xref: /dragonfly/sys/platform/pc64/x86_64/pmap.c (revision 335b9e93)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1994 David Greenman
5  * Copyright (c) 2003 Peter Wemm
6  * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
7  * Copyright (c) 2008, 2009 The DragonFly Project.
8  * Copyright (c) 2008, 2009 Jordan Gordeev.
9  * Copyright (c) 2011-2019 Matthew Dillon
10  * All rights reserved.
11  *
12  * This code is derived from software contributed to Berkeley by
13  * the Systems Programming Group of the University of Utah Computer
14  * Science Department and William Jolitz of UUNET Technologies Inc.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  */
44 /*
45  * Manage physical address maps for x86-64 systems.
46  *
47  * Some notes:
48  *	- The 'M'odified bit is only applicable to terminal PTEs.
49  *
50  *	- The 'U'ser access bit can be set for higher-level PTEs as
51  *	  long as it isn't set for terminal PTEs for pages we don't
52  *	  want user access to.
53  */
54 
55 #if 0 /* JG */
56 #include "opt_pmap.h"
57 #endif
58 #include "opt_msgbuf.h"
59 
60 #include <sys/param.h>
61 #include <sys/kernel.h>
62 #include <sys/proc.h>
63 #include <sys/msgbuf.h>
64 #include <sys/vmmeter.h>
65 #include <sys/mman.h>
66 #include <sys/systm.h>
67 
68 #include <vm/vm.h>
69 #include <vm/vm_param.h>
70 #include <sys/sysctl.h>
71 #include <sys/lock.h>
72 #include <vm/vm_kern.h>
73 #include <vm/vm_page.h>
74 #include <vm/vm_map.h>
75 #include <vm/vm_object.h>
76 #include <vm/vm_extern.h>
77 #include <vm/vm_pageout.h>
78 #include <vm/vm_pager.h>
79 #include <vm/vm_zone.h>
80 
81 #include <sys/thread2.h>
82 #include <sys/spinlock2.h>
83 #include <vm/vm_page2.h>
84 
85 #include <machine/cputypes.h>
86 #include <machine/cpu.h>
87 #include <machine/md_var.h>
88 #include <machine/specialreg.h>
89 #include <machine/smp.h>
90 #include <machine_base/apic/apicreg.h>
91 #include <machine/globaldata.h>
92 #include <machine/pmap.h>
93 #include <machine/pmap_inval.h>
94 
95 #include <ddb/ddb.h>
96 
97 #define PMAP_KEEP_PDIRS
98 
99 #if defined(DIAGNOSTIC)
100 #define PMAP_DIAGNOSTIC
101 #endif
102 
103 #define MINPV 2048
104 
105 /*
106  * pmap debugging will report who owns a pv lock when blocking.
107  */
108 #ifdef PMAP_DEBUG
109 
110 #define PMAP_DEBUG_DECL		,const char *func, int lineno
111 #define PMAP_DEBUG_ARGS		, __func__, __LINE__
112 #define PMAP_DEBUG_COPY		, func, lineno
113 
114 #define pv_get(pmap, pindex, pmarkp)	_pv_get(pmap, pindex, pmarkp	\
115 							PMAP_DEBUG_ARGS)
116 #define pv_lock(pv)			_pv_lock(pv			\
117 							PMAP_DEBUG_ARGS)
118 #define pv_hold_try(pv)			_pv_hold_try(pv			\
119 							PMAP_DEBUG_ARGS)
120 #define pv_alloc(pmap, pindex, isnewp)	_pv_alloc(pmap, pindex, isnewp	\
121 							PMAP_DEBUG_ARGS)
122 
123 #define pv_free(pv, pvp)		_pv_free(pv, pvp PMAP_DEBUG_ARGS)
124 
125 #else
126 
127 #define PMAP_DEBUG_DECL
128 #define PMAP_DEBUG_ARGS
129 #define PMAP_DEBUG_COPY
130 
131 #define pv_get(pmap, pindex, pmarkp)	_pv_get(pmap, pindex, pmarkp)
132 #define pv_lock(pv)			_pv_lock(pv)
133 #define pv_hold_try(pv)			_pv_hold_try(pv)
134 #define pv_alloc(pmap, pindex, isnewp)	_pv_alloc(pmap, pindex, isnewp)
135 #define pv_free(pv, pvp)		_pv_free(pv, pvp)
136 
137 #endif
138 
139 /*
140  * Get PDEs and PTEs for user/kernel address space
141  */
142 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
143 
144 #define pmap_pde_v(pmap, pte)	\
145 		((*(pd_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
146 #define pmap_pte_w(pmap, pte)	\
147 		((*(pt_entry_t *)pte & pmap->pmap_bits[PG_W_IDX]) != 0)
148 #define pmap_pte_m(pmap, pte)	\
149 		((*(pt_entry_t *)pte & pmap->pmap_bits[PG_M_IDX]) != 0)
150 #define pmap_pte_u(pmap, pte)	\
151 		((*(pt_entry_t *)pte & pmap->pmap_bits[PG_U_IDX]) != 0)
152 #define pmap_pte_v(pmap, pte)	\
153 		((*(pt_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
154 
155 /*
156  * Given a map and a machine independent protection code,
157  * convert to a vax protection code.
158  */
159 #define pte_prot(m, p)		\
160 	(m->protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
161 static uint64_t protection_codes[PROTECTION_CODES_SIZE];
162 
163 /*
164  * Backing scan macros.  Note that in the use case 'ipte' is only a tentitive
165  * value and must be validated by a pmap_inval_smp_cmpset*() or equivalent
166  * function.
167  *
168  * NOTE: cpu_ccfence() is required to prevent excessive optmization of
169  *	 of the (ipte) variable.
170  *
171  * NOTE: We don't bother locking the backing object if it isn't mapped
172  *	 to anything (backing_list is empty).
173  *
174  * NOTE: For now guarantee an interlock via iobj->backing_lk if the
175  *	 object exists and do not shortcut the lock by checking to see
176  *	 if the list is empty first.
177  */
178 #define PMAP_PAGE_BACKING_SCAN(m, match_pmap, ipmap, iptep, ipte, iva)	\
179 	if (m->object) {						\
180 		vm_object_t iobj = m->object;				\
181 		vm_map_backing_t iba, next_ba;				\
182 		struct pmap *ipmap;					\
183 		pt_entry_t ipte;					\
184 		pt_entry_t *iptep;					\
185 		vm_offset_t iva;					\
186 		vm_pindex_t ipindex_start;				\
187 		vm_pindex_t ipindex_end;				\
188 									\
189 		lockmgr(&iobj->backing_lk, LK_SHARED);			\
190 		next_ba = TAILQ_FIRST(&iobj->backing_list);		\
191 		while ((iba = next_ba) != NULL) {			\
192 			next_ba = TAILQ_NEXT(iba, entry);		\
193 			ipmap = iba->pmap;				\
194 			if (match_pmap && ipmap != match_pmap)		\
195 				continue;				\
196 			ipindex_start = iba->offset >> PAGE_SHIFT;	\
197 			ipindex_end = ipindex_start +			\
198 				  ((iba->end - iba->start) >> PAGE_SHIFT); \
199 			if (m->pindex < ipindex_start ||		\
200 			    m->pindex >= ipindex_end) {			\
201 				continue;				\
202 			}						\
203 			iva = iba->start +				\
204 			      ((m->pindex - ipindex_start) << PAGE_SHIFT); \
205 			iptep = pmap_pte(ipmap, iva);			\
206 			if (iptep == NULL)				\
207 				continue;				\
208 			ipte = *iptep;					\
209 			cpu_ccfence();					\
210 			if (m->phys_addr != (ipte & PG_FRAME))		\
211 				continue;				\
212 
213 #define PMAP_PAGE_BACKING_RETRY						\
214 			{						\
215 				next_ba = iba;				\
216 				continue;				\
217 			}						\
218 
219 #define PMAP_PAGE_BACKING_DONE						\
220 		}							\
221 		lockmgr(&iobj->backing_lk, LK_RELEASE);			\
222 	}								\
223 
224 struct pmap kernel_pmap;
225 struct pmap iso_pmap;
226 
227 vm_paddr_t avail_start;		/* PA of first available physical page */
228 vm_paddr_t avail_end;		/* PA of last available physical page */
229 vm_offset_t virtual2_start;	/* cutout free area prior to kernel start */
230 vm_offset_t virtual2_end;
231 vm_offset_t virtual_start;	/* VA of first avail page (after kernel bss) */
232 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
233 vm_offset_t KvaStart;		/* VA start of KVA space */
234 vm_offset_t KvaEnd;		/* VA end of KVA space (non-inclusive) */
235 vm_offset_t KvaSize;		/* max size of kernel virtual address space */
236 vm_offset_t DMapMaxAddress;
237 /* Has pmap_init completed? */
238 __read_frequently static boolean_t pmap_initialized = FALSE;
239 //static int pgeflag;		/* PG_G or-in */
240 uint64_t PatMsr;
241 
242 static int ndmpdp;
243 static vm_paddr_t dmaplimit;
244 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
245 
246 static pt_entry_t pat_pte_index[PAT_INDEX_SIZE];	/* PAT -> PG_ bits */
247 static pt_entry_t pat_pde_index[PAT_INDEX_SIZE];	/* PAT -> PG_ bits */
248 
249 static uint64_t KPTbase;
250 static uint64_t KPTphys;
251 static uint64_t	KPDphys;	/* phys addr of kernel level 2 */
252 static uint64_t	KPDbase;	/* phys addr of kernel level 2 @ KERNBASE */
253 uint64_t KPDPphys;		/* phys addr of kernel level 3 */
254 uint64_t KPML4phys;		/* phys addr of kernel level 4 */
255 
256 static uint64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
257 static uint64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
258 
259 /*
260  * Data for the pv entry allocation mechanism
261  */
262 __read_mostly static vm_zone_t pvzone;
263 __read_mostly static int pmap_pagedaemon_waken = 0;
264 static struct vm_zone pvzone_store;
265 static struct pv_entry *pvinit;
266 
267 /*
268  * All those kernel PT submaps that BSD is so fond of
269  */
270 pt_entry_t *CMAP1 = NULL, *ptmmap;
271 caddr_t CADDR1 = NULL, ptvmmap = NULL;
272 static pt_entry_t *msgbufmap;
273 struct msgbuf *msgbufp=NULL;
274 
275 /*
276  * PMAP default PG_* bits. Needed to be able to add
277  * EPT/NPT pagetable pmap_bits for the VMM module
278  */
279 __read_frequently uint64_t pmap_bits_default[] = {
280 		REGULAR_PMAP,			/* TYPE_IDX		0 */
281 		X86_PG_V,			/* PG_V_IDX		1 */
282 		X86_PG_RW,			/* PG_RW_IDX		2 */
283 		X86_PG_U,			/* PG_U_IDX		3 */
284 		X86_PG_A,			/* PG_A_IDX		4 */
285 		X86_PG_M,			/* PG_M_IDX		5 */
286 		X86_PG_PS,			/* PG_PS_IDX3		6 */
287 		X86_PG_G,			/* PG_G_IDX		7 */
288 		X86_PG_AVAIL1,			/* PG_AVAIL1_IDX	8 */
289 		X86_PG_AVAIL2,			/* PG_AVAIL2_IDX	9 */
290 		X86_PG_AVAIL3,			/* PG_AVAIL3_IDX	10 */
291 		X86_PG_NC_PWT | X86_PG_NC_PCD,	/* PG_N_IDX		11 */
292 		X86_PG_NX,			/* PG_NX_IDX		12 */
293 };
294 
295 /*
296  * Crashdump maps.
297  */
298 static pt_entry_t *pt_crashdumpmap;
299 static caddr_t crashdumpmap;
300 
301 static int pmap_debug = 0;
302 SYSCTL_INT(_machdep, OID_AUTO, pmap_debug, CTLFLAG_RW,
303     &pmap_debug, 0, "Debug pmap's");
304 #ifdef PMAP_DEBUG2
305 static int pmap_enter_debug = 0;
306 SYSCTL_INT(_machdep, OID_AUTO, pmap_enter_debug, CTLFLAG_RW,
307     &pmap_enter_debug, 0, "Debug pmap_enter's");
308 #endif
309 static int pmap_yield_count = 64;
310 SYSCTL_INT(_machdep, OID_AUTO, pmap_yield_count, CTLFLAG_RW,
311     &pmap_yield_count, 0, "Yield during init_pt/release");
312 int pmap_fast_kernel_cpusync = 0;
313 SYSCTL_INT(_machdep, OID_AUTO, pmap_fast_kernel_cpusync, CTLFLAG_RW,
314     &pmap_fast_kernel_cpusync, 0, "Share page table pages when possible");
315 int pmap_dynamic_delete = 0;
316 SYSCTL_INT(_machdep, OID_AUTO, pmap_dynamic_delete, CTLFLAG_RW,
317     &pmap_dynamic_delete, 0, "Dynamically delete PT/PD/PDPs");
318 int pmap_lock_delay = 100;
319 SYSCTL_INT(_machdep, OID_AUTO, pmap_lock_delay, CTLFLAG_RW,
320     &pmap_lock_delay, 0, "Spin loops");
321 static int meltdown_mitigation = -1;
322 TUNABLE_INT("machdep.meltdown_mitigation", &meltdown_mitigation);
323 SYSCTL_INT(_machdep, OID_AUTO, meltdown_mitigation, CTLFLAG_RW,
324     &meltdown_mitigation, 0, "Userland pmap isolation");
325 
326 static int pmap_nx_enable = -1;		/* -1 = auto */
327 /* needs manual TUNABLE in early probe, see below */
328 SYSCTL_INT(_machdep, OID_AUTO, pmap_nx_enable, CTLFLAG_RD,
329     &pmap_nx_enable, 0,
330     "no-execute support (0=disabled, 1=w/READ, 2=w/READ & WRITE)");
331 
332 static int pmap_pv_debug = 50;
333 SYSCTL_INT(_machdep, OID_AUTO, pmap_pv_debug, CTLFLAG_RW,
334     &pmap_pv_debug, 0, "");
335 
336 static long vm_pmap_pv_entries;
337 SYSCTL_LONG(_vm, OID_AUTO, pmap_pv_entries, CTLFLAG_RD,
338     &vm_pmap_pv_entries, 0, "");
339 
340 /* Standard user access funtions */
341 extern int std_copyinstr (const void *udaddr, void *kaddr, size_t len,
342     size_t *lencopied);
343 extern int std_copyin (const void *udaddr, void *kaddr, size_t len);
344 extern int std_copyout (const void *kaddr, void *udaddr, size_t len);
345 extern int std_fubyte (const uint8_t *base);
346 extern int std_subyte (uint8_t *base, uint8_t byte);
347 extern int32_t std_fuword32 (const uint32_t *base);
348 extern int64_t std_fuword64 (const uint64_t *base);
349 extern int std_suword64 (uint64_t *base, uint64_t word);
350 extern int std_suword32 (uint32_t *base, int word);
351 extern uint32_t std_swapu32 (volatile uint32_t *base, uint32_t v);
352 extern uint64_t std_swapu64 (volatile uint64_t *base, uint64_t v);
353 extern uint32_t std_fuwordadd32 (volatile uint32_t *base, uint32_t v);
354 extern uint64_t std_fuwordadd64 (volatile uint64_t *base, uint64_t v);
355 
356 #if 0
357 static void pv_hold(pv_entry_t pv);
358 #endif
359 static int _pv_hold_try(pv_entry_t pv
360 				PMAP_DEBUG_DECL);
361 static void pv_drop(pv_entry_t pv);
362 static void _pv_lock(pv_entry_t pv
363 				PMAP_DEBUG_DECL);
364 static void pv_unlock(pv_entry_t pv);
365 static pv_entry_t _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew
366 				PMAP_DEBUG_DECL);
367 static pv_entry_t _pv_get(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp
368 				PMAP_DEBUG_DECL);
369 static void _pv_free(pv_entry_t pv, pv_entry_t pvp PMAP_DEBUG_DECL);
370 static pv_entry_t pv_get_try(pmap_t pmap, vm_pindex_t pindex,
371 				vm_pindex_t **pmarkp, int *errorp);
372 static void pv_put(pv_entry_t pv);
373 static void *pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex);
374 static pv_entry_t pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex,
375 		      pv_entry_t *pvpp);
376 static void pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp,
377 			pmap_inval_bulk_t *bulk, int destroy);
378 static vm_page_t pmap_remove_pv_page(pv_entry_t pv, int clrpgbits);
379 static int pmap_release_pv(pv_entry_t pv, pv_entry_t pvp,
380 			pmap_inval_bulk_t *bulk);
381 
382 struct pmap_scan_info;
383 static void pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
384 		      vm_pindex_t *pte_placemark, pv_entry_t pt_pv,
385 		      vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
386 static void pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
387 		      vm_pindex_t *pte_placemark, pv_entry_t pt_pv,
388 		      vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
389 
390 static void x86_64_protection_init (void);
391 static void create_pagetables(vm_paddr_t *firstaddr);
392 static void pmap_remove_all (vm_page_t m);
393 static boolean_t pmap_testbit (vm_page_t m, int bit);
394 
395 static pt_entry_t *pmap_pte_quick (pmap_t pmap, vm_offset_t va);
396 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
397 
398 static void pmap_pinit_defaults(struct pmap *pmap);
399 static void pv_placemarker_wait(pmap_t pmap, vm_pindex_t *pmark);
400 static void pv_placemarker_wakeup(pmap_t pmap, vm_pindex_t *pmark);
401 
402 static int
403 pv_entry_compare(pv_entry_t pv1, pv_entry_t pv2)
404 {
405 	if (pv1->pv_pindex < pv2->pv_pindex)
406 		return(-1);
407 	if (pv1->pv_pindex > pv2->pv_pindex)
408 		return(1);
409 	return(0);
410 }
411 
412 RB_GENERATE2(pv_entry_rb_tree, pv_entry, pv_entry,
413              pv_entry_compare, vm_pindex_t, pv_pindex);
414 
415 /*
416  * Keep track of pages in the pmap.  The procedure is handed
417  * the vm_page->md.pmap_count value prior to an increment or
418  * decrement.
419  *
420  *	t_arm		- Active real memory
421  *	t_avm		- Active virtual memory
422  *	t_armshr	- Active real memory that is also shared
423  *	t_avmshr	- Active virtual memory that is also shared
424  *
425  * NOTE: At the moment t_avm is effectively just the same as t_arm.
426  */
427 static __inline
428 void
429 pmap_page_stats_adding(long prev_count)
430 {
431 	globaldata_t gd = mycpu;
432 
433 	if (prev_count == 0) {
434 		++gd->gd_vmtotal.t_arm;
435 		++gd->gd_vmtotal.t_avm;
436 	} else if (prev_count == 1) {
437 		++gd->gd_vmtotal.t_armshr;
438 		++gd->gd_vmtotal.t_avmshr;
439 	} else {
440 		++gd->gd_vmtotal.t_avmshr;
441 	}
442 }
443 
444 static __inline
445 void
446 pmap_page_stats_deleting(long prev_count)
447 {
448 	globaldata_t gd = mycpu;
449 
450 	if (prev_count == 1) {
451 		--gd->gd_vmtotal.t_arm;
452 		--gd->gd_vmtotal.t_avm;
453 	} else if (prev_count == 2) {
454 		--gd->gd_vmtotal.t_armshr;
455 		--gd->gd_vmtotal.t_avmshr;
456 	} else {
457 		--gd->gd_vmtotal.t_avmshr;
458 	}
459 }
460 
461 /*
462  * We have removed a managed pte.  The page might not be hard or soft-busied
463  * at this point so we have to be careful.
464  *
465  * If advanced mode is enabled we can clear PG_MAPPED/WRITEABLE only if
466  * MAPPEDMULTI is not set.  This must be done atomically against possible
467  * concurrent pmap_enter()s occurring at the same time.  If MULTI is set
468  * then the kernel may have to call vm_page_protect() later on to clean
469  * the bits up.  This is particularly important for kernel_map/kernel_object
470  * mappings due to the expense of scanning the kernel_object's vm_backing's.
471  *
472  * If advanced mode is not enabled we update our tracking counts and
473  * synchronize PG_MAPPED/WRITEABLE later on in pmap_mapped_sync().
474  */
475 static __inline
476 void
477 pmap_removed_pte(vm_page_t m, pt_entry_t pte)
478 {
479 #ifdef PMAP_ADVANCED
480 	int flags;
481 	int nflags;
482 
483 	flags = m->flags;
484 	cpu_ccfence();
485 	while ((flags & PG_MAPPEDMULTI) == 0) {
486 		nflags = flags & ~(PG_MAPPED | PG_WRITEABLE);
487 		if (atomic_fcmpset_int(&m->flags, &flags, nflags))
488 			break;
489 	}
490 #else
491 	if (pte & pmap->pmap_bits[PG_RW_IDX])
492 		atomic_add_long(&p->md.writeable_count, -1);
493 	pmap_page_stats_deleting(atomic_fetchadd_long(&p->md.pmap_count, -1));
494 #endif
495 }
496 
497 /*
498  * Move the kernel virtual free pointer to the next
499  * 2MB.  This is used to help improve performance
500  * by using a large (2MB) page for much of the kernel
501  * (.text, .data, .bss)
502  */
503 static
504 vm_offset_t
505 pmap_kmem_choose(vm_offset_t addr)
506 {
507 	vm_offset_t newaddr = addr;
508 
509 	newaddr = roundup2(addr, NBPDR);
510 	return newaddr;
511 }
512 
513 /*
514  * Returns the pindex of a page table entry (representing a terminal page).
515  * There are NUPTE_TOTAL page table entries possible (a huge number)
516  *
517  * x86-64 has a 48-bit address space, where bit 47 is sign-extended out.
518  * We want to properly translate negative KVAs.
519  */
520 static __inline
521 vm_pindex_t
522 pmap_pte_pindex(vm_offset_t va)
523 {
524 	return ((va >> PAGE_SHIFT) & (NUPTE_TOTAL - 1));
525 }
526 
527 /*
528  * Returns the pindex of a page table.
529  */
530 static __inline
531 vm_pindex_t
532 pmap_pt_pindex(vm_offset_t va)
533 {
534 	return (NUPTE_TOTAL + ((va >> PDRSHIFT) & (NUPT_TOTAL - 1)));
535 }
536 
537 /*
538  * Returns the pindex of a page directory.
539  */
540 static __inline
541 vm_pindex_t
542 pmap_pd_pindex(vm_offset_t va)
543 {
544 	return (NUPTE_TOTAL + NUPT_TOTAL +
545 		((va >> PDPSHIFT) & (NUPD_TOTAL - 1)));
546 }
547 
548 static __inline
549 vm_pindex_t
550 pmap_pdp_pindex(vm_offset_t va)
551 {
552 	return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
553 		((va >> PML4SHIFT) & (NUPDP_TOTAL - 1)));
554 }
555 
556 static __inline
557 vm_pindex_t
558 pmap_pml4_pindex(void)
559 {
560 	return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL);
561 }
562 
563 /*
564  * Return various clipped indexes for a given VA
565  *
566  * Returns the index of a pt in a page directory, representing a page
567  * table.
568  */
569 static __inline
570 vm_pindex_t
571 pmap_pt_index(vm_offset_t va)
572 {
573 	return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
574 }
575 
576 /*
577  * Returns the index of a pd in a page directory page, representing a page
578  * directory.
579  */
580 static __inline
581 vm_pindex_t
582 pmap_pd_index(vm_offset_t va)
583 {
584 	return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
585 }
586 
587 /*
588  * Returns the index of a pdp in the pml4 table, representing a page
589  * directory page.
590  */
591 static __inline
592 vm_pindex_t
593 pmap_pdp_index(vm_offset_t va)
594 {
595 	return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
596 }
597 
598 /*
599  * Of all the layers (PTE, PT, PD, PDP, PML4) the best one to cache is
600  * the PT layer.  This will speed up core pmap operations considerably.
601  * We also cache the PTE layer to (hopefully) improve relative lookup
602  * speeds.
603  *
604  * NOTE: The pmap spinlock does not need to be held but the passed-in pv
605  *	 must be in a known associated state (typically by being locked when
606  *	 the pmap spinlock isn't held).  We allow the race for that case.
607  *
608  * NOTE: pm_pvhint* is only accessed (read) with the spin-lock held, using
609  *	 cpu_ccfence() to prevent compiler optimizations from reloading the
610  *	 field.
611  */
612 static __inline
613 void
614 pv_cache(pmap_t pmap, pv_entry_t pv, vm_pindex_t pindex)
615 {
616 	if (pindex < pmap_pt_pindex(0)) {
617 		;
618 	} else if (pindex < pmap_pd_pindex(0)) {
619 		pmap->pm_pvhint_pt = pv;
620 	}
621 }
622 
623 /*
624  * Locate the requested pt_entry
625  */
626 static __inline
627 pv_entry_t
628 pv_entry_lookup(pmap_t pmap, vm_pindex_t pindex)
629 {
630 	pv_entry_t pv;
631 
632 	if (pindex < pmap_pt_pindex(0))
633 		return NULL;
634 #if 1
635 	if (pindex < pmap_pd_pindex(0))
636 		pv = pmap->pm_pvhint_pt;
637 	else
638 		pv = NULL;
639 	cpu_ccfence();
640 	if (pv == NULL || pv->pv_pmap != pmap) {
641 		pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
642 		if (pv)
643 			pv_cache(pmap, pv, pindex);
644 	} else if (pv->pv_pindex != pindex) {
645 		pv = pv_entry_rb_tree_RB_LOOKUP_REL(&pmap->pm_pvroot,
646 						    pindex, pv);
647 		if (pv)
648 			pv_cache(pmap, pv, pindex);
649 	}
650 #else
651 	pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
652 #endif
653 	return pv;
654 }
655 
656 /*
657  * pmap_pte_quick:
658  *
659  *	Super fast pmap_pte routine best used when scanning the pv lists.
660  *	This eliminates many course-grained invltlb calls.  Note that many of
661  *	the pv list scans are across different pmaps and it is very wasteful
662  *	to do an entire invltlb when checking a single mapping.
663  */
664 static __inline pt_entry_t *pmap_pte(pmap_t pmap, vm_offset_t va);
665 
666 static
667 pt_entry_t *
668 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
669 {
670 	return pmap_pte(pmap, va);
671 }
672 
673 /*
674  * The placemarker hash must be broken up into four zones so lock
675  * ordering semantics continue to work (e.g. pte, pt, pd, then pdp).
676  *
677  * Placemarkers are used to 'lock' page table indices that do not have
678  * a pv_entry.  This allows the pmap to support managed and unmanaged
679  * pages and shared page tables.
680  */
681 #define PM_PLACE_BASE	(PM_PLACEMARKS >> 2)
682 
683 static __inline
684 vm_pindex_t *
685 pmap_placemarker_hash(pmap_t pmap, vm_pindex_t pindex)
686 {
687 	int hi;
688 
689 	if (pindex < pmap_pt_pindex(0))		/* zone 0 - PTE */
690 		hi = 0;
691 	else if (pindex < pmap_pd_pindex(0))	/* zone 1 - PT */
692 		hi = PM_PLACE_BASE;
693 	else if (pindex < pmap_pdp_pindex(0))	/* zone 2 - PD */
694 		hi = PM_PLACE_BASE << 1;
695 	else					/* zone 3 - PDP (and PML4E) */
696 		hi = PM_PLACE_BASE | (PM_PLACE_BASE << 1);
697 	hi += pindex & (PM_PLACE_BASE - 1);
698 
699 	return (&pmap->pm_placemarks[hi]);
700 }
701 
702 
703 /*
704  * Generic procedure to index a pte from a pt, pd, or pdp.
705  *
706  * NOTE: Normally passed pindex as pmap_xx_index().  pmap_xx_pindex() is NOT
707  *	 a page table page index but is instead of PV lookup index.
708  */
709 static
710 void *
711 pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex)
712 {
713 	pt_entry_t *pte;
714 
715 	pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pv->pv_m));
716 	return(&pte[pindex]);
717 }
718 
719 /*
720  * Return pointer to PDP slot in the PML4
721  */
722 static __inline
723 pml4_entry_t *
724 pmap_pdp(pmap_t pmap, vm_offset_t va)
725 {
726 	return (&pmap->pm_pml4[pmap_pdp_index(va)]);
727 }
728 
729 /*
730  * Return pointer to PD slot in the PDP given a pointer to the PDP
731  */
732 static __inline
733 pdp_entry_t *
734 pmap_pdp_to_pd(pml4_entry_t pdp_pte, vm_offset_t va)
735 {
736 	pdp_entry_t *pd;
737 
738 	pd = (pdp_entry_t *)PHYS_TO_DMAP(pdp_pte & PG_FRAME);
739 	return (&pd[pmap_pd_index(va)]);
740 }
741 
742 /*
743  * Return pointer to PD slot in the PDP.
744  */
745 static __inline
746 pdp_entry_t *
747 pmap_pd(pmap_t pmap, vm_offset_t va)
748 {
749 	pml4_entry_t *pdp;
750 
751 	pdp = pmap_pdp(pmap, va);
752 	if ((*pdp & pmap->pmap_bits[PG_V_IDX]) == 0)
753 		return NULL;
754 	return (pmap_pdp_to_pd(*pdp, va));
755 }
756 
757 /*
758  * Return pointer to PT slot in the PD given a pointer to the PD
759  */
760 static __inline
761 pd_entry_t *
762 pmap_pd_to_pt(pdp_entry_t pd_pte, vm_offset_t va)
763 {
764 	pd_entry_t *pt;
765 
766 	pt = (pd_entry_t *)PHYS_TO_DMAP(pd_pte & PG_FRAME);
767 	return (&pt[pmap_pt_index(va)]);
768 }
769 
770 /*
771  * Return pointer to PT slot in the PD
772  *
773  * SIMPLE PMAP NOTE: Simple pmaps (embedded in objects) do not have PDPs,
774  *		     so we cannot lookup the PD via the PDP.  Instead we
775  *		     must look it up via the pmap.
776  */
777 static __inline
778 pd_entry_t *
779 pmap_pt(pmap_t pmap, vm_offset_t va)
780 {
781 	pdp_entry_t *pd;
782 	pv_entry_t pv;
783 	vm_pindex_t pd_pindex;
784 	vm_paddr_t phys;
785 
786 	if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
787 		pd_pindex = pmap_pd_pindex(va);
788 		spin_lock_shared(&pmap->pm_spin);
789 		pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pd_pindex);
790 		if (pv == NULL || pv->pv_m == NULL) {
791 			spin_unlock_shared(&pmap->pm_spin);
792 			return NULL;
793 		}
794 		phys = VM_PAGE_TO_PHYS(pv->pv_m);
795 		spin_unlock_shared(&pmap->pm_spin);
796 		return (pmap_pd_to_pt(phys, va));
797 	} else {
798 		pd = pmap_pd(pmap, va);
799 		if (pd == NULL || (*pd & pmap->pmap_bits[PG_V_IDX]) == 0)
800 			 return NULL;
801 		return (pmap_pd_to_pt(*pd, va));
802 	}
803 }
804 
805 /*
806  * Return pointer to PTE slot in the PT given a pointer to the PT
807  */
808 static __inline
809 pt_entry_t *
810 pmap_pt_to_pte(pd_entry_t pt_pte, vm_offset_t va)
811 {
812 	pt_entry_t *pte;
813 
814 	pte = (pt_entry_t *)PHYS_TO_DMAP(pt_pte & PG_FRAME);
815 	return (&pte[pmap_pte_index(va)]);
816 }
817 
818 /*
819  * Return pointer to PTE slot in the PT
820  */
821 static __inline
822 pt_entry_t *
823 pmap_pte(pmap_t pmap, vm_offset_t va)
824 {
825 	pd_entry_t *pt;
826 
827 	pt = pmap_pt(pmap, va);
828 	if (pt == NULL || (*pt & pmap->pmap_bits[PG_V_IDX]) == 0)
829 		 return NULL;
830 	if ((*pt & pmap->pmap_bits[PG_PS_IDX]) != 0)
831 		return ((pt_entry_t *)pt);
832 	return (pmap_pt_to_pte(*pt, va));
833 }
834 
835 /*
836  * Return address of PT slot in PD (KVM only)
837  *
838  * Cannot be used for user page tables because it might interfere with
839  * the shared page-table-page optimization (pmap_mmu_optimize).
