xref: /dragonfly/sys/platform/pc64/x86_64/pmap.c (revision 7c4f4eee)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1994 David Greenman
5  * Copyright (c) 2003 Peter Wemm
6  * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
7  * Copyright (c) 2008, 2009 The DragonFly Project.
8  * Copyright (c) 2008, 2009 Jordan Gordeev.
9  * Copyright (c) 2011-2019 Matthew Dillon
10  * All rights reserved.
11  *
12  * This code is derived from software contributed to Berkeley by
13  * the Systems Programming Group of the University of Utah Computer
14  * Science Department and William Jolitz of UUNET Technologies Inc.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  */
44 /*
45  * Manage physical address maps for x86-64 systems.
46  *
47  * Some notes:
48  *	- The 'M'odified bit is only applicable to terminal PTEs.
49  *
50  *	- The 'U'ser access bit can be set for higher-level PTEs as
51  *	  long as it isn't set for terminal PTEs for pages we don't
52  *	  want user access to.
53  */
54 
55 #if 0 /* JG */
56 #include "opt_pmap.h"
57 #endif
58 #include "opt_msgbuf.h"
59 
60 #include <sys/param.h>
61 #include <sys/kernel.h>
62 #include <sys/proc.h>
63 #include <sys/msgbuf.h>
64 #include <sys/vmmeter.h>
65 #include <sys/mman.h>
66 #include <sys/systm.h>
67 
68 #include <vm/vm.h>
69 #include <vm/vm_param.h>
70 #include <sys/sysctl.h>
71 #include <sys/lock.h>
72 #include <vm/vm_kern.h>
73 #include <vm/vm_page.h>
74 #include <vm/vm_map.h>
75 #include <vm/vm_object.h>
76 #include <vm/vm_extern.h>
77 #include <vm/vm_pageout.h>
78 #include <vm/vm_pager.h>
79 #include <vm/vm_zone.h>
80 
81 #include <sys/thread2.h>
82 #include <sys/spinlock2.h>
83 #include <vm/vm_page2.h>
84 
85 #include <machine/cputypes.h>
86 #include <machine/cpu.h>
87 #include <machine/md_var.h>
88 #include <machine/specialreg.h>
89 #include <machine/smp.h>
90 #include <machine_base/apic/apicreg.h>
91 #include <machine/globaldata.h>
92 #include <machine/pmap.h>
93 #include <machine/pmap_inval.h>
94 
95 #include <ddb/ddb.h>
96 
97 #define PMAP_KEEP_PDIRS
98 
99 #if defined(DIAGNOSTIC)
100 #define PMAP_DIAGNOSTIC
101 #endif
102 
103 #define MINPV 2048
104 
105 /*
106  * pmap debugging will report who owns a pv lock when blocking.
107  */
108 #ifdef PMAP_DEBUG
109 
110 #define PMAP_DEBUG_DECL		,const char *func, int lineno
111 #define PMAP_DEBUG_ARGS		, __func__, __LINE__
112 #define PMAP_DEBUG_COPY		, func, lineno
113 
114 #define pv_get(pmap, pindex, pmarkp)	_pv_get(pmap, pindex, pmarkp	\
115 							PMAP_DEBUG_ARGS)
116 #define pv_lock(pv)			_pv_lock(pv			\
117 							PMAP_DEBUG_ARGS)
118 #define pv_hold_try(pv)			_pv_hold_try(pv			\
119 							PMAP_DEBUG_ARGS)
120 #define pv_alloc(pmap, pindex, isnewp)	_pv_alloc(pmap, pindex, isnewp	\
121 							PMAP_DEBUG_ARGS)
122 
123 #define pv_free(pv, pvp)		_pv_free(pv, pvp PMAP_DEBUG_ARGS)
124 
125 #else
126 
127 #define PMAP_DEBUG_DECL
128 #define PMAP_DEBUG_ARGS
129 #define PMAP_DEBUG_COPY
130 
131 #define pv_get(pmap, pindex, pmarkp)	_pv_get(pmap, pindex, pmarkp)
132 #define pv_lock(pv)			_pv_lock(pv)
133 #define pv_hold_try(pv)			_pv_hold_try(pv)
134 #define pv_alloc(pmap, pindex, isnewp)	_pv_alloc(pmap, pindex, isnewp)
135 #define pv_free(pv, pvp)		_pv_free(pv, pvp)
136 
137 #endif
138 
139 /*
140  * Get PDEs and PTEs for user/kernel address space
141  */
142 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
143 
144 #define pmap_pde_v(pmap, pte)	\
145 		((*(pd_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
146 #define pmap_pte_w(pmap, pte)	\
147 		((*(pt_entry_t *)pte & pmap->pmap_bits[PG_W_IDX]) != 0)
148 #define pmap_pte_m(pmap, pte)	\
149 		((*(pt_entry_t *)pte & pmap->pmap_bits[PG_M_IDX]) != 0)
150 #define pmap_pte_u(pmap, pte)	\
151 		((*(pt_entry_t *)pte & pmap->pmap_bits[PG_U_IDX]) != 0)
152 #define pmap_pte_v(pmap, pte)	\
153 		((*(pt_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
154 
155 /*
156  * Given a map and a machine independent protection code,
157  * convert to a vax protection code.
158  */
159 #define pte_prot(m, p)		\
160 	(m->protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
161 static uint64_t protection_codes[PROTECTION_CODES_SIZE];
162 
163 #define PMAP_PAGE_BACKING_SCAN(m, match_pmap, ipmap, iptep, ipte, iva)	\
164 	if (m->object) {						\
165 		vm_object_t iobj = m->object;				\
166 		vm_map_backing_t iba, next_ba;				\
167 		struct pmap *ipmap;					\
168 		pt_entry_t ipte;					\
169 		pt_entry_t *iptep;					\
170 		vm_offset_t iva;					\
171 		vm_pindex_t ipindex_start;				\
172 		vm_pindex_t ipindex_end;				\
173 									\
174 		lockmgr(&iobj->backing_lk, LK_SHARED);			\
175 		next_ba = TAILQ_FIRST(&iobj->backing_list);		\
176 		while ((iba = next_ba) != NULL) {			\
177 			next_ba = TAILQ_NEXT(iba, entry);		\
178 			ipmap = iba->pmap;				\
179 			if (match_pmap && ipmap != match_pmap)		\
180 				continue;				\
181 			ipindex_start = iba->offset >> PAGE_SHIFT;	\
182 			ipindex_end = ipindex_start +			\
183 				  ((iba->end - iba->start) >> PAGE_SHIFT); \
184 			if (m->pindex < ipindex_start ||		\
185 			    m->pindex >= ipindex_end) {			\
186 				continue;				\
187 			}						\
188 			iva = iba->start +				\
189 			      ((m->pindex - ipindex_start) << PAGE_SHIFT); \
190 			iptep = pmap_pte(ipmap, iva);			\
191 			if (iptep == NULL)				\
192 				continue;				\
193 			ipte = *iptep;					\
194 			if (m->phys_addr != (ipte & PG_FRAME))		\
195 				continue;				\
196 
197 #define PMAP_PAGE_BACKING_RETRY						\
198 			{						\
199 				next_ba = iba;				\
200 				continue;				\
201 			}						\
202 
203 #define PMAP_PAGE_BACKING_DONE						\
204 		}							\
205 		lockmgr(&iobj->backing_lk, LK_RELEASE);			\
206 	}								\
207 
208 struct pmap kernel_pmap;
209 struct pmap iso_pmap;
210 
211 vm_paddr_t avail_start;		/* PA of first available physical page */
212 vm_paddr_t avail_end;		/* PA of last available physical page */
213 vm_offset_t virtual2_start;	/* cutout free area prior to kernel start */
214 vm_offset_t virtual2_end;
215 vm_offset_t virtual_start;	/* VA of first avail page (after kernel bss) */
216 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
217 vm_offset_t KvaStart;		/* VA start of KVA space */
218 vm_offset_t KvaEnd;		/* VA end of KVA space (non-inclusive) */
219 vm_offset_t KvaSize;		/* max size of kernel virtual address space */
220 static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
221 //static int pgeflag;		/* PG_G or-in */
222 uint64_t PatMsr;
223 
224 static int ndmpdp;
225 static vm_paddr_t dmaplimit;
226 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
227 
228 static pt_entry_t pat_pte_index[PAT_INDEX_SIZE];	/* PAT -> PG_ bits */
229 /*static pt_entry_t pat_pde_index[PAT_INDEX_SIZE];*/	/* PAT -> PG_ bits */
230 
231 static uint64_t KPTbase;
232 static uint64_t KPTphys;
233 static uint64_t	KPDphys;	/* phys addr of kernel level 2 */
234 static uint64_t	KPDbase;	/* phys addr of kernel level 2 @ KERNBASE */
235 uint64_t KPDPphys;		/* phys addr of kernel level 3 */
236 uint64_t KPML4phys;		/* phys addr of kernel level 4 */
237 
238 static uint64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
239 static uint64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
240 
241 /*
242  * Data for the pv entry allocation mechanism
243  */
244 __read_mostly static vm_zone_t pvzone;
245 __read_mostly static int pmap_pagedaemon_waken = 0;
246 static struct vm_zone pvzone_store;
247 static struct pv_entry *pvinit;
248 
249 /*
250  * All those kernel PT submaps that BSD is so fond of
251  */
252 pt_entry_t *CMAP1 = NULL, *ptmmap;
253 caddr_t CADDR1 = NULL, ptvmmap = NULL;
254 static pt_entry_t *msgbufmap;
255 struct msgbuf *msgbufp=NULL;
256 
257 /*
258  * PMAP default PG_* bits. Needed to be able to add
259  * EPT/NPT pagetable pmap_bits for the VMM module
260  */
261 uint64_t pmap_bits_default[] = {
262 		REGULAR_PMAP,			/* TYPE_IDX		0 */
263 		X86_PG_V,			/* PG_V_IDX		1 */
264 		X86_PG_RW,			/* PG_RW_IDX		2 */
265 		X86_PG_U,			/* PG_U_IDX		3 */
266 		X86_PG_A,			/* PG_A_IDX		4 */
267 		X86_PG_M,			/* PG_M_IDX		5 */
268 		X86_PG_PS,			/* PG_PS_IDX3		6 */
269 		X86_PG_G,			/* PG_G_IDX		7 */
270 		X86_PG_AVAIL1,			/* PG_AVAIL1_IDX	8 */
271 		X86_PG_AVAIL2,			/* PG_AVAIL2_IDX	9 */
272 		X86_PG_AVAIL3,			/* PG_AVAIL3_IDX	10 */
273 		X86_PG_NC_PWT | X86_PG_NC_PCD,	/* PG_N_IDX		11 */
274 		X86_PG_NX,			/* PG_NX_IDX		12 */
275 };
276 /*
277  * Crashdump maps.
278  */
279 static pt_entry_t *pt_crashdumpmap;
280 static caddr_t crashdumpmap;
281 
282 static int pmap_debug = 0;
283 SYSCTL_INT(_machdep, OID_AUTO, pmap_debug, CTLFLAG_RW,
284     &pmap_debug, 0, "Debug pmap's");
285 #ifdef PMAP_DEBUG2
286 static int pmap_enter_debug = 0;
287 SYSCTL_INT(_machdep, OID_AUTO, pmap_enter_debug, CTLFLAG_RW,
288     &pmap_enter_debug, 0, "Debug pmap_enter's");
289 #endif
290 static int pmap_yield_count = 64;
291 SYSCTL_INT(_machdep, OID_AUTO, pmap_yield_count, CTLFLAG_RW,
292     &pmap_yield_count, 0, "Yield during init_pt/release");
293 int pmap_fast_kernel_cpusync = 0;
294 SYSCTL_INT(_machdep, OID_AUTO, pmap_fast_kernel_cpusync, CTLFLAG_RW,
295     &pmap_fast_kernel_cpusync, 0, "Share page table pages when possible");
296 int pmap_dynamic_delete = 0;
297 SYSCTL_INT(_machdep, OID_AUTO, pmap_dynamic_delete, CTLFLAG_RW,
298     &pmap_dynamic_delete, 0, "Dynamically delete PT/PD/PDPs");
299 int pmap_lock_delay = 100;
300 SYSCTL_INT(_machdep, OID_AUTO, pmap_lock_delay, CTLFLAG_RW,
301     &pmap_lock_delay, 0, "Spin loops");
302 static int meltdown_mitigation = -1;
303 TUNABLE_INT("machdep.meltdown_mitigation", &meltdown_mitigation);
304 SYSCTL_INT(_machdep, OID_AUTO, meltdown_mitigation, CTLFLAG_RW,
305     &meltdown_mitigation, 0, "Userland pmap isolation");
306 
307 static int pmap_nx_enable = -1;		/* -1 = auto */
308 /* needs manual TUNABLE in early probe, see below */
309 SYSCTL_INT(_machdep, OID_AUTO, pmap_nx_enable, CTLFLAG_RD,
310     &pmap_nx_enable, 0,
311     "no-execute support (0=disabled, 1=w/READ, 2=w/READ & WRITE)");
312 
313 static int pmap_pv_debug = 50;
314 SYSCTL_INT(_machdep, OID_AUTO, pmap_pv_debug, CTLFLAG_RW,
315     &pmap_pv_debug, 0, "");
316 
317 static long vm_pmap_pv_entries;
318 SYSCTL_LONG(_vm, OID_AUTO, pmap_pv_entries, CTLFLAG_RD,
319     &vm_pmap_pv_entries, 0, "");
320 
321 /* Standard user access funtions */
322 extern int std_copyinstr (const void *udaddr, void *kaddr, size_t len,
323     size_t *lencopied);
324 extern int std_copyin (const void *udaddr, void *kaddr, size_t len);
325 extern int std_copyout (const void *kaddr, void *udaddr, size_t len);
326 extern int std_fubyte (const uint8_t *base);
327 extern int std_subyte (uint8_t *base, uint8_t byte);
328 extern int32_t std_fuword32 (const uint32_t *base);
329 extern int64_t std_fuword64 (const uint64_t *base);
330 extern int std_suword64 (uint64_t *base, uint64_t word);
331 extern int std_suword32 (uint32_t *base, int word);
332 extern uint32_t std_swapu32 (volatile uint32_t *base, uint32_t v);
333 extern uint64_t std_swapu64 (volatile uint64_t *base, uint64_t v);
334 extern uint32_t std_fuwordadd32 (volatile uint32_t *base, uint32_t v);
335 extern uint64_t std_fuwordadd64 (volatile uint64_t *base, uint64_t v);
336 
337 #if 0
338 static void pv_hold(pv_entry_t pv);
339 #endif
340 static int _pv_hold_try(pv_entry_t pv
341 				PMAP_DEBUG_DECL);
342 static void pv_drop(pv_entry_t pv);
343 static void _pv_lock(pv_entry_t pv
344 				PMAP_DEBUG_DECL);
345 static void pv_unlock(pv_entry_t pv);
346 static pv_entry_t _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew
347 				PMAP_DEBUG_DECL);
348 static pv_entry_t _pv_get(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp
349 				PMAP_DEBUG_DECL);
350 static void _pv_free(pv_entry_t pv, pv_entry_t pvp PMAP_DEBUG_DECL);
351 static pv_entry_t pv_get_try(pmap_t pmap, vm_pindex_t pindex,
352 				vm_pindex_t **pmarkp, int *errorp);
353 static void pv_put(pv_entry_t pv);
354 static void *pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex);
355 static pv_entry_t pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex,
356 		      pv_entry_t *pvpp);
357 static void pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp,
358 			pmap_inval_bulk_t *bulk, int destroy);
359 static vm_page_t pmap_remove_pv_page(pv_entry_t pv);
360 static int pmap_release_pv(pv_entry_t pv, pv_entry_t pvp,
361 			pmap_inval_bulk_t *bulk);
362 
363 struct pmap_scan_info;
364 static void pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
365 		      vm_pindex_t *pte_placemark, pv_entry_t pt_pv,
366 		      vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
367 static void pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
368 		      vm_pindex_t *pte_placemark, pv_entry_t pt_pv,
369 		      vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
370 
371 static void x86_64_protection_init (void);
372 static void create_pagetables(vm_paddr_t *firstaddr);
373 static void pmap_remove_all (vm_page_t m);
374 static boolean_t pmap_testbit (vm_page_t m, int bit);
375 
376 static pt_entry_t *pmap_pte_quick (pmap_t pmap, vm_offset_t va);
377 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
378 
379 static void pmap_pinit_defaults(struct pmap *pmap);
380 static void pv_placemarker_wait(pmap_t pmap, vm_pindex_t *pmark);
381 static void pv_placemarker_wakeup(pmap_t pmap, vm_pindex_t *pmark);
382 
383 static int
384 pv_entry_compare(pv_entry_t pv1, pv_entry_t pv2)
385 {
386 	if (pv1->pv_pindex < pv2->pv_pindex)
387 		return(-1);
388 	if (pv1->pv_pindex > pv2->pv_pindex)
389 		return(1);
390 	return(0);
391 }
392 
393 RB_GENERATE2(pv_entry_rb_tree, pv_entry, pv_entry,
394              pv_entry_compare, vm_pindex_t, pv_pindex);
395 
396 /*
397  * Keep track of pages in the pmap.  The procedure is handed
398  * the vm_page->md.pmap_count value prior to an increment or
399  * decrement.
