xref: /dragonfly/sys/platform/pc64/x86_64/pmap.c (revision 6ca88057)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1994 David Greenman
5  * Copyright (c) 2003 Peter Wemm
6  * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
7  * Copyright (c) 2008, 2009 The DragonFly Project.
8  * Copyright (c) 2008, 2009 Jordan Gordeev.
9  * Copyright (c) 2011-2012 Matthew Dillon
10  * All rights reserved.
11  *
12  * This code is derived from software contributed to Berkeley by
13  * the Systems Programming Group of the University of Utah Computer
14  * Science Department and William Jolitz of UUNET Technologies Inc.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  */
44 /*
45  * Manage physical address maps for x86-64 systems.
46  */
47 
48 #if 0 /* JG */
49 #include "opt_disable_pse.h"
50 #include "opt_pmap.h"
51 #endif
52 #include "opt_msgbuf.h"
53 
54 #include <sys/param.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/msgbuf.h>
58 #include <sys/vmmeter.h>
59 #include <sys/mman.h>
60 #include <sys/systm.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <sys/sysctl.h>
65 #include <sys/lock.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_object.h>
70 #include <vm/vm_extern.h>
71 #include <vm/vm_pageout.h>
72 #include <vm/vm_pager.h>
73 #include <vm/vm_zone.h>
74 
75 #include <sys/user.h>
76 #include <sys/thread2.h>
77 #include <sys/sysref2.h>
78 #include <sys/spinlock2.h>
79 #include <vm/vm_page2.h>
80 
81 #include <machine/cputypes.h>
82 #include <machine/md_var.h>
83 #include <machine/specialreg.h>
84 #include <machine/smp.h>
85 #include <machine_base/apic/apicreg.h>
86 #include <machine/globaldata.h>
87 #include <machine/pmap.h>
88 #include <machine/pmap_inval.h>
89 #include <machine/inttypes.h>
90 
91 #include <ddb/ddb.h>
92 
93 #define PMAP_KEEP_PDIRS
94 #ifndef PMAP_SHPGPERPROC
95 #define PMAP_SHPGPERPROC 2000
96 #endif
97 
98 #if defined(DIAGNOSTIC)
99 #define PMAP_DIAGNOSTIC
100 #endif
101 
102 #define MINPV 2048
103 
104 /*
105  * pmap debugging will report who owns a pv lock when blocking.
106  */
107 #ifdef PMAP_DEBUG
108 
109 #define PMAP_DEBUG_DECL		,const char *func, int lineno
110 #define PMAP_DEBUG_ARGS		, __func__, __LINE__
111 #define PMAP_DEBUG_COPY		, func, lineno
112 
113 #define pv_get(pmap, pindex)		_pv_get(pmap, pindex		\
114 							PMAP_DEBUG_ARGS)
115 #define pv_lock(pv)			_pv_lock(pv			\
116 							PMAP_DEBUG_ARGS)
117 #define pv_hold_try(pv)			_pv_hold_try(pv			\
118 							PMAP_DEBUG_ARGS)
119 #define pv_alloc(pmap, pindex, isnewp)	_pv_alloc(pmap, pindex, isnewp	\
120 							PMAP_DEBUG_ARGS)
121 
122 #else
123 
124 #define PMAP_DEBUG_DECL
125 #define PMAP_DEBUG_ARGS
126 #define PMAP_DEBUG_COPY
127 
128 #define pv_get(pmap, pindex)		_pv_get(pmap, pindex)
129 #define pv_lock(pv)			_pv_lock(pv)
130 #define pv_hold_try(pv)			_pv_hold_try(pv)
131 #define pv_alloc(pmap, pindex, isnewp)	_pv_alloc(pmap, pindex, isnewp)
132 
133 #endif
134 
135 /*
136  * Get PDEs and PTEs for user/kernel address space
137  */
138 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
139 
140 #define pmap_pde_v(pmap, pte)		((*(pd_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
141 #define pmap_pte_w(pmap, pte)		((*(pt_entry_t *)pte & pmap->pmap_bits[PG_W_IDX]) != 0)
142 #define pmap_pte_m(pmap, pte)		((*(pt_entry_t *)pte & pmap->pmap_bits[PG_M_IDX]) != 0)
143 #define pmap_pte_u(pmap, pte)		((*(pt_entry_t *)pte & pmap->pmap_bits[PG_U_IDX]) != 0)
144 #define pmap_pte_v(pmap, pte)		((*(pt_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
145 
146 /*
147  * Given a map and a machine independent protection code,
148  * convert to a vax protection code.
149  */
150 #define pte_prot(m, p)		\
151 	(m->protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
152 static int protection_codes[PROTECTION_CODES_SIZE];
153 
154 struct pmap kernel_pmap;
155 static TAILQ_HEAD(,pmap)	pmap_list = TAILQ_HEAD_INITIALIZER(pmap_list);
156 
157 MALLOC_DEFINE(M_OBJPMAP, "objpmap", "pmaps associated with VM objects");
158 
159 vm_paddr_t avail_start;		/* PA of first available physical page */
160 vm_paddr_t avail_end;		/* PA of last available physical page */
161 vm_offset_t virtual2_start;	/* cutout free area prior to kernel start */
162 vm_offset_t virtual2_end;
163 vm_offset_t virtual_start;	/* VA of first avail page (after kernel bss) */
164 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
165 vm_offset_t KvaStart;		/* VA start of KVA space */
166 vm_offset_t KvaEnd;		/* VA end of KVA space (non-inclusive) */
167 vm_offset_t KvaSize;		/* max size of kernel virtual address space */
168 static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
169 //static int pgeflag;		/* PG_G or-in */
170 //static int pseflag;		/* PG_PS or-in */
171 uint64_t PatMsr;
172 
173 static int ndmpdp;
174 static vm_paddr_t dmaplimit;
175 static int nkpt;
176 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
177 
178 static pt_entry_t pat_pte_index[PAT_INDEX_SIZE];	/* PAT -> PG_ bits */
179 /*static pt_entry_t pat_pde_index[PAT_INDEX_SIZE];*/	/* PAT -> PG_ bits */
180 
181 static uint64_t KPTbase;
182 static uint64_t KPTphys;
183 static uint64_t	KPDphys;	/* phys addr of kernel level 2 */
184 static uint64_t	KPDbase;	/* phys addr of kernel level 2 @ KERNBASE */
185 uint64_t KPDPphys;	/* phys addr of kernel level 3 */
186 uint64_t KPML4phys;	/* phys addr of kernel level 4 */
187 
188 static uint64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
189 static uint64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
190 
191 /*
192  * Data for the pv entry allocation mechanism
193  */
194 static vm_zone_t pvzone;
195 static struct vm_zone pvzone_store;
196 static struct vm_object pvzone_obj;
197 static int pv_entry_max=0, pv_entry_high_water=0;
198 static int pmap_pagedaemon_waken = 0;
199 static struct pv_entry *pvinit;
200 
201 /*
202  * All those kernel PT submaps that BSD is so fond of
203  */
204 pt_entry_t *CMAP1 = NULL, *ptmmap;
205 caddr_t CADDR1 = NULL, ptvmmap = NULL;
206 static pt_entry_t *msgbufmap;
207 struct msgbuf *msgbufp=NULL;
208 
209 /*
210  * PMAP default PG_* bits. Needed to be able to add
211  * EPT/NPT pagetable pmap_bits for the VMM module
212  */
213 uint64_t pmap_bits_default[] = {
214 		REGULAR_PMAP,					/* TYPE_IDX		0 */
215 		X86_PG_V,					/* PG_V_IDX		1 */
216 		X86_PG_RW,					/* PG_RW_IDX		2 */
217 		X86_PG_U,					/* PG_U_IDX		3 */
218 		X86_PG_A,					/* PG_A_IDX		4 */
219 		X86_PG_M,					/* PG_M_IDX		5 */
220 		X86_PG_PS,					/* PG_PS_IDX3		6 */
221 		X86_PG_G,					/* PG_G_IDX		7 */
222 		X86_PG_AVAIL1,					/* PG_AVAIL1_IDX	8 */
223 		X86_PG_AVAIL2,					/* PG_AVAIL2_IDX	9 */
224 		X86_PG_AVAIL3,					/* PG_AVAIL3_IDX	10 */
225 		X86_PG_NC_PWT | X86_PG_NC_PCD,			/* PG_N_IDX	11 */
226 };
227 /*
228  * Crashdump maps.
229  */
230 static pt_entry_t *pt_crashdumpmap;
231 static caddr_t crashdumpmap;
232 
233 #ifdef PMAP_DEBUG2
234 static int pmap_enter_debug = 0;
235 SYSCTL_INT(_machdep, OID_AUTO, pmap_enter_debug, CTLFLAG_RW,
236     &pmap_enter_debug, 0, "Debug pmap_enter's");
237 #endif
238 static int pmap_yield_count = 64;
239 SYSCTL_INT(_machdep, OID_AUTO, pmap_yield_count, CTLFLAG_RW,
240     &pmap_yield_count, 0, "Yield during init_pt/release");
241 static int pmap_mmu_optimize = 0;
242 SYSCTL_INT(_machdep, OID_AUTO, pmap_mmu_optimize, CTLFLAG_RW,
243     &pmap_mmu_optimize, 0, "Share page table pages when possible");
244 int pmap_fast_kernel_cpusync = 0;
245 SYSCTL_INT(_machdep, OID_AUTO, pmap_fast_kernel_cpusync, CTLFLAG_RW,
246     &pmap_fast_kernel_cpusync, 0, "Share page table pages when possible");
247 
248 #define DISABLE_PSE
249 
250 /* Standard user access funtions */
251 extern int std_copyinstr (const void *udaddr, void *kaddr, size_t len,
252     size_t *lencopied);
253 extern int std_copyin (const void *udaddr, void *kaddr, size_t len);
254 extern int std_copyout (const void *kaddr, void *udaddr, size_t len);
255 extern int std_fubyte (const void *base);
256 extern int std_subyte (void *base, int byte);
257 extern long std_fuword (const void *base);
258 extern int std_suword (void *base, long word);
259 extern int std_suword32 (void *base, int word);
260 
261 static void pv_hold(pv_entry_t pv);
262 static int _pv_hold_try(pv_entry_t pv
263 				PMAP_DEBUG_DECL);
264 static void pv_drop(pv_entry_t pv);
265 static void _pv_lock(pv_entry_t pv
266 				PMAP_DEBUG_DECL);
267 static void pv_unlock(pv_entry_t pv);
268 static pv_entry_t _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew
269 				PMAP_DEBUG_DECL);
270 static pv_entry_t _pv_get(pmap_t pmap, vm_pindex_t pindex
271 				PMAP_DEBUG_DECL);
272 static pv_entry_t pv_get_try(pmap_t pmap, vm_pindex_t pindex, int *errorp);
273 static pv_entry_t pv_find(pmap_t pmap, vm_pindex_t pindex);
274 static void pv_put(pv_entry_t pv);
275 static void pv_free(pv_entry_t pv);
276 static void *pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex);
277 static pv_entry_t pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex,
278 		      pv_entry_t *pvpp);
279 static pv_entry_t pmap_allocpte_seg(pmap_t pmap, vm_pindex_t ptepindex,
280 		      pv_entry_t *pvpp, vm_map_entry_t entry, vm_offset_t va);
281 static void pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp,
282 		      struct pmap_inval_info *info);
283 static vm_page_t pmap_remove_pv_page(pv_entry_t pv);
284 static int pmap_release_pv( struct pmap_inval_info *info,
285 		      pv_entry_t pv, pv_entry_t pvp);
286 
287 struct pmap_scan_info;
288 static void pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
289 		      pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
290 		      vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
291 static void pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
292 		      pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
293 		      vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
294 
295 static void i386_protection_init (void);
296 static void create_pagetables(vm_paddr_t *firstaddr);
297 static void pmap_remove_all (vm_page_t m);
298 static boolean_t pmap_testbit (vm_page_t m, int bit);
299 
300 static pt_entry_t * pmap_pte_quick (pmap_t pmap, vm_offset_t va);
301 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
302 
303 static void pmap_pinit_defaults(struct pmap *pmap);
304 
305 static unsigned pdir4mb;
306 
307 static int
308 pv_entry_compare(pv_entry_t pv1, pv_entry_t pv2)
309 {
310 	if (pv1->pv_pindex < pv2->pv_pindex)
311 		return(-1);
312 	if (pv1->pv_pindex > pv2->pv_pindex)
313 		return(1);
314 	return(0);
315 }
316 
317 RB_GENERATE2(pv_entry_rb_tree, pv_entry, pv_entry,
318              pv_entry_compare, vm_pindex_t, pv_pindex);
319 
320 static __inline
321 void
322 pmap_page_stats_adding(vm_page_t m)
323 {
324 	globaldata_t gd = mycpu;
325 
326 	if (TAILQ_EMPTY(&m->md.pv_list)) {
327 		++gd->gd_vmtotal.t_arm;
328 	} else if (TAILQ_FIRST(&m->md.pv_list) ==
329 		   TAILQ_LAST(&m->md.pv_list, md_page_pv_list)) {
330 		++gd->gd_vmtotal.t_armshr;
331 		++gd->gd_vmtotal.t_avmshr;
332 	} else {
333 		++gd->gd_vmtotal.t_avmshr;
334 	}
335 }
336 
337 static __inline
338 void
339 pmap_page_stats_deleting(vm_page_t m)
340 {
341 	globaldata_t gd = mycpu;
342 
343 	if (TAILQ_EMPTY(&m->md.pv_list)) {
344 		--gd->gd_vmtotal.t_arm;
345 	} else if (TAILQ_FIRST(&m->md.pv_list) ==
346 		   TAILQ_LAST(&m->md.pv_list, md_page_pv_list)) {
347 		--gd->gd_vmtotal.t_armshr;
348 		--gd->gd_vmtotal.t_avmshr;
349 	} else {
350 		--gd->gd_vmtotal.t_avmshr;
351 	}
352 }
353 
354 /*
355  * Move the kernel virtual free pointer to the next
356  * 2MB.  This is used to help improve performance
357  * by using a large (2MB) page for much of the kernel
358  * (.text, .data, .bss)
359  */
360 static
361 vm_offset_t
362 pmap_kmem_choose(vm_offset_t addr)
363 {
364 	vm_offset_t newaddr = addr;
365 
366 	newaddr = roundup2(addr, NBPDR);
367 	return newaddr;
368 }
369 
370 /*
371  * pmap_pte_quick:
372  *
373  *	Super fast pmap_pte routine best used when scanning the pv lists.
374  *	This eliminates many course-grained invltlb calls.  Note that many of
375  *	the pv list scans are across different pmaps and it is very wasteful
376  *	to do an entire invltlb when checking a single mapping.
377  */
378 static __inline pt_entry_t *pmap_pte(pmap_t pmap, vm_offset_t va);
379 
380 static
381 pt_entry_t *
382 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
383 {
384 	return pmap_pte(pmap, va);
385 }
386 
387 /*
388  * Returns the pindex of a page table entry (representing a terminal page).
389  * There are NUPTE_TOTAL page table entries possible (a huge number)
390  *
391  * x86-64 has a 48-bit address space, where bit 47 is sign-extended out.
392  * We want to properly translate negative KVAs.
393  */
394 static __inline
395 vm_pindex_t
396 pmap_pte_pindex(vm_offset_t va)
397 {
398 	return ((va >> PAGE_SHIFT) & (NUPTE_TOTAL - 1));
399 }
400 
401 /*
402  * Returns the pindex of a page table.
403  */
404 static __inline
405 vm_pindex_t
406 pmap_pt_pindex(vm_offset_t va)
407 {
408 	return (NUPTE_TOTAL + ((va >> PDRSHIFT) & (NUPT_TOTAL - 1)));
409 }
410 
411 /*
412  * Returns the pindex of a page directory.
413  */
414 static __inline
415 vm_pindex_t
416 pmap_pd_pindex(vm_offset_t va)
417 {
418 	return (NUPTE_TOTAL + NUPT_TOTAL +
419 		((va >> PDPSHIFT) & (NUPD_TOTAL - 1)));
420 }
421 
422 static __inline
423 vm_pindex_t
424 pmap_pdp_pindex(vm_offset_t va)
425 {
426 	return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
427 		((va >> PML4SHIFT) & (NUPDP_TOTAL - 1)));
428 }
429 
430 static __inline
431 vm_pindex_t
432 pmap_pml4_pindex(void)
433 {
434 	return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL);
435 }
436 
437 /*
438  * Return various clipped indexes for a given VA
439  *
440  * Returns the index of a pte in a page table, representing a terminal
441  * page.
442  */
443 static __inline
444 vm_pindex_t
445 pmap_pte_index(vm_offset_t va)
446 {
447 	return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
448 }
449 
450 /*
451  * Returns the index of a pt in a page directory, representing a page
452  * table.
453  */
454 static __inline
455 vm_pindex_t
456 pmap_pt_index(vm_offset_t va)
457 {
458 	return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
459 }
460 
461 /*
462  * Returns the index of a pd in a page directory page, representing a page
463  * directory.
464  */
465 static __inline
466 vm_pindex_t
467 pmap_pd_index(vm_offset_t va)
468 {
469 	return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
470 }
471 
472 /*
473  * Returns the index of a pdp in the pml4 table, representing a page
474  * directory page.
475  */
476 static __inline
477 vm_pindex_t
478 pmap_pdp_index(vm_offset_t va)
479 {
480 	return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
481 }
482 
483 /*
484  * Generic procedure to index a pte from a pt, pd, or pdp.
485  *
486  * NOTE: Normally passed pindex as pmap_xx_index().  pmap_xx_pindex() is NOT
487  *	 a page table page index but is instead of PV lookup index.
488  */
489 static
490 void *
491 pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex)
492 {
493 	pt_entry_t *pte;
494 
495 	pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pv->pv_m));
496 	return(&pte[pindex]);
497 }
498 
499 /*
500  * Return pointer to PDP slot in the PML4
501  */
502 static __inline
503 pml4_entry_t *
504 pmap_pdp(pmap_t pmap, vm_offset_t va)
505 {
506 	return (&pmap->pm_pml4[pmap_pdp_index(va)]);
507 }
508 
509 /*
510  * Return pointer to PD slot in the PDP given a pointer to the PDP
511  */
512 static __inline
513 pdp_entry_t *
514 pmap_pdp_to_pd(pml4_entry_t pdp_pte, vm_offset_t va)
515 {
516 	pdp_entry_t *pd;
517 
518 	pd = (pdp_entry_t *)PHYS_TO_DMAP(pdp_pte & PG_FRAME);
519 	return (&pd[pmap_pd_index(va)]);
520 }
521 
522 /*
523  * Return pointer to PD slot in the PDP.
524  */
525 static __inline
526 pdp_entry_t *
527 pmap_pd(pmap_t pmap, vm_offset_t va)
528 {
529 	pml4_entry_t *pdp;
530 
531 	pdp = pmap_pdp(pmap, va);
532 	if ((*pdp & pmap->pmap_bits[PG_V_IDX]) == 0)
533 		return NULL;
534 	return (pmap_pdp_to_pd(*pdp, va));
535 }
536 
537 /*
538  * Return pointer to PT slot in the PD given a pointer to the PD
539  */
540 static __inline
541 pd_entry_t *
542 pmap_pd_to_pt(pdp_entry_t pd_pte, vm_offset_t va)
543 {
544 	pd_entry_t *pt;
545 
546 	pt = (pd_entry_t *)PHYS_TO_DMAP(pd_pte & PG_FRAME);
547 	return (&pt[pmap_pt_index(va)]);
548 }
549 
550 /*
551  * Return pointer to PT slot in the PD
552  *
553  * SIMPLE PMAP NOTE: Simple pmaps (embedded in objects) do not have PDPs,
554  *		     so we cannot lookup the PD via the PDP.  Instead we
555  *		     must look it up via the pmap.
556  */
557 static __inline
558 pd_entry_t *
559 pmap_pt(pmap_t pmap, vm_offset_t va)
560 {
561 	pdp_entry_t *pd;
562 	pv_entry_t pv;
563 	vm_pindex_t pd_pindex;
564 
565 	if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
566 		pd_pindex = pmap_pd_pindex(va);
567 		spin_lock(&pmap->pm_spin);
568 		pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pd_pindex);
569 		spin_unlock(&pmap->pm_spin);
570 		if (pv == NULL || pv->pv_m == NULL)
571 			return NULL;
572 		return (pmap_pd_to_pt(VM_PAGE_TO_PHYS(pv->pv_m), va));
573 	} else {
574 		pd = pmap_pd(pmap, va);
575 		if (pd == NULL || (*pd & pmap->pmap_bits[PG_V_IDX]) == 0)
576 			 return NULL;
577 		return (pmap_pd_to_pt(*pd, va));
578 	}
579 }
580 
581 /*
582  * Return pointer to PTE slot in the PT given a pointer to the PT
583  */
584 static __inline
585 pt_entry_t *
586 pmap_pt_to_pte(pd_entry_t pt_pte, vm_offset_t va)
587 {
588 	pt_entry_t *pte;
589 
590 	pte = (pt_entry_t *)PHYS_TO_DMAP(pt_pte & PG_FRAME);
591 	return (&pte[pmap_pte_index(va)]);
592 }
593 
594 /*
595  * Return pointer to PTE slot in the PT
596  */
597 static __inline
598 pt_entry_t *
599 pmap_pte(pmap_t pmap, vm_offset_t va)
600 {
601 	pd_entry_t *pt;
602 
603 	pt = pmap_pt(pmap, va);
604 	if (pt == NULL || (*pt & pmap->pmap_bits[PG_V_IDX]) == 0)
605 		 return NULL;
606 	if ((*pt & pmap->pmap_bits[PG_PS_IDX]) != 0)
607 		return ((pt_entry_t *)pt);
608 	return (pmap_pt_to_pte(*pt, va));
609 }
610 
611 /*
612  * Of all the layers (PTE, PT, PD, PDP, PML4) the best one to cache is
613  * the PT layer.  This will speed up core pmap operations considerably.
614  *
615  * NOTE: The pmap spinlock does not need to be held but the passed-in pv
616  *	 must be in a known associated state (typically by being locked when
617  *	 the pmap spinlock isn't held).  We allow the race for that case.
618  */
619 static __inline
620 void
621 pv_cache(pv_entry_t pv, vm_pindex_t pindex)
622 {
623 	if (pindex >= pmap_pt_pindex(0) && pindex <= pmap_pd_pindex(0))
624 		pv->pv_pmap->pm_pvhint = pv;
625 }
626 
627 
628 /*
629  * Return address of PT slot in PD (KVM only)
630  *
631  * Cannot be used for user page tables because it might interfere with
632  * the shared page-table-page optimization (pmap_mmu_optimize).
633  */
634 static __inline
635 pd_entry_t *
636 vtopt(vm_offset_t va)
637 {
638 	uint64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
639 				  NPML4EPGSHIFT)) - 1);
640 
641 	return (PDmap + ((va >> PDRSHIFT) & mask));
642 }
643 
644 /*
645  * KVM - return address of PTE slot in PT
646  */
647 static __inline
648 pt_entry_t *
649 vtopte(vm_offset_t va)
650 {
651 	uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
652 				  NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
653 
654 	return (PTmap + ((va >> PAGE_SHIFT) & mask));
655 }
656 
657 static uint64_t
658 allocpages(vm_paddr_t *firstaddr, long n)
659 {
660 	uint64_t ret;
661 
662 	ret = *firstaddr;
663 	bzero((void *)ret, n * PAGE_SIZE);
664 	*firstaddr += n * PAGE_SIZE;
665 	return (ret);
666 }
667 
668 static
669 void
670 create_pagetables(vm_paddr_t *firstaddr)
671 {
672 	long i;		/* must be 64 bits */
673 	long nkpt_base;
674 	long nkpt_phys;
675 	int j;
676 
677 	/*
678 	 * We are running (mostly) V=P at this point
679 	 *
680 	 * Calculate NKPT - number of kernel page tables.  We have to
681 	 * accomodoate prealloction of the vm_page_array, dump bitmap,
682 	 * MSGBUF_SIZE, and other stuff.  Be generous.
683 	 *
684 	 * Maxmem is in pages.
685 	 *
686 	 * ndmpdp is the number of 1GB pages we wish to map.
687 	 */
688 	ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
689 	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
690 		ndmpdp = 4;
691 	KKASSERT(ndmpdp <= NKPDPE * NPDEPG);
692 
693 	/*
694 	 * Starting at the beginning of kvm (not KERNBASE).
695 	 */
696 	nkpt_phys = (Maxmem * sizeof(struct vm_page) + NBPDR - 1) / NBPDR;
697 	nkpt_phys += (Maxmem * sizeof(struct pv_entry) + NBPDR - 1) / NBPDR;
698 	nkpt_phys += ((nkpt + nkpt + 1 + NKPML4E + NKPDPE + NDMPML4E +
699 		       ndmpdp) + 511) / 512;
700 	nkpt_phys += 128;
701 
702 	/*
703 	 * Starting at KERNBASE - map 2G worth of page table pages.
704 	 * KERNBASE is offset -2G from the end of kvm.