840  */
841 static __inline
842 pd_entry_t *
843 vtopt(vm_offset_t va)
844 {
845 	uint64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
846 				  NPML4EPGSHIFT)) - 1);
847 
848 	return (PDmap + ((va >> PDRSHIFT) & mask));
849 }
850 
851 /*
852  * KVM - return address of PTE slot in PT
853  */
854 static __inline
855 pt_entry_t *
856 vtopte(vm_offset_t va)
857 {
858 	uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
859 				  NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
860 
861 	return (PTmap + ((va >> PAGE_SHIFT) & mask));
862 }
863 
864 /*
865  * Returns the physical address translation from va for a user address.
866  * (vm_paddr_t)-1 is returned on failure.
867  */
868 vm_paddr_t
869 uservtophys(vm_offset_t va)
870 {
871 	uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
872 				  NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
873 	vm_paddr_t pa;
874 	pt_entry_t pte;
875 	pmap_t pmap;
876 
877 	pmap = vmspace_pmap(mycpu->gd_curthread->td_lwp->lwp_vmspace);
878 	pa = (vm_paddr_t)-1;
879 	if (va < VM_MAX_USER_ADDRESS) {
880 		pte = kreadmem64(PTmap + ((va >> PAGE_SHIFT) & mask));
881 		if (pte & pmap->pmap_bits[PG_V_IDX])
882 			pa = (pte & PG_FRAME) | (va & PAGE_MASK);
883 	}
884 	return pa;
885 }
886 
887 static uint64_t
888 allocpages(vm_paddr_t *firstaddr, long n)
889 {
890 	uint64_t ret;
891 
892 	ret = *firstaddr;
893 	bzero((void *)ret, n * PAGE_SIZE);
894 	*firstaddr += n * PAGE_SIZE;
895 	return (ret);
896 }
897 
898 static
899 void
900 create_pagetables(vm_paddr_t *firstaddr)
901 {
902 	long i;		/* must be 64 bits */
903 	long nkpt_base;
904 	long nkpt_phys;
905 	long nkpd_phys;
906 	int j;
907 
908 	/*
909 	 * We are running (mostly) V=P at this point
910 	 *
911 	 * Calculate how many 1GB PD entries in our PDP pages are needed
912 	 * for the DMAP.  This is only allocated if the system does not
913 	 * support 1GB pages.  Otherwise ndmpdp is simply a count of
914 	 * the number of 1G terminal entries in our PDP pages are needed.
915 	 *
916 	 * NOTE: Maxmem is in pages
917 	 */
918 	ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
919 	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
920 		ndmpdp = 4;
921 	KKASSERT(ndmpdp <= NDMPML4E * NPML4EPG);
922 	DMapMaxAddress = DMAP_MIN_ADDRESS +
923 			 ((ndmpdp * NPDEPG) << PDRSHIFT);
924 
925 	/*
926 	 * Starting at KERNBASE - map all 2G worth of page table pages.
927 	 * KERNBASE is offset -2G from the end of kvm.  This will accomodate
928 	 * all KVM allocations above KERNBASE, including the SYSMAPs below.
929 	 *
930 	 * We do this by allocating 2*512 PT pages.  Each PT page can map
931 	 * 2MB, for 2GB total.
932 	 */
933 	nkpt_base = (NPDPEPG - KPDPI) * NPTEPG;	/* typically 2 x 512 */
934 
935 	/*
936 	 * Starting at the beginning of kvm (VM_MIN_KERNEL_ADDRESS),
937 	 * Calculate how many page table pages we need to preallocate
938 	 * for early vm_map allocations.
939 	 *
940 	 * A few extra won't hurt, they will get used up in the running
941 	 * system.
942 	 *
943 	 * vm_page array
944 	 * initial pventry's
945 	 */
946 	nkpt_phys = (Maxmem * sizeof(struct vm_page) + NBPDR - 1) / NBPDR;
947 	nkpt_phys += (Maxmem * sizeof(struct pv_entry) + NBPDR - 1) / NBPDR;
948 	nkpt_phys += 128;	/* a few extra */
949 
950 	/*
951 	 * The highest value nkpd_phys can be set to is
952 	 * NKPDPE - (NPDPEPG - KPDPI) (i.e. NKPDPE - 2).
953 	 *
954 	 * Doing so would cause all PD pages to be pre-populated for
955 	 * a maximal KVM space (approximately 16*512 pages, or 32MB.
956 	 * We can save memory by not doing this.
957 	 */
958 	nkpd_phys = (nkpt_phys + NPDPEPG - 1) / NPDPEPG;
959 
960 	/*
961 	 * Allocate pages
962 	 *
963 	 * Normally NKPML4E=1-16 (1-16 kernel PDP page)
964 	 * Normally NKPDPE= NKPML4E*512-1 (511 min kernel PD pages)
965 	 *
966 	 * Only allocate enough PD pages
967 	 * NOTE: We allocate all kernel PD pages up-front, typically
968 	 *	 ~511G of KVM, requiring 511 PD pages.
969 	 */
970 	KPTbase = allocpages(firstaddr, nkpt_base);	/* KERNBASE to end */
971 	KPTphys = allocpages(firstaddr, nkpt_phys);	/* KVA start */
972 	KPML4phys = allocpages(firstaddr, 1);		/* recursive PML4 map */
973 	KPDPphys = allocpages(firstaddr, NKPML4E);	/* kernel PDP pages */
974 	KPDphys = allocpages(firstaddr, nkpd_phys);	/* kernel PD pages */
975 
976 	/*
977 	 * Alloc PD pages for the area starting at KERNBASE.
978 	 */
979 	KPDbase = allocpages(firstaddr, NPDPEPG - KPDPI);
980 
981 	/*
982 	 * Stuff for our DMAP.  Use 2MB pages even when 1GB pages
983 	 * are available in order to allow APU code to adjust page
984 	 * attributes on a fixed grain (see pmap_change_attr()).
985 	 */
986 	DMPDPphys = allocpages(firstaddr, NDMPML4E);
987 #if 1
988 	DMPDphys = allocpages(firstaddr, ndmpdp);
989 #else
990 	if ((amd_feature & AMDID_PAGE1GB) == 0)
991 		DMPDphys = allocpages(firstaddr, ndmpdp);
992 #endif
993 	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
994 
995 	/*
996 	 * Fill in the underlying page table pages for the area around
997 	 * KERNBASE.  This remaps low physical memory to KERNBASE.
998 	 *
999 	 * Read-only from zero to physfree
1000 	 * XXX not fully used, underneath 2M pages
1001 	 */
1002 	for (i = 0; (i << PAGE_SHIFT) < *firstaddr; i++) {
1003 		((pt_entry_t *)KPTbase)[i] = i << PAGE_SHIFT;
1004 		((pt_entry_t *)KPTbase)[i] |=
1005 		    pmap_bits_default[PG_RW_IDX] |
1006 		    pmap_bits_default[PG_V_IDX] |
1007 		    pmap_bits_default[PG_G_IDX];
1008 	}
1009 
1010 	/*
1011 	 * Now map the initial kernel page tables.  One block of page
1012 	 * tables is placed at the beginning of kernel virtual memory,
1013 	 * and another block is placed at KERNBASE to map the kernel binary,
1014 	 * data, bss, and initial pre-allocations.
1015 	 */
1016 	for (i = 0; i < nkpt_base; i++) {
1017 		((pd_entry_t *)KPDbase)[i] = KPTbase + (i << PAGE_SHIFT);
1018 		((pd_entry_t *)KPDbase)[i] |=
1019 		    pmap_bits_default[PG_RW_IDX] |
1020 		    pmap_bits_default[PG_V_IDX];
1021 	}
1022 	for (i = 0; i < nkpt_phys; i++) {
1023 		((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
1024 		((pd_entry_t *)KPDphys)[i] |=
1025 		    pmap_bits_default[PG_RW_IDX] |
1026 		    pmap_bits_default[PG_V_IDX];
1027 	}
1028 
1029 	/*
1030 	 * Map from zero to end of allocations using 2M pages as an
1031 	 * optimization.  This will bypass some of the KPTBase pages
1032 	 * above in the KERNBASE area.
1033 	 */
1034 	for (i = 0; (i << PDRSHIFT) < *firstaddr; i++) {
1035 		((pd_entry_t *)KPDbase)[i] = i << PDRSHIFT;
1036 		((pd_entry_t *)KPDbase)[i] |=
1037 		    pmap_bits_default[PG_RW_IDX] |
1038 		    pmap_bits_default[PG_V_IDX] |
1039 		    pmap_bits_default[PG_PS_IDX] |
1040 		    pmap_bits_default[PG_G_IDX];
1041 	}
1042 
1043 	/*
1044 	 * Load PD addresses into the PDP pages for primary KVA space to
1045 	 * cover existing page tables.  PD's for KERNBASE are handled in
1046 	 * the next loop.
1047 	 *
1048 	 * expected to pre-populate all of its PDs.  See NKPDPE in vmparam.h.
1049 	 */
1050 	for (i = 0; i < nkpd_phys; i++) {
1051 		((pdp_entry_t *)KPDPphys)[NKPML4E * NPDPEPG - NKPDPE + i] =
1052 				KPDphys + (i << PAGE_SHIFT);
1053 		((pdp_entry_t *)KPDPphys)[NKPML4E * NPDPEPG - NKPDPE + i] |=
1054 		    pmap_bits_default[PG_RW_IDX] |
1055 		    pmap_bits_default[PG_V_IDX] |
1056 		    pmap_bits_default[PG_A_IDX];
1057 	}
1058 
1059 	/*
1060 	 * Load PDs for KERNBASE to the end
1061 	 */
1062 	i = (NKPML4E - 1) * NPDPEPG + KPDPI;
1063 	for (j = 0; j < NPDPEPG - KPDPI; ++j) {
1064 		((pdp_entry_t *)KPDPphys)[i + j] =
1065 				KPDbase + (j << PAGE_SHIFT);
1066 		((pdp_entry_t *)KPDPphys)[i + j] |=
1067 		    pmap_bits_default[PG_RW_IDX] |
1068 		    pmap_bits_default[PG_V_IDX] |
1069 		    pmap_bits_default[PG_A_IDX];
1070 	}
1071 
1072 	/*
1073 	 * Now set up the direct map space using either 2MB or 1GB pages
1074 	 * Preset PG_M and PG_A because demotion expects it.
1075 	 *
1076 	 * When filling in entries in the PD pages make sure any excess
1077 	 * entries are set to zero as we allocated enough PD pages
1078 	 *
1079 	 * Stuff for our DMAP.  Use 2MB pages even when 1GB pages
1080 	 * are available in order to allow APU code to adjust page
1081 	 * attributes on a fixed grain (see pmap_change_attr()).
1082 	 */
1083 #if 0
1084 	if ((amd_feature & AMDID_PAGE1GB) == 0)
1085 #endif
1086 	{
1087 		/*
1088 		 * Use 2MB pages
1089 		 */
1090 		for (i = 0; i < NPDEPG * ndmpdp; i++) {
1091 			((pd_entry_t *)DMPDphys)[i] = i << PDRSHIFT;
1092 			((pd_entry_t *)DMPDphys)[i] |=
1093 			    pmap_bits_default[PG_RW_IDX] |
1094 			    pmap_bits_default[PG_V_IDX] |
1095 			    pmap_bits_default[PG_PS_IDX] |
1096 			    pmap_bits_default[PG_G_IDX] |
1097 			    pmap_bits_default[PG_M_IDX] |
1098 			    pmap_bits_default[PG_A_IDX];
1099 		}
1100 
1101 		/*
1102 		 * And the direct map space's PDP
1103 		 */
1104 		for (i = 0; i < ndmpdp; i++) {
1105 			((pdp_entry_t *)DMPDPphys)[i] = DMPDphys +
1106 							(i << PAGE_SHIFT);
1107 			((pdp_entry_t *)DMPDPphys)[i] |=
1108 			    pmap_bits_default[PG_RW_IDX] |
1109 			    pmap_bits_default[PG_V_IDX] |
1110 			    pmap_bits_default[PG_A_IDX];
1111 		}
1112 	}
1113 #if 0
1114 	else {
1115 		/*
1116 		 * 1GB pages
1117 		 */
1118 		for (i = 0; i < ndmpdp; i++) {
1119 			((pdp_entry_t *)DMPDPphys)[i] =
1120 						(vm_paddr_t)i << PDPSHIFT;
1121 			((pdp_entry_t *)DMPDPphys)[i] |=
1122 			    pmap_bits_default[PG_RW_IDX] |
1123 			    pmap_bits_default[PG_V_IDX] |
1124 			    pmap_bits_default[PG_PS_IDX] |
1125 			    pmap_bits_default[PG_G_IDX] |
1126 			    pmap_bits_default[PG_M_IDX] |
1127 			    pmap_bits_default[PG_A_IDX];
1128 		}
1129 	}
1130 #endif
1131 
1132 	/* And recursively map PML4 to itself in order to get PTmap */
1133 	((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
1134 	((pdp_entry_t *)KPML4phys)[PML4PML4I] |=
1135 	    pmap_bits_default[PG_RW_IDX] |
1136 	    pmap_bits_default[PG_V_IDX] |
1137 	    pmap_bits_default[PG_A_IDX];
1138 
1139 	/*
1140 	 * Connect the Direct Map slots up to the PML4
1141 	 */
1142 	for (j = 0; j < NDMPML4E; ++j) {
1143 		((pdp_entry_t *)KPML4phys)[DMPML4I + j] =
1144 		    (DMPDPphys + ((vm_paddr_t)j << PAGE_SHIFT)) |
1145 		    pmap_bits_default[PG_RW_IDX] |
1146 		    pmap_bits_default[PG_V_IDX] |
1147 		    pmap_bits_default[PG_A_IDX];
1148 	}
1149 
1150 	/*
1151 	 * Connect the KVA slot up to the PML4
1152 	 */
1153 	for (j = 0; j < NKPML4E; ++j) {
1154 		((pdp_entry_t *)KPML4phys)[KPML4I + j] =
1155 		    KPDPphys + ((vm_paddr_t)j << PAGE_SHIFT);
1156 		((pdp_entry_t *)KPML4phys)[KPML4I + j] |=
1157 		    pmap_bits_default[PG_RW_IDX] |
1158 		    pmap_bits_default[PG_V_IDX] |
1159 		    pmap_bits_default[PG_A_IDX];
1160 	}
1161 	cpu_mfence();
1162 	cpu_invltlb();
1163 }
1164 
1165 /*
1166  *	Bootstrap the system enough to run with virtual memory.
1167  *
1168  *	On x86_64 this is called after mapping has already been enabled
1169  *	and just syncs the pmap module with what has already been done.
1170  *	[We can't call it easily with mapping off since the kernel is not
1171  *	mapped with PA == VA, hence we would have to relocate every address
1172  *	from the linked base (virtual) address "KERNBASE" to the actual
1173  *	(physical) address starting relative to 0]
1174  */
1175 void
1176 pmap_bootstrap(vm_paddr_t *firstaddr)
1177 {
1178 	vm_offset_t va;
1179 	pt_entry_t *pte;
1180 	int i;
1181 
1182 	KvaStart = VM_MIN_KERNEL_ADDRESS;
1183 	KvaEnd = VM_MAX_KERNEL_ADDRESS;
1184 	KvaSize = KvaEnd - KvaStart;
1185 
1186 	avail_start = *firstaddr;
1187 
1188 	/*
1189 	 * Create an initial set of page tables to run the kernel in.
1190 	 */
1191 	create_pagetables(firstaddr);
1192 
1193 	virtual2_start = KvaStart;
1194 	virtual2_end = PTOV_OFFSET;
1195 
1196 	virtual_start = (vm_offset_t) PTOV_OFFSET + *firstaddr;
1197 	virtual_start = pmap_kmem_choose(virtual_start);
1198 
1199 	virtual_end = VM_MAX_KERNEL_ADDRESS;
1200 
1201 	/* XXX do %cr0 as well */
1202 	load_cr4(rcr4() | CR4_PGE | CR4_PSE);
1203 	load_cr3(KPML4phys);
1204 
1205 	/*
1206 	 * Initialize protection array.
1207 	 */
1208 	x86_64_protection_init();
1209 
1210 	/*
1211 	 * The kernel's pmap is statically allocated so we don't have to use
1212 	 * pmap_create, which is unlikely to work correctly at this part of
1213 	 * the boot sequence (XXX and which no longer exists).
1214 	 */
1215 	kernel_pmap.pm_pml4 = (pdp_entry_t *) (PTOV_OFFSET + KPML4phys);
1216 	kernel_pmap.pm_count = 1;
1217 	CPUMASK_ASSALLONES(kernel_pmap.pm_active);
1218 	RB_INIT(&kernel_pmap.pm_pvroot);
1219 	spin_init(&kernel_pmap.pm_spin, "pmapbootstrap");
1220 	for (i = 0; i < PM_PLACEMARKS; ++i)
1221 		kernel_pmap.pm_placemarks[i] = PM_NOPLACEMARK;
1222 
1223 	/*
1224 	 * Reserve some special page table entries/VA space for temporary
1225 	 * mapping of pages.
1226 	 */
1227 #define	SYSMAP(c, p, v, n)	\
1228 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
1229 
1230 	va = virtual_start;
1231 	pte = vtopte(va);
1232 
1233 	/*
1234 	 * CMAP1/CMAP2 are used for zeroing and copying pages.
1235 	 */
1236 	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
1237 
1238 	/*
1239 	 * Crashdump maps.
1240 	 */
1241 	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
1242 
1243 	/*
1244 	 * ptvmmap is used for reading arbitrary physical pages via
1245 	 * /dev/mem.
1246 	 */
1247 	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
1248 
1249 	/*
1250 	 * msgbufp is used to map the system message buffer.
1251 	 * XXX msgbufmap is not used.
1252 	 */
1253 	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
1254 	       atop(round_page(MSGBUF_SIZE)))
1255 
1256 	virtual_start = va;
1257 	virtual_start = pmap_kmem_choose(virtual_start);
1258 
1259 	*CMAP1 = 0;
1260 
1261 	/*
1262 	 * PG_G is terribly broken on SMP because we IPI invltlb's in some
1263 	 * cases rather then invl1pg.  Actually, I don't even know why it
1264 	 * works under UP because self-referential page table mappings
1265 	 */
1266 //	pgeflag = 0;
1267 
1268 	cpu_invltlb();
1269 
1270 	/* Initialize the PAT MSR */
1271 	pmap_init_pat();
1272 	pmap_pinit_defaults(&kernel_pmap);
1273 
1274 	TUNABLE_INT_FETCH("machdep.pmap_fast_kernel_cpusync",
1275 			  &pmap_fast_kernel_cpusync);
1276 
1277 }
1278 
1279 /*
1280  * Setup the PAT MSR.
1281  */
1282 void
1283 pmap_init_pat(void)
1284 {
1285 	uint64_t pat_msr;
1286 	u_long cr0, cr4;
1287 	int i;
1288 
1289 	/*
1290 	 * Default values mapping PATi,PCD,PWT bits at system reset.
1291 	 * The default values effectively ignore the PATi bit by
1292 	 * repeating the encodings for 0-3 in 4-7, and map the PCD
1293 	 * and PWT bit combinations to the expected PAT types.
1294 	 */
1295 	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |	/* 000 */
1296 		  PAT_VALUE(1, PAT_WRITE_THROUGH) |	/* 001 */
1297 		  PAT_VALUE(2, PAT_UNCACHED) |		/* 010 */
1298 		  PAT_VALUE(3, PAT_UNCACHEABLE) |	/* 011 */
1299 		  PAT_VALUE(4, PAT_WRITE_BACK) |	/* 100 */
1300 		  PAT_VALUE(5, PAT_WRITE_THROUGH) |	/* 101 */
1301 		  PAT_VALUE(6, PAT_UNCACHED) |		/* 110 */
1302 		  PAT_VALUE(7, PAT_UNCACHEABLE);	/* 111 */
1303 	pat_pte_index[PAT_WRITE_BACK]	= 0;
1304 	pat_pte_index[PAT_WRITE_THROUGH]= 0         | X86_PG_NC_PWT;
1305 	pat_pte_index[PAT_UNCACHED]	= X86_PG_NC_PCD;
1306 	pat_pte_index[PAT_UNCACHEABLE]	= X86_PG_NC_PCD | X86_PG_NC_PWT;
1307 	pat_pte_index[PAT_WRITE_PROTECTED] = pat_pte_index[PAT_UNCACHEABLE];
1308 	pat_pte_index[PAT_WRITE_COMBINING] = pat_pte_index[PAT_UNCACHEABLE];
1309 
1310 	if (cpu_feature & CPUID_PAT) {
1311 		/*
1312 		 * If we support the PAT then set-up entries for
1313 		 * WRITE_PROTECTED and WRITE_COMBINING using bit patterns
1314 		 * 5 and 6.
1315 		 */
1316 		pat_msr = (pat_msr & ~PAT_MASK(5)) |
1317 			  PAT_VALUE(5, PAT_WRITE_PROTECTED);
1318 		pat_msr = (pat_msr & ~PAT_MASK(6)) |
1319 			  PAT_VALUE(6, PAT_WRITE_COMBINING);
1320 		pat_pte_index[PAT_WRITE_PROTECTED] = X86_PG_PTE_PAT | X86_PG_NC_PWT;
1321 		pat_pte_index[PAT_WRITE_COMBINING] = X86_PG_PTE_PAT | X86_PG_NC_PCD;
1322 
1323 		/*
1324 		 * Then enable the PAT
1325 		 */
1326 
1327 		/* Disable PGE. */
1328 		cr4 = rcr4();
1329 		load_cr4(cr4 & ~CR4_PGE);
1330 
1331 		/* Disable caches (CD = 1, NW = 0). */
1332 		cr0 = rcr0();
1333 		load_cr0((cr0 & ~CR0_NW) | CR0_CD);
1334 
1335 		/* Flushes caches and TLBs. */
1336 		wbinvd();
1337 		cpu_invltlb();
1338 
1339 		/* Update PAT and index table. */
1340 		wrmsr(MSR_PAT, pat_msr);
1341 
1342 		/* Flush caches and TLBs again. */
1343 		wbinvd();
1344 		cpu_invltlb();
1345 
1346 		/* Restore caches and PGE. */
1347 		load_cr0(cr0);
1348 		load_cr4(cr4);
1349 		PatMsr = pat_msr;
1350 	}
1351 
1352 	for (i = 0; i < 8; ++i) {
1353 		pt_entry_t pte;
1354 
1355 		pte = pat_pte_index[i];
1356 		if (pte & X86_PG_PTE_PAT) {
1357 			pte &= ~X86_PG_PTE_PAT;
1358 			pte |= X86_PG_PDE_PAT;
1359 		}
1360 		pat_pde_index[i] = pte;
1361 	}
1362 }
1363 
1364 /*
1365  * Set 4mb pdir for mp startup
1366  */
1367 void
1368 pmap_set_opt(void)
1369 {
1370 	if (cpu_feature & CPUID_PSE) {
1371 		load_cr4(rcr4() | CR4_PSE);
1372 		if (mycpu->gd_cpuid == 0) 	/* only on BSP */
1373 			cpu_invltlb();
1374 	}
1375 
1376 	/*
1377 	 * Check for SMAP support and enable if available.  Must be done
1378 	 * after cr3 is loaded, and on all cores.
1379 	 */
1380 	if (cpu_stdext_feature & CPUID_STDEXT_SMAP) {
1381 		load_cr4(rcr4() | CR4_SMAP);
1382 	}
1383 	if (cpu_stdext_feature & CPUID_STDEXT_SMEP) {
1384 		load_cr4(rcr4() | CR4_SMEP);
1385 	}
1386 }
1387 
1388 /*
1389  * SMAP is just a processor flag, but SMEP can only be enabled
1390  * and disabled via CR4.  We still use the processor flag to
1391  * disable SMAP because the page-fault/trap code checks it, in
1392  * order to allow a page-fault to actually occur.
1393  */
1394 void
1395 smap_smep_disable(void)
1396 {
1397 	/*
1398 	 * disable SMAP.  This also bypasses a software failsafe check
1399 	 * in the trap() code.
1400 	 */
1401 	smap_open();
1402 
1403 	/*
1404 	 * Also needed to bypass a software failsafe check in the trap()
1405 	 * code and allow the userspace address fault from kernel mode
1406 	 * to proceed.
1407 	 *
1408 	 * Note that This will not reload %rip because pcb_onfault_rsp will
1409 	 * not match.  Just setting it to non-NULL is sufficient to bypass
1410 	 * the checks.
1411 	 */
1412 	curthread->td_pcb->pcb_onfault = (void *)1;
1413 
1414 	/*
1415 	 * Disable SMEP (requires modifying cr4)
1416 	 */
1417 	if (cpu_stdext_feature & CPUID_STDEXT_SMEP)
1418 		load_cr4(rcr4() & ~CR4_SMEP);
1419 }
1420 
1421 void
1422 smap_smep_enable(void)
1423 {
1424 	if (cpu_stdext_feature & CPUID_STDEXT_SMEP)
1425 		load_cr4(rcr4() | CR4_SMEP);
1426 	curthread->td_pcb->pcb_onfault = NULL;
1427 	smap_close();
1428 }
1429 
1430 /*
1431  * Early initialization of the pmap module.
1432  *
1433  * Called by vm_init, to initialize any structures that the pmap
1434  * system needs to map virtual memory.  pmap_init has been enhanced to
1435  * support in a fairly consistant way, discontiguous physical memory.
1436  */
1437 void
1438 pmap_init(void)
1439 {
1440 	vm_pindex_t initial_pvs;
1441 	vm_pindex_t i;
1442 
1443 	/*
1444 	 * Allocate memory for random pmap data structures.  Includes the
1445 	 * pv_head_table.
1446 	 */
1447 	for (i = 0; i < vm_page_array_size; i++) {
1448 		vm_page_t m;
1449 
1450 		m = &vm_page_array[i];
1451 #ifdef PMAP_ADVANCED
1452 		m->md.interlock_count = 0;
1453 #else
1454 		m->md.pmap_count = 0;
1455 		m->md.writeable_count = 0;
1456 #endif
1457 	}
1458 
1459 	/*
1460 	 * init the pv free list
1461 	 */
1462 	initial_pvs = vm_page_array_size;
1463 	if (initial_pvs < MINPV)
1464 		initial_pvs = MINPV;
1465 	pvzone = &pvzone_store;
1466 	pvinit = (void *)kmem_alloc(&kernel_map,
1467 				    initial_pvs * sizeof (struct pv_entry),
1468 				    VM_SUBSYS_PVENTRY);
1469 	zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry),
1470 		  pvinit, initial_pvs);
1471 
1472 	/*
1473 	 * Now it is safe to enable pv_table recording.
1474 	 */
1475 	pmap_initialized = TRUE;
1476 }
1477 
1478 /*
1479  * Initialize the address space (zone) for the pv_entries.  Set a
1480  * high water mark so that the system can recover from excessive
1481  * numbers of pv entries.
1482  *
1483  * Also create the kernel page table template for isolated user
1484  * pmaps.
1485  */
1486 static void pmap_init_iso_range(vm_offset_t base, size_t bytes);
1487 static void pmap_init2_iso_pmap(void);
1488 #if 0
1489 static void dump_pmap(pmap_t pmap, pt_entry_t pte, int level, vm_offset_t base);
1490 #endif
1491 
1492 void
1493 pmap_init2(void)
1494 {
1495 	vm_pindex_t entry_max;
1496 
1497 	/*
1498 	 * We can significantly reduce pv_entry_max from historical
1499 	 * levels because pv_entry's are no longer use for PTEs at the
1500 	 * leafs.  This prevents excessive pcpu caching on many-core
1501 	 * boxes (even with the further '/ 16' done in zinitna().
1502 	 *
1503 	 * Remember, however, that processes can share physical pages
1504 	 * with each process still needing the pdp/pd/pt infrstructure
1505 	 * (which still use pv_entry's).  And don't just assume that
1506 	 * every PT will be completely filled up.  So don't make it
1507 	 * too small.
1508 	 */
1509 	entry_max = maxproc * 32 + vm_page_array_size / 16;
1510 	TUNABLE_LONG_FETCH("vm.pmap.pv_entries", &entry_max);
1511 	vm_pmap_pv_entries = entry_max;
1512 
1513 	/*
1514 	 * Subtract out pages already installed in the zone (hack)
1515 	 */
1516 	if (entry_max <= MINPV)
1517 		entry_max = MINPV;
1518 
1519 	zinitna(pvzone, NULL, 0, entry_max, ZONE_INTERRUPT);
1520 
1521 	/*
1522 	 * Enable dynamic deletion of empty higher-level page table pages
1523 	 * by default only if system memory is < 8GB (use 7GB for slop).
1524 	 * This can save a little memory, but imposes significant
1525 	 * performance overhead for things like bulk builds, and for programs
1526 	 * which do a lot of memory mapping and memory unmapping.
1527 	 */
1528 #if 0
1529 	if (pmap_dynamic_delete < 0) {
1530 		if (vmstats.v_page_count < 7LL * 1024 * 1024 * 1024 / PAGE_SIZE)
1531 			pmap_dynamic_delete = 1;
1532 		else
1533 			pmap_dynamic_delete = 0;
1534 	}
1535 #endif
1536 	/*
1537 	 * Disable so vm_map_backing iterations do not race
1538 	 */
1539 	pmap_dynamic_delete = 0;
1540 
1541 	/*
1542 	 * Automatic detection of Intel meltdown bug requiring user/kernel
1543 	 * mmap isolation.
1544 	 *
1545 	 * Currently there are so many Intel cpu's impacted that its better
1546 	 * to whitelist future Intel CPUs.  Most? AMD cpus are not impacted
1547 	 * so the default is off for AMD.
1548 	 */
1549 	if (meltdown_mitigation < 0) {
1550 		if (cpu_vendor_id == CPU_VENDOR_INTEL)
1551 			meltdown_mitigation = 1;
1552 		else
1553 			meltdown_mitigation = 0;
1554 	}
1555 	if (meltdown_mitigation) {
1556 		kprintf("machdep.meltdown_mitigation enabled to "
1557 			"protect against (mostly Intel) meltdown bug\n");
1558 		kprintf("system call performance will be impacted\n");
1559 	}
1560 
1561 	pmap_init2_iso_pmap();
1562 }
1563 
1564 /*
1565  * Create the isolation pmap template.  Once created, the template
1566  * is static and its PML4e entries are used to populate the
1567  * kernel portion of any isolated user pmaps.
1568  *
1569  * Our isolation pmap must contain:
1570  * (1) trampoline area for all cpus
1571  * (2) common_tss area for all cpus (its part of the trampoline area now)
1572  * (3) IDT for all cpus
1573  * (4) GDT for all cpus
1574  */
1575 static void
1576 pmap_init2_iso_pmap(void)
1577 {
1578 	int n;
1579 
1580 	if (bootverbose)
1581 		kprintf("Initialize isolation pmap\n");
1582 
1583 	/*
1584 	 * Try to use our normal API calls to make this easier.  We have
1585 	 * to scrap the shadowed kernel PDPs pmap_pinit() creates for our
1586 	 * iso_pmap.
1587 	 */
1588 	pmap_pinit(&iso_pmap);
1589 	bzero(iso_pmap.pm_pml4, PAGE_SIZE);
1590 
1591 	/*
1592 	 * Install areas needed by the cpu and trampoline.