400  *
401  *	t_arm		- Active real memory
402  *	t_avm		- Active virtual memory
403  *	t_armshr	- Active real memory that is also shared
404  *	t_avmshr	- Active virtual memory that is also shared
405  *
406  * NOTE: At the moment t_avm is effectively just the same as t_arm.
407  */
408 static __inline
409 void
410 pmap_page_stats_adding(long prev_count)
411 {
412 	globaldata_t gd = mycpu;
413 
414 	if (prev_count == 0) {
415 		++gd->gd_vmtotal.t_arm;
416 		++gd->gd_vmtotal.t_avm;
417 	} else if (prev_count == 1) {
418 		++gd->gd_vmtotal.t_armshr;
419 		++gd->gd_vmtotal.t_avmshr;
420 	} else {
421 		++gd->gd_vmtotal.t_avmshr;
422 	}
423 }
424 
425 static __inline
426 void
427 pmap_page_stats_deleting(long prev_count)
428 {
429 	globaldata_t gd = mycpu;
430 
431 	if (prev_count == 1) {
432 		--gd->gd_vmtotal.t_arm;
433 		--gd->gd_vmtotal.t_avm;
434 	} else if (prev_count == 2) {
435 		--gd->gd_vmtotal.t_armshr;
436 		--gd->gd_vmtotal.t_avmshr;
437 	} else {
438 		--gd->gd_vmtotal.t_avmshr;
439 	}
440 }
441 
442 /*
443  * Move the kernel virtual free pointer to the next
444  * 2MB.  This is used to help improve performance
445  * by using a large (2MB) page for much of the kernel
446  * (.text, .data, .bss)
447  */
448 static
449 vm_offset_t
450 pmap_kmem_choose(vm_offset_t addr)
451 {
452 	vm_offset_t newaddr = addr;
453 
454 	newaddr = roundup2(addr, NBPDR);
455 	return newaddr;
456 }
457 
458 /*
459  * Returns the pindex of a page table entry (representing a terminal page).
460  * There are NUPTE_TOTAL page table entries possible (a huge number)
461  *
462  * x86-64 has a 48-bit address space, where bit 47 is sign-extended out.
463  * We want to properly translate negative KVAs.
464  */
465 static __inline
466 vm_pindex_t
467 pmap_pte_pindex(vm_offset_t va)
468 {
469 	return ((va >> PAGE_SHIFT) & (NUPTE_TOTAL - 1));
470 }
471 
472 /*
473  * Returns the pindex of a page table.
474  */
475 static __inline
476 vm_pindex_t
477 pmap_pt_pindex(vm_offset_t va)
478 {
479 	return (NUPTE_TOTAL + ((va >> PDRSHIFT) & (NUPT_TOTAL - 1)));
480 }
481 
482 /*
483  * Returns the pindex of a page directory.
484  */
485 static __inline
486 vm_pindex_t
487 pmap_pd_pindex(vm_offset_t va)
488 {
489 	return (NUPTE_TOTAL + NUPT_TOTAL +
490 		((va >> PDPSHIFT) & (NUPD_TOTAL - 1)));
491 }
492 
493 static __inline
494 vm_pindex_t
495 pmap_pdp_pindex(vm_offset_t va)
496 {
497 	return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
498 		((va >> PML4SHIFT) & (NUPDP_TOTAL - 1)));
499 }
500 
501 static __inline
502 vm_pindex_t
503 pmap_pml4_pindex(void)
504 {
505 	return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL);
506 }
507 
508 /*
509  * Return various clipped indexes for a given VA
510  *
511  * Returns the index of a pt in a page directory, representing a page
512  * table.
513  */
514 static __inline
515 vm_pindex_t
516 pmap_pt_index(vm_offset_t va)
517 {
518 	return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
519 }
520 
521 /*
522  * Returns the index of a pd in a page directory page, representing a page
523  * directory.
524  */
525 static __inline
526 vm_pindex_t
527 pmap_pd_index(vm_offset_t va)
528 {
529 	return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
530 }
531 
532 /*
533  * Returns the index of a pdp in the pml4 table, representing a page
534  * directory page.
535  */
536 static __inline
537 vm_pindex_t
538 pmap_pdp_index(vm_offset_t va)
539 {
540 	return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
541 }
542 
543 /*
544  * Of all the layers (PTE, PT, PD, PDP, PML4) the best one to cache is
545  * the PT layer.  This will speed up core pmap operations considerably.
546  * We also cache the PTE layer to (hopefully) improve relative lookup
547  * speeds.
548  *
549  * NOTE: The pmap spinlock does not need to be held but the passed-in pv
550  *	 must be in a known associated state (typically by being locked when
551  *	 the pmap spinlock isn't held).  We allow the race for that case.
552  *
553  * NOTE: pm_pvhint* is only accessed (read) with the spin-lock held, using
554  *	 cpu_ccfence() to prevent compiler optimizations from reloading the
555  *	 field.
556  */
557 static __inline
558 void
559 pv_cache(pmap_t pmap, pv_entry_t pv, vm_pindex_t pindex)
560 {
561 	if (pindex < pmap_pt_pindex(0)) {
562 		;
563 	} else if (pindex < pmap_pd_pindex(0)) {
564 		pmap->pm_pvhint_pt = pv;
565 	}
566 }
567 
568 /*
569  * Locate the requested pt_entry
570  */
571 static __inline
572 pv_entry_t
573 pv_entry_lookup(pmap_t pmap, vm_pindex_t pindex)
574 {
575 	pv_entry_t pv;
576 
577 	if (pindex < pmap_pt_pindex(0))
578 		return NULL;
579 #if 1
580 	if (pindex < pmap_pd_pindex(0))
581 		pv = pmap->pm_pvhint_pt;
582 	else
583 		pv = NULL;
584 	cpu_ccfence();
585 	if (pv == NULL || pv->pv_pmap != pmap) {
586 		pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
587 		if (pv)
588 			pv_cache(pmap, pv, pindex);
589 	} else if (pv->pv_pindex != pindex) {
590 		pv = pv_entry_rb_tree_RB_LOOKUP_REL(&pmap->pm_pvroot,
591 						    pindex, pv);
592 		if (pv)
593 			pv_cache(pmap, pv, pindex);
594 	}
595 #else
596 	pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
597 #endif
598 	return pv;
599 }
600 
601 /*
602  * pmap_pte_quick:
603  *
604  *	Super fast pmap_pte routine best used when scanning the pv lists.
605  *	This eliminates many course-grained invltlb calls.  Note that many of
606  *	the pv list scans are across different pmaps and it is very wasteful
607  *	to do an entire invltlb when checking a single mapping.
608  */
609 static __inline pt_entry_t *pmap_pte(pmap_t pmap, vm_offset_t va);
610 
611 static
612 pt_entry_t *
613 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
614 {
615 	return pmap_pte(pmap, va);
616 }
617 
618 /*
619  * The placemarker hash must be broken up into four zones so lock
620  * ordering semantics continue to work (e.g. pte, pt, pd, then pdp).
621  *
622  * Placemarkers are used to 'lock' page table indices that do not have
623  * a pv_entry.  This allows the pmap to support managed and unmanaged
624  * pages and shared page tables.
625  */
626 #define PM_PLACE_BASE	(PM_PLACEMARKS >> 2)
627 
628 static __inline
629 vm_pindex_t *
630 pmap_placemarker_hash(pmap_t pmap, vm_pindex_t pindex)
631 {
632 	int hi;
633 
634 	if (pindex < pmap_pt_pindex(0))		/* zone 0 - PTE */
635 		hi = 0;
636 	else if (pindex < pmap_pd_pindex(0))	/* zone 1 - PT */
637 		hi = PM_PLACE_BASE;
638 	else if (pindex < pmap_pdp_pindex(0))	/* zone 2 - PD */
639 		hi = PM_PLACE_BASE << 1;
640 	else					/* zone 3 - PDP (and PML4E) */
641 		hi = PM_PLACE_BASE | (PM_PLACE_BASE << 1);
642 	hi += pindex & (PM_PLACE_BASE - 1);
643 
644 	return (&pmap->pm_placemarks[hi]);
645 }
646 
647 
648 /*
649  * Generic procedure to index a pte from a pt, pd, or pdp.
650  *
651  * NOTE: Normally passed pindex as pmap_xx_index().  pmap_xx_pindex() is NOT
652  *	 a page table page index but is instead of PV lookup index.
653  */
654 static
655 void *
656 pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex)
657 {
658 	pt_entry_t *pte;
659 
660 	pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pv->pv_m));
661 	return(&pte[pindex]);
662 }
663 
664 /*
665  * Return pointer to PDP slot in the PML4
666  */
667 static __inline
668 pml4_entry_t *
669 pmap_pdp(pmap_t pmap, vm_offset_t va)
670 {
671 	return (&pmap->pm_pml4[pmap_pdp_index(va)]);
672 }
673 
674 /*
675  * Return pointer to PD slot in the PDP given a pointer to the PDP
676  */
677 static __inline
678 pdp_entry_t *
679 pmap_pdp_to_pd(pml4_entry_t pdp_pte, vm_offset_t va)
680 {
681 	pdp_entry_t *pd;
682 
683 	pd = (pdp_entry_t *)PHYS_TO_DMAP(pdp_pte & PG_FRAME);
684 	return (&pd[pmap_pd_index(va)]);
685 }
686 
687 /*
688  * Return pointer to PD slot in the PDP.
689  */
690 static __inline
691 pdp_entry_t *
692 pmap_pd(pmap_t pmap, vm_offset_t va)
693 {
694 	pml4_entry_t *pdp;
695 
696 	pdp = pmap_pdp(pmap, va);
697 	if ((*pdp & pmap->pmap_bits[PG_V_IDX]) == 0)
698 		return NULL;
699 	return (pmap_pdp_to_pd(*pdp, va));
700 }
701 
702 /*
703  * Return pointer to PT slot in the PD given a pointer to the PD
704  */
705 static __inline
706 pd_entry_t *
707 pmap_pd_to_pt(pdp_entry_t pd_pte, vm_offset_t va)
708 {
709 	pd_entry_t *pt;
710 
711 	pt = (pd_entry_t *)PHYS_TO_DMAP(pd_pte & PG_FRAME);
712 	return (&pt[pmap_pt_index(va)]);
713 }
714 
715 /*
716  * Return pointer to PT slot in the PD
717  *
718  * SIMPLE PMAP NOTE: Simple pmaps (embedded in objects) do not have PDPs,
719  *		     so we cannot lookup the PD via the PDP.  Instead we
720  *		     must look it up via the pmap.
721  */
722 static __inline
723 pd_entry_t *
724 pmap_pt(pmap_t pmap, vm_offset_t va)
725 {
726 	pdp_entry_t *pd;
727 	pv_entry_t pv;
728 	vm_pindex_t pd_pindex;
729 	vm_paddr_t phys;
730 
731 	if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
732 		pd_pindex = pmap_pd_pindex(va);
733 		spin_lock_shared(&pmap->pm_spin);
734 		pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pd_pindex);
735 		if (pv == NULL || pv->pv_m == NULL) {
736 			spin_unlock_shared(&pmap->pm_spin);
737 			return NULL;
738 		}
739 		phys = VM_PAGE_TO_PHYS(pv->pv_m);
740 		spin_unlock_shared(&pmap->pm_spin);
741 		return (pmap_pd_to_pt(phys, va));
742 	} else {
743 		pd = pmap_pd(pmap, va);
744 		if (pd == NULL || (*pd & pmap->pmap_bits[PG_V_IDX]) == 0)
745 			 return NULL;
746 		return (pmap_pd_to_pt(*pd, va));
747 	}
748 }
749 
750 /*
751  * Return pointer to PTE slot in the PT given a pointer to the PT
752  */
753 static __inline
754 pt_entry_t *
755 pmap_pt_to_pte(pd_entry_t pt_pte, vm_offset_t va)
756 {
757 	pt_entry_t *pte;
758 
759 	pte = (pt_entry_t *)PHYS_TO_DMAP(pt_pte & PG_FRAME);
760 	return (&pte[pmap_pte_index(va)]);
761 }
762 
763 /*
764  * Return pointer to PTE slot in the PT
765  */
766 static __inline
767 pt_entry_t *
768 pmap_pte(pmap_t pmap, vm_offset_t va)
769 {
770 	pd_entry_t *pt;
771 
772 	pt = pmap_pt(pmap, va);
773 	if (pt == NULL || (*pt & pmap->pmap_bits[PG_V_IDX]) == 0)
774 		 return NULL;
775 	if ((*pt & pmap->pmap_bits[PG_PS_IDX]) != 0)
776 		return ((pt_entry_t *)pt);
777 	return (pmap_pt_to_pte(*pt, va));
778 }
779 
780 /*
781  * Return address of PT slot in PD (KVM only)
782  *
783  * Cannot be used for user page tables because it might interfere with
784  * the shared page-table-page optimization (pmap_mmu_optimize).
