xref: /dragonfly/sys/platform/pc64/x86_64/pmap.c (revision 59b0b316)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1994 David Greenman
5  * Copyright (c) 2003 Peter Wemm
6  * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
7  * Copyright (c) 2008, 2009 The DragonFly Project.
8  * Copyright (c) 2008, 2009 Jordan Gordeev.
9  * Copyright (c) 2011-2017 Matthew Dillon
10  * All rights reserved.
11  *
12  * This code is derived from software contributed to Berkeley by
13  * the Systems Programming Group of the University of Utah Computer
14  * Science Department and William Jolitz of UUNET Technologies Inc.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  */
44 /*
45  * Manage physical address maps for x86-64 systems.
46  */
47 
48 #if 0 /* JG */
49 #include "opt_disable_pse.h"
50 #include "opt_pmap.h"
51 #endif
52 #include "opt_msgbuf.h"
53 
54 #include <sys/param.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/msgbuf.h>
58 #include <sys/vmmeter.h>
59 #include <sys/mman.h>
60 #include <sys/systm.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <sys/sysctl.h>
65 #include <sys/lock.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_object.h>
70 #include <vm/vm_extern.h>
71 #include <vm/vm_pageout.h>
72 #include <vm/vm_pager.h>
73 #include <vm/vm_zone.h>
74 
75 #include <sys/user.h>
76 #include <sys/thread2.h>
77 #include <sys/sysref2.h>
78 #include <sys/spinlock2.h>
79 #include <vm/vm_page2.h>
80 
81 #include <machine/cputypes.h>
82 #include <machine/md_var.h>
83 #include <machine/specialreg.h>
84 #include <machine/smp.h>
85 #include <machine_base/apic/apicreg.h>
86 #include <machine/globaldata.h>
87 #include <machine/pmap.h>
88 #include <machine/pmap_inval.h>
89 #include <machine/inttypes.h>
90 
91 #include <ddb/ddb.h>
92 
93 #define PMAP_KEEP_PDIRS
94 #ifndef PMAP_SHPGPERPROC
95 #define PMAP_SHPGPERPROC 2000
96 #endif
97 
98 #if defined(DIAGNOSTIC)
99 #define PMAP_DIAGNOSTIC
100 #endif
101 
102 #define MINPV 2048
103 
104 /*
105  * pmap debugging will report who owns a pv lock when blocking.
106  */
107 #ifdef PMAP_DEBUG
108 
109 #define PMAP_DEBUG_DECL		,const char *func, int lineno
110 #define PMAP_DEBUG_ARGS		, __func__, __LINE__
111 #define PMAP_DEBUG_COPY		, func, lineno
112 
113 #define pv_get(pmap, pindex, pmarkp)	_pv_get(pmap, pindex, pmarkp	\
114 							PMAP_DEBUG_ARGS)
115 #define pv_lock(pv)			_pv_lock(pv			\
116 							PMAP_DEBUG_ARGS)
117 #define pv_hold_try(pv)			_pv_hold_try(pv			\
118 							PMAP_DEBUG_ARGS)
119 #define pv_alloc(pmap, pindex, isnewp)	_pv_alloc(pmap, pindex, isnewp	\
120 							PMAP_DEBUG_ARGS)
121 
122 #define pv_free(pv, pvp)		_pv_free(pv, pvp PMAP_DEBUG_ARGS)
123 
124 #else
125 
126 #define PMAP_DEBUG_DECL
127 #define PMAP_DEBUG_ARGS
128 #define PMAP_DEBUG_COPY
129 
130 #define pv_get(pmap, pindex, pmarkp)		_pv_get(pmap, pindex, pmarkp)
131 #define pv_lock(pv)			_pv_lock(pv)
132 #define pv_hold_try(pv)			_pv_hold_try(pv)
133 #define pv_alloc(pmap, pindex, isnewp)	_pv_alloc(pmap, pindex, isnewp)
134 #define pv_free(pv, pvp)		_pv_free(pv, pvp)
135 
136 #endif
137 
138 /*
139  * Get PDEs and PTEs for user/kernel address space
140  */
141 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
142 
143 #define pmap_pde_v(pmap, pte)		((*(pd_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
144 #define pmap_pte_w(pmap, pte)		((*(pt_entry_t *)pte & pmap->pmap_bits[PG_W_IDX]) != 0)
145 #define pmap_pte_m(pmap, pte)		((*(pt_entry_t *)pte & pmap->pmap_bits[PG_M_IDX]) != 0)
146 #define pmap_pte_u(pmap, pte)		((*(pt_entry_t *)pte & pmap->pmap_bits[PG_U_IDX]) != 0)
147 #define pmap_pte_v(pmap, pte)		((*(pt_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
148 
149 /*
150  * Given a map and a machine independent protection code,
151  * convert to a vax protection code.
152  */
153 #define pte_prot(m, p)		\
154 	(m->protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
155 static uint64_t protection_codes[PROTECTION_CODES_SIZE];
156 
157 struct pmap kernel_pmap;
158 
159 MALLOC_DEFINE(M_OBJPMAP, "objpmap", "pmaps associated with VM objects");
160 
161 vm_paddr_t avail_start;		/* PA of first available physical page */
162 vm_paddr_t avail_end;		/* PA of last available physical page */
163 vm_offset_t virtual2_start;	/* cutout free area prior to kernel start */
164 vm_offset_t virtual2_end;
165 vm_offset_t virtual_start;	/* VA of first avail page (after kernel bss) */
166 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
167 vm_offset_t KvaStart;		/* VA start of KVA space */
168 vm_offset_t KvaEnd;		/* VA end of KVA space (non-inclusive) */
169 vm_offset_t KvaSize;		/* max size of kernel virtual address space */
170 static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
171 //static int pgeflag;		/* PG_G or-in */
172 //static int pseflag;		/* PG_PS or-in */
173 uint64_t PatMsr;
174 
175 static int ndmpdp;
176 static vm_paddr_t dmaplimit;
177 static int nkpt;
178 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
179 
180 static pt_entry_t pat_pte_index[PAT_INDEX_SIZE];	/* PAT -> PG_ bits */
181 /*static pt_entry_t pat_pde_index[PAT_INDEX_SIZE];*/	/* PAT -> PG_ bits */
182 
183 static uint64_t KPTbase;
184 static uint64_t KPTphys;
185 static uint64_t	KPDphys;	/* phys addr of kernel level 2 */
186 static uint64_t	KPDbase;	/* phys addr of kernel level 2 @ KERNBASE */
187 uint64_t KPDPphys;	/* phys addr of kernel level 3 */
188 uint64_t KPML4phys;	/* phys addr of kernel level 4 */
189 
190 static uint64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
191 static uint64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
192 
193 /*
194  * Data for the pv entry allocation mechanism
195  */
196 static vm_zone_t pvzone;
197 static struct vm_zone pvzone_store;
198 static int pv_entry_max=0, pv_entry_high_water=0;
199 static int pmap_pagedaemon_waken = 0;
200 static struct pv_entry *pvinit;
201 
202 /*
203  * All those kernel PT submaps that BSD is so fond of
204  */
205 pt_entry_t *CMAP1 = NULL, *ptmmap;
206 caddr_t CADDR1 = NULL, ptvmmap = NULL;
207 static pt_entry_t *msgbufmap;
208 struct msgbuf *msgbufp=NULL;
209 
210 /*
211  * PMAP default PG_* bits. Needed to be able to add
212  * EPT/NPT pagetable pmap_bits for the VMM module
213  */
214 uint64_t pmap_bits_default[] = {
215 		REGULAR_PMAP,			/* TYPE_IDX		0 */
216 		X86_PG_V,			/* PG_V_IDX		1 */
217 		X86_PG_RW,			/* PG_RW_IDX		2 */
218 		X86_PG_U,			/* PG_U_IDX		3 */
219 		X86_PG_A,			/* PG_A_IDX		4 */
220 		X86_PG_M,			/* PG_M_IDX		5 */
221 		X86_PG_PS,			/* PG_PS_IDX3		6 */
222 		X86_PG_G,			/* PG_G_IDX		7 */
223 		X86_PG_AVAIL1,			/* PG_AVAIL1_IDX	8 */
224 		X86_PG_AVAIL2,			/* PG_AVAIL2_IDX	9 */
225 		X86_PG_AVAIL3,			/* PG_AVAIL3_IDX	10 */
226 		X86_PG_NC_PWT | X86_PG_NC_PCD,	/* PG_N_IDX		11 */
227 		X86_PG_NX,			/* PG_NX_IDX		12 */
228 };
229 /*
230  * Crashdump maps.
231  */
232 static pt_entry_t *pt_crashdumpmap;
233 static caddr_t crashdumpmap;
234 
235 static int pmap_debug = 0;
236 SYSCTL_INT(_machdep, OID_AUTO, pmap_debug, CTLFLAG_RW,
237     &pmap_debug, 0, "Debug pmap's");
238 #ifdef PMAP_DEBUG2
239 static int pmap_enter_debug = 0;
240 SYSCTL_INT(_machdep, OID_AUTO, pmap_enter_debug, CTLFLAG_RW,
241     &pmap_enter_debug, 0, "Debug pmap_enter's");
242 #endif
243 static int pmap_yield_count = 64;
244 SYSCTL_INT(_machdep, OID_AUTO, pmap_yield_count, CTLFLAG_RW,
245     &pmap_yield_count, 0, "Yield during init_pt/release");
246 static int pmap_mmu_optimize = 0;
247 SYSCTL_INT(_machdep, OID_AUTO, pmap_mmu_optimize, CTLFLAG_RW,
248     &pmap_mmu_optimize, 0, "Share page table pages when possible");
249 int pmap_fast_kernel_cpusync = 0;
250 SYSCTL_INT(_machdep, OID_AUTO, pmap_fast_kernel_cpusync, CTLFLAG_RW,
251     &pmap_fast_kernel_cpusync, 0, "Share page table pages when possible");
252 int pmap_dynamic_delete = 0;
253 SYSCTL_INT(_machdep, OID_AUTO, pmap_dynamic_delete, CTLFLAG_RW,
254     &pmap_dynamic_delete, 0, "Dynamically delete PT/PD/PDPs");
255 
256 static int pmap_nx_enable = 0;
257 /* needs manual TUNABLE in early probe, see below */
258 
259 #define DISABLE_PSE
260 
261 /* Standard user access funtions */
262 extern int std_copyinstr (const void *udaddr, void *kaddr, size_t len,
263     size_t *lencopied);
264 extern int std_copyin (const void *udaddr, void *kaddr, size_t len);
265 extern int std_copyout (const void *kaddr, void *udaddr, size_t len);
266 extern int std_fubyte (const uint8_t *base);
267 extern int std_subyte (uint8_t *base, uint8_t byte);
268 extern int32_t std_fuword32 (const uint32_t *base);
269 extern int64_t std_fuword64 (const uint64_t *base);
270 extern int std_suword64 (uint64_t *base, uint64_t word);
271 extern int std_suword32 (uint32_t *base, int word);
272 extern uint32_t std_swapu32 (volatile uint32_t *base, uint32_t v);
273 extern uint64_t std_swapu64 (volatile uint64_t *base, uint64_t v);
274 
275 static void pv_hold(pv_entry_t pv);
276 static int _pv_hold_try(pv_entry_t pv
277 				PMAP_DEBUG_DECL);
278 static void pv_drop(pv_entry_t pv);
279 static void _pv_lock(pv_entry_t pv
280 				PMAP_DEBUG_DECL);
281 static void pv_unlock(pv_entry_t pv);
282 static pv_entry_t _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew
283 				PMAP_DEBUG_DECL);
284 static pv_entry_t _pv_get(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp
285 				PMAP_DEBUG_DECL);
286 static void _pv_free(pv_entry_t pv, pv_entry_t pvp PMAP_DEBUG_DECL);
287 static pv_entry_t pv_get_try(pmap_t pmap, vm_pindex_t pindex,
288 				vm_pindex_t **pmarkp, int *errorp);
289 static void pv_put(pv_entry_t pv);
290 static void *pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex);
291 static pv_entry_t pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex,
292 		      pv_entry_t *pvpp);
293 static pv_entry_t pmap_allocpte_seg(pmap_t pmap, vm_pindex_t ptepindex,
294 		      pv_entry_t *pvpp, vm_map_entry_t entry, vm_offset_t va);
295 static void pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp,
296 			pmap_inval_bulk_t *bulk, int destroy);
297 static vm_page_t pmap_remove_pv_page(pv_entry_t pv);
298 static int pmap_release_pv(pv_entry_t pv, pv_entry_t pvp,
299 			pmap_inval_bulk_t *bulk);
300 
301 struct pmap_scan_info;
302 static void pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
303 		      pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
304 		      pv_entry_t pt_pv, int sharept,
305 		      vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
306 static void pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
307 		      pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
308 		      pv_entry_t pt_pv, int sharept,
309 		      vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
310 
311 static void i386_protection_init (void);
312 static void create_pagetables(vm_paddr_t *firstaddr);
313 static void pmap_remove_all (vm_page_t m);
314 static boolean_t pmap_testbit (vm_page_t m, int bit);
315 
316 static pt_entry_t * pmap_pte_quick (pmap_t pmap, vm_offset_t va);
317 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
318 
319 static void pmap_pinit_defaults(struct pmap *pmap);
320 static void pv_placemarker_wait(pmap_t pmap, vm_pindex_t *pmark);
321 static void pv_placemarker_wakeup(pmap_t pmap, vm_pindex_t *pmark);
322 
323 static unsigned pdir4mb;
324 
325 static int
326 pv_entry_compare(pv_entry_t pv1, pv_entry_t pv2)
327 {
328 	if (pv1->pv_pindex < pv2->pv_pindex)
329 		return(-1);
330 	if (pv1->pv_pindex > pv2->pv_pindex)
331 		return(1);
332 	return(0);
333 }
334 
335 RB_GENERATE2(pv_entry_rb_tree, pv_entry, pv_entry,
336              pv_entry_compare, vm_pindex_t, pv_pindex);
337 
338 static __inline
339 void
340 pmap_page_stats_adding(vm_page_t m)
341 {
342 	globaldata_t gd = mycpu;
343 
344 	if (TAILQ_EMPTY(&m->md.pv_list)) {
345 		++gd->gd_vmtotal.t_arm;
346 	} else if (TAILQ_FIRST(&m->md.pv_list) ==
347 		   TAILQ_LAST(&m->md.pv_list, md_page_pv_list)) {
348 		++gd->gd_vmtotal.t_armshr;
349 		++gd->gd_vmtotal.t_avmshr;
350 	} else {
351 		++gd->gd_vmtotal.t_avmshr;
352 	}
353 }
354 
355 static __inline
356 void
357 pmap_page_stats_deleting(vm_page_t m)
358 {
359 	globaldata_t gd = mycpu;
360 
361 	if (TAILQ_EMPTY(&m->md.pv_list)) {
362 		--gd->gd_vmtotal.t_arm;
363 	} else if (TAILQ_FIRST(&m->md.pv_list) ==
364 		   TAILQ_LAST(&m->md.pv_list, md_page_pv_list)) {
365 		--gd->gd_vmtotal.t_armshr;
366 		--gd->gd_vmtotal.t_avmshr;
367 	} else {
368 		--gd->gd_vmtotal.t_avmshr;
369 	}
370 }
371 
372 /*
373  * Move the kernel virtual free pointer to the next
374  * 2MB.  This is used to help improve performance
375  * by using a large (2MB) page for much of the kernel
376  * (.text, .data, .bss)
377  */
378 static
379 vm_offset_t
380 pmap_kmem_choose(vm_offset_t addr)
381 {
382 	vm_offset_t newaddr = addr;
383 
384 	newaddr = roundup2(addr, NBPDR);
385 	return newaddr;
386 }
387 
388 /*
389  * pmap_pte_quick:
390  *
391  *	Super fast pmap_pte routine best used when scanning the pv lists.
392  *	This eliminates many course-grained invltlb calls.  Note that many of
393  *	the pv list scans are across different pmaps and it is very wasteful
394  *	to do an entire invltlb when checking a single mapping.
395  */
396 static __inline pt_entry_t *pmap_pte(pmap_t pmap, vm_offset_t va);
397 
398 static
399 pt_entry_t *
400 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
401 {
402 	return pmap_pte(pmap, va);
403 }
404 
405 /*
406  * Returns the pindex of a page table entry (representing a terminal page).
407  * There are NUPTE_TOTAL page table entries possible (a huge number)
408  *
409  * x86-64 has a 48-bit address space, where bit 47 is sign-extended out.
410  * We want to properly translate negative KVAs.
411  */
412 static __inline
413 vm_pindex_t
414 pmap_pte_pindex(vm_offset_t va)
415 {
416 	return ((va >> PAGE_SHIFT) & (NUPTE_TOTAL - 1));
417 }
418 
419 /*
420  * Returns the pindex of a page table.
421  */
422 static __inline
423 vm_pindex_t
424 pmap_pt_pindex(vm_offset_t va)
425 {
426 	return (NUPTE_TOTAL + ((va >> PDRSHIFT) & (NUPT_TOTAL - 1)));
427 }
428 
429 /*
430  * Returns the pindex of a page directory.
431  */
432 static __inline
433 vm_pindex_t
434 pmap_pd_pindex(vm_offset_t va)
435 {
436 	return (NUPTE_TOTAL + NUPT_TOTAL +
437 		((va >> PDPSHIFT) & (NUPD_TOTAL - 1)));
438 }
439 
440 static __inline
441 vm_pindex_t
442 pmap_pdp_pindex(vm_offset_t va)
443 {
444 	return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
445 		((va >> PML4SHIFT) & (NUPDP_TOTAL - 1)));
446 }
447 
448 static __inline
449 vm_pindex_t
450 pmap_pml4_pindex(void)
451 {
452 	return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL);
453 }
454 
455 /*
456  * Return various clipped indexes for a given VA
457  *
458  * Returns the index of a pt in a page directory, representing a page
459  * table.
460  */
461 static __inline
462 vm_pindex_t
463 pmap_pt_index(vm_offset_t va)
464 {
465 	return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
466 }
467 
468 /*
469  * Returns the index of a pd in a page directory page, representing a page
470  * directory.
471  */
472 static __inline
473 vm_pindex_t
474 pmap_pd_index(vm_offset_t va)
475 {
476 	return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
477 }
478 
479 /*
480  * Returns the index of a pdp in the pml4 table, representing a page
481  * directory page.
482  */
483 static __inline
484 vm_pindex_t
485 pmap_pdp_index(vm_offset_t va)
486 {
487 	return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
488 }
489 
490 /*
491  * The placemarker hash must be broken up into four zones so lock
492  * ordering semantics continue to work (e.g. pte, pt, pd, then pdp).
493  *
494  * Placemarkers are used to 'lock' page table indices that do not have
495  * a pv_entry.  This allows the pmap to support managed and unmanaged
496  * pages and shared page tables.
497  */
498 #define PM_PLACE_BASE	(PM_PLACEMARKS >> 2)
499 
500 static __inline
501 vm_pindex_t *
502 pmap_placemarker_hash(pmap_t pmap, vm_pindex_t pindex)
503 {
504 	int hi;
505 
506 	if (pindex < pmap_pt_pindex(0))		/* zone 0 - PTE */
507 		hi = 0;
508 	else if (pindex < pmap_pd_pindex(0))	/* zone 1 - PT */
509 		hi = PM_PLACE_BASE;
510 	else if (pindex < pmap_pdp_pindex(0))	/* zone 2 - PD */
511 		hi = PM_PLACE_BASE << 1;
512 	else					/* zone 3 - PDP (and PML4E) */
513 		hi = PM_PLACE_BASE | (PM_PLACE_BASE << 1);
514 	hi += pindex & (PM_PLACE_BASE - 1);
515 
516 	return (&pmap->pm_placemarks[hi]);
517 }
518 
519 
520 /*
521  * Generic procedure to index a pte from a pt, pd, or pdp.
522  *
523  * NOTE: Normally passed pindex as pmap_xx_index().  pmap_xx_pindex() is NOT
524  *	 a page table page index but is instead of PV lookup index.
525  */
526 static
527 void *
528 pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex)
529 {
530 	pt_entry_t *pte;
531 
532 	pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pv->pv_m));
533 	return(&pte[pindex]);
534 }
535 
536 /*
537  * Return pointer to PDP slot in the PML4
538  */
539 static __inline
540 pml4_entry_t *
541 pmap_pdp(pmap_t pmap, vm_offset_t va)
542 {
543 	return (&pmap->pm_pml4[pmap_pdp_index(va)]);
544 }
545 
546 /*
547  * Return pointer to PD slot in the PDP given a pointer to the PDP
548  */
549 static __inline
550 pdp_entry_t *
551 pmap_pdp_to_pd(pml4_entry_t pdp_pte, vm_offset_t va)
552 {
553 	pdp_entry_t *pd;
554 
555 	pd = (pdp_entry_t *)PHYS_TO_DMAP(pdp_pte & PG_FRAME);
556 	return (&pd[pmap_pd_index(va)]);
557 }
558 
559 /*
560  * Return pointer to PD slot in the PDP.
561  */
562 static __inline
563 pdp_entry_t *
564 pmap_pd(pmap_t pmap, vm_offset_t va)
565 {
566 	pml4_entry_t *pdp;
567 
568 	pdp = pmap_pdp(pmap, va);
569 	if ((*pdp & pmap->pmap_bits[PG_V_IDX]) == 0)
570 		return NULL;
571 	return (pmap_pdp_to_pd(*pdp, va));
572 }
573 
574 /*
575  * Return pointer to PT slot in the PD given a pointer to the PD
576  */
577 static __inline
578 pd_entry_t *
579 pmap_pd_to_pt(pdp_entry_t pd_pte, vm_offset_t va)
580 {
581 	pd_entry_t *pt;
582 
583 	pt = (pd_entry_t *)PHYS_TO_DMAP(pd_pte & PG_FRAME);
584 	return (&pt[pmap_pt_index(va)]);
585 }
586 
587 /*
588  * Return pointer to PT slot in the PD
589  *
590  * SIMPLE PMAP NOTE: Simple pmaps (embedded in objects) do not have PDPs,
591  *		     so we cannot lookup the PD via the PDP.  Instead we
592  *		     must look it up via the pmap.
593  */
594 static __inline
595 pd_entry_t *
596 pmap_pt(pmap_t pmap, vm_offset_t va)
597 {
598 	pdp_entry_t *pd;
599 	pv_entry_t pv;
600 	vm_pindex_t pd_pindex;
601 
602 	if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
603 		pd_pindex = pmap_pd_pindex(va);
604 		spin_lock(&pmap->pm_spin);
605 		pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pd_pindex);
606 		spin_unlock(&pmap->pm_spin);
607 		if (pv == NULL || pv->pv_m == NULL)
608 			return NULL;
609 		return (pmap_pd_to_pt(VM_PAGE_TO_PHYS(pv->pv_m), va));
610 	} else {
611 		pd = pmap_pd(pmap, va);
612 		if (pd == NULL || (*pd & pmap->pmap_bits[PG_V_IDX]) == 0)
613 			 return NULL;
614 		return (pmap_pd_to_pt(*pd, va));
615 	}
616 }
617 
618 /*
619  * Return pointer to PTE slot in the PT given a pointer to the PT
620  */
621 static __inline
622 pt_entry_t *
623 pmap_pt_to_pte(pd_entry_t pt_pte, vm_offset_t va)
624 {
625 	pt_entry_t *pte;
626 
627 	pte = (pt_entry_t *)PHYS_TO_DMAP(pt_pte & PG_FRAME);
628 	return (&pte[pmap_pte_index(va)]);
629 }
630 
631 /*
632  * Return pointer to PTE slot in the PT
633  */
634 static __inline
635 pt_entry_t *
636 pmap_pte(pmap_t pmap, vm_offset_t va)
637 {
638 	pd_entry_t *pt;
639 
640 	pt = pmap_pt(pmap, va);
641 	if (pt == NULL || (*pt & pmap->pmap_bits[PG_V_IDX]) == 0)
642 		 return NULL;
643 	if ((*pt & pmap->pmap_bits[PG_PS_IDX]) != 0)
644 		return ((pt_entry_t *)pt);
645 	return (pmap_pt_to_pte(*pt, va));
646 }
647 
648 /*
649  * Of all the layers (PTE, PT, PD, PDP, PML4) the best one to cache is
650  * the PT layer.  This will speed up core pmap operations considerably.
651  *
652  * NOTE: The pmap spinlock does not need to be held but the passed-in pv
653  *	 must be in a known associated state (typically by being locked when
654  *	 the pmap spinlock isn't held).  We allow the race for that case.
655  *
656  * NOTE: pm_pvhint is only accessed (read) with the spin-lock held, using
657  *	 cpu_ccfence() to prevent compiler optimizations from reloading the
658  *	 field.
659  */
660 static __inline
661 void
662 pv_cache(pv_entry_t pv, vm_pindex_t pindex)
663 {
664 	if (pindex >= pmap_pt_pindex(0) && pindex < pmap_pd_pindex(0)) {
665 		if (pv->pv_pmap)
666 			pv->pv_pmap->pm_pvhint = pv;
667 	}
668 }
669 
670 
671 /*
672  * Return address of PT slot in PD (KVM only)
673  *
674  * Cannot be used for user page tables because it might interfere with
675  * the shared page-table-page optimization (pmap_mmu_optimize).
676  */
677 static __inline
678 pd_entry_t *
679 vtopt(vm_offset_t va)
680 {
681 	uint64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
682 				  NPML4EPGSHIFT)) - 1);
683 
684 	return (PDmap + ((va >> PDRSHIFT) & mask));
685 }
686 
687 /*
688  * KVM - return address of PTE slot in PT
689  */
690 static __inline
691 pt_entry_t *
692 vtopte(vm_offset_t va)
693 {
694 	uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
695 				  NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
696 
697 	return (PTmap + ((va >> PAGE_SHIFT) & mask));
698 }
699 
700 static uint64_t
701 allocpages(vm_paddr_t *firstaddr, long n)
702 {
703 	uint64_t ret;
704 
705 	ret = *firstaddr;
706 	bzero((void *)ret, n * PAGE_SIZE);
707 	*firstaddr += n * PAGE_SIZE;
708 	return (ret);
709 }
710 
711 static
712 void
713 create_pagetables(vm_paddr_t *firstaddr)
714 {
715 	long i;		/* must be 64 bits */
716 	long nkpt_base;
717 	long nkpt_phys;
718 	int j;
719 
720 	/*
721 	 * We are running (mostly) V=P at this point
722 	 *
723 	 * Calculate NKPT - number of kernel page tables.  We have to
724 	 * accomodoate prealloction of the vm_page_array, dump bitmap,
725 	 * MSGBUF_SIZE, and other stuff.  Be generous.
726 	 *
727 	 * Maxmem is in pages.
728 	 *
729 	 * ndmpdp is the number of 1GB pages we wish to map.
730 	 */
731 	ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
732 	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
733 		ndmpdp = 4;
734 	KKASSERT(ndmpdp <= NKPDPE * NPDEPG);
735 
736 	/*
737 	 * Starting at the beginning of kvm (not KERNBASE).
738 	 */
739 	nkpt_phys = (Maxmem * sizeof(struct vm_page) + NBPDR - 1) / NBPDR;
740 	nkpt_phys += (Maxmem * sizeof(struct pv_entry) + NBPDR - 1) / NBPDR;
741 	nkpt_phys += ((nkpt + nkpt + 1 + NKPML4E + NKPDPE + NDMPML4E +
742 		       ndmpdp) + 511) / 512;
743 	nkpt_phys += 128;
744 
745 	/*
746 	 * Starting at KERNBASE - map 2G worth of page table pages.
747 	 * KERNBASE is offset -2G from the end of kvm.
748 	 */
749 	nkpt_base = (NPDPEPG - KPDPI) * NPTEPG;	/* typically 2 x 512 */
750 
751 	/*
752 	 * Allocate pages
753 	 */
754 	KPTbase = allocpages(firstaddr, nkpt_base);
755 	KPTphys = allocpages(firstaddr, nkpt_phys);
756 	KPML4phys = allocpages(firstaddr, 1);
757 	KPDPphys = allocpages(firstaddr, NKPML4E);
758 	KPDphys = allocpages(firstaddr, NKPDPE);
759 
760 	/*
761 	 * Calculate the page directory base for KERNBASE,
762 	 * that is where we start populating the page table pages.
763 	 * Basically this is the end - 2.
764 	 */
765 	KPDbase = KPDphys + ((NKPDPE - (NPDPEPG - KPDPI)) << PAGE_SHIFT);
766 
767 	DMPDPphys = allocpages(firstaddr, NDMPML4E);
768 	if ((amd_feature & AMDID_PAGE1GB) == 0)
769 		DMPDphys = allocpages(firstaddr, ndmpdp);
770 	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
771 
772 	/*
773 	 * Fill in the underlying page table pages for the area around
774 	 * KERNBASE.  This remaps low physical memory to KERNBASE.
775 	 *
776 	 * Read-only from zero to physfree
777 	 * XXX not fully used, underneath 2M pages
778 	 */
779 	for (i = 0; (i << PAGE_SHIFT) < *firstaddr; i++) {
780 		((pt_entry_t *)KPTbase)[i] = i << PAGE_SHIFT;
781 		((pt_entry_t *)KPTbase)[i] |=
782 		    pmap_bits_default[PG_RW_IDX] |
783 		    pmap_bits_default[PG_V_IDX] |
784 		    pmap_bits_default[PG_G_IDX];
785 	}
786 
787 	/*
788 	 * Now map the initial kernel page tables.  One block of page
789 	 * tables is placed at the beginning of kernel virtual memory,
790 	 * and another block is placed at KERNBASE to map the kernel binary,
791 	 * data, bss, and initial pre-allocations.