1593 	 */
1594 	for (n = 0; n < ncpus; ++n) {
1595 		struct privatespace *ps;
1596 
1597 		ps = CPU_prvspace[n];
1598 		pmap_init_iso_range((vm_offset_t)&ps->trampoline,
1599 				    sizeof(ps->trampoline));
1600 		pmap_init_iso_range((vm_offset_t)&ps->dblstack,
1601 				    sizeof(ps->dblstack));
1602 		pmap_init_iso_range((vm_offset_t)&ps->dbgstack,
1603 				    sizeof(ps->dbgstack));
1604 		pmap_init_iso_range((vm_offset_t)&ps->common_tss,
1605 				    sizeof(ps->common_tss));
1606 		pmap_init_iso_range(r_idt_arr[n].rd_base,
1607 				    r_idt_arr[n].rd_limit + 1);
1608 	}
1609 	pmap_init_iso_range((register_t)gdt, sizeof(gdt));
1610 	pmap_init_iso_range((vm_offset_t)(int *)btext,
1611 			    (vm_offset_t)(int *)etext -
1612 			     (vm_offset_t)(int *)btext);
1613 
1614 #if 0
1615 	kprintf("Dump iso_pmap:\n");
1616 	dump_pmap(&iso_pmap, vtophys(iso_pmap.pm_pml4), 0, 0);
1617 	kprintf("\nDump kernel_pmap:\n");
1618 	dump_pmap(&kernel_pmap, vtophys(kernel_pmap.pm_pml4), 0, 0);
1619 #endif
1620 }
1621 
1622 /*
1623  * This adds a kernel virtual address range to the isolation pmap.
1624  */
1625 static void
1626 pmap_init_iso_range(vm_offset_t base, size_t bytes)
1627 {
1628 	pv_entry_t pv;
1629 	pv_entry_t pvp;
1630 	pt_entry_t *ptep;
1631 	pt_entry_t pte;
1632 	vm_offset_t va;
1633 
1634 	if (bootverbose) {
1635 		kprintf("isolate %016jx-%016jx (%zd)\n",
1636 			base, base + bytes, bytes);
1637 	}
1638 	va = base & ~(vm_offset_t)PAGE_MASK;
1639 	while (va < base + bytes) {
1640 		if ((va & PDRMASK) == 0 && va + NBPDR <= base + bytes &&
1641 		    (ptep = pmap_pt(&kernel_pmap, va)) != NULL &&
1642 		    (*ptep & kernel_pmap.pmap_bits[PG_V_IDX]) &&
1643 		    (*ptep & kernel_pmap.pmap_bits[PG_PS_IDX])) {
1644 			/*
1645 			 * Use 2MB pages if possible
1646 			 */
1647 			pte = *ptep;
1648 			pv = pmap_allocpte(&iso_pmap, pmap_pd_pindex(va), &pvp);
1649 			ptep = pv_pte_lookup(pv, (va >> PDRSHIFT) & 511);
1650 			*ptep = pte;
1651 			va += NBPDR;
1652 		} else {
1653 			/*
1654 			 * Otherwise use 4KB pages
1655 			 */
1656 			pv = pmap_allocpte(&iso_pmap, pmap_pt_pindex(va), &pvp);
1657 			ptep = pv_pte_lookup(pv, (va >> PAGE_SHIFT) & 511);
1658 			*ptep = vtophys(va) | kernel_pmap.pmap_bits[PG_RW_IDX] |
1659 					      kernel_pmap.pmap_bits[PG_V_IDX] |
1660 					      kernel_pmap.pmap_bits[PG_A_IDX] |
1661 					      kernel_pmap.pmap_bits[PG_M_IDX];
1662 
1663 			va += PAGE_SIZE;
1664 		}
1665 		pv_put(pv);
1666 		pv_put(pvp);
1667 	}
1668 }
1669 
1670 #if 0
1671 /*
1672  * Useful debugging pmap dumper, do not remove (#if 0 when not in use)
1673  */
1674 static
1675 void
1676 dump_pmap(pmap_t pmap, pt_entry_t pte, int level, vm_offset_t base)
1677 {
1678 	pt_entry_t *ptp;
1679 	vm_offset_t incr;
1680 	int i;
1681 
1682 	switch(level) {
1683 	case 0:					/* PML4e page, 512G entries */
1684 		incr = (1LL << 48) / 512;
1685 		break;
1686 	case 1:					/* PDP page, 1G entries */
1687 		incr = (1LL << 39) / 512;
1688 		break;
1689 	case 2:					/* PD page, 2MB entries */
1690 		incr = (1LL << 30) / 512;
1691 		break;
1692 	case 3:					/* PT page, 4KB entries */
1693 		incr = (1LL << 21) / 512;
1694 		break;
1695 	default:
1696 		incr = 0;
1697 		break;
1698 	}
1699 
1700 	if (level == 0)
1701 		kprintf("cr3 %016jx @ va=%016jx\n", pte, base);
1702 	ptp = (void *)PHYS_TO_DMAP(pte & ~(pt_entry_t)PAGE_MASK);
1703 	for (i = 0; i < 512; ++i) {
1704 		if (level == 0 && i == 128)
1705 			base += 0xFFFF000000000000LLU;
1706 		if (ptp[i]) {
1707 			kprintf("%*.*s ", level * 4, level * 4, "");
1708 			if (level == 1 && (ptp[i] & 0x180) == 0x180) {
1709 				kprintf("va=%016jx %3d term %016jx (1GB)\n",
1710 					base, i, ptp[i]);
1711 			} else if (level == 2 && (ptp[i] & 0x180) == 0x180) {
1712 				kprintf("va=%016jx %3d term %016jx (2MB)\n",
1713 					base, i, ptp[i]);
1714 			} else if (level == 3) {
1715 				kprintf("va=%016jx %3d term %016jx\n",
1716 					base, i, ptp[i]);
1717 			} else {
1718 				kprintf("va=%016jx %3d deep %016jx\n",
1719 					base, i, ptp[i]);
1720 				dump_pmap(pmap, ptp[i], level + 1, base);
1721 			}
1722 		}
1723 		base += incr;
1724 	}
1725 }
1726 
1727 #endif
1728 
1729 /*
1730  * Typically used to initialize a fictitious page by vm/device_pager.c
1731  */
1732 void
1733 pmap_page_init(struct vm_page *m)
1734 {
1735 	vm_page_init(m);
1736 #ifdef PMAP_ADVANCED
1737 	m->md.interlock_count = 0;
1738 #else
1739 	m->md.pmap_count = 0;
1740 	m->md.writeable_count = 0;
1741 #endif
1742 }
1743 
1744 /***************************************************
1745  * Low level helper routines.....
1746  ***************************************************/
1747 
1748 /*
1749  * Extract the physical page address associated with the map/VA pair.
1750  * The page must be wired for this to work reliably.
1751  */
1752 vm_paddr_t
1753 pmap_extract(pmap_t pmap, vm_offset_t va, void **handlep)
1754 {
1755 	vm_paddr_t rtval;
1756 	pv_entry_t pt_pv;
1757 	pt_entry_t *ptep;
1758 
1759 	rtval = 0;
1760 	if (va >= VM_MAX_USER_ADDRESS) {
1761 		/*
1762 		 * Kernel page directories might be direct-mapped and
1763 		 * there is typically no PV tracking of pte's
1764 		 */
1765 		pd_entry_t *pt;
1766 
1767 		pt = pmap_pt(pmap, va);
1768 		if (pt && (*pt & pmap->pmap_bits[PG_V_IDX])) {
1769 			if (*pt & pmap->pmap_bits[PG_PS_IDX]) {
1770 				rtval = *pt & PG_PS_FRAME;
1771 				rtval |= va & PDRMASK;
1772 			} else {
1773 				ptep = pmap_pt_to_pte(*pt, va);
1774 				if (*pt & pmap->pmap_bits[PG_V_IDX]) {
1775 					rtval = *ptep & PG_FRAME;
1776 					rtval |= va & PAGE_MASK;
1777 				}
1778 			}
1779 		}
1780 		if (handlep)
1781 			*handlep = NULL;
1782 	} else {
1783 		/*
1784 		 * User pages currently do not direct-map the page directory
1785 		 * and some pages might not used managed PVs.  But all PT's
1786 		 * will have a PV.
1787 		 */
1788 		pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
1789 		if (pt_pv) {
1790 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1791 			if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
1792 				rtval = *ptep & PG_FRAME;
1793 				rtval |= va & PAGE_MASK;
1794 			}
1795 			if (handlep)
1796 				*handlep = pt_pv;	/* locked until done */
1797 			else
1798 				pv_put (pt_pv);
1799 		} else if (handlep) {
1800 			*handlep = NULL;
1801 		}
1802 	}
1803 	return rtval;
1804 }
1805 
1806 void
1807 pmap_extract_done(void *handle)
1808 {
1809 	if (handle)
1810 		pv_put((pv_entry_t)handle);
1811 }
1812 
1813 /*
1814  * Similar to extract but checks protections, SMP-friendly short-cut for
1815  * vm_fault_page[_quick]().  Can return NULL to cause the caller to
1816  * fall-through to the real fault code.  Does not work with HVM page
1817  * tables.
1818  *
1819  * if busyp is NULL the returned page, if not NULL, is held (and not busied).
1820  *
1821  * If busyp is not NULL and this function sets *busyp non-zero, the returned
1822  * page is busied (and not held).
1823  *
1824  * If busyp is not NULL and this function sets *busyp to zero, the returned
1825  * page is held (and not busied).
1826  *
1827  * If VM_PROT_WRITE is set in prot, and the pte is already writable, the
1828  * returned page will be dirtied.  If the pte is not already writable NULL
1829  * is returned.  In otherwords, if the bit is set and a vm_page_t is returned,
1830  * any COW will already have happened and that page can be written by the
1831  * caller.
1832  *
1833  * WARNING! THE RETURNED PAGE IS ONLY HELD AND NOT SUITABLE FOR READING
1834  *	    OR WRITING AS-IS.
1835  */
1836 vm_page_t
1837 pmap_fault_page_quick(pmap_t pmap, vm_offset_t va, vm_prot_t prot, int *busyp)
1838 {
1839 	if (pmap &&
1840 	    va < VM_MAX_USER_ADDRESS &&
1841 	    (pmap->pm_flags & PMAP_HVM) == 0) {
1842 		pv_entry_t pt_pv;
1843 		pv_entry_t pte_pv;
1844 		pt_entry_t *ptep;
1845 		pt_entry_t req;
1846 		vm_page_t m;
1847 		int error;
1848 
1849 		req = pmap->pmap_bits[PG_V_IDX] |
1850 		      pmap->pmap_bits[PG_U_IDX];
1851 		if (prot & VM_PROT_WRITE)
1852 			req |= pmap->pmap_bits[PG_RW_IDX];
1853 
1854 		pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
1855 		if (pt_pv == NULL)
1856 			return (NULL);
1857 		ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1858 		if ((*ptep & req) != req) {
1859 			pv_put(pt_pv);
1860 			return (NULL);
1861 		}
1862 		pte_pv = pv_get_try(pmap, pmap_pte_pindex(va), NULL, &error);
1863 		if (pte_pv && error == 0) {
1864 			m = pte_pv->pv_m;
1865 			if (prot & VM_PROT_WRITE) {
1866 				/* interlocked by presence of pv_entry */
1867 				vm_page_dirty(m);
1868 			}
1869 			if (busyp) {
1870 				if (prot & VM_PROT_WRITE) {
1871 					if (vm_page_busy_try(m, TRUE))
1872 						m = NULL;
1873 					*busyp = 1;
1874 				} else {
1875 					vm_page_hold(m);
1876 					*busyp = 0;
1877 				}
1878 			} else {
1879 				vm_page_hold(m);
1880 			}
1881 			pv_put(pte_pv);
1882 		} else if (pte_pv) {
1883 			pv_drop(pte_pv);
1884 			m = NULL;
1885 		} else {
1886 			/* error, since we didn't request a placemarker */
1887 			m = NULL;
1888 		}
1889 		pv_put(pt_pv);
1890 		return(m);
1891 	} else {
1892 		return(NULL);
1893 	}
1894 }
1895 
1896 /*
1897  * Extract the physical page address associated kernel virtual address.
1898  */
1899 vm_paddr_t
1900 pmap_kextract(vm_offset_t va)
1901 {
1902 	pd_entry_t pt;		/* pt entry in pd */
1903 	vm_paddr_t pa;
1904 
1905 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
1906 		pa = DMAP_TO_PHYS(va);
1907 	} else {
1908 		pt = *vtopt(va);
1909 		if (pt & kernel_pmap.pmap_bits[PG_PS_IDX]) {
1910 			pa = (pt & PG_PS_FRAME) | (va & PDRMASK);
1911 		} else {
1912 			/*
1913 			 * Beware of a concurrent promotion that changes the
1914 			 * PDE at this point!  For example, vtopte() must not
1915 			 * be used to access the PTE because it would use the
1916 			 * new PDE.  It is, however, safe to use the old PDE
1917 			 * because the page table page is preserved by the
1918 			 * promotion.
1919 			 */
1920 			pa = *pmap_pt_to_pte(pt, va);
1921 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
1922 		}
1923 	}
1924 	return pa;
1925 }
1926 
1927 /***************************************************
1928  * Low level mapping routines.....
1929  ***************************************************/
1930 
1931 /*
1932  * Routine: pmap_kenter
1933  * Function:
1934  *  	Add a wired page to the KVA
1935  *  	NOTE! note that in order for the mapping to take effect -- you
1936  *  	should do an invltlb after doing the pmap_kenter().
1937  */
1938 void
1939 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1940 {
1941 	pt_entry_t *ptep;
1942 	pt_entry_t npte;
1943 
1944 	npte = pa |
1945 	       kernel_pmap.pmap_bits[PG_RW_IDX] |
1946 	       kernel_pmap.pmap_bits[PG_V_IDX];
1947 //	       pgeflag;
1948 	ptep = vtopte(va);
1949 #if 1
1950 	pmap_inval_smp(&kernel_pmap, va, 1, ptep, npte);
1951 #else
1952 	/* FUTURE */
1953 	if (*ptep)
1954 		pmap_inval_smp(&kernel_pmap, va, ptep, npte);
1955 	else
1956 		*ptep = npte;
1957 #endif
1958 }
1959 
1960 /*
1961  * Similar to pmap_kenter(), except we only invalidate the mapping on the
1962  * current CPU.  Returns 0 if the previous pte was 0, 1 if it wasn't
1963  * (caller can conditionalize calling smp_invltlb()).
1964  */
1965 int
1966 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
1967 {
1968 	pt_entry_t *ptep;
1969 	pt_entry_t npte;
1970 	int res;
1971 
1972 	npte = pa | kernel_pmap.pmap_bits[PG_RW_IDX] |
1973 		    kernel_pmap.pmap_bits[PG_V_IDX];
1974 	// npte |= pgeflag;
1975 	ptep = vtopte(va);
1976 #if 1
1977 	res = 1;
1978 #else
1979 	/* FUTURE */
1980 	res = (*ptep != 0);
1981 #endif
1982 	atomic_swap_long(ptep, npte);
1983 	cpu_invlpg((void *)va);
1984 
1985 	return res;
1986 }
1987 
1988 /*
1989  * Enter addresses into the kernel pmap but don't bother
1990  * doing any tlb invalidations.  Caller will do a rollup
1991  * invalidation via pmap_rollup_inval().
1992  */
1993 int
1994 pmap_kenter_noinval(vm_offset_t va, vm_paddr_t pa)
1995 {
1996 	pt_entry_t *ptep;
1997 	pt_entry_t npte;
1998 	int res;
1999 
2000 	npte = pa |
2001 	    kernel_pmap.pmap_bits[PG_RW_IDX] |
2002 	    kernel_pmap.pmap_bits[PG_V_IDX];
2003 //	    pgeflag;
2004 	ptep = vtopte(va);
2005 #if 1
2006 	res = 1;
2007 #else
2008 	/* FUTURE */
2009 	res = (*ptep != 0);
2010 #endif
2011 	atomic_swap_long(ptep, npte);
2012 	cpu_invlpg((void *)va);
2013 
2014 	return res;
2015 }
2016 
2017 /*
2018  * remove a page from the kernel pagetables
2019  */
2020 void
2021 pmap_kremove(vm_offset_t va)
2022 {
2023 	pt_entry_t *ptep;
2024 
2025 	ptep = vtopte(va);
2026 	pmap_inval_smp(&kernel_pmap, va, 1, ptep, 0);
2027 }
2028 
2029 void
2030 pmap_kremove_quick(vm_offset_t va)
2031 {
2032 	pt_entry_t *ptep;
2033 
2034 	ptep = vtopte(va);
2035 	(void)pte_load_clear(ptep);
2036 	cpu_invlpg((void *)va);
2037 }
2038 
2039 /*
2040  * Remove addresses from the kernel pmap but don't bother
2041  * doing any tlb invalidations.  Caller will do a rollup
2042  * invalidation via pmap_rollup_inval().
2043  */
2044 void
2045 pmap_kremove_noinval(vm_offset_t va)
2046 {
2047 	pt_entry_t *ptep;
2048 
2049 	ptep = vtopte(va);
2050 	(void)pte_load_clear(ptep);
2051 }
2052 
2053 /*
2054  * XXX these need to be recoded.  They are not used in any critical path.
2055  */
2056 void
2057 pmap_kmodify_rw(vm_offset_t va)
2058 {
2059 	atomic_set_long(vtopte(va), kernel_pmap.pmap_bits[PG_RW_IDX]);
2060 	cpu_invlpg((void *)va);
2061 }
2062 
2063 /* NOT USED
2064 void
2065 pmap_kmodify_nc(vm_offset_t va)
2066 {
2067 	atomic_set_long(vtopte(va), PG_N);
2068 	cpu_invlpg((void *)va);
2069 }
2070 */
2071 
2072 /*
2073  * Used to map a range of physical addresses into kernel virtual
2074  * address space during the low level boot, typically to map the
2075  * dump bitmap, message buffer, and vm_page_array.
2076  *
2077  * These mappings are typically made at some pointer after the end of the
2078  * kernel text+data.
2079  *
2080  * We could return PHYS_TO_DMAP(start) here and not allocate any
2081  * via (*virtp), but then kmem from userland and kernel dumps won't
2082  * have access to the related pointers.
2083  */
2084 vm_offset_t
2085 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
2086 {
2087 	vm_offset_t va;
2088 	vm_offset_t va_start;
2089 
2090 	/*return PHYS_TO_DMAP(start);*/
2091 
2092 	va_start = *virtp;
2093 	va = va_start;
2094 
2095 	while (start < end) {
2096 		pmap_kenter_quick(va, start);
2097 		va += PAGE_SIZE;
2098 		start += PAGE_SIZE;
2099 	}
2100 	*virtp = va;
2101 	return va_start;
2102 }
2103 
2104 #define PMAP_CLFLUSH_THRESHOLD  (2 * 1024 * 1024)
2105 
2106 /*
2107  * Remove the specified set of pages from the data and instruction caches.
2108  *
2109  * In contrast to pmap_invalidate_cache_range(), this function does not
2110  * rely on the CPU's self-snoop feature, because it is intended for use
2111  * when moving pages into a different cache domain.
2112  */
2113 void
2114 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
2115 {
2116 	vm_offset_t daddr, eva;
2117 	int i;
2118 
2119 	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
2120 	    (cpu_feature & CPUID_CLFSH) == 0)
2121 		wbinvd();
2122 	else {
2123 		cpu_mfence();
2124 		for (i = 0; i < count; i++) {
2125 			daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
2126 			eva = daddr + PAGE_SIZE;
2127 			for (; daddr < eva; daddr += cpu_clflush_line_size)
2128 				clflush(daddr);
2129 		}
2130 		cpu_mfence();
2131 	}
2132 }
2133 
2134 void
2135 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
2136 {
2137 	KASSERT((sva & PAGE_MASK) == 0,
2138 	    ("pmap_invalidate_cache_range: sva not page-aligned"));
2139 	KASSERT((eva & PAGE_MASK) == 0,
2140 	    ("pmap_invalidate_cache_range: eva not page-aligned"));
2141 
2142 	if (cpu_feature & CPUID_SS) {
2143 		; /* If "Self Snoop" is supported, do nothing. */
2144 	} else {
2145 		/* Globally invalidate caches */
2146 		cpu_wbinvd_on_all_cpus();
2147 	}
2148 }
2149 
2150 /*
2151  * Invalidate the specified range of virtual memory on all cpus associated
2152  * with the pmap.
2153  */
2154 void
2155 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2156 {
2157 	pmap_inval_smp(pmap, sva, (eva - sva) >> PAGE_SHIFT, NULL, 0);
2158 }
2159 
2160 /*
2161  * Add a list of wired pages to the kva.  This routine is used for temporary
2162  * kernel mappings such as those found in buffer cache buffer.  Page
2163  * modifications and accesses are not tracked or recorded.
2164  *
2165  * NOTE! Old mappings are simply overwritten, and we cannot assume relaxed
2166  *	 semantics as previous mappings may have been zerod without any
2167  *	 invalidation.
2168  *
2169  * The page *must* be wired.
2170  */
2171 static __inline void
2172 _pmap_qenter(vm_offset_t beg_va, vm_page_t *m, int count, int doinval)
2173 {
2174 	vm_offset_t end_va;
2175 	vm_offset_t va;
2176 
2177 	end_va = beg_va + count * PAGE_SIZE;
2178 
2179 	for (va = beg_va; va < end_va; va += PAGE_SIZE) {
2180 		pt_entry_t pte;
2181 		pt_entry_t *ptep;
2182 
2183 		ptep = vtopte(va);
2184 		pte = VM_PAGE_TO_PHYS(*m) |
2185 			kernel_pmap.pmap_bits[PG_RW_IDX] |
2186 			kernel_pmap.pmap_bits[PG_V_IDX] |
2187 			kernel_pmap.pmap_cache_bits_pte[(*m)->pat_mode];
2188 //		pgeflag;
2189 		atomic_swap_long(ptep, pte);
2190 		m++;
2191 	}
2192 	if (doinval)
2193 		pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
2194 }
2195 
2196 void
2197 pmap_qenter(vm_offset_t beg_va, vm_page_t *m, int count)
2198 {
2199 	_pmap_qenter(beg_va, m, count, 1);
2200 }
2201 
2202 void
2203 pmap_qenter_noinval(vm_offset_t beg_va, vm_page_t *m, int count)
2204 {
2205 	_pmap_qenter(beg_va, m, count, 0);
2206 }
2207 
2208 /*
2209  * This routine jerks page mappings from the kernel -- it is meant only
2210  * for temporary mappings such as those found in buffer cache buffers.
2211  * No recording modified or access status occurs.
2212  *
2213  * MPSAFE, INTERRUPT SAFE (cluster callback)
2214  */
2215 void
2216 pmap_qremove(vm_offset_t beg_va, int count)
2217 {
2218 	vm_offset_t end_va;
2219 	vm_offset_t va;
2220 
2221 	end_va = beg_va + count * PAGE_SIZE;
2222 
2223 	for (va = beg_va; va < end_va; va += PAGE_SIZE) {
2224 		pt_entry_t *pte;
2225 
2226 		pte = vtopte(va);
2227 		(void)pte_load_clear(pte);
2228 		cpu_invlpg((void *)va);
2229 	}
2230 	pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
2231 }
2232 
2233 /*
2234  * This routine removes temporary kernel mappings, only invalidating them
2235  * on the current cpu.  It should only be used under carefully controlled
2236  * conditions.
2237  */
2238 void
2239 pmap_qremove_quick(vm_offset_t beg_va, int count)
2240 {
2241 	vm_offset_t end_va;
2242 	vm_offset_t va;
2243 
2244 	end_va = beg_va + count * PAGE_SIZE;
2245 
2246 	for (va = beg_va; va < end_va; va += PAGE_SIZE) {
2247 		pt_entry_t *pte;
2248 
2249 		pte = vtopte(va);
2250 		(void)pte_load_clear(pte);
2251 		cpu_invlpg((void *)va);
2252 	}
2253 }
2254 
2255 /*
2256  * This routine removes temporary kernel mappings *without* invalidating
2257  * the TLB.  It can only be used on permanent kva reservations such as those
2258  * found in buffer cache buffers, under carefully controlled circumstances.
2259  *
2260  * NOTE: Repopulating these KVAs requires unconditional invalidation.
2261  *	 (pmap_qenter() does unconditional invalidation).
2262  */
2263 void
2264 pmap_qremove_noinval(vm_offset_t beg_va, int count)
2265 {
2266 	vm_offset_t end_va;
2267 	vm_offset_t va;
2268 
2269 	end_va = beg_va + count * PAGE_SIZE;
2270 
2271 	for (va = beg_va; va < end_va; va += PAGE_SIZE) {
2272 		pt_entry_t *pte;
2273 
2274 		pte = vtopte(va);
2275 		(void)pte_load_clear(pte);
2276 	}
2277 }
2278 
2279 /*
2280  * Create a new thread and optionally associate it with a (new) process.
2281  * NOTE! the new thread's cpu may not equal the current cpu.
2282  */
2283 void
2284 pmap_init_thread(thread_t td)
2285 {
2286 	/* enforce pcb placement & alignment */
2287 	td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
2288 	td->td_pcb = (struct pcb *)((intptr_t)td->td_pcb & ~(intptr_t)0xF);
2289 	td->td_savefpu = &td->td_pcb->pcb_save;
2290 	td->td_sp = (char *)td->td_pcb;	/* no -16 */
2291 }
2292 
2293 /*
2294  * This routine directly affects the fork perf for a process.
2295  */
2296 void
2297 pmap_init_proc(struct proc *p)
2298 {
2299 }
2300 
2301 static void
2302 pmap_pinit_defaults(struct pmap *pmap)
2303 {
2304 	bcopy(pmap_bits_default, pmap->pmap_bits,
2305 	      sizeof(pmap_bits_default));
2306 	bcopy(protection_codes, pmap->protection_codes,
2307 	      sizeof(protection_codes));
2308 	bcopy(pat_pte_index, pmap->pmap_cache_bits_pte,
2309 	      sizeof(pat_pte_index));
2310 	bcopy(pat_pde_index, pmap->pmap_cache_bits_pde,
2311 	      sizeof(pat_pte_index));
2312 	pmap->pmap_cache_mask_pte = X86_PG_NC_PWT | X86_PG_NC_PCD | X86_PG_PTE_PAT;
2313 	pmap->pmap_cache_mask_pde = X86_PG_NC_PWT | X86_PG_NC_PCD | X86_PG_PDE_PAT;
2314 	pmap->copyinstr = std_copyinstr;
2315 	pmap->copyin = std_copyin;
2316 	pmap->copyout = std_copyout;
2317 	pmap->fubyte = std_fubyte;
2318 	pmap->subyte = std_subyte;
2319 	pmap->fuword32 = std_fuword32;
2320 	pmap->fuword64 = std_fuword64;
2321 	pmap->suword32 = std_suword32;
2322 	pmap->suword64 = std_suword64;
2323 	pmap->swapu32 = std_swapu32;
2324 	pmap->swapu64 = std_swapu64;
2325 	pmap->fuwordadd32 = std_fuwordadd32;
2326 	pmap->fuwordadd64 = std_fuwordadd64;
2327 }
2328 /*
2329  * Initialize pmap0/vmspace0.
2330  *
2331  * On architectures where the kernel pmap is not integrated into the user
2332  * process pmap, this pmap represents the process pmap, not the kernel pmap.
2333  * kernel_pmap should be used to directly access the kernel_pmap.
2334  */
2335 void
2336 pmap_pinit0(struct pmap *pmap)
2337 {
2338 	int i;
2339 
2340 	pmap->pm_pml4 = (pml4_entry_t *)(PTOV_OFFSET + KPML4phys);
2341 	pmap->pm_count = 1;
2342 	CPUMASK_ASSZERO(pmap->pm_active);
2343 	pmap->pm_pvhint_pt = NULL;
2344 	pmap->pm_pvhint_unused = NULL;
2345 	RB_INIT(&pmap->pm_pvroot);
2346 	spin_init(&pmap->pm_spin, "pmapinit0");
2347 	for (i = 0; i < PM_PLACEMARKS; ++i)
2348 		pmap->pm_placemarks[i] = PM_NOPLACEMARK;
2349 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2350 	pmap_pinit_defaults(pmap);
2351 }
2352 
2353 /*
2354  * Initialize a preallocated and zeroed pmap structure,
2355  * such as one in a vmspace structure.
2356  */
2357 static void
2358 pmap_pinit_simple(struct pmap *pmap)
2359 {
2360 	int i;
2361 
2362 	/*
2363 	 * Misc initialization
2364 	 */
2365 	pmap->pm_count = 1;
2366 	CPUMASK_ASSZERO(pmap->pm_active);
2367 	pmap->pm_pvhint_pt = NULL;
2368 	pmap->pm_pvhint_unused = NULL;
2369 	pmap->pm_flags = PMAP_FLAG_SIMPLE;
2370 
2371 	pmap_pinit_defaults(pmap);
2372 
2373 	/*
2374 	 * Don't blow up locks/tokens on re-use (XXX fix/use drop code
2375 	 * for this).
2376 	 */
2377 	if (pmap->pm_pmlpv == NULL) {
2378 		RB_INIT(&pmap->pm_pvroot);
2379 		bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2380 		spin_init(&pmap->pm_spin, "pmapinitsimple");
2381 		for (i = 0; i < PM_PLACEMARKS; ++i)
2382 			pmap->pm_placemarks[i] = PM_NOPLACEMARK;
2383 	}
2384 }
2385 
2386 void
2387 pmap_pinit(struct pmap *pmap)
2388 {
2389 	pv_entry_t pv;
2390 	int j;
2391 
2392 	if (pmap->pm_pmlpv) {
2393 		if (pmap->pmap_bits[TYPE_IDX] != REGULAR_PMAP) {
2394 			pmap_puninit(pmap);
2395 		}
2396 	}
2397 
2398 	pmap_pinit_simple(pmap);
2399 	pmap->pm_flags &= ~PMAP_FLAG_SIMPLE;
2400 
2401 	/*
2402 	 * No need to allocate page table space yet but we do need a valid
2403 	 * page directory table.
2404 	 */
2405 	if (pmap->pm_pml4 == NULL) {
2406 		pmap->pm_pml4 =
2407 		    (pml4_entry_t *)kmem_alloc_pageable(&kernel_map,
2408 							PAGE_SIZE * 2,
2409 							VM_SUBSYS_PML4);
2410 		pmap->pm_pml4_iso = (void *)((char *)pmap->pm_pml4 + PAGE_SIZE);
2411 	}
2412 
2413 	/*
2414 	 * Allocate the PML4e table, which wires it even though it isn't
2415 	 * being entered into some higher level page table (it being the
2416 	 * highest level).  If one is already cached we don't have to do
2417 	 * anything.
2418 	 */
2419 	if ((pv = pmap->pm_pmlpv) == NULL) {
2420 		pv = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
2421 		pmap->pm_pmlpv = pv;
2422 		pmap_kenter((vm_offset_t)pmap->pm_pml4,
2423 			    VM_PAGE_TO_PHYS(pv->pv_m));
2424 		pv_put(pv);
2425 
2426 		/*
2427 		 * Install DMAP and KMAP.
2428 		 */
2429 		for (j = 0; j < NDMPML4E; ++j) {
2430 			pmap->pm_pml4[DMPML4I + j] =
2431 			    (DMPDPphys + ((vm_paddr_t)j << PAGE_SHIFT)) |
2432 			    pmap->pmap_bits[PG_RW_IDX] |
2433 			    pmap->pmap_bits[PG_V_IDX] |
2434 			    pmap->pmap_bits[PG_A_IDX];
2435 		}
2436 		for (j = 0; j < NKPML4E; ++j) {
2437 			pmap->pm_pml4[KPML4I + j] =
2438 			    (KPDPphys + ((vm_paddr_t)j << PAGE_SHIFT)) |
2439 			    pmap->pmap_bits[PG_RW_IDX] |
2440 			    pmap->pmap_bits[PG_V_IDX] |
2441 			    pmap->pmap_bits[PG_A_IDX];
2442 		}
2443 
2444 		/*
2445 		 * install self-referential address mapping entry
2446 		 */
2447 		pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pv->pv_m) |
2448 		    pmap->pmap_bits[PG_V_IDX] |
2449 		    pmap->pmap_bits[PG_RW_IDX] |
2450 		    pmap->pmap_bits[PG_A_IDX];
2451 	} else {
2452 		KKASSERT(pv->pv_m->flags & PG_MAPPED);
2453 		KKASSERT(pv->pv_m->flags & PG_WRITEABLE);
2454 	}
2455 	KKASSERT(pmap->pm_pml4[255] == 0);
2456 
2457 	/*
2458 	 * When implementing an isolated userland pmap, a second PML4e table
2459 	 * is needed.  We use pmap_pml4_pindex() + 1 for convenience, but
2460 	 * note that we do not operate on this table using our API functions
2461 	 * so handling of the + 1 case is mostly just to prevent implosions.