705 	 */
706 	nkpt_base = (NPDPEPG - KPDPI) * NPTEPG;	/* typically 2 x 512 */
707 
708 	/*
709 	 * Allocate pages
710 	 */
711 	KPTbase = allocpages(firstaddr, nkpt_base);
712 	KPTphys = allocpages(firstaddr, nkpt_phys);
713 	KPML4phys = allocpages(firstaddr, 1);
714 	KPDPphys = allocpages(firstaddr, NKPML4E);
715 	KPDphys = allocpages(firstaddr, NKPDPE);
716 
717 	/*
718 	 * Calculate the page directory base for KERNBASE,
719 	 * that is where we start populating the page table pages.
720 	 * Basically this is the end - 2.
721 	 */
722 	KPDbase = KPDphys + ((NKPDPE - (NPDPEPG - KPDPI)) << PAGE_SHIFT);
723 
724 	DMPDPphys = allocpages(firstaddr, NDMPML4E);
725 	if ((amd_feature & AMDID_PAGE1GB) == 0)
726 		DMPDphys = allocpages(firstaddr, ndmpdp);
727 	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
728 
729 	/*
730 	 * Fill in the underlying page table pages for the area around
731 	 * KERNBASE.  This remaps low physical memory to KERNBASE.
732 	 *
733 	 * Read-only from zero to physfree
734 	 * XXX not fully used, underneath 2M pages
735 	 */
736 	for (i = 0; (i << PAGE_SHIFT) < *firstaddr; i++) {
737 		((pt_entry_t *)KPTbase)[i] = i << PAGE_SHIFT;
738 		((pt_entry_t *)KPTbase)[i] |=
739 		    pmap_bits_default[PG_RW_IDX] |
740 		    pmap_bits_default[PG_V_IDX] |
741 		    pmap_bits_default[PG_G_IDX];
742 	}
743 
744 	/*
745 	 * Now map the initial kernel page tables.  One block of page
746 	 * tables is placed at the beginning of kernel virtual memory,
747 	 * and another block is placed at KERNBASE to map the kernel binary,
748 	 * data, bss, and initial pre-allocations.
749 	 */
750 	for (i = 0; i < nkpt_base; i++) {
751 		((pd_entry_t *)KPDbase)[i] = KPTbase + (i << PAGE_SHIFT);
752 		((pd_entry_t *)KPDbase)[i] |=
753 		    pmap_bits_default[PG_RW_IDX] |
754 		    pmap_bits_default[PG_V_IDX];
755 	}
756 	for (i = 0; i < nkpt_phys; i++) {
757 		((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
758 		((pd_entry_t *)KPDphys)[i] |=
759 		    pmap_bits_default[PG_RW_IDX] |
760 		    pmap_bits_default[PG_V_IDX];
761 	}
762 
763 	/*
764 	 * Map from zero to end of allocations using 2M pages as an
765 	 * optimization.  This will bypass some of the KPTBase pages
766 	 * above in the KERNBASE area.
767 	 */
768 	for (i = 0; (i << PDRSHIFT) < *firstaddr; i++) {
769 		((pd_entry_t *)KPDbase)[i] = i << PDRSHIFT;
770 		((pd_entry_t *)KPDbase)[i] |=
771 		    pmap_bits_default[PG_RW_IDX] |
772 		    pmap_bits_default[PG_V_IDX] |
773 		    pmap_bits_default[PG_PS_IDX] |
774 		    pmap_bits_default[PG_G_IDX];
775 	}
776 
777 	/*
778 	 * And connect up the PD to the PDP.  The kernel pmap is expected
779 	 * to pre-populate all of its PDs.  See NKPDPE in vmparam.h.
780 	 */
781 	for (i = 0; i < NKPDPE; i++) {
782 		((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] =
783 				KPDphys + (i << PAGE_SHIFT);
784 		((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] |=
785 		    pmap_bits_default[PG_RW_IDX] |
786 		    pmap_bits_default[PG_V_IDX] |
787 		    pmap_bits_default[PG_U_IDX];
788 	}
789 
790 	/*
791 	 * Now set up the direct map space using either 2MB or 1GB pages
792 	 * Preset PG_M and PG_A because demotion expects it.
793 	 *
794 	 * When filling in entries in the PD pages make sure any excess
795 	 * entries are set to zero as we allocated enough PD pages
796 	 */
797 	if ((amd_feature & AMDID_PAGE1GB) == 0) {
798 		for (i = 0; i < NPDEPG * ndmpdp; i++) {
799 			((pd_entry_t *)DMPDphys)[i] = i << PDRSHIFT;
800 			((pd_entry_t *)DMPDphys)[i] |=
801 			    pmap_bits_default[PG_RW_IDX] |
802 			    pmap_bits_default[PG_V_IDX] |
803 			    pmap_bits_default[PG_PS_IDX] |
804 			    pmap_bits_default[PG_G_IDX] |
805 			    pmap_bits_default[PG_M_IDX] |
806 			    pmap_bits_default[PG_A_IDX];
807 		}
808 
809 		/*
810 		 * And the direct map space's PDP
811 		 */
812 		for (i = 0; i < ndmpdp; i++) {
813 			((pdp_entry_t *)DMPDPphys)[i] = DMPDphys +
814 							(i << PAGE_SHIFT);
815 			((pdp_entry_t *)DMPDPphys)[i] |=
816 			    pmap_bits_default[PG_RW_IDX] |
817 			    pmap_bits_default[PG_V_IDX] |
818 			    pmap_bits_default[PG_U_IDX];
819 		}
820 	} else {
821 		for (i = 0; i < ndmpdp; i++) {
822 			((pdp_entry_t *)DMPDPphys)[i] =
823 						(vm_paddr_t)i << PDPSHIFT;
824 			((pdp_entry_t *)DMPDPphys)[i] |=
825 			    pmap_bits_default[PG_RW_IDX] |
826 			    pmap_bits_default[PG_V_IDX] |
827 			    pmap_bits_default[PG_PS_IDX] |
828 			    pmap_bits_default[PG_G_IDX] |
829 			    pmap_bits_default[PG_M_IDX] |
830 			    pmap_bits_default[PG_A_IDX];
831 		}
832 	}
833 
834 	/* And recursively map PML4 to itself in order to get PTmap */
835 	((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
836 	((pdp_entry_t *)KPML4phys)[PML4PML4I] |=
837 	    pmap_bits_default[PG_RW_IDX] |
838 	    pmap_bits_default[PG_V_IDX] |
839 	    pmap_bits_default[PG_U_IDX];
840 
841 	/*
842 	 * Connect the Direct Map slots up to the PML4
843 	 */
844 	for (j = 0; j < NDMPML4E; ++j) {
845 		((pdp_entry_t *)KPML4phys)[DMPML4I + j] =
846 		    (DMPDPphys + ((vm_paddr_t)j << PML4SHIFT)) |
847 		    pmap_bits_default[PG_RW_IDX] |
848 		    pmap_bits_default[PG_V_IDX] |
849 		    pmap_bits_default[PG_U_IDX];
850 	}
851 
852 	/*
853 	 * Connect the KVA slot up to the PML4
854 	 */
855 	((pdp_entry_t *)KPML4phys)[KPML4I] = KPDPphys;
856 	((pdp_entry_t *)KPML4phys)[KPML4I] |=
857 	    pmap_bits_default[PG_RW_IDX] |
858 	    pmap_bits_default[PG_V_IDX] |
859 	    pmap_bits_default[PG_U_IDX];
860 }
861 
862 /*
863  *	Bootstrap the system enough to run with virtual memory.
864  *
865  *	On the i386 this is called after mapping has already been enabled
866  *	and just syncs the pmap module with what has already been done.
867  *	[We can't call it easily with mapping off since the kernel is not
868  *	mapped with PA == VA, hence we would have to relocate every address
869  *	from the linked base (virtual) address "KERNBASE" to the actual
870  *	(physical) address starting relative to 0]
871  */
872 void
873 pmap_bootstrap(vm_paddr_t *firstaddr)
874 {
875 	vm_offset_t va;
876 	pt_entry_t *pte;
877 
878 	KvaStart = VM_MIN_KERNEL_ADDRESS;
879 	KvaEnd = VM_MAX_KERNEL_ADDRESS;
880 	KvaSize = KvaEnd - KvaStart;
881 
882 	avail_start = *firstaddr;
883 
884 	/*
885 	 * Create an initial set of page tables to run the kernel in.
886 	 */
887 	create_pagetables(firstaddr);
888 
889 	virtual2_start = KvaStart;
890 	virtual2_end = PTOV_OFFSET;
891 
892 	virtual_start = (vm_offset_t) PTOV_OFFSET + *firstaddr;
893 	virtual_start = pmap_kmem_choose(virtual_start);
894 
895 	virtual_end = VM_MAX_KERNEL_ADDRESS;
896 
897 	/* XXX do %cr0 as well */
898 	load_cr4(rcr4() | CR4_PGE | CR4_PSE);
899 	load_cr3(KPML4phys);
900 
901 	/*
902 	 * Initialize protection array.
903 	 */
904 	i386_protection_init();
905 
906 	/*
907 	 * The kernel's pmap is statically allocated so we don't have to use
908 	 * pmap_create, which is unlikely to work correctly at this part of
909 	 * the boot sequence (XXX and which no longer exists).
910 	 */
911 	kernel_pmap.pm_pml4 = (pdp_entry_t *) (PTOV_OFFSET + KPML4phys);
912 	kernel_pmap.pm_count = 1;
913 	CPUMASK_ASSALLONES(kernel_pmap.pm_active);
914 	RB_INIT(&kernel_pmap.pm_pvroot);
915 	spin_init(&kernel_pmap.pm_spin, "pmapbootstrap");
916 	lwkt_token_init(&kernel_pmap.pm_token, "kpmap_tok");
917 
918 	/*
919 	 * Reserve some special page table entries/VA space for temporary
920 	 * mapping of pages.
921 	 */
922 #define	SYSMAP(c, p, v, n)	\
923 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
924 
925 	va = virtual_start;
926 	pte = vtopte(va);
927 
928 	/*
929 	 * CMAP1/CMAP2 are used for zeroing and copying pages.
930 	 */
931 	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
932 
933 	/*
934 	 * Crashdump maps.
935 	 */
936 	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
937 
938 	/*
939 	 * ptvmmap is used for reading arbitrary physical pages via
940 	 * /dev/mem.
941 	 */
942 	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
943 
944 	/*
945 	 * msgbufp is used to map the system message buffer.
946 	 * XXX msgbufmap is not used.
947 	 */
948 	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
949 	       atop(round_page(MSGBUF_SIZE)))
950 
951 	virtual_start = va;
952 
953 	*CMAP1 = 0;
954 
955 	/*
956 	 * PG_G is terribly broken on SMP because we IPI invltlb's in some
957 	 * cases rather then invl1pg.  Actually, I don't even know why it
958 	 * works under UP because self-referential page table mappings
959 	 */
960 //	pgeflag = 0;
961 
962 /*
963  * Initialize the 4MB page size flag
964  */
965 //	pseflag = 0;
966 /*
967  * The 4MB page version of the initial
968  * kernel page mapping.
969  */
970 	pdir4mb = 0;
971 
972 #if !defined(DISABLE_PSE)
973 	if (cpu_feature & CPUID_PSE) {
974 		pt_entry_t ptditmp;
975 		/*
976 		 * Note that we have enabled PSE mode
977 		 */
978 //		pseflag = kernel_pmap.pmap_bits[PG_PS_IDX];
979 		ptditmp = *(PTmap + x86_64_btop(KERNBASE));
980 		ptditmp &= ~(NBPDR - 1);
981 		ptditmp |= pmap_bits_default[PG_V_IDX] |
982 		    pmap_bits_default[PG_RW_IDX] |
983 		    pmap_bits_default[PG_PS_IDX] |
984 		    pmap_bits_default[PG_U_IDX];
985 //		    pgeflag;
986 		pdir4mb = ptditmp;
987 	}
988 #endif
989 	cpu_invltlb();
990 
991 	/* Initialize the PAT MSR */
992 	pmap_init_pat();
993 	pmap_pinit_defaults(&kernel_pmap);
994 
995 	TUNABLE_INT_FETCH("machdep.pmap_fast_kernel_cpusync",
996 			  &pmap_fast_kernel_cpusync);
997 
998 }
999 
1000 /*
1001  * Setup the PAT MSR.
1002  */
1003 void
1004 pmap_init_pat(void)
1005 {
1006 	uint64_t pat_msr;
1007 	u_long cr0, cr4;
1008 
1009 	/*
1010 	 * Default values mapping PATi,PCD,PWT bits at system reset.
1011 	 * The default values effectively ignore the PATi bit by
1012 	 * repeating the encodings for 0-3 in 4-7, and map the PCD
1013 	 * and PWT bit combinations to the expected PAT types.
1014 	 */
1015 	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |	/* 000 */
1016 		  PAT_VALUE(1, PAT_WRITE_THROUGH) |	/* 001 */
1017 		  PAT_VALUE(2, PAT_UNCACHED) |		/* 010 */
1018 		  PAT_VALUE(3, PAT_UNCACHEABLE) |	/* 011 */
1019 		  PAT_VALUE(4, PAT_WRITE_BACK) |	/* 100 */
1020 		  PAT_VALUE(5, PAT_WRITE_THROUGH) |	/* 101 */
1021 		  PAT_VALUE(6, PAT_UNCACHED) |		/* 110 */
1022 		  PAT_VALUE(7, PAT_UNCACHEABLE);	/* 111 */
1023 	pat_pte_index[PAT_WRITE_BACK]	= 0;
1024 	pat_pte_index[PAT_WRITE_THROUGH]= 0         | X86_PG_NC_PWT;
1025 	pat_pte_index[PAT_UNCACHED]	= X86_PG_NC_PCD;
1026 	pat_pte_index[PAT_UNCACHEABLE]	= X86_PG_NC_PCD | X86_PG_NC_PWT;
1027 	pat_pte_index[PAT_WRITE_PROTECTED] = pat_pte_index[PAT_UNCACHEABLE];
1028 	pat_pte_index[PAT_WRITE_COMBINING] = pat_pte_index[PAT_UNCACHEABLE];
1029 
1030 	if (cpu_feature & CPUID_PAT) {
1031 		/*
1032 		 * If we support the PAT then set-up entries for
1033 		 * WRITE_PROTECTED and WRITE_COMBINING using bit patterns
1034 		 * 4 and 5.
1035 		 */
1036 		pat_msr = (pat_msr & ~PAT_MASK(4)) |
1037 			  PAT_VALUE(4, PAT_WRITE_PROTECTED);
1038 		pat_msr = (pat_msr & ~PAT_MASK(5)) |
1039 			  PAT_VALUE(5, PAT_WRITE_COMBINING);
1040 		pat_pte_index[PAT_WRITE_PROTECTED] = X86_PG_PTE_PAT | 0;
1041 		pat_pte_index[PAT_WRITE_COMBINING] = X86_PG_PTE_PAT | X86_PG_NC_PWT;
1042 
1043 		/*
1044 		 * Then enable the PAT
1045 		 */
1046 
1047 		/* Disable PGE. */
1048 		cr4 = rcr4();
1049 		load_cr4(cr4 & ~CR4_PGE);
1050 
1051 		/* Disable caches (CD = 1, NW = 0). */
1052 		cr0 = rcr0();
1053 		load_cr0((cr0 & ~CR0_NW) | CR0_CD);
1054 
1055 		/* Flushes caches and TLBs. */
1056 		wbinvd();
1057 		cpu_invltlb();
1058 
1059 		/* Update PAT and index table. */
1060 		wrmsr(MSR_PAT, pat_msr);
1061 
1062 		/* Flush caches and TLBs again. */
1063 		wbinvd();
1064 		cpu_invltlb();
1065 
1066 		/* Restore caches and PGE. */
1067 		load_cr0(cr0);
1068 		load_cr4(cr4);
1069 		PatMsr = pat_msr;
1070 	}
1071 }
1072 
1073 /*
1074  * Set 4mb pdir for mp startup
1075  */
1076 void
1077 pmap_set_opt(void)
1078 {
1079 	if (cpu_feature & CPUID_PSE) {
1080 		load_cr4(rcr4() | CR4_PSE);
1081 		if (pdir4mb && mycpu->gd_cpuid == 0) {	/* only on BSP */
1082 			cpu_invltlb();
1083 		}
1084 	}
1085 }
1086 
1087 /*
1088  *	Initialize the pmap module.
1089  *	Called by vm_init, to initialize any structures that the pmap
1090  *	system needs to map virtual memory.
1091  *	pmap_init has been enhanced to support in a fairly consistant
1092  *	way, discontiguous physical memory.
1093  */
1094 void
1095 pmap_init(void)
1096 {
1097 	int i;
1098 	int initial_pvs;
1099 
1100 	/*
1101 	 * Allocate memory for random pmap data structures.  Includes the
1102 	 * pv_head_table.
1103 	 */
1104 
1105 	for (i = 0; i < vm_page_array_size; i++) {
1106 		vm_page_t m;
1107 
1108 		m = &vm_page_array[i];
1109 		TAILQ_INIT(&m->md.pv_list);
1110 	}
1111 
1112 	/*
1113 	 * init the pv free list
1114 	 */
1115 	initial_pvs = vm_page_array_size;
1116 	if (initial_pvs < MINPV)
1117 		initial_pvs = MINPV;
1118 	pvzone = &pvzone_store;
1119 	pvinit = (void *)kmem_alloc(&kernel_map,
1120 				    initial_pvs * sizeof (struct pv_entry));
1121 	zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry),
1122 		  pvinit, initial_pvs);
1123 
1124 	/*
1125 	 * Now it is safe to enable pv_table recording.
1126 	 */
1127 	pmap_initialized = TRUE;
1128 }
1129 
1130 /*
1131  * Initialize the address space (zone) for the pv_entries.  Set a
1132  * high water mark so that the system can recover from excessive
1133  * numbers of pv entries.
1134  */
1135 void
1136 pmap_init2(void)
1137 {
1138 	int shpgperproc = PMAP_SHPGPERPROC;
1139 	int entry_max;
1140 
1141 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1142 	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
1143 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1144 	pv_entry_high_water = 9 * (pv_entry_max / 10);
1145 
1146 	/*
1147 	 * Subtract out pages already installed in the zone (hack)
1148 	 */
1149 	entry_max = pv_entry_max - vm_page_array_size;
1150 	if (entry_max <= 0)
1151 		entry_max = 1;
1152 
1153 	zinitna(pvzone, &pvzone_obj, NULL, 0, entry_max, ZONE_INTERRUPT, 1);
1154 }
1155 
1156 /*
1157  * Typically used to initialize a fictitious page by vm/device_pager.c
1158  */
1159 void
1160 pmap_page_init(struct vm_page *m)
1161 {
1162 	vm_page_init(m);
1163 	TAILQ_INIT(&m->md.pv_list);
1164 }
1165 
1166 /***************************************************
1167  * Low level helper routines.....
1168  ***************************************************/
1169 
1170 /*
1171  * this routine defines the region(s) of memory that should
1172  * not be tested for the modified bit.
1173  */
1174 static __inline
1175 int
1176 pmap_track_modified(vm_pindex_t pindex)
1177 {
1178 	vm_offset_t va = (vm_offset_t)pindex << PAGE_SHIFT;
1179 	if ((va < clean_sva) || (va >= clean_eva))
1180 		return 1;
1181 	else
1182 		return 0;
1183 }
1184 
1185 /*
1186  * Extract the physical page address associated with the map/VA pair.
1187  * The page must be wired for this to work reliably.
1188  *
1189  * XXX for the moment we're using pv_find() instead of pv_get(), as
1190  *     callers might be expecting non-blocking operation.
1191  */
1192 vm_paddr_t
1193 pmap_extract(pmap_t pmap, vm_offset_t va)
1194 {
1195 	vm_paddr_t rtval;
1196 	pv_entry_t pt_pv;
1197 	pt_entry_t *ptep;
1198 
1199 	rtval = 0;
1200 	if (va >= VM_MAX_USER_ADDRESS) {
1201 		/*
1202 		 * Kernel page directories might be direct-mapped and
1203 		 * there is typically no PV tracking of pte's
1204 		 */
1205 		pd_entry_t *pt;
1206 
1207 		pt = pmap_pt(pmap, va);
1208 		if (pt && (*pt & pmap->pmap_bits[PG_V_IDX])) {
1209 			if (*pt & pmap->pmap_bits[PG_PS_IDX]) {
1210 				rtval = *pt & PG_PS_FRAME;
1211 				rtval |= va & PDRMASK;
1212 			} else {
1213 				ptep = pmap_pt_to_pte(*pt, va);
1214 				if (*pt & pmap->pmap_bits[PG_V_IDX]) {
1215 					rtval = *ptep & PG_FRAME;
1216 					rtval |= va & PAGE_MASK;
1217 				}
1218 			}
1219 		}
1220 	} else {
1221 		/*
1222 		 * User pages currently do not direct-map the page directory
1223 		 * and some pages might not used managed PVs.  But all PT's
1224 		 * will have a PV.
1225 		 */
1226 		pt_pv = pv_find(pmap, pmap_pt_pindex(va));
1227 		if (pt_pv) {
1228 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1229 			if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
1230 				rtval = *ptep & PG_FRAME;
1231 				rtval |= va & PAGE_MASK;
1232 			}
1233 			pv_drop(pt_pv);
1234 		}
1235 	}
1236 	return rtval;
1237 }
1238 
1239 /*
1240  * Similar to extract but checks protections, SMP-friendly short-cut for
1241  * vm_fault_page[_quick]().  Can return NULL to cause the caller to
1242  * fall-through to the real fault code.
1243  *
1244  * The returned page, if not NULL, is held (and not busied).
1245  */
1246 vm_page_t
1247 pmap_fault_page_quick(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1248 {
1249 	if (pmap && va < VM_MAX_USER_ADDRESS) {
1250 		pv_entry_t pt_pv;
1251 		pv_entry_t pte_pv;
1252 		pt_entry_t *ptep;
1253 		pt_entry_t req;
1254 		vm_page_t m;
1255 		int error;
1256 
1257 		req = pmap->pmap_bits[PG_V_IDX] |
1258 		      pmap->pmap_bits[PG_U_IDX];
1259 		if (prot & VM_PROT_WRITE)
1260 			req |= pmap->pmap_bits[PG_RW_IDX];
1261 
1262 		pt_pv = pv_find(pmap, pmap_pt_pindex(va));
1263 		if (pt_pv == NULL)
1264 			return (NULL);
1265 		ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1266 		if ((*ptep & req) != req) {
1267 			pv_drop(pt_pv);
1268 			return (NULL);
1269 		}
1270 		pte_pv = pv_get_try(pmap, pmap_pte_pindex(va), &error);
1271 		if (pte_pv && error == 0) {
1272 			m = pte_pv->pv_m;
1273 			vm_page_hold(m);
1274 			if (prot & VM_PROT_WRITE)
1275 				vm_page_dirty(m);
1276 			pv_put(pte_pv);
1277 		} else if (pte_pv) {
1278 			pv_drop(pte_pv);
1279 			m = NULL;
1280 		} else {
1281 			m = NULL;
1282 		}
1283 		pv_drop(pt_pv);
1284 		return(m);
1285 	} else {
1286 		return(NULL);
1287 	}
1288 }
1289 
1290 /*
1291  * Extract the physical page address associated kernel virtual address.
1292  */
1293 vm_paddr_t
1294 pmap_kextract(vm_offset_t va)
1295 {
1296 	pd_entry_t pt;		/* pt entry in pd */
1297 	vm_paddr_t pa;
1298 
1299 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
1300 		pa = DMAP_TO_PHYS(va);
1301 	} else {
1302 		pt = *vtopt(va);
1303 		if (pt & kernel_pmap.pmap_bits[PG_PS_IDX]) {
1304 			pa = (pt & PG_PS_FRAME) | (va & PDRMASK);
1305 		} else {
1306 			/*
1307 			 * Beware of a concurrent promotion that changes the
1308 			 * PDE at this point!  For example, vtopte() must not
1309 			 * be used to access the PTE because it would use the
1310 			 * new PDE.  It is, however, safe to use the old PDE
1311 			 * because the page table page is preserved by the
1312 			 * promotion.
1313 			 */
1314 			pa = *pmap_pt_to_pte(pt, va);
1315 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
1316 		}
1317 	}
1318 	return pa;
1319 }
1320 
1321 /***************************************************
1322  * Low level mapping routines.....
1323  ***************************************************/
1324 
1325 /*
1326  * Routine: pmap_kenter
1327  * Function:
1328  *  	Add a wired page to the KVA
1329  *  	NOTE! note that in order for the mapping to take effect -- you
1330  *  	should do an invltlb after doing the pmap_kenter().
1331  */
1332 void
1333 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1334 {
1335 	pt_entry_t *pte;
1336 	pt_entry_t npte;
1337 	pmap_inval_info info;
1338 
1339 	pmap_inval_init(&info);				/* XXX remove */
1340 	npte = pa |
1341 	    kernel_pmap.pmap_bits[PG_RW_IDX] |
1342 	    kernel_pmap.pmap_bits[PG_V_IDX];
1343 //	    pgeflag;
1344 	pte = vtopte(va);
1345 	pmap_inval_interlock(&info, &kernel_pmap, va);	/* XXX remove */
1346 	*pte = npte;
1347 	pmap_inval_deinterlock(&info, &kernel_pmap);	/* XXX remove */
1348 	pmap_inval_done(&info);				/* XXX remove */
1349 }
1350 
1351 /*
1352  * Routine: pmap_kenter_quick
1353  * Function:
1354  *  	Similar to pmap_kenter(), except we only invalidate the
1355  *  	mapping on the current CPU.