785  */
786 static __inline
787 pd_entry_t *
788 vtopt(vm_offset_t va)
789 {
790 	uint64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
791 				  NPML4EPGSHIFT)) - 1);
792 
793 	return (PDmap + ((va >> PDRSHIFT) & mask));
794 }
795 
796 /*
797  * KVM - return address of PTE slot in PT
798  */
799 static __inline
800 pt_entry_t *
801 vtopte(vm_offset_t va)
802 {
803 	uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
804 				  NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
805 
806 	return (PTmap + ((va >> PAGE_SHIFT) & mask));
807 }
808 
809 /*
810  * Returns the physical address translation from va for a user address.
811  * (vm_paddr_t)-1 is returned on failure.
812  */
813 vm_paddr_t
814 uservtophys(vm_offset_t va)
815 {
816 	uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
817 				  NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
818 	vm_paddr_t pa;
819 	pt_entry_t pte;
820 	pmap_t pmap;
821 
822 	pmap = vmspace_pmap(mycpu->gd_curthread->td_lwp->lwp_vmspace);
823 	pa = (vm_paddr_t)-1;
824 	if (va < VM_MAX_USER_ADDRESS) {
825 		pte = kreadmem64(PTmap + ((va >> PAGE_SHIFT) & mask));
826 		if (pte & pmap->pmap_bits[PG_V_IDX])
827 			pa = (pte & PG_FRAME) | (va & PAGE_MASK);
828 	}
829 	return pa;
830 }
831 
832 static uint64_t
833 allocpages(vm_paddr_t *firstaddr, long n)
834 {
835 	uint64_t ret;
836 
837 	ret = *firstaddr;
838 	bzero((void *)ret, n * PAGE_SIZE);
839 	*firstaddr += n * PAGE_SIZE;
840 	return (ret);
841 }
842 
843 static
844 void
845 create_pagetables(vm_paddr_t *firstaddr)
846 {
847 	long i;		/* must be 64 bits */
848 	long nkpt_base;
849 	long nkpt_phys;
850 	long nkpd_phys;
851 	int j;
852 
853 	/*
854 	 * We are running (mostly) V=P at this point
855 	 *
856 	 * Calculate how many 1GB PD entries in our PDP pages are needed
857 	 * for the DMAP.  This is only allocated if the system does not
858 	 * support 1GB pages.  Otherwise ndmpdp is simply a count of
859 	 * the number of 1G terminal entries in our PDP pages are needed.
860 	 *
861 	 * NOTE: Maxmem is in pages
862 	 */
863 	ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
864 	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
865 		ndmpdp = 4;
866 	KKASSERT(ndmpdp <= NDMPML4E * NPML4EPG);
867 
868 	/*
869 	 * Starting at KERNBASE - map all 2G worth of page table pages.
870 	 * KERNBASE is offset -2G from the end of kvm.  This will accomodate
871 	 * all KVM allocations above KERNBASE, including the SYSMAPs below.
872 	 *
873 	 * We do this by allocating 2*512 PT pages.  Each PT page can map
874 	 * 2MB, for 2GB total.
875 	 */
876 	nkpt_base = (NPDPEPG - KPDPI) * NPTEPG;	/* typically 2 x 512 */
877 
878 	/*
879 	 * Starting at the beginning of kvm (VM_MIN_KERNEL_ADDRESS),
880 	 * Calculate how many page table pages we need to preallocate
881 	 * for early vm_map allocations.
882 	 *
883 	 * A few extra won't hurt, they will get used up in the running
884 	 * system.
885 	 *
886 	 * vm_page array
887 	 * initial pventry's
888 	 */
889 	nkpt_phys = (Maxmem * sizeof(struct vm_page) + NBPDR - 1) / NBPDR;
890 	nkpt_phys += (Maxmem * sizeof(struct pv_entry) + NBPDR - 1) / NBPDR;
891 	nkpt_phys += 128;	/* a few extra */
892 
893 	/*
894 	 * The highest value nkpd_phys can be set to is
895 	 * NKPDPE - (NPDPEPG - KPDPI) (i.e. NKPDPE - 2).
896 	 *
897 	 * Doing so would cause all PD pages to be pre-populated for
898 	 * a maximal KVM space (approximately 16*512 pages, or 32MB.
899 	 * We can save memory by not doing this.
900 	 */
901 	nkpd_phys = (nkpt_phys + NPDPEPG - 1) / NPDPEPG;
902 
903 	/*
904 	 * Allocate pages
905 	 *
906 	 * Normally NKPML4E=1-16 (1-16 kernel PDP page)
907 	 * Normally NKPDPE= NKPML4E*512-1 (511 min kernel PD pages)
908 	 *
909 	 * Only allocate enough PD pages
910 	 * NOTE: We allocate all kernel PD pages up-front, typically
911 	 *	 ~511G of KVM, requiring 511 PD pages.
912 	 */
913 	KPTbase = allocpages(firstaddr, nkpt_base);	/* KERNBASE to end */
914 	KPTphys = allocpages(firstaddr, nkpt_phys);	/* KVA start */
915 	KPML4phys = allocpages(firstaddr, 1);		/* recursive PML4 map */
916 	KPDPphys = allocpages(firstaddr, NKPML4E);	/* kernel PDP pages */
917 	KPDphys = allocpages(firstaddr, nkpd_phys);	/* kernel PD pages */
918 
919 	/*
920 	 * Alloc PD pages for the area starting at KERNBASE.
921 	 */
922 	KPDbase = allocpages(firstaddr, NPDPEPG - KPDPI);
923 
924 	/*
925 	 * Stuff for our DMAP
926 	 */
927 	DMPDPphys = allocpages(firstaddr, NDMPML4E);
928 	if ((amd_feature & AMDID_PAGE1GB) == 0)
929 		DMPDphys = allocpages(firstaddr, ndmpdp);
930 	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
931 
932 	/*
933 	 * Fill in the underlying page table pages for the area around
934 	 * KERNBASE.  This remaps low physical memory to KERNBASE.
935 	 *
936 	 * Read-only from zero to physfree
937 	 * XXX not fully used, underneath 2M pages
938 	 */
939 	for (i = 0; (i << PAGE_SHIFT) < *firstaddr; i++) {
940 		((pt_entry_t *)KPTbase)[i] = i << PAGE_SHIFT;
941 		((pt_entry_t *)KPTbase)[i] |=
942 		    pmap_bits_default[PG_RW_IDX] |
943 		    pmap_bits_default[PG_V_IDX] |
944 		    pmap_bits_default[PG_G_IDX];
945 	}
946 
947 	/*
948 	 * Now map the initial kernel page tables.  One block of page
949 	 * tables is placed at the beginning of kernel virtual memory,
950 	 * and another block is placed at KERNBASE to map the kernel binary,
951 	 * data, bss, and initial pre-allocations.
952 	 */
953 	for (i = 0; i < nkpt_base; i++) {
954 		((pd_entry_t *)KPDbase)[i] = KPTbase + (i << PAGE_SHIFT);
955 		((pd_entry_t *)KPDbase)[i] |=
956 		    pmap_bits_default[PG_RW_IDX] |
957 		    pmap_bits_default[PG_V_IDX];
958 	}
959 	for (i = 0; i < nkpt_phys; i++) {
960 		((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
961 		((pd_entry_t *)KPDphys)[i] |=
962 		    pmap_bits_default[PG_RW_IDX] |
963 		    pmap_bits_default[PG_V_IDX];
964 	}
965 
966 	/*
967 	 * Map from zero to end of allocations using 2M pages as an
968 	 * optimization.  This will bypass some of the KPTBase pages
969 	 * above in the KERNBASE area.
970 	 */
971 	for (i = 0; (i << PDRSHIFT) < *firstaddr; i++) {
972 		((pd_entry_t *)KPDbase)[i] = i << PDRSHIFT;
973 		((pd_entry_t *)KPDbase)[i] |=
974 		    pmap_bits_default[PG_RW_IDX] |
975 		    pmap_bits_default[PG_V_IDX] |
976 		    pmap_bits_default[PG_PS_IDX] |
977 		    pmap_bits_default[PG_G_IDX];
978 	}
979 
980 	/*
981 	 * Load PD addresses into the PDP pages for primary KVA space to
982 	 * cover existing page tables.  PD's for KERNBASE are handled in
983 	 * the next loop.
984 	 *
985 	 * expected to pre-populate all of its PDs.  See NKPDPE in vmparam.h.
986 	 */
987 	for (i = 0; i < nkpd_phys; i++) {
988 		((pdp_entry_t *)KPDPphys)[NKPML4E * NPDPEPG - NKPDPE + i] =
989 				KPDphys + (i << PAGE_SHIFT);
990 		((pdp_entry_t *)KPDPphys)[NKPML4E * NPDPEPG - NKPDPE + i] |=
991 		    pmap_bits_default[PG_RW_IDX] |
992 		    pmap_bits_default[PG_V_IDX] |
993 		    pmap_bits_default[PG_A_IDX];
994 	}
995 
996 	/*
997 	 * Load PDs for KERNBASE to the end
998 	 */
999 	i = (NKPML4E - 1) * NPDPEPG + KPDPI;
1000 	for (j = 0; j < NPDPEPG - KPDPI; ++j) {
1001 		((pdp_entry_t *)KPDPphys)[i + j] =
1002 				KPDbase + (j << PAGE_SHIFT);
1003 		((pdp_entry_t *)KPDPphys)[i + j] |=
1004 		    pmap_bits_default[PG_RW_IDX] |
1005 		    pmap_bits_default[PG_V_IDX] |
1006 		    pmap_bits_default[PG_A_IDX];
1007 	}
1008 
1009 	/*
1010 	 * Now set up the direct map space using either 2MB or 1GB pages
1011 	 * Preset PG_M and PG_A because demotion expects it.
1012 	 *
1013 	 * When filling in entries in the PD pages make sure any excess
1014 	 * entries are set to zero as we allocated enough PD pages
1015 	 */
1016 	if ((amd_feature & AMDID_PAGE1GB) == 0) {
1017 		/*
1018 		 * Use 2MB pages
1019 		 */
1020 		for (i = 0; i < NPDEPG * ndmpdp; i++) {
1021 			((pd_entry_t *)DMPDphys)[i] = i << PDRSHIFT;
1022 			((pd_entry_t *)DMPDphys)[i] |=
1023 			    pmap_bits_default[PG_RW_IDX] |
1024 			    pmap_bits_default[PG_V_IDX] |
1025 			    pmap_bits_default[PG_PS_IDX] |
1026 			    pmap_bits_default[PG_G_IDX] |
1027 			    pmap_bits_default[PG_M_IDX] |
1028 			    pmap_bits_default[PG_A_IDX];
1029 		}
1030 
1031 		/*
1032 		 * And the direct map space's PDP
1033 		 */
1034 		for (i = 0; i < ndmpdp; i++) {
1035 			((pdp_entry_t *)DMPDPphys)[i] = DMPDphys +
1036 							(i << PAGE_SHIFT);
1037 			((pdp_entry_t *)DMPDPphys)[i] |=
1038 			    pmap_bits_default[PG_RW_IDX] |
1039 			    pmap_bits_default[PG_V_IDX];
1040 		}
1041 	} else {
1042 		/*
1043 		 * 1GB pages
1044 		 */
1045 		for (i = 0; i < ndmpdp; i++) {
1046 			((pdp_entry_t *)DMPDPphys)[i] =
1047 						(vm_paddr_t)i << PDPSHIFT;
1048 			((pdp_entry_t *)DMPDPphys)[i] |=
1049 			    pmap_bits_default[PG_RW_IDX] |
1050 			    pmap_bits_default[PG_V_IDX] |
1051 			    pmap_bits_default[PG_PS_IDX] |
1052 			    pmap_bits_default[PG_G_IDX] |
1053 			    pmap_bits_default[PG_M_IDX] |
1054 			    pmap_bits_default[PG_A_IDX];
1055 		}
1056 	}
1057 
1058 	/* And recursively map PML4 to itself in order to get PTmap */
1059 	((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
1060 	((pdp_entry_t *)KPML4phys)[PML4PML4I] |=
1061 	    pmap_bits_default[PG_RW_IDX] |
1062 	    pmap_bits_default[PG_V_IDX] |
1063 	    pmap_bits_default[PG_A_IDX];
1064 
1065 	/*
1066 	 * Connect the Direct Map slots up to the PML4
1067 	 */
1068 	for (j = 0; j < NDMPML4E; ++j) {
1069 		((pdp_entry_t *)KPML4phys)[DMPML4I + j] =
1070 		    (DMPDPphys + ((vm_paddr_t)j << PAGE_SHIFT)) |
1071 		    pmap_bits_default[PG_RW_IDX] |
1072 		    pmap_bits_default[PG_V_IDX] |
1073 		    pmap_bits_default[PG_A_IDX];
1074 	}
1075 
1076 	/*
1077 	 * Connect the KVA slot up to the PML4
1078 	 */
1079 	for (j = 0; j < NKPML4E; ++j) {
1080 		((pdp_entry_t *)KPML4phys)[KPML4I + j] =
1081 		    KPDPphys + ((vm_paddr_t)j << PAGE_SHIFT);
1082 		((pdp_entry_t *)KPML4phys)[KPML4I + j] |=
1083 		    pmap_bits_default[PG_RW_IDX] |
1084 		    pmap_bits_default[PG_V_IDX] |
1085 		    pmap_bits_default[PG_A_IDX];
1086 	}
1087 	cpu_mfence();
1088 	cpu_invltlb();
1089 }
1090 
1091 /*
1092  *	Bootstrap the system enough to run with virtual memory.
1093  *
1094  *	On x86_64 this is called after mapping has already been enabled
1095  *	and just syncs the pmap module with what has already been done.
1096  *	[We can't call it easily with mapping off since the kernel is not
1097  *	mapped with PA == VA, hence we would have to relocate every address
1098  *	from the linked base (virtual) address "KERNBASE" to the actual
1099  *	(physical) address starting relative to 0]
1100  */
1101 void
1102 pmap_bootstrap(vm_paddr_t *firstaddr)
1103 {
1104 	vm_offset_t va;
1105 	pt_entry_t *pte;
1106 	int i;
1107 
1108 	KvaStart = VM_MIN_KERNEL_ADDRESS;
1109 	KvaEnd = VM_MAX_KERNEL_ADDRESS;
1110 	KvaSize = KvaEnd - KvaStart;
1111 
1112 	avail_start = *firstaddr;
1113 
1114 	/*
1115 	 * Create an initial set of page tables to run the kernel in.
1116 	 */
1117 	create_pagetables(firstaddr);
1118 
1119 	virtual2_start = KvaStart;
1120 	virtual2_end = PTOV_OFFSET;
1121 
1122 	virtual_start = (vm_offset_t) PTOV_OFFSET + *firstaddr;
1123 	virtual_start = pmap_kmem_choose(virtual_start);
1124 
1125 	virtual_end = VM_MAX_KERNEL_ADDRESS;
1126 
1127 	/* XXX do %cr0 as well */
1128 	load_cr4(rcr4() | CR4_PGE | CR4_PSE);
1129 	load_cr3(KPML4phys);
1130 
1131 	/*
1132 	 * Initialize protection array.
1133 	 */
1134 	x86_64_protection_init();
1135 
1136 	/*
1137 	 * The kernel's pmap is statically allocated so we don't have to use
1138 	 * pmap_create, which is unlikely to work correctly at this part of
1139 	 * the boot sequence (XXX and which no longer exists).