2462 	 *
2463 	 * We install an isolated version of the kernel PDPs into this
2464 	 * second PML4e table.  The pmap code will mirror all user PDPs
2465 	 * between the primary and secondary PML4e table.
2466 	 */
2467 	if ((pv = pmap->pm_pmlpv_iso) == NULL && meltdown_mitigation &&
2468 	    pmap != &iso_pmap) {
2469 		pv = pmap_allocpte(pmap, pmap_pml4_pindex() + 1, NULL);
2470 		pmap->pm_pmlpv_iso = pv;
2471 		pmap_kenter((vm_offset_t)pmap->pm_pml4_iso,
2472 			    VM_PAGE_TO_PHYS(pv->pv_m));
2473 		pv_put(pv);
2474 
2475 		/*
2476 		 * Install an isolated version of the kernel pmap for
2477 		 * user consumption, using PDPs constructed in iso_pmap.
2478 		 */
2479 		for (j = 0; j < NKPML4E; ++j) {
2480 			pmap->pm_pml4_iso[KPML4I + j] =
2481 				iso_pmap.pm_pml4[KPML4I + j];
2482 		}
2483 	} else if (pv) {
2484 		KKASSERT(pv->pv_m->flags & PG_MAPPED);
2485 		KKASSERT(pv->pv_m->flags & PG_WRITEABLE);
2486 	}
2487 }
2488 
2489 /*
2490  * Clean up a pmap structure so it can be physically freed.  This routine
2491  * is called by the vmspace dtor function.  A great deal of pmap data is
2492  * left passively mapped to improve vmspace management so we have a bit
2493  * of cleanup work to do here.
2494  */
2495 void
2496 pmap_puninit(pmap_t pmap)
2497 {
2498 	pv_entry_t pv;
2499 	vm_page_t p;
2500 
2501 	KKASSERT(CPUMASK_TESTZERO(pmap->pm_active));
2502 	if ((pv = pmap->pm_pmlpv) != NULL) {
2503 		if (pv_hold_try(pv) == 0)
2504 			pv_lock(pv);
2505 		KKASSERT(pv == pmap->pm_pmlpv);
2506 		p = pmap_remove_pv_page(pv, 1);
2507 		pv_free(pv, NULL);
2508 		pv = NULL;	/* safety */
2509 		pmap_kremove((vm_offset_t)pmap->pm_pml4);
2510 		vm_page_busy_wait(p, FALSE, "pgpun");
2511 		KKASSERT(p->flags & PG_UNQUEUED);
2512 		vm_page_unwire(p, 0);
2513 		vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
2514 		vm_page_free(p);
2515 		pmap->pm_pmlpv = NULL;
2516 	}
2517 	if ((pv = pmap->pm_pmlpv_iso) != NULL) {
2518 		if (pv_hold_try(pv) == 0)
2519 			pv_lock(pv);
2520 		KKASSERT(pv == pmap->pm_pmlpv_iso);
2521 		p = pmap_remove_pv_page(pv, 1);
2522 		pv_free(pv, NULL);
2523 		pv = NULL;	/* safety */
2524 		pmap_kremove((vm_offset_t)pmap->pm_pml4_iso);
2525 		vm_page_busy_wait(p, FALSE, "pgpun");
2526 		KKASSERT(p->flags & PG_UNQUEUED);
2527 		vm_page_unwire(p, 0);
2528 		vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
2529 		vm_page_free(p);
2530 		pmap->pm_pmlpv_iso = NULL;
2531 	}
2532 	if (pmap->pm_pml4) {
2533 		KKASSERT(pmap->pm_pml4 != (void *)(PTOV_OFFSET + KPML4phys));
2534 		kmem_free(&kernel_map,
2535 			  (vm_offset_t)pmap->pm_pml4, PAGE_SIZE * 2);
2536 		pmap->pm_pml4 = NULL;
2537 		pmap->pm_pml4_iso = NULL;
2538 	}
2539 	KKASSERT(pmap->pm_stats.resident_count == 0);
2540 	KKASSERT(pmap->pm_stats.wired_count == 0);
2541 }
2542 
2543 /*
2544  * This function is now unused (used to add the pmap to the pmap_list)
2545  */
2546 void
2547 pmap_pinit2(struct pmap *pmap)
2548 {
2549 }
2550 
2551 /*
2552  * This routine is called when various levels in the page table need to
2553  * be populated.  This routine cannot fail.
2554  *
2555  * This function returns two locked pv_entry's, one representing the
2556  * requested pv and one representing the requested pv's parent pv.  If
2557  * an intermediate page table does not exist it will be created, mapped,
2558  * wired, and the parent page table will be given an additional hold
2559  * count representing the presence of the child pv_entry.
2560  */
2561 static
2562 pv_entry_t
2563 pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp)
2564 {
2565 	pt_entry_t *ptep;
2566 	pt_entry_t *ptep_iso;
2567 	pv_entry_t pv;
2568 	pv_entry_t pvp;
2569 	pt_entry_t v;
2570 	vm_page_t m;
2571 	int isnew;
2572 	int ispt;
2573 
2574 	/*
2575 	 * If the pv already exists and we aren't being asked for the
2576 	 * parent page table page we can just return it.  A locked+held pv
2577 	 * is returned.  The pv will also have a second hold related to the
2578 	 * pmap association that we don't have to worry about.
2579 	 */
2580 	ispt = 0;
2581 	pv = pv_alloc(pmap, ptepindex, &isnew);
2582 	if (isnew == 0 && pvpp == NULL)
2583 		return(pv);
2584 
2585 	/*
2586 	 * DragonFly doesn't use PV's to represent terminal PTEs any more.
2587 	 * The index range is still used for placemarkers, but not for
2588 	 * actual pv_entry's.
2589 	 */
2590 	KKASSERT(ptepindex >= pmap_pt_pindex(0));
2591 
2592 	/*
2593 	 * Note that pt_pv's are only returned for user VAs. We assert that
2594 	 * a pt_pv is not being requested for kernel VAs.  The kernel
2595 	 * pre-wires all higher-level page tables so don't overload managed
2596 	 * higher-level page tables on top of it!
2597 	 *
2598 	 * However, its convenient for us to allow the case when creating
2599 	 * iso_pmap.  This is a bit of a hack but it simplifies iso_pmap
2600 	 * a lot.
2601 	 */
2602 
2603 	/*
2604 	 * The kernel never uses managed PT/PD/PDP pages.
2605 	 */
2606 	KKASSERT(pmap != &kernel_pmap);
2607 
2608 	/*
2609 	 * Non-terminal PVs allocate a VM page to represent the page table,
2610 	 * so we have to resolve pvp and calculate ptepindex for the pvp
2611 	 * and then for the page table entry index in the pvp for
2612 	 * fall-through.
2613 	 */
2614 	if (ptepindex < pmap_pd_pindex(0)) {
2615 		/*
2616 		 * pv is PT, pvp is PD
2617 		 */
2618 		ptepindex = (ptepindex - pmap_pt_pindex(0)) >> NPDEPGSHIFT;
2619 		ptepindex += NUPTE_TOTAL + NUPT_TOTAL;
2620 		pvp = pmap_allocpte(pmap, ptepindex, NULL);
2621 
2622 		/*
2623 		 * PT index in PD
2624 		 */
2625 		ptepindex = pv->pv_pindex - pmap_pt_pindex(0);
2626 		ptepindex &= ((1ul << NPDEPGSHIFT) - 1);
2627 		ispt = 1;
2628 	} else if (ptepindex < pmap_pdp_pindex(0)) {
2629 		/*
2630 		 * pv is PD, pvp is PDP
2631 		 *
2632 		 * SIMPLE PMAP NOTE: Simple pmaps do not allocate above
2633 		 *		     the PD.
2634 		 */
2635 		ptepindex = (ptepindex - pmap_pd_pindex(0)) >> NPDPEPGSHIFT;
2636 		ptepindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
2637 
2638 		if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
2639 			KKASSERT(pvpp == NULL);
2640 			pvp = NULL;
2641 		} else {
2642 			pvp = pmap_allocpte(pmap, ptepindex, NULL);
2643 		}
2644 
2645 		/*
2646 		 * PD index in PDP
2647 		 */
2648 		ptepindex = pv->pv_pindex - pmap_pd_pindex(0);
2649 		ptepindex &= ((1ul << NPDPEPGSHIFT) - 1);
2650 	} else if (ptepindex < pmap_pml4_pindex()) {
2651 		/*
2652 		 * pv is PDP, pvp is the root pml4 table
2653 		 */
2654 		pvp = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
2655 
2656 		/*
2657 		 * PDP index in PML4
2658 		 */
2659 		ptepindex = pv->pv_pindex - pmap_pdp_pindex(0);
2660 		ptepindex &= ((1ul << NPML4EPGSHIFT) - 1);
2661 	} else {
2662 		/*
2663 		 * pv represents the top-level PML4, there is no parent.
2664 		 */
2665 		pvp = NULL;
2666 	}
2667 
2668 	if (isnew == 0)
2669 		goto notnew;
2670 
2671 	/*
2672 	 * (isnew) is TRUE, pv is not terminal.
2673 	 *
2674 	 * (1) Add a wire count to the parent page table (pvp).
2675 	 * (2) Allocate a VM page for the page table.
2676 	 * (3) Enter the VM page into the parent page table.
2677 	 *
2678 	 * page table pages are marked PG_WRITEABLE and PG_MAPPED.
2679 	 */
2680 	if (pvp)
2681 		vm_page_wire_quick(pvp->pv_m);
2682 
2683 	for (;;) {
2684 		m = vm_page_alloc(NULL, pv->pv_pindex,
2685 				  VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
2686 				  VM_ALLOC_INTERRUPT);
2687 		if (m)
2688 			break;
2689 		vm_wait(0);
2690 	}
2691 	vm_page_wire(m);	/* wire for mapping in parent */
2692 	pmap_zero_page(VM_PAGE_TO_PHYS(m));
2693 	m->valid = VM_PAGE_BITS_ALL;
2694 	vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_UNQUEUED);
2695 	KKASSERT(m->queue == PQ_NONE);
2696 
2697 	pv->pv_m = m;
2698 
2699 	/*
2700 	 * (isnew) is TRUE, pv is not terminal.
2701 	 *
2702 	 * Wire the page into pvp.  Bump the resident_count for the pmap.
2703 	 * There is no pvp for the top level, address the pm_pml4[] array
2704 	 * directly.
2705 	 *
2706 	 * If the caller wants the parent we return it, otherwise
2707 	 * we just put it away.
2708 	 *
2709 	 * No interlock is needed for pte 0 -> non-zero.
2710 	 *
2711 	 * In the situation where *ptep is valid we might have an unmanaged
2712 	 * page table page shared from another page table which we need to
2713 	 * unshare before installing our private page table page.
2714 	 */
2715 	if (pvp) {
2716 		v = VM_PAGE_TO_PHYS(m) |
2717 		    (pmap->pmap_bits[PG_RW_IDX] |
2718 		     pmap->pmap_bits[PG_V_IDX] |
2719 		     pmap->pmap_bits[PG_A_IDX]);
2720 		if (ptepindex < NUPTE_USER)
2721 			v |= pmap->pmap_bits[PG_U_IDX];
2722 		if (ptepindex < pmap_pt_pindex(0))
2723 			v |= pmap->pmap_bits[PG_M_IDX];
2724 
2725 		ptep = pv_pte_lookup(pvp, ptepindex);
2726 		if (pvp == pmap->pm_pmlpv && pmap->pm_pmlpv_iso)
2727 			ptep_iso = pv_pte_lookup(pmap->pm_pmlpv_iso, ptepindex);
2728 		else
2729 			ptep_iso  = NULL;
2730 		if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
2731 			panic("pmap_allocpte: ptpte present without pv_entry!");
2732 		} else {
2733 			pt_entry_t pte;
2734 
2735 			pte = atomic_swap_long(ptep, v);
2736 			if (ptep_iso)
2737 				atomic_swap_long(ptep_iso, v);
2738 			if (pte != 0) {
2739 				kprintf("install pgtbl mixup 0x%016jx "
2740 					"old/new 0x%016jx/0x%016jx\n",
2741 					(intmax_t)ptepindex, pte, v);
2742 			}
2743 		}
2744 	}
2745 	vm_page_wakeup(m);
2746 
2747 	/*
2748 	 * (isnew) may be TRUE or FALSE, pv may or may not be terminal.
2749 	 */
2750 notnew:
2751 	if (pvp) {
2752 		KKASSERT(pvp->pv_m != NULL);
2753 		ptep = pv_pte_lookup(pvp, ptepindex);
2754 		v = VM_PAGE_TO_PHYS(pv->pv_m) |
2755 		    (pmap->pmap_bits[PG_RW_IDX] |
2756 		     pmap->pmap_bits[PG_V_IDX] |
2757 		     pmap->pmap_bits[PG_A_IDX]);
2758 		if (ptepindex < NUPTE_USER)
2759 			v |= pmap->pmap_bits[PG_U_IDX];
2760 		if (ptepindex < pmap_pt_pindex(0))
2761 			v |= pmap->pmap_bits[PG_M_IDX];
2762 		if (*ptep != v) {
2763 			kprintf("mismatched upper level pt %016jx/%016jx\n",
2764 				*ptep, v);
2765 		}
2766 	}
2767 	if (pvpp)
2768 		*pvpp = pvp;
2769 	else if (pvp)
2770 		pv_put(pvp);
2771 	return (pv);
2772 }
2773 
2774 /*
2775  * Release any resources held by the given physical map.
2776  *
2777  * Called when a pmap initialized by pmap_pinit is being released.  Should
2778  * only be called if the map contains no valid mappings.
2779  */
2780 struct pmap_release_info {
2781 	pmap_t	pmap;
2782 	int	retry;
2783 	pv_entry_t pvp;
2784 };
2785 
2786 static int pmap_release_callback(pv_entry_t pv, void *data);
2787 
2788 void
2789 pmap_release(struct pmap *pmap)
2790 {
2791 	struct pmap_release_info info;
2792 
2793 	KASSERT(CPUMASK_TESTZERO(pmap->pm_active),
2794 		("pmap still active! %016jx",
2795 		(uintmax_t)CPUMASK_LOWMASK(pmap->pm_active)));
2796 
2797 	/*
2798 	 * There is no longer a pmap_list, if there were we would remove the
2799 	 * pmap from it here.
2800 	 */
2801 
2802 	/*
2803 	 * Pull pv's off the RB tree in order from low to high and release
2804 	 * each page.
2805 	 */
2806 	info.pmap = pmap;
2807 	do {
2808 		info.retry = 0;
2809 		info.pvp = NULL;
2810 
2811 		spin_lock(&pmap->pm_spin);
2812 		RB_SCAN(pv_entry_rb_tree, &pmap->pm_pvroot, NULL,
2813 			pmap_release_callback, &info);
2814 		spin_unlock(&pmap->pm_spin);
2815 
2816 		if (info.pvp)
2817 			pv_put(info.pvp);
2818 	} while (info.retry);
2819 
2820 
2821 	/*
2822 	 * One resident page (the pml4 page) should remain.  Two if
2823 	 * the pmap has implemented an isolated userland PML4E table.
2824 	 * No wired pages should remain.
2825 	 */
2826 	int expected_res = 0;
2827 
2828 	if ((pmap->pm_flags & PMAP_FLAG_SIMPLE) == 0)
2829 		++expected_res;
2830 	if (pmap->pm_pmlpv_iso)
2831 		++expected_res;
2832 
2833 #if 1
2834 	if (pmap->pm_stats.resident_count != expected_res ||
2835 	    pmap->pm_stats.wired_count != 0) {
2836 		kprintf("fatal pmap problem - pmap %p flags %08x "
2837 			"rescnt=%jd wirecnt=%jd\n",
2838 			pmap,
2839 			pmap->pm_flags,
2840 			pmap->pm_stats.resident_count,
2841 			pmap->pm_stats.wired_count);
2842 		tsleep(pmap, 0, "DEAD", 0);
2843 	}
2844 #else
2845 	KKASSERT(pmap->pm_stats.resident_count == expected_res);
2846 	KKASSERT(pmap->pm_stats.wired_count == 0);
2847 #endif
2848 }
2849 
2850 /*
2851  * Called from low to high.  We must cache the proper parent pv so we
2852  * can adjust its wired count.
2853  */
2854 static int
2855 pmap_release_callback(pv_entry_t pv, void *data)
2856 {
2857 	struct pmap_release_info *info = data;
2858 	pmap_t pmap = info->pmap;
2859 	vm_pindex_t pindex;
2860 	int r;
2861 
2862 	/*
2863 	 * Acquire a held and locked pv, check for release race
2864 	 */
2865 	pindex = pv->pv_pindex;
2866 	if (info->pvp == pv) {
2867 		spin_unlock(&pmap->pm_spin);
2868 		info->pvp = NULL;
2869 	} else if (pv_hold_try(pv)) {
2870 		spin_unlock(&pmap->pm_spin);
2871 	} else {
2872 		spin_unlock(&pmap->pm_spin);
2873 		pv_lock(pv);
2874 		pv_put(pv);
2875 		info->retry = 1;
2876 		spin_lock(&pmap->pm_spin);
2877 
2878 		return -1;
2879 	}
2880 	KKASSERT(pv->pv_pmap == pmap && pindex == pv->pv_pindex);
2881 
2882 	if (pv->pv_pindex < pmap_pt_pindex(0)) {
2883 		/*
2884 		 * I am PTE, parent is PT
2885 		 */
2886 		pindex = pv->pv_pindex >> NPTEPGSHIFT;
2887 		pindex += NUPTE_TOTAL;
2888 	} else if (pv->pv_pindex < pmap_pd_pindex(0)) {
2889 		/*
2890 		 * I am PT, parent is PD
2891 		 */
2892 		pindex = (pv->pv_pindex - NUPTE_TOTAL) >> NPDEPGSHIFT;
2893 		pindex += NUPTE_TOTAL + NUPT_TOTAL;
2894 	} else if (pv->pv_pindex < pmap_pdp_pindex(0)) {
2895 		/*
2896 		 * I am PD, parent is PDP
2897 		 */
2898 		pindex = (pv->pv_pindex - NUPTE_TOTAL - NUPT_TOTAL) >>
2899 			 NPDPEPGSHIFT;
2900 		pindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
2901 	} else if (pv->pv_pindex < pmap_pml4_pindex()) {
2902 		/*
2903 		 * I am PDP, parent is PML4.  We always calculate the
2904 		 * normal PML4 here, not the isolated PML4.
2905 		 */
2906 		pindex = pmap_pml4_pindex();
2907 	} else {
2908 		/*
2909 		 * parent is NULL
2910 		 */
2911 		if (info->pvp) {
2912 			pv_put(info->pvp);
2913 			info->pvp = NULL;
2914 		}
2915 		pindex = 0;
2916 	}
2917 	if (pindex) {
2918 		if (info->pvp && info->pvp->pv_pindex != pindex) {
2919 			pv_put(info->pvp);
2920 			info->pvp = NULL;
2921 		}
2922 		if (info->pvp == NULL)
2923 			info->pvp = pv_get(pmap, pindex, NULL);
2924 	} else {
2925 		if (info->pvp) {
2926 			pv_put(info->pvp);
2927 			info->pvp = NULL;
2928 		}
2929 	}
2930 	r = pmap_release_pv(pv, info->pvp, NULL);
2931 	spin_lock(&pmap->pm_spin);
2932 
2933 	return(r);
2934 }
2935 
2936 /*
2937  * Called with held (i.e. also locked) pv.  This function will dispose of
2938  * the lock along with the pv.
2939  *
2940  * If the caller already holds the locked parent page table for pv it
2941  * must pass it as pvp, allowing us to avoid a deadlock, else it can
2942  * pass NULL for pvp.
2943  */
2944 static int
2945 pmap_release_pv(pv_entry_t pv, pv_entry_t pvp, pmap_inval_bulk_t *bulk)
2946 {
2947 	vm_page_t p;
2948 
2949 	/*
2950 	 * The pmap is currently not spinlocked, pv is held+locked.
2951 	 * Remove the pv's page from its parent's page table.  The
2952 	 * parent's page table page's wire_count will be decremented.
2953 	 *
2954 	 * This will clean out the pte at any level of the page table.
2955 	 * If smp != 0 all cpus are affected.
2956 	 *
2957 	 * Do not tear-down recursively, its faster to just let the
2958 	 * release run its course.
2959 	 */
2960 	pmap_remove_pv_pte(pv, pvp, bulk, 0);
2961 
2962 	/*
2963 	 * Terminal pvs are unhooked from their vm_pages.  Because
2964 	 * terminal pages aren't page table pages they aren't wired
2965 	 * by us, so we have to be sure not to unwire them either.
2966 	 *
2967 	 * XXX this code is operating on a user page rather than
2968 	 *     a page-table page and cannot safely clear the PG_MAPPED
2969 	 *     and PG_WRITEABLE bits.  (XXX clearing these bits should
2970 	 *     be safe in PMAP_ADVANCED mode).
2971 	 *
2972 	 * XXX It is unclear if this code ever gets called because we
2973 	 *     no longer use pv's to track terminal pages.
2974 	 */
2975 	if (pv->pv_pindex < pmap_pt_pindex(0)) {
2976 		pmap_remove_pv_page(pv, 0);
2977 		goto skip;
2978 	}
2979 
2980 	/*
2981 	 * We leave the top-level page table page cached, wired, and
2982 	 * mapped in the pmap until the dtor function (pmap_puninit())
2983 	 * gets called.
2984 	 *
2985 	 * Since we are leaving the top-level pv intact we need
2986 	 * to break out of what would otherwise be an infinite loop.
2987 	 *
2988 	 * This covers both the normal and the isolated PML4 page.
2989 	 */
2990 	if (pv->pv_pindex >= pmap_pml4_pindex()) {
2991 		pv_put(pv);
2992 		return(-1);
2993 	}
2994 
2995 	/*
2996 	 * For page table pages (other than the top-level page),
2997 	 * remove and free the vm_page.  The representitive mapping
2998 	 * removed above by pmap_remove_pv_pte() did not undo the
2999 	 * last wire_count so we have to do that as well.
3000 	 */
3001 	p = pmap_remove_pv_page(pv, 1);
3002 	vm_page_busy_wait(p, FALSE, "pmaprl");
3003 	if (p->wire_count != 1) {
3004 		const char *tstr;
3005 
3006 		if (pv->pv_pindex >= pmap_pdp_pindex(0))
3007 			tstr = "PDP";
3008 		else if (pv->pv_pindex >= pmap_pd_pindex(0))
3009 			tstr = "PD";
3010 		else if (pv->pv_pindex >= pmap_pt_pindex(0))
3011 			tstr = "PT";
3012 		else
3013 			tstr = "PTE";
3014 
3015 		kprintf("p(%s) p->wire_count was %016lx %d\n",
3016 			tstr, pv->pv_pindex, p->wire_count);
3017 	}
3018 	KKASSERT(p->wire_count == 1);
3019 	KKASSERT(p->flags & PG_UNQUEUED);
3020 
3021 	vm_page_unwire(p, 0);
3022 	KKASSERT(p->wire_count == 0);
3023 
3024 	vm_page_free(p);
3025 skip:
3026 	pv_free(pv, pvp);
3027 
3028 	return 0;
3029 }
3030 
3031 /*
3032  * This function will remove the pte associated with a pv from its parent.
3033  * Terminal pv's are supported.  All cpus specified by (bulk) are properly
3034  * invalidated.
3035  *
3036  * The wire count will be dropped on the parent page table.  The wire
3037  * count on the page being removed (pv->pv_m) from the parent page table
3038  * is NOT touched.  Note that terminal pages will not have any additional
3039  * wire counts while page table pages will have at least one representing
3040  * the mapping, plus others representing sub-mappings.
3041  *
3042  * NOTE: Cannot be called on kernel page table pages, only KVM terminal
3043  *	 pages and user page table and terminal pages.
3044  *
3045  * NOTE: The pte being removed might be unmanaged, and the pv supplied might
3046  *	 be freshly allocated and not imply that the pte is managed.  In this
3047  *	 case pv->pv_m should be NULL.
3048  *
3049  * The pv must be locked.  The pvp, if supplied, must be locked.  All
3050  * supplied pv's will remain locked on return.
3051  *
3052  * XXX must lock parent pv's if they exist to remove pte XXX
3053  */
3054 static
3055 void
3056 pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp, pmap_inval_bulk_t *bulk,
3057 		   int destroy)
3058 {
3059 	vm_pindex_t ptepindex = pv->pv_pindex;
3060 	pmap_t pmap = pv->pv_pmap;
3061 	vm_page_t p;
3062 	int gotpvp = 0;
3063 
3064 	KKASSERT(pmap);
3065 
3066 	if (ptepindex >= pmap_pml4_pindex()) {
3067 		/*
3068 		 * We are the top level PML4E table, there is no parent.
3069 		 *
3070 		 * This is either the normal or isolated PML4E table.
3071 		 * Only the normal is used in regular operation, the isolated
3072 		 * is only passed in when breaking down the whole pmap.
3073 		 */
3074 		p = pmap->pm_pmlpv->pv_m;
3075 		KKASSERT(pv->pv_m == p);	/* debugging */
3076 	} else if (ptepindex >= pmap_pdp_pindex(0)) {
3077 		/*
3078 		 * Remove a PDP page from the PML4E.  This can only occur
3079 		 * with user page tables.  We do not have to lock the
3080 		 * pml4 PV so just ignore pvp.
3081 		 */
3082 		vm_pindex_t pml4_pindex;
3083 		vm_pindex_t pdp_index;
3084 		pml4_entry_t *pdp;
3085 		pml4_entry_t *pdp_iso;
3086 
3087 		pdp_index = ptepindex - pmap_pdp_pindex(0);
3088 		if (pvp == NULL) {
3089 			pml4_pindex = pmap_pml4_pindex();
3090 			pvp = pv_get(pv->pv_pmap, pml4_pindex, NULL);
3091 			KKASSERT(pvp);
3092 			gotpvp = 1;
3093 		}
3094 
3095 		pdp = &pmap->pm_pml4[pdp_index & ((1ul << NPML4EPGSHIFT) - 1)];
3096 		KKASSERT((*pdp & pmap->pmap_bits[PG_V_IDX]) != 0);
3097 		p = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
3098 		pmap_inval_bulk(bulk, (vm_offset_t)-1, pdp, 0);
3099 
3100 		/*
3101 		 * Also remove the PDP from the isolated PML4E if the
3102 		 * process uses one.
3103 		 */
3104 		if (pvp == pmap->pm_pmlpv && pmap->pm_pmlpv_iso) {
3105 			pdp_iso = &pmap->pm_pml4_iso[pdp_index &
3106 						((1ul << NPML4EPGSHIFT) - 1)];
3107 			pmap_inval_bulk(bulk, (vm_offset_t)-1, pdp_iso, 0);
3108 		}
3109 		KKASSERT(pv->pv_m == p);	/* debugging */
3110 	} else if (ptepindex >= pmap_pd_pindex(0)) {
3111 		/*
3112 		 * Remove a PD page from the PDP
3113 		 *
3114 		 * SIMPLE PMAP NOTE: Non-existant pvp's are ok in the case
3115 		 *		     of a simple pmap because it stops at
3116 		 *		     the PD page.
3117 		 */
3118 		vm_pindex_t pdp_pindex;
3119 		vm_pindex_t pd_index;
3120 		pdp_entry_t *pd;
3121 
3122 		pd_index = ptepindex - pmap_pd_pindex(0);
3123 
3124 		if (pvp == NULL) {
3125 			pdp_pindex = NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
3126 				     (pd_index >> NPML4EPGSHIFT);
3127 			pvp = pv_get(pv->pv_pmap, pdp_pindex, NULL);
3128 			gotpvp = 1;
3129 		}
3130 
3131 		if (pvp) {
3132 			pd = pv_pte_lookup(pvp, pd_index &
3133 						((1ul << NPDPEPGSHIFT) - 1));
3134 			KKASSERT((*pd & pmap->pmap_bits[PG_V_IDX]) != 0);
3135 			p = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
3136 			pmap_inval_bulk(bulk, (vm_offset_t)-1, pd, 0);
3137 		} else {
3138 			KKASSERT(pmap->pm_flags & PMAP_FLAG_SIMPLE);
3139 			p = pv->pv_m;		/* degenerate test later */
3140 		}
3141 		KKASSERT(pv->pv_m == p);	/* debugging */
3142 	} else if (ptepindex >= pmap_pt_pindex(0)) {
3143 		/*
3144 		 *  Remove a PT page from the PD
3145 		 */
3146 		vm_pindex_t pd_pindex;
3147 		vm_pindex_t pt_index;
3148 		pd_entry_t *pt;
3149 
3150 		pt_index = ptepindex - pmap_pt_pindex(0);
3151 
3152 		if (pvp == NULL) {
3153 			pd_pindex = NUPTE_TOTAL + NUPT_TOTAL +
3154 				    (pt_index >> NPDPEPGSHIFT);
3155 			pvp = pv_get(pv->pv_pmap, pd_pindex, NULL);
3156 			KKASSERT(pvp);
3157 			gotpvp = 1;
3158 		}
3159 
3160 		pt = pv_pte_lookup(pvp, pt_index & ((1ul << NPDPEPGSHIFT) - 1));
3161 #if 0
3162 		KASSERT((*pt & pmap->pmap_bits[PG_V_IDX]) != 0,
3163 			("*pt unexpectedly invalid %016jx "
3164 			 "gotpvp=%d ptepindex=%ld ptindex=%ld pv=%p pvp=%p",
3165 			*pt, gotpvp, ptepindex, pt_index, pv, pvp));
3166 		p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
3167 #else
3168 		if ((*pt & pmap->pmap_bits[PG_V_IDX]) == 0) {
3169 			kprintf("*pt unexpectedly invalid %016jx "
3170 			        "gotpvp=%d ptepindex=%ld ptindex=%ld "
3171 				"pv=%p pvp=%p\n",
3172 				*pt, gotpvp, ptepindex, pt_index, pv, pvp);
3173 			tsleep(pt, 0, "DEAD", 0);
3174 			p = pv->pv_m;
3175 		} else {
3176 			p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
3177 		}
3178 #endif
3179 		pmap_inval_bulk(bulk, (vm_offset_t)-1, pt, 0);
3180 		KKASSERT(pv->pv_m == p);	/* debugging */
3181 	} else {
3182 		KKASSERT(0);
3183 	}
3184 
3185 	/*
3186 	 * If requested, scrap the underlying pv->pv_m and the underlying
3187 	 * pv.  If this is a page-table-page we must also free the page.
3188 	 *
3189 	 * pvp must be returned locked.
3190 	 */
3191 	if (destroy == 1) {
3192 		/*
3193 		 * page table page (PT, PD, PDP, PML4), caller was responsible
3194 		 * for testing wired_count.
3195 		 */
3196 		KKASSERT(pv->pv_m->wire_count == 1);
3197 		p = pmap_remove_pv_page(pv, 1);
3198 		pv_free(pv, pvp);
3199 		pv = NULL;
3200 
3201 		vm_page_busy_wait(p, FALSE, "pgpun");
3202 		vm_page_unwire(p, 0);
3203 		vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
3204 		vm_page_free(p);
3205 	}
3206 #if !defined(PMAP_ADVANCED)
3207 	else if (destroy == 2) {
3208 		/*
3209 		 * Normal page, remove from pmap and leave the underlying
3210 		 * page untouched.
3211 		 *
3212 		 * XXX REMOVE ME, destroy can no longer be 2.
3213 		 */
3214 		pmap_remove_pv_page(pv, 0);
3215 		pv_free(pv, pvp);
3216 		pv = NULL;		/* safety */
3217 	}
3218 #endif
3219 
3220 	/*
3221 	 * If we acquired pvp ourselves then we are responsible for
3222 	 * recursively deleting it.
3223 	 */
3224 	if (pvp && gotpvp) {
3225 		/*
3226 		 * Recursively destroy higher-level page tables.
3227 		 *
3228 		 * This is optional.  If we do not, they will still
3229 		 * be destroyed when the process exits.