1356  */
1357 void
1358 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
1359 {
1360 	pt_entry_t *pte;
1361 	pt_entry_t npte;
1362 
1363 	npte = pa |
1364 	    kernel_pmap.pmap_bits[PG_RW_IDX] |
1365 	    kernel_pmap.pmap_bits[PG_V_IDX];
1366 //	    pgeflag;
1367 	pte = vtopte(va);
1368 	*pte = npte;
1369 	cpu_invlpg((void *)va);
1370 }
1371 
1372 void
1373 pmap_kenter_sync(vm_offset_t va)
1374 {
1375 	pmap_inval_info info;
1376 
1377 	pmap_inval_init(&info);
1378 	pmap_inval_interlock(&info, &kernel_pmap, va);
1379 	pmap_inval_deinterlock(&info, &kernel_pmap);
1380 	pmap_inval_done(&info);
1381 }
1382 
1383 void
1384 pmap_kenter_sync_quick(vm_offset_t va)
1385 {
1386 	cpu_invlpg((void *)va);
1387 }
1388 
1389 /*
1390  * remove a page from the kernel pagetables
1391  */
1392 void
1393 pmap_kremove(vm_offset_t va)
1394 {
1395 	pt_entry_t *pte;
1396 	pmap_inval_info info;
1397 
1398 	pmap_inval_init(&info);
1399 	pte = vtopte(va);
1400 	pmap_inval_interlock(&info, &kernel_pmap, va);
1401 	(void)pte_load_clear(pte);
1402 	pmap_inval_deinterlock(&info, &kernel_pmap);
1403 	pmap_inval_done(&info);
1404 }
1405 
1406 void
1407 pmap_kremove_quick(vm_offset_t va)
1408 {
1409 	pt_entry_t *pte;
1410 	pte = vtopte(va);
1411 	(void)pte_load_clear(pte);
1412 	cpu_invlpg((void *)va);
1413 }
1414 
1415 /*
1416  * XXX these need to be recoded.  They are not used in any critical path.
1417  */
1418 void
1419 pmap_kmodify_rw(vm_offset_t va)
1420 {
1421 	atomic_set_long(vtopte(va), kernel_pmap.pmap_bits[PG_RW_IDX]);
1422 	cpu_invlpg((void *)va);
1423 }
1424 
1425 /* NOT USED
1426 void
1427 pmap_kmodify_nc(vm_offset_t va)
1428 {
1429 	atomic_set_long(vtopte(va), PG_N);
1430 	cpu_invlpg((void *)va);
1431 }
1432 */
1433 
1434 /*
1435  * Used to map a range of physical addresses into kernel virtual
1436  * address space during the low level boot, typically to map the
1437  * dump bitmap, message buffer, and vm_page_array.
1438  *
1439  * These mappings are typically made at some pointer after the end of the
1440  * kernel text+data.
1441  *
1442  * We could return PHYS_TO_DMAP(start) here and not allocate any
1443  * via (*virtp), but then kmem from userland and kernel dumps won't
1444  * have access to the related pointers.
1445  */
1446 vm_offset_t
1447 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
1448 {
1449 	vm_offset_t va;
1450 	vm_offset_t va_start;
1451 
1452 	/*return PHYS_TO_DMAP(start);*/
1453 
1454 	va_start = *virtp;
1455 	va = va_start;
1456 
1457 	while (start < end) {
1458 		pmap_kenter_quick(va, start);
1459 		va += PAGE_SIZE;
1460 		start += PAGE_SIZE;
1461 	}
1462 	*virtp = va;
1463 	return va_start;
1464 }
1465 
1466 #define PMAP_CLFLUSH_THRESHOLD  (2 * 1024 * 1024)
1467 
1468 /*
1469  * Remove the specified set of pages from the data and instruction caches.
1470  *
1471  * In contrast to pmap_invalidate_cache_range(), this function does not
1472  * rely on the CPU's self-snoop feature, because it is intended for use
1473  * when moving pages into a different cache domain.
1474  */
1475 void
1476 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
1477 {
1478 	vm_offset_t daddr, eva;
1479 	int i;
1480 
1481 	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
1482 	    (cpu_feature & CPUID_CLFSH) == 0)
1483 		wbinvd();
1484 	else {
1485 		cpu_mfence();
1486 		for (i = 0; i < count; i++) {
1487 			daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
1488 			eva = daddr + PAGE_SIZE;
1489 			for (; daddr < eva; daddr += cpu_clflush_line_size)
1490 				clflush(daddr);
1491 		}
1492 		cpu_mfence();
1493 	}
1494 }
1495 
1496 void
1497 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
1498 {
1499 	KASSERT((sva & PAGE_MASK) == 0,
1500 	    ("pmap_invalidate_cache_range: sva not page-aligned"));
1501 	KASSERT((eva & PAGE_MASK) == 0,
1502 	    ("pmap_invalidate_cache_range: eva not page-aligned"));
1503 
1504 	if (cpu_feature & CPUID_SS) {
1505 		; /* If "Self Snoop" is supported, do nothing. */
1506 	} else {
1507 		/* Globally invalidate caches */
1508 		cpu_wbinvd_on_all_cpus();
1509 	}
1510 }
1511 void
1512 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1513 {
1514 	smp_invlpg_range(pmap->pm_active, sva, eva);
1515 }
1516 
1517 /*
1518  * Add a list of wired pages to the kva
1519  * this routine is only used for temporary
1520  * kernel mappings that do not need to have
1521  * page modification or references recorded.
1522  * Note that old mappings are simply written
1523  * over.  The page *must* be wired.
1524  */
1525 void
1526 pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
1527 {
1528 	vm_offset_t end_va;
1529 
1530 	end_va = va + count * PAGE_SIZE;
1531 
1532 	while (va < end_va) {
1533 		pt_entry_t *pte;
1534 
1535 		pte = vtopte(va);
1536 		*pte = VM_PAGE_TO_PHYS(*m) |
1537 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
1538 		    kernel_pmap.pmap_bits[PG_V_IDX] |
1539 		    kernel_pmap.pmap_cache_bits[(*m)->pat_mode];
1540 //		pgeflag;
1541 		cpu_invlpg((void *)va);
1542 		va += PAGE_SIZE;
1543 		m++;
1544 	}
1545 	smp_invltlb();
1546 }
1547 
1548 /*
1549  * This routine jerks page mappings from the
1550  * kernel -- it is meant only for temporary mappings.
1551  *
1552  * MPSAFE, INTERRUPT SAFE (cluster callback)
1553  */
1554 void
1555 pmap_qremove(vm_offset_t va, int count)
1556 {
1557 	vm_offset_t end_va;
1558 
1559 	end_va = va + count * PAGE_SIZE;
1560 
1561 	while (va < end_va) {
1562 		pt_entry_t *pte;
1563 
1564 		pte = vtopte(va);
1565 		(void)pte_load_clear(pte);
1566 		cpu_invlpg((void *)va);
1567 		va += PAGE_SIZE;
1568 	}
1569 	smp_invltlb();
1570 }
1571 
1572 /*
1573  * Create a new thread and optionally associate it with a (new) process.
1574  * NOTE! the new thread's cpu may not equal the current cpu.
1575  */
1576 void
1577 pmap_init_thread(thread_t td)
1578 {
1579 	/* enforce pcb placement & alignment */
1580 	td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
1581 	td->td_pcb = (struct pcb *)((intptr_t)td->td_pcb & ~(intptr_t)0xF);
1582 	td->td_savefpu = &td->td_pcb->pcb_save;
1583 	td->td_sp = (char *)td->td_pcb;	/* no -16 */
1584 }
1585 
1586 /*
1587  * This routine directly affects the fork perf for a process.
1588  */
1589 void
1590 pmap_init_proc(struct proc *p)
1591 {
1592 }
1593 
1594 static void
1595 pmap_pinit_defaults(struct pmap *pmap)
1596 {
1597 	bcopy(pmap_bits_default, pmap->pmap_bits,
1598 	      sizeof(pmap_bits_default));
1599 	bcopy(protection_codes, pmap->protection_codes,
1600 	      sizeof(protection_codes));
1601 	bcopy(pat_pte_index, pmap->pmap_cache_bits,
1602 	      sizeof(pat_pte_index));
1603 	pmap->pmap_cache_mask = X86_PG_NC_PWT | X86_PG_NC_PCD | X86_PG_PTE_PAT;
1604 	pmap->copyinstr = std_copyinstr;
1605 	pmap->copyin = std_copyin;
1606 	pmap->copyout = std_copyout;
1607 	pmap->fubyte = std_fubyte;
1608 	pmap->subyte = std_subyte;
1609 	pmap->fuword = std_fuword;
1610 	pmap->suword = std_suword;
1611 	pmap->suword32 = std_suword32;
1612 }
1613 /*
1614  * Initialize pmap0/vmspace0.  This pmap is not added to pmap_list because
1615  * it, and IdlePTD, represents the template used to update all other pmaps.
1616  *
1617  * On architectures where the kernel pmap is not integrated into the user
1618  * process pmap, this pmap represents the process pmap, not the kernel pmap.
1619  * kernel_pmap should be used to directly access the kernel_pmap.
1620  */
1621 void
1622 pmap_pinit0(struct pmap *pmap)
1623 {
1624 	pmap->pm_pml4 = (pml4_entry_t *)(PTOV_OFFSET + KPML4phys);
1625 	pmap->pm_count = 1;
1626 	CPUMASK_ASSZERO(pmap->pm_active);
1627 	pmap->pm_pvhint = NULL;
1628 	RB_INIT(&pmap->pm_pvroot);
1629 	spin_init(&pmap->pm_spin, "pmapinit0");
1630 	lwkt_token_init(&pmap->pm_token, "pmap_tok");
1631 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1632 	pmap_pinit_defaults(pmap);
1633 }
1634 
1635 /*
1636  * Initialize a preallocated and zeroed pmap structure,
1637  * such as one in a vmspace structure.
1638  */
1639 static void
1640 pmap_pinit_simple(struct pmap *pmap)
1641 {
1642 	/*
1643 	 * Misc initialization
1644 	 */
1645 	pmap->pm_count = 1;
1646 	CPUMASK_ASSZERO(pmap->pm_active);
1647 	pmap->pm_pvhint = NULL;
1648 	pmap->pm_flags = PMAP_FLAG_SIMPLE;
1649 
1650 	pmap_pinit_defaults(pmap);
1651 
1652 	/*
1653 	 * Don't blow up locks/tokens on re-use (XXX fix/use drop code
1654 	 * for this).
1655 	 */
1656 	if (pmap->pm_pmlpv == NULL) {
1657 		RB_INIT(&pmap->pm_pvroot);
1658 		bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1659 		spin_init(&pmap->pm_spin, "pmapinitsimple");
1660 		lwkt_token_init(&pmap->pm_token, "pmap_tok");
1661 	}
1662 }
1663 
1664 void
1665 pmap_pinit(struct pmap *pmap)
1666 {
1667 	pv_entry_t pv;
1668 	int j;
1669 
1670 	if (pmap->pm_pmlpv) {
1671 		if (pmap->pmap_bits[TYPE_IDX] != REGULAR_PMAP) {
1672 			pmap_puninit(pmap);
1673 		}
1674 	}
1675 
1676 	pmap_pinit_simple(pmap);
1677 	pmap->pm_flags &= ~PMAP_FLAG_SIMPLE;
1678 
1679 	/*
1680 	 * No need to allocate page table space yet but we do need a valid
1681 	 * page directory table.
1682 	 */
1683 	if (pmap->pm_pml4 == NULL) {
1684 		pmap->pm_pml4 =
1685 		    (pml4_entry_t *)kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
1686 	}
1687 
1688 	/*
1689 	 * Allocate the page directory page, which wires it even though
1690 	 * it isn't being entered into some higher level page table (it
1691 	 * being the highest level).  If one is already cached we don't
1692 	 * have to do anything.
1693 	 */
1694 	if ((pv = pmap->pm_pmlpv) == NULL) {
1695 		pv = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
1696 		pmap->pm_pmlpv = pv;
1697 		pmap_kenter((vm_offset_t)pmap->pm_pml4,
1698 			    VM_PAGE_TO_PHYS(pv->pv_m));
1699 		pv_put(pv);
1700 
1701 		/*
1702 		 * Install DMAP and KMAP.
1703 		 */
1704 		for (j = 0; j < NDMPML4E; ++j) {
1705 			pmap->pm_pml4[DMPML4I + j] =
1706 			    (DMPDPphys + ((vm_paddr_t)j << PML4SHIFT)) |
1707 			    pmap->pmap_bits[PG_RW_IDX] |
1708 			    pmap->pmap_bits[PG_V_IDX] |
1709 			    pmap->pmap_bits[PG_U_IDX];
1710 		}
1711 		pmap->pm_pml4[KPML4I] = KPDPphys |
1712 		    pmap->pmap_bits[PG_RW_IDX] |
1713 		    pmap->pmap_bits[PG_V_IDX] |
1714 		    pmap->pmap_bits[PG_U_IDX];
1715 
1716 		/*
1717 		 * install self-referential address mapping entry
1718 		 */
1719 		pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pv->pv_m) |
1720 		    pmap->pmap_bits[PG_V_IDX] |
1721 		    pmap->pmap_bits[PG_RW_IDX] |
1722 		    pmap->pmap_bits[PG_A_IDX] |
1723 		    pmap->pmap_bits[PG_M_IDX];
1724 	} else {
1725 		KKASSERT(pv->pv_m->flags & PG_MAPPED);
1726 		KKASSERT(pv->pv_m->flags & PG_WRITEABLE);
1727 	}
1728 	KKASSERT(pmap->pm_pml4[255] == 0);
1729 	KKASSERT(RB_ROOT(&pmap->pm_pvroot) == pv);
1730 	KKASSERT(pv->pv_entry.rbe_left == NULL);
1731 	KKASSERT(pv->pv_entry.rbe_right == NULL);
1732 }
1733 
1734 /*
1735  * Clean up a pmap structure so it can be physically freed.  This routine
1736  * is called by the vmspace dtor function.  A great deal of pmap data is
1737  * left passively mapped to improve vmspace management so we have a bit
1738  * of cleanup work to do here.
1739  */
1740 void
1741 pmap_puninit(pmap_t pmap)
1742 {
1743 	pv_entry_t pv;
1744 	vm_page_t p;
1745 
1746 	KKASSERT(CPUMASK_TESTZERO(pmap->pm_active));
1747 	if ((pv = pmap->pm_pmlpv) != NULL) {
1748 		if (pv_hold_try(pv) == 0)
1749 			pv_lock(pv);
1750 		KKASSERT(pv == pmap->pm_pmlpv);
1751 		p = pmap_remove_pv_page(pv);
1752 		pv_free(pv);
1753 		pmap_kremove((vm_offset_t)pmap->pm_pml4);
1754 		vm_page_busy_wait(p, FALSE, "pgpun");
1755 		KKASSERT(p->flags & (PG_FICTITIOUS|PG_UNMANAGED));
1756 		vm_page_unwire(p, 0);
1757 		vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
1758 
1759 		/*
1760 		 * XXX eventually clean out PML4 static entries and
1761 		 * use vm_page_free_zero()
1762 		 */
1763 		vm_page_free(p);
1764 		pmap->pm_pmlpv = NULL;
1765 	}
1766 	if (pmap->pm_pml4) {
1767 		KKASSERT(pmap->pm_pml4 != (void *)(PTOV_OFFSET + KPML4phys));
1768 		kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pml4, PAGE_SIZE);
1769 		pmap->pm_pml4 = NULL;
1770 	}
1771 	KKASSERT(pmap->pm_stats.resident_count == 0);
1772 	KKASSERT(pmap->pm_stats.wired_count == 0);
1773 }
1774 
1775 /*
1776  * Wire in kernel global address entries.  To avoid a race condition
1777  * between pmap initialization and pmap_growkernel, this procedure
1778  * adds the pmap to the master list (which growkernel scans to update),
1779  * then copies the template.
1780  */
1781 void
1782 pmap_pinit2(struct pmap *pmap)
1783 {
1784 	spin_lock(&pmap_spin);
1785 	TAILQ_INSERT_TAIL(&pmap_list, pmap, pm_pmnode);
1786 	spin_unlock(&pmap_spin);
1787 }
1788 
1789 /*
1790  * This routine is called when various levels in the page table need to
1791  * be populated.  This routine cannot fail.
1792  *
1793  * This function returns two locked pv_entry's, one representing the
1794  * requested pv and one representing the requested pv's parent pv.  If
1795  * the pv did not previously exist it will be mapped into its parent
1796  * and wired, otherwise no additional wire count will be added.
1797  */
1798 static
1799 pv_entry_t
1800 pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp)
1801 {
1802 	pt_entry_t *ptep;
1803 	pv_entry_t pv;
1804 	pv_entry_t pvp;
1805 	vm_pindex_t pt_pindex;
1806 	vm_page_t m;
1807 	int isnew;
1808 	int ispt;
1809 
1810 	/*
1811 	 * If the pv already exists and we aren't being asked for the
1812 	 * parent page table page we can just return it.  A locked+held pv
1813 	 * is returned.  The pv will also have a second hold related to the
1814 	 * pmap association that we don't have to worry about.
1815 	 */
1816 	ispt = 0;
1817 	pv = pv_alloc(pmap, ptepindex, &isnew);
1818 	if (isnew == 0 && pvpp == NULL)
1819 		return(pv);
1820 
1821 	/*
1822 	 * Special case terminal PVs.  These are not page table pages so
1823 	 * no vm_page is allocated (the caller supplied the vm_page).  If
1824 	 * pvpp is non-NULL we are being asked to also removed the pt_pv
1825 	 * for this pv.
1826 	 *
1827 	 * Note that pt_pv's are only returned for user VAs. We assert that
1828 	 * a pt_pv is not being requested for kernel VAs.
1829 	 */
1830 	if (ptepindex < pmap_pt_pindex(0)) {
1831 		if (ptepindex >= NUPTE_USER)
1832 			KKASSERT(pvpp == NULL);
1833 		else
1834 			KKASSERT(pvpp != NULL);
1835 		if (pvpp) {
1836 			pt_pindex = NUPTE_TOTAL + (ptepindex >> NPTEPGSHIFT);
1837 			pvp = pmap_allocpte(pmap, pt_pindex, NULL);
1838 			if (isnew)
1839 				vm_page_wire_quick(pvp->pv_m);
1840 			*pvpp = pvp;
1841 		} else {
1842 			pvp = NULL;
1843 		}
1844 		return(pv);
1845 	}
1846 
1847 	/*
1848 	 * Non-terminal PVs allocate a VM page to represent the page table,
1849 	 * so we have to resolve pvp and calculate ptepindex for the pvp
1850 	 * and then for the page table entry index in the pvp for
1851 	 * fall-through.
1852 	 */
1853 	if (ptepindex < pmap_pd_pindex(0)) {
1854 		/*
1855 		 * pv is PT, pvp is PD
1856 		 */
1857 		ptepindex = (ptepindex - pmap_pt_pindex(0)) >> NPDEPGSHIFT;
1858 		ptepindex += NUPTE_TOTAL + NUPT_TOTAL;
1859 		pvp = pmap_allocpte(pmap, ptepindex, NULL);
1860 		if (!isnew)
1861 			goto notnew;
1862 
1863 		/*
1864 		 * PT index in PD
1865 		 */
1866 		ptepindex = pv->pv_pindex - pmap_pt_pindex(0);
1867 		ptepindex &= ((1ul << NPDEPGSHIFT) - 1);
1868 		ispt = 1;
1869 	} else if (ptepindex < pmap_pdp_pindex(0)) {
1870 		/*
1871 		 * pv is PD, pvp is PDP
1872 		 *
1873 		 * SIMPLE PMAP NOTE: Simple pmaps do not allocate above
1874 		 *		     the PD.
1875 		 */
1876 		ptepindex = (ptepindex - pmap_pd_pindex(0)) >> NPDPEPGSHIFT;
1877 		ptepindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
1878 
1879 		if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
1880 			KKASSERT(pvpp == NULL);
1881 			pvp = NULL;
1882 		} else {
1883 			pvp = pmap_allocpte(pmap, ptepindex, NULL);
1884 		}
1885 		if (!isnew)
1886 			goto notnew;
1887 
1888 		/*
1889 		 * PD index in PDP
1890 		 */
1891 		ptepindex = pv->pv_pindex - pmap_pd_pindex(0);
1892 		ptepindex &= ((1ul << NPDPEPGSHIFT) - 1);
1893 	} else if (ptepindex < pmap_pml4_pindex()) {
1894 		/*
1895 		 * pv is PDP, pvp is the root pml4 table
1896 		 */
1897 		pvp = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
1898 		if (!isnew)
1899 			goto notnew;
1900 
1901 		/*
1902 		 * PDP index in PML4
1903 		 */
1904 		ptepindex = pv->pv_pindex - pmap_pdp_pindex(0);
1905 		ptepindex &= ((1ul << NPML4EPGSHIFT) - 1);
1906 	} else {
1907 		/*
1908 		 * pv represents the top-level PML4, there is no parent.
1909 		 */
1910 		pvp = NULL;
1911 		if (!isnew)
1912 			goto notnew;
1913 	}
1914 
1915 	/*
1916 	 * This code is only reached if isnew is TRUE and this is not a
1917 	 * terminal PV.  We need to allocate a vm_page for the page table
1918 	 * at this level and enter it into the parent page table.
1919 	 *
1920 	 * page table pages are marked PG_WRITEABLE and PG_MAPPED.
1921 	 */
1922 	for (;;) {
1923 		m = vm_page_alloc(NULL, pv->pv_pindex,
1924 				  VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
1925 				  VM_ALLOC_INTERRUPT);
1926 		if (m)
1927 			break;
1928 		vm_wait(0);
1929 	}
1930 	vm_page_spin_lock(m);
1931 	pmap_page_stats_adding(m);
1932 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1933 	pv->pv_m = m;
1934 	vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1935 	vm_page_spin_unlock(m);
1936 	vm_page_unmanage(m);	/* m must be spinunlocked */
1937 
1938 	if ((m->flags & PG_ZERO) == 0) {
1939 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
1940 	}
1941 #ifdef PMAP_DEBUG
1942 	else {
1943 		pmap_page_assertzero(VM_PAGE_TO_PHYS(m));
1944 	}
1945 #endif
1946 	m->valid = VM_PAGE_BITS_ALL;
1947 	vm_page_flag_clear(m, PG_ZERO);
1948 	vm_page_wire(m);	/* wire for mapping in parent */
1949 
1950 	/*
1951 	 * Wire the page into pvp, bump the wire-count for pvp's page table
1952 	 * page.  Bump the resident_count for the pmap.  There is no pvp
1953 	 * for the top level, address the pm_pml4[] array directly.
1954 	 *
1955 	 * If the caller wants the parent we return it, otherwise
1956 	 * we just put it away.
1957 	 *
1958 	 * No interlock is needed for pte 0 -> non-zero.
1959 	 *
1960 	 * In the situation where *ptep is valid we might have an unmanaged
1961 	 * page table page shared from another page table which we need to
1962 	 * unshare before installing our private page table page.
1963 	 */
1964 	if (pvp) {
1965 		ptep = pv_pte_lookup(pvp, ptepindex);
1966 		if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
1967 			pt_entry_t pte;
1968 			pmap_inval_info info;
1969 
1970 			if (ispt == 0) {
1971 				panic("pmap_allocpte: unexpected pte %p/%d",
1972 				      pvp, (int)ptepindex);
1973 			}
1974 			pmap_inval_init(&info);
1975 			pmap_inval_interlock(&info, pmap, (vm_offset_t)-1);
1976 			pte = pte_load_clear(ptep);
1977 			pmap_inval_deinterlock(&info, pmap);
1978 			pmap_inval_done(&info);
1979 			if (vm_page_unwire_quick(
1980 					PHYS_TO_VM_PAGE(pte & PG_FRAME))) {
1981 				panic("pmap_allocpte: shared pgtable "
1982 				      "pg bad wirecount");
1983 			}
1984 			atomic_add_long(&pmap->pm_stats.resident_count, -1);
1985 		} else {
1986 			vm_page_wire_quick(pvp->pv_m);
1987 		}
1988 		*ptep = VM_PAGE_TO_PHYS(m) |
1989 		    (pmap->pmap_bits[PG_U_IDX] |
1990 		    pmap->pmap_bits[PG_RW_IDX] |
1991 		    pmap->pmap_bits[PG_V_IDX] |
1992 		    pmap->pmap_bits[PG_A_IDX] |
1993 		    pmap->pmap_bits[PG_M_IDX]);
1994 	}
1995 	vm_page_wakeup(m);
1996 notnew:
1997 	if (pvpp)
1998 		*pvpp = pvp;
1999 	else if (pvp)
2000 		pv_put(pvp);
2001 	return (pv);
2002 }
2003 
2004 /*
2005  * This version of pmap_allocpte() checks for possible segment optimizations
2006  * that would allow page-table sharing.  It can be called for terminal
2007  * page or page table page ptepindex's.
