZE * NPTEPG);
2267 
2268 	if (kend - 1 >= kernel_map.max_offset)
2269 		kend = kernel_map.max_offset;
2270 
2271 	while (kstart < kend) {
2272 		pt = pmap_pt(&kernel_pmap, kstart);
2273 		if (pt == NULL) {
2274 			/* We need a new PDP entry */
2275 			nkpg = vm_page_alloc(NULL, nkpt,
2276 			                     VM_ALLOC_NORMAL |
2277 					     VM_ALLOC_SYSTEM |
2278 					     VM_ALLOC_INTERRUPT);
2279 			if (nkpg == NULL) {
2280 				panic("pmap_growkernel: no memory to grow "
2281 				      "kernel");
2282 			}
2283 			paddr = VM_PAGE_TO_PHYS(nkpg);
2284 			if ((nkpg->flags & PG_ZERO) == 0)
2285 				pmap_zero_page(paddr);
2286 			vm_page_flag_clear(nkpg, PG_ZERO);
2287 			newpd = (pdp_entry_t)
2288 				(paddr | PG_V | PG_RW | PG_A | PG_M);
2289 			*pmap_pd(&kernel_pmap, kstart) = newpd;
2290 			nkpt++;
2291 			continue; /* try again */
2292 		}
2293 		if ((*pt & PG_V) != 0) {
2294 			kstart = (kstart + PAGE_SIZE * NPTEPG) &
2295 				 ~(PAGE_SIZE * NPTEPG - 1);
2296 			if (kstart - 1 >= kernel_map.max_offset) {
2297 				kstart = kernel_map.max_offset;
2298 				break;
2299 			}
2300 			continue;
2301 		}
2302 
2303 		/*
2304 		 * This index is bogus, but out of the way
2305 		 */
2306 		nkpg = vm_page_alloc(NULL, nkpt,
2307 				     VM_ALLOC_NORMAL |
2308 				     VM_ALLOC_SYSTEM |
2309 				     VM_ALLOC_INTERRUPT);
2310 		if (nkpg == NULL)
2311 			panic("pmap_growkernel: no memory to grow kernel");
2312 
2313 		vm_page_wire(nkpg);
2314 		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
2315 		pmap_zero_page(ptppaddr);
2316 		vm_page_flag_clear(nkpg, PG_ZERO);
2317 		newpt = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
2318 		*pmap_pt(&kernel_pmap, kstart) = newpt;
2319 		nkpt++;
2320 
2321 		kstart = (kstart + PAGE_SIZE * NPTEPG) &
2322 			  ~(PAGE_SIZE * NPTEPG - 1);
2323 
2324 		if (kstart - 1 >= kernel_map.max_offset) {
2325 			kstart = kernel_map.max_offset;
2326 			break;
2327 		}
2328 	}
2329 
2330 	/*
2331 	 * Only update kernel_vm_end for areas below KERNBASE.
2332 	 */
2333 	if (update_kernel_vm_end && kernel_vm_end < kstart)
2334 		kernel_vm_end = kstart;
2335 }
2336 
2337 /*
2338  *	Add a reference to the specified pmap.
2339  */
2340 void
2341 pmap_reference(pmap_t pmap)
2342 {
2343 	if (pmap != NULL) {
2344 		lwkt_gettoken(&pmap->pm_token);
2345 		++pmap->pm_count;
2346 		lwkt_reltoken(&pmap->pm_token);
2347 	}
2348 }
2349 
2350 /***************************************************
2351  * page management routines.
2352  ***************************************************/
2353 
2354 /*
2355  * Hold a pv without locking it
2356  */
2357 static void
2358 pv_hold(pv_entry_t pv)
2359 {
2360 	u_int count;
2361 
2362 	if (atomic_cmpset_int(&pv->pv_hold, 0, 1))
2363 		return;
2364 
2365 	for (;;) {
2366 		count = pv->pv_hold;
2367 		cpu_ccfence();
2368 		if (atomic_cmpset_int(&pv->pv_hold, count, count + 1))
2369 			return;
2370 		/* retry */
2371 	}
2372 }
2373 
2374 /*
2375  * Hold a pv_entry, preventing its destruction.  TRUE is returned if the pv
2376  * was successfully locked, FALSE if it wasn't.  The caller must dispose of
2377  * the pv properly.
2378  *
2379  * Either the pmap->pm_spin or the related vm_page_spin (if traversing a
2380  * pv list via its page) must be held by the caller.
2381  */
2382 static int
2383 _pv_hold_try(pv_entry_t pv PMAP_DEBUG_DECL)
2384 {
2385 	u_int count;
2386 
2387 	if (atomic_cmpset_int(&pv->pv_hold, 0, PV_HOLD_LOCKED | 1)) {
2388 #ifdef PMAP_DEBUG
2389 		pv->pv_func = func;
2390 		pv->pv_line = lineno;
2391 #endif
2392 		return TRUE;
2393 	}
2394 
2395 	for (;;) {
2396 		count = pv->pv_hold;
2397 		cpu_ccfence();
2398 		if ((count & PV_HOLD_LOCKED) == 0) {
2399 			if (atomic_cmpset_int(&pv->pv_hold, count,
2400 					      (count + 1) | PV_HOLD_LOCKED)) {
2401 #ifdef PMAP_DEBUG
2402 				pv->pv_func = func;
2403 				pv->pv_line = lineno;
2404 #endif
2405 				return TRUE;
2406 			}
2407 		} else {
2408 			if (atomic_cmpset_int(&pv->pv_hold, count, count + 1))
2409 				return FALSE;
2410 		}
2411 		/* retry */
2412 	}
2413 }
2414 
2415 /*
2416  * Drop a previously held pv_entry which could not be locked, allowing its
2417  * destruction.
2418  *
2419  * Must not be called with a spinlock held as we might zfree() the pv if it
2420  * is no longer associated with a pmap and this was the last hold count.
2421  */
2422 static void
2423 pv_drop(pv_entry_t pv)
2424 {
2425 	u_int count;
2426 
2427 	if (atomic_cmpset_int(&pv->pv_hold, 1, 0)) {
2428 		if (pv->pv_pmap == NULL)
2429 			zfree(pvzone, pv);
2430 		return;
2431 	}
2432 
2433 	for (;;) {
2434 		count = pv->pv_hold;
2435 		cpu_ccfence();
2436 		KKASSERT((count & PV_HOLD_MASK) > 0);
2437 		KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) !=
2438 			 (PV_HOLD_LOCKED | 1));
2439 		if (atomic_cmpset_int(&pv->pv_hold, count, count - 1)) {
2440 			if (count == 1 && pv->pv_pmap == NULL)
2441 				zfree(pvzone, pv);
2442 			return;
2443 		}
2444 		/* retry */
2445 	}
2446 }
2447 
2448 /*
2449  * Find or allocate the requested PV entry, returning a locked pv
2450  */
2451 static
2452 pv_entry_t
2453 _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew PMAP_DEBUG_DECL)
2454 {
2455 	pv_entry_t pv;
2456 	pv_entry_t pnew = NULL;
2457 
2458 	spin_lock(&pmap->pm_spin);
2459 	for (;;) {
2460 		if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex) {
2461 			pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
2462 							pindex);
2463 		}
2464 		if (pv == NULL) {
2465 			if (pnew == NULL) {
2466 				spin_unlock(&pmap->pm_spin);
2467 				pnew = zalloc(pvzone);
2468 				spin_lock(&pmap->pm_spin);
2469 				continue;
2470 			}
2471 			pnew->pv_pmap = pmap;
2472 			pnew->pv_pindex = pindex;
2473 			pnew->pv_hold = PV_HOLD_LOCKED | 1;
2474 #ifdef PMAP_DEBUG
2475 			pnew->pv_func = func;
2476 			pnew->pv_line = lineno;
2477 #endif
2478 			pv_entry_rb_tree_RB_INSERT(&pmap->pm_pvroot, pnew);
2479 			atomic_add_long(&pmap->pm_stats.resident_count, 1);
2480 			spin_unlock(&pmap->pm_spin);
2481 			*isnew = 1;
2482 			return(pnew);
2483 		}
2484 		if (pnew) {
2485 			spin_unlock(&pmap->pm_spin);
2486 			zfree(pvzone, pnew);
2487 			pnew = NULL;
2488 			spin_lock(&pmap->pm_spin);
2489 			continue;
2490 		}
2491 		if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
2492 			spin_unlock(&pmap->pm_spin);
2493 			*isnew = 0;
2494 			return(pv);
2495 		}
2496 		spin_unlock(&pmap->pm_spin);
2497 		_pv_lock(pv PMAP_DEBUG_COPY);
2498 		if (pv->pv_pmap == pmap && pv->pv_pindex == pindex) {
2499 			*isnew = 0;
2500 			return(pv);
2501 		}
2502 		pv_put(pv);
2503 		spin_lock(&pmap->pm_spin);
2504 	}
2505 
2506 
2507 }
2508 
2509 /*
2510  * Find the requested PV entry, returning a locked+held pv or NULL
2511  */
2512 static
2513 pv_entry_t
2514 _pv_get(pmap_t pmap, vm_pindex_t pindex PMAP_DEBUG_DECL)
2515 {
2516 	pv_entry_t pv;
2517 
2518 	spin_lock(&pmap->pm_spin);
2519 	for (;;) {
2520 		/*
2521 		 * Shortcut cache
2522 		 */
2523 		if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex) {
2524 			pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
2525 							pindex);
2526 		}
2527 		if (pv == NULL) {
2528 			spin_unlock(&pmap->pm_spin);
2529 			return NULL;
2530 		}
2531 		if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
2532 			pv_cache(pv, pindex);
2533 			spin_unlock(&pmap->pm_spin);
2534 			return(pv);
2535 		}
2536 		spin_unlock(&pmap->pm_spin);
2537 		_pv_lock(pv PMAP_DEBUG_COPY);
2538 		if (pv->pv_pmap == pmap && pv->pv_pindex == pindex)
2539 			return(pv);
2540 		pv_put(pv);
2541 		spin_lock(&pmap->pm_spin);
2542 	}
2543 }
2544 
2545 /*
2546  * Lookup, hold, and attempt to lock (pmap,pindex).
2547  *
2548  * If the entry does not exist NULL is returned and *errorp is set to 0
2549  *
2550  * If the entry exists and could be successfully locked it is returned and
2551  * errorp is set to 0.
2552  *
2553  * If the entry exists but could NOT be successfully locked it is returned
2554  * held and *errorp is set to 1.