792 	 */
793 	for (i = 0; i < nkpt_base; i++) {
794 		((pd_entry_t *)KPDbase)[i] = KPTbase + (i << PAGE_SHIFT);
795 		((pd_entry_t *)KPDbase)[i] |=
796 		    pmap_bits_default[PG_RW_IDX] |
797 		    pmap_bits_default[PG_V_IDX];
798 	}
799 	for (i = 0; i < nkpt_phys; i++) {
800 		((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
801 		((pd_entry_t *)KPDphys)[i] |=
802 		    pmap_bits_default[PG_RW_IDX] |
803 		    pmap_bits_default[PG_V_IDX];
804 	}
805 
806 	/*
807 	 * Map from zero to end of allocations using 2M pages as an
808 	 * optimization.  This will bypass some of the KPTBase pages
809 	 * above in the KERNBASE area.
810 	 */
811 	for (i = 0; (i << PDRSHIFT) < *firstaddr; i++) {
812 		((pd_entry_t *)KPDbase)[i] = i << PDRSHIFT;
813 		((pd_entry_t *)KPDbase)[i] |=
814 		    pmap_bits_default[PG_RW_IDX] |
815 		    pmap_bits_default[PG_V_IDX] |
816 		    pmap_bits_default[PG_PS_IDX] |
817 		    pmap_bits_default[PG_G_IDX];
818 	}
819 
820 	/*
821 	 * And connect up the PD to the PDP.  The kernel pmap is expected
822 	 * to pre-populate all of its PDs.  See NKPDPE in vmparam.h.
823 	 */
824 	for (i = 0; i < NKPDPE; i++) {
825 		((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] =
826 				KPDphys + (i << PAGE_SHIFT);
827 		((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] |=
828 		    pmap_bits_default[PG_RW_IDX] |
829 		    pmap_bits_default[PG_V_IDX] |
830 		    pmap_bits_default[PG_U_IDX];
831 	}
832 
833 	/*
834 	 * Now set up the direct map space using either 2MB or 1GB pages
835 	 * Preset PG_M and PG_A because demotion expects it.
836 	 *
837 	 * When filling in entries in the PD pages make sure any excess
838 	 * entries are set to zero as we allocated enough PD pages
839 	 */
840 	if ((amd_feature & AMDID_PAGE1GB) == 0) {
841 		for (i = 0; i < NPDEPG * ndmpdp; i++) {
842 			((pd_entry_t *)DMPDphys)[i] = i << PDRSHIFT;
843 			((pd_entry_t *)DMPDphys)[i] |=
844 			    pmap_bits_default[PG_RW_IDX] |
845 			    pmap_bits_default[PG_V_IDX] |
846 			    pmap_bits_default[PG_PS_IDX] |
847 			    pmap_bits_default[PG_G_IDX] |
848 			    pmap_bits_default[PG_M_IDX] |
849 			    pmap_bits_default[PG_A_IDX];
850 		}
851 
852 		/*
853 		 * And the direct map space's PDP
854 		 */
855 		for (i = 0; i < ndmpdp; i++) {
856 			((pdp_entry_t *)DMPDPphys)[i] = DMPDphys +
857 							(i << PAGE_SHIFT);
858 			((pdp_entry_t *)DMPDPphys)[i] |=
859 			    pmap_bits_default[PG_RW_IDX] |
860 			    pmap_bits_default[PG_V_IDX] |
861 			    pmap_bits_default[PG_U_IDX];
862 		}
863 	} else {
864 		for (i = 0; i < ndmpdp; i++) {
865 			((pdp_entry_t *)DMPDPphys)[i] =
866 						(vm_paddr_t)i << PDPSHIFT;
867 			((pdp_entry_t *)DMPDPphys)[i] |=
868 			    pmap_bits_default[PG_RW_IDX] |
869 			    pmap_bits_default[PG_V_IDX] |
870 			    pmap_bits_default[PG_PS_IDX] |
871 			    pmap_bits_default[PG_G_IDX] |
872 			    pmap_bits_default[PG_M_IDX] |
873 			    pmap_bits_default[PG_A_IDX];
874 		}
875 	}
876 
877 	/* And recursively map PML4 to itself in order to get PTmap */
878 	((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
879 	((pdp_entry_t *)KPML4phys)[PML4PML4I] |=
880 	    pmap_bits_default[PG_RW_IDX] |
881 	    pmap_bits_default[PG_V_IDX] |
882 	    pmap_bits_default[PG_U_IDX];
883 
884 	/*
885 	 * Connect the Direct Map slots up to the PML4
886 	 */
887 	for (j = 0; j < NDMPML4E; ++j) {
888 		((pdp_entry_t *)KPML4phys)[DMPML4I + j] =
889 		    (DMPDPphys + ((vm_paddr_t)j << PML4SHIFT)) |
890 		    pmap_bits_default[PG_RW_IDX] |
891 		    pmap_bits_default[PG_V_IDX] |
892 		    pmap_bits_default[PG_U_IDX];
893 	}
894 
895 	/*
896 	 * Connect the KVA slot up to the PML4
897 	 */
898 	((pdp_entry_t *)KPML4phys)[KPML4I] = KPDPphys;
899 	((pdp_entry_t *)KPML4phys)[KPML4I] |=
900 	    pmap_bits_default[PG_RW_IDX] |
901 	    pmap_bits_default[PG_V_IDX] |
902 	    pmap_bits_default[PG_U_IDX];
903 }
904 
905 /*
906  *	Bootstrap the system enough to run with virtual memory.
907  *
908  *	On the i386 this is called after mapping has already been enabled
909  *	and just syncs the pmap module with what has already been done.
910  *	[We can't call it easily with mapping off since the kernel is not
911  *	mapped with PA == VA, hence we would have to relocate every address
912  *	from the linked base (virtual) address "KERNBASE" to the actual
913  *	(physical) address starting relative to 0]
914  */
915 void
916 pmap_bootstrap(vm_paddr_t *firstaddr)
917 {
918 	vm_offset_t va;
919 	pt_entry_t *pte;
920 	int i;
921 
922 	KvaStart = VM_MIN_KERNEL_ADDRESS;
923 	KvaEnd = VM_MAX_KERNEL_ADDRESS;
924 	KvaSize = KvaEnd - KvaStart;
925 
926 	avail_start = *firstaddr;
927 
928 	/*
929 	 * Create an initial set of page tables to run the kernel in.
930 	 */
931 	create_pagetables(firstaddr);
932 
933 	virtual2_start = KvaStart;
934 	virtual2_end = PTOV_OFFSET;
935 
936 	virtual_start = (vm_offset_t) PTOV_OFFSET + *firstaddr;
937 	virtual_start = pmap_kmem_choose(virtual_start);
938 
939 	virtual_end = VM_MAX_KERNEL_ADDRESS;
940 
941 	/* XXX do %cr0 as well */
942 	load_cr4(rcr4() | CR4_PGE | CR4_PSE);
943 	load_cr3(KPML4phys);
944 
945 	/*
946 	 * Initialize protection array.
947 	 */
948 	i386_protection_init();
949 
950 	/*
951 	 * The kernel's pmap is statically allocated so we don't have to use
952 	 * pmap_create, which is unlikely to work correctly at this part of
953 	 * the boot sequence (XXX and which no longer exists).
954 	 */
955 	kernel_pmap.pm_pml4 = (pdp_entry_t *) (PTOV_OFFSET + KPML4phys);
956 	kernel_pmap.pm_count = 1;
957 	CPUMASK_ASSALLONES(kernel_pmap.pm_active);
958 	RB_INIT(&kernel_pmap.pm_pvroot);
959 	spin_init(&kernel_pmap.pm_spin, "pmapbootstrap");
960 	for (i = 0; i < PM_PLACEMARKS; ++i)
961 		kernel_pmap.pm_placemarks[i] = PM_NOPLACEMARK;
962 
963 	/*
964 	 * Reserve some special page table entries/VA space for temporary
965 	 * mapping of pages.
966 	 */
967 #define	SYSMAP(c, p, v, n)	\
968 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
969 
970 	va = virtual_start;
971 	pte = vtopte(va);
972 
973 	/*
974 	 * CMAP1/CMAP2 are used for zeroing and copying pages.
975 	 */
976 	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
977 
978 	/*
979 	 * Crashdump maps.
980 	 */
981 	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
982 
983 	/*
984 	 * ptvmmap is used for reading arbitrary physical pages via
985 	 * /dev/mem.
986 	 */
987 	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
988 
989 	/*
990 	 * msgbufp is used to map the system message buffer.
991 	 * XXX msgbufmap is not used.
992 	 */
993 	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
994 	       atop(round_page(MSGBUF_SIZE)))
995 
996 	virtual_start = va;
997 	virtual_start = pmap_kmem_choose(virtual_start);
998 
999 	*CMAP1 = 0;
1000 
1001 	/*
1002 	 * PG_G is terribly broken on SMP because we IPI invltlb's in some
1003 	 * cases rather then invl1pg.  Actually, I don't even know why it
1004 	 * works under UP because self-referential page table mappings
1005 	 */
1006 //	pgeflag = 0;
1007 
1008 /*
1009  * Initialize the 4MB page size flag
1010  */
1011 //	pseflag = 0;
1012 /*
1013  * The 4MB page version of the initial
1014  * kernel page mapping.
1015  */
1016 	pdir4mb = 0;
1017 
1018 #if !defined(DISABLE_PSE)
1019 	if (cpu_feature & CPUID_PSE) {
1020 		pt_entry_t ptditmp;
1021 		/*
1022 		 * Note that we have enabled PSE mode
1023 		 */
1024 //		pseflag = kernel_pmap.pmap_bits[PG_PS_IDX];
1025 		ptditmp = *(PTmap + x86_64_btop(KERNBASE));
1026 		ptditmp &= ~(NBPDR - 1);
1027 		ptditmp |= pmap_bits_default[PG_V_IDX] |
1028 		    pmap_bits_default[PG_RW_IDX] |
1029 		    pmap_bits_default[PG_PS_IDX] |
1030 		    pmap_bits_default[PG_U_IDX];
1031 //		    pgeflag;
1032 		pdir4mb = ptditmp;
1033 	}
1034 #endif
1035 	cpu_invltlb();
1036 
1037 	/* Initialize the PAT MSR */
1038 	pmap_init_pat();
1039 	pmap_pinit_defaults(&kernel_pmap);
1040 
1041 	TUNABLE_INT_FETCH("machdep.pmap_fast_kernel_cpusync",
1042 			  &pmap_fast_kernel_cpusync);
1043 
1044 }
1045 
1046 /*
1047  * Setup the PAT MSR.
1048  */
1049 void
1050 pmap_init_pat(void)
1051 {
1052 	uint64_t pat_msr;
1053 	u_long cr0, cr4;
1054 
1055 	/*
1056 	 * Default values mapping PATi,PCD,PWT bits at system reset.
1057 	 * The default values effectively ignore the PATi bit by
1058 	 * repeating the encodings for 0-3 in 4-7, and map the PCD
1059 	 * and PWT bit combinations to the expected PAT types.
1060 	 */
1061 	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |	/* 000 */
1062 		  PAT_VALUE(1, PAT_WRITE_THROUGH) |	/* 001 */
1063 		  PAT_VALUE(2, PAT_UNCACHED) |		/* 010 */
1064 		  PAT_VALUE(3, PAT_UNCACHEABLE) |	/* 011 */
1065 		  PAT_VALUE(4, PAT_WRITE_BACK) |	/* 100 */
1066 		  PAT_VALUE(5, PAT_WRITE_THROUGH) |	/* 101 */
1067 		  PAT_VALUE(6, PAT_UNCACHED) |		/* 110 */
1068 		  PAT_VALUE(7, PAT_UNCACHEABLE);	/* 111 */
1069 	pat_pte_index[PAT_WRITE_BACK]	= 0;
1070 	pat_pte_index[PAT_WRITE_THROUGH]= 0         | X86_PG_NC_PWT;
1071 	pat_pte_index[PAT_UNCACHED]	= X86_PG_NC_PCD;
1072 	pat_pte_index[PAT_UNCACHEABLE]	= X86_PG_NC_PCD | X86_PG_NC_PWT;
1073 	pat_pte_index[PAT_WRITE_PROTECTED] = pat_pte_index[PAT_UNCACHEABLE];
1074 	pat_pte_index[PAT_WRITE_COMBINING] = pat_pte_index[PAT_UNCACHEABLE];
1075 
1076 	if (cpu_feature & CPUID_PAT) {
1077 		/*
1078 		 * If we support the PAT then set-up entries for
1079 		 * WRITE_PROTECTED and WRITE_COMBINING using bit patterns
1080 		 * 4 and 5.
1081 		 */
1082 		pat_msr = (pat_msr & ~PAT_MASK(4)) |
1083 			  PAT_VALUE(4, PAT_WRITE_PROTECTED);
1084 		pat_msr = (pat_msr & ~PAT_MASK(5)) |
1085 			  PAT_VALUE(5, PAT_WRITE_COMBINING);
1086 		pat_pte_index[PAT_WRITE_PROTECTED] = X86_PG_PTE_PAT | 0;
1087 		pat_pte_index[PAT_WRITE_COMBINING] = X86_PG_PTE_PAT | X86_PG_NC_PWT;
1088 
1089 		/*
1090 		 * Then enable the PAT
1091 		 */
1092 
1093 		/* Disable PGE. */
1094 		cr4 = rcr4();
1095 		load_cr4(cr4 & ~CR4_PGE);
1096 
1097 		/* Disable caches (CD = 1, NW = 0). */
1098 		cr0 = rcr0();
1099 		load_cr0((cr0 & ~CR0_NW) | CR0_CD);
1100 
1101 		/* Flushes caches and TLBs. */
1102 		wbinvd();
1103 		cpu_invltlb();
1104 
1105 		/* Update PAT and index table. */
1106 		wrmsr(MSR_PAT, pat_msr);
1107 
1108 		/* Flush caches and TLBs again. */
1109 		wbinvd();
1110 		cpu_invltlb();
1111 
1112 		/* Restore caches and PGE. */
1113 		load_cr0(cr0);
1114 		load_cr4(cr4);
1115 		PatMsr = pat_msr;
1116 	}
1117 }
1118 
1119 /*
1120  * Set 4mb pdir for mp startup
1121  */
1122 void
1123 pmap_set_opt(void)
1124 {
1125 	if (cpu_feature & CPUID_PSE) {
1126 		load_cr4(rcr4() | CR4_PSE);
1127 		if (pdir4mb && mycpu->gd_cpuid == 0) {	/* only on BSP */
1128 			cpu_invltlb();
1129 		}
1130 	}
1131 }
1132 
1133 /*
1134  *	Initialize the pmap module.
1135  *	Called by vm_init, to initialize any structures that the pmap
1136  *	system needs to map virtual memory.
1137  *	pmap_init has been enhanced to support in a fairly consistant
1138  *	way, discontiguous physical memory.
1139  */
1140 void
1141 pmap_init(void)
1142 {
1143 	int i;
1144 	int initial_pvs;
1145 
1146 	/*
1147 	 * Allocate memory for random pmap data structures.  Includes the
1148 	 * pv_head_table.
1149 	 */
1150 
1151 	for (i = 0; i < vm_page_array_size; i++) {
1152 		vm_page_t m;
1153 
1154 		m = &vm_page_array[i];
1155 		TAILQ_INIT(&m->md.pv_list);
1156 	}
1157 
1158 	/*
1159 	 * init the pv free list
1160 	 */
1161 	initial_pvs = vm_page_array_size;
1162 	if (initial_pvs < MINPV)
1163 		initial_pvs = MINPV;
1164 	pvzone = &pvzone_store;
1165 	pvinit = (void *)kmem_alloc(&kernel_map,
1166 				    initial_pvs * sizeof (struct pv_entry),
1167 				    VM_SUBSYS_PVENTRY);
1168 	zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry),
1169 		  pvinit, initial_pvs);
1170 
1171 	/*
1172 	 * Now it is safe to enable pv_table recording.
1173 	 */
1174 	pmap_initialized = TRUE;
1175 }
1176 
1177 /*
1178  * Initialize the address space (zone) for the pv_entries.  Set a
1179  * high water mark so that the system can recover from excessive
1180  * numbers of pv entries.
1181  */
1182 void
1183 pmap_init2(void)
1184 {
1185 	int shpgperproc = PMAP_SHPGPERPROC;
1186 	int entry_max;
1187 
1188 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1189 	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
1190 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1191 	pv_entry_high_water = 9 * (pv_entry_max / 10);
1192 
1193 	/*
1194 	 * Subtract out pages already installed in the zone (hack)
1195 	 */
1196 	entry_max = pv_entry_max - vm_page_array_size;
1197 	if (entry_max <= 0)
1198 		entry_max = 1;
1199 
1200 	zinitna(pvzone, NULL, 0, entry_max, ZONE_INTERRUPT);
1201 
1202 	/*
1203 	 * Enable dynamic deletion of empty higher-level page table pages
1204 	 * by default only if system memory is < 8GB (use 7GB for slop).
1205 	 * This can save a little memory, but imposes significant
1206 	 * performance overhead for things like bulk builds, and for programs
1207 	 * which do a lot of memory mapping and memory unmapping.
1208 	 */
1209 	if (pmap_dynamic_delete < 0) {
1210 		if (vmstats.v_page_count < 7LL * 1024 * 1024 * 1024 / PAGE_SIZE)
1211 			pmap_dynamic_delete = 1;
1212 		else
1213 			pmap_dynamic_delete = 0;
1214 	}
1215 }
1216 
1217 /*
1218  * Typically used to initialize a fictitious page by vm/device_pager.c
1219  */
1220 void
1221 pmap_page_init(struct vm_page *m)
1222 {
1223 	vm_page_init(m);
1224 	TAILQ_INIT(&m->md.pv_list);
1225 }
1226 
1227 /***************************************************
1228  * Low level helper routines.....
1229  ***************************************************/
1230 
1231 /*
1232  * this routine defines the region(s) of memory that should
1233  * not be tested for the modified bit.
1234  */
1235 static __inline
1236 int
1237 pmap_track_modified(vm_pindex_t pindex)
1238 {
1239 	vm_offset_t va = (vm_offset_t)pindex << PAGE_SHIFT;
1240 	if ((va < clean_sva) || (va >= clean_eva))
1241 		return 1;
1242 	else
1243 		return 0;
1244 }
1245 
1246 /*
1247  * Extract the physical page address associated with the map/VA pair.
1248  * The page must be wired for this to work reliably.
1249  */
1250 vm_paddr_t
1251 pmap_extract(pmap_t pmap, vm_offset_t va, void **handlep)
1252 {
1253 	vm_paddr_t rtval;
1254 	pv_entry_t pt_pv;
1255 	pt_entry_t *ptep;
1256 
1257 	rtval = 0;
1258 	if (va >= VM_MAX_USER_ADDRESS) {
1259 		/*
1260 		 * Kernel page directories might be direct-mapped and
1261 		 * there is typically no PV tracking of pte's
1262 		 */
1263 		pd_entry_t *pt;
1264 
1265 		pt = pmap_pt(pmap, va);
1266 		if (pt && (*pt & pmap->pmap_bits[PG_V_IDX])) {
1267 			if (*pt & pmap->pmap_bits[PG_PS_IDX]) {
1268 				rtval = *pt & PG_PS_FRAME;
1269 				rtval |= va & PDRMASK;
1270 			} else {
1271 				ptep = pmap_pt_to_pte(*pt, va);
1272 				if (*pt & pmap->pmap_bits[PG_V_IDX]) {
1273 					rtval = *ptep & PG_FRAME;
1274 					rtval |= va & PAGE_MASK;
1275 				}
1276 			}
1277 		}
1278 		if (handlep)
1279 			*handlep = NULL;
1280 	} else {
1281 		/*
1282 		 * User pages currently do not direct-map the page directory
1283 		 * and some pages might not used managed PVs.  But all PT's
1284 		 * will have a PV.
1285 		 */
1286 		pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
1287 		if (pt_pv) {
1288 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1289 			if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
1290 				rtval = *ptep & PG_FRAME;
1291 				rtval |= va & PAGE_MASK;
1292 			}
1293 			if (handlep)
1294 				*handlep = pt_pv;	/* locked until done */
1295 			else
1296 				pv_put (pt_pv);
1297 		} else if (handlep) {
1298 			*handlep = NULL;
1299 		}
1300 	}
1301 	return rtval;
1302 }
1303 
1304 void
1305 pmap_extract_done(void *handle)
1306 {
1307 	if (handle)
1308 		pv_put((pv_entry_t)handle);
1309 }
1310 
1311 /*
1312  * Similar to extract but checks protections, SMP-friendly short-cut for
1313  * vm_fault_page[_quick]().  Can return NULL to cause the caller to
1314  * fall-through to the real fault code.  Does not work with HVM page
1315  * tables.
1316  *
1317  * The returned page, if not NULL, is held (and not busied).
1318  *
1319  * WARNING! THE RETURNED PAGE IS ONLY HELD AND NOT SUITABLE FOR READING
1320  *	    OR WRITING AS-IS.
1321  */
1322 vm_page_t
1323 pmap_fault_page_quick(pmap_t pmap, vm_offset_t va, vm_prot_t prot, int *busyp)
1324 {
1325 	if (pmap &&
1326 	    va < VM_MAX_USER_ADDRESS &&
1327 	    (pmap->pm_flags & PMAP_HVM) == 0) {
1328 		pv_entry_t pt_pv;
1329 		pv_entry_t pte_pv;
1330 		pt_entry_t *ptep;
1331 		pt_entry_t req;
1332 		vm_page_t m;
1333 		int error;
1334 
1335 		req = pmap->pmap_bits[PG_V_IDX] |
1336 		      pmap->pmap_bits[PG_U_IDX];
1337 		if (prot & VM_PROT_WRITE)
1338 			req |= pmap->pmap_bits[PG_RW_IDX];
1339 
1340 		pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
1341 		if (pt_pv == NULL)
1342 			return (NULL);
1343 		ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1344 		if ((*ptep & req) != req) {
1345 			pv_put(pt_pv);
1346 			return (NULL);
1347 		}
1348 		pte_pv = pv_get_try(pmap, pmap_pte_pindex(va), NULL, &error);
1349 		if (pte_pv && error == 0) {
1350 			m = pte_pv->pv_m;
1351 			if (prot & VM_PROT_WRITE) {
1352 				/* interlocked by presence of pv_entry */
1353 				vm_page_dirty(m);
1354 			}
1355 			if (busyp) {
1356 				if (prot & VM_PROT_WRITE) {
1357 					if (vm_page_busy_try(m, TRUE))
1358 						m = NULL;
1359 					*busyp = 1;
1360 				} else {
1361 					vm_page_hold(m);
1362 					*busyp = 0;
1363 				}
1364 			} else {
1365 				vm_page_hold(m);
1366 			}
1367 			pv_put(pte_pv);
1368 		} else if (pte_pv) {
1369 			pv_drop(pte_pv);
1370 			m = NULL;
1371 		} else {
1372 			/* error, since we didn't request a placemarker */
1373 			m = NULL;
1374 		}
1375 		pv_put(pt_pv);
1376 		return(m);
1377 	} else {
1378 		return(NULL);
1379 	}
1380 }
1381 
1382 /*
1383  * Extract the physical page address associated kernel virtual address.
1384  */
1385 vm_paddr_t
1386 pmap_kextract(vm_offset_t va)
1387 {
1388 	pd_entry_t pt;		/* pt entry in pd */
1389 	vm_paddr_t pa;
1390 
1391 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
1392 		pa = DMAP_TO_PHYS(va);
1393 	} else {
1394 		pt = *vtopt(va);
1395 		if (pt & kernel_pmap.pmap_bits[PG_PS_IDX]) {
1396 			pa = (pt & PG_PS_FRAME) | (va & PDRMASK);
1397 		} else {
1398 			/*
1399 			 * Beware of a concurrent promotion that changes the
1400 			 * PDE at this point!  For example, vtopte() must not
1401 			 * be used to access the PTE because it would use the
1402 			 * new PDE.  It is, however, safe to use the old PDE
1403 			 * because the page table page is preserved by the
1404 			 * promotion.
1405 			 */
1406 			pa = *pmap_pt_to_pte(pt, va);
1407 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
1408 		}
1409 	}
1410 	return pa;
1411 }
1412 
1413 /***************************************************
1414  * Low level mapping routines.....
1415  ***************************************************/
1416 
1417 /*
1418  * Routine: pmap_kenter
1419  * Function:
1420  *  	Add a wired page to the KVA
1421  *  	NOTE! note that in order for the mapping to take effect -- you
1422  *  	should do an invltlb after doing the pmap_kenter().
1423  */
1424 void
1425 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1426 {
1427 	pt_entry_t *ptep;
1428 	pt_entry_t npte;
1429 
1430 	npte = pa |
1431 	       kernel_pmap.pmap_bits[PG_RW_IDX] |
1432 	       kernel_pmap.pmap_bits[PG_V_IDX];
1433 //	       pgeflag;
1434 	ptep = vtopte(va);
1435 #if 1
1436 	pmap_inval_smp(&kernel_pmap, va, 1, ptep, npte);
1437 #else
1438 	/* FUTURE */
1439 	if (*ptep)
1440 		pmap_inval_smp(&kernel_pmap, va, ptep, npte);
1441 	else
1442 		*ptep = npte;
1443 #endif
1444 }
1445 
1446 /*
1447  * Similar to pmap_kenter(), except we only invalidate the mapping on the
1448  * current CPU.  Returns 0 if the previous pte was 0, 1 if it wasn't
1449  * (caller can conditionalize calling smp_invltlb()).
1450  */
1451 int
1452 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
1453 {
1454 	pt_entry_t *ptep;
1455 	pt_entry_t npte;
1456 	int res;
1457 
1458 	npte = pa | kernel_pmap.pmap_bits[PG_RW_IDX] |
1459 		    kernel_pmap.pmap_bits[PG_V_IDX];
1460 	// npte |= pgeflag;
1461 	ptep = vtopte(va);
1462 #if 1
1463 	res = 1;
1464 #else
1465 	/* FUTURE */
1466 	res = (*ptep != 0);
1467 #endif
1468 	atomic_swap_long(ptep, npte);
1469 	cpu_invlpg((void *)va);
1470 
1471 	return res;
1472 }
1473 
1474 /*
1475  * Enter addresses into the kernel pmap but don't bother
1476  * doing any tlb invalidations.  Caller will do a rollup
1477  * invalidation via pmap_rollup_inval().
1478  */
1479 int
1480 pmap_kenter_noinval(vm_offset_t va, vm_paddr_t pa)
1481 {
1482 	pt_entry_t *ptep;
1483 	pt_entry_t npte;
1484 	int res;
1485 
1486 	npte = pa |
1487 	    kernel_pmap.pmap_bits[PG_RW_IDX] |
1488 	    kernel_pmap.pmap_bits[PG_V_IDX];
1489 //	    pgeflag;
1490 	ptep = vtopte(va);
1491 #if 1
1492 	res = 1;
1493 #else
1494 	/* FUTURE */
1495 	res = (*ptep != 0);
1496 #endif
1497 	atomic_swap_long(ptep, npte);
1498 	cpu_invlpg((void *)va);
1499 
1500 	return res;
1501 }
1502 
1503 /*
1504  * remove a page from the kernel pagetables
1505  */
1506 void
1507 pmap_kremove(vm_offset_t va)
1508 {
1509 	pt_entry_t *ptep;
1510 
1511 	ptep = vtopte(va);
1512 	pmap_inval_smp(&kernel_pmap, va, 1, ptep, 0);
1513 }
1514 
1515 void
1516 pmap_kremove_quick(vm_offset_t va)
1517 {
1518 	pt_entry_t *ptep;
1519 
1520 	ptep = vtopte(va);
1521 	(void)pte_load_clear(ptep);
1522 	cpu_invlpg((void *)va);
1523 }
1524 
1525 /*
1526  * Remove addresses from the kernel pmap but don't bother
1527  * doing any tlb invalidations.  Caller will do a rollup
1528  * invalidation via pmap_rollup_inval().
1529  */
1530 void
1531 pmap_kremove_noinval(vm_offset_t va)
1532 {
1533 	pt_entry_t *ptep;
1534 
1535 	ptep = vtopte(va);
1536 	(void)pte_load_clear(ptep);
1537 }
1538 
1539 /*
1540  * XXX these need to be recoded.  They are not used in any critical path.
1541  */
1542 void
1543 pmap_kmodify_rw(vm_offset_t va)
1544 {
1545 	atomic_set_long(vtopte(va), kernel_pmap.pmap_bits[PG_RW_IDX]);
1546 	cpu_invlpg((void *)va);
1547 }
1548 
1549 /* NOT USED
1550 void
1551 pmap_kmodify_nc(vm_offset_t va)
1552 {
1553 	atomic_set_long(vtopte(va), PG_N);
1554 	cpu_invlpg((void *)va);
1555 }
1556 */
1557 
1558 /*
1559  * Used to map a range of physical addresses into kernel virtual
1560  * address space during the low level boot, typically to map the
1561  * dump bitmap, message buffer, and vm_page_array.
1562  *
1563  * These mappings are typically made at some pointer after the end of the
1564  * kernel text+data.
1565  *
1566  * We could return PHYS_TO_DMAP(start) here and not allocate any
1567  * via (*virtp), but then kmem from userland and kernel dumps won't
1568  * have access to the related pointers.
1569  */
1570 vm_offset_t
1571 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
1572 {
1573 	vm_offset_t va;
1574 	vm_offset_t va_start;
1575 
1576 	/*return PHYS_TO_DMAP(start);*/
1577 
1578 	va_start = *virtp;
1579 	va = va_start;
1580 
1581 	while (start < end) {
1582 		pmap_kenter_quick(va, start);
1583 		va += PAGE_SIZE;
1584 		start += PAGE_SIZE;
1585 	}
1586 	*virtp = va;
1587 	return va_start;
1588 }
1589 
1590 #define PMAP_CLFLUSH_THRESHOLD  (2 * 1024 * 1024)
1591 
1592 /*
1593  * Remove the specified set of pages from the data and instruction caches.