2008  *
2009  * The function is called with page table page ptepindex's for fictitious
2010  * and unmanaged terminal pages.  That is, we don't want to allocate a
2011  * terminal pv, we just want the pt_pv.  pvpp is usually passed as NULL
2012  * for this case.
2013  *
2014  * This function can return a pv and *pvpp associated with the passed in pmap
2015  * OR a pv and *pvpp associated with the shared pmap.  In the latter case
2016  * an unmanaged page table page will be entered into the pass in pmap.
2017  */
2018 static
2019 pv_entry_t
2020 pmap_allocpte_seg(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp,
2021 		  vm_map_entry_t entry, vm_offset_t va)
2022 {
2023 	struct pmap_inval_info info;
2024 	vm_object_t object;
2025 	pmap_t obpmap;
2026 	pmap_t *obpmapp;
2027 	vm_offset_t b;
2028 	pv_entry_t pte_pv;	/* in original or shared pmap */
2029 	pv_entry_t pt_pv;	/* in original or shared pmap */
2030 	pv_entry_t proc_pd_pv;	/* in original pmap */
2031 	pv_entry_t proc_pt_pv;	/* in original pmap */
2032 	pv_entry_t xpv;		/* PT in shared pmap */
2033 	pd_entry_t *pt;		/* PT entry in PD of original pmap */
2034 	pd_entry_t opte;	/* contents of *pt */
2035 	pd_entry_t npte;	/* contents of *pt */
2036 	vm_page_t m;
2037 
2038 retry:
2039 	/*
2040 	 * Basic tests, require a non-NULL vm_map_entry, require proper
2041 	 * alignment and type for the vm_map_entry, require that the
2042 	 * underlying object already be allocated.
2043 	 *
2044 	 * We allow almost any type of object to use this optimization.
2045 	 * The object itself does NOT have to be sized to a multiple of the
2046 	 * segment size, but the memory mapping does.
2047 	 *
2048 	 * XXX don't handle devices currently, because VM_PAGE_TO_PHYS()
2049 	 *     won't work as expected.
2050 	 */
2051 	if (entry == NULL ||
2052 	    pmap_mmu_optimize == 0 ||			/* not enabled */
2053 	    ptepindex >= pmap_pd_pindex(0) ||		/* not terminal or pt */
2054 	    entry->inheritance != VM_INHERIT_SHARE ||	/* not shared */
2055 	    entry->maptype != VM_MAPTYPE_NORMAL ||	/* weird map type */
2056 	    entry->object.vm_object == NULL ||		/* needs VM object */
2057 	    entry->object.vm_object->type == OBJT_DEVICE ||	/* ick */
2058 	    entry->object.vm_object->type == OBJT_MGTDEVICE ||	/* ick */
2059 	    (entry->offset & SEG_MASK) ||		/* must be aligned */
2060 	    (entry->start & SEG_MASK)) {
2061 		return(pmap_allocpte(pmap, ptepindex, pvpp));
2062 	}
2063 
2064 	/*
2065 	 * Make sure the full segment can be represented.
2066 	 */
2067 	b = va & ~(vm_offset_t)SEG_MASK;
2068 	if (b < entry->start || b + SEG_SIZE > entry->end)
2069 		return(pmap_allocpte(pmap, ptepindex, pvpp));
2070 
2071 	/*
2072 	 * If the full segment can be represented dive the VM object's
2073 	 * shared pmap, allocating as required.
2074 	 */
2075 	object = entry->object.vm_object;
2076 
2077 	if (entry->protection & VM_PROT_WRITE)
2078 		obpmapp = &object->md.pmap_rw;
2079 	else
2080 		obpmapp = &object->md.pmap_ro;
2081 
2082 #ifdef PMAP_DEBUG2
2083 	if (pmap_enter_debug > 0) {
2084 		--pmap_enter_debug;
2085 		kprintf("pmap_allocpte_seg: va=%jx prot %08x o=%p "
2086 			"obpmapp %p %p\n",
2087 			va, entry->protection, object,
2088 			obpmapp, *obpmapp);
2089 		kprintf("pmap_allocpte_seg: entry %p %jx-%jx\n",
2090 			entry, entry->start, entry->end);
2091 	}
2092 #endif
2093 
2094 	/*
2095 	 * We allocate what appears to be a normal pmap but because portions
2096 	 * of this pmap are shared with other unrelated pmaps we have to
2097 	 * set pm_active to point to all cpus.
2098 	 *
2099 	 * XXX Currently using pmap_spin to interlock the update, can't use
2100 	 *     vm_object_hold/drop because the token might already be held
2101 	 *     shared OR exclusive and we don't know.
2102 	 */
2103 	while ((obpmap = *obpmapp) == NULL) {
2104 		obpmap = kmalloc(sizeof(*obpmap), M_OBJPMAP, M_WAITOK|M_ZERO);
2105 		pmap_pinit_simple(obpmap);
2106 		pmap_pinit2(obpmap);
2107 		spin_lock(&pmap_spin);
2108 		if (*obpmapp != NULL) {
2109 			/*
2110 			 * Handle race
2111 			 */
2112 			spin_unlock(&pmap_spin);
2113 			pmap_release(obpmap);
2114 			pmap_puninit(obpmap);
2115 			kfree(obpmap, M_OBJPMAP);
2116 			obpmap = *obpmapp; /* safety */
2117 		} else {
2118 			obpmap->pm_active = smp_active_mask;
2119 			*obpmapp = obpmap;
2120 			spin_unlock(&pmap_spin);
2121 		}
2122 	}
2123 
2124 	/*
2125 	 * Layering is: PTE, PT, PD, PDP, PML4.  We have to return the
2126 	 * pte/pt using the shared pmap from the object but also adjust
2127 	 * the process pmap's page table page as a side effect.
2128 	 */
2129 
2130 	/*
2131 	 * Resolve the terminal PTE and PT in the shared pmap.  This is what
2132 	 * we will return.  This is true if ptepindex represents a terminal
2133 	 * page, otherwise pte_pv is actually the PT and pt_pv is actually
2134 	 * the PD.
2135 	 */
2136 	pt_pv = NULL;
2137 	pte_pv = pmap_allocpte(obpmap, ptepindex, &pt_pv);
2138 	if (ptepindex >= pmap_pt_pindex(0))
2139 		xpv = pte_pv;
2140 	else
2141 		xpv = pt_pv;
2142 
2143 	/*
2144 	 * Resolve the PD in the process pmap so we can properly share the
2145 	 * page table page.  Lock order is bottom-up (leaf first)!
2146 	 *
2147 	 * NOTE: proc_pt_pv can be NULL.
2148 	 */
2149 	proc_pt_pv = pv_get(pmap, pmap_pt_pindex(b));
2150 	proc_pd_pv = pmap_allocpte(pmap, pmap_pd_pindex(b), NULL);
2151 #ifdef PMAP_DEBUG2
2152 	if (pmap_enter_debug > 0) {
2153 		--pmap_enter_debug;
2154 		kprintf("proc_pt_pv %p (wc %d) pd_pv %p va=%jx\n",
2155 			proc_pt_pv,
2156 			(proc_pt_pv ? proc_pt_pv->pv_m->wire_count : -1),
2157 			proc_pd_pv,
2158 			va);
2159 	}
2160 #endif
2161 
2162 	/*
2163 	 * xpv is the page table page pv from the shared object
2164 	 * (for convenience), from above.
2165 	 *
2166 	 * Calculate the pte value for the PT to load into the process PD.
2167 	 * If we have to change it we must properly dispose of the previous
2168 	 * entry.
2169 	 */
2170 	pt = pv_pte_lookup(proc_pd_pv, pmap_pt_index(b));
2171 	npte = VM_PAGE_TO_PHYS(xpv->pv_m) |
2172 	    (pmap->pmap_bits[PG_U_IDX] |
2173 	    pmap->pmap_bits[PG_RW_IDX] |
2174 	    pmap->pmap_bits[PG_V_IDX] |
2175 	    pmap->pmap_bits[PG_A_IDX] |
2176 	    pmap->pmap_bits[PG_M_IDX]);
2177 
2178 	/*
2179 	 * Dispose of previous page table page if it was local to the
2180 	 * process pmap.  If the old pt is not empty we cannot dispose of it
2181 	 * until we clean it out.  This case should not arise very often so
2182 	 * it is not optimized.
2183 	 */
2184 	if (proc_pt_pv) {
2185 		if (proc_pt_pv->pv_m->wire_count != 1) {
2186 			pv_put(proc_pd_pv);
2187 			pv_put(proc_pt_pv);
2188 			pv_put(pt_pv);
2189 			pv_put(pte_pv);
2190 			pmap_remove(pmap,
2191 				    va & ~(vm_offset_t)SEG_MASK,
2192 				    (va + SEG_SIZE) & ~(vm_offset_t)SEG_MASK);
2193 			goto retry;
2194 		}
2195 
2196 		/*
2197 		 * The release call will indirectly clean out *pt
2198 		 */
2199 		pmap_inval_init(&info);
2200 		pmap_release_pv(&info, proc_pt_pv, proc_pd_pv);
2201 		pmap_inval_done(&info);
2202 		proc_pt_pv = NULL;
2203 		/* relookup */
2204 		pt = pv_pte_lookup(proc_pd_pv, pmap_pt_index(b));
2205 	}
2206 
2207 	/*
2208 	 * Handle remaining cases.
2209 	 */
2210 	if (*pt == 0) {
2211 		*pt = npte;
2212 		vm_page_wire_quick(xpv->pv_m);
2213 		vm_page_wire_quick(proc_pd_pv->pv_m);
2214 		atomic_add_long(&pmap->pm_stats.resident_count, 1);
2215 	} else if (*pt != npte) {
2216 		pmap_inval_init(&info);
2217 		pmap_inval_interlock(&info, pmap, (vm_offset_t)-1);
2218 
2219 		opte = pte_load_clear(pt);
2220 		KKASSERT(opte && opte != npte);
2221 
2222 		*pt = npte;
2223 		vm_page_wire_quick(xpv->pv_m);	/* pgtable pg that is npte */
2224 
2225 		/*
2226 		 * Clean up opte, bump the wire_count for the process
2227 		 * PD page representing the new entry if it was
2228 		 * previously empty.
2229 		 *
2230 		 * If the entry was not previously empty and we have
2231 		 * a PT in the proc pmap then opte must match that
2232 		 * pt.  The proc pt must be retired (this is done
2233 		 * later on in this procedure).
2234 		 *
2235 		 * NOTE: replacing valid pte, wire_count on proc_pd_pv
2236 		 * stays the same.
2237 		 */
2238 		KKASSERT(opte & pmap->pmap_bits[PG_V_IDX]);
2239 		m = PHYS_TO_VM_PAGE(opte & PG_FRAME);
2240 		if (vm_page_unwire_quick(m)) {
2241 			panic("pmap_allocpte_seg: "
2242 			      "bad wire count %p",
2243 			      m);
2244 		}
2245 
2246 		pmap_inval_deinterlock(&info, pmap);
2247 		pmap_inval_done(&info);
2248 	}
2249 
2250 	/*
2251 	 * The existing process page table was replaced and must be destroyed
2252 	 * here.
2253 	 */
2254 	if (proc_pd_pv)
2255 		pv_put(proc_pd_pv);
2256 	if (pvpp)
2257 		*pvpp = pt_pv;
2258 	else
2259 		pv_put(pt_pv);
2260 
2261 	return (pte_pv);
2262 }
2263 
2264 /*
2265  * Release any resources held by the given physical map.
2266  *
2267  * Called when a pmap initialized by pmap_pinit is being released.  Should
2268  * only be called if the map contains no valid mappings.
2269  *
2270  * Caller must hold pmap->pm_token
2271  */
2272 struct pmap_release_info {
2273 	pmap_t	pmap;
2274 	int	retry;
2275 };
2276 
2277 static int pmap_release_callback(pv_entry_t pv, void *data);
2278 
2279 void
2280 pmap_release(struct pmap *pmap)
2281 {
2282 	struct pmap_release_info info;
2283 
2284 	KASSERT(CPUMASK_TESTZERO(pmap->pm_active),
2285 		("pmap still active! %016jx",
2286 		(uintmax_t)CPUMASK_LOWMASK(pmap->pm_active)));
2287 
2288 	spin_lock(&pmap_spin);
2289 	TAILQ_REMOVE(&pmap_list, pmap, pm_pmnode);
2290 	spin_unlock(&pmap_spin);
2291 
2292 	/*
2293 	 * Pull pv's off the RB tree in order from low to high and release
2294 	 * each page.
2295 	 */
2296 	info.pmap = pmap;
2297 	do {
2298 		info.retry = 0;
2299 		spin_lock(&pmap->pm_spin);
2300 		RB_SCAN(pv_entry_rb_tree, &pmap->pm_pvroot, NULL,
2301 			pmap_release_callback, &info);
2302 		spin_unlock(&pmap->pm_spin);
2303 	} while (info.retry);
2304 
2305 
2306 	/*
2307 	 * One resident page (the pml4 page) should remain.
2308 	 * No wired pages should remain.
2309 	 */
2310 	KKASSERT(pmap->pm_stats.resident_count ==
2311 		 ((pmap->pm_flags & PMAP_FLAG_SIMPLE) ? 0 : 1));
2312 
2313 	KKASSERT(pmap->pm_stats.wired_count == 0);
2314 }
2315 
2316 static int
2317 pmap_release_callback(pv_entry_t pv, void *data)
2318 {
2319 	struct pmap_release_info *info = data;
2320 	pmap_t pmap = info->pmap;
2321 	int r;
2322 
2323 	if (pv_hold_try(pv)) {
2324 		spin_unlock(&pmap->pm_spin);
2325 	} else {
2326 		spin_unlock(&pmap->pm_spin);
2327 		pv_lock(pv);
2328 	}
2329 	if (pv->pv_pmap != pmap) {
2330 		pv_put(pv);
2331 		spin_lock(&pmap->pm_spin);
2332 		info->retry = 1;
2333 		return(-1);
2334 	}
2335 	r = pmap_release_pv(NULL, pv, NULL);
2336 	spin_lock(&pmap->pm_spin);
2337 	return(r);
2338 }
2339 
2340 /*
2341  * Called with held (i.e. also locked) pv.  This function will dispose of
2342  * the lock along with the pv.
2343  *
2344  * If the caller already holds the locked parent page table for pv it
2345  * must pass it as pvp, allowing us to avoid a deadlock, else it can
2346  * pass NULL for pvp.
2347  */
2348 static int
2349 pmap_release_pv(struct pmap_inval_info *info, pv_entry_t pv, pv_entry_t pvp)
2350 {
2351 	vm_page_t p;
2352 
2353 	/*
2354 	 * The pmap is currently not spinlocked, pv is held+locked.
2355 	 * Remove the pv's page from its parent's page table.  The
2356 	 * parent's page table page's wire_count will be decremented.
2357 	 *
2358 	 * This will clean out the pte at any level of the page table.
2359 	 * If info is not NULL the appropriate invlpg/invltlb/smp
2360 	 * invalidation will be made.
2361 	 */
2362 	pmap_remove_pv_pte(pv, pvp, info);
2363 
2364 	/*
2365 	 * Terminal pvs are unhooked from their vm_pages.  Because
2366 	 * terminal pages aren't page table pages they aren't wired
2367 	 * by us, so we have to be sure not to unwire them either.
2368 	 */
2369 	if (pv->pv_pindex < pmap_pt_pindex(0)) {
2370 		pmap_remove_pv_page(pv);
2371 		goto skip;
2372 	}
2373 
2374 	/*
2375 	 * We leave the top-level page table page cached, wired, and
2376 	 * mapped in the pmap until the dtor function (pmap_puninit())
2377 	 * gets called.
2378 	 *
2379 	 * Since we are leaving the top-level pv intact we need
2380 	 * to break out of what would otherwise be an infinite loop.
2381 	 */
2382 	if (pv->pv_pindex == pmap_pml4_pindex()) {
2383 		pv_put(pv);
2384 		return(-1);
2385 	}
2386 
2387 	/*
2388 	 * For page table pages (other than the top-level page),
2389 	 * remove and free the vm_page.  The representitive mapping
2390 	 * removed above by pmap_remove_pv_pte() did not undo the
2391 	 * last wire_count so we have to do that as well.
2392 	 */
2393 	p = pmap_remove_pv_page(pv);
2394 	vm_page_busy_wait(p, FALSE, "pmaprl");
2395 	if (p->wire_count != 1) {
2396 		kprintf("p->wire_count was %016lx %d\n",
2397 			pv->pv_pindex, p->wire_count);
2398 	}
2399 	KKASSERT(p->wire_count == 1);
2400 	KKASSERT(p->flags & PG_UNMANAGED);
2401 
2402 	vm_page_unwire(p, 0);
2403 	KKASSERT(p->wire_count == 0);
2404 
2405 	/*
2406 	 * Theoretically this page, if not the pml4 page, should contain
2407 	 * all-zeros.  But its just too dangerous to mark it PG_ZERO.  Free
2408 	 * normally.
2409 	 */
2410 	vm_page_free(p);
2411 skip:
2412 	pv_free(pv);
2413 	return 0;
2414 }
2415 
2416 /*
2417  * This function will remove the pte associated with a pv from its parent.
2418  * Terminal pv's are supported.  The removal will be interlocked if info
2419  * is non-NULL.  The caller must dispose of pv instead of just unlocking
2420  * it.
2421  *
2422  * The wire count will be dropped on the parent page table.  The wire
2423  * count on the page being removed (pv->pv_m) from the parent page table
2424  * is NOT touched.  Note that terminal pages will not have any additional
2425  * wire counts while page table pages will have at least one representing
2426  * the mapping, plus others representing sub-mappings.
2427  *
2428  * NOTE: Cannot be called on kernel page table pages, only KVM terminal
2429  *	 pages and user page table and terminal pages.
2430  *
2431  * The pv must be locked.
2432  *
2433  * XXX must lock parent pv's if they exist to remove pte XXX
2434  */
2435 static
2436 void
2437 pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp, struct pmap_inval_info *info)
2438 {
2439 	vm_pindex_t ptepindex = pv->pv_pindex;
2440 	pmap_t pmap = pv->pv_pmap;
2441 	vm_page_t p;
2442 	int gotpvp = 0;
2443 
2444 	KKASSERT(pmap);
2445 
2446 	if (ptepindex == pmap_pml4_pindex()) {
2447 		/*
2448 		 * We are the top level pml4 table, there is no parent.
2449 		 */
2450 		p = pmap->pm_pmlpv->pv_m;
2451 	} else if (ptepindex >= pmap_pdp_pindex(0)) {
2452 		/*
2453 		 * Remove a PDP page from the pml4e.  This can only occur
2454 		 * with user page tables.  We do not have to lock the
2455 		 * pml4 PV so just ignore pvp.
2456 		 */
2457 		vm_pindex_t pml4_pindex;
2458 		vm_pindex_t pdp_index;
2459 		pml4_entry_t *pdp;
2460 
2461 		pdp_index = ptepindex - pmap_pdp_pindex(0);
2462 		if (pvp == NULL) {
2463 			pml4_pindex = pmap_pml4_pindex();
2464 			pvp = pv_get(pv->pv_pmap, pml4_pindex);
2465 			KKASSERT(pvp);
2466 			gotpvp = 1;
2467 		}
2468 		pdp = &pmap->pm_pml4[pdp_index & ((1ul << NPML4EPGSHIFT) - 1)];
2469 		KKASSERT((*pdp & pmap->pmap_bits[PG_V_IDX]) != 0);
2470 		p = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
2471 		if (info) {
2472 			pmap_inval_interlock(info, pmap, (vm_offset_t)-1);
2473 			pte_load_clear(pdp);
2474 			pmap_inval_deinterlock(info, pmap);
2475 		} else {
2476 			*pdp = 0;
2477 		}
2478 	} else if (ptepindex >= pmap_pd_pindex(0)) {
2479 		/*
2480 		 * Remove a PD page from the pdp
2481 		 *
2482 		 * SIMPLE PMAP NOTE: Non-existant pvp's are ok in the case
2483 		 *		     of a simple pmap because it stops at
2484 		 *		     the PD page.
2485 		 */
2486 		vm_pindex_t pdp_pindex;
2487 		vm_pindex_t pd_index;
2488 		pdp_entry_t *pd;
2489 
2490 		pd_index = ptepindex - pmap_pd_pindex(0);
2491 
2492 		if (pvp == NULL) {
2493 			pdp_pindex = NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
2494 				     (pd_index >> NPML4EPGSHIFT);
2495 			pvp = pv_get(pv->pv_pmap, pdp_pindex);
2496 			if (pvp)
2497 				gotpvp = 1;
2498 		}
2499 		if (pvp) {
2500 			pd = pv_pte_lookup(pvp, pd_index &
2501 						((1ul << NPDPEPGSHIFT) - 1));
2502 			KKASSERT((*pd & pmap->pmap_bits[PG_V_IDX]) != 0);
2503 			p = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
2504 			if (info) {
2505 				pmap_inval_interlock(info, pmap,
2506 						     (vm_offset_t)-1);
2507 				pte_load_clear(pd);
2508 				pmap_inval_deinterlock(info, pmap);
2509 			} else {
2510 				*pd = 0;
2511 			}
2512 		} else {
2513 			KKASSERT(pmap->pm_flags & PMAP_FLAG_SIMPLE);
2514 			p = pv->pv_m;		/* degenerate test later */
2515 		}
2516 	} else if (ptepindex >= pmap_pt_pindex(0)) {
2517 		/*
2518 		 *  Remove a PT page from the pd
2519 		 */
2520 		vm_pindex_t pd_pindex;
2521 		vm_pindex_t pt_index;
2522 		pd_entry_t *pt;
2523 
2524 		pt_index = ptepindex - pmap_pt_pindex(0);
2525 
2526 		if (pvp == NULL) {
2527 			pd_pindex = NUPTE_TOTAL + NUPT_TOTAL +
2528 				    (pt_index >> NPDPEPGSHIFT);
2529 			pvp = pv_get(pv->pv_pmap, pd_pindex);
2530 			KKASSERT(pvp);
2531 			gotpvp = 1;
2532 		}
2533 		pt = pv_pte_lookup(pvp, pt_index & ((1ul << NPDPEPGSHIFT) - 1));
2534 		KKASSERT((*pt & pmap->pmap_bits[PG_V_IDX]) != 0);
2535 		p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
2536 		if (info) {
2537 			pmap_inval_interlock(info, pmap, (vm_offset_t)-1);
2538 			pte_load_clear(pt);
2539 			pmap_inval_deinterlock(info, pmap);
2540 		} else {
2541 			*pt = 0;
2542 		}
2543 	} else {
2544 		/*
2545 		 * Remove a PTE from the PT page
2546 		 *
2547 		 * NOTE: pv's must be locked bottom-up to avoid deadlocking.
2548 		 *	 pv is a pte_pv so we can safely lock pt_pv.
2549 		 *
2550 		 * NOTE: FICTITIOUS pages may have multiple physical mappings
2551 		 *	 so PHYS_TO_VM_PAGE() will not necessarily work for
2552 		 *	 terminal ptes.
2553 		 */
2554 		vm_pindex_t pt_pindex;
2555 		pt_entry_t *ptep;
2556 		pt_entry_t pte;
2557 		vm_offset_t va;
2558 
2559 		pt_pindex = ptepindex >> NPTEPGSHIFT;
2560 		va = (vm_offset_t)ptepindex << PAGE_SHIFT;
2561 
2562 		if (ptepindex >= NUPTE_USER) {
2563 			ptep = vtopte(ptepindex << PAGE_SHIFT);
2564 			KKASSERT(pvp == NULL);
2565 		} else {
2566 			if (pvp == NULL) {
2567 				pt_pindex = NUPTE_TOTAL +
2568 					    (ptepindex >> NPDPEPGSHIFT);
2569 				pvp = pv_get(pv->pv_pmap, pt_pindex);
2570 				KKASSERT(pvp);
2571 				gotpvp = 1;
2572 			}
2573 			ptep = pv_pte_lookup(pvp, ptepindex &
2574 						  ((1ul << NPDPEPGSHIFT) - 1));
2575 		}
2576 
2577 		if (info)
2578 			pmap_inval_interlock(info, pmap, va);
2579 		pte = pte_load_clear(ptep);
2580 		if (info)
2581 			pmap_inval_deinterlock(info, pmap);
2582 		else
2583 			cpu_invlpg((void *)va);
2584 
2585 		/*
2586 		 * Now update the vm_page_t
2587 		 */
2588 		if ((pte & (pmap->pmap_bits[PG_MANAGED_IDX] | pmap->pmap_bits[PG_V_IDX])) !=
2589 		    (pmap->pmap_bits[PG_MANAGED_IDX]|pmap->pmap_bits[PG_V_IDX])) {
2590 			kprintf("remove_pte badpte %016lx %016lx %d\n",
2591 				pte, pv->pv_pindex,
2592 				pv->pv_pindex < pmap_pt_pindex(0));
2593 		}
2594 		/* PHYS_TO_VM_PAGE() will not work for FICTITIOUS pages */
2595 		/*KKASSERT((pte & (PG_MANAGED|PG_V)) == (PG_MANAGED|PG_V));*/
2596 		if (pte & pmap->pmap_bits[PG_DEVICE_IDX])
2597 			p = pv->pv_m;
2598 		else
2599 			p = PHYS_TO_VM_PAGE(pte & PG_FRAME);
2600 		/* p = pv->pv_m; */
2601 
2602 		if (pte & pmap->pmap_bits[PG_M_IDX]) {
2603 			if (pmap_track_modified(ptepindex))
2604 				vm_page_dirty(p);
2605 		}
2606 		if (pte & pmap->pmap_bits[PG_A_IDX]) {
2607 			vm_page_flag_set(p, PG_REFERENCED);
2608 		}
2609 		if (pte & pmap->pmap_bits[PG_W_IDX])
2610 			atomic_add_long(&pmap->pm_stats.wired_count, -1);
2611 		if (pte & pmap->pmap_bits[PG_G_IDX])
2612 			cpu_invlpg((void *)va);
2613 	}
2614 
2615 	/*
2616 	 * Unwire the parent page table page.  The wire_count cannot go below
2617 	 * 1 here because the parent page table page is itself still mapped.