1140 	 */
1141 	kernel_pmap.pm_pml4 = (pdp_entry_t *) (PTOV_OFFSET + KPML4phys);
1142 	kernel_pmap.pm_count = 1;
1143 	CPUMASK_ASSALLONES(kernel_pmap.pm_active);
1144 	RB_INIT(&kernel_pmap.pm_pvroot);
1145 	spin_init(&kernel_pmap.pm_spin, "pmapbootstrap");
1146 	for (i = 0; i < PM_PLACEMARKS; ++i)
1147 		kernel_pmap.pm_placemarks[i] = PM_NOPLACEMARK;
1148 
1149 	/*
1150 	 * Reserve some special page table entries/VA space for temporary
1151 	 * mapping of pages.
1152 	 */
1153 #define	SYSMAP(c, p, v, n)	\
1154 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
1155 
1156 	va = virtual_start;
1157 	pte = vtopte(va);
1158 
1159 	/*
1160 	 * CMAP1/CMAP2 are used for zeroing and copying pages.
1161 	 */
1162 	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
1163 
1164 	/*
1165 	 * Crashdump maps.
1166 	 */
1167 	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
1168 
1169 	/*
1170 	 * ptvmmap is used for reading arbitrary physical pages via
1171 	 * /dev/mem.
1172 	 */
1173 	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
1174 
1175 	/*
1176 	 * msgbufp is used to map the system message buffer.
1177 	 * XXX msgbufmap is not used.
1178 	 */
1179 	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
1180 	       atop(round_page(MSGBUF_SIZE)))
1181 
1182 	virtual_start = va;
1183 	virtual_start = pmap_kmem_choose(virtual_start);
1184 
1185 	*CMAP1 = 0;
1186 
1187 	/*
1188 	 * PG_G is terribly broken on SMP because we IPI invltlb's in some
1189 	 * cases rather then invl1pg.  Actually, I don't even know why it
1190 	 * works under UP because self-referential page table mappings
1191 	 */
1192 //	pgeflag = 0;
1193 
1194 	cpu_invltlb();
1195 
1196 	/* Initialize the PAT MSR */
1197 	pmap_init_pat();
1198 	pmap_pinit_defaults(&kernel_pmap);
1199 
1200 	TUNABLE_INT_FETCH("machdep.pmap_fast_kernel_cpusync",
1201 			  &pmap_fast_kernel_cpusync);
1202 
1203 }
1204 
1205 /*
1206  * Setup the PAT MSR.
1207  */
1208 void
1209 pmap_init_pat(void)
1210 {
1211 	uint64_t pat_msr;
1212 	u_long cr0, cr4;
1213 
1214 	/*
1215 	 * Default values mapping PATi,PCD,PWT bits at system reset.
1216 	 * The default values effectively ignore the PATi bit by
1217 	 * repeating the encodings for 0-3 in 4-7, and map the PCD
1218 	 * and PWT bit combinations to the expected PAT types.
1219 	 */
1220 	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |	/* 000 */
1221 		  PAT_VALUE(1, PAT_WRITE_THROUGH) |	/* 001 */
1222 		  PAT_VALUE(2, PAT_UNCACHED) |		/* 010 */
1223 		  PAT_VALUE(3, PAT_UNCACHEABLE) |	/* 011 */
1224 		  PAT_VALUE(4, PAT_WRITE_BACK) |	/* 100 */
1225 		  PAT_VALUE(5, PAT_WRITE_THROUGH) |	/* 101 */
1226 		  PAT_VALUE(6, PAT_UNCACHED) |		/* 110 */
1227 		  PAT_VALUE(7, PAT_UNCACHEABLE);	/* 111 */
1228 	pat_pte_index[PAT_WRITE_BACK]	= 0;
1229 	pat_pte_index[PAT_WRITE_THROUGH]= 0         | X86_PG_NC_PWT;
1230 	pat_pte_index[PAT_UNCACHED]	= X86_PG_NC_PCD;
1231 	pat_pte_index[PAT_UNCACHEABLE]	= X86_PG_NC_PCD | X86_PG_NC_PWT;
1232 	pat_pte_index[PAT_WRITE_PROTECTED] = pat_pte_index[PAT_UNCACHEABLE];
1233 	pat_pte_index[PAT_WRITE_COMBINING] = pat_pte_index[PAT_UNCACHEABLE];
1234 
1235 	if (cpu_feature & CPUID_PAT) {
1236 		/*
1237 		 * If we support the PAT then set-up entries for
1238 		 * WRITE_PROTECTED and WRITE_COMBINING using bit patterns
1239 		 * 5 and 6.
1240 		 */
1241 		pat_msr = (pat_msr & ~PAT_MASK(5)) |
1242 			  PAT_VALUE(5, PAT_WRITE_PROTECTED);
1243 		pat_msr = (pat_msr & ~PAT_MASK(6)) |
1244 			  PAT_VALUE(6, PAT_WRITE_COMBINING);
1245 		pat_pte_index[PAT_WRITE_PROTECTED] = X86_PG_PTE_PAT | X86_PG_NC_PWT;
1246 		pat_pte_index[PAT_WRITE_COMBINING] = X86_PG_PTE_PAT | X86_PG_NC_PCD;
1247 
1248 		/*
1249 		 * Then enable the PAT
1250 		 */
1251 
1252 		/* Disable PGE. */
1253 		cr4 = rcr4();
1254 		load_cr4(cr4 & ~CR4_PGE);
1255 
1256 		/* Disable caches (CD = 1, NW = 0). */
1257 		cr0 = rcr0();
1258 		load_cr0((cr0 & ~CR0_NW) | CR0_CD);
1259 
1260 		/* Flushes caches and TLBs. */
1261 		wbinvd();
1262 		cpu_invltlb();
1263 
1264 		/* Update PAT and index table. */
1265 		wrmsr(MSR_PAT, pat_msr);
1266 
1267 		/* Flush caches and TLBs again. */
1268 		wbinvd();
1269 		cpu_invltlb();
1270 
1271 		/* Restore caches and PGE. */
1272 		load_cr0(cr0);
1273 		load_cr4(cr4);
1274 		PatMsr = pat_msr;
1275 	}
1276 }
1277 
1278 /*
1279  * Set 4mb pdir for mp startup
1280  */
1281 void
1282 pmap_set_opt(void)
1283 {
1284 	if (cpu_feature & CPUID_PSE) {
1285 		load_cr4(rcr4() | CR4_PSE);
1286 		if (mycpu->gd_cpuid == 0) 	/* only on BSP */
1287 			cpu_invltlb();
1288 	}
1289 
1290 	/*
1291 	 * Check for SMAP support and enable if available.  Must be done
1292 	 * after cr3 is loaded, and on all cores.
1293 	 */
1294 	if (cpu_stdext_feature & CPUID_STDEXT_SMAP) {
1295 		load_cr4(rcr4() | CR4_SMAP);
1296 	}
1297 	if (cpu_stdext_feature & CPUID_STDEXT_SMEP) {
1298 		load_cr4(rcr4() | CR4_SMEP);
1299 	}
1300 }
1301 
1302 /*
1303  * Early initialization of the pmap module.
1304  *
1305  * Called by vm_init, to initialize any structures that the pmap
1306  * system needs to map virtual memory.  pmap_init has been enhanced to
1307  * support in a fairly consistant way, discontiguous physical memory.
1308  */
1309 void
1310 pmap_init(void)
1311 {
1312 	vm_pindex_t initial_pvs;
1313 	vm_pindex_t i;
1314 
1315 	/*
1316 	 * Allocate memory for random pmap data structures.  Includes the
1317 	 * pv_head_table.
1318 	 */
1319 	for (i = 0; i < vm_page_array_size; i++) {
1320 		vm_page_t m;
1321 
1322 		m = &vm_page_array[i];
1323 		m->md.pmap_count = 0;
1324 		m->md.writeable_count = 0;
1325 	}
1326 
1327 	/*
1328 	 * init the pv free list
1329 	 */
1330 	initial_pvs = vm_page_array_size;
1331 	if (initial_pvs < MINPV)
1332 		initial_pvs = MINPV;
1333 	pvzone = &pvzone_store;
1334 	pvinit = (void *)kmem_alloc(&kernel_map,
1335 				    initial_pvs * sizeof (struct pv_entry),
1336 				    VM_SUBSYS_PVENTRY);
1337 	zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry),
1338 		  pvinit, initial_pvs);
1339 
1340 	/*
1341 	 * Now it is safe to enable pv_table recording.
1342 	 */
1343 	pmap_initialized = TRUE;
1344 }
1345 
1346 /*
1347  * Initialize the address space (zone) for the pv_entries.  Set a
1348  * high water mark so that the system can recover from excessive
1349  * numbers of pv entries.
1350  *
1351  * Also create the kernel page table template for isolated user
1352  * pmaps.
1353  */
1354 static void pmap_init_iso_range(vm_offset_t base, size_t bytes);
1355 static void pmap_init2_iso_pmap(void);
1356 #if 0
1357 static void dump_pmap(pmap_t pmap, pt_entry_t pte, int level, vm_offset_t base);
1358 #endif
1359 
1360 void
1361 pmap_init2(void)
1362 {
1363 	vm_pindex_t entry_max;
1364 
1365 	/*
1366 	 * We can significantly reduce pv_entry_max from historical
1367 	 * levels because pv_entry's are no longer use for PTEs at the
1368 	 * leafs.  This prevents excessive pcpu caching on many-core
1369 	 * boxes (even with the further '/ 16' done in zinitna().
1370 	 *
1371 	 * Remember, however, that processes can share physical pages
1372 	 * with each process still needing the pdp/pd/pt infrstructure
1373 	 * (which still use pv_entry's).  And don't just assume that
1374 	 * every PT will be completely filled up.  So don't make it
1375 	 * too small.
1376 	 */
1377 	entry_max = maxproc * 32 + vm_page_array_size / 16;
1378 	TUNABLE_LONG_FETCH("vm.pmap.pv_entries", &entry_max);
1379 	vm_pmap_pv_entries = entry_max;
1380 
1381 	/*
1382 	 * Subtract out pages already installed in the zone (hack)
1383 	 */
1384 	if (entry_max <= MINPV)
1385 		entry_max = MINPV;
1386 
1387 	zinitna(pvzone, NULL, 0, entry_max, ZONE_INTERRUPT);
1388 
1389 	/*
1390 	 * Enable dynamic deletion of empty higher-level page table pages
1391 	 * by default only if system memory is < 8GB (use 7GB for slop).
1392 	 * This can save a little memory, but imposes significant
1393 	 * performance overhead for things like bulk builds, and for programs
1394 	 * which do a lot of memory mapping and memory unmapping.
1395 	 */
1396 #if 0
1397 	if (pmap_dynamic_delete < 0) {
1398 		if (vmstats.v_page_count < 7LL * 1024 * 1024 * 1024 / PAGE_SIZE)
1399 			pmap_dynamic_delete = 1;
1400 		else
1401 			pmap_dynamic_delete = 0;
1402 	}
1403 #endif
1404 	/*
1405 	 * Disable so vm_map_backing iterations do not race
1406 	 */
1407 	pmap_dynamic_delete = 0;
1408 
1409 	/*
1410 	 * Automatic detection of Intel meltdown bug requiring user/kernel
1411 	 * mmap isolation.
1412 	 *
1413 	 * Currently there are so many Intel cpu's impacted that its better
1414 	 * to whitelist future Intel CPUs.  Most? AMD cpus are not impacted
1415 	 * so the default is off for AMD.
1416 	 */
1417 	if (meltdown_mitigation < 0) {
1418 		if (cpu_vendor_id == CPU_VENDOR_INTEL)
1419 			meltdown_mitigation = 1;
1420 		else
1421 			meltdown_mitigation = 0;
1422 	}
1423 	if (meltdown_mitigation) {
1424 		kprintf("machdep.meltdown_mitigation enabled to "
1425 			"protect against (mostly Intel) meltdown bug\n");
1426 		kprintf("system call performance will be impacted\n");
1427 	}
1428 
1429 	pmap_init2_iso_pmap();
1430 }
1431 
1432 /*
1433  * Create the isolation pmap template.  Once created, the template
1434  * is static and its PML4e entries are used to populate the
1435  * kernel portion of any isolated user pmaps.
1436  *
1437  * Our isolation pmap must contain:
1438  * (1) trampoline area for all cpus
1439  * (2) common_tss area for all cpus (its part of the trampoline area now)
1440  * (3) IDT for all cpus
1441  * (4) GDT for all cpus
1442  */
1443 static void
1444 pmap_init2_iso_pmap(void)
1445 {
1446 	int n;
1447 
1448 	if (bootverbose)
1449 		kprintf("Initialize isolation pmap\n");
1450 
1451 	/*
1452 	 * Try to use our normal API calls to make this easier.  We have
1453 	 * to scrap the shadowed kernel PDPs pmap_pinit() creates for our
1454 	 * iso_pmap.
1455 	 */
1456 	pmap_pinit(&iso_pmap);
1457 	bzero(iso_pmap.pm_pml4, PAGE_SIZE);
1458 
1459 	/*
1460 	 * Install areas needed by the cpu and trampoline.
1461 	 */
1462 	for (n = 0; n < ncpus; ++n) {
1463 		struct privatespace *ps;
1464 
1465 		ps = CPU_prvspace[n];
1466 		pmap_init_iso_range((vm_offset_t)&ps->trampoline,
1467 				    sizeof(ps->trampoline));
1468 		pmap_init_iso_range((vm_offset_t)&ps->dblstack,
1469 				    sizeof(ps->dblstack));
1470 		pmap_init_iso_range((vm_offset_t)&ps->dbgstack,
1471 				    sizeof(ps->dbgstack));
1472 		pmap_init_iso_range((vm_offset_t)&ps->common_tss,
1473 				    sizeof(ps->common_tss));
1474 		pmap_init_iso_range(r_idt_arr[n].rd_base,
1475 				    r_idt_arr[n].rd_limit + 1);
1476 	}
1477 	pmap_init_iso_range((register_t)gdt, sizeof(gdt));
1478 	pmap_init_iso_range((vm_offset_t)(int *)btext,
1479 			    (vm_offset_t)(int *)etext -
1480 			     (vm_offset_t)(int *)btext);
1481 
1482 #if 0
1483 	kprintf("Dump iso_pmap:\n");
1484 	dump_pmap(&iso_pmap, vtophys(iso_pmap.pm_pml4), 0, 0);
1485 	kprintf("\nDump kernel_pmap:\n");
1486 	dump_pmap(&kernel_pmap, vtophys(kernel_pmap.pm_pml4), 0, 0);
1487 #endif
1488 }
1489 
1490 /*
1491  * This adds a kernel virtual address range to the isolation pmap.