2555  */
2556 static
2557 pv_entry_t
2558 pv_get_try(pmap_t pmap, vm_pindex_t pindex, int *errorp)
2559 {
2560 	pv_entry_t pv;
2561 
2562 	spin_lock(&pmap->pm_spin);
2563 	if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex)
2564 		pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
2565 	if (pv == NULL) {
2566 		spin_unlock(&pmap->pm_spin);
2567 		*errorp = 0;
2568 		return NULL;
2569 	}
2570 	if (pv_hold_try(pv)) {
2571 		pv_cache(pv, pindex);
2572 		spin_unlock(&pmap->pm_spin);
2573 		*errorp = 0;
2574 		return(pv);	/* lock succeeded */
2575 	}
2576 	spin_unlock(&pmap->pm_spin);
2577 	*errorp = 1;
2578 	return (pv);		/* lock failed */
2579 }
2580 
2581 /*
2582  * Find the requested PV entry, returning a held pv or NULL
2583  */
2584 static
2585 pv_entry_t
2586 pv_find(pmap_t pmap, vm_pindex_t pindex)
2587 {
2588 	pv_entry_t pv;
2589 
2590 	spin_lock(&pmap->pm_spin);
2591 
2592 	if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex)
2593 		pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
2594 	if (pv == NULL) {
2595 		spin_unlock(&pmap->pm_spin);
2596 		return NULL;
2597 	}
2598 	pv_hold(pv);
2599 	pv_cache(pv, pindex);
2600 	spin_unlock(&pmap->pm_spin);
2601 	return(pv);
2602 }
2603 
2604 /*
2605  * Lock a held pv, keeping the hold count
2606  */
2607 static
2608 void
2609 _pv_lock(pv_entry_t pv PMAP_DEBUG_DECL)
2610 {
2611 	u_int count;
2612 
2613 	for (;;) {
2614 		count = pv->pv_hold;
2615 		cpu_ccfence();
2616 		if ((count & PV_HOLD_LOCKED) == 0) {
2617 			if (atomic_cmpset_int(&pv->pv_hold, count,
2618 					      count | PV_HOLD_LOCKED)) {
2619 #ifdef PMAP_DEBUG
2620 				pv->pv_func = func;
2621 				pv->pv_line = lineno;
2622 #endif
2623 				return;
2624 			}
2625 			continue;
2626 		}
2627 		tsleep_interlock(pv, 0);
2628 		if (atomic_cmpset_int(&pv->pv_hold, count,
2629 				      count | PV_HOLD_WAITING)) {
2630 #ifdef PMAP_DEBUG
2631 			kprintf("pv waiting on %s:%d\n",
2632 					pv->pv_func, pv->pv_line);
2633 #endif
2634 			tsleep(pv, PINTERLOCKED, "pvwait", hz);
2635 		}
2636 		/* retry */
2637 	}
2638 }
2639 
2640 /*
2641  * Unlock a held and locked pv, keeping the hold count.
2642  */
2643 static
2644 void
2645 pv_unlock(pv_entry_t pv)
2646 {
2647 	u_int count;
2648 
2649 	if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 1, 1))
2650 		return;
2651 
2652 	for (;;) {
2653 		count = pv->pv_hold;
2654 		cpu_ccfence();
2655 		KKASSERT((count & (PV_HOLD_LOCKED|PV_HOLD_MASK)) >=
2656 			 (PV_HOLD_LOCKED | 1));
2657 		if (atomic_cmpset_int(&pv->pv_hold, count,
2658 				      count &
2659 				      ~(PV_HOLD_LOCKED | PV_HOLD_WAITING))) {
2660 			if (count & PV_HOLD_WAITING)
2661 				wakeup(pv);
2662 			break;
2663 		}
2664 	}
2665 }
2666 
2667 /*
2668  * Unlock and drop a pv.  If the pv is no longer associated with a pmap
2669  * and the hold count drops to zero we will free it.
2670  *
2671  * Caller should not hold any spin locks.  We are protected from hold races
2672  * by virtue of holds only occuring only with a pmap_spin or vm_page_spin
2673  * lock held.  A pv cannot be located otherwise.
2674  */
2675 static
2676 void
2677 pv_put(pv_entry_t pv)
2678 {
2679 	if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 1, 0)) {
2680 		if (pv->pv_pmap == NULL)
2681 			zfree(pvzone, pv);
2682 		return;
2683 	}
2684 	pv_unlock(pv);
2685 	pv_drop(pv);
2686 }
2687 
2688 /*
2689  * Unlock, drop, and free a pv, destroying it.  The pv is removed from its
2690  * pmap.  Any pte operations must have already been completed.
2691  */
2692 static
2693 void
2694 pv_free(pv_entry_t pv)
2695 {
2696 	pmap_t pmap;
2697 
2698 	KKASSERT(pv->pv_m == NULL);
2699 	if ((pmap = pv->pv_pmap) != NULL) {
2700 		spin_lock(&pmap->pm_spin);
2701 		pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
2702 		if (pmap->pm_pvhint == pv)
2703 			pmap->pm_pvhint = NULL;
2704 		atomic_add_long(&pmap->pm_stats.resident_count, -1);
2705 		pv->pv_pmap = NULL;
2706 		pv->pv_pindex = 0;
2707 		spin_unlock(&pmap->pm_spin);
2708 	}
2709 	pv_put(pv);
2710 }
2711 
2712 /*
2713  * This routine is very drastic, but can save the system
2714  * in a pinch.
2715  */
2716 void
2717 pmap_collect(void)
2718 {
2719 	int i;
2720 	vm_page_t m;
2721 	static int warningdone=0;
2722 
2723 	if (pmap_pagedaemon_waken == 0)
2724 		return;
2725 	pmap_pagedaemon_waken = 0;
2726 	if (warningdone < 5) {
2727 		kprintf("pmap_collect: collecting pv entries -- "
2728 			"suggest increasing PMAP_SHPGPERPROC\n");
2729 		warningdone++;
2730 	}
2731 
2732 	for (i = 0; i < vm_page_array_size; i++) {
2733 		m = &vm_page_array[i];
2734 		if (m->wire_count || m->hold_count)
2735 			continue;
2736 		if (vm_page_busy_try(m, TRUE) == 0) {
2737 			if (m->wire_count == 0 && m->hold_count == 0) {
2738 				pmap_remove_all(m);
2739 			}
2740 			vm_page_wakeup(m);
2741 		}
2742 	}
2743 }
2744 
2745 /*
2746  * Scan the pmap for active page table entries and issue a callback.
2747  * The callback must dispose of pte_pv, whos PTE entry is at *ptep in
2748  * its parent page table.
2749  *
2750  * pte_pv will be NULL if the page or page table is unmanaged.
2751  * pt_pv will point to the page table page containing the pte for the page.
2752  *
2753  * NOTE! If we come across an unmanaged page TABLE (verses an unmanaged page),
2754  *	 we pass a NULL pte_pv and we pass a pt_pv pointing to the passed
2755  *	 process pmap's PD and page to the callback function.  This can be
2756  *	 confusing because the pt_pv is really a pd_pv, and the target page
2757  *	 table page is simply aliased by the pmap and not owned by it.
2758  *
2759  * It is assumed that the start and end are properly rounded to the page size.
2760  *
2761  * It is assumed that PD pages and above are managed and thus in the RB tree,
2762  * allowing us to use RB_SCAN from the PD pages down for ranged scans.
2763  */
2764 struct pmap_scan_info {
2765 	struct pmap *pmap;
2766 	vm_offset_t sva;
2767 	vm_offset_t eva;
2768 	vm_pindex_t sva_pd_pindex;
2769 	vm_pindex_t eva_pd_pindex;
2770 	void (*func)(pmap_t, struct pmap_scan_info *,
2771 		     pv_entry_t, pv_entry_t, int, vm_offset_t,
2772 		     pt_entry_t *, void *);
2773 	void *arg;
2774 	int doinval;
2775 	struct pmap_inval_info inval;
2776 };
2777 
2778 static int pmap_scan_cmp(pv_entry_t pv, void *data);
2779 static int pmap_scan_callback(pv_entry_t pv, void *data);
2780 
2781 static void
2782 pmap_scan(struct pmap_scan_info *info)
2783 {
2784 	struct pmap *pmap = info->pmap;
2785 	pv_entry_t pd_pv;	/* A page directory PV */
2786 	pv_entry_t pt_pv;	/* A page table PV */
2787 	pv_entry_t pte_pv;	/* A page table entry PV */
2788 	pt_entry_t *ptep;
2789 	struct pv_entry dummy_pv;
2790 
2791 	if (pmap == NULL)
2792 		return;
2793 
2794 	/*
2795 	 * Hold the token for stability; if the pmap is empty we have nothing
2796 	 * to do.
2797 	 */
2798 	lwkt_gettoken(&pmap->pm_token);
2799 #if 0
2800 	if (pmap->pm_stats.resident_count == 0) {
2801 		lwkt_reltoken(&pmap->pm_token);
2802 		return;
2803 	}
2804 #endif
2805 
2806 	pmap_inval_init(&info->inval);
2807 
2808 	/*
2809 	 * Special handling for scanning one page, which is a very common
2810 	 * operation (it is?).
2811 	 *
2812 	 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4
2813 	 */
2814 	if (info->sva + PAGE_SIZE == info->eva) {
2815 		if (info->sva >= VM_MAX_USER_ADDRESS) {
2816 			/*
2817 			 * Kernel mappings do not track wire counts on
2818 			 * page table pages and only maintain pd_pv and
2819 			 * pte_pv levels so pmap_scan() works.
2820 			 */
2821 			pt_pv = NULL;
2822 			pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva));
2823 			ptep = vtopte(info->sva);
2824 		} else {
2825 			/*
2826 			 * User pages which are unmanaged will not have a
2827 			 * pte_pv.  User page table pages which are unmanaged
2828 			 * (shared from elsewhere) will also not have a pt_pv.
2829 			 * The func() callback will pass both pte_pv and pt_pv
2830 			 * as NULL in that case.
2831 			 */
2832 			pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva));
2833 			pt_pv = pv_get(pmap, pmap_pt_pindex(info->sva));
2834 			if (pt_pv == NULL) {
2835 				KKASSERT(pte_pv == NULL);
2836 				pd_pv = pv_get(pmap, pmap_pd_pindex(info->sva));
2837 				if (pd_pv) {
2838 					ptep = pv_pte_lookup(pd_pv,
2839 						    pmap_pt_index(info->sva));
2840 					if (*ptep) {
2841 						info->func(pmap, info,
2842 						     NULL, pd_pv, 1,
2843 						     info->sva, ptep,
2844 						     info->arg);
2845 					}
2846 					pv_put(pd_pv);
2847 				}
2848 				goto fast_skip;
2849 			}
2850 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(info->sva));
2851 		}
2852 		if (*ptep == 0) {
2853 			/*
2854 			 * Unlike the pv_find() case below we actually
2855 			 * acquired a locked pv in this case so any
2856 			 * race should have been resolved.  It is expected
2857 			 * to not exist.