2618 	 *
2619 	 * XXX remove the assertions later.
2620 	 */
2621 	KKASSERT(pv->pv_m == p);
2622 	if (pvp && vm_page_unwire_quick(pvp->pv_m))
2623 		panic("pmap_remove_pv_pte: Insufficient wire_count");
2624 
2625 	if (gotpvp)
2626 		pv_put(pvp);
2627 }
2628 
2629 /*
2630  * Remove the vm_page association to a pv.  The pv must be locked.
2631  */
2632 static
2633 vm_page_t
2634 pmap_remove_pv_page(pv_entry_t pv)
2635 {
2636 	vm_page_t m;
2637 
2638 	m = pv->pv_m;
2639 	KKASSERT(m);
2640 	vm_page_spin_lock(m);
2641 	pv->pv_m = NULL;
2642 	TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2643 	pmap_page_stats_deleting(m);
2644 	/*
2645 	if (m->object)
2646 		atomic_add_int(&m->object->agg_pv_list_count, -1);
2647 	*/
2648 	if (TAILQ_EMPTY(&m->md.pv_list))
2649 		vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2650 	vm_page_spin_unlock(m);
2651 	return(m);
2652 }
2653 
2654 /*
2655  * Grow the number of kernel page table entries, if needed.
2656  *
2657  * This routine is always called to validate any address space
2658  * beyond KERNBASE (for kldloads).  kernel_vm_end only governs the address
2659  * space below KERNBASE.
2660  */
2661 void
2662 pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
2663 {
2664 	vm_paddr_t paddr;
2665 	vm_offset_t ptppaddr;
2666 	vm_page_t nkpg;
2667 	pd_entry_t *pt, newpt;
2668 	pdp_entry_t newpd;
2669 	int update_kernel_vm_end;
2670 
2671 	/*
2672 	 * bootstrap kernel_vm_end on first real VM use
2673 	 */
2674 	if (kernel_vm_end == 0) {
2675 		kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
2676 		nkpt = 0;
2677 		while ((*pmap_pt(&kernel_pmap, kernel_vm_end) & kernel_pmap.pmap_bits[PG_V_IDX]) != 0) {
2678 			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
2679 					~(PAGE_SIZE * NPTEPG - 1);
2680 			nkpt++;
2681 			if (kernel_vm_end - 1 >= kernel_map.max_offset) {
2682 				kernel_vm_end = kernel_map.max_offset;
2683 				break;
2684 			}
2685 		}
2686 	}
2687 
2688 	/*
2689 	 * Fill in the gaps.  kernel_vm_end is only adjusted for ranges
2690 	 * below KERNBASE.  Ranges above KERNBASE are kldloaded and we
2691 	 * do not want to force-fill 128G worth of page tables.
2692 	 */
2693 	if (kstart < KERNBASE) {
2694 		if (kstart > kernel_vm_end)
2695 			kstart = kernel_vm_end;
2696 		KKASSERT(kend <= KERNBASE);
2697 		update_kernel_vm_end = 1;
2698 	} else {
2699 		update_kernel_vm_end = 0;
2700 	}
2701 
2702 	kstart = rounddown2(kstart, PAGE_SIZE * NPTEPG);
2703 	kend = roundup2(kend, PAGE_SIZE * NPTEPG);
2704 
2705 	if (kend - 1 >= kernel_map.max_offset)
2706 		kend = kernel_map.max_offset;
2707 
2708 	while (kstart < kend) {
2709 		pt = pmap_pt(&kernel_pmap, kstart);
2710 		if (pt == NULL) {
2711 			/* We need a new PDP entry */
2712 			nkpg = vm_page_alloc(NULL, nkpt,
2713 			                     VM_ALLOC_NORMAL |
2714 					     VM_ALLOC_SYSTEM |
2715 					     VM_ALLOC_INTERRUPT);
2716 			if (nkpg == NULL) {
2717 				panic("pmap_growkernel: no memory to grow "
2718 				      "kernel");
2719 			}
2720 			paddr = VM_PAGE_TO_PHYS(nkpg);
2721 			if ((nkpg->flags & PG_ZERO) == 0)
2722 				pmap_zero_page(paddr);
2723 			vm_page_flag_clear(nkpg, PG_ZERO);
2724 			newpd = (pdp_entry_t)
2725 			    (paddr |
2726 			    kernel_pmap.pmap_bits[PG_V_IDX] |
2727 			    kernel_pmap.pmap_bits[PG_RW_IDX] |
2728 			    kernel_pmap.pmap_bits[PG_A_IDX] |
2729 			    kernel_pmap.pmap_bits[PG_M_IDX]);
2730 			*pmap_pd(&kernel_pmap, kstart) = newpd;
2731 			nkpt++;
2732 			continue; /* try again */
2733 		}
2734 		if ((*pt & kernel_pmap.pmap_bits[PG_V_IDX]) != 0) {
2735 			kstart = (kstart + PAGE_SIZE * NPTEPG) &
2736 				 ~(PAGE_SIZE * NPTEPG - 1);
2737 			if (kstart - 1 >= kernel_map.max_offset) {
2738 				kstart = kernel_map.max_offset;
2739 				break;
2740 			}
2741 			continue;
2742 		}
2743 
2744 		/*
2745 		 * This index is bogus, but out of the way
2746 		 */
2747 		nkpg = vm_page_alloc(NULL, nkpt,
2748 				     VM_ALLOC_NORMAL |
2749 				     VM_ALLOC_SYSTEM |
2750 				     VM_ALLOC_INTERRUPT);
2751 		if (nkpg == NULL)
2752 			panic("pmap_growkernel: no memory to grow kernel");
2753 
2754 		vm_page_wire(nkpg);
2755 		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
2756 		pmap_zero_page(ptppaddr);
2757 		vm_page_flag_clear(nkpg, PG_ZERO);
2758 		newpt = (pd_entry_t) (ptppaddr |
2759 		    kernel_pmap.pmap_bits[PG_V_IDX] |
2760 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
2761 		    kernel_pmap.pmap_bits[PG_A_IDX] |
2762 		    kernel_pmap.pmap_bits[PG_M_IDX]);
2763 		*pmap_pt(&kernel_pmap, kstart) = newpt;
2764 		nkpt++;
2765 
2766 		kstart = (kstart + PAGE_SIZE * NPTEPG) &
2767 			  ~(PAGE_SIZE * NPTEPG - 1);
2768 
2769 		if (kstart - 1 >= kernel_map.max_offset) {
2770 			kstart = kernel_map.max_offset;
2771 			break;
2772 		}
2773 	}
2774 
2775 	/*
2776 	 * Only update kernel_vm_end for areas below KERNBASE.
2777 	 */
2778 	if (update_kernel_vm_end && kernel_vm_end < kstart)
2779 		kernel_vm_end = kstart;
2780 }
2781 
2782 /*
2783  *	Add a reference to the specified pmap.
2784  */
2785 void
2786 pmap_reference(pmap_t pmap)
2787 {
2788 	if (pmap != NULL) {
2789 		lwkt_gettoken(&pmap->pm_token);
2790 		++pmap->pm_count;
2791 		lwkt_reltoken(&pmap->pm_token);
2792 	}
2793 }
2794 
2795 /***************************************************
2796  * page management routines.
2797  ***************************************************/
2798 
2799 /*
2800  * Hold a pv without locking it
2801  */
2802 static void
2803 pv_hold(pv_entry_t pv)
2804 {
2805 	atomic_add_int(&pv->pv_hold, 1);
2806 }
2807 
2808 /*
2809  * Hold a pv_entry, preventing its destruction.  TRUE is returned if the pv
2810  * was successfully locked, FALSE if it wasn't.  The caller must dispose of
2811  * the pv properly.
2812  *
2813  * Either the pmap->pm_spin or the related vm_page_spin (if traversing a
2814  * pv list via its page) must be held by the caller.
2815  */
2816 static int
2817 _pv_hold_try(pv_entry_t pv PMAP_DEBUG_DECL)
2818 {
2819 	u_int count;
2820 
2821 	/*
2822 	 * Critical path shortcut expects pv to already have one ref
2823 	 * (for the pv->pv_pmap).
2824 	 */
2825 	if (atomic_cmpset_int(&pv->pv_hold, 1, PV_HOLD_LOCKED | 2)) {
2826 #ifdef PMAP_DEBUG
2827 		pv->pv_func = func;
2828 		pv->pv_line = lineno;
2829 #endif
2830 		return TRUE;
2831 	}
2832 
2833 	for (;;) {
2834 		count = pv->pv_hold;
2835 		cpu_ccfence();
2836 		if ((count & PV_HOLD_LOCKED) == 0) {
2837 			if (atomic_cmpset_int(&pv->pv_hold, count,
2838 					      (count + 1) | PV_HOLD_LOCKED)) {
2839 #ifdef PMAP_DEBUG
2840 				pv->pv_func = func;
2841 				pv->pv_line = lineno;
2842 #endif
2843 				return TRUE;
2844 			}
2845 		} else {
2846 			if (atomic_cmpset_int(&pv->pv_hold, count, count + 1))
2847 				return FALSE;
2848 		}
2849 		/* retry */
2850 	}
2851 }
2852 
2853 /*
2854  * Drop a previously held pv_entry which could not be locked, allowing its
2855  * destruction.
2856  *
2857  * Must not be called with a spinlock held as we might zfree() the pv if it
2858  * is no longer associated with a pmap and this was the last hold count.
2859  */
2860 static void
2861 pv_drop(pv_entry_t pv)
2862 {
2863 	u_int count;
2864 
2865 	for (;;) {
2866 		count = pv->pv_hold;
2867 		cpu_ccfence();
2868 		KKASSERT((count & PV_HOLD_MASK) > 0);
2869 		KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) !=
2870 			 (PV_HOLD_LOCKED | 1));
2871 		if (atomic_cmpset_int(&pv->pv_hold, count, count - 1)) {
2872 			if ((count & PV_HOLD_MASK) == 1) {
2873 #ifdef PMAP_DEBUG2
2874 				if (pmap_enter_debug > 0) {
2875 					--pmap_enter_debug;
2876 					kprintf("pv_drop: free pv %p\n", pv);
2877 				}
2878 #endif
2879 				KKASSERT(count == 1);
2880 				KKASSERT(pv->pv_pmap == NULL);
2881 				zfree(pvzone, pv);
2882 			}
2883 			return;
2884 		}
2885 		/* retry */
2886 	}
2887 }
2888 
2889 /*
2890  * Find or allocate the requested PV entry, returning a locked, held pv.
2891  *
2892  * If (*isnew) is non-zero, the returned pv will have two hold counts, one
2893  * for the caller and one representing the pmap and vm_page association.
2894  *
2895  * If (*isnew) is zero, the returned pv will have only one hold count.
2896  *
2897  * Since both associations can only be adjusted while the pv is locked,
2898  * together they represent just one additional hold.
2899  */
2900 static
2901 pv_entry_t
2902 _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew PMAP_DEBUG_DECL)
2903 {
2904 	pv_entry_t pv;
2905 	pv_entry_t pnew = NULL;
2906 
2907 	spin_lock(&pmap->pm_spin);
2908 	for (;;) {
2909 		if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex) {
2910 			pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
2911 							pindex);
2912 		}
2913 		if (pv == NULL) {
2914 			if (pnew == NULL) {
2915 				spin_unlock(&pmap->pm_spin);
2916 				pnew = zalloc(pvzone);
2917 				spin_lock(&pmap->pm_spin);
2918 				continue;
2919 			}
2920 			pnew->pv_pmap = pmap;
2921 			pnew->pv_pindex = pindex;
2922 			pnew->pv_hold = PV_HOLD_LOCKED | 2;
2923 #ifdef PMAP_DEBUG
2924 			pnew->pv_func = func;
2925 			pnew->pv_line = lineno;
2926 #endif
2927 			pv_entry_rb_tree_RB_INSERT(&pmap->pm_pvroot, pnew);
2928 			++pmap->pm_generation;
2929 			atomic_add_long(&pmap->pm_stats.resident_count, 1);
2930 			spin_unlock(&pmap->pm_spin);
2931 			*isnew = 1;
2932 			return(pnew);
2933 		}
2934 		if (pnew) {
2935 			spin_unlock(&pmap->pm_spin);
2936 			zfree(pvzone, pnew);
2937 			pnew = NULL;
2938 			spin_lock(&pmap->pm_spin);
2939 			continue;
2940 		}
2941 		if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
2942 			spin_unlock(&pmap->pm_spin);
2943 		} else {
2944 			spin_unlock(&pmap->pm_spin);
2945 			_pv_lock(pv PMAP_DEBUG_COPY);
2946 		}
2947 		if (pv->pv_pmap == pmap && pv->pv_pindex == pindex) {
2948 			*isnew = 0;
2949 			return(pv);
2950 		}
2951 		pv_put(pv);
2952 		spin_lock(&pmap->pm_spin);
2953 	}
2954 }
2955 
2956 /*
2957  * Find the requested PV entry, returning a locked+held pv or NULL
2958  */
2959 static
2960 pv_entry_t
2961 _pv_get(pmap_t pmap, vm_pindex_t pindex PMAP_DEBUG_DECL)
2962 {
2963 	pv_entry_t pv;
2964 
2965 	spin_lock(&pmap->pm_spin);
2966 	for (;;) {
2967 		/*
2968 		 * Shortcut cache
2969 		 */
2970 		if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex) {
2971 			pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
2972 							pindex);
2973 		}
2974 		if (pv == NULL) {
2975 			spin_unlock(&pmap->pm_spin);
2976 			return NULL;
2977 		}
2978 		if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
2979 			spin_unlock(&pmap->pm_spin);
2980 		} else {
2981 			spin_unlock(&pmap->pm_spin);
2982 			_pv_lock(pv PMAP_DEBUG_COPY);
2983 		}
2984 		if (pv->pv_pmap == pmap && pv->pv_pindex == pindex) {
2985 			pv_cache(pv, pindex);
2986 			return(pv);
2987 		}
2988 		pv_put(pv);
2989 		spin_lock(&pmap->pm_spin);
2990 	}
2991 }
2992 
2993 /*
2994  * Lookup, hold, and attempt to lock (pmap,pindex).
2995  *
2996  * If the entry does not exist NULL is returned and *errorp is set to 0
2997  *
2998  * If the entry exists and could be successfully locked it is returned and
2999  * errorp is set to 0.
3000  *
3001  * If the entry exists but could NOT be successfully locked it is returned
3002  * held and *errorp is set to 1.
3003  */
3004 static
3005 pv_entry_t
3006 pv_get_try(pmap_t pmap, vm_pindex_t pindex, int *errorp)
3007 {
3008 	pv_entry_t pv;
3009 
3010 	spin_lock_shared(&pmap->pm_spin);
3011 	if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex)
3012 		pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
3013 	if (pv == NULL) {
3014 		spin_unlock_shared(&pmap->pm_spin);
3015 		*errorp = 0;
3016 		return NULL;
3017 	}
3018 	if (pv_hold_try(pv)) {
3019 		pv_cache(pv, pindex);
3020 		spin_unlock_shared(&pmap->pm_spin);
3021 		*errorp = 0;
3022 		KKASSERT(pv->pv_pmap == pmap && pv->pv_pindex == pindex);
3023 		return(pv);	/* lock succeeded */
3024 	}
3025 	spin_unlock_shared(&pmap->pm_spin);
3026 	*errorp = 1;
3027 	return (pv);		/* lock failed */
3028 }
3029 
3030 /*
3031  * Find the requested PV entry, returning a held pv or NULL
3032  */
3033 static
3034 pv_entry_t
3035 pv_find(pmap_t pmap, vm_pindex_t pindex)
3036 {
3037 	pv_entry_t pv;
3038 
3039 	spin_lock_shared(&pmap->pm_spin);
3040 
3041 	if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex)
3042 		pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
3043 	if (pv == NULL) {
3044 		spin_unlock_shared(&pmap->pm_spin);
3045 		return NULL;
3046 	}
3047 	pv_hold(pv);
3048 	pv_cache(pv, pindex);
3049 	spin_unlock_shared(&pmap->pm_spin);
3050 	return(pv);
3051 }
3052 
3053 /*
3054  * Lock a held pv, keeping the hold count
3055  */
3056 static
3057 void
3058 _pv_lock(pv_entry_t pv PMAP_DEBUG_DECL)
3059 {
3060 	u_int count;
3061 
3062 	for (;;) {
3063 		count = pv->pv_hold;
3064 		cpu_ccfence();
3065 		if ((count & PV_HOLD_LOCKED) == 0) {
3066 			if (atomic_cmpset_int(&pv->pv_hold, count,
3067 					      count | PV_HOLD_LOCKED)) {
3068 #ifdef PMAP_DEBUG
3069 				pv->pv_func = func;
3070 				pv->pv_line = lineno;
3071 #endif
3072 				return;
3073 			}
3074 			continue;
3075 		}
3076 		tsleep_interlock(pv, 0);
3077 		if (atomic_cmpset_int(&pv->pv_hold, count,
3078 				      count | PV_HOLD_WAITING)) {
3079 #ifdef PMAP_DEBUG
3080 			kprintf("pv waiting on %s:%d\n",
3081 					pv->pv_func, pv->pv_line);
3082 #endif
3083 			tsleep(pv, PINTERLOCKED, "pvwait", hz);
3084 		}
3085 		/* retry */
3086 	}
3087 }
3088 
3089 /*
3090  * Unlock a held and locked pv, keeping the hold count.
3091  */
3092 static
3093 void
3094 pv_unlock(pv_entry_t pv)
3095 {
3096 	u_int count;
3097 
3098 	for (;;) {
3099 		count = pv->pv_hold;
3100 		cpu_ccfence();
3101 		KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) >=
3102 			 (PV_HOLD_LOCKED | 1));
3103 		if (atomic_cmpset_int(&pv->pv_hold, count,
3104 				      count &
3105 				      ~(PV_HOLD_LOCKED | PV_HOLD_WAITING))) {
3106 			if (count & PV_HOLD_WAITING)
3107 				wakeup(pv);
3108 			break;
3109 		}
3110 	}
3111 }
3112 
3113 /*
3114  * Unlock and drop a pv.  If the pv is no longer associated with a pmap
3115  * and the hold count drops to zero we will free it.
3116  *
3117  * Caller should not hold any spin locks.  We are protected from hold races
3118  * by virtue of holds only occuring only with a pmap_spin or vm_page_spin
3119  * lock held.  A pv cannot be located otherwise.
3120  */
3121 static
3122 void
3123 pv_put(pv_entry_t pv)
3124 {
3125 #ifdef PMAP_DEBUG2
3126 	if (pmap_enter_debug > 0) {
3127 		--pmap_enter_debug;
3128 		kprintf("pv_put pv=%p hold=%08x\n", pv, pv->pv_hold);
3129 	}
3130 #endif
3131 
3132 	/*
3133 	 * Fast - shortcut most common condition
3134 	 */
3135 	if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 1))
3136 		return;
3137 
3138 	/*
3139 	 * Slow
3140 	 */
3141 	pv_unlock(pv);
3142 	pv_drop(pv);
3143 }
3144 
3145 /*
3146  * Remove the pmap association from a pv, require that pv_m already be removed,
3147  * then unlock and drop the pv.  Any pte operations must have already been
3148  * completed.  This call may result in a last-drop which will physically free
3149  * the pv.
3150  *
3151  * Removing the pmap association entails an additional drop.
3152  *
3153  * pv must be exclusively locked on call and will be disposed of on return.
3154  */
3155 static
3156 void
3157 pv_free(pv_entry_t pv)
3158 {
3159 	pmap_t pmap;
3160 
3161 	KKASSERT(pv->pv_m == NULL);
3162 	KKASSERT((pv->pv_hold & PV_HOLD_MASK) >= 2);
3163 	if ((pmap = pv->pv_pmap) != NULL) {
3164 		spin_lock(&pmap->pm_spin);
3165 		pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
3166 		++pmap->pm_generation;
3167 		if (pmap->pm_pvhint == pv)
3168 			pmap->pm_pvhint = NULL;
3169 		atomic_add_long(&pmap->pm_stats.resident_count, -1);
3170 		pv->pv_pmap = NULL;
3171 		pv->pv_pindex = 0;
3172 		spin_unlock(&pmap->pm_spin);
3173 
3174 		/*
3175 		 * Try to shortcut three atomic ops, otherwise fall through
3176 		 * and do it normally.  Drop two refs and the lock all in
3177 		 * one go.
3178 		 */
3179 		if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 0)) {
3180 #ifdef PMAP_DEBUG2
3181 			if (pmap_enter_debug > 0) {
3182 				--pmap_enter_debug;
3183 				kprintf("pv_free: free pv %p\n", pv);
3184 			}
3185 #endif
3186 			zfree(pvzone, pv);
3187 			return;
3188 		}
3189 		pv_drop(pv);	/* ref for pv_pmap */
3190 	}
3191 	pv_put(pv);
3192 }
3193 
3194 /*
3195  * This routine is very drastic, but can save the system
3196  * in a pinch.
3197  */
3198 void
3199 pmap_collect(void)
3200 {
3201 	int i;
3202 	vm_page_t m;
3203 	static int warningdone=0;
3204 
3205 	if (pmap_pagedaemon_waken == 0)
3206 		return;
3207 	pmap_pagedaemon_waken = 0;
3208 	if (warningdone < 5) {
3209 		kprintf("pmap_collect: collecting pv entries -- "
3210 			"suggest increasing PMAP_SHPGPERPROC\n");
3211 		warningdone++;
3212 	}
3213 
3214 	for (i = 0; i < vm_page_array_size; i++) {
3215 		m = &vm_page_array[i];
3216 		if (m->wire_count || m->hold_count)
3217 			continue;
3218 		if (vm_page_busy_try(m, TRUE) == 0) {
3219 			if (m->wire_count == 0 && m->hold_count == 0) {
3220 				pmap_remove_all(m);
3221 			}
3222 			vm_page_wakeup(m);
3223 		}
3224 	}
3225 }
3226 
3227 /*
3228  * Scan the pmap for active page table entries and issue a callback.
3229  * The callback must dispose of pte_pv, whos PTE entry is at *ptep in
3230  * its parent page table.
3231  *
3232  * pte_pv will be NULL if the page or page table is unmanaged.
3233  * pt_pv will point to the page table page containing the pte for the page.
3234  *
3235  * NOTE! If we come across an unmanaged page TABLE (verses an unmanaged page),
3236  *	 we pass a NULL pte_pv and we pass a pt_pv pointing to the passed
3237  *	 process pmap's PD and page to the callback function.  This can be
3238  *	 confusing because the pt_pv is really a pd_pv, and the target page
3239  *	 table page is simply aliased by the pmap and not owned by it.
3240  *
3241  * It is assumed that the start and end are properly rounded to the page size.
3242  *
3243  * It is assumed that PD pages and above are managed and thus in the RB tree,
3244  * allowing us to use RB_SCAN from the PD pages down for ranged scans.
3245  */
3246 struct pmap_scan_info {
3247 	struct pmap *pmap;
3248 	vm_offset_t sva;
3249 	vm_offset_t eva;
3250 	vm_pindex_t sva_pd_pindex;
3251 	vm_pindex_t eva_pd_pindex;
3252 	void (*func)(pmap_t, struct pmap_scan_info *,
3253 		     pv_entry_t, pv_entry_t, int, vm_offset_t,
3254 		     pt_entry_t *, void *);
3255 	void *arg;
3256 	int doinval;
3257 	struct pmap_inval_info inval;
3258 };
3259 
3260 static int pmap_scan_cmp(pv_entry_t pv, void *data);
3261 static int pmap_scan_callback(pv_entry_t pv, void *data);
3262 
3263 static void
3264 pmap_scan(struct pmap_scan_info *info)
3265 {
3266 	struct pmap *pmap = info->pmap;
3267 	pv_entry_t pd_pv;	/* A page directory PV */
3268 	pv_entry_t pt_pv;	/* A page table PV */
3269 	pv_entry_t pte_pv;	/* A page table entry PV */
3270 	pt_entry_t *ptep;
3271 	pt_entry_t oldpte;
3272 	struct pv_entry dummy_pv;
3273 	int generation;
3274 
3275 	if (pmap == NULL)
3276 		return;
3277 
3278 	/*
3279 	 * Hold the token for stability; if the pmap is empty we have nothing
3280 	 * to do.