1492  */
1493 static void
1494 pmap_init_iso_range(vm_offset_t base, size_t bytes)
1495 {
1496 	pv_entry_t pv;
1497 	pv_entry_t pvp;
1498 	pt_entry_t *ptep;
1499 	pt_entry_t pte;
1500 	vm_offset_t va;
1501 
1502 	if (bootverbose) {
1503 		kprintf("isolate %016jx-%016jx (%zd)\n",
1504 			base, base + bytes, bytes);
1505 	}
1506 	va = base & ~(vm_offset_t)PAGE_MASK;
1507 	while (va < base + bytes) {
1508 		if ((va & PDRMASK) == 0 && va + NBPDR <= base + bytes &&
1509 		    (ptep = pmap_pt(&kernel_pmap, va)) != NULL &&
1510 		    (*ptep & kernel_pmap.pmap_bits[PG_V_IDX]) &&
1511 		    (*ptep & kernel_pmap.pmap_bits[PG_PS_IDX])) {
1512 			/*
1513 			 * Use 2MB pages if possible
1514 			 */
1515 			pte = *ptep;
1516 			pv = pmap_allocpte(&iso_pmap, pmap_pd_pindex(va), &pvp);
1517 			ptep = pv_pte_lookup(pv, (va >> PDRSHIFT) & 511);
1518 			*ptep = pte;
1519 			va += NBPDR;
1520 		} else {
1521 			/*
1522 			 * Otherwise use 4KB pages
1523 			 */
1524 			pv = pmap_allocpte(&iso_pmap, pmap_pt_pindex(va), &pvp);
1525 			ptep = pv_pte_lookup(pv, (va >> PAGE_SHIFT) & 511);
1526 			*ptep = vtophys(va) | kernel_pmap.pmap_bits[PG_RW_IDX] |
1527 					      kernel_pmap.pmap_bits[PG_V_IDX] |
1528 					      kernel_pmap.pmap_bits[PG_A_IDX] |
1529 					      kernel_pmap.pmap_bits[PG_M_IDX];
1530 
1531 			va += PAGE_SIZE;
1532 		}
1533 		pv_put(pv);
1534 		pv_put(pvp);
1535 	}
1536 }
1537 
1538 #if 0
1539 /*
1540  * Useful debugging pmap dumper, do not remove (#if 0 when not in use)
1541  */
1542 static
1543 void
1544 dump_pmap(pmap_t pmap, pt_entry_t pte, int level, vm_offset_t base)
1545 {
1546 	pt_entry_t *ptp;
1547 	vm_offset_t incr;
1548 	int i;
1549 
1550 	switch(level) {
1551 	case 0:					/* PML4e page, 512G entries */
1552 		incr = (1LL << 48) / 512;
1553 		break;
1554 	case 1:					/* PDP page, 1G entries */
1555 		incr = (1LL << 39) / 512;
1556 		break;
1557 	case 2:					/* PD page, 2MB entries */
1558 		incr = (1LL << 30) / 512;
1559 		break;
1560 	case 3:					/* PT page, 4KB entries */
1561 		incr = (1LL << 21) / 512;
1562 		break;
1563 	default:
1564 		incr = 0;
1565 		break;
1566 	}
1567 
1568 	if (level == 0)
1569 		kprintf("cr3 %016jx @ va=%016jx\n", pte, base);
1570 	ptp = (void *)PHYS_TO_DMAP(pte & ~(pt_entry_t)PAGE_MASK);
1571 	for (i = 0; i < 512; ++i) {
1572 		if (level == 0 && i == 128)
1573 			base += 0xFFFF000000000000LLU;
1574 		if (ptp[i]) {
1575 			kprintf("%*.*s ", level * 4, level * 4, "");
1576 			if (level == 1 && (ptp[i] & 0x180) == 0x180) {
1577 				kprintf("va=%016jx %3d term %016jx (1GB)\n",
1578 					base, i, ptp[i]);
1579 			} else if (level == 2 && (ptp[i] & 0x180) == 0x180) {
1580 				kprintf("va=%016jx %3d term %016jx (2MB)\n",
1581 					base, i, ptp[i]);
1582 			} else if (level == 3) {
1583 				kprintf("va=%016jx %3d term %016jx\n",
1584 					base, i, ptp[i]);
1585 			} else {
1586 				kprintf("va=%016jx %3d deep %016jx\n",
1587 					base, i, ptp[i]);
1588 				dump_pmap(pmap, ptp[i], level + 1, base);
1589 			}
1590 		}
1591 		base += incr;
1592 	}
1593 }
1594 
1595 #endif
1596 
1597 /*
1598  * Typically used to initialize a fictitious page by vm/device_pager.c
1599  */
1600 void
1601 pmap_page_init(struct vm_page *m)
1602 {
1603 	vm_page_init(m);
1604 	m->md.pmap_count = 0;
1605 	m->md.writeable_count = 0;
1606 }
1607 
1608 /***************************************************
1609  * Low level helper routines.....
1610  ***************************************************/
1611 
1612 /*
1613  * Extract the physical page address associated with the map/VA pair.
1614  * The page must be wired for this to work reliably.
1615  */
1616 vm_paddr_t
1617 pmap_extract(pmap_t pmap, vm_offset_t va, void **handlep)
1618 {
1619 	vm_paddr_t rtval;
1620 	pv_entry_t pt_pv;
1621 	pt_entry_t *ptep;
1622 
1623 	rtval = 0;
1624 	if (va >= VM_MAX_USER_ADDRESS) {
1625 		/*
1626 		 * Kernel page directories might be direct-mapped and
1627 		 * there is typically no PV tracking of pte's
1628 		 */
1629 		pd_entry_t *pt;
1630 
1631 		pt = pmap_pt(pmap, va);
1632 		if (pt && (*pt & pmap->pmap_bits[PG_V_IDX])) {
1633 			if (*pt & pmap->pmap_bits[PG_PS_IDX]) {
1634 				rtval = *pt & PG_PS_FRAME;
1635 				rtval |= va & PDRMASK;
1636 			} else {
1637 				ptep = pmap_pt_to_pte(*pt, va);
1638 				if (*pt & pmap->pmap_bits[PG_V_IDX]) {
1639 					rtval = *ptep & PG_FRAME;
1640 					rtval |= va & PAGE_MASK;
1641 				}
1642 			}
1643 		}
1644 		if (handlep)
1645 			*handlep = NULL;
1646 	} else {
1647 		/*
1648 		 * User pages currently do not direct-map the page directory
1649 		 * and some pages might not used managed PVs.  But all PT's
1650 		 * will have a PV.
1651 		 */
1652 		pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
1653 		if (pt_pv) {
1654 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1655 			if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
1656 				rtval = *ptep & PG_FRAME;
1657 				rtval |= va & PAGE_MASK;
1658 			}
1659 			if (handlep)
1660 				*handlep = pt_pv;	/* locked until done */
1661 			else
1662 				pv_put (pt_pv);
1663 		} else if (handlep) {
1664 			*handlep = NULL;
1665 		}
1666 	}
1667 	return rtval;
1668 }
1669 
1670 void
1671 pmap_extract_done(void *handle)
1672 {
1673 	if (handle)
1674 		pv_put((pv_entry_t)handle);
1675 }
1676 
1677 /*
1678  * Similar to extract but checks protections, SMP-friendly short-cut for
1679  * vm_fault_page[_quick]().  Can return NULL to cause the caller to
1680  * fall-through to the real fault code.  Does not work with HVM page
1681  * tables.
1682  *
1683  * if busyp is NULL the returned page, if not NULL, is held (and not busied).
1684  *
1685  * If busyp is not NULL and this function sets *busyp non-zero, the returned
1686  * page is busied (and not held).
1687  *
1688  * If busyp is not NULL and this function sets *busyp to zero, the returned
1689  * page is held (and not busied).
1690  *
1691  * If VM_PROT_WRITE is set in prot, and the pte is already writable, the
1692  * returned page will be dirtied.  If the pte is not already writable NULL
1693  * is returned.  In otherwords, if the bit is set and a vm_page_t is returned,
1694  * any COW will already have happened and that page can be written by the
1695  * caller.
1696  *
1697  * WARNING! THE RETURNED PAGE IS ONLY HELD AND NOT SUITABLE FOR READING
1698  *	    OR WRITING AS-IS.
1699  */
1700 vm_page_t
1701 pmap_fault_page_quick(pmap_t pmap, vm_offset_t va, vm_prot_t prot, int *busyp)
1702 {
1703 	if (pmap &&
1704 	    va < VM_MAX_USER_ADDRESS &&
1705 	    (pmap->pm_flags & PMAP_HVM) == 0) {
1706 		pv_entry_t pt_pv;
1707 		pv_entry_t pte_pv;
1708 		pt_entry_t *ptep;
1709 		pt_entry_t req;
1710 		vm_page_t m;
1711 		int error;
1712 
1713 		req = pmap->pmap_bits[PG_V_IDX] |
1714 		      pmap->pmap_bits[PG_U_IDX];
1715 		if (prot & VM_PROT_WRITE)
1716 			req |= pmap->pmap_bits[PG_RW_IDX];
1717 
1718 		pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
1719 		if (pt_pv == NULL)
1720 			return (NULL);
1721 		ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1722 		if ((*ptep & req) != req) {
1723 			pv_put(pt_pv);
1724 			return (NULL);
1725 		}
1726 		pte_pv = pv_get_try(pmap, pmap_pte_pindex(va), NULL, &error);
1727 		if (pte_pv && error == 0) {
1728 			m = pte_pv->pv_m;
1729 			if (prot & VM_PROT_WRITE) {
1730 				/* interlocked by presence of pv_entry */
1731 				vm_page_dirty(m);
1732 			}
1733 			if (busyp) {
1734 				if (prot & VM_PROT_WRITE) {
1735 					if (vm_page_busy_try(m, TRUE))
1736 						m = NULL;
1737 					*busyp = 1;
1738 				} else {
1739 					vm_page_hold(m);
1740 					*busyp = 0;
1741 				}
1742 			} else {
1743 				vm_page_hold(m);
1744 			}
1745 			pv_put(pte_pv);
1746 		} else if (pte_pv) {
1747 			pv_drop(pte_pv);
1748 			m = NULL;
1749 		} else {
1750 			/* error, since we didn't request a placemarker */
1751 			m = NULL;
1752 		}
1753 		pv_put(pt_pv);
1754 		return(m);
1755 	} else {
1756 		return(NULL);
1757 	}
1758 }
1759 
1760 /*
1761  * Extract the physical page address associated kernel virtual address.
1762  */
1763 vm_paddr_t
1764 pmap_kextract(vm_offset_t va)
1765 {
1766 	pd_entry_t pt;		/* pt entry in pd */
1767 	vm_paddr_t pa;
1768 
1769 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
1770 		pa = DMAP_TO_PHYS(va);
1771 	} else {
1772 		pt = *vtopt(va);
1773 		if (pt & kernel_pmap.pmap_bits[PG_PS_IDX]) {
1774 			pa = (pt & PG_PS_FRAME) | (va & PDRMASK);
1775 		} else {
1776 			/*
1777 			 * Beware of a concurrent promotion that changes the
1778 			 * PDE at this point!  For example, vtopte() must not
1779 			 * be used to access the PTE because it would use the
1780 			 * new PDE.  It is, however, safe to use the old PDE
1781 			 * because the page table page is preserved by the
1782 			 * promotion.
1783 			 */
1784 			pa = *pmap_pt_to_pte(pt, va);
1785 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
1786 		}
1787 	}
1788 	return pa;
1789 }
1790 
1791 /***************************************************
1792  * Low level mapping routines.....
1793  ***************************************************/
1794 
1795 /*
1796  * Routine: pmap_kenter
1797  * Function:
1798  *  	Add a wired page to the KVA
1799  *  	NOTE! note that in order for the mapping to take effect -- you
1800  *  	should do an invltlb after doing the pmap_kenter().
1801  */
1802 void
1803 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1804 {
1805 	pt_entry_t *ptep;
1806 	pt_entry_t npte;
1807 
1808 	npte = pa |
1809 	       kernel_pmap.pmap_bits[PG_RW_IDX] |
1810 	       kernel_pmap.pmap_bits[PG_V_IDX];
1811 //	       pgeflag;
1812 	ptep = vtopte(va);
1813 #if 1
1814 	pmap_inval_smp(&kernel_pmap, va, 1, ptep, npte);
1815 #else
1816 	/* FUTURE */
1817 	if (*ptep)
1818 		pmap_inval_smp(&kernel_pmap, va, ptep, npte);
1819 	else
1820 		*ptep = npte;
1821 #endif
1822 }
1823 
1824 /*
1825  * Similar to pmap_kenter(), except we only invalidate the mapping on the
1826  * current CPU.  Returns 0 if the previous pte was 0, 1 if it wasn't
1827  * (caller can conditionalize calling smp_invltlb()).
1828  */
1829 int
1830 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
1831 {
1832 	pt_entry_t *ptep;
1833 	pt_entry_t npte;
1834 	int res;
1835 
1836 	npte = pa | kernel_pmap.pmap_bits[PG_RW_IDX] |
1837 		    kernel_pmap.pmap_bits[PG_V_IDX];
1838 	// npte |= pgeflag;
1839 	ptep = vtopte(va);
1840 #if 1
1841 	res = 1;
1842 #else
1843 	/* FUTURE */
1844 	res = (*ptep != 0);
1845 #endif
1846 	atomic_swap_long(ptep, npte);
1847 	cpu_invlpg((void *)va);
1848 
1849 	return res;
1850 }
1851 
1852 /*
1853  * Enter addresses into the kernel pmap but don't bother
1854  * doing any tlb invalidations.  Caller will do a rollup
1855  * invalidation via pmap_rollup_inval().
1856  */
1857 int
1858 pmap_kenter_noinval(vm_offset_t va, vm_paddr_t pa)
1859 {
1860 	pt_entry_t *ptep;
1861 	pt_entry_t npte;
1862 	int res;
1863 
1864 	npte = pa |
1865 	    kernel_pmap.pmap_bits[PG_RW_IDX] |
1866 	    kernel_pmap.pmap_bits[PG_V_IDX];
1867 //	    pgeflag;
1868 	ptep = vtopte(va);
1869 #if 1
1870 	res = 1;
1871 #else
1872 	/* FUTURE */
1873 	res = (*ptep != 0);
1874 #endif
1875 	atomic_swap_long(ptep, npte);
1876 	cpu_invlpg((void *)va);
1877 
1878 	return res;
1879 }
1880 
1881 /*
1882  * remove a page from the kernel pagetables
1883  */
1884 void
1885 pmap_kremove(vm_offset_t va)
1886 {
1887 	pt_entry_t *ptep;
1888 
1889 	ptep = vtopte(va);
1890 	pmap_inval_smp(&kernel_pmap, va, 1, ptep, 0);
1891 }
1892 
1893 void
1894 pmap_kremove_quick(vm_offset_t va)
1895 {
1896 	pt_entry_t *ptep;
1897 
1898 	ptep = vtopte(va);
1899 	(void)pte_load_clear(ptep);
1900 	cpu_invlpg((void *)va);
1901 }
1902 
1903 /*
1904  * Remove addresses from the kernel pmap but don't bother
1905  * doing any tlb invalidations.  Caller will do a rollup
1906  * invalidation via pmap_rollup_inval().
1907  */
1908 void
1909 pmap_kremove_noinval(vm_offset_t va)
1910 {
1911 	pt_entry_t *ptep;
1912 
1913 	ptep = vtopte(va);
1914 	(void)pte_load_clear(ptep);
1915 }
1916 
1917 /*
1918  * XXX these need to be recoded.  They are not used in any critical path.