3230 		 *
3231 		 * NOTE: Do not destroy pv_entry's with extra hold refs,
3232 		 *	 a caller may have unlocked it and intends to
3233 		 *	 continue to use it.
3234 		 */
3235 		if (pmap_dynamic_delete &&
3236 		    pvp->pv_m &&
3237 		    pvp->pv_m->wire_count == 1 &&
3238 		    (pvp->pv_hold & PV_HOLD_MASK) == 2 &&
3239 		    pvp->pv_pindex < pmap_pml4_pindex()) {
3240 			if (pmap != &kernel_pmap) {
3241 				pmap_remove_pv_pte(pvp, NULL, bulk, 1);
3242 				pvp = NULL;	/* safety */
3243 			} else {
3244 				kprintf("Attempt to remove kernel_pmap pindex "
3245 					"%jd\n", pvp->pv_pindex);
3246 				pv_put(pvp);
3247 			}
3248 		} else {
3249 			pv_put(pvp);
3250 		}
3251 	}
3252 }
3253 
3254 /*
3255  * Remove the vm_page association to a pv.  The pv must be locked.
3256  */
3257 static
3258 vm_page_t
3259 pmap_remove_pv_page(pv_entry_t pv, int clrpgbits)
3260 {
3261 	vm_page_t m;
3262 
3263 	m = pv->pv_m;
3264 	pv->pv_m = NULL;
3265 	if (clrpgbits)
3266 		vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
3267 
3268 	return(m);
3269 }
3270 
3271 /*
3272  * Grow the number of kernel page table entries, if needed.
3273  *
3274  * This routine is always called to validate any address space
3275  * beyond KERNBASE (for kldloads).  kernel_vm_end only governs the address
3276  * space below KERNBASE.
3277  *
3278  * kernel_map must be locked exclusively by the caller.
3279  */
3280 void
3281 pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
3282 {
3283 	vm_paddr_t paddr;
3284 	vm_offset_t ptppaddr;
3285 	vm_page_t nkpg;
3286 	pd_entry_t *pt, newpt;
3287 	pdp_entry_t *pd, newpd;
3288 	int update_kernel_vm_end;
3289 
3290 	/*
3291 	 * bootstrap kernel_vm_end on first real VM use
3292 	 */
3293 	if (kernel_vm_end == 0) {
3294 		kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
3295 
3296 		for (;;) {
3297 			pt = pmap_pt(&kernel_pmap, kernel_vm_end);
3298 			if (pt == NULL)
3299 				break;
3300 			if ((*pt & kernel_pmap.pmap_bits[PG_V_IDX]) == 0)
3301 				break;
3302 			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
3303 					~(vm_offset_t)(PAGE_SIZE * NPTEPG - 1);
3304 			if (kernel_vm_end - 1 >= vm_map_max(&kernel_map)) {
3305 				kernel_vm_end = vm_map_max(&kernel_map);
3306 				break;
3307 			}
3308 		}
3309 	}
3310 
3311 	/*
3312 	 * Fill in the gaps.  kernel_vm_end is only adjusted for ranges
3313 	 * below KERNBASE.  Ranges above KERNBASE are kldloaded and we
3314 	 * do not want to force-fill 128G worth of page tables.
3315 	 */
3316 	if (kstart < KERNBASE) {
3317 		if (kstart > kernel_vm_end)
3318 			kstart = kernel_vm_end;
3319 		KKASSERT(kend <= KERNBASE);
3320 		update_kernel_vm_end = 1;
3321 	} else {
3322 		update_kernel_vm_end = 0;
3323 	}
3324 
3325 	kstart = rounddown2(kstart, (vm_offset_t)(PAGE_SIZE * NPTEPG));
3326 	kend = roundup2(kend, (vm_offset_t)(PAGE_SIZE * NPTEPG));
3327 
3328 	if (kend - 1 >= vm_map_max(&kernel_map))
3329 		kend = vm_map_max(&kernel_map);
3330 
3331 	while (kstart < kend) {
3332 		pt = pmap_pt(&kernel_pmap, kstart);
3333 		if (pt == NULL) {
3334 			/*
3335 			 * We need a new PD entry
3336 			 */
3337 			nkpg = vm_page_alloc(NULL, mycpu->gd_rand_incr++,
3338 			                     VM_ALLOC_NORMAL |
3339 					     VM_ALLOC_SYSTEM |
3340 					     VM_ALLOC_INTERRUPT);
3341 			if (nkpg == NULL) {
3342 				panic("pmap_growkernel: no memory to grow "
3343 				      "kernel");
3344 			}
3345 			paddr = VM_PAGE_TO_PHYS(nkpg);
3346 			pmap_zero_page(paddr);
3347 			pd = pmap_pd(&kernel_pmap, kstart);
3348 
3349 			newpd = (pdp_entry_t)
3350 			    (paddr |
3351 			    kernel_pmap.pmap_bits[PG_V_IDX] |
3352 			    kernel_pmap.pmap_bits[PG_RW_IDX] |
3353 			    kernel_pmap.pmap_bits[PG_A_IDX]);
3354 			atomic_swap_long(pd, newpd);
3355 
3356 #if 0
3357 			kprintf("NEWPD pd=%p pde=%016jx phys=%016jx\n",
3358 				pd, newpd, paddr);
3359 #endif
3360 
3361 			continue; /* try again */
3362 		}
3363 
3364 		if ((*pt & kernel_pmap.pmap_bits[PG_V_IDX]) != 0) {
3365 			kstart = (kstart + PAGE_SIZE * NPTEPG) &
3366 				 ~(vm_offset_t)(PAGE_SIZE * NPTEPG - 1);
3367 			if (kstart - 1 >= vm_map_max(&kernel_map)) {
3368 				kstart = vm_map_max(&kernel_map);
3369 				break;
3370 			}
3371 			continue;
3372 		}
3373 
3374 		/*
3375 		 * We need a new PT
3376 		 *
3377 		 * This index is bogus, but out of the way
3378 		 */
3379 		nkpg = vm_page_alloc(NULL, mycpu->gd_rand_incr++,
3380 				     VM_ALLOC_NORMAL |
3381 				     VM_ALLOC_SYSTEM |
3382 				     VM_ALLOC_INTERRUPT);
3383 		if (nkpg == NULL)
3384 			panic("pmap_growkernel: no memory to grow kernel");
3385 
3386 		vm_page_wire(nkpg);
3387 		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
3388 		pmap_zero_page(ptppaddr);
3389 		newpt = (pd_entry_t)(ptppaddr |
3390 				     kernel_pmap.pmap_bits[PG_V_IDX] |
3391 				     kernel_pmap.pmap_bits[PG_RW_IDX] |
3392 				     kernel_pmap.pmap_bits[PG_A_IDX]);
3393 		atomic_swap_long(pt, newpt);
3394 
3395 		kstart = (kstart + PAGE_SIZE * NPTEPG) &
3396 			  ~(vm_offset_t)(PAGE_SIZE * NPTEPG - 1);
3397 
3398 		if (kstart - 1 >= vm_map_max(&kernel_map)) {
3399 			kstart = vm_map_max(&kernel_map);
3400 			break;
3401 		}
3402 	}
3403 
3404 	/*
3405 	 * Only update kernel_vm_end for areas below KERNBASE.
3406 	 */
3407 	if (update_kernel_vm_end && kernel_vm_end < kstart)
3408 		kernel_vm_end = kstart;
3409 }
3410 
3411 /*
3412  *	Add a reference to the specified pmap.
3413  */
3414 void
3415 pmap_reference(pmap_t pmap)
3416 {
3417 	if (pmap != NULL)
3418 		atomic_add_int(&pmap->pm_count, 1);
3419 }
3420 
3421 void
3422 pmap_maybethreaded(pmap_t pmap)
3423 {
3424 	atomic_set_int(&pmap->pm_flags, PMAP_MULTI);
3425 }
3426 
3427 /*
3428  * Called while page is hard-busied to clear the PG_MAPPED and PG_WRITEABLE
3429  * flags if able.  This can happen when the pmap code is unable to clear
3430  * the bits in prior actions due to not holding the page hard-busied at
3431  * the time.
3432  *
3433  * When PMAP_ADVANCED is enabled the clearing of PG_MAPPED/WRITEABLE
3434  * is an optional optimization done when the pte is removed and only
3435  * if the pte has not been multiply-mapped.  The caller may have to
3436  * call vm_page_protect() if the bits are still set here.
3437  *
3438  * When PMAP_ADVANCED is disabled we check pmap_count to synchronize
3439  * the clearing of PG_MAPPED etc.  The caller only has to call
3440  * vm_page_protect() if the page is still actually mapped.
3441  *
3442  * This function is expected to be quick.
3443  */
3444 int
3445 pmap_mapped_sync(vm_page_t m)
3446 {
3447 #if !defined(PMAP_ADVANCED)
3448 	if (m->flags & (PG_MAPPED | PG_WRITEABLE)) {
3449 		if (m->md.pmap_count == 0) {
3450 			vm_page_flag_clear(m, PG_MAPPED | PG_MAPPEDMULTI |
3451 					      PG_WRITEABLE);
3452 		}
3453 	}
3454 #endif
3455 	return (m->flags);
3456 }
3457 
3458 /***************************************************
3459  * page management routines.
3460  ***************************************************/
3461 
3462 /*
3463  * Hold a pv without locking it
3464  */
3465 #if 0
3466 static void
3467 pv_hold(pv_entry_t pv)
3468 {
3469 	atomic_add_int(&pv->pv_hold, 1);
3470 }
3471 #endif
3472 
3473 /*
3474  * Hold a pv_entry, preventing its destruction.  TRUE is returned if the pv
3475  * was successfully locked, FALSE if it wasn't.  The caller must dispose of
3476  * the pv properly.
3477  *
3478  * Either the pmap->pm_spin or the related vm_page_spin (if traversing a
3479  * pv list via its page) must be held by the caller in order to stabilize
3480  * the pv.
3481  */
3482 static int
3483 _pv_hold_try(pv_entry_t pv PMAP_DEBUG_DECL)
3484 {
3485 	u_int count;
3486 
3487 	/*
3488 	 * Critical path shortcut expects pv to already have one ref
3489 	 * (for the pv->pv_pmap).
3490 	 */
3491 	count = pv->pv_hold;
3492 	cpu_ccfence();
3493 	for (;;) {
3494 		if ((count & PV_HOLD_LOCKED) == 0) {
3495 			if (atomic_fcmpset_int(&pv->pv_hold, &count,
3496 					      (count + 1) | PV_HOLD_LOCKED)) {
3497 #ifdef PMAP_DEBUG
3498 				pv->pv_func = func;
3499 				pv->pv_line = lineno;
3500 #endif
3501 				return TRUE;
3502 			}
3503 		} else {
3504 			if (atomic_fcmpset_int(&pv->pv_hold, &count, count + 1))
3505 				return FALSE;
3506 		}
3507 		/* retry */
3508 	}
3509 }
3510 
3511 /*
3512  * Drop a previously held pv_entry which could not be locked, allowing its
3513  * destruction.
3514  *
3515  * Must not be called with a spinlock held as we might zfree() the pv if it
3516  * is no longer associated with a pmap and this was the last hold count.
3517  */
3518 static void
3519 pv_drop(pv_entry_t pv)
3520 {
3521 	u_int count;
3522 
3523 	for (;;) {
3524 		count = pv->pv_hold;
3525 		cpu_ccfence();
3526 		KKASSERT((count & PV_HOLD_MASK) > 0);
3527 		KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) !=
3528 			 (PV_HOLD_LOCKED | 1));
3529 		if (atomic_cmpset_int(&pv->pv_hold, count, count - 1)) {
3530 			if ((count & PV_HOLD_MASK) == 1) {
3531 #ifdef PMAP_DEBUG2
3532 				if (pmap_enter_debug > 0) {
3533 					--pmap_enter_debug;
3534 					kprintf("pv_drop: free pv %p\n", pv);
3535 				}
3536 #endif
3537 				KKASSERT(count == 1);
3538 				KKASSERT(pv->pv_pmap == NULL);
3539 				zfree(pvzone, pv);
3540 			}
3541 			return;
3542 		}
3543 		/* retry */
3544 	}
3545 }
3546 
3547 /*
3548  * Find or allocate the requested PV entry, returning a locked, held pv.
3549  *
3550  * If (*isnew) is non-zero, the returned pv will have two hold counts, one
3551  * for the caller and one representing the pmap and vm_page association.
3552  *
3553  * If (*isnew) is zero, the returned pv will have only one hold count.
3554  *
3555  * Since both associations can only be adjusted while the pv is locked,
3556  * together they represent just one additional hold.
3557  */
3558 static
3559 pv_entry_t
3560 _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew PMAP_DEBUG_DECL)
3561 {
3562 	struct mdglobaldata *md = mdcpu;
3563 	pv_entry_t pv;
3564 	pv_entry_t pnew;
3565 	int pmap_excl = 0;
3566 
3567 	pnew = NULL;
3568 	if (md->gd_newpv) {
3569 #if 1
3570 		pnew = atomic_swap_ptr((void *)&md->gd_newpv, NULL);
3571 #else
3572 		crit_enter();
3573 		pnew = md->gd_newpv;	/* might race NULL */
3574 		md->gd_newpv = NULL;
3575 		crit_exit();
3576 #endif
3577 	}
3578 	if (pnew == NULL)
3579 		pnew = zalloc(pvzone);
3580 
3581 	spin_lock_shared(&pmap->pm_spin);
3582 	for (;;) {
3583 		/*
3584 		 * Shortcut cache
3585 		 */
3586 		pv = pv_entry_lookup(pmap, pindex);
3587 		if (pv == NULL) {
3588 			vm_pindex_t *pmark;
3589 
3590 			/*
3591 			 * Requires exclusive pmap spinlock
3592 			 */
3593 			if (pmap_excl == 0) {
3594 				pmap_excl = 1;
3595 				if (!spin_lock_upgrade_try(&pmap->pm_spin)) {
3596 					spin_unlock_shared(&pmap->pm_spin);
3597 					spin_lock(&pmap->pm_spin);
3598 					continue;
3599 				}
3600 			}
3601 
3602 			/*
3603 			 * We need to block if someone is holding our
3604 			 * placemarker.  As long as we determine the
3605 			 * placemarker has not been aquired we do not
3606 			 * need to get it as acquision also requires
3607 			 * the pmap spin lock.
3608 			 *
3609 			 * However, we can race the wakeup.
3610 			 */
3611 			pmark = pmap_placemarker_hash(pmap, pindex);
3612 
3613 			if (((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
3614 				tsleep_interlock(pmark, 0);
3615 				atomic_set_long(pmark, PM_PLACEMARK_WAKEUP);
3616 				if (((*pmark ^ pindex) &
3617 				     ~PM_PLACEMARK_WAKEUP) == 0) {
3618 					spin_unlock(&pmap->pm_spin);
3619 					tsleep(pmark, PINTERLOCKED, "pvplc", 0);
3620 					spin_lock(&pmap->pm_spin);
3621 				}
3622 				continue;
3623 			}
3624 
3625 			/*
3626 			 * Setup the new entry
3627 			 */
3628 			pnew->pv_pmap = pmap;
3629 			pnew->pv_pindex = pindex;
3630 			pnew->pv_hold = PV_HOLD_LOCKED | 2;
3631 			pnew->pv_flags = 0;
3632 #ifdef PMAP_DEBUG
3633 			pnew->pv_func = func;
3634 			pnew->pv_line = lineno;
3635 			if (pnew->pv_line_lastfree > 0) {
3636 				pnew->pv_line_lastfree =
3637 						-pnew->pv_line_lastfree;
3638 			}
3639 #endif
3640 			pv = pv_entry_rb_tree_RB_INSERT(&pmap->pm_pvroot, pnew);
3641 			atomic_add_long(&pmap->pm_stats.resident_count, 1);
3642 			spin_unlock(&pmap->pm_spin);
3643 			*isnew = 1;
3644 
3645 			KASSERT(pv == NULL, ("pv insert failed %p->%p", pnew, pv));
3646 			return(pnew);
3647 		}
3648 
3649 		/*
3650 		 * We already have an entry, cleanup the staged pnew if
3651 		 * we can get the lock, otherwise block and retry.
3652 		 */
3653 		if (__predict_true(_pv_hold_try(pv PMAP_DEBUG_COPY))) {
3654 			if (pmap_excl)
3655 				spin_unlock(&pmap->pm_spin);
3656 			else
3657 				spin_unlock_shared(&pmap->pm_spin);
3658 #if 1
3659 			pnew = atomic_swap_ptr((void *)&md->gd_newpv, pnew);
3660 			if (pnew)
3661 				zfree(pvzone, pnew);
3662 #else
3663 			crit_enter();
3664 			if (md->gd_newpv == NULL)
3665 				md->gd_newpv = pnew;
3666 			else
3667 				zfree(pvzone, pnew);
3668 			crit_exit();
3669 #endif
3670 			KKASSERT(pv->pv_pmap == pmap &&
3671 				 pv->pv_pindex == pindex);
3672 			*isnew = 0;
3673 			return(pv);
3674 		}
3675 		if (pmap_excl) {
3676 			spin_unlock(&pmap->pm_spin);
3677 			_pv_lock(pv PMAP_DEBUG_COPY);
3678 			pv_put(pv);
3679 			spin_lock(&pmap->pm_spin);
3680 		} else {
3681 			spin_unlock_shared(&pmap->pm_spin);
3682 			_pv_lock(pv PMAP_DEBUG_COPY);
3683 			pv_put(pv);
3684 			spin_lock_shared(&pmap->pm_spin);
3685 		}
3686 	}
3687 	/* NOT REACHED */
3688 }
3689 
3690 /*
3691  * Find the requested PV entry, returning a locked+held pv or NULL
3692  */
3693 static
3694 pv_entry_t
3695 _pv_get(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp PMAP_DEBUG_DECL)
3696 {
3697 	pv_entry_t pv;
3698 	int pmap_excl = 0;
3699 
3700 	spin_lock_shared(&pmap->pm_spin);
3701 	for (;;) {
3702 		/*
3703 		 * Shortcut cache
3704 		 */
3705 		pv = pv_entry_lookup(pmap, pindex);
3706 		if (pv == NULL) {
3707 			/*
3708 			 * Block if there is ANY placemarker.  If we are to
3709 			 * return it, we must also aquire the spot, so we
3710 			 * have to block even if the placemarker is held on
3711 			 * a different address.
3712 			 *
3713 			 * OPTIMIZATION: If pmarkp is passed as NULL the
3714 			 * caller is just probing (or looking for a real
3715 			 * pv_entry), and in this case we only need to check
3716 			 * to see if the placemarker matches pindex.
3717 			 */
3718 			vm_pindex_t *pmark;
3719 
3720 			/*
3721 			 * Requires exclusive pmap spinlock
3722 			 */
3723 			if (pmap_excl == 0) {
3724 				pmap_excl = 1;
3725 				if (!spin_lock_upgrade_try(&pmap->pm_spin)) {
3726 					spin_unlock_shared(&pmap->pm_spin);
3727 					spin_lock(&pmap->pm_spin);
3728 					continue;
3729 				}
3730 			}
3731 
3732 			pmark = pmap_placemarker_hash(pmap, pindex);
3733 
3734 			if ((pmarkp && *pmark != PM_NOPLACEMARK) ||
3735 			    ((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
3736 				tsleep_interlock(pmark, 0);
3737 				atomic_set_long(pmark, PM_PLACEMARK_WAKEUP);
3738 				if ((pmarkp && *pmark != PM_NOPLACEMARK) ||
3739 				    ((*pmark ^ pindex) &
3740 				     ~PM_PLACEMARK_WAKEUP) == 0) {
3741 					spin_unlock(&pmap->pm_spin);
3742 					tsleep(pmark, PINTERLOCKED, "pvpld", 0);
3743 					spin_lock(&pmap->pm_spin);
3744 				}
3745 				continue;
3746 			}
3747 			if (pmarkp) {
3748 				if (atomic_swap_long(pmark, pindex) !=
3749 				    PM_NOPLACEMARK) {
3750 					panic("_pv_get: pmark race");
3751 				}
3752 				*pmarkp = pmark;
3753 			}
3754 			spin_unlock(&pmap->pm_spin);
3755 			return NULL;
3756 		}
3757 		if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
3758 			if (pmap_excl)
3759 				spin_unlock(&pmap->pm_spin);
3760 			else
3761 				spin_unlock_shared(&pmap->pm_spin);
3762 			KKASSERT(pv->pv_pmap == pmap &&
3763 				 pv->pv_pindex == pindex);
3764 			return(pv);
3765 		}
3766 		if (pmap_excl) {
3767 			spin_unlock(&pmap->pm_spin);
3768 			_pv_lock(pv PMAP_DEBUG_COPY);
3769 			pv_put(pv);
3770 			spin_lock(&pmap->pm_spin);
3771 		} else {
3772 			spin_unlock_shared(&pmap->pm_spin);
3773 			_pv_lock(pv PMAP_DEBUG_COPY);
3774 			pv_put(pv);
3775 			spin_lock_shared(&pmap->pm_spin);
3776 		}
3777 	}
3778 }
3779 
3780 /*
3781  * Lookup, hold, and attempt to lock (pmap,pindex).
3782  *
3783  * If the entry does not exist NULL is returned and *errorp is set to 0
3784  *
3785  * If the entry exists and could be successfully locked it is returned and
3786  * errorp is set to 0.
3787  *
3788  * If the entry exists but could NOT be successfully locked it is returned
3789  * held and *errorp is set to 1.
3790  *
3791  * If the entry is placemarked by someone else NULL is returned and *errorp
3792  * is set to 1.
3793  */
3794 static
3795 pv_entry_t
3796 pv_get_try(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp, int *errorp)
3797 {
3798 	pv_entry_t pv;
3799 
3800 	spin_lock_shared(&pmap->pm_spin);
3801 
3802 	pv = pv_entry_lookup(pmap, pindex);
3803 	if (pv == NULL) {
3804 		vm_pindex_t *pmark;
3805 
3806 		pmark = pmap_placemarker_hash(pmap, pindex);
3807 
3808 		if (((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
3809 			*errorp = 1;
3810 		} else if (pmarkp &&
3811 			   atomic_cmpset_long(pmark, PM_NOPLACEMARK, pindex)) {
3812 			*errorp = 0;
3813 		} else {
3814 			/*
3815 			 * Can't set a placemark with a NULL pmarkp, or if
3816 			 * pmarkp is non-NULL but we failed to set our
3817 			 * placemark.
3818 			 */
3819 			*errorp = 1;
3820 		}
3821 		if (pmarkp)
3822 			*pmarkp = pmark;
3823 		spin_unlock_shared(&pmap->pm_spin);
3824 
3825 		return NULL;
3826 	}
3827 
3828 	/*
3829 	 * XXX This has problems if the lock is shared, why?
3830 	 */
3831 	if (pv_hold_try(pv)) {
3832 		spin_unlock_shared(&pmap->pm_spin);
3833 		*errorp = 0;
3834 		KKASSERT(pv->pv_pmap == pmap && pv->pv_pindex == pindex);
3835 		return(pv);	/* lock succeeded */
3836 	}
3837 	spin_unlock_shared(&pmap->pm_spin);
3838 	*errorp = 1;
3839 
3840 	return (pv);		/* lock failed */
3841 }
3842 
3843 /*
3844  * Lock a held pv, keeping the hold count
3845  */
3846 static
3847 void
3848 _pv_lock(pv_entry_t pv PMAP_DEBUG_DECL)
3849 {
3850 	u_int count;
3851 
3852 	for (;;) {
3853 		count = pv->pv_hold;
3854 		cpu_ccfence();
3855 		if ((count & PV_HOLD_LOCKED) == 0) {
3856 			if (atomic_cmpset_int(&pv->pv_hold, count,
3857 					      count | PV_HOLD_LOCKED)) {
3858 #ifdef PMAP_DEBUG
3859 				pv->pv_func = func;
3860 				pv->pv_line = lineno;
3861 #endif
3862 				return;
3863 			}
3864 			continue;
3865 		}
3866 		tsleep_interlock(pv, 0);
3867 		if (atomic_cmpset_int(&pv->pv_hold, count,
3868 				      count | PV_HOLD_WAITING)) {
3869 #ifdef PMAP_DEBUG2
3870 			if (pmap_enter_debug > 0) {
3871 				--pmap_enter_debug;
3872 				kprintf("pv waiting on %s:%d\n",
3873 					pv->pv_func, pv->pv_line);
3874 			}
3875 #endif
3876 			tsleep(pv, PINTERLOCKED, "pvwait", hz);
3877 		}
3878 		/* retry */
3879 	}
3880 }
3881 
3882 /*
3883  * Unlock a held and locked pv, keeping the hold count.
3884  */
3885 static
3886 void
3887 pv_unlock(pv_entry_t pv)
3888 {
3889 	u_int count;
3890 
3891 	for (;;) {
3892 		count = pv->pv_hold;
3893 		cpu_ccfence();
3894 		KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) >=
3895 			 (PV_HOLD_LOCKED | 1));
3896 		if (atomic_cmpset_int(&pv->pv_hold, count,
3897 				      count &
3898 				      ~(PV_HOLD_LOCKED | PV_HOLD_WAITING))) {
3899 			if (count & PV_HOLD_WAITING)
3900 				wakeup(pv);
3901 			break;
3902 		}
3903 	}
3904 }
3905 
3906 /*
3907  * Unlock and drop a pv.  If the pv is no longer associated with a pmap
3908  * and the hold count drops to zero we will free it.
3909  *
3910  * Caller should not hold any spin locks.  We are protected from hold races
3911  * by virtue of holds only occuring only with a pmap_spin or vm_page_spin
3912  * lock held.  A pv cannot be located otherwise.
3913  */
3914 static
3915 void
3916 pv_put(pv_entry_t pv)
3917 {
3918 #ifdef PMAP_DEBUG2
3919 	if (pmap_enter_debug > 0) {
3920 		--pmap_enter_debug;
3921 		kprintf("pv_put pv=%p hold=%08x\n", pv, pv->pv_hold);
3922 	}
3923 #endif
3924 
3925 	/*
3926 	 * Normal put-aways must have a pv_m associated with the pv,
3927 	 * but allow the case where the pv has been destructed due
3928 	 * to pmap_dynamic_delete.
3929 	 */
3930 	KKASSERT(pv->pv_pmap == NULL || pv->pv_m != NULL);
3931 
3932 	/*
3933 	 * Fast - shortcut most common condition
3934 	 */
3935 	if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 1))
3936 		return;
3937 
3938 	/*
3939 	 * Slow
3940 	 */
3941 	pv_unlock(pv);
3942 	pv_drop(pv);
3943 }
3944 
3945 /*
3946  * Remove the pmap association from a pv, require that pv_m already be removed,
3947  * then unlock and drop the pv.  Any pte operations must have already been
3948  * completed.  This call may result in a last-drop which will physically free
3949  * the pv.
3950  *
3951  * Removing the pmap association entails an additional drop.
3952  *
3953  * pv must be exclusively locked on call and will be disposed of on return.
3954  */
3955 static
3956 void
3957 _pv_free(pv_entry_t pv, pv_entry_t pvp PMAP_DEBUG_DECL)
3958 {
3959 	pmap_t pmap;
3960 
3961 #ifdef PMAP_DEBUG
3962 	pv->pv_func_lastfree = func;
3963 	pv->pv_line_lastfree = lineno;
3964 #endif
3965 	KKASSERT(pv->pv_m == NULL);
3966 	KKASSERT((pv->pv_hold & (PV_HOLD_LOCKED|PV_HOLD_MASK)) >=
3967 		  (PV_HOLD_LOCKED|1));
3968 	if ((pmap = pv->pv_pmap) != NULL) {
3969 		spin_lock(&pmap->pm_spin);
3970 		KKASSERT(pv->pv_pmap == pmap);
3971 		if (pmap->pm_pvhint_pt == pv)
3972 			pmap->pm_pvhint_pt = NULL;
3973 		if (pmap->pm_pvhint_unused == pv)
3974 			pmap->pm_pvhint_unused = NULL;
3975 		pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
3976 		atomic_add_long(&pmap->pm_stats.resident_count, -1);
3977 		pv->pv_pmap = NULL;
3978 		pv->pv_pindex = 0;
3979 		spin_unlock(&pmap->pm_spin);
3980 
3981 		/*
3982 		 * Try to shortcut three atomic ops, otherwise fall through
3983 		 * and do it normally.  Drop two refs and the lock all in
3984 		 * one go.
3985 		 */
3986 		if (pvp) {
3987 			if (vm_page_unwire_quick(pvp->pv_m))
3988 				panic("_pv_free: bad wirecount on pvp");
3989 		}
3990 		if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 0)) {
3991 #ifdef PMAP_DEBUG2
3992 			if (pmap_enter_debug > 0) {
3993 				--pmap_enter_debug;
3994 				kprintf("pv_free: free pv %p\n", pv);
3995 			}
3996 #endif
3997 			zfree(pvzone, pv);
3998 			return;
3999 		}
4000 		pv_drop(pv);	/* ref for pv_pmap */
4001 	}
4002 	pv_unlock(pv);
4003 	pv_drop(pv);
4004 }
4005 
4006 /*
4007  * This routine is very drastic, but can save the system
4008  * in a pinch.
4009  */
4010 void
4011 pmap_collect(void)
4012 {
4013 	int i;
4014 	vm_page_t m;
4015 	static int warningdone=0;
4016 
4017 	if (pmap_pagedaemon_waken == 0)
4018 		return;
4019 	pmap_pagedaemon_waken = 0;
4020 	if (warningdone < 5) {
4021 		kprintf("pmap_collect: pv_entries exhausted -- "
4022 			"suggest increasing vm.pmap_pv_entries above %ld\n",
4023 			vm_pmap_pv_entries);
4024 		warningdone++;
4025 	}
4026 
4027 	for (i = 0; i < vm_page_array_size; i++) {
4028 		m = &vm_page_array[i];
4029 		if (m->wire_count || m->hold_count)
4030 			continue;
4031 		if (vm_page_busy_try(m, TRUE) == 0) {
4032 			if (m->wire_count == 0 && m->hold_count == 0) {
4033 				pmap_remove_all(m);
4034 			}
4035 			vm_page_wakeup(m);
4036 		}
4037 	}
4038 }
4039 
4040 /*
4041  * Scan the pmap for active page table entries and issue a callback.
4042  * The callback must dispose of pte_pv, whos PTE entry is at *ptep in
4043  * its parent page table.
4044  *
4045  * pte_pv will be NULL if the page or page table is unmanaged.
4046  * pt_pv will point to the page table page containing the pte for the page.
4047  *
4048  * NOTE! If we come across an unmanaged page TABLE (verses an unmanaged page),
4049  *	 we pass a NULL pte_pv and we pass a pt_pv pointing to the passed
4050  *	 process pmap's PD and page to the callback function.  This can be
4051  *	 confusing because the pt_pv is really a pd_pv, and the target page
4052  *	 table page is simply aliased by the pmap and not owned by it.
4053  *
4054  * It is assumed that the start and end are properly rounded to the page size.
4055  *
4056  * It is assumed that PD pages and above are managed and thus in the RB tree,
4057  * allowing us to use RB_SCAN from the PD pages down for ranged scans.
4058  */
4059 struct pmap_scan_info {
4060 	struct pmap *pmap;
4061 	vm_offset_t sva;
4062 	vm_offset_t eva;
4063 	vm_pindex_t sva_pd_pindex;
4064 	vm_pindex_t eva_pd_pindex;
4065 	void (*func)(pmap_t, struct pmap_scan_info *,
4066 		     vm_pindex_t *, pv_entry_t, vm_offset_t,
4067 		     pt_entry_t *, void *);
4068 	void *arg;
4069 	pmap_inval_bulk_t bulk_core;
4070 	pmap_inval_bulk_t *bulk;
4071 	int count;
4072 	int stop;
4073 };
4074 
4075 static int pmap_scan_cmp(pv_entry_t pv, void *data);
4076 static int pmap_scan_callback(pv_entry_t pv, void *data);
4077 
4078 static void
4079 pmap_scan(struct pmap_scan_info *info, int smp_inval)
4080 {
4081 	struct pmap *pmap = info->pmap;
4082 	pv_entry_t pt_pv;	/* A page table PV */
4083 	pv_entry_t pte_pv;	/* A page table entry PV */
4084 	vm_pindex_t *pte_placemark;
4085 	vm_pindex_t *pt_placemark;
4086 	pt_entry_t *ptep;
4087 	pt_entry_t oldpte;
4088 	struct pv_entry dummy_pv;
4089 
4090 	info->stop = 0;
4091 	if (pmap == NULL)
4092 		return;
4093 	if (info->sva == info->eva)
4094 		return;
4095 	if (smp_inval) {
4096 		info->bulk = &info->bulk_core;
4097 		pmap_inval_bulk_init(&info->bulk_core, pmap);
4098 	} else {
4099 		info->bulk = NULL;
4100 	}
4101 
4102 	/*
4103 	 * Hold the token for stability; if the pmap is empty we have nothing
4104 	 * to do.