3281 	 */
3282 	lwkt_gettoken(&pmap->pm_token);
3283 #if 0
3284 	if (pmap->pm_stats.resident_count == 0) {
3285 		lwkt_reltoken(&pmap->pm_token);
3286 		return;
3287 	}
3288 #endif
3289 
3290 	pmap_inval_init(&info->inval);
3291 
3292 again:
3293 	/*
3294 	 * Special handling for scanning one page, which is a very common
3295 	 * operation (it is?).
3296 	 *
3297 	 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4
3298 	 */
3299 	if (info->sva + PAGE_SIZE == info->eva) {
3300 		generation = pmap->pm_generation;
3301 		if (info->sva >= VM_MAX_USER_ADDRESS) {
3302 			/*
3303 			 * Kernel mappings do not track wire counts on
3304 			 * page table pages and only maintain pd_pv and
3305 			 * pte_pv levels so pmap_scan() works.
3306 			 */
3307 			pt_pv = NULL;
3308 			pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva));
3309 			ptep = vtopte(info->sva);
3310 		} else {
3311 			/*
3312 			 * User pages which are unmanaged will not have a
3313 			 * pte_pv.  User page table pages which are unmanaged
3314 			 * (shared from elsewhere) will also not have a pt_pv.
3315 			 * The func() callback will pass both pte_pv and pt_pv
3316 			 * as NULL in that case.
3317 			 */
3318 			pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva));
3319 			pt_pv = pv_get(pmap, pmap_pt_pindex(info->sva));
3320 			if (pt_pv == NULL) {
3321 				KKASSERT(pte_pv == NULL);
3322 				pd_pv = pv_get(pmap, pmap_pd_pindex(info->sva));
3323 				if (pd_pv) {
3324 					ptep = pv_pte_lookup(pd_pv,
3325 						    pmap_pt_index(info->sva));
3326 					if (*ptep) {
3327 						info->func(pmap, info,
3328 						     NULL, pd_pv, 1,
3329 						     info->sva, ptep,
3330 						     info->arg);
3331 					}
3332 					pv_put(pd_pv);
3333 				}
3334 				goto fast_skip;
3335 			}
3336 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(info->sva));
3337 		}
3338 
3339 		/*
3340 		 * NOTE: *ptep can't be ripped out from under us if we hold
3341 		 *	 pte_pv locked, but bits can change.  However, there is
3342 		 *	 a race where another thread may be inserting pte_pv
3343 		 *	 and setting *ptep just after our pte_pv lookup fails.
3344 		 *
3345 		 *	 In this situation we can end up with a NULL pte_pv
3346 		 *	 but find that we have a managed *ptep.  We explicitly
3347 		 *	 check for this race.
3348 		 */
3349 		oldpte = *ptep;
3350 		cpu_ccfence();
3351 		if (oldpte == 0) {
3352 			/*
3353 			 * Unlike the pv_find() case below we actually
3354 			 * acquired a locked pv in this case so any
3355 			 * race should have been resolved.  It is expected
3356 			 * to not exist.
3357 			 */
3358 			KKASSERT(pte_pv == NULL);
3359 		} else if (pte_pv) {
3360 			KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] |
3361 					   pmap->pmap_bits[PG_V_IDX])) ==
3362 				(pmap->pmap_bits[PG_MANAGED_IDX] |
3363 				 pmap->pmap_bits[PG_V_IDX]),
3364 			    ("badA *ptep %016lx/%016lx sva %016lx pte_pv %p"
3365 			     "generation %d/%d",
3366 			    *ptep, oldpte, info->sva, pte_pv,
3367 			    generation, pmap->pm_generation));
3368 			info->func(pmap, info, pte_pv, pt_pv, 0,
3369 				   info->sva, ptep, info->arg);
3370 		} else {
3371 			/*
3372 			 * Check for insertion race
3373 			 */
3374 			if ((oldpte & pmap->pmap_bits[PG_MANAGED_IDX]) &&
3375 			    pt_pv) {
3376 				pte_pv = pv_find(pmap,
3377 						 pmap_pte_pindex(info->sva));
3378 				if (pte_pv) {
3379 					pv_drop(pte_pv);
3380 					pv_put(pt_pv);
3381 					kprintf("pmap_scan: RACE1 "
3382 						"%016jx, %016lx\n",
3383 						info->sva, oldpte);
3384 					goto again;
3385 				}
3386 			}
3387 
3388 			/*
3389 			 * Didn't race
3390 			 */
3391 			KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] |
3392 					   pmap->pmap_bits[PG_V_IDX])) ==
3393 			    pmap->pmap_bits[PG_V_IDX],
3394 			    ("badB *ptep %016lx/%016lx sva %016lx pte_pv NULL"
3395 			     "generation %d/%d",
3396 			    *ptep, oldpte, info->sva,
3397 			    generation, pmap->pm_generation));
3398 			info->func(pmap, info, NULL, pt_pv, 0,
3399 			    info->sva, ptep, info->arg);
3400 		}
3401 		if (pt_pv)
3402 			pv_put(pt_pv);
3403 fast_skip:
3404 		pmap_inval_done(&info->inval);
3405 		lwkt_reltoken(&pmap->pm_token);
3406 		return;
3407 	}
3408 
3409 	/*
3410 	 * Nominal scan case, RB_SCAN() for PD pages and iterate from
3411 	 * there.
3412 	 */
3413 	info->sva_pd_pindex = pmap_pd_pindex(info->sva);
3414 	info->eva_pd_pindex = pmap_pd_pindex(info->eva + NBPDP - 1);
3415 
3416 	if (info->sva >= VM_MAX_USER_ADDRESS) {
3417 		/*
3418 		 * The kernel does not currently maintain any pv_entry's for
3419 		 * higher-level page tables.
3420 		 */
3421 		bzero(&dummy_pv, sizeof(dummy_pv));
3422 		dummy_pv.pv_pindex = info->sva_pd_pindex;
3423 		spin_lock(&pmap->pm_spin);
3424 		while (dummy_pv.pv_pindex < info->eva_pd_pindex) {
3425 			pmap_scan_callback(&dummy_pv, info);
3426 			++dummy_pv.pv_pindex;
3427 		}
3428 		spin_unlock(&pmap->pm_spin);
3429 	} else {
3430 		/*
3431 		 * User page tables maintain local PML4, PDP, and PD
3432 		 * pv_entry's at the very least.  PT pv's might be
3433 		 * unmanaged and thus not exist.  PTE pv's might be
3434 		 * unmanaged and thus not exist.
3435 		 */
3436 		spin_lock(&pmap->pm_spin);
3437 		pv_entry_rb_tree_RB_SCAN(&pmap->pm_pvroot,
3438 			pmap_scan_cmp, pmap_scan_callback, info);
3439 		spin_unlock(&pmap->pm_spin);
3440 	}
3441 	pmap_inval_done(&info->inval);
3442 	lwkt_reltoken(&pmap->pm_token);
3443 }
3444 
3445 /*
3446  * WARNING! pmap->pm_spin held
3447  */
3448 static int
3449 pmap_scan_cmp(pv_entry_t pv, void *data)
3450 {
3451 	struct pmap_scan_info *info = data;
3452 	if (pv->pv_pindex < info->sva_pd_pindex)
3453 		return(-1);
3454 	if (pv->pv_pindex >= info->eva_pd_pindex)
3455 		return(1);
3456 	return(0);
3457 }
3458 
3459 /*
3460  * WARNING! pmap->pm_spin held
3461  */
3462 static int
3463 pmap_scan_callback(pv_entry_t pv, void *data)
3464 {
3465 	struct pmap_scan_info *info = data;
3466 	struct pmap *pmap = info->pmap;
3467 	pv_entry_t pd_pv;	/* A page directory PV */
3468 	pv_entry_t pt_pv;	/* A page table PV */
3469 	pv_entry_t pte_pv;	/* A page table entry PV */
3470 	pt_entry_t *ptep;
3471 	pt_entry_t oldpte;
3472 	vm_offset_t sva;
3473 	vm_offset_t eva;
3474 	vm_offset_t va_next;
3475 	vm_pindex_t pd_pindex;
3476 	int error;
3477 	int generation;
3478 
3479 	/*
3480 	 * Pull the PD pindex from the pv before releasing the spinlock.
3481 	 *
3482 	 * WARNING: pv is faked for kernel pmap scans.
3483 	 */
3484 	pd_pindex = pv->pv_pindex;
3485 	spin_unlock(&pmap->pm_spin);
3486 	pv = NULL;	/* invalid after spinlock unlocked */
3487 
3488 	/*
3489 	 * Calculate the page range within the PD.  SIMPLE pmaps are
3490 	 * direct-mapped for the entire 2^64 address space.  Normal pmaps
3491 	 * reflect the user and kernel address space which requires
3492 	 * cannonicalization w/regards to converting pd_pindex's back
3493 	 * into addresses.
3494 	 */
3495 	sva = (pd_pindex - NUPTE_TOTAL - NUPT_TOTAL) << PDPSHIFT;
3496 	if ((pmap->pm_flags & PMAP_FLAG_SIMPLE) == 0 &&
3497 	    (sva & PML4_SIGNMASK)) {
3498 		sva |= PML4_SIGNMASK;
3499 	}
3500 	eva = sva + NBPDP;	/* can overflow */
3501 	if (sva < info->sva)
3502 		sva = info->sva;
3503 	if (eva < info->sva || eva > info->eva)
3504 		eva = info->eva;
3505 
3506 	/*
3507 	 * NOTE: kernel mappings do not track page table pages, only
3508 	 * 	 terminal pages.
3509 	 *
3510 	 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4.
3511 	 *	 However, for the scan to be efficient we try to
3512 	 *	 cache items top-down.
3513 	 */
3514 	pd_pv = NULL;
3515 	pt_pv = NULL;
3516 
3517 	for (; sva < eva; sva = va_next) {
3518 		if (sva >= VM_MAX_USER_ADDRESS) {
3519 			if (pt_pv) {
3520 				pv_put(pt_pv);
3521 				pt_pv = NULL;
3522 			}
3523 			goto kernel_skip;
3524 		}
3525 
3526 		/*
3527 		 * PD cache (degenerate case if we skip).  It is possible
3528 		 * for the PD to not exist due to races.  This is ok.
3529 		 */
3530 		if (pd_pv == NULL) {
3531 			pd_pv = pv_get(pmap, pmap_pd_pindex(sva));
3532 		} else if (pd_pv->pv_pindex != pmap_pd_pindex(sva)) {
3533 			pv_put(pd_pv);
3534 			pd_pv = pv_get(pmap, pmap_pd_pindex(sva));
3535 		}
3536 		if (pd_pv == NULL) {
3537 			va_next = (sva + NBPDP) & ~PDPMASK;
3538 			if (va_next < sva)
3539 				va_next = eva;
3540 			continue;
3541 		}
3542 
3543 		/*
3544 		 * PT cache
3545 		 */
3546 		if (pt_pv == NULL) {
3547 			if (pd_pv) {
3548 				pv_put(pd_pv);
3549 				pd_pv = NULL;
3550 			}
3551 			pt_pv = pv_get(pmap, pmap_pt_pindex(sva));
3552 		} else if (pt_pv->pv_pindex != pmap_pt_pindex(sva)) {
3553 			if (pd_pv) {
3554 				pv_put(pd_pv);
3555 				pd_pv = NULL;
3556 			}
3557 			pv_put(pt_pv);
3558 			pt_pv = pv_get(pmap, pmap_pt_pindex(sva));
3559 		}
3560 
3561 		/*
3562 		 * If pt_pv is NULL we either have an shared page table
3563 		 * page and must issue a callback specific to that case,
3564 		 * or there is no page table page.
3565 		 *
3566 		 * Either way we can skip the page table page.
3567 		 */
3568 		if (pt_pv == NULL) {
3569 			/*
3570 			 * Possible unmanaged (shared from another pmap)
3571 			 * page table page.
3572 			 */
3573 			if (pd_pv == NULL)
3574 				pd_pv = pv_get(pmap, pmap_pd_pindex(sva));
3575 			KKASSERT(pd_pv != NULL);
3576 			ptep = pv_pte_lookup(pd_pv, pmap_pt_index(sva));
3577 			if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
3578 				info->func(pmap, info, NULL, pd_pv, 1,
3579 					   sva, ptep, info->arg);
3580 			}
3581 
3582 			/*
3583 			 * Done, move to next page table page.
3584 			 */
3585 			va_next = (sva + NBPDR) & ~PDRMASK;
3586 			if (va_next < sva)
3587 				va_next = eva;
3588 			continue;
3589 		}
3590 
3591 		/*
3592 		 * From this point in the loop testing pt_pv for non-NULL
3593 		 * means we are in UVM, else if it is NULL we are in KVM.
3594 		 *
3595 		 * Limit our scan to either the end of the va represented
3596 		 * by the current page table page, or to the end of the
3597 		 * range being removed.
3598 		 */
3599 kernel_skip:
3600 		va_next = (sva + NBPDR) & ~PDRMASK;
3601 		if (va_next < sva)
3602 			va_next = eva;
3603 		if (va_next > eva)
3604 			va_next = eva;
3605 
3606 		/*
3607 		 * Scan the page table for pages.  Some pages may not be
3608 		 * managed (might not have a pv_entry).
3609 		 *
3610 		 * There is no page table management for kernel pages so
3611 		 * pt_pv will be NULL in that case, but otherwise pt_pv
3612 		 * is non-NULL, locked, and referenced.
3613 		 */
3614 
3615 		/*
3616 		 * At this point a non-NULL pt_pv means a UVA, and a NULL
3617 		 * pt_pv means a KVA.
3618 		 */
3619 		if (pt_pv)
3620 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(sva));
3621 		else
3622 			ptep = vtopte(sva);
3623 
3624 		while (sva < va_next) {
3625 			/*
3626 			 * Acquire the related pte_pv, if any.  If *ptep == 0
3627 			 * the related pte_pv should not exist, but if *ptep
3628 			 * is not zero the pte_pv may or may not exist (e.g.
3629 			 * will not exist for an unmanaged page).
3630 			 *
3631 			 * However a multitude of races are possible here.
3632 			 *
3633 			 * In addition, the (pt_pv, pte_pv) lock order is
3634 			 * backwards, so we have to be careful in aquiring
3635 			 * a properly locked pte_pv.
3636 			 */
3637 			generation = pmap->pm_generation;
3638 			if (pt_pv) {
3639 				pte_pv = pv_get_try(pmap, pmap_pte_pindex(sva),
3640 						    &error);
3641 				if (error) {
3642 					if (pd_pv) {
3643 						pv_put(pd_pv);
3644 						pd_pv = NULL;
3645 					}
3646 					pv_put(pt_pv);	 /* must be non-NULL */
3647 					pt_pv = NULL;
3648 					pv_lock(pte_pv); /* safe to block now */
3649 					pv_put(pte_pv);
3650 					pte_pv = NULL;
3651 					pt_pv = pv_get(pmap,
3652 						       pmap_pt_pindex(sva));
3653 					/*
3654 					 * pt_pv reloaded, need new ptep
3655 					 */
3656 					KKASSERT(pt_pv != NULL);
3657 					ptep = pv_pte_lookup(pt_pv,
3658 							pmap_pte_index(sva));
3659 					continue;
3660 				}
3661 			} else {
3662 				pte_pv = pv_get(pmap, pmap_pte_pindex(sva));
3663 			}
3664 
3665 			/*
3666 			 * Ok, if *ptep == 0 we had better NOT have a pte_pv.
3667 			 */
3668 			oldpte = *ptep;
3669 			if (oldpte == 0) {
3670 				if (pte_pv) {
3671 					kprintf("Unexpected non-NULL pte_pv "
3672 						"%p pt_pv %p "
3673 						"*ptep = %016lx/%016lx\n",
3674 						pte_pv, pt_pv, *ptep, oldpte);
3675 					panic("Unexpected non-NULL pte_pv");
3676 				}
3677 				sva += PAGE_SIZE;
3678 				++ptep;
3679 				continue;
3680 			}
3681 
3682 			/*
3683 			 * Ready for the callback.  The locked pte_pv (if any)
3684 			 * is consumed by the callback.  pte_pv will exist if
3685 			 *  the page is managed, and will not exist if it
3686 			 * isn't.
3687 			 */
3688 			if (pte_pv) {
3689 				KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] | pmap->pmap_bits[PG_V_IDX])) ==
3690 				    (pmap->pmap_bits[PG_MANAGED_IDX] | pmap->pmap_bits[PG_V_IDX]),
3691 				    ("badC *ptep %016lx/%016lx sva %016lx "
3692 				    "pte_pv %p pm_generation %d/%d",
3693 				    *ptep, oldpte, sva, pte_pv,
3694 				    generation, pmap->pm_generation));
3695 				info->func(pmap, info, pte_pv, pt_pv, 0,
3696 				    sva, ptep, info->arg);
3697 			} else {
3698 				/*
3699 				 * Check for insertion race.  Since there is no
3700 				 * pte_pv to guard us it is possible for us
3701 				 * to race another thread doing an insertion.
3702 				 * Our lookup misses the pte_pv but our *ptep
3703 				 * check sees the inserted pte.
3704 				 *
3705 				 * XXX panic case seems to occur within a
3706 				 * vm_fork() of /bin/sh, which frankly
3707 				 * shouldn't happen since no other threads
3708 				 * should be inserting to our pmap in that
3709 				 * situation.  Removing, possibly.  Inserting,
3710 				 * shouldn't happen.
3711 				 */
3712 				if ((oldpte & pmap->pmap_bits[PG_MANAGED_IDX]) &&
3713 				    pt_pv) {
3714 					pte_pv = pv_find(pmap,
3715 							 pmap_pte_pindex(sva));
3716 					if (pte_pv) {
3717 						pv_drop(pte_pv);
3718 						kprintf("pmap_scan: RACE2 "
3719 							"%016jx, %016lx\n",
3720 							sva, oldpte);
3721 						continue;
3722 					}
3723 				}
3724 
3725 				/*
3726 				 * Didn't race
3727 				 */
3728 				KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] | pmap->pmap_bits[PG_V_IDX])) ==
3729 				    pmap->pmap_bits[PG_V_IDX],
3730 				    ("badD *ptep %016lx/%016lx sva %016lx "
3731 				    "pte_pv NULL pm_generation %d/%d",
3732 				     *ptep, oldpte, sva,
3733 				     generation, pmap->pm_generation));
3734 				info->func(pmap, info, NULL, pt_pv, 0,
3735 				    sva, ptep, info->arg);
3736 			}
3737 			pte_pv = NULL;
3738 			sva += PAGE_SIZE;
3739 			++ptep;
3740 		}
3741 		lwkt_yield();
3742 	}
3743 	if (pd_pv) {
3744 		pv_put(pd_pv);
3745 		pd_pv = NULL;
3746 	}
3747 	if (pt_pv) {
3748 		pv_put(pt_pv);
3749 		pt_pv = NULL;
3750 	}
3751 	lwkt_yield();
3752 
3753 	/*
3754 	 * Relock before returning.
3755 	 */
3756 	spin_lock(&pmap->pm_spin);
3757 	return (0);
3758 }
3759 
3760 void
3761 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
3762 {
3763 	struct pmap_scan_info info;
3764 
3765 	info.pmap = pmap;
3766 	info.sva = sva;
3767 	info.eva = eva;
3768 	info.func = pmap_remove_callback;
3769 	info.arg = NULL;
3770 	info.doinval = 1;	/* normal remove requires pmap inval */
3771 	pmap_scan(&info);
3772 }
3773 
3774 static void
3775 pmap_remove_noinval(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
3776 {
3777 	struct pmap_scan_info info;
3778 
3779 	info.pmap = pmap;
3780 	info.sva = sva;
3781 	info.eva = eva;
3782 	info.func = pmap_remove_callback;
3783 	info.arg = NULL;
3784 	info.doinval = 0;	/* normal remove requires pmap inval */
3785 	pmap_scan(&info);
3786 }
3787 
3788 static void
3789 pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
3790 		     pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
3791 		     vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
3792 {
3793 	pt_entry_t pte;
3794 
3795 	if (pte_pv) {
3796 		/*
3797 		 * This will also drop pt_pv's wire_count. Note that
3798 		 * terminal pages are not wired based on mmu presence.
3799 		 */
3800 		if (info->doinval)
3801 			pmap_remove_pv_pte(pte_pv, pt_pv, &info->inval);
3802 		else
3803 			pmap_remove_pv_pte(pte_pv, pt_pv, NULL);
3804 		pmap_remove_pv_page(pte_pv);
3805 		pv_free(pte_pv);
3806 	} else if (sharept == 0) {
3807 		/*
3808 		 * Unmanaged page table (pt, pd, or pdp. Not pte).
3809 		 *
3810 		 * pt_pv's wire_count is still bumped by unmanaged pages
3811 		 * so we must decrement it manually.
3812 		 *
3813 		 * We have to unwire the target page table page.
3814 		 *
3815 		 * It is unclear how we can invalidate a segment so we
3816 		 * invalidate -1 which invlidates the tlb.
3817 		 */
3818 		if (info->doinval)
3819 			pmap_inval_interlock(&info->inval, pmap, -1);
3820 		pte = pte_load_clear(ptep);
3821 		if (info->doinval)
3822 			pmap_inval_deinterlock(&info->inval, pmap);
3823 		if (pte & pmap->pmap_bits[PG_W_IDX])
3824 			atomic_add_long(&pmap->pm_stats.wired_count, -1);
3825 		atomic_add_long(&pmap->pm_stats.resident_count, -1);
3826 		if (vm_page_unwire_quick(pt_pv->pv_m))
3827 			panic("pmap_remove: insufficient wirecount");
3828 	} else {
3829 		/*
3830 		 * Unmanaged page table (pt, pd, or pdp. Not pte) for
3831 		 * a shared page table.
3832 		 *
3833 		 * pt_pv is actually the pd_pv for our pmap (not the shared
3834 		 * object pmap).
3835 		 *
3836 		 * We have to unwire the target page table page and we
3837 		 * have to unwire our page directory page.
3838 		 *
3839 		 * It is unclear how we can invalidate a segment so we
3840 		 * invalidate -1 which invlidates the tlb.
3841 		 */
3842 		if (info->doinval)
3843 			pmap_inval_interlock(&info->inval, pmap, -1);
3844 		pte = pte_load_clear(ptep);
3845 		if (info->doinval)
3846 			pmap_inval_deinterlock(&info->inval, pmap);
3847 		atomic_add_long(&pmap->pm_stats.resident_count, -1);
3848 		KKASSERT((pte & pmap->pmap_bits[PG_DEVICE_IDX]) == 0);
3849 		if (vm_page_unwire_quick(PHYS_TO_VM_PAGE(pte & PG_FRAME)))
3850 			panic("pmap_remove: shared pgtable1 bad wirecount");
3851 		if (vm_page_unwire_quick(pt_pv->pv_m))
3852 			panic("pmap_remove: shared pgtable2 bad wirecount");
3853 	}
3854 }
3855 
3856 /*
3857  * Removes this physical page from all physical maps in which it resides.
3858  * Reflects back modify bits to the pager.
3859  *
3860  * This routine may not be called from an interrupt.
3861  */
3862 static
3863 void
3864 pmap_remove_all(vm_page_t m)
3865 {
3866 	struct pmap_inval_info info;
3867 	pv_entry_t pv;
3868 
3869 	if (!pmap_initialized /* || (m->flags & PG_FICTITIOUS)*/)
3870 		return;
3871 
3872 	pmap_inval_init(&info);
3873 	vm_page_spin_lock(m);
3874 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3875 		KKASSERT(pv->pv_m == m);
3876 		if (pv_hold_try(pv)) {
3877 			vm_page_spin_unlock(m);
3878 		} else {
3879 			vm_page_spin_unlock(m);
3880 			pv_lock(pv);
3881 		}
3882 		if (pv->pv_m != m) {
3883 			pv_put(pv);
3884 			vm_page_spin_lock(m);
3885 			continue;
3886 		}
3887 
3888 		/*
3889 		 * Holding no spinlocks, pv is locked.
3890 		 */
3891 		pmap_remove_pv_pte(pv, NULL, &info);
3892 		pmap_remove_pv_page(pv);
3893 		pv_free(pv);
3894 		vm_page_spin_lock(m);
3895 	}
3896 	KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
3897 	vm_page_spin_unlock(m);
3898 	pmap_inval_done(&info);
3899 }
3900 
3901 /*
3902  * Set the physical protection on the specified range of this map
3903  * as requested.  This function is typically only used for debug watchpoints
3904  * and COW pages.
3905  *
3906  * This function may not be called from an interrupt if the map is
3907  * not the kernel_pmap.
3908  *
3909  * NOTE!  For shared page table pages we just unmap the page.
3910  */
3911 void
3912 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
3913 {
3914 	struct pmap_scan_info info;
3915 	/* JG review for NX */
3916 
3917 	if (pmap == NULL)
3918 		return;
3919 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
3920 		pmap_remove(pmap, sva, eva);
3921 		return;
3922 	}
3923 	if (prot & VM_PROT_WRITE)
3924 		return;
3925 	info.pmap = pmap;
3926 	info.sva = sva;
3927 	info.eva = eva;
3928 	info.func = pmap_protect_callback;
3929 	info.arg = &prot;
3930 	info.doinval = 1;
3931 	pmap_scan(&info);
3932 }
3933 
3934 static
3935 void
3936 pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
3937 		      pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
3938 		      vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
3939 {
3940 	pt_entry_t pbits;
3941 	pt_entry_t cbits;
3942 	pt_entry_t pte;
3943 	vm_page_t m;
3944 
3945 	/*
3946 	 * XXX non-optimal.