1919  */
1920 void
1921 pmap_kmodify_rw(vm_offset_t va)
1922 {
1923 	atomic_set_long(vtopte(va), kernel_pmap.pmap_bits[PG_RW_IDX]);
1924 	cpu_invlpg((void *)va);
1925 }
1926 
1927 /* NOT USED
1928 void
1929 pmap_kmodify_nc(vm_offset_t va)
1930 {
1931 	atomic_set_long(vtopte(va), PG_N);
1932 	cpu_invlpg((void *)va);
1933 }
1934 */
1935 
1936 /*
1937  * Used to map a range of physical addresses into kernel virtual
1938  * address space during the low level boot, typically to map the
1939  * dump bitmap, message buffer, and vm_page_array.
1940  *
1941  * These mappings are typically made at some pointer after the end of the
1942  * kernel text+data.
1943  *
1944  * We could return PHYS_TO_DMAP(start) here and not allocate any
1945  * via (*virtp), but then kmem from userland and kernel dumps won't
1946  * have access to the related pointers.
1947  */
1948 vm_offset_t
1949 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
1950 {
1951 	vm_offset_t va;
1952 	vm_offset_t va_start;
1953 
1954 	/*return PHYS_TO_DMAP(start);*/
1955 
1956 	va_start = *virtp;
1957 	va = va_start;
1958 
1959 	while (start < end) {
1960 		pmap_kenter_quick(va, start);
1961 		va += PAGE_SIZE;
1962 		start += PAGE_SIZE;
1963 	}
1964 	*virtp = va;
1965 	return va_start;
1966 }
1967 
1968 #define PMAP_CLFLUSH_THRESHOLD  (2 * 1024 * 1024)
1969 
1970 /*
1971  * Remove the specified set of pages from the data and instruction caches.
1972  *
1973  * In contrast to pmap_invalidate_cache_range(), this function does not
1974  * rely on the CPU's self-snoop feature, because it is intended for use
1975  * when moving pages into a different cache domain.
1976  */
1977 void
1978 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
1979 {
1980 	vm_offset_t daddr, eva;
1981 	int i;
1982 
1983 	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
1984 	    (cpu_feature & CPUID_CLFSH) == 0)
1985 		wbinvd();
1986 	else {
1987 		cpu_mfence();
1988 		for (i = 0; i < count; i++) {
1989 			daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
1990 			eva = daddr + PAGE_SIZE;
1991 			for (; daddr < eva; daddr += cpu_clflush_line_size)
1992 				clflush(daddr);
1993 		}
1994 		cpu_mfence();
1995 	}
1996 }
1997 
1998 void
1999 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
2000 {
2001 	KASSERT((sva & PAGE_MASK) == 0,
2002 	    ("pmap_invalidate_cache_range: sva not page-aligned"));
2003 	KASSERT((eva & PAGE_MASK) == 0,
2004 	    ("pmap_invalidate_cache_range: eva not page-aligned"));
2005 
2006 	if (cpu_feature & CPUID_SS) {
2007 		; /* If "Self Snoop" is supported, do nothing. */
2008 	} else {
2009 		/* Globally invalidate caches */
2010 		cpu_wbinvd_on_all_cpus();
2011 	}
2012 }
2013 
2014 /*
2015  * Invalidate the specified range of virtual memory on all cpus associated
2016  * with the pmap.
2017  */
2018 void
2019 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2020 {
2021 	pmap_inval_smp(pmap, sva, (eva - sva) >> PAGE_SHIFT, NULL, 0);
2022 }
2023 
2024 /*
2025  * Add a list of wired pages to the kva.  This routine is used for temporary
2026  * kernel mappings such as those found in buffer cache buffer.  Page
2027  * modifications and accesses are not tracked or recorded.
2028  *
2029  * NOTE! Old mappings are simply overwritten, and we cannot assume relaxed
2030  *	 semantics as previous mappings may have been zerod without any
2031  *	 invalidation.
2032  *
2033  * The page *must* be wired.
2034  */
2035 static __inline void
2036 _pmap_qenter(vm_offset_t beg_va, vm_page_t *m, int count, int doinval)
2037 {
2038 	vm_offset_t end_va;
2039 	vm_offset_t va;
2040 
2041 	end_va = beg_va + count * PAGE_SIZE;
2042 
2043 	for (va = beg_va; va < end_va; va += PAGE_SIZE) {
2044 		pt_entry_t pte;
2045 		pt_entry_t *ptep;
2046 
2047 		ptep = vtopte(va);
2048 		pte = VM_PAGE_TO_PHYS(*m) |
2049 			kernel_pmap.pmap_bits[PG_RW_IDX] |
2050 			kernel_pmap.pmap_bits[PG_V_IDX] |
2051 			kernel_pmap.pmap_cache_bits[(*m)->pat_mode];
2052 //		pgeflag;
2053 		atomic_swap_long(ptep, pte);
2054 		m++;
2055 	}
2056 	if (doinval)
2057 		pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
2058 }
2059 
2060 void
2061 pmap_qenter(vm_offset_t beg_va, vm_page_t *m, int count)
2062 {
2063 	_pmap_qenter(beg_va, m, count, 1);
2064 }
2065 
2066 void
2067 pmap_qenter_noinval(vm_offset_t beg_va, vm_page_t *m, int count)
2068 {
2069 	_pmap_qenter(beg_va, m, count, 0);
2070 }
2071 
2072 /*
2073  * This routine jerks page mappings from the kernel -- it is meant only
2074  * for temporary mappings such as those found in buffer cache buffers.
2075  * No recording modified or access status occurs.
2076  *
2077  * MPSAFE, INTERRUPT SAFE (cluster callback)
2078  */
2079 void
2080 pmap_qremove(vm_offset_t beg_va, int count)
2081 {
2082 	vm_offset_t end_va;
2083 	vm_offset_t va;
2084 
2085 	end_va = beg_va + count * PAGE_SIZE;
2086 
2087 	for (va = beg_va; va < end_va; va += PAGE_SIZE) {
2088 		pt_entry_t *pte;
2089 
2090 		pte = vtopte(va);
2091 		(void)pte_load_clear(pte);
2092 		cpu_invlpg((void *)va);
2093 	}
2094 	pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
2095 }
2096 
2097 /*
2098  * This routine removes temporary kernel mappings, only invalidating them
2099  * on the current cpu.  It should only be used under carefully controlled
2100  * conditions.
2101  */
2102 void
2103 pmap_qremove_quick(vm_offset_t beg_va, int count)
2104 {
2105 	vm_offset_t end_va;
2106 	vm_offset_t va;
2107 
2108 	end_va = beg_va + count * PAGE_SIZE;
2109 
2110 	for (va = beg_va; va < end_va; va += PAGE_SIZE) {
2111 		pt_entry_t *pte;
2112 
2113 		pte = vtopte(va);
2114 		(void)pte_load_clear(pte);
2115 		cpu_invlpg((void *)va);
2116 	}
2117 }
2118 
2119 /*
2120  * This routine removes temporary kernel mappings *without* invalidating
2121  * the TLB.  It can only be used on permanent kva reservations such as those
2122  * found in buffer cache buffers, under carefully controlled circumstances.
2123  *
2124  * NOTE: Repopulating these KVAs requires unconditional invalidation.
2125  *	 (pmap_qenter() does unconditional invalidation).
2126  */
2127 void
2128 pmap_qremove_noinval(vm_offset_t beg_va, int count)
2129 {
2130 	vm_offset_t end_va;
2131 	vm_offset_t va;
2132 
2133 	end_va = beg_va + count * PAGE_SIZE;
2134 
2135 	for (va = beg_va; va < end_va; va += PAGE_SIZE) {
2136 		pt_entry_t *pte;
2137 
2138 		pte = vtopte(va);
2139 		(void)pte_load_clear(pte);
2140 	}
2141 }
2142 
2143 /*
2144  * Create a new thread and optionally associate it with a (new) process.
2145  * NOTE! the new thread's cpu may not equal the current cpu.
2146  */
2147 void
2148 pmap_init_thread(thread_t td)
2149 {
2150 	/* enforce pcb placement & alignment */
2151 	td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
2152 	td->td_pcb = (struct pcb *)((intptr_t)td->td_pcb & ~(intptr_t)0xF);
2153 	td->td_savefpu = &td->td_pcb->pcb_save;
2154 	td->td_sp = (char *)td->td_pcb;	/* no -16 */
2155 }
2156 
2157 /*
2158  * This routine directly affects the fork perf for a process.
2159  */
2160 void
2161 pmap_init_proc(struct proc *p)
2162 {
2163 }
2164 
2165 static void
2166 pmap_pinit_defaults(struct pmap *pmap)
2167 {
2168 	bcopy(pmap_bits_default, pmap->pmap_bits,
2169 	      sizeof(pmap_bits_default));
2170 	bcopy(protection_codes, pmap->protection_codes,
2171 	      sizeof(protection_codes));
2172 	bcopy(pat_pte_index, pmap->pmap_cache_bits,
2173 	      sizeof(pat_pte_index));
2174 	pmap->pmap_cache_mask = X86_PG_NC_PWT | X86_PG_NC_PCD | X86_PG_PTE_PAT;
2175 	pmap->copyinstr = std_copyinstr;
2176 	pmap->copyin = std_copyin;
2177 	pmap->copyout = std_copyout;
2178 	pmap->fubyte = std_fubyte;
2179 	pmap->subyte = std_subyte;
2180 	pmap->fuword32 = std_fuword32;
2181 	pmap->fuword64 = std_fuword64;
2182 	pmap->suword32 = std_suword32;
2183 	pmap->suword64 = std_suword64;
2184 	pmap->swapu32 = std_swapu32;
2185 	pmap->swapu64 = std_swapu64;
2186 	pmap->fuwordadd32 = std_fuwordadd32;
2187 	pmap->fuwordadd64 = std_fuwordadd64;
2188 }
2189 /*
2190  * Initialize pmap0/vmspace0.
2191  *
2192  * On architectures where the kernel pmap is not integrated into the user
2193  * process pmap, this pmap represents the process pmap, not the kernel pmap.
2194  * kernel_pmap should be used to directly access the kernel_pmap.
2195  */
2196 void
2197 pmap_pinit0(struct pmap *pmap)
2198 {
2199 	int i;
2200 
2201 	pmap->pm_pml4 = (pml4_entry_t *)(PTOV_OFFSET + KPML4phys);
2202 	pmap->pm_count = 1;
2203 	CPUMASK_ASSZERO(pmap->pm_active);
2204 	pmap->pm_pvhint_pt = NULL;
2205 	pmap->pm_pvhint_unused = NULL;
2206 	RB_INIT(&pmap->pm_pvroot);
2207 	spin_init(&pmap->pm_spin, "pmapinit0");
2208 	for (i = 0; i < PM_PLACEMARKS; ++i)
2209 		pmap->pm_placemarks[i] = PM_NOPLACEMARK;
2210 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2211 	pmap_pinit_defaults(pmap);
2212 }
2213 
2214 /*
2215  * Initialize a preallocated and zeroed pmap structure,
2216  * such as one in a vmspace structure.
2217  */
2218 static void
2219 pmap_pinit_simple(struct pmap *pmap)
2220 {
2221 	int i;
2222 
2223 	/*
2224 	 * Misc initialization
2225 	 */
2226 	pmap->pm_count = 1;
2227 	CPUMASK_ASSZERO(pmap->pm_active);
2228 	pmap->pm_pvhint_pt = NULL;
2229 	pmap->pm_pvhint_unused = NULL;
2230 	pmap->pm_flags = PMAP_FLAG_SIMPLE;
2231 
2232 	pmap_pinit_defaults(pmap);
2233 
2234 	/*
2235 	 * Don't blow up locks/tokens on re-use (XXX fix/use drop code
2236 	 * for this).
2237 	 */
2238 	if (pmap->pm_pmlpv == NULL) {
2239 		RB_INIT(&pmap->pm_pvroot);
2240 		bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2241 		spin_init(&pmap->pm_spin, "pmapinitsimple");
2242 		for (i = 0; i < PM_PLACEMARKS; ++i)
2243 			pmap->pm_placemarks[i] = PM_NOPLACEMARK;
2244 	}
2245 }
2246 
2247 void
2248 pmap_pinit(struct pmap *pmap)
2249 {
2250 	pv_entry_t pv;
2251 	int j;
2252 
2253 	if (pmap->pm_pmlpv) {
2254 		if (pmap->pmap_bits[TYPE_IDX] != REGULAR_PMAP) {
2255 			pmap_puninit(pmap);
2256 		}
2257 	}
2258 
2259 	pmap_pinit_simple(pmap);
2260 	pmap->pm_flags &= ~PMAP_FLAG_SIMPLE;
2261 
2262 	/*
2263 	 * No need to allocate page table space yet but we do need a valid
2264 	 * page directory table.
2265 	 */
2266 	if (pmap->pm_pml4 == NULL) {
2267 		pmap->pm_pml4 =
2268 		    (pml4_entry_t *)kmem_alloc_pageable(&kernel_map,
2269 							PAGE_SIZE * 2,
2270 							VM_SUBSYS_PML4);
2271 		pmap->pm_pml4_iso = (void *)((char *)pmap->pm_pml4 + PAGE_SIZE);
2272 	}
2273 
2274 	/*
2275 	 * Allocate the PML4e table, which wires it even though it isn't
2276 	 * being entered into some higher level page table (it being the
2277 	 * highest level).  If one is already cached we don't have to do
2278 	 * anything.
2279 	 */
2280 	if ((pv = pmap->pm_pmlpv) == NULL) {
2281 		pv = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
2282 		pmap->pm_pmlpv = pv;
2283 		pmap_kenter((vm_offset_t)pmap->pm_pml4,
2284 			    VM_PAGE_TO_PHYS(pv->pv_m));
2285 		pv_put(pv);
2286 
2287 		/*
2288 		 * Install DMAP and KMAP.
2289 		 */
2290 		for (j = 0; j < NDMPML4E; ++j) {
2291 			pmap->pm_pml4[DMPML4I + j] =
2292 			    (DMPDPphys + ((vm_paddr_t)j << PAGE_SHIFT)) |
2293 			    pmap->pmap_bits[PG_RW_IDX] |
2294 			    pmap->pmap_bits[PG_V_IDX] |
2295 			    pmap->pmap_bits[PG_A_IDX];
2296 		}
2297 		for (j = 0; j < NKPML4E; ++j) {
2298 			pmap->pm_pml4[KPML4I + j] =
2299 			    (KPDPphys + ((vm_paddr_t)j << PAGE_SHIFT)) |
2300 			    pmap->pmap_bits[PG_RW_IDX] |
2301 			    pmap->pmap_bits[PG_V_IDX] |
2302 			    pmap->pmap_bits[PG_A_IDX];
2303 		}
2304 
2305 		/*
2306 		 * install self-referential address mapping entry
2307 		 */
2308 		pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pv->pv_m) |
2309 		    pmap->pmap_bits[PG_V_IDX] |
2310 		    pmap->pmap_bits[PG_RW_IDX] |
2311 		    pmap->pmap_bits[PG_A_IDX];
2312 	} else {
2313 		KKASSERT(pv->pv_m->flags & PG_MAPPED);
2314 		KKASSERT(pv->pv_m->flags & PG_WRITEABLE);
2315 	}
2316 	KKASSERT(pmap->pm_pml4[255] == 0);
2317 
2318 	/*
2319 	 * When implementing an isolated userland pmap, a second PML4e table
2320 	 * is needed.  We use pmap_pml4_pindex() + 1 for convenience, but
2321 	 * note that we do not operate on this table using our API functions
2322 	 * so handling of the + 1 case is mostly just to prevent implosions.