4105 	 */
4106 #if 0
4107 	if (pmap->pm_stats.resident_count == 0) {
4108 		return;
4109 	}
4110 #endif
4111 
4112 	info->count = 0;
4113 
4114 	/*
4115 	 * Special handling for scanning one page, which is a very common
4116 	 * operation (it is?).
4117 	 *
4118 	 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4
4119 	 */
4120 	if (info->sva + PAGE_SIZE == info->eva) {
4121 		if (info->sva >= VM_MAX_USER_ADDRESS) {
4122 			/*
4123 			 * Kernel mappings do not track wire counts on
4124 			 * page table pages and only maintain pd_pv and
4125 			 * pte_pv levels so pmap_scan() works.
4126 			 */
4127 			pt_pv = NULL;
4128 			pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva),
4129 					&pte_placemark);
4130 			KKASSERT(pte_pv == NULL);
4131 			ptep = vtopte(info->sva);
4132 		} else {
4133 			/*
4134 			 * We hold pte_placemark across the operation for
4135 			 * unmanaged pages.
4136 			 *
4137 			 * WARNING!  We must hold pt_placemark across the
4138 			 *	     *ptep test to prevent misintepreting
4139 			 *	     a non-zero *ptep as a shared page
4140 			 *	     table page.  Hold it across the function
4141 			 *	     callback as well for SMP safety.
4142 			 */
4143 			pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva),
4144 					&pte_placemark);
4145 			KKASSERT(pte_pv == NULL);
4146 			pt_pv = pv_get(pmap, pmap_pt_pindex(info->sva),
4147 				       &pt_placemark);
4148 			if (pt_pv == NULL) {
4149 #if 0
4150 				KKASSERT(0);
4151 				pd_pv = pv_get(pmap,
4152 					       pmap_pd_pindex(info->sva),
4153 					       NULL);
4154 				if (pd_pv) {
4155 					ptep = pv_pte_lookup(pd_pv,
4156 						    pmap_pt_index(info->sva));
4157 					if (*ptep) {
4158 						info->func(pmap, info,
4159 						     pt_placemark, pd_pv,
4160 						     info->sva, ptep,
4161 						     info->arg);
4162 					} else {
4163 						pv_placemarker_wakeup(pmap,
4164 								  pt_placemark);
4165 					}
4166 					pv_put(pd_pv);
4167 				} else {
4168 					pv_placemarker_wakeup(pmap,
4169 							      pt_placemark);
4170 				}
4171 #else
4172 				pv_placemarker_wakeup(pmap, pt_placemark);
4173 #endif
4174 				pv_placemarker_wakeup(pmap, pte_placemark);
4175 				goto fast_skip;
4176 			}
4177 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(info->sva));
4178 		}
4179 
4180 		/*
4181 		 * NOTE: *ptep can't be ripped out from under us if we hold
4182 		 *	 pte_pv (or pte_placemark) locked, but bits can
4183 		 *	 change.
4184 		 */
4185 		oldpte = *ptep;
4186 		cpu_ccfence();
4187 		if (oldpte == 0) {
4188 			KKASSERT(pte_pv == NULL);
4189 			pv_placemarker_wakeup(pmap, pte_placemark);
4190 		} else {
4191 			KASSERT((oldpte & pmap->pmap_bits[PG_V_IDX]) ==
4192 				pmap->pmap_bits[PG_V_IDX],
4193 			    ("badB *ptep %016lx/%016lx sva %016lx pte_pv NULL",
4194 			    *ptep, oldpte, info->sva));
4195 			info->func(pmap, info, pte_placemark, pt_pv,
4196 				   info->sva, ptep, info->arg);
4197 		}
4198 		if (pt_pv)
4199 			pv_put(pt_pv);
4200 fast_skip:
4201 		pmap_inval_bulk_flush(info->bulk);
4202 		return;
4203 	}
4204 
4205 	/*
4206 	 * Nominal scan case, RB_SCAN() for PD pages and iterate from
4207 	 * there.
4208 	 *
4209 	 * WARNING! eva can overflow our standard ((N + mask) >> bits)
4210 	 *	    bounds, resulting in a pd_pindex of 0.  To solve the
4211 	 *	    problem we use an inclusive range.
4212 	 */
4213 	info->sva_pd_pindex = pmap_pd_pindex(info->sva);
4214 	info->eva_pd_pindex = pmap_pd_pindex(info->eva - PAGE_SIZE);
4215 
4216 	if (info->sva >= VM_MAX_USER_ADDRESS) {
4217 		/*
4218 		 * The kernel does not currently maintain any pv_entry's for
4219 		 * higher-level page tables.
4220 		 */
4221 		bzero(&dummy_pv, sizeof(dummy_pv));
4222 		dummy_pv.pv_pindex = info->sva_pd_pindex;
4223 		spin_lock(&pmap->pm_spin);
4224 		while (dummy_pv.pv_pindex <= info->eva_pd_pindex) {
4225 			pmap_scan_callback(&dummy_pv, info);
4226 			++dummy_pv.pv_pindex;
4227 			if (dummy_pv.pv_pindex < info->sva_pd_pindex) /*wrap*/
4228 				break;
4229 		}
4230 		spin_unlock(&pmap->pm_spin);
4231 	} else {
4232 		/*
4233 		 * User page tables maintain local PML4, PDP, PD, and PT
4234 		 * pv_entry's.  pv_entry's are not used for PTEs.
4235 		 */
4236 		spin_lock(&pmap->pm_spin);
4237 		pv_entry_rb_tree_RB_SCAN(&pmap->pm_pvroot, pmap_scan_cmp,
4238 					 pmap_scan_callback, info);
4239 		spin_unlock(&pmap->pm_spin);
4240 	}
4241 	pmap_inval_bulk_flush(info->bulk);
4242 }
4243 
4244 /*
4245  * WARNING! pmap->pm_spin held
4246  *
4247  * WARNING! eva can overflow our standard ((N + mask) >> bits)
4248  *	    bounds, resulting in a pd_pindex of 0.  To solve the
4249  *	    problem we use an inclusive range.
4250  */
4251 static int
4252 pmap_scan_cmp(pv_entry_t pv, void *data)
4253 {
4254 	struct pmap_scan_info *info = data;
4255 	if (pv->pv_pindex < info->sva_pd_pindex)
4256 		return(-1);
4257 	if (pv->pv_pindex > info->eva_pd_pindex)
4258 		return(1);
4259 	return(0);
4260 }
4261 
4262 /*
4263  * pmap_scan() by PDs
4264  *
4265  * WARNING! pmap->pm_spin held
4266  */
4267 static int
4268 pmap_scan_callback(pv_entry_t pv, void *data)
4269 {
4270 	struct pmap_scan_info *info = data;
4271 	struct pmap *pmap = info->pmap;
4272 	pv_entry_t pd_pv;	/* A page directory PV */
4273 	pv_entry_t pt_pv;	/* A page table PV */
4274 	vm_pindex_t *pt_placemark;
4275 	pt_entry_t *ptep;
4276 	pt_entry_t oldpte;
4277 	vm_offset_t sva;
4278 	vm_offset_t eva;
4279 	vm_offset_t va_next;
4280 	vm_pindex_t pd_pindex;
4281 	int error;
4282 
4283 	/*
4284 	 * Stop if requested
4285 	 */
4286 	if (info->stop)
4287 		return -1;
4288 
4289 	/*
4290 	 * Pull the PD pindex from the pv before releasing the spinlock.
4291 	 *
4292 	 * WARNING: pv is faked for kernel pmap scans.
4293 	 */
4294 	pd_pindex = pv->pv_pindex;
4295 	spin_unlock(&pmap->pm_spin);
4296 	pv = NULL;	/* invalid after spinlock unlocked */
4297 
4298 	/*
4299 	 * Calculate the page range within the PD.  SIMPLE pmaps are
4300 	 * direct-mapped for the entire 2^64 address space.  Normal pmaps
4301 	 * reflect the user and kernel address space which requires
4302 	 * cannonicalization w/regards to converting pd_pindex's back
4303 	 * into addresses.
4304 	 */
4305 	sva = (pd_pindex - pmap_pd_pindex(0)) << PDPSHIFT;
4306 	if ((pmap->pm_flags & PMAP_FLAG_SIMPLE) == 0 &&
4307 	    (sva & PML4_SIGNMASK)) {
4308 		sva |= PML4_SIGNMASK;
4309 	}
4310 	eva = sva + NBPDP;	/* can overflow */
4311 	if (sva < info->sva)
4312 		sva = info->sva;
4313 	if (eva < info->sva || eva > info->eva)
4314 		eva = info->eva;
4315 
4316 	/*
4317 	 * NOTE: kernel mappings do not track page table pages, only
4318 	 * 	 terminal pages.
4319 	 *
4320 	 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4.
4321 	 *	 However, for the scan to be efficient we try to
4322 	 *	 cache items top-down.
4323 	 */
4324 	pd_pv = NULL;
4325 	pt_pv = NULL;
4326 
4327 	for (; sva < eva; sva = va_next) {
4328 		if (info->stop)
4329 			break;
4330 		if (sva >= VM_MAX_USER_ADDRESS) {
4331 			if (pt_pv) {
4332 				pv_put(pt_pv);
4333 				pt_pv = NULL;
4334 			}
4335 			goto kernel_skip;
4336 		}
4337 
4338 		/*
4339 		 * PD cache, scan shortcut if it doesn't exist.
4340 		 */
4341 		if (pd_pv == NULL) {
4342 			pd_pv = pv_get(pmap, pmap_pd_pindex(sva), NULL);
4343 		} else if (pd_pv->pv_pmap != pmap ||
4344 			   pd_pv->pv_pindex != pmap_pd_pindex(sva)) {
4345 			pv_put(pd_pv);
4346 			pd_pv = pv_get(pmap, pmap_pd_pindex(sva), NULL);
4347 		}
4348 		if (pd_pv == NULL) {
4349 			va_next = (sva + NBPDP) & ~PDPMASK;
4350 			if (va_next < sva)
4351 				va_next = eva;
4352 			continue;
4353 		}
4354 
4355 		/*
4356 		 * PT cache
4357 		 *
4358 		 * NOTE: The cached pt_pv can be removed from the pmap when
4359 		 *	 pmap_dynamic_delete is enabled.
4360 		 */
4361 		if (pt_pv && (pt_pv->pv_pmap != pmap ||
4362 			      pt_pv->pv_pindex != pmap_pt_pindex(sva))) {
4363 			pv_put(pt_pv);
4364 			pt_pv = NULL;
4365 		}
4366 		if (pt_pv == NULL) {
4367 			pt_pv = pv_get_try(pmap, pmap_pt_pindex(sva),
4368 					   &pt_placemark, &error);
4369 			if (error) {
4370 				pv_put(pd_pv);	/* lock order */
4371 				pd_pv = NULL;
4372 				if (pt_pv) {
4373 					pv_lock(pt_pv);
4374 					pv_put(pt_pv);
4375 					pt_pv = NULL;
4376 				} else {
4377 					pv_placemarker_wait(pmap, pt_placemark);
4378 				}
4379 				va_next = sva;
4380 				continue;
4381 			}
4382 			/* may have to re-check later if pt_pv is NULL here */
4383 		}
4384 
4385 		/*
4386 		 * If pt_pv is NULL we either have a shared page table
4387 		 * page (NOT IMPLEMENTED XXX) and must issue a callback
4388 		 * specific to that case, or there is no page table page.
4389 		 *
4390 		 * Either way we can skip the page table page.
4391 		 *
4392 		 * WARNING! pt_pv can also be NULL due to a pv creation
4393 		 *	    race where we find it to be NULL and then
4394 		 *	    later see a pte_pv.  But its possible the pt_pv
4395 		 *	    got created inbetween the two operations, so
4396 		 *	    we must check.
4397 		 *
4398 		 *	    XXX This should no longer be the case because
4399 		 *	    we have pt_placemark.
4400 		 */
4401 		if (pt_pv == NULL) {
4402 #if 0
4403 			/* XXX REMOVED */
4404 			/*
4405 			 * Possible unmanaged (shared from another pmap)
4406 			 * page table page.
4407 			 *
4408 			 * WARNING!  We must hold pt_placemark across the
4409 			 *	     *ptep test to prevent misintepreting
4410 			 *	     a non-zero *ptep as a shared page
4411 			 *	     table page.  Hold it across the function
4412 			 *	     callback as well for SMP safety.
4413 			 */
4414 			KKASSERT(0);
4415 			ptep = pv_pte_lookup(pd_pv, pmap_pt_index(sva));
4416 			if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
4417 				info->func(pmap, info, pt_placemark, pd_pv,
4418 					   sva, ptep, info->arg);
4419 			} else {
4420 				pv_placemarker_wakeup(pmap, pt_placemark);
4421 			}
4422 #else
4423 			pv_placemarker_wakeup(pmap, pt_placemark);
4424 #endif
4425 
4426 			/*
4427 			 * Done, move to next page table page.
4428 			 */
4429 			va_next = (sva + NBPDR) & ~PDRMASK;
4430 			if (va_next < sva)
4431 				va_next = eva;
4432 			continue;
4433 		}
4434 
4435 		/*
4436 		 * From this point in the loop testing pt_pv for non-NULL
4437 		 * means we are in UVM, else if it is NULL we are in KVM.
4438 		 *
4439 		 * Limit our scan to either the end of the va represented
4440 		 * by the current page table page, or to the end of the
4441 		 * range being removed.
4442 		 */
4443 kernel_skip:
4444 		va_next = (sva + NBPDR) & ~PDRMASK;
4445 		if (va_next < sva)
4446 			va_next = eva;
4447 		if (va_next > eva)
4448 			va_next = eva;
4449 
4450 		/*
4451 		 * Scan the page table for pages.  Some pages may not be
4452 		 * managed (might not have a pv_entry).
4453 		 *
4454 		 * There is no page table management for kernel pages so
4455 		 * pt_pv will be NULL in that case, but otherwise pt_pv
4456 		 * is non-NULL, locked, and referenced.
4457 		 */
4458 
4459 		/*
4460 		 * At this point a non-NULL pt_pv means a UVA, and a NULL
4461 		 * pt_pv means a KVA.
4462 		 */
4463 		if (pt_pv)
4464 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(sva));
4465 		else
4466 			ptep = vtopte(sva);
4467 
4468 		while (sva < va_next) {
4469 			vm_pindex_t *pte_placemark;
4470 			pv_entry_t pte_pv;
4471 
4472 			/*
4473 			 * Yield every 64 pages, stop if requested.
4474 			 */
4475 			if ((++info->count & 63) == 0)
4476 				lwkt_user_yield();
4477 			if (info->stop)
4478 				break;
4479 
4480 			/*
4481 			 * We can shortcut our scan if *ptep == 0.  This is
4482 			 * an unlocked check.
4483 			 */
4484 			if (*ptep == 0) {
4485 				sva += PAGE_SIZE;
4486 				++ptep;
4487 				continue;
4488 			}
4489 			cpu_ccfence();
4490 
4491 			/*
4492 			 * Acquire the pte_placemark.  pte_pv's won't exist
4493 			 * for leaf pages.
4494 			 *
4495 			 * A multitude of races are possible here so if we
4496 			 * cannot lock definite state we clean out our cache
4497 			 * and break the inner while() loop to force a loop
4498 			 * up to the top of the for().
4499 			 *
4500 			 * XXX unlock/relock pd_pv, pt_pv, and re-test their
4501 			 *     validity instead of looping up?
4502 			 */
4503 			pte_pv = pv_get_try(pmap, pmap_pte_pindex(sva),
4504 					    &pte_placemark, &error);
4505 			KKASSERT(pte_pv == NULL);
4506 			if (error) {
4507 				if (pd_pv) {
4508 					pv_put(pd_pv);	/* lock order */
4509 					pd_pv = NULL;
4510 				}
4511 				if (pt_pv) {
4512 					pv_put(pt_pv);	/* lock order */
4513 					pt_pv = NULL;
4514 				}
4515 				pv_placemarker_wait(pmap, pte_placemark);
4516 				va_next = sva;		/* retry */
4517 				break;
4518 			}
4519 
4520 			/*
4521 			 * Reload *ptep after successfully locking the
4522 			 * pindex.
4523 			 */
4524 			cpu_ccfence();
4525 			oldpte = *ptep;
4526 			if (oldpte == 0) {
4527 				pv_placemarker_wakeup(pmap, pte_placemark);
4528 				sva += PAGE_SIZE;
4529 				++ptep;
4530 				continue;
4531 			}
4532 
4533 			/*
4534 			 * We can't hold pd_pv across the callback (because
4535 			 * we don't pass it to the callback and the callback
4536 			 * might deadlock)
4537 			 */
4538 			if (pd_pv) {
4539 				vm_page_wire_quick(pd_pv->pv_m);
4540 				pv_unlock(pd_pv);
4541 			}
4542 
4543 			/*
4544 			 * Ready for the callback.  The locked placemarker
4545 			 * is consumed by the callback.
4546 			 */
4547 			if (oldpte & pmap->pmap_bits[PG_MANAGED_IDX]) {
4548 				/*
4549 				 * Managed pte
4550 				 */
4551 				KASSERT((oldpte & pmap->pmap_bits[PG_V_IDX]),
4552 				    ("badC *ptep %016lx/%016lx sva %016lx",
4553 				    *ptep, oldpte, sva));
4554 				/*
4555 				 * We must unlock pd_pv across the callback
4556 				 * to avoid deadlocks on any recursive
4557 				 * disposal.  Re-check that it still exists
4558 				 * after re-locking.
4559 				 *
4560 				 * Call target disposes of pte_placemark
4561 				 * and may destroy but will not dispose
4562 				 * of pt_pv.
4563 				 */
4564 				info->func(pmap, info, pte_placemark, pt_pv,
4565 					   sva, ptep, info->arg);
4566 			} else {
4567 				/*
4568 				 * Unmanaged pte
4569 				 *
4570 				 * We must unlock pd_pv across the callback
4571 				 * to avoid deadlocks on any recursive
4572 				 * disposal.  Re-check that it still exists
4573 				 * after re-locking.
4574 				 *
4575 				 * Call target disposes of pte_placemark
4576 				 * and may destroy but will not dispose
4577 				 * of pt_pv.
4578 				 */
4579 				KASSERT((oldpte & pmap->pmap_bits[PG_V_IDX]),
4580 				    ("badD *ptep %016lx/%016lx sva %016lx ",
4581 				     *ptep, oldpte, sva));
4582 				info->func(pmap, info, pte_placemark, pt_pv,
4583 					   sva, ptep, info->arg);
4584 			}
4585 			if (pd_pv) {
4586 				pv_lock(pd_pv);
4587 				if (vm_page_unwire_quick(pd_pv->pv_m)) {
4588 					panic("pmap_scan_callback: "
4589 					      "bad wirecount on pd_pv");
4590 				}
4591 				if (pd_pv->pv_pmap == NULL) {
4592 					va_next = sva;		/* retry */
4593 					break;
4594 				}
4595 			}
4596 
4597 			/*
4598 			 * NOTE: The cached pt_pv can be removed from the
4599 			 *	 pmap when pmap_dynamic_delete is enabled,
4600 			 *	 which will cause ptep to become stale.
4601 			 *
4602 			 *	 This also means that no pages remain under
4603 			 *	 the PT, so we can just break out of the inner
4604 			 *	 loop and let the outer loop clean everything
4605 			 *	 up.
4606 			 */
4607 			if (pt_pv && pt_pv->pv_pmap != pmap)
4608 				break;
4609 			sva += PAGE_SIZE;
4610 			++ptep;
4611 		}
4612 	}
4613 	if (pd_pv) {
4614 		pv_put(pd_pv);
4615 		pd_pv = NULL;
4616 	}
4617 	if (pt_pv) {
4618 		pv_put(pt_pv);
4619 		pt_pv = NULL;
4620 	}
4621 	if ((++info->count & 7) == 0)
4622 		lwkt_user_yield();
4623 
4624 	/*
4625 	 * Relock before returning.
4626 	 */
4627 	spin_lock(&pmap->pm_spin);
4628 	return (0);
4629 }
4630 
4631 void
4632 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
4633 {
4634 	struct pmap_scan_info info;
4635 
4636 	info.pmap = pmap;
4637 	info.sva = sva;
4638 	info.eva = eva;
4639 	info.func = pmap_remove_callback;
4640 	info.arg = NULL;
4641 	pmap_scan(&info, 1);
4642 #if 0
4643 	cpu_invltlb();
4644 	if (eva - sva < 1024*1024) {
4645 		while (sva < eva) {
4646 			cpu_invlpg((void *)sva);
4647 			sva += PAGE_SIZE;
4648 		}
4649 	}
4650 #endif
4651 }
4652 
4653 static void
4654 pmap_remove_noinval(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
4655 {
4656 	struct pmap_scan_info info;
4657 
4658 	info.pmap = pmap;
4659 	info.sva = sva;
4660 	info.eva = eva;
4661 	info.func = pmap_remove_callback;
4662 	info.arg = NULL;
4663 	pmap_scan(&info, 0);
4664 }
4665 
4666 static void
4667 pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
4668 		     vm_pindex_t *pte_placemark, pv_entry_t pt_pv,
4669 		     vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
4670 {
4671 	pt_entry_t pte;
4672 #ifdef PMAP_ADVANCED
4673 	vm_page_t oldm;
4674 #endif
4675 
4676 	/*
4677 	 * Managed or unmanaged pte (pte_placemark is non-NULL)
4678 	 *
4679 	 * pt_pv's wire_count is still bumped by unmanaged pages
4680 	 * so we must decrement it manually.
4681 	 *
4682 	 * We have to unwire the target page table page.
4683 	 */
4684 #ifdef PMAP_ADVANCED
4685 	pte = *ptep;
4686 	if (pte & pmap->pmap_bits[PG_MANAGED_IDX]) {
4687 		oldm = PHYS_TO_VM_PAGE(pte & PG_FRAME);
4688 		atomic_add_long(&oldm->md.interlock_count, 1);
4689 	} else {
4690 		oldm = NULL;
4691 	}
4692 #endif
4693 
4694 	pte = pmap_inval_bulk(info->bulk, va, ptep, 0);
4695 	if (pte & pmap->pmap_bits[PG_MANAGED_IDX]) {
4696 		vm_page_t p;
4697 
4698 		p = PHYS_TO_VM_PAGE(pte & PG_FRAME);
4699 		KKASSERT(pte & pmap->pmap_bits[PG_V_IDX]);
4700 		if (pte & pmap->pmap_bits[PG_M_IDX])
4701 			vm_page_dirty(p);
4702 		if (pte & pmap->pmap_bits[PG_A_IDX])
4703 			vm_page_flag_set(p, PG_REFERENCED);
4704 
4705 		/*
4706 		 * (p) is not hard-busied.
4707 		 *
4708 		 * If PMAP_ADVANCED mode is enabled we can safely
4709 		 * clear PG_MAPPED and PG_WRITEABLE only if PG_MAPPEDMULTI
4710 		 * is not set, atomically.
4711 		 */
4712 		pmap_removed_pte(p, pte);
4713 	}
4714 	if (pte & pmap->pmap_bits[PG_V_IDX]) {
4715 		atomic_add_long(&pmap->pm_stats.resident_count, -1);
4716 		if (pt_pv && vm_page_unwire_quick(pt_pv->pv_m))
4717 			panic("pmap_remove: insufficient wirecount");
4718 	}
4719 	if (pte & pmap->pmap_bits[PG_W_IDX])
4720 		atomic_add_long(&pmap->pm_stats.wired_count, -1);
4721 	if (pte & pmap->pmap_bits[PG_G_IDX])
4722 		cpu_invlpg((void *)va);
4723 	pv_placemarker_wakeup(pmap, pte_placemark);
4724 #ifdef PMAP_ADVANCED
4725 	if (oldm) {
4726 		if ((atomic_fetchadd_long(&oldm->md.interlock_count, -1) &
4727 		     0x7FFFFFFFFFFFFFFFLU) == 0x4000000000000001LU) {
4728 			atomic_clear_long(&oldm->md.interlock_count,
4729 					  0x4000000000000000LU);
4730 			wakeup(&oldm->md.interlock_count);
4731 		}
4732 	}
4733 #endif
4734 }
4735 
4736 /*
4737  * Removes this physical page from all physical maps in which it resides.
4738  * Reflects back modify bits to the pager.
4739  *
4740  * This routine may not be called from an interrupt.
4741  *
4742  * The page must be busied by its caller, preventing new ptes from being
4743  * installed.  This allows us to assert that pmap_count is zero and safely
4744  * clear the MAPPED and WRITEABLE bits upon completion.
4745  */
4746 static
4747 void
4748 pmap_remove_all(vm_page_t m)
4749 {
4750 #ifdef PMAP_ADVANCED
4751 	long icount;
4752 #endif
4753 	int retry;
4754 
4755 	if (__predict_false(!pmap_initialized))
4756 		return;
4757 
4758 	/*
4759 	 * pmap_count doesn't cover fictitious pages, but PG_MAPPED does
4760 	 * (albeit without certain race protections).
4761 	 */
4762 #if 0
4763 	if (m->md.pmap_count == 0)
4764 		return;
4765 #endif
4766 	if ((m->flags & PG_MAPPED) == 0)
4767 		return;
4768 
4769 	retry = ticks + hz * 60;
4770 again:
4771 	PMAP_PAGE_BACKING_SCAN(m, NULL, ipmap, iptep, ipte, iva) {
4772 		if (!pmap_inval_smp_cmpset(ipmap, iva, iptep, ipte, 0))
4773 			PMAP_PAGE_BACKING_RETRY;
4774 		if (ipte & ipmap->pmap_bits[PG_MANAGED_IDX]) {
4775 			if (ipte & ipmap->pmap_bits[PG_M_IDX])
4776 				vm_page_dirty(m);
4777 			if (ipte & ipmap->pmap_bits[PG_A_IDX])
4778 				vm_page_flag_set(m, PG_REFERENCED);
4779 
4780 			/*
4781 			 * NOTE: m is not hard-busied so it is not safe to
4782 			 *	 clear PG_MAPPED and PG_WRITEABLE on the 1->0
4783 			 *	 transition against them being set in
4784 			 *	 pmap_enter().
4785 			 */
4786 			pmap_removed_pte(m, ipte);
4787 		}
4788 
4789 		/*
4790 		 * Cleanup various tracking counters.  pt_pv can't go away
4791 		 * due to our wired ref.
4792 		 */
4793 		if (ipmap != &kernel_pmap) {
4794 			pv_entry_t pt_pv;
4795 
4796 			spin_lock_shared(&ipmap->pm_spin);
4797 			pt_pv = pv_entry_lookup(ipmap, pmap_pt_pindex(iva));
4798 			spin_unlock_shared(&ipmap->pm_spin);
4799 
4800 			if (pt_pv) {
4801 				if (vm_page_unwire_quick(pt_pv->pv_m)) {
4802 					panic("pmap_remove_all: bad "
4803 					      "wire_count on pt_pv");
4804 				}
4805 				atomic_add_long(
4806 					&ipmap->pm_stats.resident_count, -1);
4807 			}
4808 		}
4809 		if (ipte & ipmap->pmap_bits[PG_W_IDX])
4810 			atomic_add_long(&ipmap->pm_stats.wired_count, -1);
4811 		if (ipte & ipmap->pmap_bits[PG_G_IDX])
4812 			cpu_invlpg((void *)iva);
4813 	} PMAP_PAGE_BACKING_DONE;
4814 
4815 #ifdef PMAP_ADVANCED
4816 	/*
4817 	 * If our scan lost a pte swap race oldm->md.interlock_count might
4818 	 * be set from the pmap_enter() code.  If so sleep a little and try
4819 	 * again.
4820 	 */
4821 	icount = atomic_fetchadd_long(&m->md.interlock_count,
4822 				      0x8000000000000000LU) +
4823 		 0x8000000000000000LU;
4824 	cpu_ccfence();
4825 	while (icount & 0x3FFFFFFFFFFFFFFFLU) {
4826 		tsleep_interlock(&m->md.interlock_count, 0);
4827 		if (atomic_fcmpset_long(&m->md.interlock_count, &icount,
4828 					icount | 0x4000000000000000LU)) {
4829 			tsleep(&m->md.interlock_count, PINTERLOCKED,
4830 			       "pgunm", 1);
4831 			icount = m->md.interlock_count;
4832 			if (retry - ticks > 0)
4833 				goto again;
4834 			panic("pmap_remove_all: cannot return interlock_count "
4835 			      "to 0 (%p, %ld)",
4836 			      m, m->md.interlock_count);
4837 		}
4838 	}
4839 #else
4840 	/*
4841 	 * pmap_count should be zero but it is possible to race a pmap_enter()
4842 	 * replacement (see 'oldm').  Once it is zero it cannot become
4843 	 * non-zero because the page is hard-busied.
4844 	 */
4845 	if (m->md.pmap_count || m->md.writeable_count) {
4846 		tsleep(&m->md.pmap_count, 0, "pgunm", 1);
4847 		if (retry - ticks > 0)
4848 			goto again;
4849 		panic("pmap_remove_all: cannot return pmap_count "
4850 		      "to 0 (%p, %ld, %ld)",
4851 		      m, m->md.pmap_count, m->md.writeable_count);
4852 	}
4853 #endif
4854 	vm_page_flag_clear(m, PG_MAPPED | PG_MAPPEDMULTI | PG_WRITEABLE);
4855 }
4856 
4857 /*
4858  * Removes the page from a particular pmap.
4859  *
4860  * The page must be busied by the caller.
4861  */
4862 void
4863 pmap_remove_specific(pmap_t pmap_match, vm_page_t m)
4864 {
4865 	if (__predict_false(!pmap_initialized))
4866 		return;
4867 
4868 	/*
4869 	 * PG_MAPPED test works for both non-fictitious and fictitious pages.
4870 	 */
4871 	if ((m->flags & PG_MAPPED) == 0)
4872 		return;
4873 
4874 	PMAP_PAGE_BACKING_SCAN(m, pmap_match, ipmap, iptep, ipte, iva) {
4875 		if (!pmap_inval_smp_cmpset(ipmap, iva, iptep, ipte, 0))
4876 			PMAP_PAGE_BACKING_RETRY;
4877 		if (ipte & ipmap->pmap_bits[PG_MANAGED_IDX]) {
4878 			if (ipte & ipmap->pmap_bits[PG_M_IDX])
4879 				vm_page_dirty(m);
4880 			if (ipte & ipmap->pmap_bits[PG_A_IDX])
4881 				vm_page_flag_set(m, PG_REFERENCED);
4882 
4883 			/*
4884 			 * NOTE: m is not hard-busied so it is not safe to
4885 			 *	 clear PG_MAPPED and PG_WRITEABLE on the 1->0
4886 			 *	 transition against them being set in
4887 			 *	 pmap_enter().
4888 			 */
4889 			pmap_removed_pte(m, ipte);
4890 		}
4891 
4892 		/*
4893 		 * Cleanup various tracking counters.  pt_pv can't go away
4894 		 * due to our wired ref.