1594  *
1595  * In contrast to pmap_invalidate_cache_range(), this function does not
1596  * rely on the CPU's self-snoop feature, because it is intended for use
1597  * when moving pages into a different cache domain.
1598  */
1599 void
1600 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
1601 {
1602 	vm_offset_t daddr, eva;
1603 	int i;
1604 
1605 	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
1606 	    (cpu_feature & CPUID_CLFSH) == 0)
1607 		wbinvd();
1608 	else {
1609 		cpu_mfence();
1610 		for (i = 0; i < count; i++) {
1611 			daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
1612 			eva = daddr + PAGE_SIZE;
1613 			for (; daddr < eva; daddr += cpu_clflush_line_size)
1614 				clflush(daddr);
1615 		}
1616 		cpu_mfence();
1617 	}
1618 }
1619 
1620 void
1621 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
1622 {
1623 	KASSERT((sva & PAGE_MASK) == 0,
1624 	    ("pmap_invalidate_cache_range: sva not page-aligned"));
1625 	KASSERT((eva & PAGE_MASK) == 0,
1626 	    ("pmap_invalidate_cache_range: eva not page-aligned"));
1627 
1628 	if (cpu_feature & CPUID_SS) {
1629 		; /* If "Self Snoop" is supported, do nothing. */
1630 	} else {
1631 		/* Globally invalidate caches */
1632 		cpu_wbinvd_on_all_cpus();
1633 	}
1634 }
1635 
1636 /*
1637  * Invalidate the specified range of virtual memory on all cpus associated
1638  * with the pmap.
1639  */
1640 void
1641 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1642 {
1643 	pmap_inval_smp(pmap, sva, (eva - sva) >> PAGE_SHIFT, NULL, 0);
1644 }
1645 
1646 /*
1647  * Add a list of wired pages to the kva.  This routine is used for temporary
1648  * kernel mappings such as those found in buffer cache buffer.  Page
1649  * modifications and accesses are not tracked or recorded.
1650  *
1651  * NOTE! Old mappings are simply overwritten, and we cannot assume relaxed
1652  *	 semantics as previous mappings may have been zerod without any
1653  *	 invalidation.
1654  *
1655  * The page *must* be wired.
1656  */
1657 void
1658 pmap_qenter(vm_offset_t beg_va, vm_page_t *m, int count)
1659 {
1660 	vm_offset_t end_va;
1661 	vm_offset_t va;
1662 
1663 	end_va = beg_va + count * PAGE_SIZE;
1664 
1665 	for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1666 		pt_entry_t pte;
1667 		pt_entry_t *ptep;
1668 
1669 		ptep = vtopte(va);
1670 		pte = VM_PAGE_TO_PHYS(*m) |
1671 			kernel_pmap.pmap_bits[PG_RW_IDX] |
1672 			kernel_pmap.pmap_bits[PG_V_IDX] |
1673 			kernel_pmap.pmap_cache_bits[(*m)->pat_mode];
1674 //		pgeflag;
1675 		atomic_swap_long(ptep, pte);
1676 		m++;
1677 	}
1678 	pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
1679 }
1680 
1681 /*
1682  * This routine jerks page mappings from the kernel -- it is meant only
1683  * for temporary mappings such as those found in buffer cache buffers.
1684  * No recording modified or access status occurs.
1685  *
1686  * MPSAFE, INTERRUPT SAFE (cluster callback)
1687  */
1688 void
1689 pmap_qremove(vm_offset_t beg_va, int count)
1690 {
1691 	vm_offset_t end_va;
1692 	vm_offset_t va;
1693 
1694 	end_va = beg_va + count * PAGE_SIZE;
1695 
1696 	for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1697 		pt_entry_t *pte;
1698 
1699 		pte = vtopte(va);
1700 		(void)pte_load_clear(pte);
1701 		cpu_invlpg((void *)va);
1702 	}
1703 	pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
1704 }
1705 
1706 /*
1707  * This routine removes temporary kernel mappings, only invalidating them
1708  * on the current cpu.  It should only be used under carefully controlled
1709  * conditions.
1710  */
1711 void
1712 pmap_qremove_quick(vm_offset_t beg_va, int count)
1713 {
1714 	vm_offset_t end_va;
1715 	vm_offset_t va;
1716 
1717 	end_va = beg_va + count * PAGE_SIZE;
1718 
1719 	for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1720 		pt_entry_t *pte;
1721 
1722 		pte = vtopte(va);
1723 		(void)pte_load_clear(pte);
1724 		cpu_invlpg((void *)va);
1725 	}
1726 }
1727 
1728 /*
1729  * This routine removes temporary kernel mappings *without* invalidating
1730  * the TLB.  It can only be used on permanent kva reservations such as those
1731  * found in buffer cache buffers, under carefully controlled circumstances.
1732  *
1733  * NOTE: Repopulating these KVAs requires unconditional invalidation.
1734  *	 (pmap_qenter() does unconditional invalidation).
1735  */
1736 void
1737 pmap_qremove_noinval(vm_offset_t beg_va, int count)
1738 {
1739 	vm_offset_t end_va;
1740 	vm_offset_t va;
1741 
1742 	end_va = beg_va + count * PAGE_SIZE;
1743 
1744 	for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1745 		pt_entry_t *pte;
1746 
1747 		pte = vtopte(va);
1748 		(void)pte_load_clear(pte);
1749 	}
1750 }
1751 
1752 /*
1753  * Create a new thread and optionally associate it with a (new) process.
1754  * NOTE! the new thread's cpu may not equal the current cpu.
1755  */
1756 void
1757 pmap_init_thread(thread_t td)
1758 {
1759 	/* enforce pcb placement & alignment */
1760 	td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
1761 	td->td_pcb = (struct pcb *)((intptr_t)td->td_pcb & ~(intptr_t)0xF);
1762 	td->td_savefpu = &td->td_pcb->pcb_save;
1763 	td->td_sp = (char *)td->td_pcb;	/* no -16 */
1764 }
1765 
1766 /*
1767  * This routine directly affects the fork perf for a process.
1768  */
1769 void
1770 pmap_init_proc(struct proc *p)
1771 {
1772 }
1773 
1774 static void
1775 pmap_pinit_defaults(struct pmap *pmap)
1776 {
1777 	bcopy(pmap_bits_default, pmap->pmap_bits,
1778 	      sizeof(pmap_bits_default));
1779 	bcopy(protection_codes, pmap->protection_codes,
1780 	      sizeof(protection_codes));
1781 	bcopy(pat_pte_index, pmap->pmap_cache_bits,
1782 	      sizeof(pat_pte_index));
1783 	pmap->pmap_cache_mask = X86_PG_NC_PWT | X86_PG_NC_PCD | X86_PG_PTE_PAT;
1784 	pmap->copyinstr = std_copyinstr;
1785 	pmap->copyin = std_copyin;
1786 	pmap->copyout = std_copyout;
1787 	pmap->fubyte = std_fubyte;
1788 	pmap->subyte = std_subyte;
1789 	pmap->fuword32 = std_fuword32;
1790 	pmap->fuword64 = std_fuword64;
1791 	pmap->suword32 = std_suword32;
1792 	pmap->suword64 = std_suword64;
1793 	pmap->swapu32 = std_swapu32;
1794 	pmap->swapu64 = std_swapu64;
1795 }
1796 /*
1797  * Initialize pmap0/vmspace0.
1798  *
1799  * On architectures where the kernel pmap is not integrated into the user
1800  * process pmap, this pmap represents the process pmap, not the kernel pmap.
1801  * kernel_pmap should be used to directly access the kernel_pmap.
1802  */
1803 void
1804 pmap_pinit0(struct pmap *pmap)
1805 {
1806 	int i;
1807 
1808 	pmap->pm_pml4 = (pml4_entry_t *)(PTOV_OFFSET + KPML4phys);
1809 	pmap->pm_count = 1;
1810 	CPUMASK_ASSZERO(pmap->pm_active);
1811 	pmap->pm_pvhint = NULL;
1812 	RB_INIT(&pmap->pm_pvroot);
1813 	spin_init(&pmap->pm_spin, "pmapinit0");
1814 	for (i = 0; i < PM_PLACEMARKS; ++i)
1815 		pmap->pm_placemarks[i] = PM_NOPLACEMARK;
1816 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1817 	pmap_pinit_defaults(pmap);
1818 }
1819 
1820 /*
1821  * Initialize a preallocated and zeroed pmap structure,
1822  * such as one in a vmspace structure.
1823  */
1824 static void
1825 pmap_pinit_simple(struct pmap *pmap)
1826 {
1827 	int i;
1828 
1829 	/*
1830 	 * Misc initialization
1831 	 */
1832 	pmap->pm_count = 1;
1833 	CPUMASK_ASSZERO(pmap->pm_active);
1834 	pmap->pm_pvhint = NULL;
1835 	pmap->pm_flags = PMAP_FLAG_SIMPLE;
1836 
1837 	pmap_pinit_defaults(pmap);
1838 
1839 	/*
1840 	 * Don't blow up locks/tokens on re-use (XXX fix/use drop code
1841 	 * for this).
1842 	 */
1843 	if (pmap->pm_pmlpv == NULL) {
1844 		RB_INIT(&pmap->pm_pvroot);
1845 		bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1846 		spin_init(&pmap->pm_spin, "pmapinitsimple");
1847 		for (i = 0; i < PM_PLACEMARKS; ++i)
1848 			pmap->pm_placemarks[i] = PM_NOPLACEMARK;
1849 	}
1850 }
1851 
1852 void
1853 pmap_pinit(struct pmap *pmap)
1854 {
1855 	pv_entry_t pv;
1856 	int j;
1857 
1858 	if (pmap->pm_pmlpv) {
1859 		if (pmap->pmap_bits[TYPE_IDX] != REGULAR_PMAP) {
1860 			pmap_puninit(pmap);
1861 		}
1862 	}
1863 
1864 	pmap_pinit_simple(pmap);
1865 	pmap->pm_flags &= ~PMAP_FLAG_SIMPLE;
1866 
1867 	/*
1868 	 * No need to allocate page table space yet but we do need a valid
1869 	 * page directory table.
1870 	 */
1871 	if (pmap->pm_pml4 == NULL) {
1872 		pmap->pm_pml4 =
1873 		    (pml4_entry_t *)kmem_alloc_pageable(&kernel_map,
1874 							PAGE_SIZE,
1875 							VM_SUBSYS_PML4);
1876 	}
1877 
1878 	/*
1879 	 * Allocate the page directory page, which wires it even though
1880 	 * it isn't being entered into some higher level page table (it
1881 	 * being the highest level).  If one is already cached we don't
1882 	 * have to do anything.
1883 	 */
1884 	if ((pv = pmap->pm_pmlpv) == NULL) {
1885 		pv = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
1886 		pmap->pm_pmlpv = pv;
1887 		pmap_kenter((vm_offset_t)pmap->pm_pml4,
1888 			    VM_PAGE_TO_PHYS(pv->pv_m));
1889 		pv_put(pv);
1890 
1891 		/*
1892 		 * Install DMAP and KMAP.
1893 		 */
1894 		for (j = 0; j < NDMPML4E; ++j) {
1895 			pmap->pm_pml4[DMPML4I + j] =
1896 			    (DMPDPphys + ((vm_paddr_t)j << PML4SHIFT)) |
1897 			    pmap->pmap_bits[PG_RW_IDX] |
1898 			    pmap->pmap_bits[PG_V_IDX] |
1899 			    pmap->pmap_bits[PG_U_IDX];
1900 		}
1901 		pmap->pm_pml4[KPML4I] = KPDPphys |
1902 		    pmap->pmap_bits[PG_RW_IDX] |
1903 		    pmap->pmap_bits[PG_V_IDX] |
1904 		    pmap->pmap_bits[PG_U_IDX];
1905 
1906 		/*
1907 		 * install self-referential address mapping entry
1908 		 */
1909 		pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pv->pv_m) |
1910 		    pmap->pmap_bits[PG_V_IDX] |
1911 		    pmap->pmap_bits[PG_RW_IDX] |
1912 		    pmap->pmap_bits[PG_A_IDX] |
1913 		    pmap->pmap_bits[PG_M_IDX];
1914 	} else {
1915 		KKASSERT(pv->pv_m->flags & PG_MAPPED);
1916 		KKASSERT(pv->pv_m->flags & PG_WRITEABLE);
1917 	}
1918 	KKASSERT(pmap->pm_pml4[255] == 0);
1919 	KKASSERT(RB_ROOT(&pmap->pm_pvroot) == pv);
1920 	KKASSERT(pv->pv_entry.rbe_left == NULL);
1921 	KKASSERT(pv->pv_entry.rbe_right == NULL);
1922 }
1923 
1924 /*
1925  * Clean up a pmap structure so it can be physically freed.  This routine
1926  * is called by the vmspace dtor function.  A great deal of pmap data is
1927  * left passively mapped to improve vmspace management so we have a bit
1928  * of cleanup work to do here.
1929  */
1930 void
1931 pmap_puninit(pmap_t pmap)
1932 {
1933 	pv_entry_t pv;
1934 	vm_page_t p;
1935 
1936 	KKASSERT(CPUMASK_TESTZERO(pmap->pm_active));
1937 	if ((pv = pmap->pm_pmlpv) != NULL) {
1938 		if (pv_hold_try(pv) == 0)
1939 			pv_lock(pv);
1940 		KKASSERT(pv == pmap->pm_pmlpv);
1941 		p = pmap_remove_pv_page(pv);
1942 		pv_free(pv, NULL);
1943 		pv = NULL;	/* safety */
1944 		pmap_kremove((vm_offset_t)pmap->pm_pml4);
1945 		vm_page_busy_wait(p, FALSE, "pgpun");
1946 		KKASSERT(p->flags & (PG_FICTITIOUS|PG_UNMANAGED));
1947 		vm_page_unwire(p, 0);
1948 		vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
1949 
1950 		/*
1951 		 * XXX eventually clean out PML4 static entries and
1952 		 * use vm_page_free_zero()
1953 		 */
1954 		vm_page_free(p);
1955 		pmap->pm_pmlpv = NULL;
1956 	}
1957 	if (pmap->pm_pml4) {
1958 		KKASSERT(pmap->pm_pml4 != (void *)(PTOV_OFFSET + KPML4phys));
1959 		kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pml4, PAGE_SIZE);
1960 		pmap->pm_pml4 = NULL;
1961 	}
1962 	KKASSERT(pmap->pm_stats.resident_count == 0);
1963 	KKASSERT(pmap->pm_stats.wired_count == 0);
1964 }
1965 
1966 /*
1967  * This function is now unused (used to add the pmap to the pmap_list)
1968  */
1969 void
1970 pmap_pinit2(struct pmap *pmap)
1971 {
1972 }
1973 
1974 /*
1975  * This routine is called when various levels in the page table need to
1976  * be populated.  This routine cannot fail.
1977  *
1978  * This function returns two locked pv_entry's, one representing the
1979  * requested pv and one representing the requested pv's parent pv.  If
1980  * an intermediate page table does not exist it will be created, mapped,
1981  * wired, and the parent page table will be given an additional hold
1982  * count representing the presence of the child pv_entry.
1983  */
1984 static
1985 pv_entry_t
1986 pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp)
1987 {
1988 	pt_entry_t *ptep;
1989 	pv_entry_t pv;
1990 	pv_entry_t pvp;
1991 	pt_entry_t v;
1992 	vm_pindex_t pt_pindex;
1993 	vm_page_t m;
1994 	int isnew;
1995 	int ispt;
1996 
1997 	/*
1998 	 * If the pv already exists and we aren't being asked for the
1999 	 * parent page table page we can just return it.  A locked+held pv
2000 	 * is returned.  The pv will also have a second hold related to the
2001 	 * pmap association that we don't have to worry about.
2002 	 */
2003 	ispt = 0;
2004 	pv = pv_alloc(pmap, ptepindex, &isnew);
2005 	if (isnew == 0 && pvpp == NULL)
2006 		return(pv);
2007 
2008 	/*
2009 	 * Special case terminal PVs.  These are not page table pages so
2010 	 * no vm_page is allocated (the caller supplied the vm_page).  If
2011 	 * pvpp is non-NULL we are being asked to also removed the pt_pv
2012 	 * for this pv.
2013 	 *
2014 	 * Note that pt_pv's are only returned for user VAs. We assert that
2015 	 * a pt_pv is not being requested for kernel VAs.  The kernel
2016 	 * pre-wires all higher-level page tables so don't overload managed
2017 	 * higher-level page tables on top of it!
2018 	 */
2019 	if (ptepindex < pmap_pt_pindex(0)) {
2020 		if (ptepindex >= NUPTE_USER) {
2021 			/* kernel manages this manually for KVM */
2022 			KKASSERT(pvpp == NULL);
2023 		} else {
2024 			KKASSERT(pvpp != NULL);
2025 			pt_pindex = NUPTE_TOTAL + (ptepindex >> NPTEPGSHIFT);
2026 			pvp = pmap_allocpte(pmap, pt_pindex, NULL);
2027 			if (isnew)
2028 				vm_page_wire_quick(pvp->pv_m);
2029 			*pvpp = pvp;
2030 		}
2031 		return(pv);
2032 	}
2033 
2034 	/*
2035 	 * The kernel never uses managed PT/PD/PDP pages.
2036 	 */
2037 	KKASSERT(pmap != &kernel_pmap);
2038 
2039 	/*
2040 	 * Non-terminal PVs allocate a VM page to represent the page table,
2041 	 * so we have to resolve pvp and calculate ptepindex for the pvp
2042 	 * and then for the page table entry index in the pvp for
2043 	 * fall-through.
2044 	 */
2045 	if (ptepindex < pmap_pd_pindex(0)) {
2046 		/*
2047 		 * pv is PT, pvp is PD
2048 		 */
2049 		ptepindex = (ptepindex - pmap_pt_pindex(0)) >> NPDEPGSHIFT;
2050 		ptepindex += NUPTE_TOTAL + NUPT_TOTAL;
2051 		pvp = pmap_allocpte(pmap, ptepindex, NULL);
2052 
2053 		/*
2054 		 * PT index in PD
2055 		 */
2056 		ptepindex = pv->pv_pindex - pmap_pt_pindex(0);
2057 		ptepindex &= ((1ul << NPDEPGSHIFT) - 1);
2058 		ispt = 1;
2059 	} else if (ptepindex < pmap_pdp_pindex(0)) {
2060 		/*
2061 		 * pv is PD, pvp is PDP
2062 		 *
2063 		 * SIMPLE PMAP NOTE: Simple pmaps do not allocate above
2064 		 *		     the PD.
2065 		 */
2066 		ptepindex = (ptepindex - pmap_pd_pindex(0)) >> NPDPEPGSHIFT;
2067 		ptepindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
2068 
2069 		if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
2070 			KKASSERT(pvpp == NULL);
2071 			pvp = NULL;
2072 		} else {
2073 			pvp = pmap_allocpte(pmap, ptepindex, NULL);
2074 		}
2075 
2076 		/*
2077 		 * PD index in PDP
2078 		 */
2079 		ptepindex = pv->pv_pindex - pmap_pd_pindex(0);
2080 		ptepindex &= ((1ul << NPDPEPGSHIFT) - 1);
2081 	} else if (ptepindex < pmap_pml4_pindex()) {
2082 		/*
2083 		 * pv is PDP, pvp is the root pml4 table
2084 		 */
2085 		pvp = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
2086 
2087 		/*
2088 		 * PDP index in PML4
2089 		 */
2090 		ptepindex = pv->pv_pindex - pmap_pdp_pindex(0);
2091 		ptepindex &= ((1ul << NPML4EPGSHIFT) - 1);
2092 	} else {
2093 		/*
2094 		 * pv represents the top-level PML4, there is no parent.
2095 		 */
2096 		pvp = NULL;
2097 	}
2098 
2099 	if (isnew == 0)
2100 		goto notnew;
2101 
2102 	/*
2103 	 * (isnew) is TRUE, pv is not terminal.
2104 	 *
2105 	 * (1) Add a wire count to the parent page table (pvp).
2106 	 * (2) Allocate a VM page for the page table.
2107 	 * (3) Enter the VM page into the parent page table.
2108 	 *
2109 	 * page table pages are marked PG_WRITEABLE and PG_MAPPED.
2110 	 */
2111 	if (pvp)
2112 		vm_page_wire_quick(pvp->pv_m);
2113 
2114 	for (;;) {
2115 		m = vm_page_alloc(NULL, pv->pv_pindex,
2116 				  VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
2117 				  VM_ALLOC_INTERRUPT);
2118 		if (m)
2119 			break;
2120 		vm_wait(0);
2121 	}
2122 	vm_page_wire(m);	/* wire for mapping in parent */
2123 	vm_page_unmanage(m);	/* m must be spinunlocked */
2124 	pmap_zero_page(VM_PAGE_TO_PHYS(m));
2125 	m->valid = VM_PAGE_BITS_ALL;
2126 
2127 	vm_page_spin_lock(m);
2128 	pmap_page_stats_adding(m);
2129 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2130 	pv->pv_m = m;
2131 	vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
2132 	vm_page_spin_unlock(m);
2133 
2134 	/*
2135 	 * (isnew) is TRUE, pv is not terminal.
2136 	 *
2137 	 * Wire the page into pvp.  Bump the resident_count for the pmap.
2138 	 * There is no pvp for the top level, address the pm_pml4[] array
2139 	 * directly.
2140 	 *
2141 	 * If the caller wants the parent we return it, otherwise
2142 	 * we just put it away.
2143 	 *
2144 	 * No interlock is needed for pte 0 -> non-zero.
2145 	 *
2146 	 * In the situation where *ptep is valid we might have an unmanaged
2147 	 * page table page shared from another page table which we need to
2148 	 * unshare before installing our private page table page.
2149 	 */
2150 	if (pvp) {
2151 		v = VM_PAGE_TO_PHYS(m) |
2152 		    (pmap->pmap_bits[PG_U_IDX] |
2153 		     pmap->pmap_bits[PG_RW_IDX] |
2154 		     pmap->pmap_bits[PG_V_IDX] |
2155 		     pmap->pmap_bits[PG_A_IDX] |
2156 		     pmap->pmap_bits[PG_M_IDX]);
2157 		ptep = pv_pte_lookup(pvp, ptepindex);
2158 		if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
2159 			pt_entry_t pte;
2160 
2161 			if (ispt == 0) {
2162 				panic("pmap_allocpte: unexpected pte %p/%d",
2163 				      pvp, (int)ptepindex);
2164 			}
2165 			pte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, ptep, v);
2166 			if (vm_page_unwire_quick(
2167 					PHYS_TO_VM_PAGE(pte & PG_FRAME))) {
2168 				panic("pmap_allocpte: shared pgtable "
2169 				      "pg bad wirecount");
2170 			}
2171 		} else {
2172 			pt_entry_t pte;
2173 
2174 			pte = atomic_swap_long(ptep, v);
2175 			if (pte != 0) {
2176 				kprintf("install pgtbl mixup 0x%016jx "
2177 					"old/new 0x%016jx/0x%016jx\n",
2178 					(intmax_t)ptepindex, pte, v);
2179 			}
2180 		}
2181 	}
2182 	vm_page_wakeup(m);
2183 
2184 	/*
2185 	 * (isnew) may be TRUE or FALSE, pv may or may not be terminal.
2186 	 */
2187 notnew:
2188 	if (pvp) {
2189 		KKASSERT(pvp->pv_m != NULL);
2190 		ptep = pv_pte_lookup(pvp, ptepindex);
2191 		v = VM_PAGE_TO_PHYS(pv->pv_m) |
2192 		    (pmap->pmap_bits[PG_U_IDX] |
2193 		     pmap->pmap_bits[PG_RW_IDX] |
2194 		     pmap->pmap_bits[PG_V_IDX] |
2195 		     pmap->pmap_bits[PG_A_IDX] |
2196 		     pmap->pmap_bits[PG_M_IDX]);
2197 		if (*ptep != v) {
2198 			kprintf("mismatched upper level pt %016jx/%016jx\n",
2199 				*ptep, v);
2200 		}
2201 	}
2202 	if (pvpp)
2203 		*pvpp = pvp;
2204 	else if (pvp)
2205 		pv_put(pvp);
2206 	return (pv);
2207 }
2208 
2209 /*
2210  * This version of pmap_allocpte() checks for possible segment optimizations
2211  * that would allow page-table sharing.  It can be called for terminal
2212  * page or page table page ptepindex's.
2213  *
2214  * The function is called with page table page ptepindex's for fictitious
2215  * and unmanaged terminal pages.  That is, we don't want to allocate a
2216  * terminal pv, we just want the pt_pv.  pvpp is usually passed as NULL
2217  * for this case.
2218  *
2219  * This function can return a pv and *pvpp associated with the passed in pmap
2220  * OR a pv and *pvpp associated with the shared pmap.  In the latter case
2221  * an unmanaged page table page will be entered into the pass in pmap.
2222  */
2223 static
2224 pv_entry_t
2225 pmap_allocpte_seg(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp,
2226 		  vm_map_entry_t entry, vm_offset_t va)
2227 {
2228 	vm_object_t object;
2229 	pmap_t obpmap;
2230 	pmap_t *obpmapp;
2231 	vm_offset_t b;
2232 	pv_entry_t pte_pv;	/* in original or shared pmap */
2233 	pv_entry_t pt_pv;	/* in original or shared pmap */
2234 	pv_entry_t proc_pd_pv;	/* in original pmap */
2235 	pv_entry_t proc_pt_pv;	/* in original pmap */
2236 	pv_entry_t xpv;		/* PT in shared pmap */
2237 	pd_entry_t *pt;		/* PT entry in PD of original pmap */
2238 	pd_entry_t opte;	/* contents of *pt */
2239 	pd_entry_t npte;	/* contents of *pt */
2240 	vm_page_t m;
2241 
2242 	/*
2243 	 * Basic tests, require a non-NULL vm_map_entry, require proper
2244 	 * alignment and type for the vm_map_entry, require that the
2245 	 * underlying object already be allocated.
2246 	 *
2247 	 * We allow almost any type of object to use this optimization.
2248 	 * The object itself does NOT have to be sized to a multiple of the
2249 	 * segment size, but the memory mapping does.
2250 	 *
2251 	 * XXX don't handle devices currently, because VM_PAGE_TO_PHYS()
2252 	 *     won't work as expected.
2253 	 */
2254 	if (entry == NULL ||
2255 	    pmap_mmu_optimize == 0 ||			/* not enabled */
2256 	    (pmap->pm_flags & PMAP_HVM) ||		/* special pmap */
2257 	    ptepindex >= pmap_pd_pindex(0) ||		/* not terminal or pt */
2258 	    entry->inheritance != VM_INHERIT_SHARE ||	/* not shared */
2259 	    entry->maptype != VM_MAPTYPE_NORMAL ||	/* weird map type */
2260 	    entry->object.vm_object == NULL ||		/* needs VM object */
2261 	    entry->object.vm_object->type == OBJT_DEVICE ||	/* ick */
2262 	    entry->object.vm_object->type == OBJT_MGTDEVICE ||	/* ick */
2263 	    (entry->offset & SEG_MASK) ||		/* must be aligned */
2264 	    (entry->start & SEG_MASK)) {
2265 		return(pmap_allocpte(pmap, ptepindex, pvpp));
2266 	}
2267 
2268 	/*
2269 	 * Make sure the full segment can be represented.
2270 	 */
2271 	b = va & ~(vm_offset_t)SEG_MASK;
2272 	if (b < entry->start || b + SEG_SIZE > entry->end)
2273 		return(pmap_allocpte(pmap, ptepindex, pvpp));
2274 
2275 	/*
2276 	 * If the full segment can be represented dive the VM object's
2277 	 * shared pmap, allocating as required.
2278 	 */
2279 	object = entry->object.vm_object;
2280 
2281 	if (entry->protection & VM_PROT_WRITE)
2282 		obpmapp = &object->md.pmap_rw;
2283 	else
2284 		obpmapp = &object->md.pmap_ro;
2285 
2286 #ifdef PMAP_DEBUG2
2287 	if (pmap_enter_debug > 0) {
2288 		--pmap_enter_debug;
2289 		kprintf("pmap_allocpte_seg: va=%jx prot %08x o=%p "
2290 			"obpmapp %p %p\n",
2291 			va, entry->protection, object,
2292 			obpmapp, *obpmapp);
2293 		kprintf("pmap_allocpte_seg: entry %p %jx-%jx\n",
2294 			entry, entry->start, entry->end);
2295 	}
2296 #endif
2297 
2298 	/*
2299 	 * We allocate what appears to be a normal pmap but because portions
2300 	 * of this pmap are shared with other unrelated pmaps we have to
2301 	 * set pm_active to point to all cpus.
2302 	 *
2303 	 * XXX Currently using pmap_spin to interlock the update, can't use
2304 	 *     vm_object_hold/drop because the token might already be held
2305 	 *     shared OR exclusive and we don't know.