2323 	 *
2324 	 * We install an isolated version of the kernel PDPs into this
2325 	 * second PML4e table.  The pmap code will mirror all user PDPs
2326 	 * between the primary and secondary PML4e table.
2327 	 */
2328 	if ((pv = pmap->pm_pmlpv_iso) == NULL && meltdown_mitigation &&
2329 	    pmap != &iso_pmap) {
2330 		pv = pmap_allocpte(pmap, pmap_pml4_pindex() + 1, NULL);
2331 		pmap->pm_pmlpv_iso = pv;
2332 		pmap_kenter((vm_offset_t)pmap->pm_pml4_iso,
2333 			    VM_PAGE_TO_PHYS(pv->pv_m));
2334 		pv_put(pv);
2335 
2336 		/*
2337 		 * Install an isolated version of the kernel pmap for
2338 		 * user consumption, using PDPs constructed in iso_pmap.
2339 		 */
2340 		for (j = 0; j < NKPML4E; ++j) {
2341 			pmap->pm_pml4_iso[KPML4I + j] =
2342 				iso_pmap.pm_pml4[KPML4I + j];
2343 		}
2344 	} else if (pv) {
2345 		KKASSERT(pv->pv_m->flags & PG_MAPPED);
2346 		KKASSERT(pv->pv_m->flags & PG_WRITEABLE);
2347 	}
2348 }
2349 
2350 /*
2351  * Clean up a pmap structure so it can be physically freed.  This routine
2352  * is called by the vmspace dtor function.  A great deal of pmap data is
2353  * left passively mapped to improve vmspace management so we have a bit
2354  * of cleanup work to do here.
2355  */
2356 void
2357 pmap_puninit(pmap_t pmap)
2358 {
2359 	pv_entry_t pv;
2360 	vm_page_t p;
2361 
2362 	KKASSERT(CPUMASK_TESTZERO(pmap->pm_active));
2363 	if ((pv = pmap->pm_pmlpv) != NULL) {
2364 		if (pv_hold_try(pv) == 0)
2365 			pv_lock(pv);
2366 		KKASSERT(pv == pmap->pm_pmlpv);
2367 		p = pmap_remove_pv_page(pv);
2368 		pv_free(pv, NULL);
2369 		pv = NULL;	/* safety */
2370 		pmap_kremove((vm_offset_t)pmap->pm_pml4);
2371 		vm_page_busy_wait(p, FALSE, "pgpun");
2372 		KKASSERT(p->flags & PG_UNQUEUED);
2373 		vm_page_unwire(p, 0);
2374 		vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
2375 		vm_page_free(p);
2376 		pmap->pm_pmlpv = NULL;
2377 	}
2378 	if ((pv = pmap->pm_pmlpv_iso) != NULL) {
2379 		if (pv_hold_try(pv) == 0)
2380 			pv_lock(pv);
2381 		KKASSERT(pv == pmap->pm_pmlpv_iso);
2382 		p = pmap_remove_pv_page(pv);
2383 		pv_free(pv, NULL);
2384 		pv = NULL;	/* safety */
2385 		pmap_kremove((vm_offset_t)pmap->pm_pml4_iso);
2386 		vm_page_busy_wait(p, FALSE, "pgpun");
2387 		KKASSERT(p->flags & PG_UNQUEUED);
2388 		vm_page_unwire(p, 0);
2389 		vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
2390 		vm_page_free(p);
2391 		pmap->pm_pmlpv_iso = NULL;
2392 	}
2393 	if (pmap->pm_pml4) {
2394 		KKASSERT(pmap->pm_pml4 != (void *)(PTOV_OFFSET + KPML4phys));
2395 		kmem_free(&kernel_map,
2396 			  (vm_offset_t)pmap->pm_pml4, PAGE_SIZE * 2);
2397 		pmap->pm_pml4 = NULL;
2398 		pmap->pm_pml4_iso = NULL;
2399 	}
2400 	KKASSERT(pmap->pm_stats.resident_count == 0);
2401 	KKASSERT(pmap->pm_stats.wired_count == 0);
2402 }
2403 
2404 /*
2405  * This function is now unused (used to add the pmap to the pmap_list)
2406  */
2407 void
2408 pmap_pinit2(struct pmap *pmap)
2409 {
2410 }
2411 
2412 /*
2413  * This routine is called when various levels in the page table need to
2414  * be populated.  This routine cannot fail.
2415  *
2416  * This function returns two locked pv_entry's, one representing the
2417  * requested pv and one representing the requested pv's parent pv.  If
2418  * an intermediate page table does not exist it will be created, mapped,
2419  * wired, and the parent page table will be given an additional hold
2420  * count representing the presence of the child pv_entry.
2421  */
2422 static
2423 pv_entry_t
2424 pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp)
2425 {
2426 	pt_entry_t *ptep;
2427 	pt_entry_t *ptep_iso;
2428 	pv_entry_t pv;
2429 	pv_entry_t pvp;
2430 	pt_entry_t v;
2431 	vm_page_t m;
2432 	int isnew;
2433 	int ispt;
2434 
2435 	/*
2436 	 * If the pv already exists and we aren't being asked for the
2437 	 * parent page table page we can just return it.  A locked+held pv
2438 	 * is returned.  The pv will also have a second hold related to the
2439 	 * pmap association that we don't have to worry about.
2440 	 */
2441 	ispt = 0;
2442 	pv = pv_alloc(pmap, ptepindex, &isnew);
2443 	if (isnew == 0 && pvpp == NULL)
2444 		return(pv);
2445 
2446 	/*
2447 	 * DragonFly doesn't use PV's to represent terminal PTEs any more.
2448 	 * The index range is still used for placemarkers, but not for
2449 	 * actual pv_entry's.
2450 	 */
2451 	KKASSERT(ptepindex >= pmap_pt_pindex(0));
2452 
2453 	/*
2454 	 * Note that pt_pv's are only returned for user VAs. We assert that
2455 	 * a pt_pv is not being requested for kernel VAs.  The kernel
2456 	 * pre-wires all higher-level page tables so don't overload managed
2457 	 * higher-level page tables on top of it!
2458 	 *
2459 	 * However, its convenient for us to allow the case when creating
2460 	 * iso_pmap.  This is a bit of a hack but it simplifies iso_pmap
2461 	 * a lot.
2462 	 */
2463 
2464 	/*
2465 	 * The kernel never uses managed PT/PD/PDP pages.
2466 	 */
2467 	KKASSERT(pmap != &kernel_pmap);
2468 
2469 	/*
2470 	 * Non-terminal PVs allocate a VM page to represent the page table,
2471 	 * so we have to resolve pvp and calculate ptepindex for the pvp
2472 	 * and then for the page table entry index in the pvp for
2473 	 * fall-through.
2474 	 */
2475 	if (ptepindex < pmap_pd_pindex(0)) {
2476 		/*
2477 		 * pv is PT, pvp is PD
2478 		 */
2479 		ptepindex = (ptepindex - pmap_pt_pindex(0)) >> NPDEPGSHIFT;
2480 		ptepindex += NUPTE_TOTAL + NUPT_TOTAL;
2481 		pvp = pmap_allocpte(pmap, ptepindex, NULL);
2482 
2483 		/*
2484 		 * PT index in PD
2485 		 */
2486 		ptepindex = pv->pv_pindex - pmap_pt_pindex(0);
2487 		ptepindex &= ((1ul << NPDEPGSHIFT) - 1);
2488 		ispt = 1;
2489 	} else if (ptepindex < pmap_pdp_pindex(0)) {
2490 		/*
2491 		 * pv is PD, pvp is PDP
2492 		 *
2493 		 * SIMPLE PMAP NOTE: Simple pmaps do not allocate above
2494 		 *		     the PD.
2495 		 */
2496 		ptepindex = (ptepindex - pmap_pd_pindex(0)) >> NPDPEPGSHIFT;
2497 		ptepindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
2498 
2499 		if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
2500 			KKASSERT(pvpp == NULL);
2501 			pvp = NULL;
2502 		} else {
2503 			pvp = pmap_allocpte(pmap, ptepindex, NULL);
2504 		}
2505 
2506 		/*
2507 		 * PD index in PDP
2508 		 */
2509 		ptepindex = pv->pv_pindex - pmap_pd_pindex(0);
2510 		ptepindex &= ((1ul << NPDPEPGSHIFT) - 1);
2511 	} else if (ptepindex < pmap_pml4_pindex()) {
2512 		/*
2513 		 * pv is PDP, pvp is the root pml4 table
2514 		 */
2515 		pvp = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
2516 
2517 		/*
2518 		 * PDP index in PML4
2519 		 */
2520 		ptepindex = pv->pv_pindex - pmap_pdp_pindex(0);
2521 		ptepindex &= ((1ul << NPML4EPGSHIFT) - 1);
2522 	} else {
2523 		/*
2524 		 * pv represents the top-level PML4, there is no parent.
2525 		 */
2526 		pvp = NULL;
2527 	}
2528 
2529 	if (isnew == 0)
2530 		goto notnew;
2531 
2532 	/*
2533 	 * (isnew) is TRUE, pv is not terminal.
2534 	 *
2535 	 * (1) Add a wire count to the parent page table (pvp).
2536 	 * (2) Allocate a VM page for the page table.
2537 	 * (3) Enter the VM page into the parent page table.
2538 	 *
2539 	 * page table pages are marked PG_WRITEABLE and PG_MAPPED.
2540 	 */
2541 	if (pvp)
2542 		vm_page_wire_quick(pvp->pv_m);
2543 
2544 	for (;;) {
2545 		m = vm_page_alloc(NULL, pv->pv_pindex,
2546 				  VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
2547 				  VM_ALLOC_INTERRUPT);
2548 		if (m)
2549 			break;
2550 		vm_wait(0);
2551 	}
2552 	vm_page_wire(m);	/* wire for mapping in parent */
2553 	pmap_zero_page(VM_PAGE_TO_PHYS(m));
2554 	m->valid = VM_PAGE_BITS_ALL;
2555 	vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_UNQUEUED);
2556 	KKASSERT(m->queue == PQ_NONE);
2557 
2558 	pv->pv_m = m;
2559 
2560 	/*
2561 	 * (isnew) is TRUE, pv is not terminal.
2562 	 *
2563 	 * Wire the page into pvp.  Bump the resident_count for the pmap.
2564 	 * There is no pvp for the top level, address the pm_pml4[] array
2565 	 * directly.
2566 	 *
2567 	 * If the caller wants the parent we return it, otherwise
2568 	 * we just put it away.
2569 	 *
2570 	 * No interlock is needed for pte 0 -> non-zero.
2571 	 *
2572 	 * In the situation where *ptep is valid we might have an unmanaged
2573 	 * page table page shared from another page table which we need to
2574 	 * unshare before installing our private page table page.
2575 	 */
2576 	if (pvp) {
2577 		v = VM_PAGE_TO_PHYS(m) |
2578 		    (pmap->pmap_bits[PG_RW_IDX] |
2579 		     pmap->pmap_bits[PG_V_IDX] |
2580 		     pmap->pmap_bits[PG_A_IDX]);
2581 		if (ptepindex < NUPTE_USER)
2582 			v |= pmap->pmap_bits[PG_U_IDX];
2583 		if (ptepindex < pmap_pt_pindex(0))
2584 			v |= pmap->pmap_bits[PG_M_IDX];
2585 
2586 		ptep = pv_pte_lookup(pvp, ptepindex);
2587 		if (pvp == pmap->pm_pmlpv && pmap->pm_pmlpv_iso)
2588 			ptep_iso = pv_pte_lookup(pmap->pm_pmlpv_iso, ptepindex);
2589 		else
2590 			ptep_iso  = NULL;
2591 		if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
2592 			panic("pmap_allocpte: ptpte present without pv_entry!");
2593 		} else {
2594 			pt_entry_t pte;
2595 
2596 			pte = atomic_swap_long(ptep, v);
2597 			if (ptep_iso)
2598 				atomic_swap_long(ptep_iso, v);
2599 			if (pte != 0) {
2600 				kprintf("install pgtbl mixup 0x%016jx "
2601 					"old/new 0x%016jx/0x%016jx\n",
2602 					(intmax_t)ptepindex, pte, v);
2603 			}
2604 		}
2605 	}
2606 	vm_page_wakeup(m);
2607 
2608 	/*
2609 	 * (isnew) may be TRUE or FALSE, pv may or may not be terminal.
2610 	 */
2611 notnew:
2612 	if (pvp) {
2613 		KKASSERT(pvp->pv_m != NULL);
2614 		ptep = pv_pte_lookup(pvp, ptepindex);
2615 		v = VM_PAGE_TO_PHYS(pv->pv_m) |
2616 		    (pmap->pmap_bits[PG_RW_IDX] |
2617 		     pmap->pmap_bits[PG_V_IDX] |
2618 		     pmap->pmap_bits[PG_A_IDX]);
2619 		if (ptepindex < NUPTE_USER)
2620 			v |= pmap->pmap_bits[PG_U_IDX];
2621 		if (ptepindex < pmap_pt_pindex(0))
2622 			v |= pmap->pmap_bits[PG_M_IDX];
2623 		if (*ptep != v) {
2624 			kprintf("mismatched upper level pt %016jx/%016jx\n",
2625 				*ptep, v);
2626 		}
2627 	}
2628 	if (pvpp)
2629 		*pvpp = pvp;
2630 	else if (pvp)
2631 		pv_put(pvp);
2632 	return (pv);
2633 }
2634 
2635 /*
2636  * Release any resources held by the given physical map.
2637  *
2638  * Called when a pmap initialized by pmap_pinit is being released.  Should
2639  * only be called if the map contains no valid mappings.
2640  */
2641 struct pmap_release_info {
2642 	pmap_t	pmap;
2643 	int	retry;
2644 	pv_entry_t pvp;
2645 };
2646 
2647 static int pmap_release_callback(pv_entry_t pv, void *data);
2648 
2649 void
2650 pmap_release(struct pmap *pmap)
2651 {
2652 	struct pmap_release_info info;
2653 
2654 	KASSERT(CPUMASK_TESTZERO(pmap->pm_active),
2655 		("pmap still active! %016jx",
2656 		(uintmax_t)CPUMASK_LOWMASK(pmap->pm_active)));
2657 
2658 	/*
2659 	 * There is no longer a pmap_list, if there were we would remove the
2660 	 * pmap from it here.
2661 	 */
2662 
2663 	/*
2664 	 * Pull pv's off the RB tree in order from low to high and release
2665 	 * each page.