4895 		 */
4896 		if (ipmap != &kernel_pmap) {
4897 			pv_entry_t pt_pv;
4898 
4899 			spin_lock_shared(&ipmap->pm_spin);
4900 			pt_pv = pv_entry_lookup(ipmap, pmap_pt_pindex(iva));
4901 			spin_unlock_shared(&ipmap->pm_spin);
4902 
4903 			if (pt_pv) {
4904 				atomic_add_long(
4905 					&ipmap->pm_stats.resident_count, -1);
4906 				if (vm_page_unwire_quick(pt_pv->pv_m)) {
4907 					panic("pmap_remove_specific: bad "
4908 					      "wire_count on pt_pv");
4909 				}
4910 			}
4911 		}
4912 		if (ipte & ipmap->pmap_bits[PG_W_IDX])
4913 			atomic_add_long(&ipmap->pm_stats.wired_count, -1);
4914 		if (ipte & ipmap->pmap_bits[PG_G_IDX])
4915 			cpu_invlpg((void *)iva);
4916 	} PMAP_PAGE_BACKING_DONE;
4917 }
4918 
4919 /*
4920  * Set the physical protection on the specified range of this map
4921  * as requested.  This function is typically only used for debug watchpoints
4922  * and COW pages.
4923  *
4924  * This function may not be called from an interrupt if the map is
4925  * not the kernel_pmap.
4926  *
4927  * NOTE!  For shared page table pages we just unmap the page.
4928  */
4929 void
4930 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
4931 {
4932 	struct pmap_scan_info info;
4933 	/* JG review for NX */
4934 
4935 	if (pmap == NULL)
4936 		return;
4937 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == VM_PROT_NONE) {
4938 		pmap_remove(pmap, sva, eva);
4939 		return;
4940 	}
4941 	if (prot & VM_PROT_WRITE)
4942 		return;
4943 	info.pmap = pmap;
4944 	info.sva = sva;
4945 	info.eva = eva;
4946 	info.func = pmap_protect_callback;
4947 	info.arg = &prot;
4948 	pmap_scan(&info, 1);
4949 }
4950 
4951 static
4952 void
4953 pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
4954 		      vm_pindex_t *pte_placemark,
4955 		      pv_entry_t pt_pv, vm_offset_t va,
4956 		      pt_entry_t *ptep, void *arg __unused)
4957 {
4958 	pt_entry_t pbits;
4959 	pt_entry_t cbits;
4960 	vm_page_t m;
4961 
4962 again:
4963 	pbits = *ptep;
4964 	cpu_ccfence();
4965 	cbits = pbits;
4966 	if (pbits & pmap->pmap_bits[PG_MANAGED_IDX]) {
4967 		cbits &= ~pmap->pmap_bits[PG_A_IDX];
4968 		cbits &= ~pmap->pmap_bits[PG_M_IDX];
4969 	}
4970 	/* else unmanaged page, adjust bits, no wire changes */
4971 
4972 	if (ptep) {
4973 		cbits &= ~pmap->pmap_bits[PG_RW_IDX];
4974 #ifdef PMAP_DEBUG2
4975 		if (pmap_enter_debug > 0) {
4976 			--pmap_enter_debug;
4977 			kprintf("pmap_protect va=%lx ptep=%p "
4978 				"pt_pv=%p cbits=%08lx\n",
4979 				va, ptep, pt_pv, cbits
4980 			);
4981 		}
4982 #endif
4983 		if (pbits != cbits) {
4984 			if (!pmap_inval_smp_cmpset(pmap, va,
4985 						   ptep, pbits, cbits)) {
4986 				goto again;
4987 			}
4988 		}
4989 		if (pbits & pmap->pmap_bits[PG_MANAGED_IDX]) {
4990 			m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
4991 			if (pbits & pmap->pmap_bits[PG_A_IDX])
4992 				vm_page_flag_set(m, PG_REFERENCED);
4993 			if (pbits & pmap->pmap_bits[PG_M_IDX])
4994 				vm_page_dirty(m);
4995 #if !defined(PMAP_ADVANCED)
4996 			if (pbits & pmap->pmap_bits[PG_RW_IDX])
4997 				atomic_add_long(&m->md.writeable_count, -1);
4998 #endif
4999 
5000 		}
5001 	}
5002 	pv_placemarker_wakeup(pmap, pte_placemark);
5003 }
5004 
5005 /*
5006  * Insert the vm_page (m) at the virtual address (va), replacing any prior
5007  * mapping at that address.  Set protection and wiring as requested.
5008  *
5009  * If entry is non-NULL we check to see if the SEG_SIZE optimization is
5010  * possible.  If it is we enter the page into the appropriate shared pmap
5011  * hanging off the related VM object instead of the passed pmap, then we
5012  * share the page table page from the VM object's pmap into the current pmap.
5013  *
5014  * NOTE: This routine MUST insert the page into the pmap now, it cannot
5015  *	 lazy-evaluate.
5016  */
5017 void
5018 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
5019 	   boolean_t wired, vm_map_entry_t entry)
5020 {
5021 	pv_entry_t pt_pv;	/* page table */
5022 	pv_entry_t pte_pv;	/* page table entry */
5023 	vm_pindex_t *pte_placemark;
5024 	pt_entry_t *ptep;
5025 	pt_entry_t origpte;
5026 	vm_paddr_t opa;
5027 	vm_page_t oldm;
5028 	pt_entry_t newpte;
5029 	vm_paddr_t pa;
5030 #if defined(PMAP_ADVANCED)
5031 	int flags;
5032 	int nflags;
5033 #endif
5034 
5035 	if (pmap == NULL)
5036 		return;
5037 	va = trunc_page(va);
5038 #ifdef PMAP_DIAGNOSTIC
5039 	if (va >= KvaEnd)
5040 		panic("pmap_enter: toobig");
5041 	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
5042 		panic("pmap_enter: invalid to pmap_enter page table "
5043 		      "pages (va: 0x%lx)", va);
5044 #endif
5045 	if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
5046 		kprintf("Warning: pmap_enter called on UVA with "
5047 			"kernel_pmap\n");
5048 #ifdef DDB
5049 		db_print_backtrace();
5050 #endif
5051 	}
5052 	if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
5053 		kprintf("Warning: pmap_enter called on KVA without"
5054 			"kernel_pmap\n");
5055 #ifdef DDB
5056 		db_print_backtrace();
5057 #endif
5058 	}
5059 
5060 	/*
5061 	 * Get the locked page table page (pt_pv) for our new page table
5062 	 * entry, allocating it if necessary.
5063 	 *
5064 	 * There is no pte_pv for a terminal pte so the terminal pte will
5065 	 * be locked via pte_placemark.
5066 	 *
5067 	 * Only MMU actions by the CPU itself can modify the ptep out from
5068 	 * under us.
5069 	 *
5070 	 * If the pmap is still being initialized we assume existing
5071 	 * page tables.
5072 	 *
5073 	 * NOTE: Kernel mapppings do not track page table pages
5074 	 *	 (i.e. there is no pt_pv pt_pv structure).
5075 	 *
5076 	 * NOTE: origpte here is 'tentative', used only to check for
5077 	 *	 the degenerate case where the entry already exists and
5078 	 *	 matches.
5079 	 */
5080 	if (__predict_false(pmap_initialized == FALSE)) {
5081 		pte_pv = NULL;
5082 		pt_pv = NULL;
5083 		pte_placemark = NULL;
5084 		ptep = vtopte(va);
5085 		origpte = *ptep;
5086 	} else {
5087 		pte_pv = pv_get(pmap, pmap_pte_pindex(va), &pte_placemark);
5088 		KKASSERT(pte_pv == NULL);
5089 		if (va >= VM_MAX_USER_ADDRESS) {
5090 			pt_pv = NULL;
5091 			ptep = vtopte(va);
5092 		} else {
5093 			pt_pv = pmap_allocpte(pmap, pmap_pt_pindex(va), NULL);
5094 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
5095 		}
5096 		origpte = *ptep;
5097 		cpu_ccfence();
5098 	}
5099 
5100 	pa = VM_PAGE_TO_PHYS(m);
5101 
5102 	/*
5103 	 * Calculate the new PTE.
5104 	 */
5105 	newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) |
5106 		 pmap->pmap_bits[PG_V_IDX] | pmap->pmap_bits[PG_A_IDX]);
5107 	if (wired)
5108 		newpte |= pmap->pmap_bits[PG_W_IDX];
5109 	if (va < VM_MAX_USER_ADDRESS)
5110 		newpte |= pmap->pmap_bits[PG_U_IDX];
5111 	if ((m->flags & PG_FICTITIOUS) == 0)
5112 		newpte |= pmap->pmap_bits[PG_MANAGED_IDX];
5113 //	if (pmap == &kernel_pmap)
5114 //		newpte |= pgeflag;
5115 	newpte |= pmap->pmap_cache_bits_pte[m->pat_mode];
5116 
5117 	/*
5118 	 * It is possible for multiple faults to occur in threaded
5119 	 * environments, the existing pte might be correct.
5120 	 */
5121 	if (((origpte ^ newpte) &
5122 	    ~(pt_entry_t)(pmap->pmap_bits[PG_M_IDX] |
5123 			  pmap->pmap_bits[PG_A_IDX])) == 0) {
5124 		goto done;
5125 	}
5126 
5127 	/*
5128 	 * Adjust page flags.  The page is soft-busied or hard-busied, we
5129 	 * should be able to safely set PG_* flag bits even with the (shared)
5130 	 * soft-busy.
5131 	 *
5132 	 * The pmap_count and writeable_count is only tracked for
5133 	 * non-fictitious pages.  As a bit of a safety, bump pmap_count
5134 	 * and set the PG_* bits before mapping the page.  If another part
5135 	 * of the system does not properly hard-busy the page (against our
5136 	 * soft-busy or hard-busy) in order to remove mappings it might not
5137 	 * see the pte that we are about to add and thus will not be able to
5138 	 * drop pmap_count to 0.
5139 	 *
5140 	 * The PG_MAPPED and PG_WRITEABLE flags are set for any type of page.
5141 	 *
5142 	 * NOTE! PG_MAPPED and PG_WRITEABLE can only be cleared when
5143 	 *	 the page is hard-busied AND pmap_count is 0.  This
5144 	 *	 interlocks our setting of the flags here.
5145 	 */
5146 	/*vm_page_spin_lock(m);*/
5147 #if !defined(PMAP_ADVANCED)
5148 	if ((m->flags & PG_FICTITIOUS) == 0) {
5149 		pmap_page_stats_adding(
5150 			atomic_fetchadd_long(&m->md.pmap_count, 1));
5151 		if (newpte & pmap->pmap_bits[PG_RW_IDX])
5152 			atomic_add_long(&m->md.writeable_count, 1);
5153 	}
5154 #endif
5155 
5156 	/*
5157 	 * In advanced mode we keep track of single mappings verses
5158 	 * multiple mappings in order to avoid unnecessary vm_page_protect()
5159 	 * calls (particularly on the kernel_map).
5160 	 *
5161 	 * If non-advanced mode we track the mapping count for similar effect.
5162 	 *
5163 	 * Avoid modifying the vm_page as much as possible, conditionalize
5164 	 * updates to reduce cache line ping-ponging.
5165 	 */
5166 #if defined(PMAP_ADVANCED)
5167 	flags = m->flags;
5168 	cpu_ccfence();
5169 	for (;;) {
5170 		nflags = PG_MAPPED;
5171 		if (newpte & pmap->pmap_bits[PG_RW_IDX])
5172 			nflags |= PG_WRITEABLE;
5173 		if (flags & PG_MAPPED)
5174 			nflags |= PG_MAPPEDMULTI;
5175 		if (flags == (flags | nflags))
5176 			break;
5177 		if (atomic_fcmpset_int(&m->flags, &flags, flags | nflags))
5178 			break;
5179 	}
5180 #else
5181 	if (newpte & pmap->pmap_bits[PG_RW_IDX]) {
5182 		if ((m->flags & (PG_MAPPED | PG_WRITEABLE)) == 0)
5183 			vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
5184 	} else {
5185 		if ((m->flags & PG_MAPPED) == 0)
5186 			vm_page_flag_set(m, PG_MAPPED);
5187 	}
5188 #endif
5189 	/*vm_page_spin_unlock(m);*/
5190 
5191 	/*
5192 	 * A race can develop when replacing an existing mapping.  The new
5193 	 * page has been busied and the pte is placemark-locked, but the
5194 	 * old page could be ripped out from under us at any time by
5195 	 * a backing scan.
5196 	 *
5197 	 * When PMAP_ADVANCED is disabled the race is handled by having the
5198 	 * backing scans check pmap_count and writeable_count when doing
5199 	 * operations that should ensure one becomes 0.
5200 	 *
5201 	 * When PMAP_ADVANCED is enabled, if we do nothing, a concurrent
5202 	 * backing scan may clear PG_WRITEABLE and PG_MAPPED before we can
5203 	 * act on oldm.
5204 	 */
5205 	opa = origpte & PG_FRAME;
5206 	if (opa && (origpte & pmap->pmap_bits[PG_MANAGED_IDX])) {
5207 		oldm = PHYS_TO_VM_PAGE(opa);
5208 		KKASSERT(opa == oldm->phys_addr);
5209 		KKASSERT(entry != NULL);
5210 #ifdef PMAP_ADVANCED
5211 		atomic_add_long(&oldm->md.interlock_count, 1);
5212 #endif
5213 	} else {
5214 		oldm = NULL;
5215 	}
5216 
5217 	/*
5218 	 * Swap the new and old PTEs and perform any necessary SMP
5219 	 * synchronization.
5220 	 */
5221 	if ((prot & VM_PROT_NOSYNC) || (opa == 0 && pt_pv != NULL)) {
5222 		/*
5223 		 * Explicitly permitted to avoid pmap cpu mask synchronization
5224 		 * or the prior content of a non-kernel-related pmap was
5225 		 * invalid.
5226 		 */
5227 		origpte = atomic_swap_long(ptep, newpte);
5228 		if (opa)
5229 			cpu_invlpg((void *)va);
5230 	} else {
5231 		/*
5232 		 * Not permitted to avoid pmap cpu mask synchronization
5233 		 * or there prior content being replaced or this is a kernel
5234 		 * related pmap.
5235 		 *
5236 		 * Due to other kernel optimizations, we cannot assume a
5237 		 * 0->non_zero transition of *ptep can be done with a swap.
5238 		 */
5239 		origpte = pmap_inval_smp(pmap, va, 1, ptep, newpte);
5240 	}
5241 	opa = origpte & PG_FRAME;
5242 
5243 #ifdef PMAP_DEBUG2
5244 	if (pmap_enter_debug > 0) {
5245 		--pmap_enter_debug;
5246 		kprintf("pmap_enter: va=%lx m=%p origpte=%lx newpte=%lx ptep=%p"
5247 			" pte_pv=%p pt_pv=%p opa=%lx prot=%02x\n",
5248 			va, m,
5249 			origpte, newpte, ptep,
5250 			pte_pv, pt_pv, opa, prot);
5251 	}
5252 #endif
5253 
5254 	/*
5255 	 * Account for the changes in the pt_pv and pmap.
5256 	 *
5257 	 * Retain the same wiring count due to replacing an existing page,
5258 	 * or bump the wiring count for a new page.
5259 	 */
5260 	if (pt_pv && opa == 0) {
5261 		vm_page_wire_quick(pt_pv->pv_m);
5262 		atomic_add_long(&pt_pv->pv_pmap->pm_stats.resident_count, 1);
5263 	}
5264 	if (wired && (origpte & pmap->pmap_bits[PG_W_IDX]) == 0)
5265 		atomic_add_long(&pmap->pm_stats.wired_count, 1);
5266 
5267 	/*
5268 	 * Account for the removal of the old page.  pmap and pt_pv stats
5269 	 * have already been fully adjusted for both.
5270 	 *
5271 	 * WARNING! oldm is not soft or hard-busied.  The pte at worst can
5272 	 *	    only be removed out from under us since we hold the
5273 	 *	    placemarker.  So if it is still there, it must not have
5274 	 *	    changed.
5275 	 *
5276 	 * WARNING! When PMAP_ADVANCED is enabled, a backing scan
5277 	 *	    can clear PG_WRITEABLE and/or PG_MAPPED and rip oldm
5278 	 *	    away from us, possibly even freeing or paging it, and
5279 	 *	    not setting our dirtying below.
5280 	 *
5281 	 *	    To deal with this, oldm->md.interlock_count is bumped
5282 	 *	    to indicate that we might (only might) have won the pte
5283 	 *	    swap race, and then released below.
5284 	 */
5285 	if (opa && (origpte & pmap->pmap_bits[PG_MANAGED_IDX])) {
5286 		KKASSERT(oldm == PHYS_TO_VM_PAGE(opa));
5287 		if (origpte & pmap->pmap_bits[PG_M_IDX])
5288 			vm_page_dirty(oldm);
5289 		if (origpte & pmap->pmap_bits[PG_A_IDX])
5290 			vm_page_flag_set(oldm, PG_REFERENCED);
5291 
5292 		/*
5293 		 * NOTE: oldm is not hard-busied so it is not safe to
5294 		 *	 clear PG_MAPPED and PG_WRITEABLE on the 1->0
5295 		 *	 transition against them being set in
5296 		 *	 pmap_enter().
5297 		 */
5298 		pmap_removed_pte(oldm, origpte);
5299 	}
5300 #ifdef PMAP_ADVANCED
5301 	if (oldm) {
5302 		if ((atomic_fetchadd_long(&oldm->md.interlock_count, -1) &
5303 		     0x7FFFFFFFFFFFFFFFLU) == 0x4000000000000001LU) {
5304 			atomic_clear_long(&oldm->md.interlock_count,
5305 					  0x4000000000000000LU);
5306 			wakeup(&oldm->md.interlock_count);
5307 		}
5308 	}
5309 #endif
5310 
5311 done:
5312 	KKASSERT((newpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0 ||
5313 		 (m->flags & PG_MAPPED));
5314 
5315 	/*
5316 	 * Cleanup the pv entry, allowing other accessors.  If the new page
5317 	 * is not managed but we have a pte_pv (which was locking our
5318 	 * operation), we can free it now.  pte_pv->pv_m should be NULL.
5319 	 */
5320 	if (pte_placemark)
5321 		pv_placemarker_wakeup(pmap, pte_placemark);
5322 	if (pt_pv)
5323 		pv_put(pt_pv);
5324 }
5325 
5326 /*
5327  * Make a temporary mapping for a physical address.  This is only intended
5328  * to be used for panic dumps.
5329  *
5330  * The caller is responsible for calling smp_invltlb().
5331  */
5332 void *
5333 pmap_kenter_temporary(vm_paddr_t pa, long i)
5334 {
5335 	pmap_kenter_quick((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
5336 	return ((void *)crashdumpmap);
5337 }
5338 
5339 #if 0
5340 #define MAX_INIT_PT (96)
5341 
5342 /*
5343  * This routine preloads the ptes for a given object into the specified pmap.
5344  * This eliminates the blast of soft faults on process startup and
5345  * immediately after an mmap.
5346  */
5347 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
5348 #endif
5349 
5350 void
5351 pmap_object_init_pt(pmap_t pmap, vm_map_entry_t entry,
5352 		    vm_offset_t addr, vm_size_t size, int limit)
5353 {
5354 #if 0
5355 	vm_prot_t prot = entry->protection;
5356 	vm_object_t object = entry->ba.object;
5357 	vm_pindex_t pindex = atop(entry->ba.offset + (addr - entry->ba.start));
5358 	struct rb_vm_page_scan_info info;
5359 	struct lwp *lp;
5360 	vm_size_t psize;
5361 
5362 	/*
5363 	 * We can't preinit if read access isn't set or there is no pmap
5364 	 * or object.
5365 	 */
5366 	if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
5367 		return;
5368 
5369 	/*
5370 	 * We can't preinit if the pmap is not the current pmap
5371 	 */
5372 	lp = curthread->td_lwp;
5373 	if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
5374 		return;
5375 
5376 	/*
5377 	 * Misc additional checks
5378 	 */
5379 	psize = x86_64_btop(size);
5380 
5381 	if ((object->type != OBJT_VNODE) ||
5382 		((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
5383 			(object->resident_page_count > MAX_INIT_PT))) {
5384 		return;
5385 	}
5386 
5387 	if (pindex + psize > object->size) {
5388 		if (object->size < pindex)
5389 			return;
5390 		psize = object->size - pindex;
5391 	}
5392 
5393 	if (psize == 0)
5394 		return;
5395 
5396 	/*
5397 	 * If everything is segment-aligned do not pre-init here.  Instead
5398 	 * allow the normal vm_fault path to pass a segment hint to
5399 	 * pmap_enter() which will then use an object-referenced shared
5400 	 * page table page.
5401 	 */
5402 	if ((addr & SEG_MASK) == 0 &&
5403 	    (ctob(psize) & SEG_MASK) == 0 &&
5404 	    (ctob(pindex) & SEG_MASK) == 0) {
5405 		return;
5406 	}
5407 
5408 	/*
5409 	 * Use a red-black scan to traverse the requested range and load
5410 	 * any valid pages found into the pmap.
5411 	 *
5412 	 * We cannot safely scan the object's memq without holding the
5413 	 * object token.
5414 	 */
5415 	info.start_pindex = pindex;
5416 	info.end_pindex = pindex + psize - 1;
5417 	info.limit = limit;
5418 	info.mpte = NULL;
5419 	info.addr = addr;
5420 	info.pmap = pmap;
5421 	info.object = object;
5422 	info.entry = entry;
5423 
5424 	/*
5425 	 * By using the NOLK scan, the callback function must be sure
5426 	 * to return -1 if the VM page falls out of the object.
5427 	 */
5428 	vm_object_hold_shared(object);
5429 	vm_page_rb_tree_RB_SCAN_NOLK(&object->rb_memq, rb_vm_page_scancmp,
5430 				     pmap_object_init_pt_callback, &info);
5431 	vm_object_drop(object);
5432 #endif
5433 }
5434 
5435 #if 0
5436 
5437 static
5438 int
5439 pmap_object_init_pt_callback(vm_page_t p, void *data)
5440 {
5441 	struct rb_vm_page_scan_info *info = data;
5442 	vm_pindex_t rel_index;
5443 	int hard_busy;
5444 
5445 	/*
5446 	 * don't allow an madvise to blow away our really
5447 	 * free pages allocating pv entries.
5448 	 */
5449 	if ((info->limit & MAP_PREFAULT_MADVISE) &&
5450 		vmstats.v_free_count < vmstats.v_free_reserved) {
5451 		    return(-1);
5452 	}
5453 
5454 	/*
5455 	 * Ignore list markers and ignore pages we cannot instantly
5456 	 * busy (while holding the object token).
5457 	 */
5458 	if (p->flags & PG_MARKER)
5459 		return 0;
5460 	hard_busy = 0;
5461 again:
5462 	if (hard_busy) {
5463 		if (vm_page_busy_try(p, TRUE))
5464 			return 0;
5465 	} else {
5466 		if (vm_page_sbusy_try(p))
5467 			return 0;
5468 	}
5469 	if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
5470 	    (p->flags & PG_FICTITIOUS) == 0) {
5471 		if ((p->queue - p->pc) == PQ_CACHE) {
5472 			if (hard_busy == 0) {
5473 				vm_page_sbusy_drop(p);
5474 				hard_busy = 1;
5475 				goto again;
5476 			}
5477 			vm_page_deactivate(p);
5478 		}
5479 		rel_index = p->pindex - info->start_pindex;
5480 		pmap_enter(info->pmap, info->addr + x86_64_ptob(rel_index), p,
5481 			   VM_PROT_READ, FALSE, info->entry);
5482 	}
5483 	if (hard_busy)
5484 		vm_page_wakeup(p);
5485 	else
5486 		vm_page_sbusy_drop(p);
5487 
5488 	/*
5489 	 * We are using an unlocked scan (that is, the scan expects its
5490 	 * current element to remain in the tree on return).  So we have
5491 	 * to check here and abort the scan if it isn't.
5492 	 */
5493 	if (p->object != info->object)
5494 		return -1;
5495 	lwkt_yield();
5496 	return(0);
5497 }
5498 
5499 #endif
5500 
5501 /*
5502  * Return TRUE if the pmap is in shape to trivially pre-fault the specified
5503  * address.
5504  *
5505  * Returns FALSE if it would be non-trivial or if a pte is already loaded
5506  * into the slot.
5507  *
5508  * The address must reside within a vm_map mapped range to ensure that the
5509  * page table doesn't get ripped out from under us.
5510  *
5511  * XXX This is safe only because page table pages are not freed.
5512  */
5513 int
5514 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
5515 {
5516 	pt_entry_t *pte;
5517 
5518 	/*spin_lock(&pmap->pm_spin);*/
5519 	if ((pte = pmap_pte(pmap, addr)) != NULL) {
5520 		if (*pte & pmap->pmap_bits[PG_V_IDX]) {
5521 			/*spin_unlock(&pmap->pm_spin);*/
5522 			return FALSE;
5523 		}
5524 	}
5525 	/*spin_unlock(&pmap->pm_spin);*/
5526 	return TRUE;
5527 }
5528 
5529 /*
5530  * Change the wiring attribute for a pmap/va pair.  The mapping must already
5531  * exist in the pmap.  The mapping may or may not be managed.  The wiring in
5532  * the page is not changed, the page is returned so the caller can adjust
5533  * its wiring (the page is not locked in any way).
5534  *
5535  * Wiring is not a hardware characteristic so there is no need to invalidate
5536  * TLB.  However, in an SMP environment we must use a locked bus cycle to
5537  * update the pte (if we are not using the pmap_inval_*() API that is)...
5538  * it's ok to do this for simple wiring changes.
5539  */
5540 vm_page_t
5541 pmap_unwire(pmap_t pmap, vm_offset_t va)
5542 {
5543 	pt_entry_t *ptep;
5544 	pv_entry_t pt_pv;
5545 	vm_paddr_t pa;
5546 	vm_page_t m;
5547 
5548 	if (pmap == NULL)
5549 		return NULL;
5550 
5551 	/*
5552 	 * Assume elements in the kernel pmap are stable
5553 	 */
5554 	if (pmap == &kernel_pmap) {
5555 		if (pmap_pt(pmap, va) == 0)
5556 			return NULL;
5557 		ptep = pmap_pte_quick(pmap, va);
5558 		if (pmap_pte_v(pmap, ptep)) {
5559 			if (pmap_pte_w(pmap, ptep))
5560 				atomic_add_long(&pmap->pm_stats.wired_count,-1);
5561 			atomic_clear_long(ptep, pmap->pmap_bits[PG_W_IDX]);
5562 			pa = *ptep & PG_FRAME;
5563 			m = PHYS_TO_VM_PAGE(pa);
5564 		} else {
5565 			m = NULL;
5566 		}
5567 	} else {
5568 		/*
5569 		 * We can only [un]wire pmap-local pages (we cannot wire
5570 		 * shared pages)
5571 		 */
5572 		pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
5573 		if (pt_pv == NULL)
5574 			return NULL;
5575 
5576 		ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
5577 		if ((*ptep & pmap->pmap_bits[PG_V_IDX]) == 0) {
5578 			pv_put(pt_pv);
5579 			return NULL;
5580 		}
5581 
5582 		if (pmap_pte_w(pmap, ptep)) {
5583 			atomic_add_long(&pt_pv->pv_pmap->pm_stats.wired_count,
5584 					-1);
5585 		}
5586 		/* XXX else return NULL so caller doesn't unwire m ? */
5587 
5588 		atomic_clear_long(ptep, pmap->pmap_bits[PG_W_IDX]);
5589 
5590 		pa = *ptep & PG_FRAME;
5591 		m = PHYS_TO_VM_PAGE(pa);	/* held by wired count */
5592 		pv_put(pt_pv);
5593 	}
5594 	return m;
5595 }
5596 
5597 /*
5598  * Copy the range specified by src_addr/len from the source map to
5599  * the range dst_addr/len in the destination map.
5600  *
5601  * This routine is only advisory and need not do anything.
5602  */
5603 void
5604 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
5605 	  vm_size_t len, vm_offset_t src_addr)
5606 {
5607 }
5608 
5609 /*
5610  * pmap_zero_page:
5611  *
5612  *	Zero the specified physical page.
5613  *
5614  *	This function may be called from an interrupt and no locking is
5615  *	required.
5616  */
5617 void
5618 pmap_zero_page(vm_paddr_t phys)
5619 {
5620 	vm_offset_t va = PHYS_TO_DMAP(phys);
5621 
5622 	pagezero((void *)va);
5623 }
5624 
5625 /*
5626  * pmap_zero_page:
5627  *
5628  *	Zero part of a physical page by mapping it into memory and clearing
5629  *	its contents with bzero.
5630  *
5631  *	off and size may not cover an area beyond a single hardware page.
5632  */
5633 void
5634 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
5635 {
5636 	vm_offset_t virt = PHYS_TO_DMAP(phys);
5637 
5638 	bzero((char *)virt + off, size);
5639 }
5640 
5641 /*
5642  * pmap_copy_page:
5643  *
5644  *	Copy the physical page from the source PA to the target PA.
5645  *	This function may be called from an interrupt.  No locking
5646  *	is required.
5647  */
5648 void
5649 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
5650 {
5651 	vm_offset_t src_virt, dst_virt;
5652 
5653 	src_virt = PHYS_TO_DMAP(src);
5654 	dst_virt = PHYS_TO_DMAP(dst);
5655 	bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
5656 }
5657 
5658 /*
5659  * pmap_copy_page_frag:
5660  *
5661  *	Copy the physical page from the source PA to the target PA.
5662  *	This function may be called from an interrupt.  No locking
5663  *	is required.
5664  */
5665 void
5666 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
5667 {
5668 	vm_offset_t src_virt, dst_virt;
5669 
5670 	src_virt = PHYS_TO_DMAP(src);
5671 	dst_virt = PHYS_TO_DMAP(dst);
5672 
5673 	bcopy((char *)src_virt + (src & PAGE_MASK),
5674 	      (char *)dst_virt + (dst & PAGE_MASK),
5675 	      bytes);
5676 }
5677 
5678 /*
5679  * Remove all pages from specified address space this aids process exit
5680  * speeds.  Also, this code may be special cased for the current process
5681  * only.
5682  */
5683 void
5684 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5685 {
5686 	pmap_remove_noinval(pmap, sva, eva);
5687 	cpu_invltlb();
5688 }
5689 
5690 /*
5691  * pmap_testbit tests bits in pte's note that the testbit/clearbit
5692  * routines are inline, and a lot of things compile-time evaluate.
5693  *
5694  * Currently only used to test the 'M'odified bit.  If the page
5695  * is not PG_WRITEABLE, the 'M'odified bit cannot be set and we
5696  * return immediately.  Fictitious pages do not track this bit.
5697  */
5698 static
5699 boolean_t
5700 pmap_testbit(vm_page_t m, int bit)
5701 {
5702 	int res = FALSE;
5703 
5704 	if (__predict_false(!pmap_initialized || (m->flags & PG_FICTITIOUS)))
5705 		return FALSE;
5706 	/*
5707 	 * Nothing to do if all the mappings are already read-only.
5708 	 * The page's [M]odify bits have already been synchronized
5709 	 * to the vm_page_t and cleaned out.
5710 	 */
5711 #ifdef PMAP_ADVANCED
5712 	if (bit == PG_M_IDX && (m->flags & PG_WRITEABLE) == 0)
5713 		return FALSE;
5714 #else
5715 	if (bit == PG_M_IDX && m->md.writeable_count == 0)
5716 		return FALSE;
5717 #endif
5718 
5719 	/*
5720 	 * Iterate the mapping
5721 	 */
5722 	PMAP_PAGE_BACKING_SCAN(m, NULL, ipmap, iptep, ipte, iva) {
5723 		if (ipte & ipmap->pmap_bits[bit]) {
5724 			res = TRUE;
5725 			break;
5726 		}
5727 	} PMAP_PAGE_BACKING_DONE;
5728 	return res;
5729 }
5730 
5731 /*
5732  * This routine is used to modify bits in ptes.  Only one bit should be
5733  * specified.  PG_RW requires special handling.  This call works with
5734  * any sort of mapped page.  PG_FICTITIOUS pages might not be optimal.
5735  *
5736  * Caller must NOT hold any spin locks
5737  * Caller must hold (m) hard-busied
5738  *
5739  * NOTE: When clearing PG_M we could also (not implemented) drop
5740  *       through to the PG_RW code and clear PG_RW too, forcing
5741  *       a fault on write to redetect PG_M for virtual kernels, but
5742  *       it isn't necessary since virtual kernels invalidate the
5743  *       pte when they clear the VPTE_M bit in their virtual page
5744  *       tables.