2306 	 */
2307 	while ((obpmap = *obpmapp) == NULL) {
2308 		obpmap = kmalloc(sizeof(*obpmap), M_OBJPMAP, M_WAITOK|M_ZERO);
2309 		pmap_pinit_simple(obpmap);
2310 		pmap_pinit2(obpmap);
2311 		spin_lock(&pmap_spin);
2312 		if (*obpmapp != NULL) {
2313 			/*
2314 			 * Handle race
2315 			 */
2316 			spin_unlock(&pmap_spin);
2317 			pmap_release(obpmap);
2318 			pmap_puninit(obpmap);
2319 			kfree(obpmap, M_OBJPMAP);
2320 			obpmap = *obpmapp; /* safety */
2321 		} else {
2322 			obpmap->pm_active = smp_active_mask;
2323 			obpmap->pm_flags |= PMAP_SEGSHARED;
2324 			*obpmapp = obpmap;
2325 			spin_unlock(&pmap_spin);
2326 		}
2327 	}
2328 
2329 	/*
2330 	 * Layering is: PTE, PT, PD, PDP, PML4.  We have to return the
2331 	 * pte/pt using the shared pmap from the object but also adjust
2332 	 * the process pmap's page table page as a side effect.
2333 	 */
2334 
2335 	/*
2336 	 * Resolve the terminal PTE and PT in the shared pmap.  This is what
2337 	 * we will return.  This is true if ptepindex represents a terminal
2338 	 * page, otherwise pte_pv is actually the PT and pt_pv is actually
2339 	 * the PD.
2340 	 */
2341 	pt_pv = NULL;
2342 	pte_pv = pmap_allocpte(obpmap, ptepindex, &pt_pv);
2343 retry:
2344 	if (ptepindex >= pmap_pt_pindex(0))
2345 		xpv = pte_pv;
2346 	else
2347 		xpv = pt_pv;
2348 
2349 	/*
2350 	 * Resolve the PD in the process pmap so we can properly share the
2351 	 * page table page.  Lock order is bottom-up (leaf first)!
2352 	 *
2353 	 * NOTE: proc_pt_pv can be NULL.
2354 	 */
2355 	proc_pt_pv = pv_get(pmap, pmap_pt_pindex(b), NULL);
2356 	proc_pd_pv = pmap_allocpte(pmap, pmap_pd_pindex(b), NULL);
2357 #ifdef PMAP_DEBUG2
2358 	if (pmap_enter_debug > 0) {
2359 		--pmap_enter_debug;
2360 		kprintf("proc_pt_pv %p (wc %d) pd_pv %p va=%jx\n",
2361 			proc_pt_pv,
2362 			(proc_pt_pv ? proc_pt_pv->pv_m->wire_count : -1),
2363 			proc_pd_pv,
2364 			va);
2365 	}
2366 #endif
2367 
2368 	/*
2369 	 * xpv is the page table page pv from the shared object
2370 	 * (for convenience), from above.
2371 	 *
2372 	 * Calculate the pte value for the PT to load into the process PD.
2373 	 * If we have to change it we must properly dispose of the previous
2374 	 * entry.
2375 	 */
2376 	pt = pv_pte_lookup(proc_pd_pv, pmap_pt_index(b));
2377 	npte = VM_PAGE_TO_PHYS(xpv->pv_m) |
2378 	       (pmap->pmap_bits[PG_U_IDX] |
2379 		pmap->pmap_bits[PG_RW_IDX] |
2380 		pmap->pmap_bits[PG_V_IDX] |
2381 		pmap->pmap_bits[PG_A_IDX] |
2382 		pmap->pmap_bits[PG_M_IDX]);
2383 
2384 	/*
2385 	 * Dispose of previous page table page if it was local to the
2386 	 * process pmap.  If the old pt is not empty we cannot dispose of it
2387 	 * until we clean it out.  This case should not arise very often so
2388 	 * it is not optimized.
2389 	 *
2390 	 * Leave pt_pv and pte_pv (in our object pmap) locked and intact
2391 	 * for the retry.
2392 	 */
2393 	if (proc_pt_pv) {
2394 		pmap_inval_bulk_t bulk;
2395 
2396 		if (proc_pt_pv->pv_m->wire_count != 1) {
2397 			pv_put(proc_pd_pv);
2398 			pv_put(proc_pt_pv);
2399 			pmap_remove(pmap,
2400 				    va & ~(vm_offset_t)SEG_MASK,
2401 				    (va + SEG_SIZE) & ~(vm_offset_t)SEG_MASK);
2402 			goto retry;
2403 		}
2404 
2405 		/*
2406 		 * The release call will indirectly clean out *pt
2407 		 */
2408 		pmap_inval_bulk_init(&bulk, proc_pt_pv->pv_pmap);
2409 		pmap_release_pv(proc_pt_pv, proc_pd_pv, &bulk);
2410 		pmap_inval_bulk_flush(&bulk);
2411 		proc_pt_pv = NULL;
2412 		/* relookup */
2413 		pt = pv_pte_lookup(proc_pd_pv, pmap_pt_index(b));
2414 	}
2415 
2416 	/*
2417 	 * Handle remaining cases.
2418 	 */
2419 	if (*pt == 0) {
2420 		atomic_swap_long(pt, npte);
2421 		vm_page_wire_quick(xpv->pv_m);		/* shared pt -> proc */
2422 		vm_page_wire_quick(proc_pd_pv->pv_m);	/* proc pd for sh pt */
2423 		atomic_add_long(&pmap->pm_stats.resident_count, 1);
2424 	} else if (*pt != npte) {
2425 		opte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, pt, npte);
2426 
2427 #if 0
2428 		opte = pte_load_clear(pt);
2429 		KKASSERT(opte && opte != npte);
2430 
2431 		*pt = npte;
2432 #endif
2433 		vm_page_wire_quick(xpv->pv_m);		/* shared pt -> proc */
2434 
2435 		/*
2436 		 * Clean up opte, bump the wire_count for the process
2437 		 * PD page representing the new entry if it was
2438 		 * previously empty.
2439 		 *
2440 		 * If the entry was not previously empty and we have
2441 		 * a PT in the proc pmap then opte must match that
2442 		 * pt.  The proc pt must be retired (this is done
2443 		 * later on in this procedure).
2444 		 *
2445 		 * NOTE: replacing valid pte, wire_count on proc_pd_pv
2446 		 * stays the same.
2447 		 */
2448 		KKASSERT(opte & pmap->pmap_bits[PG_V_IDX]);
2449 		m = PHYS_TO_VM_PAGE(opte & PG_FRAME);
2450 		if (vm_page_unwire_quick(m)) {
2451 			panic("pmap_allocpte_seg: "
2452 			      "bad wire count %p",
2453 			      m);
2454 		}
2455 	}
2456 
2457 	/*
2458 	 * The existing process page table was replaced and must be destroyed
2459 	 * here.
2460 	 */
2461 	if (proc_pd_pv)
2462 		pv_put(proc_pd_pv);
2463 	if (pvpp)
2464 		*pvpp = pt_pv;
2465 	else
2466 		pv_put(pt_pv);
2467 
2468 	return (pte_pv);
2469 }
2470 
2471 /*
2472  * Release any resources held by the given physical map.
2473  *
2474  * Called when a pmap initialized by pmap_pinit is being released.  Should
2475  * only be called if the map contains no valid mappings.
2476  */
2477 struct pmap_release_info {
2478 	pmap_t	pmap;
2479 	int	retry;
2480 	pv_entry_t pvp;
2481 };
2482 
2483 static int pmap_release_callback(pv_entry_t pv, void *data);
2484 
2485 void
2486 pmap_release(struct pmap *pmap)
2487 {
2488 	struct pmap_release_info info;
2489 
2490 	KASSERT(CPUMASK_TESTZERO(pmap->pm_active),
2491 		("pmap still active! %016jx",
2492 		(uintmax_t)CPUMASK_LOWMASK(pmap->pm_active)));
2493 
2494 	/*
2495 	 * There is no longer a pmap_list, if there were we would remove the
2496 	 * pmap from it here.
2497 	 */
2498 
2499 	/*
2500 	 * Pull pv's off the RB tree in order from low to high and release
2501 	 * each page.
2502 	 */
2503 	info.pmap = pmap;
2504 	do {
2505 		info.retry = 0;
2506 		info.pvp = NULL;
2507 
2508 		spin_lock(&pmap->pm_spin);
2509 		RB_SCAN(pv_entry_rb_tree, &pmap->pm_pvroot, NULL,
2510 			pmap_release_callback, &info);
2511 		spin_unlock(&pmap->pm_spin);
2512 
2513 		if (info.pvp)
2514 			pv_put(info.pvp);
2515 	} while (info.retry);
2516 
2517 
2518 	/*
2519 	 * One resident page (the pml4 page) should remain.
2520 	 * No wired pages should remain.
2521 	 */
2522 #if 1
2523 	if (pmap->pm_stats.resident_count !=
2524 	    ((pmap->pm_flags & PMAP_FLAG_SIMPLE) ? 0 : 1) ||
2525 	    pmap->pm_stats.wired_count != 0) {
2526 		kprintf("fatal pmap problem - pmap %p flags %08x "
2527 			"rescnt=%jd wirecnt=%jd\n",
2528 			pmap,
2529 			pmap->pm_flags,
2530 			pmap->pm_stats.resident_count,
2531 			pmap->pm_stats.wired_count);
2532 		tsleep(pmap, 0, "DEAD", 0);
2533 	}
2534 #else
2535 	KKASSERT(pmap->pm_stats.resident_count ==
2536 		 ((pmap->pm_flags & PMAP_FLAG_SIMPLE) ? 0 : 1));
2537 	KKASSERT(pmap->pm_stats.wired_count == 0);
2538 #endif
2539 }
2540 
2541 /*
2542  * Called from low to high.  We must cache the proper parent pv so we
2543  * can adjust its wired count.
2544  */
2545 static int
2546 pmap_release_callback(pv_entry_t pv, void *data)
2547 {
2548 	struct pmap_release_info *info = data;
2549 	pmap_t pmap = info->pmap;
2550 	vm_pindex_t pindex;
2551 	int r;
2552 
2553 	/*
2554 	 * Acquire a held and locked pv, check for release race
2555 	 */
2556 	pindex = pv->pv_pindex;
2557 	if (info->pvp == pv) {
2558 		spin_unlock(&pmap->pm_spin);
2559 		info->pvp = NULL;
2560 	} else if (pv_hold_try(pv)) {
2561 		spin_unlock(&pmap->pm_spin);
2562 	} else {
2563 		spin_unlock(&pmap->pm_spin);
2564 		pv_lock(pv);
2565 		pv_put(pv);
2566 		info->retry = 1;
2567 		spin_lock(&pmap->pm_spin);
2568 
2569 		return -1;
2570 	}
2571 	KKASSERT(pv->pv_pmap == pmap && pindex == pv->pv_pindex);
2572 
2573 	if (pv->pv_pindex < pmap_pt_pindex(0)) {
2574 		/*
2575 		 * I am PTE, parent is PT
2576 		 */
2577 		pindex = pv->pv_pindex >> NPTEPGSHIFT;
2578 		pindex += NUPTE_TOTAL;
2579 	} else if (pv->pv_pindex < pmap_pd_pindex(0)) {
2580 		/*
2581 		 * I am PT, parent is PD
2582 		 */
2583 		pindex = (pv->pv_pindex - NUPTE_TOTAL) >> NPDEPGSHIFT;
2584 		pindex += NUPTE_TOTAL + NUPT_TOTAL;
2585 	} else if (pv->pv_pindex < pmap_pdp_pindex(0)) {
2586 		/*
2587 		 * I am PD, parent is PDP
2588 		 */
2589 		pindex = (pv->pv_pindex - NUPTE_TOTAL - NUPT_TOTAL) >>
2590 			 NPDPEPGSHIFT;
2591 		pindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
2592 	} else if (pv->pv_pindex < pmap_pml4_pindex()) {
2593 		/*
2594 		 * I am PDP, parent is PML4 (there's only one)
2595 		 */
2596 #if 0
2597 		pindex = (pv->pv_pindex - NUPTE_TOTAL - NUPT_TOTAL -
2598 			   NUPD_TOTAL) >> NPML4EPGSHIFT;
2599 		pindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL;
2600 #endif
2601 		pindex = pmap_pml4_pindex();
2602 	} else {
2603 		/*
2604 		 * parent is NULL
2605 		 */
2606 		if (info->pvp) {
2607 			pv_put(info->pvp);
2608 			info->pvp = NULL;
2609 		}
2610 		pindex = 0;
2611 	}
2612 	if (pindex) {
2613 		if (info->pvp && info->pvp->pv_pindex != pindex) {
2614 			pv_put(info->pvp);
2615 			info->pvp = NULL;
2616 		}
2617 		if (info->pvp == NULL)
2618 			info->pvp = pv_get(pmap, pindex, NULL);
2619 	} else {
2620 		if (info->pvp) {
2621 			pv_put(info->pvp);
2622 			info->pvp = NULL;
2623 		}
2624 	}
2625 	r = pmap_release_pv(pv, info->pvp, NULL);
2626 	spin_lock(&pmap->pm_spin);
2627 
2628 	return(r);
2629 }
2630 
2631 /*
2632  * Called with held (i.e. also locked) pv.  This function will dispose of
2633  * the lock along with the pv.
2634  *
2635  * If the caller already holds the locked parent page table for pv it
2636  * must pass it as pvp, allowing us to avoid a deadlock, else it can
2637  * pass NULL for pvp.
2638  */
2639 static int
2640 pmap_release_pv(pv_entry_t pv, pv_entry_t pvp, pmap_inval_bulk_t *bulk)
2641 {
2642 	vm_page_t p;
2643 
2644 	/*
2645 	 * The pmap is currently not spinlocked, pv is held+locked.
2646 	 * Remove the pv's page from its parent's page table.  The
2647 	 * parent's page table page's wire_count will be decremented.
2648 	 *
2649 	 * This will clean out the pte at any level of the page table.
2650 	 * If smp != 0 all cpus are affected.
2651 	 *
2652 	 * Do not tear-down recursively, its faster to just let the
2653 	 * release run its course.
2654 	 */
2655 	pmap_remove_pv_pte(pv, pvp, bulk, 0);
2656 
2657 	/*
2658 	 * Terminal pvs are unhooked from their vm_pages.  Because
2659 	 * terminal pages aren't page table pages they aren't wired
2660 	 * by us, so we have to be sure not to unwire them either.
2661 	 */
2662 	if (pv->pv_pindex < pmap_pt_pindex(0)) {
2663 		pmap_remove_pv_page(pv);
2664 		goto skip;
2665 	}
2666 
2667 	/*
2668 	 * We leave the top-level page table page cached, wired, and
2669 	 * mapped in the pmap until the dtor function (pmap_puninit())
2670 	 * gets called.
2671 	 *
2672 	 * Since we are leaving the top-level pv intact we need
2673 	 * to break out of what would otherwise be an infinite loop.
2674 	 */
2675 	if (pv->pv_pindex == pmap_pml4_pindex()) {
2676 		pv_put(pv);
2677 		return(-1);
2678 	}
2679 
2680 	/*
2681 	 * For page table pages (other than the top-level page),
2682 	 * remove and free the vm_page.  The representitive mapping
2683 	 * removed above by pmap_remove_pv_pte() did not undo the
2684 	 * last wire_count so we have to do that as well.
2685 	 */
2686 	p = pmap_remove_pv_page(pv);
2687 	vm_page_busy_wait(p, FALSE, "pmaprl");
2688 	if (p->wire_count != 1) {
2689 		kprintf("p->wire_count was %016lx %d\n",
2690 			pv->pv_pindex, p->wire_count);
2691 	}
2692 	KKASSERT(p->wire_count == 1);
2693 	KKASSERT(p->flags & PG_UNMANAGED);
2694 
2695 	vm_page_unwire(p, 0);
2696 	KKASSERT(p->wire_count == 0);
2697 
2698 	vm_page_free(p);
2699 skip:
2700 	pv_free(pv, pvp);
2701 
2702 	return 0;
2703 }
2704 
2705 /*
2706  * This function will remove the pte associated with a pv from its parent.
2707  * Terminal pv's are supported.  All cpus specified by (bulk) are properly
2708  * invalidated.
2709  *
2710  * The wire count will be dropped on the parent page table.  The wire
2711  * count on the page being removed (pv->pv_m) from the parent page table
2712  * is NOT touched.  Note that terminal pages will not have any additional
2713  * wire counts while page table pages will have at least one representing
2714  * the mapping, plus others representing sub-mappings.
2715  *
2716  * NOTE: Cannot be called on kernel page table pages, only KVM terminal
2717  *	 pages and user page table and terminal pages.
2718  *
2719  * NOTE: The pte being removed might be unmanaged, and the pv supplied might
2720  *	 be freshly allocated and not imply that the pte is managed.  In this
2721  *	 case pv->pv_m should be NULL.
2722  *
2723  * The pv must be locked.  The pvp, if supplied, must be locked.  All
2724  * supplied pv's will remain locked on return.
2725  *
2726  * XXX must lock parent pv's if they exist to remove pte XXX
2727  */
2728 static
2729 void
2730 pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp, pmap_inval_bulk_t *bulk,
2731 		   int destroy)
2732 {
2733 	vm_pindex_t ptepindex = pv->pv_pindex;
2734 	pmap_t pmap = pv->pv_pmap;
2735 	vm_page_t p;
2736 	int gotpvp = 0;
2737 
2738 	KKASSERT(pmap);
2739 
2740 	if (ptepindex == pmap_pml4_pindex()) {
2741 		/*
2742 		 * We are the top level PML4E table, there is no parent.
2743 		 */
2744 		p = pmap->pm_pmlpv->pv_m;
2745 		KKASSERT(pv->pv_m == p);	/* debugging */
2746 	} else if (ptepindex >= pmap_pdp_pindex(0)) {
2747 		/*
2748 		 * Remove a PDP page from the PML4E.  This can only occur
2749 		 * with user page tables.  We do not have to lock the
2750 		 * pml4 PV so just ignore pvp.
2751 		 */
2752 		vm_pindex_t pml4_pindex;
2753 		vm_pindex_t pdp_index;
2754 		pml4_entry_t *pdp;
2755 
2756 		pdp_index = ptepindex - pmap_pdp_pindex(0);
2757 		if (pvp == NULL) {
2758 			pml4_pindex = pmap_pml4_pindex();
2759 			pvp = pv_get(pv->pv_pmap, pml4_pindex, NULL);
2760 			KKASSERT(pvp);
2761 			gotpvp = 1;
2762 		}
2763 
2764 		pdp = &pmap->pm_pml4[pdp_index & ((1ul << NPML4EPGSHIFT) - 1)];
2765 		KKASSERT((*pdp & pmap->pmap_bits[PG_V_IDX]) != 0);
2766 		p = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
2767 		pmap_inval_bulk(bulk, (vm_offset_t)-1, pdp, 0);
2768 		KKASSERT(pv->pv_m == p);	/* debugging */
2769 	} else if (ptepindex >= pmap_pd_pindex(0)) {
2770 		/*
2771 		 * Remove a PD page from the PDP
2772 		 *
2773 		 * SIMPLE PMAP NOTE: Non-existant pvp's are ok in the case
2774 		 *		     of a simple pmap because it stops at
2775 		 *		     the PD page.
2776 		 */
2777 		vm_pindex_t pdp_pindex;
2778 		vm_pindex_t pd_index;
2779 		pdp_entry_t *pd;
2780 
2781 		pd_index = ptepindex - pmap_pd_pindex(0);
2782 
2783 		if (pvp == NULL) {
2784 			pdp_pindex = NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
2785 				     (pd_index >> NPML4EPGSHIFT);
2786 			pvp = pv_get(pv->pv_pmap, pdp_pindex, NULL);
2787 			gotpvp = 1;
2788 		}
2789 
2790 		if (pvp) {
2791 			pd = pv_pte_lookup(pvp, pd_index &
2792 						((1ul << NPDPEPGSHIFT) - 1));
2793 			KKASSERT((*pd & pmap->pmap_bits[PG_V_IDX]) != 0);
2794 			p = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
2795 			pmap_inval_bulk(bulk, (vm_offset_t)-1, pd, 0);
2796 		} else {
2797 			KKASSERT(pmap->pm_flags & PMAP_FLAG_SIMPLE);
2798 			p = pv->pv_m;		/* degenerate test later */
2799 		}
2800 		KKASSERT(pv->pv_m == p);	/* debugging */
2801 	} else if (ptepindex >= pmap_pt_pindex(0)) {
2802 		/*
2803 		 *  Remove a PT page from the PD
2804 		 */
2805 		vm_pindex_t pd_pindex;
2806 		vm_pindex_t pt_index;
2807 		pd_entry_t *pt;
2808 
2809 		pt_index = ptepindex - pmap_pt_pindex(0);
2810 
2811 		if (pvp == NULL) {
2812 			pd_pindex = NUPTE_TOTAL + NUPT_TOTAL +
2813 				    (pt_index >> NPDPEPGSHIFT);
2814 			pvp = pv_get(pv->pv_pmap, pd_pindex, NULL);
2815 			KKASSERT(pvp);
2816 			gotpvp = 1;
2817 		}
2818 
2819 		pt = pv_pte_lookup(pvp, pt_index & ((1ul << NPDPEPGSHIFT) - 1));
2820 #if 0
2821 		KASSERT((*pt & pmap->pmap_bits[PG_V_IDX]) != 0,
2822 			("*pt unexpectedly invalid %016jx "
2823 			 "gotpvp=%d ptepindex=%ld ptindex=%ld pv=%p pvp=%p",
2824 			*pt, gotpvp, ptepindex, pt_index, pv, pvp));
2825 		p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
2826 #else
2827 		if ((*pt & pmap->pmap_bits[PG_V_IDX]) == 0) {
2828 			kprintf("*pt unexpectedly invalid %016jx "
2829 			        "gotpvp=%d ptepindex=%ld ptindex=%ld "
2830 				"pv=%p pvp=%p\n",
2831 				*pt, gotpvp, ptepindex, pt_index, pv, pvp);
2832 			tsleep(pt, 0, "DEAD", 0);
2833 			p = pv->pv_m;
2834 		} else {
2835 			p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
2836 		}
2837 #endif
2838 		pmap_inval_bulk(bulk, (vm_offset_t)-1, pt, 0);
2839 		KKASSERT(pv->pv_m == p);	/* debugging */
2840 	} else {
2841 		/*
2842 		 * Remove a PTE from the PT page.  The PV might exist even if
2843 		 * the PTE is not managed, in whichcase pv->pv_m should be
2844 		 * NULL.
2845 		 *
2846 		 * NOTE: Userland pmaps manage the parent PT/PD/PDP page
2847 		 *	 table pages but the kernel_pmap does not.
2848 		 *
2849 		 * NOTE: pv's must be locked bottom-up to avoid deadlocking.
2850 		 *	 pv is a pte_pv so we can safely lock pt_pv.
2851 		 *
2852 		 * NOTE: FICTITIOUS pages may have multiple physical mappings
2853 		 *	 so PHYS_TO_VM_PAGE() will not necessarily work for
2854 		 *	 terminal ptes.
2855 		 */
2856 		vm_pindex_t pt_pindex;
2857 		pt_entry_t *ptep;
2858 		pt_entry_t pte;
2859 		vm_offset_t va;
2860 
2861 		pt_pindex = ptepindex >> NPTEPGSHIFT;
2862 		va = (vm_offset_t)ptepindex << PAGE_SHIFT;
2863 
2864 		if (ptepindex >= NUPTE_USER) {
2865 			ptep = vtopte(ptepindex << PAGE_SHIFT);
2866 			KKASSERT(pvp == NULL);
2867 			/* pvp remains NULL */
2868 		} else {
2869 			if (pvp == NULL) {
2870 				pt_pindex = NUPTE_TOTAL +
2871 					    (ptepindex >> NPDPEPGSHIFT);
2872 				pvp = pv_get(pv->pv_pmap, pt_pindex, NULL);
2873 				KKASSERT(pvp);
2874 				gotpvp = 1;
2875 			}
2876 			ptep = pv_pte_lookup(pvp, ptepindex &
2877 						  ((1ul << NPDPEPGSHIFT) - 1));
2878 		}
2879 		pte = pmap_inval_bulk(bulk, va, ptep, 0);
2880 		if (bulk == NULL)		/* XXX */
2881 			cpu_invlpg((void *)va);	/* XXX */
2882 
2883 		/*
2884 		 * Now update the vm_page_t
2885 		 */
2886 		if ((pte & pmap->pmap_bits[PG_MANAGED_IDX]) &&
2887 		    (pte & pmap->pmap_bits[PG_V_IDX])) {
2888 			/*
2889 			 * Valid managed page, adjust (p).
2890 			 */
2891 			if (pte & pmap->pmap_bits[PG_DEVICE_IDX]) {
2892 				p = pv->pv_m;
2893 			} else {
2894 				p = PHYS_TO_VM_PAGE(pte & PG_FRAME);
2895 				KKASSERT(pv->pv_m == p);
2896 			}
2897 			if (pte & pmap->pmap_bits[PG_M_IDX]) {
2898 				if (pmap_track_modified(ptepindex))
2899 					vm_page_dirty(p);
2900 			}
2901 			if (pte & pmap->pmap_bits[PG_A_IDX]) {
2902 				vm_page_flag_set(p, PG_REFERENCED);
2903 			}
2904 		} else {
2905 			/*
2906 			 * Unmanaged page, do not try to adjust the vm_page_t.
2907 			 * pv could be freshly allocated for a pmap_enter(),
2908 			 * replacing an unmanaged page with a managed one.
2909 			 *
2910 			 * pv->pv_m might reflect the new page and not the
2911 			 * existing page.
2912 			 *
2913 			 * We could extract p from the physical address and
2914 			 * adjust it but we explicitly do not for unmanaged
2915 			 * pages.
2916 			 */
2917 			p = NULL;
2918 		}
2919 		if (pte & pmap->pmap_bits[PG_W_IDX])
2920 			atomic_add_long(&pmap->pm_stats.wired_count, -1);
2921 		if (pte & pmap->pmap_bits[PG_G_IDX])
2922 			cpu_invlpg((void *)va);
2923 	}
2924 
2925 	/*
2926 	 * If requested, scrap the underlying pv->pv_m and the underlying
2927 	 * pv.  If this is a page-table-page we must also free the page.
2928 	 *
2929 	 * pvp must be returned locked.
2930 	 */
2931 	if (destroy == 1) {
2932 		/*
2933 		 * page table page (PT, PD, PDP, PML4), caller was responsible
2934 		 * for testing wired_count.
2935 		 */
2936 		KKASSERT(pv->pv_m->wire_count == 1);
2937 		p = pmap_remove_pv_page(pv);
2938 		pv_free(pv, pvp);
2939 		pv = NULL;
2940 
2941 		vm_page_busy_wait(p, FALSE, "pgpun");
2942 		vm_page_unwire(p, 0);
2943 		vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
2944 		vm_page_free(p);
2945 	} else if (destroy == 2) {
2946 		/*
2947 		 * Normal page, remove from pmap and leave the underlying
2948 		 * page untouched.
2949 		 */
2950 		pmap_remove_pv_page(pv);
2951 		pv_free(pv, pvp);
2952 		pv = NULL;		/* safety */
2953 	}
2954 
2955 	/*
2956 	 * If we acquired pvp ourselves then we are responsible for
2957 	 * recursively deleting it.
2958 	 */
2959 	if (pvp && gotpvp) {
2960 		/*
2961 		 * Recursively destroy higher-level page tables.
2962 		 *
2963 		 * This is optional.  If we do not, they will still
2964 		 * be destroyed when the process exits.
2965 		 *
2966 		 * NOTE: Do not destroy pv_entry's with extra hold refs,
2967 		 *	 a caller may have unlocked it and intends to
2968 		 *	 continue to use it.
2969 		 */
2970 		if (pmap_dynamic_delete &&
2971 		    pvp->pv_m &&
2972 		    pvp->pv_m->wire_count == 1 &&
2973 		    (pvp->pv_hold & PV_HOLD_MASK) == 2 &&
2974 		    pvp->pv_pindex != pmap_pml4_pindex()) {
2975 			if (pmap_dynamic_delete == 2)
2976 				kprintf("A %jd %08x\n", pvp->pv_pindex, pvp->pv_hold);
2977 			if (pmap != &kernel_pmap) {
2978 				pmap_remove_pv_pte(pvp, NULL, bulk, 1);
2979 				pvp = NULL;	/* safety */
2980 			} else {
2981 				kprintf("Attempt to remove kernel_pmap pindex "
2982 					"%jd\n", pvp->pv_pindex);
2983 				pv_put(pvp);
2984 			}
2985 		} else {
2986 			pv_put(pvp);
2987 		}
2988 	}
2989 }
2990 
2991 /*
2992  * Remove the vm_page association to a pv.  The pv must be locked.
2993  */
2994 static
2995 vm_page_t
2996 pmap_remove_pv_page(pv_entry_t pv)
2997 {
2998 	vm_page_t m;
2999 
3000 	m = pv->pv_m;
3001 	vm_page_spin_lock(m);
3002 	KKASSERT(m && m == pv->pv_m);
3003 	pv->pv_m = NULL;
3004 	TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3005 	pmap_page_stats_deleting(m);
3006 	if (TAILQ_EMPTY(&m->md.pv_list))
3007 		vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
3008 	vm_page_spin_unlock(m);
3009 
3010 	return(m);
3011 }
3012 
3013 /*
3014  * Grow the number of kernel page table entries, if needed.
3015  *
3016  * This routine is always called to validate any address space
3017  * beyond KERNBASE (for kldloads).  kernel_vm_end only governs the address
3018  * space below KERNBASE.
3019  *
3020  * kernel_map must be locked exclusively by the caller.