2858 			 */
2859 			KKASSERT(pte_pv == NULL);
2860 		} else if (pte_pv) {
2861 			KASSERT((*ptep & (PG_MANAGED|PG_V)) == (PG_MANAGED|
2862 								PG_V),
2863 				("bad *ptep %016lx sva %016lx pte_pv %p",
2864 				*ptep, info->sva, pte_pv));
2865 			info->func(pmap, info, pte_pv, pt_pv, 0,
2866 				   info->sva, ptep, info->arg);
2867 		} else {
2868 			KASSERT((*ptep & (PG_MANAGED|PG_V)) == PG_V,
2869 				("bad *ptep %016lx sva %016lx pte_pv NULL",
2870 				*ptep, info->sva));
2871 			info->func(pmap, info, NULL, pt_pv, 0,
2872 				   info->sva, ptep, info->arg);
2873 		}
2874 		if (pt_pv)
2875 			pv_put(pt_pv);
2876 fast_skip:
2877 		pmap_inval_done(&info->inval);
2878 		lwkt_reltoken(&pmap->pm_token);
2879 		return;
2880 	}
2881 
2882 	/*
2883 	 * Nominal scan case, RB_SCAN() for PD pages and iterate from
2884 	 * there.
2885 	 */
2886 	info->sva_pd_pindex = pmap_pd_pindex(info->sva);
2887 	info->eva_pd_pindex = pmap_pd_pindex(info->eva + NBPDP - 1);
2888 
2889 	if (info->sva >= VM_MAX_USER_ADDRESS) {
2890 		/*
2891 		 * The kernel does not currently maintain any pv_entry's for
2892 		 * higher-level page tables.
2893 		 */
2894 		bzero(&dummy_pv, sizeof(dummy_pv));
2895 		dummy_pv.pv_pindex = info->sva_pd_pindex;
2896 		spin_lock(&pmap->pm_spin);
2897 		while (dummy_pv.pv_pindex < info->eva_pd_pindex) {
2898 			pmap_scan_callback(&dummy_pv, info);
2899 			++dummy_pv.pv_pindex;
2900 		}
2901 		spin_unlock(&pmap->pm_spin);
2902 	} else {
2903 		/*
2904 		 * User page tables maintain local PML4, PDP, and PD
2905 		 * pv_entry's at the very least.  PT pv's might be
2906 		 * unmanaged and thus not exist.  PTE pv's might be
2907 		 * unmanaged and thus not exist.
2908 		 */
2909 		spin_lock(&pmap->pm_spin);
2910 		pv_entry_rb_tree_RB_SCAN(&pmap->pm_pvroot,
2911 			pmap_scan_cmp, pmap_scan_callback, info);
2912 		spin_unlock(&pmap->pm_spin);
2913 	}
2914 	pmap_inval_done(&info->inval);
2915 	lwkt_reltoken(&pmap->pm_token);
2916 }
2917 
2918 /*
2919  * WARNING! pmap->pm_spin held
2920  */
2921 static int
2922 pmap_scan_cmp(pv_entry_t pv, void *data)
2923 {
2924 	struct pmap_scan_info *info = data;
2925 	if (pv->pv_pindex < info->sva_pd_pindex)
2926 		return(-1);
2927 	if (pv->pv_pindex >= info->eva_pd_pindex)
2928 		return(1);
2929 	return(0);
2930 }
2931 
2932 /*
2933  * WARNING! pmap->pm_spin held
2934  */
2935 static int
2936 pmap_scan_callback(pv_entry_t pv, void *data)
2937 {
2938 	struct pmap_scan_info *info = data;
2939 	struct pmap *pmap = info->pmap;
2940 	pv_entry_t pd_pv;	/* A page directory PV */
2941 	pv_entry_t pt_pv;	/* A page table PV */
2942 	pv_entry_t pte_pv;	/* A page table entry PV */
2943 	pt_entry_t *ptep;
2944 	vm_offset_t sva;
2945 	vm_offset_t eva;
2946 	vm_offset_t va_next;
2947 	vm_pindex_t pd_pindex;
2948 	int error;
2949 
2950 	/*
2951 	 * Pull the PD pindex from the pv before releasing the spinlock.
2952 	 *
2953 	 * WARNING: pv is faked for kernel pmap scans.
2954 	 */
2955 	pd_pindex = pv->pv_pindex;
2956 	spin_unlock(&pmap->pm_spin);
2957 	pv = NULL;	/* invalid after spinlock unlocked */
2958 
2959 	/*
2960 	 * Calculate the page range within the PD.  SIMPLE pmaps are
2961 	 * direct-mapped for the entire 2^64 address space.  Normal pmaps
2962 	 * reflect the user and kernel address space which requires
2963 	 * cannonicalization w/regards to converting pd_pindex's back
2964 	 * into addresses.
2965 	 */
2966 	sva = (pd_pindex - NUPTE_TOTAL - NUPT_TOTAL) << PDPSHIFT;
2967 	if ((pmap->pm_flags & PMAP_FLAG_SIMPLE) == 0 &&
2968 	    (sva & PML4_SIGNMASK)) {
2969 		sva |= PML4_SIGNMASK;
2970 	}
2971 	eva = sva + NBPDP;	/* can overflow */
2972 	if (sva < info->sva)
2973 		sva = info->sva;
2974 	if (eva < info->sva || eva > info->eva)
2975 		eva = info->eva;
2976 
2977 	/*
2978 	 * NOTE: kernel mappings do not track page table pages, only
2979 	 * 	 terminal pages.
2980 	 *
2981 	 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4.
2982 	 *	 However, for the scan to be efficient we try to
2983 	 *	 cache items top-down.
2984 	 */
2985 	pd_pv = NULL;
2986 	pt_pv = NULL;
2987 
2988 	for (; sva < eva; sva = va_next) {
2989 		if (sva >= VM_MAX_USER_ADDRESS) {
2990 			if (pt_pv) {
2991 				pv_put(pt_pv);
2992 				pt_pv = NULL;
2993 			}
2994 			goto kernel_skip;
2995 		}
2996 
2997 		/*
2998 		 * PD cache (degenerate case if we skip).  It is possible
2999 		 * for the PD to not exist due to races.  This is ok.
3000 		 */
3001 		if (pd_pv == NULL) {
3002 			pd_pv = pv_get(pmap, pmap_pd_pindex(sva));
3003 		} else if (pd_pv->pv_pindex != pmap_pd_pindex(sva)) {
3004 			pv_put(pd_pv);
3005 			pd_pv = pv_get(pmap, pmap_pd_pindex(sva));
3006 		}
3007 		if (pd_pv == NULL) {
3008 			va_next = (sva + NBPDP) & ~PDPMASK;
3009 			if (va_next < sva)
3010 				va_next = eva;
3011 			continue;
3012 		}
3013 
3014 		/*
3015 		 * PT cache
3016 		 */
3017 		if (pt_pv == NULL) {
3018 			if (pd_pv) {
3019 				pv_put(pd_pv);
3020 				pd_pv = NULL;
3021 			}
3022 			pt_pv = pv_get(pmap, pmap_pt_pindex(sva));
3023 		} else if (pt_pv->pv_pindex != pmap_pt_pindex(sva)) {
3024 			if (pd_pv) {
3025 				pv_put(pd_pv);
3026 				pd_pv = NULL;
3027 			}
3028 			pv_put(pt_pv);
3029 			pt_pv = pv_get(pmap, pmap_pt_pindex(sva));
3030 		}
3031 
3032 		/*
3033 		 * If pt_pv is NULL we either have an shared page table
3034 		 * page and must issue a callback specific to that case,
3035 		 * or there is no page table page.
3036 		 *
3037 		 * Either way we can skip the page table page.
3038 		 */
3039 		if (pt_pv == NULL) {
3040 			/*
3041 			 * Possible unmanaged (shared from another pmap)
3042 			 * page table page.
3043 			 */
3044 			if (pd_pv == NULL)
3045 				pd_pv = pv_get(pmap, pmap_pd_pindex(sva));
3046 			KKASSERT(pd_pv != NULL);
3047 			ptep = pv_pte_lookup(pd_pv, pmap_pt_index(sva));
3048 			if (*ptep & PG_V) {
3049 				info->func(pmap, info, NULL, pd_pv, 1,
3050 					   sva, ptep, info->arg);
3051 			}
3052 
3053 			/*
3054 			 * Done, move to next page table page.
3055 			 */
3056 			va_next = (sva + NBPDR) & ~PDRMASK;
3057 			if (va_next < sva)
3058 				va_next = eva;
3059 			continue;
3060 		}
3061 
3062 		/*
3063 		 * From this point in the loop testing pt_pv for non-NULL
3064 		 * means we are in UVM, else if it is NULL we are in KVM.
3065 		 *
3066 		 * Limit our scan to either the end of the va represented
3067 		 * by the current page table page, or to the end of the
3068 		 * range being removed.
3069 		 */
3070 kernel_skip:
3071 		va_next = (sva + NBPDR) & ~PDRMASK;
3072 		if (va_next < sva)
3073 			va_next = eva;
3074 		if (va_next > eva)
3075 			va_next = eva;
3076 
3077 		/*
3078 		 * Scan the page table for pages.  Some pages may not be
3079 		 * managed (might not have a pv_entry).
3080 		 *
3081 		 * There is no page table management for kernel pages so
3082 		 * pt_pv will be NULL in that case, but otherwise pt_pv
3083 		 * is non-NULL, locked, and referenced.
3084 		 */
3085 
3086 		/*
3087 		 * At this point a non-NULL pt_pv means a UVA, and a NULL
3088 		 * pt_pv means a KVA.
3089 		 */
3090 		if (pt_pv)
3091 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(sva));
3092 		else
3093 			ptep = vtopte(sva);
3094 
3095 		while (sva < va_next) {
3096 			/*
3097 			 * Acquire the related pte_pv, if any.  If *ptep == 0
3098 			 * the related pte_pv should not exist, but if *ptep
3099 			 * is not zero the pte_pv may or may not exist (e.g.
3100 			 * will not exist for an unmanaged page).
3101 			 *
3102 			 * However a multitude of races are possible here.
3103 			 *
3104 			 * In addition, the (pt_pv, pte_pv) lock order is
3105 			 * backwards, so we have to be careful in aquiring
3106 			 * a properly locked pte_pv.