3947 	 */
3948 	pmap_inval_interlock(&info->inval, pmap, va);
3949 again:
3950 	pbits = *ptep;
3951 	cbits = pbits;
3952 	if (pte_pv) {
3953 		m = NULL;
3954 		if (pbits & pmap->pmap_bits[PG_A_IDX]) {
3955 			if ((pbits & pmap->pmap_bits[PG_DEVICE_IDX]) == 0) {
3956 				m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
3957 				KKASSERT(m == pte_pv->pv_m);
3958 				vm_page_flag_set(m, PG_REFERENCED);
3959 			}
3960 			cbits &= ~pmap->pmap_bits[PG_A_IDX];
3961 		}
3962 		if (pbits & pmap->pmap_bits[PG_M_IDX]) {
3963 			if (pmap_track_modified(pte_pv->pv_pindex)) {
3964 				if ((pbits & pmap->pmap_bits[PG_DEVICE_IDX]) == 0) {
3965 					if (m == NULL) {
3966 						m = PHYS_TO_VM_PAGE(pbits &
3967 								    PG_FRAME);
3968 					}
3969 					vm_page_dirty(m);
3970 				}
3971 				cbits &= ~pmap->pmap_bits[PG_M_IDX];
3972 			}
3973 		}
3974 	} else if (sharept) {
3975 		/*
3976 		 * Unmanaged page table, pt_pv is actually the pd_pv
3977 		 * for our pmap (not the object's shared pmap).
3978 		 *
3979 		 * When asked to protect something in a shared page table
3980 		 * page we just unmap the page table page.  We have to
3981 		 * invalidate the tlb in this situation.
3982 		 *
3983 		 * XXX Warning, shared page tables will not be used for
3984 		 * OBJT_DEVICE or OBJT_MGTDEVICE (PG_FICTITIOUS) mappings
3985 		 * so PHYS_TO_VM_PAGE() should be safe here.
3986 		 */
3987 		pte = pte_load_clear(ptep);
3988 		pmap_inval_invltlb(&info->inval);
3989 		if (vm_page_unwire_quick(PHYS_TO_VM_PAGE(pte & PG_FRAME)))
3990 			panic("pmap_protect: pgtable1 pg bad wirecount");
3991 		if (vm_page_unwire_quick(pt_pv->pv_m))
3992 			panic("pmap_protect: pgtable2 pg bad wirecount");
3993 		ptep = NULL;
3994 	}
3995 	/* else unmanaged page, adjust bits, no wire changes */
3996 
3997 	if (ptep) {
3998 		cbits &= ~pmap->pmap_bits[PG_RW_IDX];
3999 #ifdef PMAP_DEBUG2
4000 		if (pmap_enter_debug > 0) {
4001 			--pmap_enter_debug;
4002 			kprintf("pmap_protect va=%lx ptep=%p pte_pv=%p "
4003 				"pt_pv=%p cbits=%08lx\n",
4004 				va, ptep, pte_pv,
4005 				pt_pv, cbits
4006 			);
4007 		}
4008 #endif
4009 		if (pbits != cbits && !atomic_cmpset_long(ptep, pbits, cbits)) {
4010 			goto again;
4011 		}
4012 	}
4013 	pmap_inval_deinterlock(&info->inval, pmap);
4014 	if (pte_pv)
4015 		pv_put(pte_pv);
4016 }
4017 
4018 /*
4019  * Insert the vm_page (m) at the virtual address (va), replacing any prior
4020  * mapping at that address.  Set protection and wiring as requested.
4021  *
4022  * If entry is non-NULL we check to see if the SEG_SIZE optimization is
4023  * possible.  If it is we enter the page into the appropriate shared pmap
4024  * hanging off the related VM object instead of the passed pmap, then we
4025  * share the page table page from the VM object's pmap into the current pmap.
4026  *
4027  * NOTE: This routine MUST insert the page into the pmap now, it cannot
4028  *	 lazy-evaluate.
4029  */
4030 void
4031 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
4032 	   boolean_t wired, vm_map_entry_t entry)
4033 {
4034 	pmap_inval_info info;
4035 	pv_entry_t pt_pv;	/* page table */
4036 	pv_entry_t pte_pv;	/* page table entry */
4037 	pt_entry_t *ptep;
4038 	vm_paddr_t opa;
4039 	pt_entry_t origpte, newpte;
4040 	vm_paddr_t pa;
4041 
4042 	if (pmap == NULL)
4043 		return;
4044 	va = trunc_page(va);
4045 #ifdef PMAP_DIAGNOSTIC
4046 	if (va >= KvaEnd)
4047 		panic("pmap_enter: toobig");
4048 	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
4049 		panic("pmap_enter: invalid to pmap_enter page table "
4050 		      "pages (va: 0x%lx)", va);
4051 #endif
4052 	if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
4053 		kprintf("Warning: pmap_enter called on UVA with "
4054 			"kernel_pmap\n");
4055 #ifdef DDB
4056 		db_print_backtrace();
4057 #endif
4058 	}
4059 	if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
4060 		kprintf("Warning: pmap_enter called on KVA without"
4061 			"kernel_pmap\n");
4062 #ifdef DDB
4063 		db_print_backtrace();
4064 #endif
4065 	}
4066 
4067 	/*
4068 	 * Get locked PV entries for our new page table entry (pte_pv)
4069 	 * and for its parent page table (pt_pv).  We need the parent
4070 	 * so we can resolve the location of the ptep.
4071 	 *
4072 	 * Only hardware MMU actions can modify the ptep out from
4073 	 * under us.
4074 	 *
4075 	 * if (m) is fictitious or unmanaged we do not create a managing
4076 	 * pte_pv for it.  Any pre-existing page's management state must
4077 	 * match (avoiding code complexity).
4078 	 *
4079 	 * If the pmap is still being initialized we assume existing
4080 	 * page tables.
4081 	 *
4082 	 * Kernel mapppings do not track page table pages (i.e. pt_pv).
4083 	 */
4084 	if (pmap_initialized == FALSE) {
4085 		pte_pv = NULL;
4086 		pt_pv = NULL;
4087 		ptep = vtopte(va);
4088 		origpte = *ptep;
4089 	} else if (m->flags & (/*PG_FICTITIOUS |*/ PG_UNMANAGED)) { /* XXX */
4090 		pte_pv = NULL;
4091 		if (va >= VM_MAX_USER_ADDRESS) {
4092 			pt_pv = NULL;
4093 			ptep = vtopte(va);
4094 		} else {
4095 			pt_pv = pmap_allocpte_seg(pmap, pmap_pt_pindex(va),
4096 						  NULL, entry, va);
4097 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
4098 		}
4099 		origpte = *ptep;
4100 		cpu_ccfence();
4101 		KKASSERT(origpte == 0 ||
4102 			 (origpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0);
4103 	} else {
4104 		if (va >= VM_MAX_USER_ADDRESS) {
4105 			/*
4106 			 * Kernel map, pv_entry-tracked.
4107 			 */
4108 			pt_pv = NULL;
4109 			pte_pv = pmap_allocpte(pmap, pmap_pte_pindex(va), NULL);
4110 			ptep = vtopte(va);
4111 		} else {
4112 			/*
4113 			 * User map
4114 			 */
4115 			pte_pv = pmap_allocpte_seg(pmap, pmap_pte_pindex(va),
4116 						   &pt_pv, entry, va);
4117 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
4118 		}
4119 		origpte = *ptep;
4120 		cpu_ccfence();
4121 		KKASSERT(origpte == 0 ||
4122 			 (origpte & pmap->pmap_bits[PG_MANAGED_IDX]));
4123 	}
4124 
4125 	pa = VM_PAGE_TO_PHYS(m);
4126 	opa = origpte & PG_FRAME;
4127 
4128 	newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) |
4129 		 pmap->pmap_bits[PG_V_IDX] | pmap->pmap_bits[PG_A_IDX]);
4130 	if (wired)
4131 		newpte |= pmap->pmap_bits[PG_W_IDX];
4132 	if (va < VM_MAX_USER_ADDRESS)
4133 		newpte |= pmap->pmap_bits[PG_U_IDX];
4134 	if (pte_pv)
4135 		newpte |= pmap->pmap_bits[PG_MANAGED_IDX];
4136 //	if (pmap == &kernel_pmap)
4137 //		newpte |= pgeflag;
4138 	newpte |= pmap->pmap_cache_bits[m->pat_mode];
4139 	if (m->flags & PG_FICTITIOUS)
4140 		newpte |= pmap->pmap_bits[PG_DEVICE_IDX];
4141 
4142 	/*
4143 	 * It is possible for multiple faults to occur in threaded
4144 	 * environments, the existing pte might be correct.
4145 	 */
4146 	if (((origpte ^ newpte) & ~(pt_entry_t)(pmap->pmap_bits[PG_M_IDX] |
4147 	    pmap->pmap_bits[PG_A_IDX])) == 0)
4148 		goto done;
4149 
4150 	if ((prot & VM_PROT_NOSYNC) == 0)
4151 		pmap_inval_init(&info);
4152 
4153 	/*
4154 	 * Ok, either the address changed or the protection or wiring
4155 	 * changed.
4156 	 *
4157 	 * Clear the current entry, interlocking the removal.  For managed
4158 	 * pte's this will also flush the modified state to the vm_page.
4159 	 * Atomic ops are mandatory in order to ensure that PG_M events are
4160 	 * not lost during any transition.
4161 	 *
4162 	 * WARNING: The caller has busied the new page but not the original
4163 	 *	    vm_page which we are trying to replace.  Because we hold
4164 	 *	    the pte_pv lock, but have not busied the page, PG bits
4165 	 *	    can be cleared out from under us.
4166 	 */
4167 	if (opa) {
4168 		if (pte_pv) {
4169 			/*
4170 			 * pmap_remove_pv_pte() unwires pt_pv and assumes
4171 			 * we will free pte_pv, but since we are reusing
4172 			 * pte_pv we want to retain the wire count.
4173 			 *
4174 			 * pt_pv won't exist for a kernel page (managed or
4175 			 * otherwise).
4176 			 */
4177 			if (pt_pv)
4178 				vm_page_wire_quick(pt_pv->pv_m);
4179 			if (prot & VM_PROT_NOSYNC)
4180 				pmap_remove_pv_pte(pte_pv, pt_pv, NULL);
4181 			else
4182 				pmap_remove_pv_pte(pte_pv, pt_pv, &info);
4183 			if (pte_pv->pv_m)
4184 				pmap_remove_pv_page(pte_pv);
4185 		} else if (prot & VM_PROT_NOSYNC) {
4186 			/*
4187 			 * Unmanaged page, NOSYNC (no mmu sync) requested.
4188 			 *
4189 			 * Leave wire count on PT page intact.
4190 			 */
4191 			(void)pte_load_clear(ptep);
4192 			cpu_invlpg((void *)va);
4193 			atomic_add_long(&pmap->pm_stats.resident_count, -1);
4194 		} else {
4195 			/*
4196 			 * Unmanaged page, normal enter.
4197 			 *
4198 			 * Leave wire count on PT page intact.
4199 			 */
4200 			pmap_inval_interlock(&info, pmap, va);
4201 			(void)pte_load_clear(ptep);
4202 			pmap_inval_deinterlock(&info, pmap);
4203 			atomic_add_long(&pmap->pm_stats.resident_count, -1);
4204 		}
4205 		KKASSERT(*ptep == 0);
4206 	}
4207 
4208 #ifdef PMAP_DEBUG2
4209 	if (pmap_enter_debug > 0) {
4210 		--pmap_enter_debug;
4211 		kprintf("pmap_enter: va=%lx m=%p origpte=%lx newpte=%lx ptep=%p"
4212 			" pte_pv=%p pt_pv=%p opa=%lx prot=%02x\n",
4213 			va, m,
4214 			origpte, newpte, ptep,
4215 			pte_pv, pt_pv, opa, prot);
4216 	}
4217 #endif
4218 
4219 	if (pte_pv) {
4220 		/*
4221 		 * Enter on the PV list if part of our managed memory.
4222 		 * Wiring of the PT page is already handled.
4223 		 */
4224 		KKASSERT(pte_pv->pv_m == NULL);
4225 		vm_page_spin_lock(m);
4226 		pte_pv->pv_m = m;
4227 		pmap_page_stats_adding(m);
4228 		TAILQ_INSERT_TAIL(&m->md.pv_list, pte_pv, pv_list);
4229 		vm_page_flag_set(m, PG_MAPPED);
4230 		vm_page_spin_unlock(m);
4231 	} else if (pt_pv && opa == 0) {
4232 		/*
4233 		 * We have to adjust the wire count on the PT page ourselves
4234 		 * for unmanaged entries.  If opa was non-zero we retained
4235 		 * the existing wire count from the removal.
4236 		 */
4237 		vm_page_wire_quick(pt_pv->pv_m);
4238 	}
4239 
4240 	/*
4241 	 * Kernel VMAs (pt_pv == NULL) require pmap invalidation interlocks.
4242 	 *
4243 	 * User VMAs do not because those will be zero->non-zero, so no
4244 	 * stale entries to worry about at this point.
4245 	 *
4246 	 * For KVM there appear to still be issues.  Theoretically we
4247 	 * should be able to scrap the interlocks entirely but we
4248 	 * get crashes.
4249 	 */
4250 	if ((prot & VM_PROT_NOSYNC) == 0 && pt_pv == NULL)
4251 		pmap_inval_interlock(&info, pmap, va);
4252 
4253 	/*
4254 	 * Set the pte
4255 	 */
4256 	*(volatile pt_entry_t *)ptep = newpte;
4257 
4258 	if ((prot & VM_PROT_NOSYNC) == 0 && pt_pv == NULL)
4259 		pmap_inval_deinterlock(&info, pmap);
4260 	else if (pt_pv == NULL)
4261 		cpu_invlpg((void *)va);
4262 
4263 	if (wired) {
4264 		if (pte_pv) {
4265 			atomic_add_long(&pte_pv->pv_pmap->pm_stats.wired_count,
4266 					1);
4267 		} else {
4268 			atomic_add_long(&pmap->pm_stats.wired_count, 1);
4269 		}
4270 	}
4271 	if (newpte & pmap->pmap_bits[PG_RW_IDX])
4272 		vm_page_flag_set(m, PG_WRITEABLE);
4273 
4274 	/*
4275 	 * Unmanaged pages need manual resident_count tracking.
4276 	 */
4277 	if (pte_pv == NULL && pt_pv)
4278 		atomic_add_long(&pt_pv->pv_pmap->pm_stats.resident_count, 1);
4279 
4280 	/*
4281 	 * Cleanup
4282 	 */
4283 	if ((prot & VM_PROT_NOSYNC) == 0 || pte_pv == NULL)
4284 		pmap_inval_done(&info);
4285 done:
4286 	KKASSERT((newpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0 ||
4287 		 (m->flags & PG_MAPPED));
4288 
4289 	/*
4290 	 * Cleanup the pv entry, allowing other accessors.
4291 	 */
4292 	if (pte_pv)
4293 		pv_put(pte_pv);
4294 	if (pt_pv)
4295 		pv_put(pt_pv);
4296 }
4297 
4298 /*
4299  * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
4300  * This code also assumes that the pmap has no pre-existing entry for this
4301  * VA.
4302  *
4303  * This code currently may only be used on user pmaps, not kernel_pmap.
4304  */
4305 void
4306 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
4307 {
4308 	pmap_enter(pmap, va, m, VM_PROT_READ, FALSE, NULL);
4309 }
4310 
4311 /*
4312  * Make a temporary mapping for a physical address.  This is only intended
4313  * to be used for panic dumps.
4314  *
4315  * The caller is responsible for calling smp_invltlb().
4316  */
4317 void *
4318 pmap_kenter_temporary(vm_paddr_t pa, long i)
4319 {
4320 	pmap_kenter_quick((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
4321 	return ((void *)crashdumpmap);
4322 }
4323 
4324 #define MAX_INIT_PT (96)
4325 
4326 /*
4327  * This routine preloads the ptes for a given object into the specified pmap.
4328  * This eliminates the blast of soft faults on process startup and
4329  * immediately after an mmap.
4330  */
4331 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
4332 
4333 void
4334 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
4335 		    vm_object_t object, vm_pindex_t pindex,
4336 		    vm_size_t size, int limit)
4337 {
4338 	struct rb_vm_page_scan_info info;
4339 	struct lwp *lp;
4340 	vm_size_t psize;
4341 
4342 	/*
4343 	 * We can't preinit if read access isn't set or there is no pmap
4344 	 * or object.
4345 	 */
4346 	if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
4347 		return;
4348 
4349 	/*
4350 	 * We can't preinit if the pmap is not the current pmap
4351 	 */
4352 	lp = curthread->td_lwp;
4353 	if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
4354 		return;
4355 
4356 	/*
4357 	 * Misc additional checks
4358 	 */
4359 	psize = x86_64_btop(size);
4360 
4361 	if ((object->type != OBJT_VNODE) ||
4362 		((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
4363 			(object->resident_page_count > MAX_INIT_PT))) {
4364 		return;
4365 	}
4366 
4367 	if (pindex + psize > object->size) {
4368 		if (object->size < pindex)
4369 			return;
4370 		psize = object->size - pindex;
4371 	}
4372 
4373 	if (psize == 0)
4374 		return;
4375 
4376 	/*
4377 	 * If everything is segment-aligned do not pre-init here.  Instead
4378 	 * allow the normal vm_fault path to pass a segment hint to
4379 	 * pmap_enter() which will then use an object-referenced shared
4380 	 * page table page.
4381 	 */
4382 	if ((addr & SEG_MASK) == 0 &&
4383 	    (ctob(psize) & SEG_MASK) == 0 &&
4384 	    (ctob(pindex) & SEG_MASK) == 0) {
4385 		return;
4386 	}
4387 
4388 	/*
4389 	 * Use a red-black scan to traverse the requested range and load
4390 	 * any valid pages found into the pmap.
4391 	 *
4392 	 * We cannot safely scan the object's memq without holding the
4393 	 * object token.
4394 	 */
4395 	info.start_pindex = pindex;
4396 	info.end_pindex = pindex + psize - 1;
4397 	info.limit = limit;
4398 	info.mpte = NULL;
4399 	info.addr = addr;
4400 	info.pmap = pmap;
4401 
4402 	vm_object_hold_shared(object);
4403 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
4404 				pmap_object_init_pt_callback, &info);
4405 	vm_object_drop(object);
4406 }
4407 
4408 static
4409 int
4410 pmap_object_init_pt_callback(vm_page_t p, void *data)
4411 {
4412 	struct rb_vm_page_scan_info *info = data;
4413 	vm_pindex_t rel_index;
4414 
4415 	/*
4416 	 * don't allow an madvise to blow away our really
4417 	 * free pages allocating pv entries.
4418 	 */
4419 	if ((info->limit & MAP_PREFAULT_MADVISE) &&
4420 		vmstats.v_free_count < vmstats.v_free_reserved) {
4421 		    return(-1);
4422 	}
4423 
4424 	/*
4425 	 * Ignore list markers and ignore pages we cannot instantly
4426 	 * busy (while holding the object token).
4427 	 */
4428 	if (p->flags & PG_MARKER)
4429 		return 0;
4430 	if (vm_page_busy_try(p, TRUE))
4431 		return 0;
4432 	if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
4433 	    (p->flags & PG_FICTITIOUS) == 0) {
4434 		if ((p->queue - p->pc) == PQ_CACHE)
4435 			vm_page_deactivate(p);
4436 		rel_index = p->pindex - info->start_pindex;
4437 		pmap_enter_quick(info->pmap,
4438 				 info->addr + x86_64_ptob(rel_index), p);
4439 	}
4440 	vm_page_wakeup(p);
4441 	lwkt_yield();
4442 	return(0);
4443 }
4444 
4445 /*
4446  * Return TRUE if the pmap is in shape to trivially pre-fault the specified
4447  * address.
4448  *
4449  * Returns FALSE if it would be non-trivial or if a pte is already loaded
4450  * into the slot.
4451  *
4452  * XXX This is safe only because page table pages are not freed.
4453  */
4454 int
4455 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
4456 {
4457 	pt_entry_t *pte;
4458 
4459 	/*spin_lock(&pmap->pm_spin);*/
4460 	if ((pte = pmap_pte(pmap, addr)) != NULL) {
4461 		if (*pte & pmap->pmap_bits[PG_V_IDX]) {
4462 			/*spin_unlock(&pmap->pm_spin);*/
4463 			return FALSE;
4464 		}
4465 	}
4466 	/*spin_unlock(&pmap->pm_spin);*/
4467 	return TRUE;
4468 }
4469 
4470 /*
4471  * Change the wiring attribute for a pmap/va pair.  The mapping must already
4472  * exist in the pmap.  The mapping may or may not be managed.
4473  */
4474 void
4475 pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired,
4476 		   vm_map_entry_t entry)
4477 {
4478 	pt_entry_t *ptep;
4479 	pv_entry_t pv;
4480 
4481 	if (pmap == NULL)
4482 		return;
4483 	lwkt_gettoken(&pmap->pm_token);
4484 	pv = pmap_allocpte_seg(pmap, pmap_pt_pindex(va), NULL, entry, va);
4485 	ptep = pv_pte_lookup(pv, pmap_pte_index(va));
4486 
4487 	if (wired && !pmap_pte_w(pmap, ptep))
4488 		atomic_add_long(&pv->pv_pmap->pm_stats.wired_count, 1);
4489 	else if (!wired && pmap_pte_w(pmap, ptep))
4490 		atomic_add_long(&pv->pv_pmap->pm_stats.wired_count, -1);
4491 
4492 	/*
4493 	 * Wiring is not a hardware characteristic so there is no need to
4494 	 * invalidate TLB.  However, in an SMP environment we must use
4495 	 * a locked bus cycle to update the pte (if we are not using
4496 	 * the pmap_inval_*() API that is)... it's ok to do this for simple
4497 	 * wiring changes.
4498 	 */
4499 	if (wired)
4500 		atomic_set_long(ptep, pmap->pmap_bits[PG_W_IDX]);
4501 	else
4502 		atomic_clear_long(ptep, pmap->pmap_bits[PG_W_IDX]);
4503 	pv_put(pv);
4504 	lwkt_reltoken(&pmap->pm_token);
4505 }
4506 
4507 
4508 
4509 /*
4510  * Copy the range specified by src_addr/len from the source map to
4511  * the range dst_addr/len in the destination map.
4512  *
4513  * This routine is only advisory and need not do anything.
4514  */
4515 void
4516 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
4517 	  vm_size_t len, vm_offset_t src_addr)
4518 {
4519 }
4520 
4521 /*
4522  * pmap_zero_page:
4523  *
4524  *	Zero the specified physical page.
4525  *
4526  *	This function may be called from an interrupt and no locking is
4527  *	required.
4528  */
4529 void
4530 pmap_zero_page(vm_paddr_t phys)
4531 {
4532 	vm_offset_t va = PHYS_TO_DMAP(phys);
4533 
4534 	pagezero((void *)va);
4535 }
4536 
4537 /*
4538  * pmap_page_assertzero:
4539  *
4540  *	Assert that a page is empty, panic if it isn't.
4541  */
4542 void
4543 pmap_page_assertzero(vm_paddr_t phys)
4544 {
4545 	vm_offset_t va = PHYS_TO_DMAP(phys);
4546 	size_t i;
4547 
4548 	for (i = 0; i < PAGE_SIZE; i += sizeof(long)) {
4549 		if (*(long *)((char *)va + i) != 0) {
4550 			panic("pmap_page_assertzero() @ %p not zero!",
4551 			      (void *)(intptr_t)va);
4552 		}
4553 	}
4554 }
4555 
4556 /*
4557  * pmap_zero_page:
4558  *
4559  *	Zero part of a physical page by mapping it into memory and clearing
4560  *	its contents with bzero.
4561  *
4562  *	off and size may not cover an area beyond a single hardware page.
4563  */
4564 void
4565 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
4566 {
4567 	vm_offset_t virt = PHYS_TO_DMAP(phys);
4568 
4569 	bzero((char *)virt + off, size);
4570 }
4571 
4572 /*
4573  * pmap_copy_page:
4574  *
4575  *	Copy the physical page from the source PA to the target PA.
4576  *	This function may be called from an interrupt.  No locking
4577  *	is required.
4578  */
4579 void
4580 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
4581 {
4582 	vm_offset_t src_virt, dst_virt;
4583 
4584 	src_virt = PHYS_TO_DMAP(src);
4585 	dst_virt = PHYS_TO_DMAP(dst);
4586 	bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
4587 }
4588 
4589 /*
4590  * pmap_copy_page_frag:
4591  *
4592  *	Copy the physical page from the source PA to the target PA.
4593  *	This function may be called from an interrupt.  No locking
4594  *	is required.
4595  */
4596 void
4597 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
4598 {
4599 	vm_offset_t src_virt, dst_virt;
4600 
4601 	src_virt = PHYS_TO_DMAP(src);
4602 	dst_virt = PHYS_TO_DMAP(dst);
4603 
4604 	bcopy((char *)src_virt + (src & PAGE_MASK),
4605 	      (char *)dst_virt + (dst & PAGE_MASK),
4606 	      bytes);
4607 }
4608 
4609 /*
4610  * Returns true if the pmap's pv is one of the first 16 pvs linked to from
4611  * this page.  This count may be changed upwards or downwards in the future;
4612  * it is only necessary that true be returned for a small subset of pmaps
4613  * for proper page aging.