3021  */
3022 void
3023 pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
3024 {
3025 	vm_paddr_t paddr;
3026 	vm_offset_t ptppaddr;
3027 	vm_page_t nkpg;
3028 	pd_entry_t *pt, newpt;
3029 	pdp_entry_t newpd;
3030 	int update_kernel_vm_end;
3031 
3032 	/*
3033 	 * bootstrap kernel_vm_end on first real VM use
3034 	 */
3035 	if (kernel_vm_end == 0) {
3036 		kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
3037 		nkpt = 0;
3038 		while ((*pmap_pt(&kernel_pmap, kernel_vm_end) & kernel_pmap.pmap_bits[PG_V_IDX]) != 0) {
3039 			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
3040 					~(PAGE_SIZE * NPTEPG - 1);
3041 			nkpt++;
3042 			if (kernel_vm_end - 1 >= kernel_map.max_offset) {
3043 				kernel_vm_end = kernel_map.max_offset;
3044 				break;
3045 			}
3046 		}
3047 	}
3048 
3049 	/*
3050 	 * Fill in the gaps.  kernel_vm_end is only adjusted for ranges
3051 	 * below KERNBASE.  Ranges above KERNBASE are kldloaded and we
3052 	 * do not want to force-fill 128G worth of page tables.
3053 	 */
3054 	if (kstart < KERNBASE) {
3055 		if (kstart > kernel_vm_end)
3056 			kstart = kernel_vm_end;
3057 		KKASSERT(kend <= KERNBASE);
3058 		update_kernel_vm_end = 1;
3059 	} else {
3060 		update_kernel_vm_end = 0;
3061 	}
3062 
3063 	kstart = rounddown2(kstart, PAGE_SIZE * NPTEPG);
3064 	kend = roundup2(kend, PAGE_SIZE * NPTEPG);
3065 
3066 	if (kend - 1 >= kernel_map.max_offset)
3067 		kend = kernel_map.max_offset;
3068 
3069 	while (kstart < kend) {
3070 		pt = pmap_pt(&kernel_pmap, kstart);
3071 		if (pt == NULL) {
3072 			/* We need a new PD entry */
3073 			nkpg = vm_page_alloc(NULL, mycpu->gd_rand_incr++,
3074 			                     VM_ALLOC_NORMAL |
3075 					     VM_ALLOC_SYSTEM |
3076 					     VM_ALLOC_INTERRUPT);
3077 			if (nkpg == NULL) {
3078 				panic("pmap_growkernel: no memory to grow "
3079 				      "kernel");
3080 			}
3081 			paddr = VM_PAGE_TO_PHYS(nkpg);
3082 			pmap_zero_page(paddr);
3083 			newpd = (pdp_entry_t)
3084 			    (paddr |
3085 			    kernel_pmap.pmap_bits[PG_V_IDX] |
3086 			    kernel_pmap.pmap_bits[PG_RW_IDX] |
3087 			    kernel_pmap.pmap_bits[PG_A_IDX] |
3088 			    kernel_pmap.pmap_bits[PG_M_IDX]);
3089 			*pmap_pd(&kernel_pmap, kstart) = newpd;
3090 			continue; /* try again */
3091 		}
3092 		if ((*pt & kernel_pmap.pmap_bits[PG_V_IDX]) != 0) {
3093 			kstart = (kstart + PAGE_SIZE * NPTEPG) &
3094 				 ~(PAGE_SIZE * NPTEPG - 1);
3095 			if (kstart - 1 >= kernel_map.max_offset) {
3096 				kstart = kernel_map.max_offset;
3097 				break;
3098 			}
3099 			continue;
3100 		}
3101 
3102 		/*
3103 		 * We need a new PT
3104 		 *
3105 		 * This index is bogus, but out of the way
3106 		 */
3107 		nkpg = vm_page_alloc(NULL, mycpu->gd_rand_incr++,
3108 				     VM_ALLOC_NORMAL |
3109 				     VM_ALLOC_SYSTEM |
3110 				     VM_ALLOC_INTERRUPT);
3111 		if (nkpg == NULL)
3112 			panic("pmap_growkernel: no memory to grow kernel");
3113 
3114 		vm_page_wire(nkpg);
3115 		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
3116 		pmap_zero_page(ptppaddr);
3117 		newpt = (pd_entry_t)(ptppaddr |
3118 				     kernel_pmap.pmap_bits[PG_V_IDX] |
3119 				     kernel_pmap.pmap_bits[PG_RW_IDX] |
3120 				     kernel_pmap.pmap_bits[PG_A_IDX] |
3121 				     kernel_pmap.pmap_bits[PG_M_IDX]);
3122 		atomic_swap_long(pmap_pt(&kernel_pmap, kstart), newpt);
3123 
3124 		kstart = (kstart + PAGE_SIZE * NPTEPG) &
3125 			  ~(PAGE_SIZE * NPTEPG - 1);
3126 
3127 		if (kstart - 1 >= kernel_map.max_offset) {
3128 			kstart = kernel_map.max_offset;
3129 			break;
3130 		}
3131 	}
3132 
3133 	/*
3134 	 * Only update kernel_vm_end for areas below KERNBASE.
3135 	 */
3136 	if (update_kernel_vm_end && kernel_vm_end < kstart)
3137 		kernel_vm_end = kstart;
3138 }
3139 
3140 /*
3141  *	Add a reference to the specified pmap.
3142  */
3143 void
3144 pmap_reference(pmap_t pmap)
3145 {
3146 	if (pmap != NULL)
3147 		atomic_add_int(&pmap->pm_count, 1);
3148 }
3149 
3150 /***************************************************
3151  * page management routines.
3152  ***************************************************/
3153 
3154 /*
3155  * Hold a pv without locking it
3156  */
3157 static void
3158 pv_hold(pv_entry_t pv)
3159 {
3160 	atomic_add_int(&pv->pv_hold, 1);
3161 }
3162 
3163 /*
3164  * Hold a pv_entry, preventing its destruction.  TRUE is returned if the pv
3165  * was successfully locked, FALSE if it wasn't.  The caller must dispose of
3166  * the pv properly.
3167  *
3168  * Either the pmap->pm_spin or the related vm_page_spin (if traversing a
3169  * pv list via its page) must be held by the caller in order to stabilize
3170  * the pv.
3171  */
3172 static int
3173 _pv_hold_try(pv_entry_t pv PMAP_DEBUG_DECL)
3174 {
3175 	u_int count;
3176 
3177 	/*
3178 	 * Critical path shortcut expects pv to already have one ref
3179 	 * (for the pv->pv_pmap).
3180 	 */
3181 	if (atomic_cmpset_int(&pv->pv_hold, 1, PV_HOLD_LOCKED | 2)) {
3182 #ifdef PMAP_DEBUG
3183 		pv->pv_func = func;
3184 		pv->pv_line = lineno;
3185 #endif
3186 		return TRUE;
3187 	}
3188 
3189 	for (;;) {
3190 		count = pv->pv_hold;
3191 		cpu_ccfence();
3192 		if ((count & PV_HOLD_LOCKED) == 0) {
3193 			if (atomic_cmpset_int(&pv->pv_hold, count,
3194 					      (count + 1) | PV_HOLD_LOCKED)) {
3195 #ifdef PMAP_DEBUG
3196 				pv->pv_func = func;
3197 				pv->pv_line = lineno;
3198 #endif
3199 				return TRUE;
3200 			}
3201 		} else {
3202 			if (atomic_cmpset_int(&pv->pv_hold, count, count + 1))
3203 				return FALSE;
3204 		}
3205 		/* retry */
3206 	}
3207 }
3208 
3209 /*
3210  * Drop a previously held pv_entry which could not be locked, allowing its
3211  * destruction.
3212  *
3213  * Must not be called with a spinlock held as we might zfree() the pv if it
3214  * is no longer associated with a pmap and this was the last hold count.
3215  */
3216 static void
3217 pv_drop(pv_entry_t pv)
3218 {
3219 	u_int count;
3220 
3221 	for (;;) {
3222 		count = pv->pv_hold;
3223 		cpu_ccfence();
3224 		KKASSERT((count & PV_HOLD_MASK) > 0);
3225 		KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) !=
3226 			 (PV_HOLD_LOCKED | 1));
3227 		if (atomic_cmpset_int(&pv->pv_hold, count, count - 1)) {
3228 			if ((count & PV_HOLD_MASK) == 1) {
3229 #ifdef PMAP_DEBUG2
3230 				if (pmap_enter_debug > 0) {
3231 					--pmap_enter_debug;
3232 					kprintf("pv_drop: free pv %p\n", pv);
3233 				}
3234 #endif
3235 				KKASSERT(count == 1);
3236 				KKASSERT(pv->pv_pmap == NULL);
3237 				zfree(pvzone, pv);
3238 			}
3239 			return;
3240 		}
3241 		/* retry */
3242 	}
3243 }
3244 
3245 /*
3246  * Find or allocate the requested PV entry, returning a locked, held pv.
3247  *
3248  * If (*isnew) is non-zero, the returned pv will have two hold counts, one
3249  * for the caller and one representing the pmap and vm_page association.
3250  *
3251  * If (*isnew) is zero, the returned pv will have only one hold count.
3252  *
3253  * Since both associations can only be adjusted while the pv is locked,
3254  * together they represent just one additional hold.
3255  */
3256 static
3257 pv_entry_t
3258 _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew PMAP_DEBUG_DECL)
3259 {
3260 	pv_entry_t pv;
3261 	pv_entry_t pnew;
3262 	struct mdglobaldata *md = mdcpu;
3263 
3264 	pnew = NULL;
3265 	if (md->gd_newpv) {
3266 #if 0
3267 		pnew = atomic_swap_ptr((void *)&md->gd_newpv, NULL);
3268 #else
3269 		crit_enter();
3270 		pnew = md->gd_newpv;	/* might race NULL */
3271 		md->gd_newpv = NULL;
3272 		crit_exit();
3273 #endif
3274 	}
3275 	if (pnew == NULL)
3276 		pnew = zalloc(pvzone);
3277 
3278 	spin_lock(&pmap->pm_spin);
3279 	for (;;) {
3280 		/*
3281 		 * Shortcut cache
3282 		 */
3283 		pv = pmap->pm_pvhint;
3284 		cpu_ccfence();
3285 		if (pv == NULL ||
3286 		    pv->pv_pmap != pmap ||
3287 		    pv->pv_pindex != pindex) {
3288 			pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
3289 							pindex);
3290 		}
3291 		if (pv == NULL) {
3292 			vm_pindex_t *pmark;
3293 
3294 			/*
3295 			 * We need to block if someone is holding our
3296 			 * placemarker.  As long as we determine the
3297 			 * placemarker has not been aquired we do not
3298 			 * need to get it as acquision also requires
3299 			 * the pmap spin lock.
3300 			 *
3301 			 * However, we can race the wakeup.
3302 			 */
3303 			pmark = pmap_placemarker_hash(pmap, pindex);
3304 
3305 			if (((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
3306 				atomic_set_long(pmark, PM_PLACEMARK_WAKEUP);
3307 				tsleep_interlock(pmark, 0);
3308 				if (((*pmark ^ pindex) &
3309 				     ~PM_PLACEMARK_WAKEUP) == 0) {
3310 					spin_unlock(&pmap->pm_spin);
3311 					tsleep(pmark, PINTERLOCKED, "pvplc", 0);
3312 					spin_lock(&pmap->pm_spin);
3313 				}
3314 				continue;
3315 			}
3316 
3317 			/*
3318 			 * Setup the new entry
3319 			 */
3320 			pnew->pv_pmap = pmap;
3321 			pnew->pv_pindex = pindex;
3322 			pnew->pv_hold = PV_HOLD_LOCKED | 2;
3323 #ifdef PMAP_DEBUG
3324 			pnew->pv_func = func;
3325 			pnew->pv_line = lineno;
3326 			if (pnew->pv_line_lastfree > 0) {
3327 				pnew->pv_line_lastfree =
3328 						-pnew->pv_line_lastfree;
3329 			}
3330 #endif
3331 			pv = pv_entry_rb_tree_RB_INSERT(&pmap->pm_pvroot, pnew);
3332 			atomic_add_long(&pmap->pm_stats.resident_count, 1);
3333 			spin_unlock(&pmap->pm_spin);
3334 			*isnew = 1;
3335 
3336 			KKASSERT(pv == NULL);
3337 			return(pnew);
3338 		}
3339 
3340 		/*
3341 		 * We already have an entry, cleanup the staged pnew if
3342 		 * we can get the lock, otherwise block and retry.
3343 		 */
3344 		if (__predict_true(_pv_hold_try(pv PMAP_DEBUG_COPY))) {
3345 			spin_unlock(&pmap->pm_spin);
3346 #if 0
3347 			pnew = atomic_swap_ptr((void *)&md->gd_newpv, pnew);
3348 			if (pnew)
3349 				zfree(pvzone, pnew);
3350 #else
3351 			crit_enter();
3352 			if (md->gd_newpv == NULL)
3353 				md->gd_newpv = pnew;
3354 			else
3355 				zfree(pvzone, pnew);
3356 			crit_exit();
3357 #endif
3358 			KKASSERT(pv->pv_pmap == pmap &&
3359 				 pv->pv_pindex == pindex);
3360 			*isnew = 0;
3361 			return(pv);
3362 		}
3363 		spin_unlock(&pmap->pm_spin);
3364 		_pv_lock(pv PMAP_DEBUG_COPY);
3365 		pv_put(pv);
3366 		spin_lock(&pmap->pm_spin);
3367 	}
3368 	/* NOT REACHED */
3369 }
3370 
3371 /*
3372  * Find the requested PV entry, returning a locked+held pv or NULL
3373  */
3374 static
3375 pv_entry_t
3376 _pv_get(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp PMAP_DEBUG_DECL)
3377 {
3378 	pv_entry_t pv;
3379 
3380 	spin_lock(&pmap->pm_spin);
3381 	for (;;) {
3382 		/*
3383 		 * Shortcut cache
3384 		 */
3385 		pv = pmap->pm_pvhint;
3386 		cpu_ccfence();
3387 		if (pv == NULL ||
3388 		    pv->pv_pmap != pmap ||
3389 		    pv->pv_pindex != pindex) {
3390 			pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
3391 							pindex);
3392 		}
3393 		if (pv == NULL) {
3394 			/*
3395 			 * Block if there is ANY placemarker.  If we are to
3396 			 * return it, we must also aquire the spot, so we
3397 			 * have to block even if the placemarker is held on
3398 			 * a different address.
3399 			 *
3400 			 * OPTIMIZATION: If pmarkp is passed as NULL the
3401 			 * caller is just probing (or looking for a real
3402 			 * pv_entry), and in this case we only need to check
3403 			 * to see if the placemarker matches pindex.
3404 			 */
3405 			vm_pindex_t *pmark;
3406 
3407 			pmark = pmap_placemarker_hash(pmap, pindex);
3408 
3409 			if ((pmarkp && *pmark != PM_NOPLACEMARK) ||
3410 			    ((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
3411 				atomic_set_long(pmark, PM_PLACEMARK_WAKEUP);
3412 				tsleep_interlock(pmark, 0);
3413 				if ((pmarkp && *pmark != PM_NOPLACEMARK) ||
3414 				    ((*pmark ^ pindex) &
3415 				     ~PM_PLACEMARK_WAKEUP) == 0) {
3416 					spin_unlock(&pmap->pm_spin);
3417 					tsleep(pmark, PINTERLOCKED, "pvpld", 0);
3418 					spin_lock(&pmap->pm_spin);
3419 				}
3420 				continue;
3421 			}
3422 			if (pmarkp) {
3423 				if (atomic_swap_long(pmark, pindex) !=
3424 				    PM_NOPLACEMARK) {
3425 					panic("_pv_get: pmark race");
3426 				}
3427 				*pmarkp = pmark;
3428 			}
3429 			spin_unlock(&pmap->pm_spin);
3430 			return NULL;
3431 		}
3432 		if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
3433 			pv_cache(pv, pindex);
3434 			spin_unlock(&pmap->pm_spin);
3435 			KKASSERT(pv->pv_pmap == pmap &&
3436 				 pv->pv_pindex == pindex);
3437 			return(pv);
3438 		}
3439 		spin_unlock(&pmap->pm_spin);
3440 		_pv_lock(pv PMAP_DEBUG_COPY);
3441 		pv_put(pv);
3442 		spin_lock(&pmap->pm_spin);
3443 	}
3444 }
3445 
3446 /*
3447  * Lookup, hold, and attempt to lock (pmap,pindex).
3448  *
3449  * If the entry does not exist NULL is returned and *errorp is set to 0
3450  *
3451  * If the entry exists and could be successfully locked it is returned and
3452  * errorp is set to 0.
3453  *
3454  * If the entry exists but could NOT be successfully locked it is returned
3455  * held and *errorp is set to 1.
3456  *
3457  * If the entry is placemarked by someone else NULL is returned and *errorp
3458  * is set to 1.
3459  */
3460 static
3461 pv_entry_t
3462 pv_get_try(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp, int *errorp)
3463 {
3464 	pv_entry_t pv;
3465 
3466 	spin_lock_shared(&pmap->pm_spin);
3467 
3468 	pv = pmap->pm_pvhint;
3469 	cpu_ccfence();
3470 	if (pv == NULL ||
3471 	    pv->pv_pmap != pmap ||
3472 	    pv->pv_pindex != pindex) {
3473 		pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
3474 	}
3475 
3476 	if (pv == NULL) {
3477 		vm_pindex_t *pmark;
3478 
3479 		pmark = pmap_placemarker_hash(pmap, pindex);
3480 
3481 		if (((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
3482 			*errorp = 1;
3483 		} else if (pmarkp &&
3484 			   atomic_cmpset_long(pmark, PM_NOPLACEMARK, pindex)) {
3485 			*errorp = 0;
3486 		} else {
3487 			/*
3488 			 * Can't set a placemark with a NULL pmarkp, or if
3489 			 * pmarkp is non-NULL but we failed to set our
3490 			 * placemark.
3491 			 */
3492 			*errorp = 1;
3493 		}
3494 		if (pmarkp)
3495 			*pmarkp = pmark;
3496 		spin_unlock_shared(&pmap->pm_spin);
3497 
3498 		return NULL;
3499 	}
3500 
3501 	/*
3502 	 * XXX This has problems if the lock is shared, why?
3503 	 */
3504 	if (pv_hold_try(pv)) {
3505 		pv_cache(pv, pindex);	/* overwrite ok (shared lock) */
3506 		spin_unlock_shared(&pmap->pm_spin);
3507 		*errorp = 0;
3508 		KKASSERT(pv->pv_pmap == pmap && pv->pv_pindex == pindex);
3509 		return(pv);	/* lock succeeded */
3510 	}
3511 	spin_unlock_shared(&pmap->pm_spin);
3512 	*errorp = 1;
3513 
3514 	return (pv);		/* lock failed */
3515 }
3516 
3517 /*
3518  * Lock a held pv, keeping the hold count
3519  */
3520 static
3521 void
3522 _pv_lock(pv_entry_t pv PMAP_DEBUG_DECL)
3523 {
3524 	u_int count;
3525 
3526 	for (;;) {
3527 		count = pv->pv_hold;
3528 		cpu_ccfence();
3529 		if ((count & PV_HOLD_LOCKED) == 0) {
3530 			if (atomic_cmpset_int(&pv->pv_hold, count,
3531 					      count | PV_HOLD_LOCKED)) {
3532 #ifdef PMAP_DEBUG
3533 				pv->pv_func = func;
3534 				pv->pv_line = lineno;
3535 #endif
3536 				return;
3537 			}
3538 			continue;
3539 		}
3540 		tsleep_interlock(pv, 0);
3541 		if (atomic_cmpset_int(&pv->pv_hold, count,
3542 				      count | PV_HOLD_WAITING)) {
3543 #ifdef PMAP_DEBUG2
3544 			if (pmap_enter_debug > 0) {
3545 				--pmap_enter_debug;
3546 				kprintf("pv waiting on %s:%d\n",
3547 					pv->pv_func, pv->pv_line);
3548 			}
3549 #endif
3550 			tsleep(pv, PINTERLOCKED, "pvwait", hz);
3551 		}
3552 		/* retry */
3553 	}
3554 }
3555 
3556 /*
3557  * Unlock a held and locked pv, keeping the hold count.
3558  */
3559 static
3560 void
3561 pv_unlock(pv_entry_t pv)
3562 {
3563 	u_int count;
3564 
3565 	for (;;) {
3566 		count = pv->pv_hold;
3567 		cpu_ccfence();
3568 		KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) >=
3569 			 (PV_HOLD_LOCKED | 1));
3570 		if (atomic_cmpset_int(&pv->pv_hold, count,
3571 				      count &
3572 				      ~(PV_HOLD_LOCKED | PV_HOLD_WAITING))) {
3573 			if (count & PV_HOLD_WAITING)
3574 				wakeup(pv);
3575 			break;
3576 		}
3577 	}
3578 }
3579 
3580 /*
3581  * Unlock and drop a pv.  If the pv is no longer associated with a pmap
3582  * and the hold count drops to zero we will free it.
3583  *
3584  * Caller should not hold any spin locks.  We are protected from hold races
3585  * by virtue of holds only occuring only with a pmap_spin or vm_page_spin
3586  * lock held.  A pv cannot be located otherwise.
3587  */
3588 static
3589 void
3590 pv_put(pv_entry_t pv)
3591 {
3592 #ifdef PMAP_DEBUG2
3593 	if (pmap_enter_debug > 0) {
3594 		--pmap_enter_debug;
3595 		kprintf("pv_put pv=%p hold=%08x\n", pv, pv->pv_hold);
3596 	}
3597 #endif
3598 
3599 	/*
3600 	 * Normal put-aways must have a pv_m associated with the pv,
3601 	 * but allow the case where the pv has been destructed due
3602 	 * to pmap_dynamic_delete.
3603 	 */
3604 	KKASSERT(pv->pv_pmap == NULL || pv->pv_m != NULL);
3605 
3606 	/*
3607 	 * Fast - shortcut most common condition
3608 	 */
3609 	if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 1))
3610 		return;
3611 
3612 	/*
3613 	 * Slow
3614 	 */
3615 	pv_unlock(pv);
3616 	pv_drop(pv);
3617 }
3618 
3619 /*
3620  * Remove the pmap association from a pv, require that pv_m already be removed,
3621  * then unlock and drop the pv.  Any pte operations must have already been
3622  * completed.  This call may result in a last-drop which will physically free
3623  * the pv.
3624  *
3625  * Removing the pmap association entails an additional drop.
3626  *
3627  * pv must be exclusively locked on call and will be disposed of on return.
3628  */
3629 static
3630 void
3631 _pv_free(pv_entry_t pv, pv_entry_t pvp PMAP_DEBUG_DECL)
3632 {
3633 	pmap_t pmap;
3634 
3635 #ifdef PMAP_DEBUG
3636 	pv->pv_func_lastfree = func;
3637 	pv->pv_line_lastfree = lineno;
3638 #endif
3639 	KKASSERT(pv->pv_m == NULL);
3640 	KKASSERT((pv->pv_hold & (PV_HOLD_LOCKED|PV_HOLD_MASK)) >=
3641 		  (PV_HOLD_LOCKED|1));
3642 	if ((pmap = pv->pv_pmap) != NULL) {
3643 		spin_lock(&pmap->pm_spin);
3644 		KKASSERT(pv->pv_pmap == pmap);
3645 		if (pmap->pm_pvhint == pv)
3646 			pmap->pm_pvhint = NULL;
3647 		pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
3648 		atomic_add_long(&pmap->pm_stats.resident_count, -1);
3649 		pv->pv_pmap = NULL;
3650 		pv->pv_pindex = 0;
3651 		spin_unlock(&pmap->pm_spin);
3652 
3653 		/*
3654 		 * Try to shortcut three atomic ops, otherwise fall through
3655 		 * and do it normally.  Drop two refs and the lock all in
3656 		 * one go.
3657 		 */
3658 		if (pvp)
3659 			vm_page_unwire_quick(pvp->pv_m);
3660 		if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 0)) {
3661 #ifdef PMAP_DEBUG2
3662 			if (pmap_enter_debug > 0) {
3663 				--pmap_enter_debug;
3664 				kprintf("pv_free: free pv %p\n", pv);
3665 			}
3666 #endif
3667 			zfree(pvzone, pv);
3668 			return;
3669 		}
3670 		pv_drop(pv);	/* ref for pv_pmap */
3671 	}
3672 	pv_unlock(pv);
3673 	pv_drop(pv);
3674 }
3675 
3676 /*
3677  * This routine is very drastic, but can save the system
3678  * in a pinch.
3679  */
3680 void
3681 pmap_collect(void)
3682 {
3683 	int i;
3684 	vm_page_t m;
3685 	static int warningdone=0;
3686 
3687 	if (pmap_pagedaemon_waken == 0)
3688 		return;
3689 	pmap_pagedaemon_waken = 0;
3690 	if (warningdone < 5) {
3691 		kprintf("pmap_collect: collecting pv entries -- "
3692 			"suggest increasing PMAP_SHPGPERPROC\n");
3693 		warningdone++;
3694 	}
3695 
3696 	for (i = 0; i < vm_page_array_size; i++) {
3697 		m = &vm_page_array[i];
3698 		if (m->wire_count || m->hold_count)
3699 			continue;
3700 		if (vm_page_busy_try(m, TRUE) == 0) {
3701 			if (m->wire_count == 0 && m->hold_count == 0) {
3702 				pmap_remove_all(m);
3703 			}
3704 			vm_page_wakeup(m);
3705 		}
3706 	}
3707 }
3708 
3709 /*
3710  * Scan the pmap for active page table entries and issue a callback.
3711  * The callback must dispose of pte_pv, whos PTE entry is at *ptep in
3712  * its parent page table.
3713  *
3714  * pte_pv will be NULL if the page or page table is unmanaged.
3715  * pt_pv will point to the page table page containing the pte for the page.
3716  *
3717  * NOTE! If we come across an unmanaged page TABLE (verses an unmanaged page),
3718  *	 we pass a NULL pte_pv and we pass a pt_pv pointing to the passed
3719  *	 process pmap's PD and page to the callback function.  This can be
3720  *	 confusing because the pt_pv is really a pd_pv, and the target page
3721  *	 table page is simply aliased by the pmap and not owned by it.
3722  *
3723  * It is assumed that the start and end are properly rounded to the page size.
3724  *
3725  * It is assumed that PD pages and above are managed and thus in the RB tree,
3726  * allowing us to use RB_SCAN from the PD pages down for ranged scans.
3727  */
3728 struct pmap_scan_info {
3729 	struct pmap *pmap;
3730 	vm_offset_t sva;
3731 	vm_offset_t eva;
3732 	vm_pindex_t sva_pd_pindex;
3733 	vm_pindex_t eva_pd_pindex;
3734 	void (*func)(pmap_t, struct pmap_scan_info *,
3735 		     pv_entry_t, vm_pindex_t *, pv_entry_t,
3736 		     int, vm_offset_t,
3737 		     pt_entry_t *, void *);
3738 	void *arg;
3739 	pmap_inval_bulk_t bulk_core;
3740 	pmap_inval_bulk_t *bulk;
3741 	int count;
3742 	int stop;
3743 };
3744 
3745 static int pmap_scan_cmp(pv_entry_t pv, void *data);
3746 static int pmap_scan_callback(pv_entry_t pv, void *data);
3747 
3748 static void
3749 pmap_scan(struct pmap_scan_info *info, int smp_inval)
3750 {
3751 	struct pmap *pmap = info->pmap;
3752 	pv_entry_t pd_pv;	/* A page directory PV */
3753 	pv_entry_t pt_pv;	/* A page table PV */
3754 	pv_entry_t pte_pv;	/* A page table entry PV */
3755 	vm_pindex_t *pte_placemark;
3756 	vm_pindex_t *pt_placemark;
3757 	pt_entry_t *ptep;
3758 	pt_entry_t oldpte;
3759 	struct pv_entry dummy_pv;
3760 
3761 	info->stop = 0;
3762 	if (pmap == NULL)
3763 		return;
3764 	if (info->sva == info->eva)
3765 		return;
3766 	if (smp_inval) {
3767 		info->bulk = &info->bulk_core;
3768 		pmap_inval_bulk_init(&info->bulk_core, pmap);
3769 	} else {
3770 		info->bulk = NULL;
3771 	}
3772 
3773 	/*
3774 	 * Hold the token for stability; if the pmap is empty we have nothing
3775 	 * to do.
3776 	 */
3777 #if 0
3778 	if (pmap->pm_stats.resident_count == 0) {
3779 		return;
3780 	}
3781 #endif
3782 
3783 	info->count = 0;
3784 
3785 	/*
3786 	 * Special handling for scanning one page, which is a very common
3787 	 * operation (it is?).
3788 	 *
3789 	 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4
3790 	 */
3791 	if (info->sva + PAGE_SIZE == info->eva) {
3792 		if (info->sva >= VM_MAX_USER_ADDRESS) {
3793 			/*
3794 			 * Kernel mappings do not track wire counts on
3795 			 * page table pages and only maintain pd_pv and
3796 			 * pte_pv levels so pmap_scan() works.
3797 			 */
3798 			pt_pv = NULL;
3799 			pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva),
3800 					&pte_placemark);
3801 			ptep = vtopte(info->sva);
3802 		} else {
3803 			/*
3804 			 * User pages which are unmanaged will not have a
3805 			 * pte_pv.  User page table pages which are unmanaged
3806 			 * (shared from elsewhere) will also not have a pt_pv.
3807 			 * The func() callback will pass both pte_pv and pt_pv
3808 			 * as NULL in that case.
3809 			 *
3810 			 * We hold pte_placemark across the operation for
3811 			 * unmanaged pages.
3812 			 *
3813 			 * WARNING!  We must hold pt_placemark across the
3814 			 *	     *ptep test to prevent misintepreting
3815 			 *	     a non-zero *ptep as a shared page
3816 			 *	     table page.  Hold it across the function
3817 			 *	     callback as well for SMP safety.