3107 			 */
3108 			if (pt_pv) {
3109 				pte_pv = pv_get_try(pmap, pmap_pte_pindex(sva),
3110 						    &error);
3111 				if (error) {
3112 					if (pd_pv) {
3113 						pv_put(pd_pv);
3114 						pd_pv = NULL;
3115 					}
3116 					pv_put(pt_pv);	 /* must be non-NULL */
3117 					pt_pv = NULL;
3118 					pv_lock(pte_pv); /* safe to block now */
3119 					pv_put(pte_pv);
3120 					pte_pv = NULL;
3121 					pt_pv = pv_get(pmap,
3122 						       pmap_pt_pindex(sva));
3123 					/*
3124 					 * pt_pv reloaded, need new ptep
3125 					 */
3126 					KKASSERT(pt_pv != NULL);
3127 					ptep = pv_pte_lookup(pt_pv,
3128 							pmap_pte_index(sva));
3129 					continue;
3130 				}
3131 			} else {
3132 				pte_pv = pv_get(pmap, pmap_pte_pindex(sva));
3133 			}
3134 
3135 			/*
3136 			 * Ok, if *ptep == 0 we had better NOT have a pte_pv.
3137 			 */
3138 			if (*ptep == 0) {
3139 				if (pte_pv) {
3140 					kprintf("Unexpected non-NULL pte_pv "
3141 						"%p pt_pv %p *ptep = %016lx\n",
3142 						pte_pv, pt_pv, *ptep);
3143 					panic("Unexpected non-NULL pte_pv");
3144 				}
3145 				sva += PAGE_SIZE;
3146 				++ptep;
3147 				continue;
3148 			}
3149 
3150 			/*
3151 			 * Ready for the callback.  The locked pte_pv (if any)
3152 			 * is consumed by the callback.  pte_pv will exist if
3153 			 *  the page is managed, and will not exist if it
3154 			 * isn't.
3155 			 */
3156 			if (pte_pv) {
3157 				KASSERT((*ptep & (PG_MANAGED|PG_V)) ==
3158 					 (PG_MANAGED|PG_V),
3159 					("bad *ptep %016lx sva %016lx "
3160 					 "pte_pv %p",
3161 					 *ptep, sva, pte_pv));
3162 				info->func(pmap, info, pte_pv, pt_pv, 0,
3163 					   sva, ptep, info->arg);
3164 			} else {
3165 				KASSERT((*ptep & (PG_MANAGED|PG_V)) ==
3166 					 PG_V,
3167 					("bad *ptep %016lx sva %016lx "
3168 					 "pte_pv NULL",
3169 					 *ptep, sva));
3170 				info->func(pmap, info, NULL, pt_pv, 0,
3171 					   sva, ptep, info->arg);
3172 			}
3173 			pte_pv = NULL;
3174 			sva += PAGE_SIZE;
3175 			++ptep;
3176 		}
3177 		lwkt_yield();
3178 	}
3179 	if (pd_pv) {
3180 		pv_put(pd_pv);
3181 		pd_pv = NULL;
3182 	}
3183 	if (pt_pv) {
3184 		pv_put(pt_pv);
3185 		pt_pv = NULL;
3186 	}
3187 	lwkt_yield();
3188 
3189 	/*
3190 	 * Relock before returning.
3191 	 */
3192 	spin_lock(&pmap->pm_spin);
3193 	return (0);
3194 }
3195 
3196 void
3197 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
3198 {
3199 	struct pmap_scan_info info;
3200 
3201 	info.pmap = pmap;
3202 	info.sva = sva;
3203 	info.eva = eva;
3204 	info.func = pmap_remove_callback;
3205 	info.arg = NULL;
3206 	info.doinval = 1;	/* normal remove requires pmap inval */
3207 	pmap_scan(&info);
3208 }
3209 
3210 static void
3211 pmap_remove_noinval(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
3212 {
3213 	struct pmap_scan_info info;
3214 
3215 	info.pmap = pmap;
3216 	info.sva = sva;
3217 	info.eva = eva;
3218 	info.func = pmap_remove_callback;
3219 	info.arg = NULL;
3220 	info.doinval = 0;	/* normal remove requires pmap inval */
3221 	pmap_scan(&info);
3222 }
3223 
3224 static void
3225 pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
3226 		     pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
3227 		     vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
3228 {
3229 	pt_entry_t pte;
3230 
3231 	if (pte_pv) {
3232 		/*
3233 		 * This will also drop pt_pv's wire_count. Note that
3234 		 * terminal pages are not wired based on mmu presence.
3235 		 */
3236 		if (info->doinval)
3237 			pmap_remove_pv_pte(pte_pv, pt_pv, &info->inval);
3238 		else
3239 			pmap_remove_pv_pte(pte_pv, pt_pv, NULL);
3240 		pmap_remove_pv_page(pte_pv);
3241 		pv_free(pte_pv);
3242 	} else if (sharept == 0) {
3243 		/*
3244 		 * Unmanaged page
3245 		 *
3246 		 * pt_pv's wire_count is still bumped by unmanaged pages
3247 		 * so we must decrement it manually.
3248 		 */
3249 		if (info->doinval)
3250 			pmap_inval_interlock(&info->inval, pmap, va);
3251 		pte = pte_load_clear(ptep);
3252 		if (info->doinval)
3253 			pmap_inval_deinterlock(&info->inval, pmap);
3254 		if (pte & PG_W)
3255 			atomic_add_long(&pmap->pm_stats.wired_count, -1);
3256 		atomic_add_long(&pmap->pm_stats.resident_count, -1);
3257 		if (vm_page_unwire_quick(pt_pv->pv_m))
3258 			panic("pmap_remove: insufficient wirecount");
3259 	} else {
3260 		/*
3261 		 * Unmanaged page table, pt_pv is actually the pd_pv
3262 		 * for our pmap (not the share object pmap).
3263 		 *
3264 		 * We have to unwire the target page table page and we
3265 		 * have to unwire our page directory page.
3266 		 */
3267 		if (info->doinval)
3268 			pmap_inval_interlock(&info->inval, pmap, va);
3269 		pte = pte_load_clear(ptep);
3270 		if (info->doinval)
3271 			pmap_inval_deinterlock(&info->inval, pmap);
3272 		atomic_add_long(&pmap->pm_stats.resident_count, -1);
3273 		if (vm_page_unwire_quick(PHYS_TO_VM_PAGE(pte & PG_FRAME)))
3274 			panic("pmap_remove: shared pgtable1 bad wirecount");
3275 		if (vm_page_unwire_quick(pt_pv->pv_m))
3276 			panic("pmap_remove: shared pgtable2 bad wirecount");
3277 	}
3278 }
3279 
3280 /*
3281  * Removes this physical page from all physical maps in which it resides.
3282  * Reflects back modify bits to the pager.
3283  *
3284  * This routine may not be called from an interrupt.
3285  */
3286 static
3287 void
3288 pmap_remove_all(vm_page_t m)
3289 {
3290 	struct pmap_inval_info info;
3291 	pv_entry_t pv;
3292 
3293 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3294 		return;
3295 
3296 	pmap_inval_init(&info);
3297 	vm_page_spin_lock(m);
3298 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3299 		KKASSERT(pv->pv_m == m);
3300 		if (pv_hold_try(pv)) {
3301 			vm_page_spin_unlock(m);
3302 		} else {
3303 			vm_page_spin_unlock(m);
3304 			pv_lock(pv);
3305 			if (pv->pv_m != m) {
3306 				pv_put(pv);
3307 				vm_page_spin_lock(m);
3308 				continue;
3309 			}
3310 		}
3311 		/*
3312 		 * Holding no spinlocks, pv is locked.
3313 		 */
3314 		pmap_remove_pv_pte(pv, NULL, &info);
3315 		pmap_remove_pv_page(pv);
3316 		pv_free(pv);
3317 		vm_page_spin_lock(m);
3318 	}
3319 	KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
3320 	vm_page_spin_unlock(m);
3321 	pmap_inval_done(&info);
3322 }
3323 
3324 /*
3325  * Set the physical protection on the specified range of this map
3326  * as requested.  This function is typically only used for debug watchpoints
3327  * and COW pages.
3328  *
3329  * This function may not be called from an interrupt if the map is
3330  * not the kernel_pmap.
3331  *
3332  * NOTE!  For shared page table pages we just unmap the page.
3333  */
3334 void
3335 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
3336 {
3337 	struct pmap_scan_info info;
3338 	/* JG review for NX */
3339 
3340 	if (pmap == NULL)
3341 		return;
3342 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
3343 		pmap_remove(pmap, sva, eva);
3344 		return;
3345 	}
3346 	if (prot & VM_PROT_WRITE)
3347 		return;
3348 	info.pmap = pmap;
3349 	info.sva = sva;
3350 	info.eva = eva;
3351 	info.func = pmap_protect_callback;
3352 	info.arg = &prot;
3353 	info.doinval = 1;
3354 	pmap_scan(&info);
3355 }
3356 
3357 static
3358 void
3359 pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
3360 		      pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
3361 		      vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
3362 {
3363 	pt_entry_t pbits;
3364 	pt_entry_t cbits;
3365 	pt_entry_t pte;
3366 	vm_page_t m;
3367 
3368 	/*
3369 	 * XXX non-optimal.
3370 	 */
3371 	pmap_inval_interlock(&info->inval, pmap, va);
3372 again:
3373 	pbits = *ptep;
3374 	cbits = pbits;
3375 	if (pte_pv) {
3376 		m = NULL;
3377 		if (pbits & PG_A) {
3378 			m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
3379 			KKASSERT(m == pte_pv->pv_m);
3380 			vm_page_flag_set(m, PG_REFERENCED);
3381 			cbits &= ~PG_A;
3382 		}
3383 		if (pbits & PG_M) {
3384 			if (pmap_track_modified(pte_pv->pv_pindex)) {
3385 				if (m == NULL)
3386 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
3387 				vm_page_dirty(m);
3388 				cbits &= ~PG_M;
3389 			}
3390 		}
3391 	} else if (sharept) {
3392 		/*
3393 		 * Unmanaged page table, pt_pv is actually the pd_pv
3394 		 * for our pmap (not the share object pmap).
3395 		 *
3396 		 * When asked to protect something in a shared page table
3397 		 * page we just unmap the page table page.  We have to
3398 		 * invalidate the tlb in this situation.