5745  *
5746  * NOTE: Does not re-dirty the page when clearing only PG_M.
5747  *
5748  * NOTE: Because we do not lock the pv, *pte can be in a state of
5749  *       flux.  Despite this the value of *pte is still somewhat
5750  *       related while we hold the vm_page spin lock.
5751  *
5752  *       *pte can be zero due to this race.  Since we are clearing
5753  *       bits we basically do no harm when this race occurs.
5754  */
5755 static __inline
5756 void
5757 pmap_clearbit(vm_page_t m, int bit_index)
5758 {
5759 	pt_entry_t npte;
5760 	int retry;
5761 #ifdef PMAP_ADVANCED
5762 	long icount;
5763 #endif
5764 
5765 	/*
5766 	 * Too early in the boot
5767 	 */
5768 	if (__predict_false(!pmap_initialized)) {
5769 		if (bit_index == PG_RW_IDX)
5770 			vm_page_flag_clear(m, PG_WRITEABLE);
5771 		return;
5772 	}
5773 #ifdef PMAP_ADVANCED
5774 	if ((m->flags & (PG_MAPPED | PG_WRITEABLE)) == 0)
5775 		return;
5776 #endif
5777 
5778 	/*
5779 	 * Being asked to clear other random bits, we don't track them
5780 	 * so we have to iterate.
5781 	 *
5782 	 * When PMAP_ADVANCED is enabled, pmap_clear_reference()
5783 	 * is called (into here) with the page hard-busied to check whether
5784 	 * the page is still mapped and will clear PG_MAPPED and PG_WRITEABLE
5785 	 * if it isn't.
5786 	 */
5787 	if (bit_index != PG_RW_IDX) {
5788 #if 0
5789 #ifdef PMAP_ADVANCED
5790 		long icount;
5791 
5792 		icount = 0;
5793 #endif
5794 #endif
5795 		PMAP_PAGE_BACKING_SCAN(m, NULL, ipmap, iptep, ipte, iva) {
5796 #if 0
5797 #ifdef PMAP_ADVANCED
5798 			++icount;
5799 #endif
5800 #endif
5801 			if (ipte & ipmap->pmap_bits[bit_index]) {
5802 				atomic_clear_long(iptep,
5803 						  ipmap->pmap_bits[bit_index]);
5804 			}
5805 		} PMAP_PAGE_BACKING_DONE;
5806 #if 0
5807 #ifdef PMAP_ADVANCED
5808 		if (icount == 0) {
5809 			icount = atomic_fetchadd_long(&m->md.interlock_count,
5810 						      0x8000000000000000LU);
5811 			if ((icount & 0x3FFFFFFFFFFFFFFFLU) == 0) {
5812 				vm_page_flag_clear(m, PG_MAPPED |
5813 						      PG_MAPPEDMULTI |
5814 						      PG_WRITEABLE);
5815 			}
5816 		}
5817 #endif
5818 #endif
5819 		return;
5820 	}
5821 
5822 	/*
5823 	 * Being asked to clear the RW bit.
5824 	 *
5825 	 * Nothing to do if all the mappings are already read-only
5826 	 */
5827 #ifdef PMAP_ADVANCED
5828 	if ((m->flags & PG_WRITEABLE) == 0)
5829 		return;
5830 #else
5831 	if (m->md.writeable_count == 0)
5832 		return;
5833 #endif
5834 
5835 	/*
5836 	 * Iterate the mappings and check.
5837 	 */
5838 	retry = ticks + hz * 60;
5839 again:
5840 	/*
5841 	 * Clear PG_RW. This also clears PG_M and marks the page dirty if
5842 	 * PG_M was set.
5843 	 *
5844 	 * Since the caller holds the page hard-busied we can safely clear
5845 	 * PG_WRITEABLE, and callers expect us to for the PG_RW_IDX path.
5846 	 */
5847 	PMAP_PAGE_BACKING_SCAN(m, NULL, ipmap, iptep, ipte, iva) {
5848 #if 0
5849 		if ((ipte & ipmap->pmap_bits[PG_MANAGED_IDX]) == 0)
5850 			continue;
5851 #endif
5852 		if ((ipte & ipmap->pmap_bits[PG_RW_IDX]) == 0)
5853 			continue;
5854 		npte = ipte & ~(ipmap->pmap_bits[PG_RW_IDX] |
5855 				ipmap->pmap_bits[PG_M_IDX]);
5856 		if (!pmap_inval_smp_cmpset(ipmap, iva, iptep, ipte, npte))
5857 			PMAP_PAGE_BACKING_RETRY;
5858 		if (ipte & ipmap->pmap_bits[PG_M_IDX])
5859 			vm_page_dirty(m);
5860 
5861 		/*
5862 		 * NOTE: m is not hard-busied so it is not safe to
5863 		 *	 clear PG_WRITEABLE on the 1->0 transition
5864 		 *	 against it being set in pmap_enter().
5865 		 *
5866 		 *	 pmap_count and writeable_count are only applicable
5867 		 *	 to non-fictitious pages (PG_MANAGED_IDX from pte)
5868 		 */
5869 #if !defined(PMAP_ADVANCED)
5870 		if (ipte & ipmap->pmap_bits[PG_MANAGED_IDX])
5871 			atomic_add_long(&m->md.writeable_count, -1);
5872 #endif
5873 	} PMAP_PAGE_BACKING_DONE;
5874 
5875 #ifdef PMAP_ADVANCED
5876 	/*
5877 	 * If our scan lost a pte swap race oldm->md.interlock_count might
5878 	 * be set from the pmap_enter() code.  If so sleep a little and try
5879 	 * again.
5880 	 *
5881 	 * Use an atomic op to access interlock_count to ensure ordering.
5882 	 */
5883 	icount = atomic_fetchadd_long(&m->md.interlock_count,
5884 				      0x8000000000000000LU) +
5885 		 0x8000000000000000LU;
5886 	cpu_ccfence();
5887 	while (icount & 0x3FFFFFFFFFFFFFFFLU) {
5888 		tsleep_interlock(&m->md.interlock_count, 0);
5889 		if (atomic_fcmpset_long(&m->md.interlock_count, &icount,
5890 				        icount | 0x4000000000000000LU)) {
5891 			tsleep(&m->md.interlock_count, PINTERLOCKED,
5892 			       "pgunm", 1);
5893 			icount = m->md.interlock_count;
5894 			if (retry - ticks > 0)
5895 				goto again;
5896 			panic("pmap_clearbit: cannot return interlock_count "
5897 			      "to 0 (%p, %ld)",
5898 			      m, m->md.interlock_count);
5899 		}
5900 	}
5901 #else
5902 	/*
5903 	 * writeable_count should be zero but it is possible to race
5904 	 * a pmap_enter() replacement (see 'oldm').  Once it is zero
5905 	 * it cannot become non-zero because the page is hard-busied.
5906 	 */
5907 	if (m->md.writeable_count != 0) {
5908 		tsleep(&m->md.writeable_count, 0, "pgwab", 1);
5909 		if (retry - ticks > 0)
5910 			goto again;
5911 		panic("pmap_clearbit: cannot return writeable_count "
5912 		      "to 0 (%ld)",
5913 		      m->md.writeable_count);
5914 	}
5915 #endif
5916 	vm_page_flag_clear(m, PG_WRITEABLE);
5917 }
5918 
5919 /*
5920  * Lower the permission for all mappings to a given page.
5921  *
5922  * Page must be hard-busied by caller.  Because the page is busied by the
5923  * caller, this should not be able to race a pmap_enter().
5924  */
5925 void
5926 pmap_page_protect(vm_page_t m, vm_prot_t prot)
5927 {
5928 	/* JG NX support? */
5929 	if ((prot & VM_PROT_WRITE) == 0) {
5930 		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
5931 			/*
5932 			 * NOTE: pmap_clearbit(.. PG_RW) also clears
5933 			 *	 the PG_WRITEABLE flag in (m).
5934 			 */
5935 			pmap_clearbit(m, PG_RW_IDX);
5936 		} else {
5937 			pmap_remove_all(m);
5938 		}
5939 	}
5940 }
5941 
5942 vm_paddr_t
5943 pmap_phys_address(vm_pindex_t ppn)
5944 {
5945 	return (x86_64_ptob(ppn));
5946 }
5947 
5948 /*
5949  * Return a count of reference bits for a page, clearing those bits.
5950  * It is not necessary for every reference bit to be cleared, but it
5951  * is necessary that 0 only be returned when there are truly no
5952  * reference bits set.
5953  *
5954  * XXX: The exact number of bits to check and clear is a matter that
5955  * should be tested and standardized at some point in the future for
5956  * optimal aging of shared pages.
5957  *
5958  * This routine may not block.
5959  */
5960 int
5961 pmap_ts_referenced(vm_page_t m)
5962 {
5963 	int rval = 0;
5964 	pt_entry_t npte;
5965 
5966 	if (__predict_false(!pmap_initialized || (m->flags & PG_FICTITIOUS)))
5967 		return rval;
5968 	PMAP_PAGE_BACKING_SCAN(m, NULL, ipmap, iptep, ipte, iva) {
5969 		if (ipte & ipmap->pmap_bits[PG_A_IDX]) {
5970 			npte = ipte & ~ipmap->pmap_bits[PG_A_IDX];
5971 			if (!atomic_cmpset_long(iptep, ipte, npte))
5972 				PMAP_PAGE_BACKING_RETRY;
5973 			++rval;
5974 			if (rval > 4)
5975 				break;
5976 		}
5977 	} PMAP_PAGE_BACKING_DONE;
5978 	return rval;
5979 }
5980 
5981 /*
5982  *	pmap_is_modified:
5983  *
5984  *	Return whether or not the specified physical page was modified
5985  *	in any physical maps.
5986  */
5987 boolean_t
5988 pmap_is_modified(vm_page_t m)
5989 {
5990 	boolean_t res;
5991 
5992 	res = pmap_testbit(m, PG_M_IDX);
5993 	return (res);
5994 }
5995 
5996 /*
5997  * Clear the modify bit on the vm_page.
5998  *
5999  * The page must be hard-busied.
6000  */
6001 void
6002 pmap_clear_modify(vm_page_t m)
6003 {
6004 	pmap_clearbit(m, PG_M_IDX);
6005 }
6006 
6007 /*
6008  *	pmap_clear_reference:
6009  *
6010  *	Clear the reference bit on the specified physical page.
6011  */
6012 void
6013 pmap_clear_reference(vm_page_t m)
6014 {
6015 	pmap_clearbit(m, PG_A_IDX);
6016 }
6017 
6018 /*
6019  * Miscellaneous support routines follow
6020  */
6021 
6022 static
6023 void
6024 x86_64_protection_init(void)
6025 {
6026 	uint64_t *kp;
6027 	int prot;
6028 
6029 	/*
6030 	 * NX supported? (boot time loader.conf override only)
6031 	 *
6032 	 * -1	Automatic (sets mode 1)
6033 	 *  0	Disabled
6034 	 *  1	NX implemented, differentiates PROT_READ vs PROT_READ|PROT_EXEC
6035 	 *  2	NX implemented for all cases
6036 	 */
6037 	TUNABLE_INT_FETCH("machdep.pmap_nx_enable", &pmap_nx_enable);
6038 	if ((amd_feature & AMDID_NX) == 0) {
6039 		pmap_bits_default[PG_NX_IDX] = 0;
6040 		pmap_nx_enable = 0;
6041 	} else if (pmap_nx_enable < 0) {
6042 		pmap_nx_enable = 1;		/* default to mode 1 (READ) */
6043 	}
6044 
6045 	/*
6046 	 * 0 is basically read-only access, but also set the NX (no-execute)
6047 	 * bit when VM_PROT_EXECUTE is not specified.
6048 	 */
6049 	kp = protection_codes;
6050 	for (prot = 0; prot < PROTECTION_CODES_SIZE; prot++) {
6051 		switch (prot) {
6052 		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
6053 			/*
6054 			 * This case handled elsewhere
6055 			 */
6056 			*kp = 0;
6057 			break;
6058 		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
6059 			/*
6060 			 * Read-only is 0|NX	(pmap_nx_enable mode >= 1)
6061 			 */
6062 			if (pmap_nx_enable >= 1)
6063 				*kp = pmap_bits_default[PG_NX_IDX];
6064 			break;
6065 		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
6066 		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
6067 			/*
6068 			 * Execute requires read access
6069 			 */
6070 			*kp = 0;
6071 			break;
6072 		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
6073 		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
6074 			/*
6075 			 * Write without execute is RW|NX
6076 			 *			(pmap_nx_enable mode >= 2)
6077 			 */
6078 			*kp = pmap_bits_default[PG_RW_IDX];
6079 			if (pmap_nx_enable >= 2)
6080 				*kp |= pmap_bits_default[PG_NX_IDX];
6081 			break;
6082 		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
6083 		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
6084 			/*
6085 			 * Write with execute is RW
6086 			 */
6087 			*kp = pmap_bits_default[PG_RW_IDX];
6088 			break;
6089 		}
6090 		++kp;
6091 	}
6092 }
6093 
6094 /*
6095  * Map a set of physical memory pages into the kernel virtual
6096  * address space. Return a pointer to where it is mapped. This
6097  * routine is intended to be used for mapping device memory,
6098  * NOT real memory.
6099  *
6100  * NOTE: We can't use pgeflag unless we invalidate the pages one at
6101  *	 a time.
6102  *
6103  * NOTE: The PAT attributes {WRITE_BACK, WRITE_THROUGH, UNCACHED, UNCACHEABLE}
6104  *	 work whether the cpu supports PAT or not.  The remaining PAT
6105  *	 attributes {WRITE_PROTECTED, WRITE_COMBINING} only work if the cpu
6106  *	 supports PAT.
6107  */
6108 void *
6109 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
6110 {
6111 	return(pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
6112 }
6113 
6114 void *
6115 pmap_mapdev_uncacheable(vm_paddr_t pa, vm_size_t size)
6116 {
6117 	return(pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
6118 }
6119 
6120 void *
6121 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
6122 {
6123 	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
6124 }
6125 
6126 /*
6127  * Map a set of physical memory pages into the kernel virtual
6128  * address space. Return a pointer to where it is mapped. This
6129  * routine is intended to be used for mapping device memory,
6130  * NOT real memory.
6131  */
6132 void *
6133 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
6134 {
6135 	vm_offset_t va, tmpva, offset;
6136 	pt_entry_t *pte;
6137 	vm_size_t tmpsize;
6138 
6139 	offset = pa & PAGE_MASK;
6140 	size = roundup(offset + size, PAGE_SIZE);
6141 
6142 	va = kmem_alloc_nofault(&kernel_map, size, VM_SUBSYS_MAPDEV, PAGE_SIZE);
6143 	if (va == 0)
6144 		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
6145 
6146 	pa = pa & ~PAGE_MASK;
6147 	for (tmpva = va, tmpsize = size; tmpsize > 0;) {
6148 		pte = vtopte(tmpva);
6149 		*pte = pa |
6150 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
6151 		    kernel_pmap.pmap_bits[PG_V_IDX] | /* pgeflag | */
6152 		    kernel_pmap.pmap_cache_bits_pte[mode];
6153 		tmpsize -= PAGE_SIZE;
6154 		tmpva += PAGE_SIZE;
6155 		pa += PAGE_SIZE;
6156 	}
6157 	pmap_invalidate_range(&kernel_pmap, va, va + size);
6158 	pmap_invalidate_cache_range(va, va + size);
6159 
6160 	return ((void *)(va + offset));
6161 }
6162 
6163 void
6164 pmap_unmapdev(vm_offset_t va, vm_size_t size)
6165 {
6166 	vm_offset_t base, offset;
6167 
6168 	base = va & ~PAGE_MASK;
6169 	offset = va & PAGE_MASK;
6170 	size = roundup(offset + size, PAGE_SIZE);
6171 	pmap_qremove(va, size >> PAGE_SHIFT);
6172 	kmem_free(&kernel_map, base, size);
6173 }
6174 
6175 /*
6176  * Sets the memory attribute for the specified page.
6177  */
6178 void
6179 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
6180 {
6181 
6182     m->pat_mode = ma;
6183 
6184     /*
6185      * If "m" is a normal page, update its direct mapping.  This update
6186      * can be relied upon to perform any cache operations that are
6187      * required for data coherence.
6188      */
6189     if ((m->flags & PG_FICTITIOUS) == 0)
6190         pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), 1, m->pat_mode);
6191 }
6192 
6193 /*
6194  * Change the PAT attribute on an existing kernel memory map.  Caller
6195  * must ensure that the virtual memory in question is not accessed
6196  * during the adjustment.
6197  *
6198  * If the va is within the DMAP we cannot use vtopte() because the DMAP
6199  * utilizes 2MB or 1GB pages.  2MB is forced atm so calculate the pd_entry
6200  * pointer based on that.
6201  */
6202 void
6203 pmap_change_attr(vm_offset_t va, vm_size_t count, int mode)
6204 {
6205 	pt_entry_t *pte;
6206 	vm_offset_t base;
6207 	int changed = 0;
6208 
6209 	if (va == 0)
6210 		panic("pmap_change_attr: va is NULL");
6211 	base = trunc_page(va);
6212 
6213 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
6214 		pd_entry_t *pd;
6215 
6216 		KKASSERT(va < DMapMaxAddress);
6217 		pd = (pd_entry_t *)PHYS_TO_DMAP(DMPDphys);
6218 		pd += (va - DMAP_MIN_ADDRESS) >> PDRSHIFT;
6219 
6220 		while ((long)count > 0) {
6221 			*pd =
6222 			   (*pd & ~(pd_entry_t)(kernel_pmap.pmap_cache_mask_pde)) |
6223 			   kernel_pmap.pmap_cache_bits_pde[mode];
6224 			count -= NBPDR / PAGE_SIZE;
6225 			va += NBPDR;
6226 			++pd;
6227 		}
6228 	} else {
6229 		while (count) {
6230 			pte = vtopte(va);
6231 			*pte =
6232 			   (*pte & ~(pt_entry_t)(kernel_pmap.pmap_cache_mask_pte)) |
6233 			   kernel_pmap.pmap_cache_bits_pte[mode];
6234 			--count;
6235 			va += PAGE_SIZE;
6236 		}
6237 	}
6238 
6239 	changed = 1;	/* XXX: not optimal */
6240 
6241 	/*
6242 	 * Flush CPU caches if required to make sure any data isn't cached that
6243 	 * shouldn't be, etc.
6244 	 */
6245 	if (changed) {
6246 		pmap_invalidate_range(&kernel_pmap, base, va);
6247 		pmap_invalidate_cache_range(base, va);
6248 	}
6249 }
6250 
6251 /*
6252  * perform the pmap work for mincore
6253  */
6254 int
6255 pmap_mincore(pmap_t pmap, vm_offset_t addr)
6256 {
6257 	pt_entry_t *ptep, pte;
6258 	vm_page_t m;
6259 	int val = 0;
6260 
6261 	ptep = pmap_pte(pmap, addr);
6262 
6263 	if (ptep && (pte = *ptep) != 0) {
6264 		vm_offset_t pa;
6265 
6266 		val = MINCORE_INCORE;
6267 		pa = pte & PG_FRAME;
6268 		if (pte & pmap->pmap_bits[PG_MANAGED_IDX])
6269 			m = PHYS_TO_VM_PAGE(pa);
6270 		else
6271 			m = NULL;
6272 
6273 		/*
6274 		 * Modified by us
6275 		 */
6276 		if (pte & pmap->pmap_bits[PG_M_IDX])
6277 			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
6278 
6279 		/*
6280 		 * Modified by someone
6281 		 */
6282 		else if (m && (m->dirty || pmap_is_modified(m)))
6283 			val |= MINCORE_MODIFIED_OTHER;
6284 
6285 		/*
6286 		 * Referenced by us, or someone else.
6287 		 */
6288 		if (pte & pmap->pmap_bits[PG_A_IDX]) {
6289 			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
6290 		} else if (m && ((m->flags & PG_REFERENCED) ||
6291 				 pmap_ts_referenced(m))) {
6292 			val |= MINCORE_REFERENCED_OTHER;
6293 			vm_page_flag_set(m, PG_REFERENCED);
6294 		}
6295 	}
6296 	return val;
6297 }
6298 
6299 /*
6300  * Replace p->p_vmspace with a new one.  If adjrefs is non-zero the new
6301  * vmspace will be ref'd and the old one will be deref'd.
6302  *
6303  * The vmspace for all lwps associated with the process will be adjusted
6304  * and cr3 will be reloaded if any lwp is the current lwp.
6305  *
6306  * The process must hold the vmspace->vm_map.token for oldvm and newvm
6307  */
6308 void
6309 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
6310 {
6311 	struct vmspace *oldvm;
6312 	struct lwp *lp;
6313 
6314 	oldvm = p->p_vmspace;
6315 	if (oldvm != newvm) {
6316 		if (adjrefs)
6317 			vmspace_ref(newvm);
6318 		p->p_vmspace = newvm;
6319 		KKASSERT(p->p_nthreads == 1);
6320 		lp = RB_ROOT(&p->p_lwp_tree);
6321 		pmap_setlwpvm(lp, newvm);
6322 		if (adjrefs)
6323 			vmspace_rel(oldvm);
6324 	}
6325 }
6326 
6327 /*
6328  * Set the vmspace for a LWP.  The vmspace is almost universally set the
6329  * same as the process vmspace, but virtual kernels need to swap out contexts
6330  * on a per-lwp basis.
6331  *
6332  * Caller does not necessarily hold any vmspace tokens.  Caller must control
6333  * the lwp (typically be in the context of the lwp).  We use a critical
6334  * section to protect against statclock and hardclock (statistics collection).
6335  */
6336 void
6337 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
6338 {
6339 	struct vmspace *oldvm;
6340 	struct pmap *pmap;
6341 	thread_t td;
6342 
6343 	oldvm = lp->lwp_vmspace;
6344 
6345 	if (oldvm != newvm) {
6346 		crit_enter();
6347 		td = curthread;
6348 		KKASSERT((newvm->vm_refcnt & VM_REF_DELETED) == 0);
6349 		lp->lwp_vmspace = newvm;
6350 		if (td->td_lwp == lp) {
6351 			pmap = vmspace_pmap(newvm);
6352 			ATOMIC_CPUMASK_ORBIT(pmap->pm_active, mycpu->gd_cpuid);
6353 			if (pmap->pm_active_lock & CPULOCK_EXCL)
6354 				pmap_interlock_wait(newvm);
6355 #if defined(SWTCH_OPTIM_STATS)
6356 			tlb_flush_count++;
6357 #endif
6358 			if (pmap->pmap_bits[TYPE_IDX] == REGULAR_PMAP) {
6359 				td->td_pcb->pcb_cr3 = vtophys(pmap->pm_pml4);
6360 				if (meltdown_mitigation && pmap->pm_pmlpv_iso) {
6361 					td->td_pcb->pcb_cr3_iso =
6362 						vtophys(pmap->pm_pml4_iso);
6363 					td->td_pcb->pcb_flags |= PCB_ISOMMU;
6364 				} else {
6365 					td->td_pcb->pcb_cr3_iso = 0;
6366 					td->td_pcb->pcb_flags &= ~PCB_ISOMMU;
6367 				}
6368 			} else if (pmap->pmap_bits[TYPE_IDX] == EPT_PMAP) {
6369 				td->td_pcb->pcb_cr3 = KPML4phys;
6370 				td->td_pcb->pcb_cr3_iso = 0;
6371 				td->td_pcb->pcb_flags &= ~PCB_ISOMMU;
6372 			} else {
6373 				panic("pmap_setlwpvm: unknown pmap type\n");
6374 			}
6375 
6376 			/*
6377 			 * The MMU separation fields needs to be updated.
6378 			 * (it can't access the pcb directly from the
6379 			 * restricted user pmap).
6380 			 */
6381 			{
6382 				struct trampframe *tramp;
6383 
6384 				tramp = &pscpu->trampoline;
6385 				tramp->tr_pcb_cr3 = td->td_pcb->pcb_cr3;
6386 				tramp->tr_pcb_cr3_iso = td->td_pcb->pcb_cr3_iso;
6387 				tramp->tr_pcb_flags = td->td_pcb->pcb_flags;
6388 				tramp->tr_pcb_rsp = (register_t)td->td_pcb;
6389 				/* tr_pcb_rsp doesn't change */
6390 			}
6391 
6392 			/*
6393 			 * In kernel-land we always use the normal PML4E
6394 			 * so the kernel is fully mapped and can also access
6395 			 * user memory.
6396 			 */
6397 			load_cr3(td->td_pcb->pcb_cr3);
6398 			pmap = vmspace_pmap(oldvm);
6399 			ATOMIC_CPUMASK_NANDBIT(pmap->pm_active,
6400 					       mycpu->gd_cpuid);
6401 		}
6402 		crit_exit();
6403 	}
6404 }
6405 
6406 /*
6407  * Called when switching to a locked pmap, used to interlock against pmaps
6408  * undergoing modifications to prevent us from activating the MMU for the
6409  * target pmap until all such modifications have completed.  We have to do
6410  * this because the thread making the modifications has already set up its
6411  * SMP synchronization mask.
6412  *
6413  * This function cannot sleep!
6414  *
6415  * No requirements.
6416  */
6417 void
6418 pmap_interlock_wait(struct vmspace *vm)
6419 {
6420 	struct pmap *pmap = &vm->vm_pmap;
6421 
6422 	if (pmap->pm_active_lock & CPULOCK_EXCL) {
6423 		crit_enter();
6424 		KKASSERT(curthread->td_critcount >= 2);
6425 		DEBUG_PUSH_INFO("pmap_interlock_wait");
6426 		while (pmap->pm_active_lock & CPULOCK_EXCL) {
6427 			cpu_ccfence();
6428 			lwkt_process_ipiq();
6429 		}
6430 		DEBUG_POP_INFO();
6431 		crit_exit();
6432 	}
6433 }
6434 
6435 vm_offset_t
6436 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
6437 {
6438 
6439 	if ((obj == NULL) || (size < NBPDR) ||
6440 	    ((obj->type != OBJT_DEVICE) && (obj->type != OBJT_MGTDEVICE))) {
6441 		return addr;
6442 	}
6443 
6444 	addr = roundup2(addr, NBPDR);
6445 	return addr;
6446 }
6447 
6448 /*
6449  * Used by kmalloc/kfree, page already exists at va
6450  */
6451 vm_page_t
6452 pmap_kvtom(vm_offset_t va)
6453 {
6454 	pt_entry_t *ptep = vtopte(va);
6455 
6456 	return(PHYS_TO_VM_PAGE(*ptep & PG_FRAME));
6457 }
6458 
6459 /*
6460  * Initialize machine-specific shared page directory support.  This
6461  * is executed when a VM object is created.
6462  */
6463 void
6464 pmap_object_init(vm_object_t object)
6465 {
6466 }
6467 
6468 /*
6469  * Clean up machine-specific shared page directory support.  This
6470  * is executed when a VM object is destroyed.
6471  */
6472 void
6473 pmap_object_free(vm_object_t object)
6474 {
6475 }
6476 
6477 /*
6478  * pmap_pgscan_callback - Used by pmap_pgscan to acquire the related
6479  * VM page and issue a pginfo->callback.
6480  */
6481 static
6482 void
6483 pmap_pgscan_callback(pmap_t pmap, struct pmap_scan_info *info,
6484 		      vm_pindex_t *pte_placemark,
6485 		      pv_entry_t pt_pv, vm_offset_t va,
6486 		      pt_entry_t *ptep, void *arg)
6487 {
6488 	struct pmap_pgscan_info *pginfo = arg;
6489 	vm_page_t m;
6490 	pt_entry_t pte;
6491 
6492 	pte = *ptep;
6493 	cpu_ccfence();
6494 
6495 	if (pte & pmap->pmap_bits[PG_MANAGED_IDX]) {
6496 		/*
6497 		 * Try to busy the page while we hold the pte_placemark locked.
6498 		 */
6499 		m = PHYS_TO_VM_PAGE(*ptep & PG_FRAME);
6500 		if (vm_page_busy_try(m, TRUE) == 0) {
6501 			if (m == PHYS_TO_VM_PAGE(*ptep & PG_FRAME)) {
6502 				/*
6503 				 * The callback is issued with the pt_pv
6504 				 * unlocked.
6505 				 */
6506 				pv_placemarker_wakeup(pmap, pte_placemark);
6507 				if (pt_pv) {
6508 					vm_page_wire_quick(pt_pv->pv_m);
6509 					pv_unlock(pt_pv);
6510 				}
6511 				if (pginfo->callback(pginfo, va, m) < 0)
6512 					info->stop = 1;
6513 				if (pt_pv) {
6514 					pv_lock(pt_pv);
6515 					if (vm_page_unwire_quick(pt_pv->pv_m)) {
6516 						panic("pmap_pgscan: bad wire_"
6517 						      "count on pt_pv");
6518 					}
6519 				}
6520 			} else {
6521 				vm_page_wakeup(m);
6522 				pv_placemarker_wakeup(pmap, pte_placemark);
6523 			}
6524 		} else {
6525 			++pginfo->busycount;
6526 			pv_placemarker_wakeup(pmap, pte_placemark);
6527 		}
6528 	} else {
6529 		/*
6530 		 * Shared page table or unmanaged page (sharept or !sharept)
6531 		 */
6532 		pv_placemarker_wakeup(pmap, pte_placemark);
6533 	}
6534 }
6535 
6536 void
6537 pmap_pgscan(struct pmap_pgscan_info *pginfo)
6538 {
6539 	struct pmap_scan_info info;
6540 
6541 	pginfo->offset = pginfo->beg_addr;
6542 	info.pmap = pginfo->pmap;
6543 	info.sva = pginfo->beg_addr;
6544 	info.eva = pginfo->end_addr;
6545 	info.func = pmap_pgscan_callback;
6546 	info.arg = pginfo;
6547 	pmap_scan(&info, 0);
6548 	if (info.stop == 0)
6549 		pginfo->offset = pginfo->end_addr;
6550 }
6551 
6552 /*
6553  * Wait for a placemarker that we do not own to clear.  The placemarker
6554  * in question is not necessarily set to the pindex we want, we may have
6555  * to wait on the element because we want to reserve it ourselves.
6556  *
6557  * NOTE: PM_PLACEMARK_WAKEUP sets a bit which is already set in
6558  *	 PM_NOPLACEMARK, so it does not interfere with placemarks
6559  *	 which have already been woken up.
6560  *
6561  * NOTE: This routine is called without the pmap spin-lock and so can
6562  *	 race changes to *pmark.  Due to the sensitivity of the routine
6563  *	 to possible MULTIPLE interactions from other cpus, and the
6564  *	 overloading of the WAKEUP bit on PM_NOPLACEMARK, we have to
6565  *	 use a cmpset loop to avoid a race that might cause the WAKEUP
6566  *	 bit to be lost.
6567  *
6568  * Caller is expected to retry its operation upon return.
6569  */
6570 static
6571 void
6572 pv_placemarker_wait(pmap_t pmap, vm_pindex_t *pmark)
6573 {
6574 	vm_pindex_t mark;
6575 
6576 	mark = *pmark;
6577 	cpu_ccfence();
6578 	while (mark != PM_NOPLACEMARK) {
6579 		tsleep_interlock(pmark, 0);
6580 		if (atomic_fcmpset_long(pmark, &mark,
6581 				       mark | PM_PLACEMARK_WAKEUP)) {
6582 			tsleep(pmark, PINTERLOCKED, "pvplw", 0);
6583 			break;
6584 		}
6585 	}
6586 }
6587 
6588 /*
6589  * Wakeup a placemarker that we own.  Replace the entry with
6590  * PM_NOPLACEMARK and issue a wakeup() if necessary.
6591  */
6592 static
6593 void
6594 pv_placemarker_wakeup(pmap_t pmap, vm_pindex_t *pmark)
6595 {
6596 	vm_pindex_t pindex;
6597 
6598 	pindex = atomic_swap_long(pmark, PM_NOPLACEMARK);
6599 	KKASSERT(pindex != PM_NOPLACEMARK);
6600 	if (pindex & PM_PLACEMARK_WAKEUP)
6601 		wakeup(pmark);
6602 }
6603