3818 			 */
3819 			pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva),
3820 					&pte_placemark);
3821 			pt_pv = pv_get(pmap, pmap_pt_pindex(info->sva),
3822 					&pt_placemark);
3823 			if (pt_pv == NULL) {
3824 				KKASSERT(pte_pv == NULL);
3825 				pd_pv = pv_get(pmap,
3826 					       pmap_pd_pindex(info->sva),
3827 					       NULL);
3828 				if (pd_pv) {
3829 					ptep = pv_pte_lookup(pd_pv,
3830 						    pmap_pt_index(info->sva));
3831 					if (*ptep) {
3832 						info->func(pmap, info,
3833 						     NULL, pt_placemark,
3834 						     pd_pv, 1,
3835 						     info->sva, ptep,
3836 						     info->arg);
3837 					} else {
3838 						pv_placemarker_wakeup(pmap,
3839 								  pt_placemark);
3840 					}
3841 					pv_put(pd_pv);
3842 				} else {
3843 					pv_placemarker_wakeup(pmap,
3844 							      pt_placemark);
3845 				}
3846 				pv_placemarker_wakeup(pmap, pte_placemark);
3847 				goto fast_skip;
3848 			}
3849 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(info->sva));
3850 		}
3851 
3852 		/*
3853 		 * NOTE: *ptep can't be ripped out from under us if we hold
3854 		 *	 pte_pv (or pte_placemark) locked, but bits can
3855 		 *	 change.
3856 		 */
3857 		oldpte = *ptep;
3858 		cpu_ccfence();
3859 		if (oldpte == 0) {
3860 			KKASSERT(pte_pv == NULL);
3861 			pv_placemarker_wakeup(pmap, pte_placemark);
3862 		} else if (pte_pv) {
3863 			KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] |
3864 					   pmap->pmap_bits[PG_V_IDX])) ==
3865 				(pmap->pmap_bits[PG_MANAGED_IDX] |
3866 				 pmap->pmap_bits[PG_V_IDX]),
3867 			    ("badA *ptep %016lx/%016lx sva %016lx pte_pv %p",
3868 			    *ptep, oldpte, info->sva, pte_pv));
3869 			info->func(pmap, info, pte_pv, NULL, pt_pv, 0,
3870 				   info->sva, ptep, info->arg);
3871 		} else {
3872 			KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] |
3873 					   pmap->pmap_bits[PG_V_IDX])) ==
3874 			    pmap->pmap_bits[PG_V_IDX],
3875 			    ("badB *ptep %016lx/%016lx sva %016lx pte_pv NULL",
3876 			    *ptep, oldpte, info->sva));
3877 			info->func(pmap, info, NULL, pte_placemark, pt_pv, 0,
3878 				   info->sva, ptep, info->arg);
3879 		}
3880 		if (pt_pv)
3881 			pv_put(pt_pv);
3882 fast_skip:
3883 		pmap_inval_bulk_flush(info->bulk);
3884 		return;
3885 	}
3886 
3887 	/*
3888 	 * Nominal scan case, RB_SCAN() for PD pages and iterate from
3889 	 * there.
3890 	 *
3891 	 * WARNING! eva can overflow our standard ((N + mask) >> bits)
3892 	 *	    bounds, resulting in a pd_pindex of 0.  To solve the
3893 	 *	    problem we use an inclusive range.
3894 	 */
3895 	info->sva_pd_pindex = pmap_pd_pindex(info->sva);
3896 	info->eva_pd_pindex = pmap_pd_pindex(info->eva - PAGE_SIZE);
3897 
3898 	if (info->sva >= VM_MAX_USER_ADDRESS) {
3899 		/*
3900 		 * The kernel does not currently maintain any pv_entry's for
3901 		 * higher-level page tables.
3902 		 */
3903 		bzero(&dummy_pv, sizeof(dummy_pv));
3904 		dummy_pv.pv_pindex = info->sva_pd_pindex;
3905 		spin_lock(&pmap->pm_spin);
3906 		while (dummy_pv.pv_pindex <= info->eva_pd_pindex) {
3907 			pmap_scan_callback(&dummy_pv, info);
3908 			++dummy_pv.pv_pindex;
3909 			if (dummy_pv.pv_pindex < info->sva_pd_pindex) /*wrap*/
3910 				break;
3911 		}
3912 		spin_unlock(&pmap->pm_spin);
3913 	} else {
3914 		/*
3915 		 * User page tables maintain local PML4, PDP, and PD
3916 		 * pv_entry's at the very least.  PT pv's might be
3917 		 * unmanaged and thus not exist.  PTE pv's might be
3918 		 * unmanaged and thus not exist.
3919 		 */
3920 		spin_lock(&pmap->pm_spin);
3921 		pv_entry_rb_tree_RB_SCAN(&pmap->pm_pvroot, pmap_scan_cmp,
3922 					 pmap_scan_callback, info);
3923 		spin_unlock(&pmap->pm_spin);
3924 	}
3925 	pmap_inval_bulk_flush(info->bulk);
3926 }
3927 
3928 /*
3929  * WARNING! pmap->pm_spin held
3930  *
3931  * WARNING! eva can overflow our standard ((N + mask) >> bits)
3932  *	    bounds, resulting in a pd_pindex of 0.  To solve the
3933  *	    problem we use an inclusive range.
3934  */
3935 static int
3936 pmap_scan_cmp(pv_entry_t pv, void *data)
3937 {
3938 	struct pmap_scan_info *info = data;
3939 	if (pv->pv_pindex < info->sva_pd_pindex)
3940 		return(-1);
3941 	if (pv->pv_pindex > info->eva_pd_pindex)
3942 		return(1);
3943 	return(0);
3944 }
3945 
3946 /*
3947  * pmap_scan() by PDs
3948  *
3949  * WARNING! pmap->pm_spin held
3950  */
3951 static int
3952 pmap_scan_callback(pv_entry_t pv, void *data)
3953 {
3954 	struct pmap_scan_info *info = data;
3955 	struct pmap *pmap = info->pmap;
3956 	pv_entry_t pd_pv;	/* A page directory PV */
3957 	pv_entry_t pt_pv;	/* A page table PV */
3958 	vm_pindex_t *pt_placemark;
3959 	pt_entry_t *ptep;
3960 	pt_entry_t oldpte;
3961 	vm_offset_t sva;
3962 	vm_offset_t eva;
3963 	vm_offset_t va_next;
3964 	vm_pindex_t pd_pindex;
3965 	int error;
3966 
3967 	/*
3968 	 * Stop if requested
3969 	 */
3970 	if (info->stop)
3971 		return -1;
3972 
3973 	/*
3974 	 * Pull the PD pindex from the pv before releasing the spinlock.
3975 	 *
3976 	 * WARNING: pv is faked for kernel pmap scans.
3977 	 */
3978 	pd_pindex = pv->pv_pindex;
3979 	spin_unlock(&pmap->pm_spin);
3980 	pv = NULL;	/* invalid after spinlock unlocked */
3981 
3982 	/*
3983 	 * Calculate the page range within the PD.  SIMPLE pmaps are
3984 	 * direct-mapped for the entire 2^64 address space.  Normal pmaps
3985 	 * reflect the user and kernel address space which requires
3986 	 * cannonicalization w/regards to converting pd_pindex's back
3987 	 * into addresses.
3988 	 */
3989 	sva = (pd_pindex - pmap_pd_pindex(0)) << PDPSHIFT;
3990 	if ((pmap->pm_flags & PMAP_FLAG_SIMPLE) == 0 &&
3991 	    (sva & PML4_SIGNMASK)) {
3992 		sva |= PML4_SIGNMASK;
3993 	}
3994 	eva = sva + NBPDP;	/* can overflow */
3995 	if (sva < info->sva)
3996 		sva = info->sva;
3997 	if (eva < info->sva || eva > info->eva)
3998 		eva = info->eva;
3999 
4000 	/*
4001 	 * NOTE: kernel mappings do not track page table pages, only
4002 	 * 	 terminal pages.
4003 	 *
4004 	 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4.
4005 	 *	 However, for the scan to be efficient we try to
4006 	 *	 cache items top-down.
4007 	 */
4008 	pd_pv = NULL;
4009 	pt_pv = NULL;
4010 
4011 	for (; sva < eva; sva = va_next) {
4012 		if (info->stop)
4013 			break;
4014 		if (sva >= VM_MAX_USER_ADDRESS) {
4015 			if (pt_pv) {
4016 				pv_put(pt_pv);
4017 				pt_pv = NULL;
4018 			}
4019 			goto kernel_skip;
4020 		}
4021 
4022 		/*
4023 		 * PD cache, scan shortcut if it doesn't exist.
4024 		 */
4025 		if (pd_pv == NULL) {
4026 			pd_pv = pv_get(pmap, pmap_pd_pindex(sva), NULL);
4027 		} else if (pd_pv->pv_pmap != pmap ||
4028 			   pd_pv->pv_pindex != pmap_pd_pindex(sva)) {
4029 			pv_put(pd_pv);
4030 			pd_pv = pv_get(pmap, pmap_pd_pindex(sva), NULL);
4031 		}
4032 		if (pd_pv == NULL) {
4033 			va_next = (sva + NBPDP) & ~PDPMASK;
4034 			if (va_next < sva)
4035 				va_next = eva;
4036 			continue;
4037 		}
4038 
4039 		/*
4040 		 * PT cache
4041 		 *
4042 		 * NOTE: The cached pt_pv can be removed from the pmap when
4043 		 *	 pmap_dynamic_delete is enabled.
4044 		 */
4045 		if (pt_pv && (pt_pv->pv_pmap != pmap ||
4046 			      pt_pv->pv_pindex != pmap_pt_pindex(sva))) {
4047 			pv_put(pt_pv);
4048 			pt_pv = NULL;
4049 		}
4050 		if (pt_pv == NULL) {
4051 			pt_pv = pv_get_try(pmap, pmap_pt_pindex(sva),
4052 					   &pt_placemark, &error);
4053 			if (error) {
4054 				pv_put(pd_pv);	/* lock order */
4055 				pd_pv = NULL;
4056 				if (pt_pv) {
4057 					pv_lock(pt_pv);
4058 					pv_put(pt_pv);
4059 					pt_pv = NULL;
4060 				} else {
4061 					pv_placemarker_wait(pmap, pt_placemark);
4062 				}
4063 				va_next = sva;
4064 				continue;
4065 			}
4066 			/* may have to re-check later if pt_pv is NULL here */
4067 		}
4068 
4069 		/*
4070 		 * If pt_pv is NULL we either have an shared page table
4071 		 * page and must issue a callback specific to that case,
4072 		 * or there is no page table page.
4073 		 *
4074 		 * Either way we can skip the page table page.
4075 		 *
4076 		 * WARNING! pt_pv can also be NULL due to a pv creation
4077 		 *	    race where we find it to be NULL and then
4078 		 *	    later see a pte_pv.  But its possible the pt_pv
4079 		 *	    got created inbetween the two operations, so
4080 		 *	    we must check.
4081 		 */
4082 		if (pt_pv == NULL) {
4083 			/*
4084 			 * Possible unmanaged (shared from another pmap)
4085 			 * page table page.
4086 			 *
4087 			 * WARNING!  We must hold pt_placemark across the
4088 			 *	     *ptep test to prevent misintepreting
4089 			 *	     a non-zero *ptep as a shared page
4090 			 *	     table page.  Hold it across the function
4091 			 *	     callback as well for SMP safety.
4092 			 */
4093 			ptep = pv_pte_lookup(pd_pv, pmap_pt_index(sva));
4094 			if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
4095 				info->func(pmap, info, NULL, pt_placemark,
4096 					   pd_pv, 1,
4097 					   sva, ptep, info->arg);
4098 			} else {
4099 				pv_placemarker_wakeup(pmap, pt_placemark);
4100 			}
4101 
4102 			/*
4103 			 * Done, move to next page table page.
4104 			 */
4105 			va_next = (sva + NBPDR) & ~PDRMASK;
4106 			if (va_next < sva)
4107 				va_next = eva;
4108 			continue;
4109 		}
4110 
4111 		/*
4112 		 * From this point in the loop testing pt_pv for non-NULL
4113 		 * means we are in UVM, else if it is NULL we are in KVM.
4114 		 *
4115 		 * Limit our scan to either the end of the va represented
4116 		 * by the current page table page, or to the end of the
4117 		 * range being removed.
4118 		 */
4119 kernel_skip:
4120 		va_next = (sva + NBPDR) & ~PDRMASK;
4121 		if (va_next < sva)
4122 			va_next = eva;
4123 		if (va_next > eva)
4124 			va_next = eva;
4125 
4126 		/*
4127 		 * Scan the page table for pages.  Some pages may not be
4128 		 * managed (might not have a pv_entry).
4129 		 *
4130 		 * There is no page table management for kernel pages so
4131 		 * pt_pv will be NULL in that case, but otherwise pt_pv
4132 		 * is non-NULL, locked, and referenced.
4133 		 */
4134 
4135 		/*
4136 		 * At this point a non-NULL pt_pv means a UVA, and a NULL
4137 		 * pt_pv means a KVA.
4138 		 */
4139 		if (pt_pv)
4140 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(sva));
4141 		else
4142 			ptep = vtopte(sva);
4143 
4144 		while (sva < va_next) {
4145 			pv_entry_t pte_pv;
4146 			vm_pindex_t *pte_placemark;
4147 
4148 			/*
4149 			 * Yield every 64 pages, stop if requested.
4150 			 */
4151 			if ((++info->count & 63) == 0)
4152 				lwkt_user_yield();
4153 			if (info->stop)
4154 				break;
4155 
4156 			/*
4157 			 * We can shortcut our scan if *ptep == 0.  This is
4158 			 * an unlocked check.
4159 			 */
4160 			if (*ptep == 0) {
4161 				sva += PAGE_SIZE;
4162 				++ptep;
4163 				continue;
4164 			}
4165 			cpu_ccfence();
4166 
4167 			/*
4168 			 * Acquire the related pte_pv, if any.  If *ptep == 0
4169 			 * the related pte_pv should not exist, but if *ptep
4170 			 * is not zero the pte_pv may or may not exist (e.g.
4171 			 * will not exist for an unmanaged page).
4172 			 *
4173 			 * However a multitude of races are possible here
4174 			 * so if we cannot lock definite state we clean out
4175 			 * our cache and break the inner while() loop to
4176 			 * force a loop up to the top of the for().
4177 			 *
4178 			 * XXX unlock/relock pd_pv, pt_pv, and re-test their
4179 			 *     validity instead of looping up?
4180 			 */
4181 			pte_pv = pv_get_try(pmap, pmap_pte_pindex(sva),
4182 					    &pte_placemark, &error);
4183 			if (error) {
4184 				pv_put(pd_pv);		/* lock order */
4185 				pd_pv = NULL;
4186 				if (pt_pv) {
4187 					pv_put(pt_pv);	/* lock order */
4188 					pt_pv = NULL;
4189 				}
4190 				if (pte_pv) {		/* block */
4191 					pv_lock(pte_pv);
4192 					pv_put(pte_pv);
4193 					pte_pv = NULL;
4194 				} else {
4195 					pv_placemarker_wait(pmap,
4196 							pte_placemark);
4197 				}
4198 				va_next = sva;		/* retry */
4199 				break;
4200 			}
4201 
4202 			/*
4203 			 * Reload *ptep after successfully locking the
4204 			 * pindex.  If *ptep == 0 we had better NOT have a
4205 			 * pte_pv.
4206 			 */
4207 			cpu_ccfence();
4208 			oldpte = *ptep;
4209 			if (oldpte == 0) {
4210 				if (pte_pv) {
4211 					kprintf("Unexpected non-NULL pte_pv "
4212 						"%p pt_pv %p "
4213 						"*ptep = %016lx/%016lx\n",
4214 						pte_pv, pt_pv, *ptep, oldpte);
4215 					panic("Unexpected non-NULL pte_pv");
4216 				} else {
4217 					pv_placemarker_wakeup(pmap, pte_placemark);
4218 				}
4219 				sva += PAGE_SIZE;
4220 				++ptep;
4221 				continue;
4222 			}
4223 
4224 			/*
4225 			 * We can't hold pd_pv across the callback (because
4226 			 * we don't pass it to the callback and the callback
4227 			 * might deadlock)
4228 			 */
4229 			if (pd_pv) {
4230 				vm_page_wire_quick(pd_pv->pv_m);
4231 				pv_unlock(pd_pv);
4232 			}
4233 
4234 			/*
4235 			 * Ready for the callback.  The locked pte_pv (if any)
4236 			 * is consumed by the callback.  pte_pv will exist if
4237 			 * the page is managed, and will not exist if it
4238 			 * isn't.
4239 			 */
4240 			if (oldpte & pmap->pmap_bits[PG_MANAGED_IDX]) {
4241 				/*
4242 				 * Managed pte
4243 				 */
4244 				KASSERT(pte_pv &&
4245 					 (oldpte & pmap->pmap_bits[PG_V_IDX]),
4246 				    ("badC *ptep %016lx/%016lx sva %016lx "
4247 				    "pte_pv %p",
4248 				    *ptep, oldpte, sva, pte_pv));
4249 				/*
4250 				 * We must unlock pd_pv across the callback
4251 				 * to avoid deadlocks on any recursive
4252 				 * disposal.  Re-check that it still exists
4253 				 * after re-locking.
4254 				 *
4255 				 * Call target disposes of pte_pv and may
4256 				 * destroy but will not dispose of pt_pv.
4257 				 */
4258 				info->func(pmap, info, pte_pv, NULL,
4259 					   pt_pv, 0,
4260 					   sva, ptep, info->arg);
4261 			} else {
4262 				/*
4263 				 * Unmanaged pte
4264 				 *
4265 				 * We must unlock pd_pv across the callback
4266 				 * to avoid deadlocks on any recursive
4267 				 * disposal.  Re-check that it still exists
4268 				 * after re-locking.
4269 				 *
4270 				 * Call target disposes of pte_pv or
4271 				 * pte_placemark and may destroy but will
4272 				 * not dispose of pt_pv.
4273 				 */
4274 				KASSERT(pte_pv == NULL &&
4275 					(oldpte & pmap->pmap_bits[PG_V_IDX]),
4276 				    ("badD *ptep %016lx/%016lx sva %016lx "
4277 				    "pte_pv %p pte_pv->pv_m %p ",
4278 				     *ptep, oldpte, sva,
4279 				     pte_pv, (pte_pv ? pte_pv->pv_m : NULL)));
4280 				if (pte_pv)
4281 					kprintf("RaceD\n");
4282 				if (pte_pv) {
4283 					info->func(pmap, info,
4284 						   pte_pv, NULL,
4285 						   pt_pv, 0,
4286 						   sva, ptep, info->arg);
4287 				} else {
4288 					info->func(pmap, info,
4289 						   NULL, pte_placemark,
4290 						   pt_pv, 0,
4291 						   sva, ptep, info->arg);
4292 				}
4293 			}
4294 			if (pd_pv) {
4295 				pv_lock(pd_pv);
4296 				vm_page_unwire_quick(pd_pv->pv_m);
4297 				if (pd_pv->pv_pmap == NULL) {
4298 					va_next = sva;		/* retry */
4299 					break;
4300 				}
4301 			}
4302 
4303 			/*
4304 			 * NOTE: The cached pt_pv can be removed from the
4305 			 *	 pmap when pmap_dynamic_delete is enabled,
4306 			 *	 which will cause ptep to become stale.
4307 			 *
4308 			 *	 This also means that no pages remain under
4309 			 *	 the PT, so we can just break out of the inner
4310 			 *	 loop and let the outer loop clean everything
4311 			 *	 up.
4312 			 */
4313 			if (pt_pv && pt_pv->pv_pmap != pmap)
4314 				break;
4315 			pte_pv = NULL;
4316 			sva += PAGE_SIZE;
4317 			++ptep;
4318 		}
4319 	}
4320 	if (pd_pv) {
4321 		pv_put(pd_pv);
4322 		pd_pv = NULL;
4323 	}
4324 	if (pt_pv) {
4325 		pv_put(pt_pv);
4326 		pt_pv = NULL;
4327 	}
4328 	if ((++info->count & 7) == 0)
4329 		lwkt_user_yield();
4330 
4331 	/*
4332 	 * Relock before returning.
4333 	 */
4334 	spin_lock(&pmap->pm_spin);
4335 	return (0);
4336 }
4337 
4338 void
4339 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
4340 {
4341 	struct pmap_scan_info info;
4342 
4343 	info.pmap = pmap;
4344 	info.sva = sva;
4345 	info.eva = eva;
4346 	info.func = pmap_remove_callback;
4347 	info.arg = NULL;
4348 	pmap_scan(&info, 1);
4349 #if 0
4350 	cpu_invltlb();
4351 	if (eva - sva < 1024*1024) {
4352 		while (sva < eva) {
4353 			cpu_invlpg((void *)sva);
4354 			sva += PAGE_SIZE;
4355 		}
4356 	}
4357 #endif
4358 }
4359 
4360 static void
4361 pmap_remove_noinval(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
4362 {
4363 	struct pmap_scan_info info;
4364 
4365 	info.pmap = pmap;
4366 	info.sva = sva;
4367 	info.eva = eva;
4368 	info.func = pmap_remove_callback;
4369 	info.arg = NULL;
4370 	pmap_scan(&info, 0);
4371 }
4372 
4373 static void
4374 pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
4375 		     pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
4376 		     pv_entry_t pt_pv, int sharept,
4377 		     vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
4378 {
4379 	pt_entry_t pte;
4380 
4381 	if (pte_pv) {
4382 		/*
4383 		 * Managed entry
4384 		 *
4385 		 * This will also drop pt_pv's wire_count. Note that
4386 		 * terminal pages are not wired based on mmu presence.
4387 		 *
4388 		 * NOTE: If this is the kernel_pmap, pt_pv can be NULL.
4389 		 */
4390 		KKASSERT(pte_pv->pv_m != NULL);
4391 		pmap_remove_pv_pte(pte_pv, pt_pv, info->bulk, 2);
4392 		pte_pv = NULL;	/* safety */
4393 
4394 		/*
4395 		 * Recursively destroy higher-level page tables.
4396 		 *
4397 		 * This is optional.  If we do not, they will still
4398 		 * be destroyed when the process exits.
4399 		 *
4400 		 * NOTE: Do not destroy pv_entry's with extra hold refs,
4401 		 *	 a caller may have unlocked it and intends to
4402 		 *	 continue to use it.
4403 		 */
4404 		if (pmap_dynamic_delete &&
4405 		    pt_pv &&
4406 		    pt_pv->pv_m &&
4407 		    pt_pv->pv_m->wire_count == 1 &&
4408 		    (pt_pv->pv_hold & PV_HOLD_MASK) == 2 &&
4409 		    pt_pv->pv_pindex != pmap_pml4_pindex()) {
4410 			if (pmap_dynamic_delete == 2)
4411 				kprintf("B %jd %08x\n", pt_pv->pv_pindex, pt_pv->pv_hold);
4412 			pv_hold(pt_pv);	/* extra hold */
4413 			pmap_remove_pv_pte(pt_pv, NULL, info->bulk, 1);
4414 			pv_lock(pt_pv);	/* prior extra hold + relock */
4415 		}
4416 	} else if (sharept == 0) {
4417 		/*
4418 		 * Unmanaged pte (pte_placemark is non-NULL)
4419 		 *
4420 		 * pt_pv's wire_count is still bumped by unmanaged pages
4421 		 * so we must decrement it manually.
4422 		 *
4423 		 * We have to unwire the target page table page.
4424 		 */
4425 		pte = pmap_inval_bulk(info->bulk, va, ptep, 0);
4426 		if (pte & pmap->pmap_bits[PG_W_IDX])
4427 			atomic_add_long(&pmap->pm_stats.wired_count, -1);
4428 		atomic_add_long(&pmap->pm_stats.resident_count, -1);
4429 		if (vm_page_unwire_quick(pt_pv->pv_m))
4430 			panic("pmap_remove: insufficient wirecount");
4431 		pv_placemarker_wakeup(pmap, pte_placemark);
4432 	} else {
4433 		/*
4434 		 * Unmanaged page table (pt, pd, or pdp. Not pte) for
4435 		 * a shared page table.
4436 		 *
4437 		 * pt_pv is actually the pd_pv for our pmap (not the shared
4438 		 * object pmap).
4439 		 *
4440 		 * We have to unwire the target page table page and we
4441 		 * have to unwire our page directory page.
4442 		 *
4443 		 * It is unclear how we can invalidate a segment so we
4444 		 * invalidate -1 which invlidates the tlb.
4445 		 */
4446 		pte = pmap_inval_bulk(info->bulk, (vm_offset_t)-1, ptep, 0);
4447 		atomic_add_long(&pmap->pm_stats.resident_count, -1);
4448 		KKASSERT((pte & pmap->pmap_bits[PG_DEVICE_IDX]) == 0);
4449 		if (vm_page_unwire_quick(PHYS_TO_VM_PAGE(pte & PG_FRAME)))
4450 			panic("pmap_remove: shared pgtable1 bad wirecount");
4451 		if (vm_page_unwire_quick(pt_pv->pv_m))
4452 			panic("pmap_remove: shared pgtable2 bad wirecount");
4453 		pv_placemarker_wakeup(pmap, pte_placemark);
4454 	}
4455 }
4456 
4457 /*
4458  * Removes this physical page from all physical maps in which it resides.
4459  * Reflects back modify bits to the pager.
4460  *
4461  * This routine may not be called from an interrupt.
4462  */
4463 static
4464 void
4465 pmap_remove_all(vm_page_t m)
4466 {
4467 	pv_entry_t pv;
4468 	pmap_inval_bulk_t bulk;
4469 
4470 	if (!pmap_initialized /* || (m->flags & PG_FICTITIOUS)*/)
4471 		return;
4472 
4473 	vm_page_spin_lock(m);
4474 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4475 		KKASSERT(pv->pv_m == m);
4476 		if (pv_hold_try(pv)) {
4477 			vm_page_spin_unlock(m);
4478 		} else {
4479 			vm_page_spin_unlock(m);
4480 			pv_lock(pv);
4481 			pv_put(pv);
4482 			vm_page_spin_lock(m);
4483 			continue;
4484 		}
4485 		KKASSERT(pv->pv_pmap && pv->pv_m == m);
4486 
4487 		/*
4488 		 * Holding no spinlocks, pv is locked.  Once we scrap
4489 		 * pv we can no longer use it as a list iterator (but
4490 		 * we are doing a TAILQ_FIRST() so we are ok).
4491 		 */
4492 		pmap_inval_bulk_init(&bulk, pv->pv_pmap);
4493 		pmap_remove_pv_pte(pv, NULL, &bulk, 2);
4494 		pv = NULL;	/* safety */
4495 		pmap_inval_bulk_flush(&bulk);
4496 		vm_page_spin_lock(m);
4497 	}
4498 	KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
4499 	vm_page_spin_unlock(m);
4500 }
4501 
4502 /*
4503  * Removes the page from a particular pmap
4504  */
4505 void
4506 pmap_remove_specific(pmap_t pmap, vm_page_t m)
4507 {
4508 	pv_entry_t pv;
4509 	pmap_inval_bulk_t bulk;
4510 
4511 	if (!pmap_initialized)
4512 		return;
4513 
4514 again:
4515 	vm_page_spin_lock(m);
4516 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4517 		if (pv->pv_pmap != pmap)
4518 			continue;
4519 		KKASSERT(pv->pv_m == m);
4520 		if (pv_hold_try(pv)) {
4521 			vm_page_spin_unlock(m);
4522 		} else {
4523 			vm_page_spin_unlock(m);
4524 			pv_lock(pv);
4525 			pv_put(pv);
4526 			goto again;
4527 		}
4528 		KKASSERT(pv->pv_pmap == pmap && pv->pv_m == m);
4529 
4530 		/*
4531 		 * Holding no spinlocks, pv is locked.  Once gone it can't
4532 		 * be used as an iterator.  In fact, because we couldn't
4533 		 * necessarily lock it atomically it may have moved within
4534 		 * the list and ALSO cannot be used as an iterator.
4535 		 */
4536 		pmap_inval_bulk_init(&bulk, pv->pv_pmap);
4537 		pmap_remove_pv_pte(pv, NULL, &bulk, 2);
4538 		pv = NULL;	/* safety */
4539 		pmap_inval_bulk_flush(&bulk);
4540 		goto again;
4541 	}
4542 	vm_page_spin_unlock(m);
4543 }
4544 
4545 /*
4546  * Set the physical protection on the specified range of this map
4547  * as requested.  This function is typically only used for debug watchpoints
4548  * and COW pages.
4549  *
4550  * This function may not be called from an interrupt if the map is
4551  * not the kernel_pmap.
4552  *
4553  * NOTE!  For shared page table pages we just unmap the page.
4554  */
4555 void
4556 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
4557 {
4558 	struct pmap_scan_info info;
4559 	/* JG review for NX */
4560 
4561 	if (pmap == NULL)
4562 		return;
4563 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == VM_PROT_NONE) {
4564 		pmap_remove(pmap, sva, eva);
4565 		return;
4566 	}
4567 	if (prot & VM_PROT_WRITE)
4568 		return;
4569 	info.pmap = pmap;
4570 	info.sva = sva;
4571 	info.eva = eva;
4572 	info.func = pmap_protect_callback;
4573 	info.arg = &prot;
4574 	pmap_scan(&info, 1);
4575 }
4576 
4577 static
4578 void
4579 pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
4580 		      pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
4581 		      pv_entry_t pt_pv, int sharept,
4582 		      vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
4583 {
4584 	pt_entry_t pbits;
4585 	pt_entry_t cbits;
4586 	pt_entry_t pte;
4587 	vm_page_t m;
4588 
4589 again:
4590 	pbits = *ptep;
4591 	cbits = pbits;
4592 	if (pte_pv) {
4593 		KKASSERT(pte_pv->pv_m != NULL);
4594 		m = NULL;
4595 		if (pbits & pmap->pmap_bits[PG_A_IDX]) {
4596 			if ((pbits & pmap->pmap_bits[PG_DEVICE_IDX]) == 0) {
4597 				m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
4598 				KKASSERT(m == pte_pv->pv_m);
4599 				vm_page_flag_set(m, PG_REFERENCED);
4600 			}
4601 			cbits &= ~pmap->pmap_bits[PG_A_IDX];
4602 		}
4603 		if (pbits & pmap->pmap_bits[PG_M_IDX]) {
4604 			if (pmap_track_modified(pte_pv->pv_pindex)) {
4605 				if ((pbits & pmap->pmap_bits[PG_DEVICE_IDX]) == 0) {
4606 					if (m == NULL) {
4607 						m = PHYS_TO_VM_PAGE(pbits &
4608 								    PG_FRAME);
4609 					}
4610 					vm_page_dirty(m);
4611 				}
4612 				cbits &= ~pmap->pmap_bits[PG_M_IDX];
4613 			}
4614 		}
4615 	} else if (sharept) {
4616 		/*
4617 		 * Unmanaged page table, pt_pv is actually the pd_pv
4618 		 * for our pmap (not the object's shared pmap).