3399 		 */
3400 		pte = pte_load_clear(ptep);
3401 		pmap_inval_invltlb(&info->inval);
3402 		if (vm_page_unwire_quick(PHYS_TO_VM_PAGE(pte & PG_FRAME)))
3403 			panic("pmap_protect: pgtable1 pg bad wirecount");
3404 		if (vm_page_unwire_quick(pt_pv->pv_m))
3405 			panic("pmap_protect: pgtable2 pg bad wirecount");
3406 		ptep = NULL;
3407 	}
3408 	/* else unmanaged page, adjust bits, no wire changes */
3409 
3410 	if (ptep) {
3411 		cbits &= ~PG_RW;
3412 		if (pbits != cbits && !atomic_cmpset_long(ptep, pbits, cbits)) {
3413 			goto again;
3414 		}
3415 	}
3416 	pmap_inval_deinterlock(&info->inval, pmap);
3417 	if (pte_pv)
3418 		pv_put(pte_pv);
3419 }
3420 
3421 /*
3422  * Insert the vm_page (m) at the virtual address (va), replacing any prior
3423  * mapping at that address.  Set protection and wiring as requested.
3424  *
3425  * If entry is non-NULL we check to see if the SEG_SIZE optimization is
3426  * possible.  If it is we enter the page into the appropriate shared pmap
3427  * hanging off the related VM object instead of the passed pmap, then we
3428  * share the page table page from the VM object's pmap into the current pmap.
3429  *
3430  * NOTE: This routine MUST insert the page into the pmap now, it cannot
3431  *	 lazy-evaluate.
3432  */
3433 void
3434 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3435 	   boolean_t wired, vm_map_entry_t entry)
3436 {
3437 	pmap_inval_info info;
3438 	pv_entry_t pt_pv;	/* page table */
3439 	pv_entry_t pte_pv;	/* page table entry */
3440 	pt_entry_t *ptep;
3441 	vm_paddr_t opa;
3442 	pt_entry_t origpte, newpte;
3443 	vm_paddr_t pa;
3444 
3445 	if (pmap == NULL)
3446 		return;
3447 	va = trunc_page(va);
3448 #ifdef PMAP_DIAGNOSTIC
3449 	if (va >= KvaEnd)
3450 		panic("pmap_enter: toobig");
3451 	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
3452 		panic("pmap_enter: invalid to pmap_enter page table "
3453 		      "pages (va: 0x%lx)", va);
3454 #endif
3455 	if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
3456 		kprintf("Warning: pmap_enter called on UVA with "
3457 			"kernel_pmap\n");
3458 #ifdef DDB
3459 		db_print_backtrace();
3460 #endif
3461 	}
3462 	if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
3463 		kprintf("Warning: pmap_enter called on KVA without"
3464 			"kernel_pmap\n");
3465 #ifdef DDB
3466 		db_print_backtrace();
3467 #endif
3468 	}
3469 
3470 	/*
3471 	 * Get locked PV entries for our new page table entry (pte_pv)
3472 	 * and for its parent page table (pt_pv).  We need the parent
3473 	 * so we can resolve the location of the ptep.
3474 	 *
3475 	 * Only hardware MMU actions can modify the ptep out from
3476 	 * under us.
3477 	 *
3478 	 * if (m) is fictitious or unmanaged we do not create a managing
3479 	 * pte_pv for it.  Any pre-existing page's management state must
3480 	 * match (avoiding code complexity).
3481 	 *
3482 	 * If the pmap is still being initialized we assume existing
3483 	 * page tables.
3484 	 *
3485 	 * Kernel mapppings do not track page table pages (i.e. pt_pv).
3486 	 * pmap_allocpte() checks the
3487 	 */
3488 	if (pmap_initialized == FALSE) {
3489 		pte_pv = NULL;
3490 		pt_pv = NULL;
3491 		ptep = vtopte(va);
3492 	} else if (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) { /* XXX */
3493 		pte_pv = NULL;
3494 		if (va >= VM_MAX_USER_ADDRESS) {
3495 			pt_pv = NULL;
3496 			ptep = vtopte(va);
3497 		} else {
3498 			pt_pv = pmap_allocpte_seg(pmap, pmap_pt_pindex(va),
3499 						  NULL, entry, va);
3500 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
3501 		}
3502 		KKASSERT(*ptep == 0 || (*ptep & PG_MANAGED) == 0);
3503 	} else {
3504 		if (va >= VM_MAX_USER_ADDRESS) {
3505 			/*
3506 			 * Kernel map, pv_entry-tracked.
3507 			 */
3508 			pt_pv = NULL;
3509 			pte_pv = pmap_allocpte(pmap, pmap_pte_pindex(va), NULL);
3510 			ptep = vtopte(va);
3511 		} else {
3512 			/*
3513 			 * User map
3514 			 */
3515 			pte_pv = pmap_allocpte_seg(pmap, pmap_pte_pindex(va),
3516 						   &pt_pv, entry, va);
3517 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
3518 		}
3519 		KKASSERT(*ptep == 0 || (*ptep & PG_MANAGED));
3520 	}
3521 
3522 	pa = VM_PAGE_TO_PHYS(m);
3523 	origpte = *ptep;
3524 	opa = origpte & PG_FRAME;
3525 
3526 	newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) | PG_V | PG_A);
3527 	if (wired)
3528 		newpte |= PG_W;
3529 	if (va < VM_MAX_USER_ADDRESS)
3530 		newpte |= PG_U;
3531 	if (pte_pv)
3532 		newpte |= PG_MANAGED;
3533 	if (pmap == &kernel_pmap)
3534 		newpte |= pgeflag;
3535 
3536 	/*
3537 	 * It is possible for multiple faults to occur in threaded
3538 	 * environments, the existing pte might be correct.
3539 	 */
3540 	if (((origpte ^ newpte) & ~(pt_entry_t)(PG_M|PG_A)) == 0)
3541 		goto done;
3542 
3543 	if ((prot & VM_PROT_NOSYNC) == 0)
3544 		pmap_inval_init(&info);
3545 
3546 	/*
3547 	 * Ok, either the address changed or the protection or wiring
3548 	 * changed.
3549 	 *
3550 	 * Clear the current entry, interlocking the removal.  For managed
3551 	 * pte's this will also flush the modified state to the vm_page.
3552 	 * Atomic ops are mandatory in order to ensure that PG_M events are
3553 	 * not lost during any transition.
3554 	 */
3555 	if (opa) {
3556 		if (pte_pv) {
3557 			/*
3558 			 * pmap_remove_pv_pte() unwires pt_pv and assumes
3559 			 * we will free pte_pv, but since we are reusing
3560 			 * pte_pv we want to retain the wire count.
3561 			 *
3562 			 * pt_pv won't exist for a kernel page (managed or
3563 			 * otherwise).
3564 			 */
3565 			if (pt_pv)
3566 				vm_page_wire_quick(pt_pv->pv_m);
3567 			if (prot & VM_PROT_NOSYNC)
3568 				pmap_remove_pv_pte(pte_pv, pt_pv, NULL);
3569 			else
3570 				pmap_remove_pv_pte(pte_pv, pt_pv, &info);
3571 			if (pte_pv->pv_m)
3572 				pmap_remove_pv_page(pte_pv);
3573 		} else if (prot & VM_PROT_NOSYNC) {
3574 			/*
3575 			 * Unmanaged page, NOSYNC (no mmu sync) requested.
3576 			 *
3577 			 * Leave wire count on PT page intact.
3578 			 */
3579 			(void)pte_load_clear(ptep);
3580 			cpu_invlpg((void *)va);
3581 			atomic_add_long(&pmap->pm_stats.resident_count, -1);
3582 		} else {
3583 			/*
3584 			 * Unmanaged page, normal enter.
3585 			 *
3586 			 * Leave wire count on PT page intact.
3587 			 */
3588 			pmap_inval_interlock(&info, pmap, va);
3589 			(void)pte_load_clear(ptep);
3590 			pmap_inval_deinterlock(&info, pmap);
3591 			atomic_add_long(&pmap->pm_stats.resident_count, -1);
3592 		}
3593 		KKASSERT(*ptep == 0);
3594 	}
3595 
3596 	if (pte_pv) {
3597 		/*
3598 		 * Enter on the PV list if part of our managed memory.
3599 		 * Wiring of the PT page is already handled.
3600 		 */
3601 		KKASSERT(pte_pv->pv_m == NULL);
3602 		vm_page_spin_lock(m);
3603 		pte_pv->pv_m = m;
3604 		TAILQ_INSERT_TAIL(&m->md.pv_list, pte_pv, pv_list);
3605 		/*
3606 		if (m->object)
3607 			atomic_add_int(&m->object->agg_pv_list_count, 1);
3608 		*/
3609 		vm_page_flag_set(m, PG_MAPPED);
3610 		vm_page_spin_unlock(m);
3611 	} else if (pt_pv && opa == 0) {
3612 		/*
3613 		 * We have to adjust the wire count on the PT page ourselves
3614 		 * for unmanaged entries.  If opa was non-zero we retained
3615 		 * the existing wire count from the removal.
3616 		 */
3617 		vm_page_wire_quick(pt_pv->pv_m);
3618 	}
3619 
3620 	/*
3621 	 * Kernel VMAs (pt_pv == NULL) require pmap invalidation interlocks.
3622 	 *
3623 	 * User VMAs do not because those will be zero->non-zero, so no
3624 	 * stale entries to worry about at this point.
3625 	 *
3626 	 * For KVM there appear to still be issues.  Theoretically we
3627 	 * should be able to scrap the interlocks entirely but we
3628 	 * get crashes.
3629 	 */
3630 	if ((prot & VM_PROT_NOSYNC) == 0 && pt_pv == NULL)
3631 		pmap_inval_interlock(&info, pmap, va);
3632 
3633 	/*
3634 	 * Set the pte
3635 	 */
3636 	*(volatile pt_entry_t *)ptep = newpte;
3637 
3638 	if ((prot & VM_PROT_NOSYNC) == 0 && pt_pv == NULL)
3639 		pmap_inval_deinterlock(&info, pmap);
3640 	else if (pt_pv == NULL)
3641 		cpu_invlpg((void *)va);
3642 
3643 	if (wired) {
3644 		if (pte_pv) {
3645 			atomic_add_long(&pte_pv->pv_pmap->pm_stats.wired_count,
3646 					1);
3647 		} else {
3648 			atomic_add_long(&pmap->pm_stats.wired_count, 1);
3649 		}
3650 	}
3651 	if (newpte & PG_RW)
3652 		vm_page_flag_set(m, PG_WRITEABLE);
3653 
3654 	/*
3655 	 * Unmanaged pages need manual resident_count tracking.