4614  */
4615 boolean_t
4616 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
4617 {
4618 	pv_entry_t pv;
4619 	int loops = 0;
4620 
4621 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
4622 		return FALSE;
4623 
4624 	vm_page_spin_lock(m);
4625 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4626 		if (pv->pv_pmap == pmap) {
4627 			vm_page_spin_unlock(m);
4628 			return TRUE;
4629 		}
4630 		loops++;
4631 		if (loops >= 16)
4632 			break;
4633 	}
4634 	vm_page_spin_unlock(m);
4635 	return (FALSE);
4636 }
4637 
4638 /*
4639  * Remove all pages from specified address space this aids process exit
4640  * speeds.  Also, this code may be special cased for the current process
4641  * only.
4642  */
4643 void
4644 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4645 {
4646 	pmap_remove_noinval(pmap, sva, eva);
4647 	cpu_invltlb();
4648 }
4649 
4650 /*
4651  * pmap_testbit tests bits in pte's note that the testbit/clearbit
4652  * routines are inline, and a lot of things compile-time evaluate.
4653  */
4654 static
4655 boolean_t
4656 pmap_testbit(vm_page_t m, int bit)
4657 {
4658 	pv_entry_t pv;
4659 	pt_entry_t *pte;
4660 	pmap_t pmap;
4661 
4662 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
4663 		return FALSE;
4664 
4665 	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
4666 		return FALSE;
4667 	vm_page_spin_lock(m);
4668 	if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
4669 		vm_page_spin_unlock(m);
4670 		return FALSE;
4671 	}
4672 
4673 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4674 
4675 #if defined(PMAP_DIAGNOSTIC)
4676 		if (pv->pv_pmap == NULL) {
4677 			kprintf("Null pmap (tb) at pindex: %"PRIu64"\n",
4678 			    pv->pv_pindex);
4679 			continue;
4680 		}
4681 #endif
4682 		pmap = pv->pv_pmap;
4683 
4684 		/*
4685 		 * If the bit being tested is the modified bit, then
4686 		 * mark clean_map and ptes as never
4687 		 * modified.
4688 		 *
4689 		 * WARNING!  Because we do not lock the pv, *pte can be in a
4690 		 *	     state of flux.  Despite this the value of *pte
4691 		 *	     will still be related to the vm_page in some way
4692 		 *	     because the pv cannot be destroyed as long as we
4693 		 *	     hold the vm_page spin lock.
4694 		 */
4695 		if (bit == PG_A_IDX || bit == PG_M_IDX) {
4696 				//& (pmap->pmap_bits[PG_A_IDX] | pmap->pmap_bits[PG_M_IDX])) {
4697 			if (!pmap_track_modified(pv->pv_pindex))
4698 				continue;
4699 		}
4700 
4701 		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
4702 		if (*pte & pmap->pmap_bits[bit]) {
4703 			vm_page_spin_unlock(m);
4704 			return TRUE;
4705 		}
4706 	}
4707 	vm_page_spin_unlock(m);
4708 	return (FALSE);
4709 }
4710 
4711 /*
4712  * This routine is used to modify bits in ptes.  Only one bit should be
4713  * specified.  PG_RW requires special handling.
4714  *
4715  * Caller must NOT hold any spin locks
4716  */
4717 static __inline
4718 void
4719 pmap_clearbit(vm_page_t m, int bit_index)
4720 {
4721 	struct pmap_inval_info info;
4722 	pv_entry_t pv;
4723 	pt_entry_t *pte;
4724 	pt_entry_t pbits;
4725 	pmap_t pmap;
4726 
4727 	if (bit_index == PG_RW_IDX)
4728 		vm_page_flag_clear(m, PG_WRITEABLE);
4729 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
4730 		return;
4731 	}
4732 
4733 	/*
4734 	 * PG_M or PG_A case
4735 	 *
4736 	 * Loop over all current mappings setting/clearing as appropos If
4737 	 * setting RO do we need to clear the VAC?
4738 	 *
4739 	 * NOTE: When clearing PG_M we could also (not implemented) drop
4740 	 *	 through to the PG_RW code and clear PG_RW too, forcing
4741 	 *	 a fault on write to redetect PG_M for virtual kernels, but
4742 	 *	 it isn't necessary since virtual kernels invalidate the
4743 	 *	 pte when they clear the VPTE_M bit in their virtual page
4744 	 *	 tables.
4745 	 *
4746 	 * NOTE: Does not re-dirty the page when clearing only PG_M.
4747 	 *
4748 	 * NOTE: Because we do not lock the pv, *pte can be in a state of
4749 	 *	 flux.  Despite this the value of *pte is still somewhat
4750 	 *	 related while we hold the vm_page spin lock.
4751 	 *
4752 	 *	 *pte can be zero due to this race.  Since we are clearing
4753 	 *	 bits we basically do no harm when this race  ccurs.
4754 	 */
4755 	if (bit_index != PG_RW_IDX) {
4756 		vm_page_spin_lock(m);
4757 		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4758 #if defined(PMAP_DIAGNOSTIC)
4759 			if (pv->pv_pmap == NULL) {
4760 				kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
4761 				    pv->pv_pindex);
4762 				continue;
4763 			}
4764 #endif
4765 			pmap = pv->pv_pmap;
4766 			pte = pmap_pte_quick(pv->pv_pmap,
4767 					     pv->pv_pindex << PAGE_SHIFT);
4768 			pbits = *pte;
4769 			if (pbits & pmap->pmap_bits[bit_index])
4770 				atomic_clear_long(pte, pmap->pmap_bits[bit_index]);
4771 		}
4772 		vm_page_spin_unlock(m);
4773 		return;
4774 	}
4775 
4776 	/*
4777 	 * Clear PG_RW.  Also clears PG_M and marks the page dirty if PG_M
4778 	 * was set.
4779 	 */
4780 	pmap_inval_init(&info);
4781 
4782 restart:
4783 	vm_page_spin_lock(m);
4784 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4785 		/*
4786 		 * don't write protect pager mappings
4787 		 */
4788 		if (!pmap_track_modified(pv->pv_pindex))
4789 			continue;
4790 
4791 #if defined(PMAP_DIAGNOSTIC)
4792 		if (pv->pv_pmap == NULL) {
4793 			kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
4794 			    pv->pv_pindex);
4795 			continue;
4796 		}
4797 #endif
4798 		pmap = pv->pv_pmap;
4799 		/*
4800 		 * Skip pages which do not have PG_RW set.
4801 		 */
4802 		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
4803 		if ((*pte & pmap->pmap_bits[PG_RW_IDX]) == 0)
4804 			continue;
4805 
4806 		/*
4807 		 * Lock the PV
4808 		 */
4809 		if (pv_hold_try(pv)) {
4810 			vm_page_spin_unlock(m);
4811 		} else {
4812 			vm_page_spin_unlock(m);
4813 			pv_lock(pv);	/* held, now do a blocking lock */
4814 		}
4815 		if (pv->pv_pmap != pmap || pv->pv_m != m) {
4816 			pv_put(pv);	/* and release */
4817 			goto restart;	/* anything could have happened */
4818 		}
4819 		pmap_inval_interlock(&info, pmap,
4820 				     (vm_offset_t)pv->pv_pindex << PAGE_SHIFT);
4821 		KKASSERT(pv->pv_pmap == pmap);
4822 		for (;;) {
4823 			pbits = *pte;
4824 			cpu_ccfence();
4825 			if (atomic_cmpset_long(pte, pbits, pbits &
4826 			    ~(pmap->pmap_bits[PG_RW_IDX] |
4827 			    pmap->pmap_bits[PG_M_IDX]))) {
4828 				break;
4829 			}
4830 		}
4831 		pmap_inval_deinterlock(&info, pmap);
4832 		vm_page_spin_lock(m);
4833 
4834 		/*
4835 		 * If PG_M was found to be set while we were clearing PG_RW
4836 		 * we also clear PG_M (done above) and mark the page dirty.
4837 		 * Callers expect this behavior.
4838 		 */
4839 		if (pbits & pmap->pmap_bits[PG_M_IDX])
4840 			vm_page_dirty(m);
4841 		pv_put(pv);
4842 	}
4843 	vm_page_spin_unlock(m);
4844 	pmap_inval_done(&info);
4845 }
4846 
4847 /*
4848  * Lower the permission for all mappings to a given page.
4849  *
4850  * Page must be busied by caller.  Because page is busied by caller this
4851  * should not be able to race a pmap_enter().
4852  */
4853 void
4854 pmap_page_protect(vm_page_t m, vm_prot_t prot)
4855 {
4856 	/* JG NX support? */
4857 	if ((prot & VM_PROT_WRITE) == 0) {
4858 		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
4859 			/*
4860 			 * NOTE: pmap_clearbit(.. PG_RW) also clears
4861 			 *	 the PG_WRITEABLE flag in (m).
4862 			 */
4863 			pmap_clearbit(m, PG_RW_IDX);
4864 		} else {
4865 			pmap_remove_all(m);
4866 		}
4867 	}
4868 }
4869 
4870 vm_paddr_t
4871 pmap_phys_address(vm_pindex_t ppn)
4872 {
4873 	return (x86_64_ptob(ppn));
4874 }
4875 
4876 /*
4877  * Return a count of reference bits for a page, clearing those bits.
4878  * It is not necessary for every reference bit to be cleared, but it
4879  * is necessary that 0 only be returned when there are truly no
4880  * reference bits set.
4881  *
4882  * XXX: The exact number of bits to check and clear is a matter that
4883  * should be tested and standardized at some point in the future for
4884  * optimal aging of shared pages.
4885  *
4886  * This routine may not block.
4887  */
4888 int
4889 pmap_ts_referenced(vm_page_t m)
4890 {
4891 	pv_entry_t pv;
4892 	pt_entry_t *pte;
4893 	pmap_t pmap;
4894 	int rtval = 0;
4895 
4896 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
4897 		return (rtval);
4898 
4899 	vm_page_spin_lock(m);
4900 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4901 		if (!pmap_track_modified(pv->pv_pindex))
4902 			continue;
4903 		pmap = pv->pv_pmap;
4904 		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
4905 		if (pte && (*pte & pmap->pmap_bits[PG_A_IDX])) {
4906 			atomic_clear_long(pte, pmap->pmap_bits[PG_A_IDX]);
4907 			rtval++;
4908 			if (rtval > 4)
4909 				break;
4910 		}
4911 	}
4912 	vm_page_spin_unlock(m);
4913 	return (rtval);
4914 }
4915 
4916 /*
4917  *	pmap_is_modified:
4918  *
4919  *	Return whether or not the specified physical page was modified
4920  *	in any physical maps.
4921  */
4922 boolean_t
4923 pmap_is_modified(vm_page_t m)
4924 {
4925 	boolean_t res;
4926 
4927 	res = pmap_testbit(m, PG_M_IDX);
4928 	return (res);
4929 }
4930 
4931 /*
4932  *	Clear the modify bits on the specified physical page.
4933  */
4934 void
4935 pmap_clear_modify(vm_page_t m)
4936 {
4937 	pmap_clearbit(m, PG_M_IDX);
4938 }
4939 
4940 /*
4941  *	pmap_clear_reference:
4942  *
4943  *	Clear the reference bit on the specified physical page.
4944  */
4945 void
4946 pmap_clear_reference(vm_page_t m)
4947 {
4948 	pmap_clearbit(m, PG_A_IDX);
4949 }
4950 
4951 /*
4952  * Miscellaneous support routines follow
4953  */
4954 
4955 static
4956 void
4957 i386_protection_init(void)
4958 {
4959 	int *kp, prot;
4960 
4961 	/* JG NX support may go here; No VM_PROT_EXECUTE ==> set NX bit  */
4962 	kp = protection_codes;
4963 	for (prot = 0; prot < PROTECTION_CODES_SIZE; prot++) {
4964 		switch (prot) {
4965 		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
4966 			/*
4967 			 * Read access is also 0. There isn't any execute bit,
4968 			 * so just make it readable.
4969 			 */
4970 		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
4971 		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
4972 		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
4973 			*kp++ = 0;
4974 			break;
4975 		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
4976 		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
4977 		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
4978 		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
4979 			*kp++ = pmap_bits_default[PG_RW_IDX];
4980 			break;
4981 		}
4982 	}
4983 }
4984 
4985 /*
4986  * Map a set of physical memory pages into the kernel virtual
4987  * address space. Return a pointer to where it is mapped. This
4988  * routine is intended to be used for mapping device memory,
4989  * NOT real memory.
4990  *
4991  * NOTE: We can't use pgeflag unless we invalidate the pages one at
4992  *	 a time.
4993  *
4994  * NOTE: The PAT attributes {WRITE_BACK, WRITE_THROUGH, UNCACHED, UNCACHEABLE}
4995  *	 work whether the cpu supports PAT or not.  The remaining PAT
4996  *	 attributes {WRITE_PROTECTED, WRITE_COMBINING} only work if the cpu
4997  *	 supports PAT.
4998  */
4999 void *
5000 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
5001 {
5002 	return(pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5003 }
5004 
5005 void *
5006 pmap_mapdev_uncacheable(vm_paddr_t pa, vm_size_t size)
5007 {
5008 	return(pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
5009 }
5010 
5011 void *
5012 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
5013 {
5014 	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5015 }
5016 
5017 /*
5018  * Map a set of physical memory pages into the kernel virtual
5019  * address space. Return a pointer to where it is mapped. This
5020  * routine is intended to be used for mapping device memory,
5021  * NOT real memory.
5022  */
5023 void *
5024 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
5025 {
5026 	vm_offset_t va, tmpva, offset;
5027 	pt_entry_t *pte;
5028 	vm_size_t tmpsize;
5029 
5030 	offset = pa & PAGE_MASK;
5031 	size = roundup(offset + size, PAGE_SIZE);
5032 
5033 	va = kmem_alloc_nofault(&kernel_map, size, PAGE_SIZE);
5034 	if (va == 0)
5035 		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
5036 
5037 	pa = pa & ~PAGE_MASK;
5038 	for (tmpva = va, tmpsize = size; tmpsize > 0;) {
5039 		pte = vtopte(tmpva);
5040 		*pte = pa |
5041 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
5042 		    kernel_pmap.pmap_bits[PG_V_IDX] | /* pgeflag | */
5043 		    kernel_pmap.pmap_cache_bits[mode];
5044 		tmpsize -= PAGE_SIZE;
5045 		tmpva += PAGE_SIZE;
5046 		pa += PAGE_SIZE;
5047 	}
5048 	pmap_invalidate_range(&kernel_pmap, va, va + size);
5049 	pmap_invalidate_cache_range(va, va + size);
5050 
5051 	return ((void *)(va + offset));
5052 }
5053 
5054 void
5055 pmap_unmapdev(vm_offset_t va, vm_size_t size)
5056 {
5057 	vm_offset_t base, offset;
5058 
5059 	base = va & ~PAGE_MASK;
5060 	offset = va & PAGE_MASK;
5061 	size = roundup(offset + size, PAGE_SIZE);
5062 	pmap_qremove(va, size >> PAGE_SHIFT);
5063 	kmem_free(&kernel_map, base, size);
5064 }
5065 
5066 /*
5067  * Sets the memory attribute for the specified page.
5068  */
5069 void
5070 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5071 {
5072 
5073     m->pat_mode = ma;
5074 
5075     /*
5076      * If "m" is a normal page, update its direct mapping.  This update
5077      * can be relied upon to perform any cache operations that are
5078      * required for data coherence.
5079      */
5080     if ((m->flags & PG_FICTITIOUS) == 0)
5081         pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), 1, m->pat_mode);
5082 }
5083 
5084 /*
5085  * Change the PAT attribute on an existing kernel memory map.  Caller
5086  * must ensure that the virtual memory in question is not accessed
5087  * during the adjustment.
5088  */
5089 void
5090 pmap_change_attr(vm_offset_t va, vm_size_t count, int mode)
5091 {
5092 	pt_entry_t *pte;
5093 	vm_offset_t base;
5094 	int changed = 0;
5095 
5096 	if (va == 0)
5097 		panic("pmap_change_attr: va is NULL");
5098 	base = trunc_page(va);
5099 
5100 	while (count) {
5101 		pte = vtopte(va);
5102 		*pte = (*pte & ~(pt_entry_t)(kernel_pmap.pmap_cache_mask)) |
5103 		       kernel_pmap.pmap_cache_bits[mode];
5104 		--count;
5105 		va += PAGE_SIZE;
5106 	}
5107 
5108 	changed = 1;	/* XXX: not optimal */
5109 
5110 	/*
5111 	 * Flush CPU caches if required to make sure any data isn't cached that
5112 	 * shouldn't be, etc.
5113 	 */
5114 	if (changed) {
5115 		pmap_invalidate_range(&kernel_pmap, base, va);
5116 		pmap_invalidate_cache_range(base, va);
5117 	}
5118 }
5119 
5120 /*
5121  * perform the pmap work for mincore
5122  */
5123 int
5124 pmap_mincore(pmap_t pmap, vm_offset_t addr)
5125 {
5126 	pt_entry_t *ptep, pte;
5127 	vm_page_t m;
5128 	int val = 0;
5129 
5130 	lwkt_gettoken(&pmap->pm_token);
5131 	ptep = pmap_pte(pmap, addr);
5132 
5133 	if (ptep && (pte = *ptep) != 0) {
5134 		vm_offset_t pa;
5135 
5136 		val = MINCORE_INCORE;
5137 		if ((pte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0)
5138 			goto done;
5139 
5140 		pa = pte & PG_FRAME;
5141 
5142 		if (pte & pmap->pmap_bits[PG_DEVICE_IDX])
5143 			m = NULL;
5144 		else
5145 			m = PHYS_TO_VM_PAGE(pa);
5146 
5147 		/*
5148 		 * Modified by us
5149 		 */
5150 		if (pte & pmap->pmap_bits[PG_M_IDX])
5151 			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
5152 		/*
5153 		 * Modified by someone
5154 		 */
5155 		else if (m && (m->dirty || pmap_is_modified(m)))
5156 			val |= MINCORE_MODIFIED_OTHER;
5157 		/*
5158 		 * Referenced by us
5159 		 */
5160 		if (pte & pmap->pmap_bits[PG_A_IDX])
5161 			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
5162 
5163 		/*
5164 		 * Referenced by someone
5165 		 */
5166 		else if (m && ((m->flags & PG_REFERENCED) ||
5167 				pmap_ts_referenced(m))) {
5168 			val |= MINCORE_REFERENCED_OTHER;
5169 			vm_page_flag_set(m, PG_REFERENCED);
5170 		}
5171 	}
5172 done:
5173 	lwkt_reltoken(&pmap->pm_token);
5174 
5175 	return val;
5176 }
5177 
5178 /*
5179  * Replace p->p_vmspace with a new one.  If adjrefs is non-zero the new
5180  * vmspace will be ref'd and the old one will be deref'd.
5181  *
5182  * The vmspace for all lwps associated with the process will be adjusted
5183  * and cr3 will be reloaded if any lwp is the current lwp.
5184  *
5185  * The process must hold the vmspace->vm_map.token for oldvm and newvm
5186  */
5187 void
5188 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
5189 {
5190 	struct vmspace *oldvm;
5191 	struct lwp *lp;
5192 
5193 	oldvm = p->p_vmspace;
5194 	if (oldvm != newvm) {
5195 		if (adjrefs)
5196 			vmspace_ref(newvm);
5197 		p->p_vmspace = newvm;
5198 		KKASSERT(p->p_nthreads == 1);
5199 		lp = RB_ROOT(&p->p_lwp_tree);
5200 		pmap_setlwpvm(lp, newvm);
5201 		if (adjrefs)
5202 			vmspace_rel(oldvm);
5203 	}
5204 }
5205 
5206 /*
5207  * Set the vmspace for a LWP.  The vmspace is almost universally set the
5208  * same as the process vmspace, but virtual kernels need to swap out contexts
5209  * on a per-lwp basis.
5210  *
5211  * Caller does not necessarily hold any vmspace tokens.  Caller must control
5212  * the lwp (typically be in the context of the lwp).  We use a critical
5213  * section to protect against statclock and hardclock (statistics collection).
5214  */
5215 void
5216 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
5217 {
5218 	struct vmspace *oldvm;
5219 	struct pmap *pmap;
5220 
5221 	oldvm = lp->lwp_vmspace;
5222 
5223 	if (oldvm != newvm) {
5224 		crit_enter();
5225 		lp->lwp_vmspace = newvm;
5226 		if (curthread->td_lwp == lp) {
5227 			pmap = vmspace_pmap(newvm);
5228 			ATOMIC_CPUMASK_ORBIT(pmap->pm_active, mycpu->gd_cpuid);
5229 			if (pmap->pm_active_lock & CPULOCK_EXCL)
5230 				pmap_interlock_wait(newvm);
5231 #if defined(SWTCH_OPTIM_STATS)
5232 			tlb_flush_count++;
5233 #endif
5234 			if (pmap->pmap_bits[TYPE_IDX] == REGULAR_PMAP) {
5235 				curthread->td_pcb->pcb_cr3 = vtophys(pmap->pm_pml4);
5236 			} else if (pmap->pmap_bits[TYPE_IDX] == EPT_PMAP) {
5237 				curthread->td_pcb->pcb_cr3 = KPML4phys;
5238 			} else {
5239 				panic("pmap_setlwpvm: unknown pmap type\n");
5240 			}
5241 			load_cr3(curthread->td_pcb->pcb_cr3);
5242 			pmap = vmspace_pmap(oldvm);
5243 			ATOMIC_CPUMASK_NANDBIT(pmap->pm_active,
5244 					       mycpu->gd_cpuid);
5245 		}
5246 		crit_exit();
5247 	}
5248 }
5249 
5250 /*
5251  * Called when switching to a locked pmap, used to interlock against pmaps
5252  * undergoing modifications to prevent us from activating the MMU for the
5253  * target pmap until all such modifications have completed.  We have to do
5254  * this because the thread making the modifications has already set up its
5255  * SMP synchronization mask.
5256  *
5257  * This function cannot sleep!
5258  *
5259  * No requirements.
5260  */
5261 void
5262 pmap_interlock_wait(struct vmspace *vm)
5263 {
5264 	struct pmap *pmap = &vm->vm_pmap;
5265 
5266 	if (pmap->pm_active_lock & CPULOCK_EXCL) {
5267 		crit_enter();
5268 		KKASSERT(curthread->td_critcount >= 2);
5269 		DEBUG_PUSH_INFO("pmap_interlock_wait");
5270 		while (pmap->pm_active_lock & CPULOCK_EXCL) {
5271 			cpu_ccfence();
5272 			lwkt_process_ipiq();
5273 		}
5274 		DEBUG_POP_INFO();
5275 		crit_exit();
5276 	}
5277 }
5278 
5279 vm_offset_t
5280 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
5281 {
5282 
5283 	if ((obj == NULL) || (size < NBPDR) ||
5284 	    ((obj->type != OBJT_DEVICE) && (obj->type != OBJT_MGTDEVICE))) {
5285 		return addr;
5286 	}
5287 
5288 	addr = roundup2(addr, NBPDR);
5289 	return addr;
5290 }
5291 
5292 /*
5293  * Used by kmalloc/kfree, page already exists at va
5294  */
5295 vm_page_t
5296 pmap_kvtom(vm_offset_t va)
5297 {
5298 	pt_entry_t *ptep = vtopte(va);
5299 
5300 	KKASSERT((*ptep & kernel_pmap.pmap_bits[PG_DEVICE_IDX]) == 0);
5301 	return(PHYS_TO_VM_PAGE(*ptep & PG_FRAME));
5302 }
5303 
5304 /*
5305  * Initialize machine-specific shared page directory support.  This
5306  * is executed when a VM object is created.
5307  */
5308 void
5309 pmap_object_init(vm_object_t object)
5310 {
5311 	object->md.pmap_rw = NULL;
5312 	object->md.pmap_ro = NULL;
5313 }
5314 
5315 /*
5316  * Clean up machine-specific shared page directory support.  This
5317  * is executed when a VM object is destroyed.
5318  */
5319 void
5320 pmap_object_free(vm_object_t object)
5321 {
5322 	pmap_t pmap;
5323 
5324 	if ((pmap = object->md.pmap_rw) != NULL) {
5325 		object->md.pmap_rw = NULL;
5326 		pmap_remove_noinval(pmap,
5327 				  VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
5328 		CPUMASK_ASSZERO(pmap->pm_active);
5329 		pmap_release(pmap);
5330 		pmap_puninit(pmap);
5331 		kfree(pmap, M_OBJPMAP);
5332 	}
5333 	if ((pmap = object->md.pmap_ro) != NULL) {
5334 		object->md.pmap_ro = NULL;
5335 		pmap_remove_noinval(pmap,
5336 				  VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
5337 		CPUMASK_ASSZERO(pmap->pm_active);
5338 		pmap_release(pmap);
5339 		pmap_puninit(pmap);
5340 		kfree(pmap, M_OBJPMAP);
5341 	}
5342 }
5343