4619 		 *
4620 		 * When asked to protect something in a shared page table
4621 		 * page we just unmap the page table page.  We have to
4622 		 * invalidate the tlb in this situation.
4623 		 *
4624 		 * XXX Warning, shared page tables will not be used for
4625 		 * OBJT_DEVICE or OBJT_MGTDEVICE (PG_FICTITIOUS) mappings
4626 		 * so PHYS_TO_VM_PAGE() should be safe here.
4627 		 */
4628 		pte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, ptep, 0);
4629 		if (vm_page_unwire_quick(PHYS_TO_VM_PAGE(pte & PG_FRAME)))
4630 			panic("pmap_protect: pgtable1 pg bad wirecount");
4631 		if (vm_page_unwire_quick(pt_pv->pv_m))
4632 			panic("pmap_protect: pgtable2 pg bad wirecount");
4633 		ptep = NULL;
4634 	}
4635 	/* else unmanaged page, adjust bits, no wire changes */
4636 
4637 	if (ptep) {
4638 		cbits &= ~pmap->pmap_bits[PG_RW_IDX];
4639 #ifdef PMAP_DEBUG2
4640 		if (pmap_enter_debug > 0) {
4641 			--pmap_enter_debug;
4642 			kprintf("pmap_protect va=%lx ptep=%p pte_pv=%p "
4643 				"pt_pv=%p cbits=%08lx\n",
4644 				va, ptep, pte_pv,
4645 				pt_pv, cbits
4646 			);
4647 		}
4648 #endif
4649 		if (pbits != cbits) {
4650 			vm_offset_t xva;
4651 
4652 			xva = (sharept) ? (vm_offset_t)-1 : va;
4653 			if (!pmap_inval_smp_cmpset(pmap, xva,
4654 						   ptep, pbits, cbits)) {
4655 				goto again;
4656 			}
4657 		}
4658 	}
4659 	if (pte_pv)
4660 		pv_put(pte_pv);
4661 	else
4662 		pv_placemarker_wakeup(pmap, pte_placemark);
4663 }
4664 
4665 /*
4666  * Insert the vm_page (m) at the virtual address (va), replacing any prior
4667  * mapping at that address.  Set protection and wiring as requested.
4668  *
4669  * If entry is non-NULL we check to see if the SEG_SIZE optimization is
4670  * possible.  If it is we enter the page into the appropriate shared pmap
4671  * hanging off the related VM object instead of the passed pmap, then we
4672  * share the page table page from the VM object's pmap into the current pmap.
4673  *
4674  * NOTE: This routine MUST insert the page into the pmap now, it cannot
4675  *	 lazy-evaluate.
4676  *
4677  * NOTE: If (m) is PG_UNMANAGED it may also be a temporary fake vm_page_t.
4678  *	 never record it.
4679  */
4680 void
4681 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
4682 	   boolean_t wired, vm_map_entry_t entry)
4683 {
4684 	pv_entry_t pt_pv;	/* page table */
4685 	pv_entry_t pte_pv;	/* page table entry */
4686 	vm_pindex_t *pte_placemark;
4687 	pt_entry_t *ptep;
4688 	vm_paddr_t opa;
4689 	pt_entry_t origpte, newpte;
4690 	vm_paddr_t pa;
4691 
4692 	if (pmap == NULL)
4693 		return;
4694 	va = trunc_page(va);
4695 #ifdef PMAP_DIAGNOSTIC
4696 	if (va >= KvaEnd)
4697 		panic("pmap_enter: toobig");
4698 	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
4699 		panic("pmap_enter: invalid to pmap_enter page table "
4700 		      "pages (va: 0x%lx)", va);
4701 #endif
4702 	if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
4703 		kprintf("Warning: pmap_enter called on UVA with "
4704 			"kernel_pmap\n");
4705 #ifdef DDB
4706 		db_print_backtrace();
4707 #endif
4708 	}
4709 	if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
4710 		kprintf("Warning: pmap_enter called on KVA without"
4711 			"kernel_pmap\n");
4712 #ifdef DDB
4713 		db_print_backtrace();
4714 #endif
4715 	}
4716 
4717 	/*
4718 	 * Get locked PV entries for our new page table entry (pte_pv or
4719 	 * pte_placemark) and for its parent page table (pt_pv).  We need
4720 	 * the parent so we can resolve the location of the ptep.
4721 	 *
4722 	 * Only hardware MMU actions can modify the ptep out from
4723 	 * under us.
4724 	 *
4725 	 * if (m) is fictitious or unmanaged we do not create a managing
4726 	 * pte_pv for it.  Any pre-existing page's management state must
4727 	 * match (avoiding code complexity).
4728 	 *
4729 	 * If the pmap is still being initialized we assume existing
4730 	 * page tables.
4731 	 *
4732 	 * Kernel mapppings do not track page table pages (i.e. pt_pv).
4733 	 *
4734 	 * WARNING! If replacing a managed mapping with an unmanaged mapping
4735 	 *	    pte_pv will wind up being non-NULL and must be handled
4736 	 *	    below.
4737 	 */
4738 	if (pmap_initialized == FALSE) {
4739 		pte_pv = NULL;
4740 		pt_pv = NULL;
4741 		pte_placemark = NULL;
4742 		ptep = vtopte(va);
4743 		origpte = *ptep;
4744 	} else if (m->flags & (/*PG_FICTITIOUS |*/ PG_UNMANAGED)) { /* XXX */
4745 		pte_pv = pv_get(pmap, pmap_pte_pindex(va), &pte_placemark);
4746 		KKASSERT(pte_pv == NULL);
4747 		if (va >= VM_MAX_USER_ADDRESS) {
4748 			pt_pv = NULL;
4749 			ptep = vtopte(va);
4750 		} else {
4751 			pt_pv = pmap_allocpte_seg(pmap, pmap_pt_pindex(va),
4752 						  NULL, entry, va);
4753 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
4754 		}
4755 		origpte = *ptep;
4756 		cpu_ccfence();
4757 		KASSERT(origpte == 0 ||
4758 			 (origpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0,
4759 			 ("Invalid PTE 0x%016jx @ 0x%016jx\n", origpte, va));
4760 	} else {
4761 		if (va >= VM_MAX_USER_ADDRESS) {
4762 			/*
4763 			 * Kernel map, pv_entry-tracked.
4764 			 */
4765 			pt_pv = NULL;
4766 			pte_pv = pmap_allocpte(pmap, pmap_pte_pindex(va), NULL);
4767 			ptep = vtopte(va);
4768 		} else {
4769 			/*
4770 			 * User map
4771 			 */
4772 			pte_pv = pmap_allocpte_seg(pmap, pmap_pte_pindex(va),
4773 						   &pt_pv, entry, va);
4774 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
4775 		}
4776 		pte_placemark = NULL;	/* safety */
4777 		origpte = *ptep;
4778 		cpu_ccfence();
4779 		KASSERT(origpte == 0 ||
4780 			 (origpte & pmap->pmap_bits[PG_MANAGED_IDX]),
4781 			 ("Invalid PTE 0x%016jx @ 0x%016jx\n", origpte, va));
4782 	}
4783 
4784 	pa = VM_PAGE_TO_PHYS(m);
4785 	opa = origpte & PG_FRAME;
4786 
4787 	/*
4788 	 * Calculate the new PTE.  Note that pte_pv alone does not mean
4789 	 * the new pte_pv is managed, it could exist because the old pte
4790 	 * was managed even if the new one is not.
4791 	 */
4792 	newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) |
4793 		 pmap->pmap_bits[PG_V_IDX] | pmap->pmap_bits[PG_A_IDX]);
4794 	if (wired)
4795 		newpte |= pmap->pmap_bits[PG_W_IDX];
4796 	if (va < VM_MAX_USER_ADDRESS)
4797 		newpte |= pmap->pmap_bits[PG_U_IDX];
4798 	if (pte_pv && (m->flags & (/*PG_FICTITIOUS |*/ PG_UNMANAGED)) == 0)
4799 		newpte |= pmap->pmap_bits[PG_MANAGED_IDX];
4800 //	if (pmap == &kernel_pmap)
4801 //		newpte |= pgeflag;
4802 	newpte |= pmap->pmap_cache_bits[m->pat_mode];
4803 	if (m->flags & PG_FICTITIOUS)
4804 		newpte |= pmap->pmap_bits[PG_DEVICE_IDX];
4805 
4806 	/*
4807 	 * It is possible for multiple faults to occur in threaded
4808 	 * environments, the existing pte might be correct.
4809 	 */
4810 	if (((origpte ^ newpte) &
4811 	    ~(pt_entry_t)(pmap->pmap_bits[PG_M_IDX] |
4812 			  pmap->pmap_bits[PG_A_IDX])) == 0) {
4813 		goto done;
4814 	}
4815 
4816 	/*
4817 	 * Ok, either the address changed or the protection or wiring
4818 	 * changed.
4819 	 *
4820 	 * Clear the current entry, interlocking the removal.  For managed
4821 	 * pte's this will also flush the modified state to the vm_page.
4822 	 * Atomic ops are mandatory in order to ensure that PG_M events are
4823 	 * not lost during any transition.
4824 	 *
4825 	 * WARNING: The caller has busied the new page but not the original
4826 	 *	    vm_page which we are trying to replace.  Because we hold
4827 	 *	    the pte_pv lock, but have not busied the page, PG bits
4828 	 *	    can be cleared out from under us.
4829 	 */
4830 	if (opa) {
4831 		if (origpte & pmap->pmap_bits[PG_MANAGED_IDX]) {
4832 			/*
4833 			 * Old page was managed.  Expect pte_pv to exist.
4834 			 * (it might also exist if the old page was unmanaged).
4835 			 *
4836 			 * NOTE: pt_pv won't exist for a kernel page
4837 			 *	 (managed or otherwise).
4838 			 *
4839 			 * NOTE: We may be reusing the pte_pv so we do not
4840 			 *	 destroy it in pmap_remove_pv_pte().
4841 			 */
4842 			KKASSERT(pte_pv && pte_pv->pv_m);
4843 			if (prot & VM_PROT_NOSYNC) {
4844 				pmap_remove_pv_pte(pte_pv, pt_pv, NULL, 0);
4845 			} else {
4846 				pmap_inval_bulk_t bulk;
4847 
4848 				pmap_inval_bulk_init(&bulk, pmap);
4849 				pmap_remove_pv_pte(pte_pv, pt_pv, &bulk, 0);
4850 				pmap_inval_bulk_flush(&bulk);
4851 			}
4852 			pmap_remove_pv_page(pte_pv);
4853 			/* will either set pte_pv->pv_m or pv_free() later */
4854 		} else {
4855 			/*
4856 			 * Old page was not managed.  If we have a pte_pv
4857 			 * it better not have a pv_m assigned to it.  If the
4858 			 * new page is managed the pte_pv will be destroyed
4859 			 * near the end (we need its interlock).
4860 			 *
4861 			 * NOTE: We leave the wire count on the PT page
4862 			 *	 intact for the followup enter, but adjust
4863 			 *	 the wired-pages count on the pmap.
4864 			 */
4865 			KKASSERT(pte_pv == NULL);
4866 			if (prot & VM_PROT_NOSYNC) {
4867 				/*
4868 				 * NOSYNC (no mmu sync) requested.
4869 				 */
4870 				(void)pte_load_clear(ptep);
4871 				cpu_invlpg((void *)va);
4872 			} else {
4873 				/*
4874 				 * Nominal SYNC
4875 				 */
4876 				pmap_inval_smp(pmap, va, 1, ptep, 0);
4877 			}
4878 
4879 			/*
4880 			 * We must adjust pm_stats manually for unmanaged
4881 			 * pages.
4882 			 */
4883 			if (pt_pv) {
4884 				atomic_add_long(&pmap->pm_stats.
4885 						resident_count, -1);
4886 			}
4887 			if (origpte & pmap->pmap_bits[PG_W_IDX]) {
4888 				atomic_add_long(&pmap->pm_stats.
4889 						wired_count, -1);
4890 			}
4891 		}
4892 		KKASSERT(*ptep == 0);
4893 	}
4894 
4895 #ifdef PMAP_DEBUG2
4896 	if (pmap_enter_debug > 0) {
4897 		--pmap_enter_debug;
4898 		kprintf("pmap_enter: va=%lx m=%p origpte=%lx newpte=%lx ptep=%p"
4899 			" pte_pv=%p pt_pv=%p opa=%lx prot=%02x\n",
4900 			va, m,
4901 			origpte, newpte, ptep,
4902 			pte_pv, pt_pv, opa, prot);
4903 	}
4904 #endif
4905 
4906 	if ((newpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0) {
4907 		/*
4908 		 * Entering an unmanaged page.  We must wire the pt_pv unless
4909 		 * we retained the wiring from an unmanaged page we had
4910 		 * removed (if we retained it via pte_pv that will go away
4911 		 * soon).
4912 		 */
4913 		if (pt_pv && (opa == 0 ||
4914 			      (origpte & pmap->pmap_bits[PG_MANAGED_IDX]))) {
4915 			vm_page_wire_quick(pt_pv->pv_m);
4916 		}
4917 		if (wired)
4918 			atomic_add_long(&pmap->pm_stats.wired_count, 1);
4919 
4920 		/*
4921 		 * Unmanaged pages need manual resident_count tracking.
4922 		 */
4923 		if (pt_pv) {
4924 			atomic_add_long(&pt_pv->pv_pmap->pm_stats.
4925 					resident_count, 1);
4926 		}
4927 		if (newpte & pmap->pmap_bits[PG_RW_IDX])
4928 			vm_page_flag_set(m, PG_WRITEABLE);
4929 	} else {
4930 		/*
4931 		 * Entering a managed page.  Our pte_pv takes care of the
4932 		 * PT wiring, so if we had removed an unmanaged page before
4933 		 * we must adjust.
4934 		 *
4935 		 * We have to take care of the pmap wired count ourselves.
4936 		 *
4937 		 * Enter on the PV list if part of our managed memory.
4938 		 */
4939 		KKASSERT(pte_pv && (pte_pv->pv_m == NULL || pte_pv->pv_m == m));
4940 		vm_page_spin_lock(m);
4941 		pte_pv->pv_m = m;
4942 		pmap_page_stats_adding(m);
4943 		TAILQ_INSERT_TAIL(&m->md.pv_list, pte_pv, pv_list);
4944 		vm_page_flag_set(m, PG_MAPPED);
4945 		if (newpte & pmap->pmap_bits[PG_RW_IDX])
4946 			vm_page_flag_set(m, PG_WRITEABLE);
4947 		vm_page_spin_unlock(m);
4948 
4949 		if (pt_pv && opa &&
4950 		    (origpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0) {
4951 			vm_page_unwire_quick(pt_pv->pv_m);
4952 		}
4953 
4954 		/*
4955 		 * Adjust pmap wired pages count for new entry.
4956 		 */
4957 		if (wired) {
4958 			atomic_add_long(&pte_pv->pv_pmap->pm_stats.
4959 					wired_count, 1);
4960 		}
4961 	}
4962 
4963 	/*
4964 	 * Kernel VMAs (pt_pv == NULL) require pmap invalidation interlocks.
4965 	 *
4966 	 * User VMAs do not because those will be zero->non-zero, so no
4967 	 * stale entries to worry about at this point.
4968 	 *
4969 	 * For KVM there appear to still be issues.  Theoretically we
4970 	 * should be able to scrap the interlocks entirely but we
4971 	 * get crashes.
4972 	 */
4973 	if ((prot & VM_PROT_NOSYNC) == 0 && pt_pv == NULL) {
4974 		pmap_inval_smp(pmap, va, 1, ptep, newpte);
4975 	} else {
4976 		origpte = atomic_swap_long(ptep, newpte);
4977 		if (origpte & pmap->pmap_bits[PG_M_IDX]) {
4978 			kprintf("pmap [M] race @ %016jx\n", va);
4979 			atomic_set_long(ptep, pmap->pmap_bits[PG_M_IDX]);
4980 		}
4981 		if (pt_pv == NULL)
4982 			cpu_invlpg((void *)va);
4983 	}
4984 
4985 	/*
4986 	 * Cleanup
4987 	 */
4988 done:
4989 	KKASSERT((newpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0 ||
4990 		 (m->flags & PG_MAPPED));
4991 
4992 	/*
4993 	 * Cleanup the pv entry, allowing other accessors.  If the new page
4994 	 * is not managed but we have a pte_pv (which was locking our
4995 	 * operation), we can free it now.  pte_pv->pv_m should be NULL.
4996 	 */
4997 	if (pte_pv && (newpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0) {
4998 		pv_free(pte_pv, pt_pv);
4999 	} else if (pte_pv) {
5000 		pv_put(pte_pv);
5001 	} else if (pte_placemark) {
5002 		pv_placemarker_wakeup(pmap, pte_placemark);
5003 	}
5004 	if (pt_pv)
5005 		pv_put(pt_pv);
5006 }
5007 
5008 /*
5009  * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
5010  * This code also assumes that the pmap has no pre-existing entry for this
5011  * VA.
5012  *
5013  * This code currently may only be used on user pmaps, not kernel_pmap.
5014  */
5015 void
5016 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
5017 {
5018 	pmap_enter(pmap, va, m, VM_PROT_READ, FALSE, NULL);
5019 }
5020 
5021 /*
5022  * Make a temporary mapping for a physical address.  This is only intended
5023  * to be used for panic dumps.
5024  *
5025  * The caller is responsible for calling smp_invltlb().
5026  */
5027 void *
5028 pmap_kenter_temporary(vm_paddr_t pa, long i)
5029 {
5030 	pmap_kenter_quick((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
5031 	return ((void *)crashdumpmap);
5032 }
5033 
5034 #define MAX_INIT_PT (96)
5035 
5036 /*
5037  * This routine preloads the ptes for a given object into the specified pmap.
5038  * This eliminates the blast of soft faults on process startup and
5039  * immediately after an mmap.
5040  */
5041 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
5042 
5043 void
5044 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
5045 		    vm_object_t object, vm_pindex_t pindex,
5046 		    vm_size_t size, int limit)
5047 {
5048 	struct rb_vm_page_scan_info info;
5049 	struct lwp *lp;
5050 	vm_size_t psize;
5051 
5052 	/*
5053 	 * We can't preinit if read access isn't set or there is no pmap
5054 	 * or object.
5055 	 */
5056 	if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
5057 		return;
5058 
5059 	/*
5060 	 * We can't preinit if the pmap is not the current pmap
5061 	 */
5062 	lp = curthread->td_lwp;
5063 	if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
5064 		return;
5065 
5066 	/*
5067 	 * Misc additional checks
5068 	 */
5069 	psize = x86_64_btop(size);
5070 
5071 	if ((object->type != OBJT_VNODE) ||
5072 		((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
5073 			(object->resident_page_count > MAX_INIT_PT))) {
5074 		return;
5075 	}
5076 
5077 	if (pindex + psize > object->size) {
5078 		if (object->size < pindex)
5079 			return;
5080 		psize = object->size - pindex;
5081 	}
5082 
5083 	if (psize == 0)
5084 		return;
5085 
5086 	/*
5087 	 * If everything is segment-aligned do not pre-init here.  Instead
5088 	 * allow the normal vm_fault path to pass a segment hint to
5089 	 * pmap_enter() which will then use an object-referenced shared
5090 	 * page table page.
5091 	 */
5092 	if ((addr & SEG_MASK) == 0 &&
5093 	    (ctob(psize) & SEG_MASK) == 0 &&
5094 	    (ctob(pindex) & SEG_MASK) == 0) {
5095 		return;
5096 	}
5097 
5098 	/*
5099 	 * Use a red-black scan to traverse the requested range and load
5100 	 * any valid pages found into the pmap.
5101 	 *
5102 	 * We cannot safely scan the object's memq without holding the
5103 	 * object token.
5104 	 */
5105 	info.start_pindex = pindex;
5106 	info.end_pindex = pindex + psize - 1;
5107 	info.limit = limit;
5108 	info.mpte = NULL;
5109 	info.addr = addr;
5110 	info.pmap = pmap;
5111 
5112 	vm_object_hold_shared(object);
5113 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
5114 				pmap_object_init_pt_callback, &info);
5115 	vm_object_drop(object);
5116 }
5117 
5118 static
5119 int
5120 pmap_object_init_pt_callback(vm_page_t p, void *data)
5121 {
5122 	struct rb_vm_page_scan_info *info = data;
5123 	vm_pindex_t rel_index;
5124 
5125 	/*
5126 	 * don't allow an madvise to blow away our really
5127 	 * free pages allocating pv entries.
5128 	 */
5129 	if ((info->limit & MAP_PREFAULT_MADVISE) &&
5130 		vmstats.v_free_count < vmstats.v_free_reserved) {
5131 		    return(-1);
5132 	}
5133 
5134 	/*
5135 	 * Ignore list markers and ignore pages we cannot instantly
5136 	 * busy (while holding the object token).
5137 	 */
5138 	if (p->flags & PG_MARKER)
5139 		return 0;
5140 	if (vm_page_busy_try(p, TRUE))
5141 		return 0;
5142 	if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
5143 	    (p->flags & PG_FICTITIOUS) == 0) {
5144 		if ((p->queue - p->pc) == PQ_CACHE)
5145 			vm_page_deactivate(p);
5146 		rel_index = p->pindex - info->start_pindex;
5147 		pmap_enter_quick(info->pmap,
5148 				 info->addr + x86_64_ptob(rel_index), p);
5149 	}
5150 	vm_page_wakeup(p);
5151 	lwkt_yield();
5152 	return(0);
5153 }
5154 
5155 /*
5156  * Return TRUE if the pmap is in shape to trivially pre-fault the specified
5157  * address.
5158  *
5159  * Returns FALSE if it would be non-trivial or if a pte is already loaded
5160  * into the slot.
5161  *
5162  * XXX This is safe only because page table pages are not freed.
5163  */
5164 int
5165 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
5166 {
5167 	pt_entry_t *pte;
5168 
5169 	/*spin_lock(&pmap->pm_spin);*/
5170 	if ((pte = pmap_pte(pmap, addr)) != NULL) {
5171 		if (*pte & pmap->pmap_bits[PG_V_IDX]) {
5172 			/*spin_unlock(&pmap->pm_spin);*/
5173 			return FALSE;
5174 		}
5175 	}
5176 	/*spin_unlock(&pmap->pm_spin);*/
5177 	return TRUE;
5178 }
5179 
5180 /*
5181  * Change the wiring attribute for a pmap/va pair.  The mapping must already
5182  * exist in the pmap.  The mapping may or may not be managed.  The wiring in
5183  * the page is not changed, the page is returned so the caller can adjust
5184  * its wiring (the page is not locked in any way).
5185  *
5186  * Wiring is not a hardware characteristic so there is no need to invalidate
5187  * TLB.  However, in an SMP environment we must use a locked bus cycle to
5188  * update the pte (if we are not using the pmap_inval_*() API that is)...
5189  * it's ok to do this for simple wiring changes.
5190  */
5191 vm_page_t
5192 pmap_unwire(pmap_t pmap, vm_offset_t va)
5193 {
5194 	pt_entry_t *ptep;
5195 	pv_entry_t pt_pv;
5196 	vm_paddr_t pa;
5197 	vm_page_t m;
5198 
5199 	if (pmap == NULL)
5200 		return NULL;
5201 
5202 	/*
5203 	 * Assume elements in the kernel pmap are stable
5204 	 */
5205 	if (pmap == &kernel_pmap) {
5206 		if (pmap_pt(pmap, va) == 0)
5207 			return NULL;
5208 		ptep = pmap_pte_quick(pmap, va);
5209 		if (pmap_pte_v(pmap, ptep)) {
5210 			if (pmap_pte_w(pmap, ptep))
5211 				atomic_add_long(&pmap->pm_stats.wired_count,-1);
5212 			atomic_clear_long(ptep, pmap->pmap_bits[PG_W_IDX]);
5213 			pa = *ptep & PG_FRAME;
5214 			m = PHYS_TO_VM_PAGE(pa);
5215 		} else {
5216 			m = NULL;
5217 		}
5218 	} else {
5219 		/*
5220 		 * We can only [un]wire pmap-local pages (we cannot wire
5221 		 * shared pages)
5222 		 */
5223 		pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
5224 		if (pt_pv == NULL)
5225 			return NULL;
5226 
5227 		ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
5228 		if ((*ptep & pmap->pmap_bits[PG_V_IDX]) == 0) {
5229 			pv_put(pt_pv);
5230 			return NULL;
5231 		}
5232 
5233 		if (pmap_pte_w(pmap, ptep)) {
5234 			atomic_add_long(&pt_pv->pv_pmap->pm_stats.wired_count,
5235 					-1);
5236 		}
5237 		/* XXX else return NULL so caller doesn't unwire m ? */
5238 
5239 		atomic_clear_long(ptep, pmap->pmap_bits[PG_W_IDX]);
5240 
5241 		pa = *ptep & PG_FRAME;
5242 		m = PHYS_TO_VM_PAGE(pa);	/* held by wired count */
5243 		pv_put(pt_pv);
5244 	}
5245 	return m;
5246 }
5247 
5248 /*
5249  * Copy the range specified by src_addr/len from the source map to
5250  * the range dst_addr/len in the destination map.
5251  *
5252  * This routine is only advisory and need not do anything.
5253  */
5254 void
5255 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
5256 	  vm_size_t len, vm_offset_t src_addr)
5257 {
5258 }
5259 
5260 /*
5261  * pmap_zero_page:
5262  *
5263  *	Zero the specified physical page.
5264  *
5265  *	This function may be called from an interrupt and no locking is
5266  *	required.
5267  */
5268 void
5269 pmap_zero_page(vm_paddr_t phys)
5270 {
5271 	vm_offset_t va = PHYS_TO_DMAP(phys);
5272 
5273 	pagezero((void *)va);
5274 }
5275 
5276 /*
5277  * pmap_zero_page:
5278  *
5279  *	Zero part of a physical page by mapping it into memory and clearing
5280  *	its contents with bzero.
5281  *
5282  *	off and size may not cover an area beyond a single hardware page.
5283  */
5284 void
5285 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
5286 {
5287 	vm_offset_t virt = PHYS_TO_DMAP(phys);
5288 
5289 	bzero((char *)virt + off, size);
5290 }
5291 
5292 /*
5293  * pmap_copy_page:
5294  *
5295  *	Copy the physical page from the source PA to the target PA.
5296  *	This function may be called from an interrupt.  No locking
5297  *	is required.
5298  */
5299 void
5300 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
5301 {
5302 	vm_offset_t src_virt, dst_virt;
5303 
5304 	src_virt = PHYS_TO_DMAP(src);
5305 	dst_virt = PHYS_TO_DMAP(dst);
5306 	bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
5307 }
5308 
5309 /*
5310  * pmap_copy_page_frag:
5311  *
5312  *	Copy the physical page from the source PA to the target PA.
5313  *	This function may be called from an interrupt.  No locking
5314  *	is required.
5315  */
5316 void
5317 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
5318 {
5319 	vm_offset_t src_virt, dst_virt;
5320 
5321 	src_virt = PHYS_TO_DMAP(src);
5322 	dst_virt = PHYS_TO_DMAP(dst);
5323 
5324 	bcopy((char *)src_virt + (src & PAGE_MASK),
5325 	      (char *)dst_virt + (dst & PAGE_MASK),
5326 	      bytes);
5327 }
5328 
5329 /*
5330  * Returns true if the pmap's pv is one of the first 16 pvs linked to from
5331  * this page.  This count may be changed upwards or downwards in the future;
5332  * it is only necessary that true be returned for a small subset of pmaps
5333  * for proper page aging.
5334  */
5335 boolean_t
5336 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
5337 {
5338 	pv_entry_t pv;
5339 	int loops = 0;
5340 
5341 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
5342 		return FALSE;
5343 
5344 	vm_page_spin_lock(m);
5345 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5346 		if (pv->pv_pmap == pmap) {
5347 			vm_page_spin_unlock(m);
5348 			return TRUE;
5349 		}
5350 		loops++;
5351 		if (loops >= 16)
5352 			break;
5353 	}
5354 	vm_page_spin_unlock(m);
5355 	return (FALSE);
5356 }
5357 
5358 /*
5359  * Remove all pages from specified address space this aids process exit
5360  * speeds.  Also, this code may be special cased for the current process
5361  * only.
5362  */
5363 void
5364 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5365 {
5366 	pmap_remove_noinval(pmap, sva, eva);
5367 	cpu_invltlb();
5368 }
5369 
5370 /*
5371  * pmap_testbit tests bits in pte's note that the testbit/clearbit
5372  * routines are inline, and a lot of things compile-time evaluate.