3656 	 */
3657 	if (pte_pv == NULL && pt_pv)
3658 		atomic_add_long(&pt_pv->pv_pmap->pm_stats.resident_count, 1);
3659 
3660 	/*
3661 	 * Cleanup
3662 	 */
3663 	if ((prot & VM_PROT_NOSYNC) == 0 || pte_pv == NULL)
3664 		pmap_inval_done(&info);
3665 done:
3666 	KKASSERT((newpte & PG_MANAGED) == 0 || (m->flags & PG_MAPPED));
3667 
3668 	/*
3669 	 * Cleanup the pv entry, allowing other accessors.
3670 	 */
3671 	if (pte_pv)
3672 		pv_put(pte_pv);
3673 	if (pt_pv)
3674 		pv_put(pt_pv);
3675 }
3676 
3677 /*
3678  * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
3679  * This code also assumes that the pmap has no pre-existing entry for this
3680  * VA.
3681  *
3682  * This code currently may only be used on user pmaps, not kernel_pmap.
3683  */
3684 void
3685 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
3686 {
3687 	pmap_enter(pmap, va, m, VM_PROT_READ, FALSE, NULL);
3688 }
3689 
3690 /*
3691  * Make a temporary mapping for a physical address.  This is only intended
3692  * to be used for panic dumps.
3693  *
3694  * The caller is responsible for calling smp_invltlb().
3695  */
3696 void *
3697 pmap_kenter_temporary(vm_paddr_t pa, long i)
3698 {
3699 	pmap_kenter_quick((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
3700 	return ((void *)crashdumpmap);
3701 }
3702 
3703 #define MAX_INIT_PT (96)
3704 
3705 /*
3706  * This routine preloads the ptes for a given object into the specified pmap.
3707  * This eliminates the blast of soft faults on process startup and
3708  * immediately after an mmap.
3709  */
3710 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
3711 
3712 void
3713 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
3714 		    vm_object_t object, vm_pindex_t pindex,
3715 		    vm_size_t size, int limit)
3716 {
3717 	struct rb_vm_page_scan_info info;
3718 	struct lwp *lp;
3719 	vm_size_t psize;
3720 
3721 	/*
3722 	 * We can't preinit if read access isn't set or there is no pmap
3723 	 * or object.
3724 	 */
3725 	if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
3726 		return;
3727 
3728 	/*
3729 	 * We can't preinit if the pmap is not the current pmap
3730 	 */
3731 	lp = curthread->td_lwp;
3732 	if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
3733 		return;
3734 
3735 	/*
3736 	 * Misc additional checks
3737 	 */
3738 	psize = x86_64_btop(size);
3739 
3740 	if ((object->type != OBJT_VNODE) ||
3741 		((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
3742 			(object->resident_page_count > MAX_INIT_PT))) {
3743 		return;
3744 	}
3745 
3746 	if (pindex + psize > object->size) {
3747 		if (object->size < pindex)
3748 			return;
3749 		psize = object->size - pindex;
3750 	}
3751 
3752 	if (psize == 0)
3753 		return;
3754 
3755 	/*
3756 	 * If everything is segment-aligned do not pre-init here.  Instead
3757 	 * allow the normal vm_fault path to pass a segment hint to
3758 	 * pmap_enter() which will then use an object-referenced shared
3759 	 * page table page.
3760 	 */
3761 	if ((addr & SEG_MASK) == 0 &&
3762 	    (ctob(psize) & SEG_MASK) == 0 &&
3763 	    (ctob(pindex) & SEG_MASK) == 0) {
3764 		return;
3765 	}
3766 
3767 	/*
3768 	 * Use a red-black scan to traverse the requested range and load
3769 	 * any valid pages found into the pmap.
3770 	 *
3771 	 * We cannot safely scan the object's memq without holding the
3772 	 * object token.
3773 	 */
3774 	info.start_pindex = pindex;
3775 	info.end_pindex = pindex + psize - 1;
3776 	info.limit = limit;
3777 	info.mpte = NULL;
3778 	info.addr = addr;
3779 	info.pmap = pmap;
3780 
3781 	vm_object_hold_shared(object);
3782 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
3783 				pmap_object_init_pt_callback, &info);
3784 	vm_object_drop(object);
3785 }
3786 
3787 static
3788 int
3789 pmap_object_init_pt_callback(vm_page_t p, void *data)
3790 {
3791 	struct rb_vm_page_scan_info *info = data;
3792 	vm_pindex_t rel_index;
3793 
3794 	/*
3795 	 * don't allow an madvise to blow away our really
3796 	 * free pages allocating pv entries.
3797 	 */
3798 	if ((info->limit & MAP_PREFAULT_MADVISE) &&
3799 		vmstats.v_free_count < vmstats.v_free_reserved) {
3800 		    return(-1);
3801 	}
3802 
3803 	/*
3804 	 * Ignore list markers and ignore pages we cannot instantly
3805 	 * busy (while holding the object token).
3806 	 */
3807 	if (p->flags & PG_MARKER)
3808 		return 0;
3809 	if (vm_page_busy_try(p, TRUE))
3810 		return 0;
3811 	if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
3812 	    (p->flags & PG_FICTITIOUS) == 0) {
3813 		if ((p->queue - p->pc) == PQ_CACHE)
3814 			vm_page_deactivate(p);
3815 		rel_index = p->pindex - info->start_pindex;
3816 		pmap_enter_quick(info->pmap,
3817 				 info->addr + x86_64_ptob(rel_index), p);
3818 	}
3819 	vm_page_wakeup(p);
3820 	lwkt_yield();
3821 	return(0);
3822 }
3823 
3824 /*
3825  * Return TRUE if the pmap is in shape to trivially pre-fault the specified
3826  * address.
3827  *
3828  * Returns FALSE if it would be non-trivial or if a pte is already loaded
3829  * into the slot.
3830  *
3831  * XXX This is safe only because page table pages are not freed.
3832  */
3833 int
3834 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
3835 {
3836 	pt_entry_t *pte;
3837 
3838 	/*spin_lock(&pmap->pm_spin);*/
3839 	if ((pte = pmap_pte(pmap, addr)) != NULL) {
3840 		if (*pte & PG_V) {
3841 			/*spin_unlock(&pmap->pm_spin);*/
3842 			return FALSE;
3843 		}
3844 	}
3845 	/*spin_unlock(&pmap->pm_spin);*/
3846 	return TRUE;
3847 }
3848 
3849 /*
3850  * Change the wiring attribute for a pmap/va pair.  The mapping must already
3851  * exist in the pmap.  The mapping may or may not be managed.
3852  */
3853 void
3854 pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired,
3855 		   vm_map_entry_t entry)
3856 {
3857 	pt_entry_t *ptep;
3858 	pv_entry_t pv;
3859 
3860 	if (pmap == NULL)
3861 		return;
3862 	lwkt_gettoken(&pmap->pm_token);
3863 	pv = pmap_allocpte_seg(pmap, pmap_pt_pindex(va), NULL, entry, va);
3864 	ptep = pv_pte_lookup(pv, pmap_pte_index(va));
3865 
3866 	if (wired && !pmap_pte_w(ptep))
3867 		atomic_add_long(&pv->pv_pmap->pm_stats.wired_count, 1);
3868 	else if (!wired && pmap_pte_w(ptep))
3869 		atomic_add_long(&pv->pv_pmap->pm_stats.wired_count, -1);
3870 
3871 	/*
3872 	 * Wiring is not a hardware characteristic so there is no need to
3873 	 * invalidate TLB.  However, in an SMP environment we must use
3874 	 * a locked bus cycle to update the pte (if we are not using
3875 	 * the pmap_inval_*() API that is)... it's ok to do this for simple
3876 	 * wiring changes.
3877 	 */
3878 	if (wired)
3879 		atomic_set_long(ptep, PG_W);
3880 	else
3881 		atomic_clear_long(ptep, PG_W);
3882 	pv_put(pv);
3883 	lwkt_reltoken(&pmap->pm_token);
3884 }
3885 
3886 
3887 
3888 /*
3889  * Copy the range specified by src_addr/len from the source map to
3890  * the range dst_addr/len in the destination map.
3891  *
3892  * This routine is only advisory and need not do anything.
3893  */
3894 void
3895 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
3896 	  vm_size_t len, vm_offset_t src_addr)
3897 {
3898 }
3899 
3900 /*
3901  * pmap_zero_page:
3902  *
3903  *	Zero the specified physical page.
3904  *
3905  *	This function may be called from an interrupt and no locking is
3906  *	required.
3907  */
3908 void
3909 pmap_zero_page(vm_paddr_t phys)
3910 {
3911 	vm_offset_t va = PHYS_TO_DMAP(phys);
3912 
3913 	pagezero((void *)va);
3914 }
3915 
3916 /*
3917  * pmap_page_assertzero:
3918  *
3919  *	Assert that a page is empty, panic if it isn't.
3920  */
3921 void
3922 pmap_page_assertzero(vm_paddr_t phys)
3923 {
3924 	vm_offset_t va = PHYS_TO_DMAP(phys);
3925 	size_t i;
3926 
3927 	for (i = 0; i < PAGE_SIZE; i += sizeof(long)) {
3928 		if (*(long *)((char *)va + i) != 0) {
3929 			panic("pmap_page_assertzero() @ %p not zero!",
3930 			      (void *)(intptr_t)va);
3931 		}
3932 	}
3933 }
3934 
3935 /*
3936  * pmap_zero_page:
3937  *
3938  *	Zero part of a physical page by mapping it into memory and clearing
3939  *	its contents with bzero.
3940  *
3941  *	off and size may not cover an area beyond a single hardware page.
3942  */
3943 void
3944 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
3945 {
3946 	vm_offset_t virt = PHYS_TO_DMAP(phys);
3947 
3948 	bzero((char *)virt + off, size);
3949 }
3950 
3951 /*
3952  * pmap_copy_page:
3953  *
3954  *	Copy the physical page from the source PA to the target PA.
3955  *	This function may be called from an interrupt.  No locking
3956  *	is required.
3957  */
3958 void
3959 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
3960 {
3961 	vm_offset_t src_virt, dst_virt;
3962 
3963 	src_virt = PHYS_TO_DMAP(src);
3964 	dst_virt = PHYS_TO_DMAP(dst);
3965 	bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
3966 }
3967 
3968 /*
3969  * pmap_copy_page_frag:
3970  *
3971  *	Copy the physical page from the source PA to the target PA.
3972  *	This function may be called from an interrupt.  No locking
3973  *	is required.
3974  */
3975 void
3976 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
3977 {
3978 	vm_offset_t src_virt, dst_virt;
3979 
3980 	src_virt = PHYS_TO_DMAP(src);
3981 	dst_virt = PHYS_TO_DMAP(dst);
3982 
3983 	bcopy((char *)src_virt + (src & PAGE_MASK),
3984 	      (char *)dst_virt + (dst & PAGE_MASK),
3985 	      bytes);
3986 }
3987 
3988 /*
3989  * Returns true if the pmap's pv is one of the first 16 pvs linked to from
3990  * this page.  This count may be changed upwards or downwards in the future;
3991  * it is only necessary that true be returned for a small subset of pmaps
3992  * for proper page aging.
3993  */
3994 boolean_t
3995 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3996 {
3997 	pv_entry_t pv;
3998 	int loops = 0;
3999 
4000 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
4001 		return FALSE;
4002 
4003 	vm_page_spin_lock(m);
4004 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4005 		if (pv->pv_pmap == pmap) {
4006 			vm_page_spin_unlock(m);
4007 			return TRUE;
4008 		}
4009 		loops++;
4010 		if (loops >= 16)
4011 			break;
4012 	}
4013 	vm_page_spin_unlock(m);
4014 	return (FALSE);
4015 }
4016 
4017 /*
4018  * Remove all pages from specified address space this aids process exit
4019  * speeds.  Also, this code may be special cased for the current process
4020  * only.
4021  */
4022 void
4023 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4024 {
4025 	pmap_remove_noinval(pmap, sva, eva);
4026 	cpu_invltlb();
4027 }
4028 
4029 /*
4030  * pmap_testbit tests bits in pte's note that the testbit/clearbit
4031  * routines are inline, and a lot of things compile-time evaluate.
4032  */
4033 static
4034 boolean_t
4035 pmap_testbit(vm_page_t m, int bit)
4036 {
4037 	pv_entry_t pv;
4038 	pt_entry_t *pte;
4039 
4040 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
4041 		return FALSE;
4042 
4043 	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
4044 		return FALSE;
4045 	vm_page_spin_lock(m);
4046 	if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
4047 		vm_page_spin_unlock(m);
4048 		return FALSE;
4049 	}
4050 
4051 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4052 		/*
4053 		 * if the bit being tested is the modified bit, then
4054 		 * mark clean_map and ptes as never
4055 		 * modified.
4056 		 */
4057 		if (bit & (PG_A|PG_M)) {
4058 			if (!pmap_track_modified(pv->pv_pindex))
4059 				continue;
4060 		}
4061 
4062 #if defined(PMAP_DIAGNOSTIC)
4063 		if (pv->pv_pmap == NULL) {
4064 			kprintf("Null pmap (tb) at pindex: %"PRIu64"\n",
4065 			    pv->pv_pindex);
4066 			continue;
4067 		}
4068 #endif
4069 		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
4070 		if (*pte & bit) {
4071 			vm_page_spin_unlock(m);
4072 			return TRUE;
4073 		}
4074 	}
4075 	vm_page_spin_unlock(m);
4076 	return (FALSE);
4077 }
4078 
4079 /*
4080  * This routine is used to modify bits in ptes.  Only one bit should be
4081  * specified.  PG_RW requires special handling.
4082  *
4083  * Caller must NOT hold any spin locks
4084  */
4085 static __inline
4086 void
4087 pmap_clearbit(vm_page_t m, int bit)
4088 {
4089 	struct pmap_inval_info info;
4090 	pv_entry_t pv;
4091 	pt_entry_t *pte;
4092 	pt_entry_t pbits;
4093 	pmap_t save_pmap;
4094 
4095 	if (bit == PG_RW)
4096 		vm_page_flag_clear(m, PG_WRITEABLE);
4097 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
4098 		return;
4099 	}
4100 
4101 	/*
4102 	 * PG_M or PG_A case
4103 	 *
4104 	 * Loop over all current mappings setting/clearing as appropos If
4105 	 * setting RO do we need to clear the VAC?
4106 	 *
4107 	 * NOTE: When clearing PG_M we could also (not implemented) drop
4108 	 *	 through to the PG_RW code and clear PG_RW too, forcing
4109 	 *	 a fault on write to redetect PG_M for virtual kernels, but
4110 	 *	 it isn't necessary since virtual kernels invalidate the
4111 	 *	 pte when they clear the VPTE_M bit in their virtual page
4112 	 *	 tables.
4113 	 *
4114 	 * NOTE: Does not re-dirty the page when clearing only PG_M.
4115 	 */
4116 	if ((bit & PG_RW) == 0) {
4117 		vm_page_spin_lock(m);
4118 		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4119 	#if defined(PMAP_DIAGNOSTIC)
4120 			if (pv->pv_pmap == NULL) {
4121 				kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
4122 				    pv->pv_pindex);
4123 				continue;
4124 			}
4125 	#endif
4126 			pte = pmap_pte_quick(pv->pv_pmap,
4127 					     pv->pv_pindex << PAGE_SHIFT);
4128 			pbits = *pte;
4129 			if (pbits & bit)
4130 				atomic_clear_long(pte, bit);
4131 		}
4132 		vm_page_spin_unlock(m);
4133 		return;
4134 	}
4135 
4136 	/*
4137 	 * Clear PG_RW.  Also clears PG_M and marks the page dirty if PG_M
4138 	 * was set.
4139 	 */
4140 	pmap_inval_init(&info);
4141 
4142 restart:
4143 	vm_page_spin_lock(m);
4144 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4145 		/*
4146 		 * don't write protect pager mappings
4147 		 */
4148 		if (!pmap_track_modified(pv->pv_pindex))
4149 			continue;
4150 
4151 #if defined(PMAP_DIAGNOSTIC)
4152 		if (pv->pv_pmap == NULL) {
4153 			kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
4154 			    pv->pv_pindex);
4155 			continue;
4156 		}
4157 #endif
4158 		/*
4159 		 * Skip pages which do not have PG_RW set.
4160 		 */
4161 		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
4162 		if ((*pte & PG_RW) == 0)
4163 			continue;
4164 
4165 		/*
4166 		 * Lock the PV
4167 		 */
4168 		if (pv_hold_try(pv) == 0) {
4169 			vm_page_spin_unlock(m);
4170 			pv_lock(pv);	/* held, now do a blocking lock */
4171 			pv_put(pv);	/* and release */
4172 			goto restart;	/* anything could have happened */
4173 		}
4174 
4175 		save_pmap = pv->pv_pmap;
4176 		vm_page_spin_unlock(m);
4177 		pmap_inval_interlock(&info, save_pmap,
4178 				     (vm_offset_t)pv->pv_pindex << PAGE_SHIFT);
4179 		KKASSERT(pv->pv_pmap == save_pmap);
4180 		for (;;) {
4181 			pbits = *pte;
4182 			cpu_ccfence();
4183 			if (atomic_cmpset_long(pte, pbits,
4184 					       pbits & ~(PG_RW|PG_M))) {
4185 				break;
4186 			}
4187 		}
4188 		pmap_inval_deinterlock(&info, save_pmap);
4189 		vm_page_spin_lock(m);
4190 
4191 		/*
4192 		 * If PG_M was found to be set while we were clearing PG_RW
4193 		 * we also clear PG_M (done above) and mark the page dirty.
4194 		 * Callers expect this behavior.
4195 		 */
4196 		if (pbits & PG_M)
4197 			vm_page_dirty(m);
4198 		pv_put(pv);
4199 	}
4200 	vm_page_spin_unlock(m);
4201 	pmap_inval_done(&info);
4202 }
4203 
4204 /*
4205  * Lower the permission for all mappings to a given page.
4206  *
4207  * Page must be busied by caller.
4208  */
4209 void
4210 pmap_page_protect(vm_page_t m, vm_prot_t prot)
4211 {
4212 	/* JG NX support? */
4213 	if ((prot & VM_PROT_WRITE) == 0) {
4214 		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
4215 			/*
4216 			 * NOTE: pmap_clearbit(.. PG_RW) also clears
4217 			 *	 the PG_WRITEABLE flag in (m).
4218 			 */
4219 			pmap_clearbit(m, PG_RW);
4220 		} else {
4221 			pmap_remove_all(m);
4222 		}
4223 	}
4224 }
4225 
4226 vm_paddr_t
4227 pmap_phys_address(vm_pindex_t ppn)
4228 {
4229 	return (x86_64_ptob(ppn));
4230 }
4231 
4232 /*
4233  * Return a count of reference bits for a page, clearing those bits.
4234  * It is not necessary for every reference bit to be cleared, but it
4235  * is necessary that 0 only be returned when there are truly no
4236  * reference bits set.
4237  *
4238  * XXX: The exact number of bits to check and clear is a matter that
4239  * should be tested and standardized at some point in the future for
4240  * optimal aging of shared pages.
4241  *
4242  * This routine may not block.
4243  */
4244 int
4245 pmap_ts_referenced(vm_page_t m)
4246 {
4247 	pv_entry_t pv;
4248 	pt_entry_t *pte;
4249 	int rtval = 0;
4250 
4251 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
4252 		return (rtval);
4253 
4254 	vm_page_spin_lock(m);
4255 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4256 		if (!pmap_track_modified(pv->pv_pindex))
4257 			continue;
4258 		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
4259 		if (pte && (*pte & PG_A)) {
4260 			atomic_clear_long(pte, PG_A);
4261 			rtval++;
4262 			if (rtval > 4)
4263 				break;
4264 		}
4265 	}
4266 	vm_page_spin_unlock(m);
4267 	return (rtval);
4268 }
4269 
4270 /*
4271  *	pmap_is_modified:
4272  *
4273  *	Return whether or not the specified physical page was modified
4274  *	in any physical maps.
4275  */
4276 boolean_t
4277 pmap_is_modified(vm_page_t m)
4278 {
4279 	boolean_t res;
4280 
4281 	res = pmap_testbit(m, PG_M);
4282 	return (res);
4283 }
4284 
4285 /*
4286  *	Clear the modify bits on the specified physical page.
4287  */
4288 void
4289 pmap_clear_modify(vm_page_t m)
4290 {
4291 	pmap_clearbit(m, PG_M);
4292 }
4293 
4294 /*
4295  *	pmap_clear_reference:
4296  *
4297  *	Clear the reference bit on the specified physical page.
4298  */
4299 void
4300 pmap_clear_reference(vm_page_t m)
4301 {
4302 	pmap_clearbit(m, PG_A);
4303 }
4304 
4305 /*
4306  * Miscellaneous support routines follow
4307  */
4308 
4309 static
4310 void
4311 i386_protection_init(void)
4312 {
4313 	int *kp, prot;
4314 
4315 	/* JG NX support may go here; No VM_PROT_EXECUTE ==> set NX bit  */
4316 	kp = protection_codes;
4317 	for (prot = 0; prot < 8; prot++) {
4318 		switch (prot) {
4319 		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
4320 			/*
4321 			 * Read access is also 0. There isn't any execute bit,
4322 			 * so just make it readable.