5373  */
5374 static
5375 boolean_t
5376 pmap_testbit(vm_page_t m, int bit)
5377 {
5378 	pv_entry_t pv;
5379 	pt_entry_t *pte;
5380 	pmap_t pmap;
5381 
5382 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
5383 		return FALSE;
5384 
5385 	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
5386 		return FALSE;
5387 	vm_page_spin_lock(m);
5388 	if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
5389 		vm_page_spin_unlock(m);
5390 		return FALSE;
5391 	}
5392 
5393 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5394 
5395 #if defined(PMAP_DIAGNOSTIC)
5396 		if (pv->pv_pmap == NULL) {
5397 			kprintf("Null pmap (tb) at pindex: %"PRIu64"\n",
5398 			    pv->pv_pindex);
5399 			continue;
5400 		}
5401 #endif
5402 		pmap = pv->pv_pmap;
5403 
5404 		/*
5405 		 * If the bit being tested is the modified bit, then
5406 		 * mark clean_map and ptes as never
5407 		 * modified.
5408 		 *
5409 		 * WARNING!  Because we do not lock the pv, *pte can be in a
5410 		 *	     state of flux.  Despite this the value of *pte
5411 		 *	     will still be related to the vm_page in some way
5412 		 *	     because the pv cannot be destroyed as long as we
5413 		 *	     hold the vm_page spin lock.
5414 		 */
5415 		if (bit == PG_A_IDX || bit == PG_M_IDX) {
5416 				//& (pmap->pmap_bits[PG_A_IDX] | pmap->pmap_bits[PG_M_IDX])) {
5417 			if (!pmap_track_modified(pv->pv_pindex))
5418 				continue;
5419 		}
5420 
5421 		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5422 		if (*pte & pmap->pmap_bits[bit]) {
5423 			vm_page_spin_unlock(m);
5424 			return TRUE;
5425 		}
5426 	}
5427 	vm_page_spin_unlock(m);
5428 	return (FALSE);
5429 }
5430 
5431 /*
5432  * This routine is used to modify bits in ptes.  Only one bit should be
5433  * specified.  PG_RW requires special handling.
5434  *
5435  * Caller must NOT hold any spin locks
5436  */
5437 static __inline
5438 void
5439 pmap_clearbit(vm_page_t m, int bit_index)
5440 {
5441 	pv_entry_t pv;
5442 	pt_entry_t *pte;
5443 	pt_entry_t pbits;
5444 	pmap_t pmap;
5445 
5446 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
5447 		if (bit_index == PG_RW_IDX)
5448 			vm_page_flag_clear(m, PG_WRITEABLE);
5449 		return;
5450 	}
5451 
5452 	/*
5453 	 * PG_M or PG_A case
5454 	 *
5455 	 * Loop over all current mappings setting/clearing as appropos If
5456 	 * setting RO do we need to clear the VAC?
5457 	 *
5458 	 * NOTE: When clearing PG_M we could also (not implemented) drop
5459 	 *	 through to the PG_RW code and clear PG_RW too, forcing
5460 	 *	 a fault on write to redetect PG_M for virtual kernels, but
5461 	 *	 it isn't necessary since virtual kernels invalidate the
5462 	 *	 pte when they clear the VPTE_M bit in their virtual page
5463 	 *	 tables.
5464 	 *
5465 	 * NOTE: Does not re-dirty the page when clearing only PG_M.
5466 	 *
5467 	 * NOTE: Because we do not lock the pv, *pte can be in a state of
5468 	 *	 flux.  Despite this the value of *pte is still somewhat
5469 	 *	 related while we hold the vm_page spin lock.
5470 	 *
5471 	 *	 *pte can be zero due to this race.  Since we are clearing
5472 	 *	 bits we basically do no harm when this race occurs.
5473 	 */
5474 	if (bit_index != PG_RW_IDX) {
5475 		vm_page_spin_lock(m);
5476 		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5477 #if defined(PMAP_DIAGNOSTIC)
5478 			if (pv->pv_pmap == NULL) {
5479 				kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
5480 				    pv->pv_pindex);
5481 				continue;
5482 			}
5483 #endif
5484 			pmap = pv->pv_pmap;
5485 			pte = pmap_pte_quick(pv->pv_pmap,
5486 					     pv->pv_pindex << PAGE_SHIFT);
5487 			pbits = *pte;
5488 			if (pbits & pmap->pmap_bits[bit_index])
5489 				atomic_clear_long(pte, pmap->pmap_bits[bit_index]);
5490 		}
5491 		vm_page_spin_unlock(m);
5492 		return;
5493 	}
5494 
5495 	/*
5496 	 * Clear PG_RW.  Also clears PG_M and marks the page dirty if PG_M
5497 	 * was set.
5498 	 */
5499 restart:
5500 	vm_page_spin_lock(m);
5501 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5502 		/*
5503 		 * don't write protect pager mappings
5504 		 */
5505 		if (!pmap_track_modified(pv->pv_pindex))
5506 			continue;
5507 
5508 #if defined(PMAP_DIAGNOSTIC)
5509 		if (pv->pv_pmap == NULL) {
5510 			kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
5511 				pv->pv_pindex);
5512 			continue;
5513 		}
5514 #endif
5515 		pmap = pv->pv_pmap;
5516 
5517 		/*
5518 		 * Skip pages which do not have PG_RW set.
5519 		 */
5520 		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5521 		if ((*pte & pmap->pmap_bits[PG_RW_IDX]) == 0)
5522 			continue;
5523 
5524 		/*
5525 		 * We must lock the PV to be able to safely test the pte.
5526 		 */
5527 		if (pv_hold_try(pv)) {
5528 			vm_page_spin_unlock(m);
5529 		} else {
5530 			vm_page_spin_unlock(m);
5531 			pv_lock(pv);	/* held, now do a blocking lock */
5532 			pv_put(pv);
5533 			goto restart;
5534 		}
5535 
5536 		/*
5537 		 * Reload pte after acquiring pv.
5538 		 */
5539 		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5540 #if 0
5541 		if ((*pte & pmap->pmap_bits[PG_RW_IDX]) == 0) {
5542 			pv_put(pv);
5543 			goto restart;
5544 		}
5545 #endif
5546 
5547 		KKASSERT(pv->pv_pmap == pmap && pv->pv_m == m);
5548 		for (;;) {
5549 			pt_entry_t nbits;
5550 
5551 			pbits = *pte;
5552 			cpu_ccfence();
5553 			nbits = pbits & ~(pmap->pmap_bits[PG_RW_IDX] |
5554 					  pmap->pmap_bits[PG_M_IDX]);
5555 			if (pmap_inval_smp_cmpset(pmap,
5556 				     ((vm_offset_t)pv->pv_pindex << PAGE_SHIFT),
5557 				     pte, pbits, nbits)) {
5558 				break;
5559 			}
5560 			cpu_pause();
5561 		}
5562 
5563 		/*
5564 		 * If PG_M was found to be set while we were clearing PG_RW
5565 		 * we also clear PG_M (done above) and mark the page dirty.
5566 		 * Callers expect this behavior.
5567 		 *
5568 		 * we lost pv so it cannot be used as an iterator.  In fact,
5569 		 * because we couldn't necessarily lock it atomically it may
5570 		 * have moved within the list and ALSO cannot be used as an
5571 		 * iterator.
5572 		 */
5573 		vm_page_spin_lock(m);
5574 		if (pbits & pmap->pmap_bits[PG_M_IDX])
5575 			vm_page_dirty(m);
5576 		vm_page_spin_unlock(m);
5577 		pv_put(pv);
5578 		goto restart;
5579 	}
5580 	if (bit_index == PG_RW_IDX)
5581 		vm_page_flag_clear(m, PG_WRITEABLE);
5582 	vm_page_spin_unlock(m);
5583 }
5584 
5585 /*
5586  * Lower the permission for all mappings to a given page.
5587  *
5588  * Page must be busied by caller.  Because page is busied by caller this
5589  * should not be able to race a pmap_enter().
5590  */
5591 void
5592 pmap_page_protect(vm_page_t m, vm_prot_t prot)
5593 {
5594 	/* JG NX support? */
5595 	if ((prot & VM_PROT_WRITE) == 0) {
5596 		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
5597 			/*
5598 			 * NOTE: pmap_clearbit(.. PG_RW) also clears
5599 			 *	 the PG_WRITEABLE flag in (m).
5600 			 */
5601 			pmap_clearbit(m, PG_RW_IDX);
5602 		} else {
5603 			pmap_remove_all(m);
5604 		}
5605 	}
5606 }
5607 
5608 vm_paddr_t
5609 pmap_phys_address(vm_pindex_t ppn)
5610 {
5611 	return (x86_64_ptob(ppn));
5612 }
5613 
5614 /*
5615  * Return a count of reference bits for a page, clearing those bits.
5616  * It is not necessary for every reference bit to be cleared, but it
5617  * is necessary that 0 only be returned when there are truly no
5618  * reference bits set.
5619  *
5620  * XXX: The exact number of bits to check and clear is a matter that
5621  * should be tested and standardized at some point in the future for
5622  * optimal aging of shared pages.
5623  *
5624  * This routine may not block.
5625  */
5626 int
5627 pmap_ts_referenced(vm_page_t m)
5628 {
5629 	pv_entry_t pv;
5630 	pt_entry_t *pte;
5631 	pmap_t pmap;
5632 	int rtval = 0;
5633 
5634 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
5635 		return (rtval);
5636 
5637 	vm_page_spin_lock(m);
5638 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5639 		if (!pmap_track_modified(pv->pv_pindex))
5640 			continue;
5641 		pmap = pv->pv_pmap;
5642 		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5643 		if (pte && (*pte & pmap->pmap_bits[PG_A_IDX])) {
5644 			atomic_clear_long(pte, pmap->pmap_bits[PG_A_IDX]);
5645 			rtval++;
5646 			if (rtval > 4)
5647 				break;
5648 		}
5649 	}
5650 	vm_page_spin_unlock(m);
5651 	return (rtval);
5652 }
5653 
5654 /*
5655  *	pmap_is_modified:
5656  *
5657  *	Return whether or not the specified physical page was modified
5658  *	in any physical maps.
5659  */
5660 boolean_t
5661 pmap_is_modified(vm_page_t m)
5662 {
5663 	boolean_t res;
5664 
5665 	res = pmap_testbit(m, PG_M_IDX);
5666 	return (res);
5667 }
5668 
5669 /*
5670  *	Clear the modify bits on the specified physical page.
5671  */
5672 void
5673 pmap_clear_modify(vm_page_t m)
5674 {
5675 	pmap_clearbit(m, PG_M_IDX);
5676 }
5677 
5678 /*
5679  *	pmap_clear_reference:
5680  *
5681  *	Clear the reference bit on the specified physical page.
5682  */
5683 void
5684 pmap_clear_reference(vm_page_t m)
5685 {
5686 	pmap_clearbit(m, PG_A_IDX);
5687 }
5688 
5689 /*
5690  * Miscellaneous support routines follow
5691  */
5692 
5693 static
5694 void
5695 i386_protection_init(void)
5696 {
5697 	uint64_t *kp;
5698 	int prot;
5699 
5700 	/*
5701 	 * NX supported? (boot time loader.conf override only)
5702 	 */
5703 	TUNABLE_INT_FETCH("machdep.pmap_nx_enable", &pmap_nx_enable);
5704 	if (pmap_nx_enable == 0 || (amd_feature & AMDID_NX) == 0)
5705 		pmap_bits_default[PG_NX_IDX] = 0;
5706 
5707 	/*
5708 	 * 0 is basically read-only access, but also set the NX (no-execute)
5709 	 * bit when VM_PROT_EXECUTE is not specified.
5710 	 */
5711 	kp = protection_codes;
5712 	for (prot = 0; prot < PROTECTION_CODES_SIZE; prot++) {
5713 		switch (prot) {
5714 		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
5715 			/*
5716 			 * This case handled elsewhere
5717 			 */
5718 			*kp++ = 0;
5719 			break;
5720 		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
5721 			/*
5722 			 * Read-only is 0|NX
5723 			 */
5724 			*kp++ = pmap_bits_default[PG_NX_IDX];
5725 			break;
5726 		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
5727 		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
5728 			/*
5729 			 * Execute requires read access
5730 			 */
5731 			*kp++ = 0;
5732 			break;
5733 		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
5734 		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
5735 			/*
5736 			 * Write without execute is RW|NX
5737 			 */
5738 			*kp++ = pmap_bits_default[PG_RW_IDX] |
5739 				pmap_bits_default[PG_NX_IDX];
5740 			break;
5741 		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
5742 		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
5743 			/*
5744 			 * Write with execute is RW
5745 			 */
5746 			*kp++ = pmap_bits_default[PG_RW_IDX];
5747 			break;
5748 		}
5749 	}
5750 }
5751 
5752 /*
5753  * Map a set of physical memory pages into the kernel virtual
5754  * address space. Return a pointer to where it is mapped. This
5755  * routine is intended to be used for mapping device memory,
5756  * NOT real memory.
5757  *
5758  * NOTE: We can't use pgeflag unless we invalidate the pages one at
5759  *	 a time.
5760  *
5761  * NOTE: The PAT attributes {WRITE_BACK, WRITE_THROUGH, UNCACHED, UNCACHEABLE}
5762  *	 work whether the cpu supports PAT or not.  The remaining PAT
5763  *	 attributes {WRITE_PROTECTED, WRITE_COMBINING} only work if the cpu
5764  *	 supports PAT.
5765  */
5766 void *
5767 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
5768 {
5769 	return(pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5770 }
5771 
5772 void *
5773 pmap_mapdev_uncacheable(vm_paddr_t pa, vm_size_t size)
5774 {
5775 	return(pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
5776 }
5777 
5778 void *
5779 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
5780 {
5781 	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5782 }
5783 
5784 /*
5785  * Map a set of physical memory pages into the kernel virtual
5786  * address space. Return a pointer to where it is mapped. This
5787  * routine is intended to be used for mapping device memory,
5788  * NOT real memory.
5789  */
5790 void *
5791 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
5792 {
5793 	vm_offset_t va, tmpva, offset;
5794 	pt_entry_t *pte;
5795 	vm_size_t tmpsize;
5796 
5797 	offset = pa & PAGE_MASK;
5798 	size = roundup(offset + size, PAGE_SIZE);
5799 
5800 	va = kmem_alloc_nofault(&kernel_map, size, VM_SUBSYS_MAPDEV, PAGE_SIZE);
5801 	if (va == 0)
5802 		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
5803 
5804 	pa = pa & ~PAGE_MASK;
5805 	for (tmpva = va, tmpsize = size; tmpsize > 0;) {
5806 		pte = vtopte(tmpva);
5807 		*pte = pa |
5808 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
5809 		    kernel_pmap.pmap_bits[PG_V_IDX] | /* pgeflag | */
5810 		    kernel_pmap.pmap_cache_bits[mode];
5811 		tmpsize -= PAGE_SIZE;
5812 		tmpva += PAGE_SIZE;
5813 		pa += PAGE_SIZE;
5814 	}
5815 	pmap_invalidate_range(&kernel_pmap, va, va + size);
5816 	pmap_invalidate_cache_range(va, va + size);
5817 
5818 	return ((void *)(va + offset));
5819 }
5820 
5821 void
5822 pmap_unmapdev(vm_offset_t va, vm_size_t size)
5823 {
5824 	vm_offset_t base, offset;
5825 
5826 	base = va & ~PAGE_MASK;
5827 	offset = va & PAGE_MASK;
5828 	size = roundup(offset + size, PAGE_SIZE);
5829 	pmap_qremove(va, size >> PAGE_SHIFT);
5830 	kmem_free(&kernel_map, base, size);
5831 }
5832 
5833 /*
5834  * Sets the memory attribute for the specified page.
5835  */
5836 void
5837 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5838 {
5839 
5840     m->pat_mode = ma;
5841 
5842     /*
5843      * If "m" is a normal page, update its direct mapping.  This update
5844      * can be relied upon to perform any cache operations that are
5845      * required for data coherence.
5846      */
5847     if ((m->flags & PG_FICTITIOUS) == 0)
5848         pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), 1, m->pat_mode);
5849 }
5850 
5851 /*
5852  * Change the PAT attribute on an existing kernel memory map.  Caller
5853  * must ensure that the virtual memory in question is not accessed
5854  * during the adjustment.
5855  */
5856 void
5857 pmap_change_attr(vm_offset_t va, vm_size_t count, int mode)
5858 {
5859 	pt_entry_t *pte;
5860 	vm_offset_t base;
5861 	int changed = 0;
5862 
5863 	if (va == 0)
5864 		panic("pmap_change_attr: va is NULL");
5865 	base = trunc_page(va);
5866 
5867 	while (count) {
5868 		pte = vtopte(va);
5869 		*pte = (*pte & ~(pt_entry_t)(kernel_pmap.pmap_cache_mask)) |
5870 		       kernel_pmap.pmap_cache_bits[mode];
5871 		--count;
5872 		va += PAGE_SIZE;
5873 	}
5874 
5875 	changed = 1;	/* XXX: not optimal */
5876 
5877 	/*
5878 	 * Flush CPU caches if required to make sure any data isn't cached that
5879 	 * shouldn't be, etc.
5880 	 */
5881 	if (changed) {
5882 		pmap_invalidate_range(&kernel_pmap, base, va);
5883 		pmap_invalidate_cache_range(base, va);
5884 	}
5885 }
5886 
5887 /*
5888  * perform the pmap work for mincore
5889  */
5890 int
5891 pmap_mincore(pmap_t pmap, vm_offset_t addr)
5892 {
5893 	pt_entry_t *ptep, pte;
5894 	vm_page_t m;
5895 	int val = 0;
5896 
5897 	ptep = pmap_pte(pmap, addr);
5898 
5899 	if (ptep && (pte = *ptep) != 0) {
5900 		vm_offset_t pa;
5901 
5902 		val = MINCORE_INCORE;
5903 		if ((pte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0)
5904 			goto done;
5905 
5906 		pa = pte & PG_FRAME;
5907 
5908 		if (pte & pmap->pmap_bits[PG_DEVICE_IDX])
5909 			m = NULL;
5910 		else
5911 			m = PHYS_TO_VM_PAGE(pa);
5912 
5913 		/*
5914 		 * Modified by us
5915 		 */
5916 		if (pte & pmap->pmap_bits[PG_M_IDX])
5917 			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
5918 		/*
5919 		 * Modified by someone
5920 		 */
5921 		else if (m && (m->dirty || pmap_is_modified(m)))
5922 			val |= MINCORE_MODIFIED_OTHER;
5923 		/*
5924 		 * Referenced by us
5925 		 */
5926 		if (pte & pmap->pmap_bits[PG_A_IDX])
5927 			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
5928 
5929 		/*
5930 		 * Referenced by someone
5931 		 */
5932 		else if (m && ((m->flags & PG_REFERENCED) ||
5933 				pmap_ts_referenced(m))) {
5934 			val |= MINCORE_REFERENCED_OTHER;
5935 			vm_page_flag_set(m, PG_REFERENCED);
5936 		}
5937 	}
5938 done:
5939 
5940 	return val;
5941 }
5942 
5943 /*
5944  * Replace p->p_vmspace with a new one.  If adjrefs is non-zero the new
5945  * vmspace will be ref'd and the old one will be deref'd.
5946  *
5947  * The vmspace for all lwps associated with the process will be adjusted
5948  * and cr3 will be reloaded if any lwp is the current lwp.
5949  *
5950  * The process must hold the vmspace->vm_map.token for oldvm and newvm
5951  */
5952 void
5953 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
5954 {
5955 	struct vmspace *oldvm;
5956 	struct lwp *lp;
5957 
5958 	oldvm = p->p_vmspace;
5959 	if (oldvm != newvm) {
5960 		if (adjrefs)
5961 			vmspace_ref(newvm);
5962 		p->p_vmspace = newvm;
5963 		KKASSERT(p->p_nthreads == 1);
5964 		lp = RB_ROOT(&p->p_lwp_tree);
5965 		pmap_setlwpvm(lp, newvm);
5966 		if (adjrefs)
5967 			vmspace_rel(oldvm);
5968 	}
5969 }
5970 
5971 /*
5972  * Set the vmspace for a LWP.  The vmspace is almost universally set the
5973  * same as the process vmspace, but virtual kernels need to swap out contexts
5974  * on a per-lwp basis.
5975  *
5976  * Caller does not necessarily hold any vmspace tokens.  Caller must control
5977  * the lwp (typically be in the context of the lwp).  We use a critical
5978  * section to protect against statclock and hardclock (statistics collection).
5979  */
5980 void
5981 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
5982 {
5983 	struct vmspace *oldvm;
5984 	struct pmap *pmap;
5985 
5986 	oldvm = lp->lwp_vmspace;
5987 
5988 	if (oldvm != newvm) {
5989 		crit_enter();
5990 		KKASSERT((newvm->vm_refcnt & VM_REF_DELETED) == 0);
5991 		lp->lwp_vmspace = newvm;
5992 		if (curthread->td_lwp == lp) {
5993 			pmap = vmspace_pmap(newvm);
5994 			ATOMIC_CPUMASK_ORBIT(pmap->pm_active, mycpu->gd_cpuid);
5995 			if (pmap->pm_active_lock & CPULOCK_EXCL)
5996 				pmap_interlock_wait(newvm);
5997 #if defined(SWTCH_OPTIM_STATS)
5998 			tlb_flush_count++;
5999 #endif
6000 			if (pmap->pmap_bits[TYPE_IDX] == REGULAR_PMAP) {
6001 				curthread->td_pcb->pcb_cr3 = vtophys(pmap->pm_pml4);
6002 			} else if (pmap->pmap_bits[TYPE_IDX] == EPT_PMAP) {
6003 				curthread->td_pcb->pcb_cr3 = KPML4phys;
6004 			} else {
6005 				panic("pmap_setlwpvm: unknown pmap type\n");
6006 			}
6007 			load_cr3(curthread->td_pcb->pcb_cr3);
6008 			pmap = vmspace_pmap(oldvm);
6009 			ATOMIC_CPUMASK_NANDBIT(pmap->pm_active,
6010 					       mycpu->gd_cpuid);
6011 		}
6012 		crit_exit();
6013 	}
6014 }
6015 
6016 /*
6017  * Called when switching to a locked pmap, used to interlock against pmaps
6018  * undergoing modifications to prevent us from activating the MMU for the
6019  * target pmap until all such modifications have completed.  We have to do
6020  * this because the thread making the modifications has already set up its
6021  * SMP synchronization mask.
6022  *
6023  * This function cannot sleep!
6024  *
6025  * No requirements.
6026  */
6027 void
6028 pmap_interlock_wait(struct vmspace *vm)
6029 {
6030 	struct pmap *pmap = &vm->vm_pmap;
6031 
6032 	if (pmap->pm_active_lock & CPULOCK_EXCL) {
6033 		crit_enter();
6034 		KKASSERT(curthread->td_critcount >= 2);
6035 		DEBUG_PUSH_INFO("pmap_interlock_wait");
6036 		while (pmap->pm_active_lock & CPULOCK_EXCL) {
6037 			cpu_ccfence();
6038 			lwkt_process_ipiq();
6039 		}
6040 		DEBUG_POP_INFO();
6041 		crit_exit();
6042 	}
6043 }
6044 
6045 vm_offset_t
6046 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
6047 {
6048 
6049 	if ((obj == NULL) || (size < NBPDR) ||
6050 	    ((obj->type != OBJT_DEVICE) && (obj->type != OBJT_MGTDEVICE))) {
6051 		return addr;
6052 	}
6053 
6054 	addr = roundup2(addr, NBPDR);
6055 	return addr;
6056 }
6057 
6058 /*
6059  * Used by kmalloc/kfree, page already exists at va
6060  */
6061 vm_page_t
6062 pmap_kvtom(vm_offset_t va)
6063 {
6064 	pt_entry_t *ptep = vtopte(va);
6065 
6066 	KKASSERT((*ptep & kernel_pmap.pmap_bits[PG_DEVICE_IDX]) == 0);
6067 	return(PHYS_TO_VM_PAGE(*ptep & PG_FRAME));
6068 }
6069 
6070 /*
6071  * Initialize machine-specific shared page directory support.  This
6072  * is executed when a VM object is created.
6073  */
6074 void
6075 pmap_object_init(vm_object_t object)
6076 {
6077 	object->md.pmap_rw = NULL;
6078 	object->md.pmap_ro = NULL;
6079 }
6080 
6081 /*
6082  * Clean up machine-specific shared page directory support.  This
6083  * is executed when a VM object is destroyed.
6084  */
6085 void
6086 pmap_object_free(vm_object_t object)
6087 {
6088 	pmap_t pmap;
6089 
6090 	if ((pmap = object->md.pmap_rw) != NULL) {
6091 		object->md.pmap_rw = NULL;
6092 		pmap_remove_noinval(pmap,
6093 				  VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
6094 		CPUMASK_ASSZERO(pmap->pm_active);
6095 		pmap_release(pmap);
6096 		pmap_puninit(pmap);
6097 		kfree(pmap, M_OBJPMAP);
6098 	}
6099 	if ((pmap = object->md.pmap_ro) != NULL) {
6100 		object->md.pmap_ro = NULL;
6101 		pmap_remove_noinval(pmap,
6102 				  VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
6103 		CPUMASK_ASSZERO(pmap->pm_active);
6104 		pmap_release(pmap);
6105 		pmap_puninit(pmap);
6106 		kfree(pmap, M_OBJPMAP);
6107 	}
6108 }
6109 
6110 /*
6111  * pmap_pgscan_callback - Used by pmap_pgscan to acquire the related
6112  * VM page and issue a pginfo->callback.
6113  *
6114  * We are expected to dispose of any non-NULL pte_pv.
6115  */
6116 static
6117 void
6118 pmap_pgscan_callback(pmap_t pmap, struct pmap_scan_info *info,
6119 		      pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
6120 		      pv_entry_t pt_pv, int sharept,
6121 		      vm_offset_t va, pt_entry_t *ptep, void *arg)
6122 {
6123 	struct pmap_pgscan_info *pginfo = arg;
6124 	vm_page_t m;
6125 
6126 	if (pte_pv) {
6127 		/*
6128 		 * Try to busy the page while we hold the pte_pv locked.
6129 		 */
6130 		KKASSERT(pte_pv->pv_m);
6131 		m = PHYS_TO_VM_PAGE(*ptep & PG_FRAME);
6132 		if (vm_page_busy_try(m, TRUE) == 0) {
6133 			if (m == PHYS_TO_VM_PAGE(*ptep & PG_FRAME)) {
6134 				/*
6135 				 * The callback is issued with the pte_pv
6136 				 * unlocked and put away, and the pt_pv
6137 				 * unlocked.
6138 				 */
6139 				pv_put(pte_pv);
6140 				if (pt_pv) {
6141 					vm_page_wire_quick(pt_pv->pv_m);
6142 					pv_unlock(pt_pv);
6143 				}
6144 				if (pginfo->callback(pginfo, va, m) < 0)
6145 					info->stop = 1;
6146 				if (pt_pv) {
6147 					pv_lock(pt_pv);
6148 					vm_page_unwire_quick(pt_pv->pv_m);
6149 				}
6150 			} else {
6151 				vm_page_wakeup(m);
6152 				pv_put(pte_pv);
6153 			}
6154 		} else {
6155 			++pginfo->busycount;
6156 			pv_put(pte_pv);
6157 		}
6158 	} else {
6159 		/*
6160 		 * Shared page table or unmanaged page (sharept or !sharept)
6161 		 */
6162 		pv_placemarker_wakeup(pmap, pte_placemark);
6163 	}
6164 }
6165 
6166 void
6167 pmap_pgscan(struct pmap_pgscan_info *pginfo)
6168 {
6169 	struct pmap_scan_info info;
6170 
6171 	pginfo->offset = pginfo->beg_addr;
6172 	info.pmap = pginfo->pmap;
6173 	info.sva = pginfo->beg_addr;
6174 	info.eva = pginfo->end_addr;
6175 	info.func = pmap_pgscan_callback;
6176 	info.arg = pginfo;
6177 	pmap_scan(&info, 0);
6178 	if (info.stop == 0)
6179 		pginfo->offset = pginfo->end_addr;
6180 }
6181 
6182 /*
6183  * Wait for a placemarker that we do not own to clear.  The placemarker
6184  * in question is not necessarily set to the pindex we want, we may have
6185  * to wait on the element because we want to reserve it ourselves.
6186  *
6187  * NOTE: PM_PLACEMARK_WAKEUP sets a bit which is already set in
6188  *	 PM_NOPLACEMARK, so it does not interfere with placemarks
6189  *	 which have already been woken up.
6190  */
6191 static
6192 void
6193 pv_placemarker_wait(pmap_t pmap, vm_pindex_t *pmark)
6194 {
6195 	if (*pmark != PM_NOPLACEMARK) {
6196 		atomic_set_long(pmark, PM_PLACEMARK_WAKEUP);
6197 		tsleep_interlock(pmark, 0);
6198 		if (*pmark != PM_NOPLACEMARK)
6199 			tsleep(pmark, PINTERLOCKED, "pvplw", 0);
6200 	}
6201 }
6202 
6203 /*
6204  * Wakeup a placemarker that we own.  Replace the entry with
6205  * PM_NOPLACEMARK and issue a wakeup() if necessary.
6206  */
6207 static
6208 void
6209 pv_placemarker_wakeup(pmap_t pmap, vm_pindex_t *pmark)
6210 {
6211 	vm_pindex_t pindex;
6212 
6213 	pindex = atomic_swap_long(pmark, PM_NOPLACEMARK);
6214 	KKASSERT(pindex != PM_NOPLACEMARK);
6215 	if (pindex & PM_PLACEMARK_WAKEUP)
6216 		wakeup(pmark);
6217 }
6218