4323 			 */
4324 		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
4325 		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
4326 		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
4327 			*kp++ = 0;
4328 			break;
4329 		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
4330 		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
4331 		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
4332 		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
4333 			*kp++ = PG_RW;
4334 			break;
4335 		}
4336 	}
4337 }
4338 
4339 /*
4340  * Map a set of physical memory pages into the kernel virtual
4341  * address space. Return a pointer to where it is mapped. This
4342  * routine is intended to be used for mapping device memory,
4343  * NOT real memory.
4344  *
4345  * NOTE: we can't use pgeflag unless we invalidate the pages one at
4346  * a time.
4347  */
4348 void *
4349 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
4350 {
4351 	vm_offset_t va, tmpva, offset;
4352 	pt_entry_t *pte;
4353 
4354 	offset = pa & PAGE_MASK;
4355 	size = roundup(offset + size, PAGE_SIZE);
4356 
4357 	va = kmem_alloc_nofault(&kernel_map, size, PAGE_SIZE);
4358 	if (va == 0)
4359 		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
4360 
4361 	pa = pa & ~PAGE_MASK;
4362 	for (tmpva = va; size > 0;) {
4363 		pte = vtopte(tmpva);
4364 		*pte = pa | PG_RW | PG_V; /* | pgeflag; */
4365 		size -= PAGE_SIZE;
4366 		tmpva += PAGE_SIZE;
4367 		pa += PAGE_SIZE;
4368 	}
4369 	cpu_invltlb();
4370 	smp_invltlb();
4371 
4372 	return ((void *)(va + offset));
4373 }
4374 
4375 void *
4376 pmap_mapdev_uncacheable(vm_paddr_t pa, vm_size_t size)
4377 {
4378 	vm_offset_t va, tmpva, offset;
4379 	pt_entry_t *pte;
4380 
4381 	offset = pa & PAGE_MASK;
4382 	size = roundup(offset + size, PAGE_SIZE);
4383 
4384 	va = kmem_alloc_nofault(&kernel_map, size, PAGE_SIZE);
4385 	if (va == 0)
4386 		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
4387 
4388 	pa = pa & ~PAGE_MASK;
4389 	for (tmpva = va; size > 0;) {
4390 		pte = vtopte(tmpva);
4391 		*pte = pa | PG_RW | PG_V | PG_N; /* | pgeflag; */
4392 		size -= PAGE_SIZE;
4393 		tmpva += PAGE_SIZE;
4394 		pa += PAGE_SIZE;
4395 	}
4396 	cpu_invltlb();
4397 	smp_invltlb();
4398 
4399 	return ((void *)(va + offset));
4400 }
4401 
4402 void
4403 pmap_unmapdev(vm_offset_t va, vm_size_t size)
4404 {
4405 	vm_offset_t base, offset;
4406 
4407 	base = va & ~PAGE_MASK;
4408 	offset = va & PAGE_MASK;
4409 	size = roundup(offset + size, PAGE_SIZE);
4410 	pmap_qremove(va, size >> PAGE_SHIFT);
4411 	kmem_free(&kernel_map, base, size);
4412 }
4413 
4414 /*
4415  * perform the pmap work for mincore
4416  */
4417 int
4418 pmap_mincore(pmap_t pmap, vm_offset_t addr)
4419 {
4420 	pt_entry_t *ptep, pte;
4421 	vm_page_t m;
4422 	int val = 0;
4423 
4424 	lwkt_gettoken(&pmap->pm_token);
4425 	ptep = pmap_pte(pmap, addr);
4426 
4427 	if (ptep && (pte = *ptep) != 0) {
4428 		vm_offset_t pa;
4429 
4430 		val = MINCORE_INCORE;
4431 		if ((pte & PG_MANAGED) == 0)
4432 			goto done;
4433 
4434 		pa = pte & PG_FRAME;
4435 
4436 		m = PHYS_TO_VM_PAGE(pa);
4437 
4438 		/*
4439 		 * Modified by us
4440 		 */
4441 		if (pte & PG_M)
4442 			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
4443 		/*
4444 		 * Modified by someone
4445 		 */
4446 		else if (m->dirty || pmap_is_modified(m))
4447 			val |= MINCORE_MODIFIED_OTHER;
4448 		/*
4449 		 * Referenced by us
4450 		 */
4451 		if (pte & PG_A)
4452 			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
4453 
4454 		/*
4455 		 * Referenced by someone
4456 		 */
4457 		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
4458 			val |= MINCORE_REFERENCED_OTHER;
4459 			vm_page_flag_set(m, PG_REFERENCED);
4460 		}
4461 	}
4462 done:
4463 	lwkt_reltoken(&pmap->pm_token);
4464 
4465 	return val;
4466 }
4467 
4468 /*
4469  * Replace p->p_vmspace with a new one.  If adjrefs is non-zero the new
4470  * vmspace will be ref'd and the old one will be deref'd.
4471  *
4472  * The vmspace for all lwps associated with the process will be adjusted
4473  * and cr3 will be reloaded if any lwp is the current lwp.
4474  *
4475  * The process must hold the vmspace->vm_map.token for oldvm and newvm
4476  */
4477 void
4478 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
4479 {
4480 	struct vmspace *oldvm;
4481 	struct lwp *lp;
4482 
4483 	oldvm = p->p_vmspace;
4484 	if (oldvm != newvm) {
4485 		if (adjrefs)
4486 			sysref_get(&newvm->vm_sysref);
4487 		p->p_vmspace = newvm;
4488 		KKASSERT(p->p_nthreads == 1);
4489 		lp = RB_ROOT(&p->p_lwp_tree);
4490 		pmap_setlwpvm(lp, newvm);
4491 		if (adjrefs)
4492 			sysref_put(&oldvm->vm_sysref);
4493 	}
4494 }
4495 
4496 /*
4497  * Set the vmspace for a LWP.  The vmspace is almost universally set the
4498  * same as the process vmspace, but virtual kernels need to swap out contexts
4499  * on a per-lwp basis.
4500  *
4501  * Caller does not necessarily hold any vmspace tokens.  Caller must control
4502  * the lwp (typically be in the context of the lwp).  We use a critical
4503  * section to protect against statclock and hardclock (statistics collection).
4504  */
4505 void
4506 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
4507 {
4508 	struct vmspace *oldvm;
4509 	struct pmap *pmap;
4510 
4511 	oldvm = lp->lwp_vmspace;
4512 
4513 	if (oldvm != newvm) {
4514 		crit_enter();
4515 		lp->lwp_vmspace = newvm;
4516 		if (curthread->td_lwp == lp) {
4517 			pmap = vmspace_pmap(newvm);
4518 			atomic_set_cpumask(&pmap->pm_active, mycpu->gd_cpumask);
4519 			if (pmap->pm_active & CPUMASK_LOCK)
4520 				pmap_interlock_wait(newvm);
4521 #if defined(SWTCH_OPTIM_STATS)
4522 			tlb_flush_count++;
4523 #endif
4524 			curthread->td_pcb->pcb_cr3 = vtophys(pmap->pm_pml4);
4525 			curthread->td_pcb->pcb_cr3 |= PG_RW | PG_U | PG_V;
4526 			load_cr3(curthread->td_pcb->pcb_cr3);
4527 			pmap = vmspace_pmap(oldvm);
4528 			atomic_clear_cpumask(&pmap->pm_active, mycpu->gd_cpumask);
4529 		}
4530 		crit_exit();
4531 	}
4532 }
4533 
4534 /*
4535  * Called when switching to a locked pmap, used to interlock against pmaps
4536  * undergoing modifications to prevent us from activating the MMU for the
4537  * target pmap until all such modifications have completed.  We have to do
4538  * this because the thread making the modifications has already set up its
4539  * SMP synchronization mask.
4540  *
4541  * This function cannot sleep!
4542  *
4543  * No requirements.
4544  */
4545 void
4546 pmap_interlock_wait(struct vmspace *vm)
4547 {
4548 	struct pmap *pmap = &vm->vm_pmap;
4549 
4550 	if (pmap->pm_active & CPUMASK_LOCK) {
4551 		crit_enter();
4552 		KKASSERT(curthread->td_critcount >= 2);
4553 		DEBUG_PUSH_INFO("pmap_interlock_wait");
4554 		while (pmap->pm_active & CPUMASK_LOCK) {
4555 			cpu_ccfence();
4556 			lwkt_process_ipiq();
4557 		}
4558 		DEBUG_POP_INFO();
4559 		crit_exit();
4560 	}
4561 }
4562 
4563 vm_offset_t
4564 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
4565 {
4566 
4567 	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
4568 		return addr;
4569 	}
4570 
4571 	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
4572 	return addr;
4573 }
4574 
4575 /*
4576  * Used by kmalloc/kfree, page already exists at va
4577  */
4578 vm_page_t
4579 pmap_kvtom(vm_offset_t va)
4580 {
4581 	return(PHYS_TO_VM_PAGE(*vtopte(va) & PG_FRAME));
4582 }
4583 
4584 /*
4585  * Initialize machine-specific shared page directory support.  This
4586  * is executed when a VM object is created.
4587  */
4588 void
4589 pmap_object_init(vm_object_t object)
4590 {
4591 	object->md.pmap_rw = NULL;
4592 	object->md.pmap_ro = NULL;
4593 }
4594 
4595 /*
4596  * Clean up machine-specific shared page directory support.  This
4597  * is executed when a VM object is destroyed.
4598  */
4599 void
4600 pmap_object_free(vm_object_t object)
4601 {
4602 	pmap_t pmap;
4603 
4604 	if ((pmap = object->md.pmap_rw) != NULL) {
4605 		object->md.pmap_rw = NULL;
4606 		pmap_remove_noinval(pmap,
4607 				  VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
4608 		pmap->pm_active = 0;
4609 		pmap_release(pmap);
4610 		pmap_puninit(pmap);
4611 		kfree(pmap, M_OBJPMAP);
4612 	}
4613 	if ((pmap = object->md.pmap_ro) != NULL) {
4614 		object->md.pmap_ro = NULL;
4615 		pmap_remove_noinval(pmap,
4616 				  VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
4617 		pmap->pm_active = 0;
4618 		pmap_release(pmap);
4619 		pmap_puninit(pmap);
4620 		kfree(pmap, M_OBJPMAP);
4621 	}
4622 }
4623