2666 	 */
2667 	info.pmap = pmap;
2668 	do {
2669 		info.retry = 0;
2670 		info.pvp = NULL;
2671 
2672 		spin_lock(&pmap->pm_spin);
2673 		RB_SCAN(pv_entry_rb_tree, &pmap->pm_pvroot, NULL,
2674 			pmap_release_callback, &info);
2675 		spin_unlock(&pmap->pm_spin);
2676 
2677 		if (info.pvp)
2678 			pv_put(info.pvp);
2679 	} while (info.retry);
2680 
2681 
2682 	/*
2683 	 * One resident page (the pml4 page) should remain.  Two if
2684 	 * the pmap has implemented an isolated userland PML4E table.
2685 	 * No wired pages should remain.
2686 	 */
2687 	int expected_res = 0;
2688 
2689 	if ((pmap->pm_flags & PMAP_FLAG_SIMPLE) == 0)
2690 		++expected_res;
2691 	if (pmap->pm_pmlpv_iso)
2692 		++expected_res;
2693 
2694 #if 1
2695 	if (pmap->pm_stats.resident_count != expected_res ||
2696 	    pmap->pm_stats.wired_count != 0) {
2697 		kprintf("fatal pmap problem - pmap %p flags %08x "
2698 			"rescnt=%jd wirecnt=%jd\n",
2699 			pmap,
2700 			pmap->pm_flags,
2701 			pmap->pm_stats.resident_count,
2702 			pmap->pm_stats.wired_count);
2703 		tsleep(pmap, 0, "DEAD", 0);
2704 	}
2705 #else
2706 	KKASSERT(pmap->pm_stats.resident_count == expected_res);
2707 	KKASSERT(pmap->pm_stats.wired_count == 0);
2708 #endif
2709 }
2710 
2711 /*
2712  * Called from low to high.  We must cache the proper parent pv so we
2713  * can adjust its wired count.
2714  */
2715 static int
2716 pmap_release_callback(pv_entry_t pv, void *data)
2717 {
2718 	struct pmap_release_info *info = data;
2719 	pmap_t pmap = info->pmap;
2720 	vm_pindex_t pindex;
2721 	int r;
2722 
2723 	/*
2724 	 * Acquire a held and locked pv, check for release race
2725 	 */
2726 	pindex = pv->pv_pindex;
2727 	if (info->pvp == pv) {
2728 		spin_unlock(&pmap->pm_spin);
2729 		info->pvp = NULL;
2730 	} else if (pv_hold_try(pv)) {
2731 		spin_unlock(&pmap->pm_spin);
2732 	} else {
2733 		spin_unlock(&pmap->pm_spin);
2734 		pv_lock(pv);
2735 		pv_put(pv);
2736 		info->retry = 1;
2737 		spin_lock(&pmap->pm_spin);
2738 
2739 		return -1;
2740 	}
2741 	KKASSERT(pv->pv_pmap == pmap && pindex == pv->pv_pindex);
2742 
2743 	if (pv->pv_pindex < pmap_pt_pindex(0)) {
2744 		/*
2745 		 * I am PTE, parent is PT
2746 		 */
2747 		pindex = pv->pv_pindex >> NPTEPGSHIFT;
2748 		pindex += NUPTE_TOTAL;
2749 	} else if (pv->pv_pindex < pmap_pd_pindex(0)) {
2750 		/*
2751 		 * I am PT, parent is PD
2752 		 */
2753 		pindex = (pv->pv_pindex - NUPTE_TOTAL) >> NPDEPGSHIFT;
2754 		pindex += NUPTE_TOTAL + NUPT_TOTAL;
2755 	} else if (pv->pv_pindex < pmap_pdp_pindex(0)) {
2756 		/*
2757 		 * I am PD, parent is PDP
2758 		 */
2759 		pindex = (pv->pv_pindex - NUPTE_TOTAL - NUPT_TOTAL) >>
2760 			 NPDPEPGSHIFT;
2761 		pindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
2762 	} else if (pv->pv_pindex < pmap_pml4_pindex()) {
2763 		/*
2764 		 * I am PDP, parent is PML4.  We always calculate the
2765 		 * normal PML4 here, not the isolated PML4.
2766 		 */
2767 		pindex = pmap_pml4_pindex();
2768 	} else {
2769 		/*
2770 		 * parent is NULL
2771 		 */
2772 		if (info->pvp) {
2773 			pv_put(info->pvp);
2774 			info->pvp = NULL;
2775 		}
2776 		pindex = 0;
2777 	}
2778 	if (pindex) {
2779 		if (info->pvp && info->pvp->pv_pindex != pindex) {
2780 			pv_put(info->pvp);
2781 			info->pvp = NULL;
2782 		}
2783 		if (info->pvp == NULL)
2784 			info->pvp = pv_get(pmap, pindex, NULL);
2785 	} else {
2786 		if (info->pvp) {
2787 			pv_put(info->pvp);
2788 			info->pvp = NULL;
2789 		}
2790 	}
2791 	r = pmap_release_pv(pv, info->pvp, NULL);
2792 	spin_lock(&pmap->pm_spin);
2793 
2794 	return(r);
2795 }
2796 
2797 /*
2798  * Called with held (i.e. also locked) pv.  This function will dispose of
2799  * the lock along with the pv.
2800  *
2801  * If the caller already holds the locked parent page table for pv it
2802  * must pass it as pvp, allowing us to avoid a deadlock, else it can
2803  * pass NULL for pvp.
2804  */
2805 static int
2806 pmap_release_pv(pv_entry_t pv, pv_entry_t pvp, pmap_inval_bulk_t *bulk)
2807 {
2808 	vm_page_t p;
2809 
2810 	/*
2811 	 * The pmap is currently not spinlocked, pv is held+locked.
2812 	 * Remove the pv's page from its parent's page table.  The
2813 	 * parent's page table page's wire_count will be decremented.
2814 	 *
2815 	 * This will clean out the pte at any level of the page table.
2816 	 * If smp != 0 all cpus are affected.
2817 	 *
2818 	 * Do not tear-down recursively, its faster to just let the
2819 	 * release run its course.
2820 	 */
2821 	pmap_remove_pv_pte(pv, pvp, bulk, 0);
2822 
2823 	/*
2824 	 * Terminal pvs are unhooked from their vm_pages.  Because
2825 	 * terminal pages aren't page table pages they aren't wired
2826 	 * by us, so we have to be sure not to unwire them either.
2827 	 */
2828 	if (pv->pv_pindex < pmap_pt_pindex(0)) {
2829 		pmap_remove_pv_page(pv);
2830 		goto skip;
2831 	}
2832 
2833 	/*
2834 	 * We leave the top-level page table page cached, wired, and
2835 	 * mapped in the pmap until the dtor function (pmap_puninit())
2836 	 * gets called.
2837 	 *
2838 	 * Since we are leaving the top-level pv intact we need
2839 	 * to break out of what would otherwise be an infinite loop.
2840 	 *
2841 	 * This covers both the normal and the isolated PML4 page.
2842 	 */
2843 	if (pv->pv_pindex >= pmap_pml4_pindex()) {
2844 		pv_put(pv);
2845 		return(-1);
2846 	}
2847 
2848 	/*
2849 	 * For page table pages (other than the top-level page),
2850 	 * remove and free the vm_page.  The representitive mapping
2851 	 * removed above by pmap_remove_pv_pte() did not undo the
2852 	 * last wire_count so we have to do that as well.
2853 	 */
2854 	p = pmap_remove_pv_page(pv);
2855 	vm_page_busy_wait(p, FALSE, "pmaprl");
2856 	if (p->wire_count != 1) {
2857 		const char *tstr;
2858 
2859 		if (pv->pv_pindex >= pmap_pdp_pindex(0))
2860 			tstr = "PDP";
2861 		else if (pv->pv_pindex >= pmap_pd_pindex(0))
2862 			tstr = "PD";
2863 		else if (pv->pv_pindex >= pmap_pt_pindex(0))
2864 			tstr = "PT";
2865 		else
2866 			tstr = "PTE";
2867 
2868 		kprintf("p(%s) p->wire_count was %016lx %d\n",
2869 			tstr, pv->pv_pindex, p->wire_count);
2870 	}
2871 	KKASSERT(p->wire_count == 1);
2872 	KKASSERT(p->flags & PG_UNQUEUED);
2873 
2874 	vm_page_unwire(p, 0);
2875 	KKASSERT(p->wire_count == 0);
2876 
2877 	vm_page_free(p);
2878 skip:
2879 	pv_free(pv, pvp);
2880 
2881 	return 0;
2882 }
2883 
2884 /*
2885  * This function will remove the pte associated with a pv from its parent.
2886  * Terminal pv's are supported.  All cpus specified by (bulk) are properly
2887  * invalidated.
2888  *
2889  * The wire count will be dropped on the parent page table.  The wire
2890  * count on the page being removed (pv->pv_m) from the parent page table
2891  * is NOT touched.  Note that terminal pages will not have any additional
2892  * wire counts while page table pages will have at least one representing
2893  * the mapping, plus others representing sub-mappings.
2894  *
2895  * NOTE: Cannot be called on kernel page table pages, only KVM terminal
2896  *	 pages and user page table and terminal pages.
2897  *
2898  * NOTE: The pte being removed might be unmanaged, and the pv supplied might
2899  *	 be freshly allocated and not imply that the pte is managed.  In this
2900  *	 case pv->pv_m should be NULL.
2901  *
2902  * The pv must be locked.  The pvp, if supplied, must be locked.  All
2903  * supplied pv's will remain locked on return.
2904  *
2905  * XXX must lock parent pv's if they exist to remove pte XXX
2906  */
2907 static
2908 void
2909 pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp, pmap_inval_bulk_t *bulk,
2910 		   int destroy)
2911 {
2912 	vm_pindex_t ptepindex = pv->pv_pindex;
2913 	pmap_t pmap = pv->pv_pmap;
2914 	vm_page_t p;
2915 	int gotpvp = 0;
2916 
2917 	KKASSERT(pmap);
2918 
2919 	if (ptepindex >= pmap_pml4_pindex()) {
2920 		/*
2921 		 * We are the top level PML4E table, there is no parent.
2922 		 *
2923 		 * This is either the normal or isolated PML4E table.
2924 		 * Only the normal is used in regular operation, the isolated
2925 		 * is only passed in when breaking down the whole pmap.
2926 		 */
2927 		p = pmap->pm_pmlpv->pv_m;
2928 		KKASSERT(pv->pv_m == p);	/* debugging */
2929 	} else if (ptepindex >= pmap_pdp_pindex(0)) {
2930 		/*
2931 		 * Remove a PDP page from the PML4E.  This can only occur
2932 		 * with user page tables.  We do not have to lock the
2933 		 * pml4 PV so just ignore pvp.
2934 		 */
2935 		vm_pindex_t pml4_pindex;
2936 		vm_pindex_t pdp_index;
2937 		pml4_entry_t *pdp;
2938 		pml4_entry_t *pdp_iso;
2939 
2940 		pdp_index = ptepindex - pmap_pdp_pindex(0);
2941 		if (pvp == NULL) {
2942 			pml4_pindex = pmap_pml4_pindex();
2943 			pvp = pv_get(pv->pv_pmap, pml4_pindex, NULL);
2944 			KKASSERT(pvp);
2945 			gotpvp = 1;
2946 		}
2947 
2948 		pdp = &pmap->pm_pml4[pdp_index & ((1ul << NPML4EPGSHIFT) - 1)];
2949 		KKASSERT((*pdp & pmap->pmap_bits[PG_V_IDX]) != 0);
2950 		p = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
2951 		pmap_inval_bulk(bulk, (vm_offset_t)-1, pdp, 0);
2952 
2953 		/*
2954 		 * Also remove the PDP from the isolated PML4E if the
2955 		 * process uses one.
2956 		 */
2957 		if (pvp == pmap->pm_pmlpv && pmap->pm_pmlpv_iso) {
2958 			pdp_iso = &pmap->pm_pml4_iso[pdp_index &
2959 						((1ul << NPML4EPGSHIFT) - 1)];
2960 			pmap_inval_bulk(bulk, (vm_offset_t)-1, pdp_iso, 0);
2961 		}
2962 		KKASSERT(pv->pv_m == p);	/* debugging */
2963 	} else if (ptepindex >= pmap_pd_pindex(0)) {
2964 		/*
2965 		 * Remove a PD page from the PDP
2966 		 *
2967 		 * SIMPLE PMAP NOTE: Non-existant pvp's are ok in the case
2968 		 *		     of a simple pmap because it stops at
2969 		 *		     the PD page.
2970 		 */
2971 		vm_pindex_t pdp_pindex;
2972 		vm_pindex_t pd_index;
2973 		pdp_entry_t *pd;
2974 
2975 		pd_index = ptepindex - pmap_pd_pindex(0);
2976 
2977 		if (pvp == NULL) {
2978 			pdp_pindex = NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
2979 				     (pd_index >> NPML4EPGSHIFT);
2980 			pvp = pv_get(pv->pv_pmap, pdp_pindex, NULL);
2981 			gotpvp = 1;
2982 		}
2983 
2984 		if (pvp) {
2985 			pd = pv_pte_lookup(pvp, pd_index &
2986 						((1ul << NPDPEPGSHIFT) - 1));
2987 			KKASSERT((*pd & pmap->pmap_bits[PG_V_IDX]) != 0);
2988 			p = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
2989 			pmap_inval_bulk(bulk, (vm_offset_t)-1, pd, 0);
2990 		} else {
2991 			KKASSERT(pmap->pm_flags & PMAP_FLAG_SIMPLE);
2992 			p = pv->pv_m;		/* degenerate test later */
2993 		}
2994 		KKASSERT(pv->pv_m == p);	/* debugging */
2995 	} else if (ptepindex >= pmap_pt_pindex(0)) {
2996 		/*
2997 		 *  Remove a PT page from the PD
2998 		 */
2999 		vm_pindex_t pd_pindex;
3000 		vm_pindex_t pt_index;
3001 		pd_entry_t *pt;
3002 
3003 		pt_index = ptepindex - pmap_pt_pindex(0);
3004 
3005 		if (pvp == NULL) {
3006 			pd_pindex = NUPTE_TOTAL + NUPT_TOTAL +
3007 				    (pt_index >> NPDPEPGSHIFT);
3008 			pvp = pv_get(pv->pv_pmap, pd_pindex, NULL);
3009 			KKASSERT(pvp);
3010 			gotpvp = 1;
3011 		}
3012 
3013 		pt = pv_pte_lookup(pvp, pt_index & ((1ul << NPDPEPGSHIFT) - 1));
3014 #if 0
3015 		KASSERT((*pt & pmap->pmap_bits[PG_V_IDX]) != 0,
3016 			("*pt unexpectedly invalid %016jx "
3017 			 "gotpvp=%d ptepindex=%ld ptindex=%ld pv=%p pvp=%p",
3018 			*pt, gotpvp, ptepindex, pt_index, pv, pvp));
3019 		p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
3020 #else
3021 		if ((*pt & pmap->pmap_bits[PG_V_IDX]) == 0) {
3022 			kprintf("*pt unexpectedly invalid %016jx "
3023 			        "gotpvp=%d ptepindex=%ld ptindex=%ld "
3024 				"pv=%p pvp=%p\n",
3025 				*pt, gotpvp, ptepindex, pt_index, pv, pvp);
3026 			tsleep(pt, 0, "DEAD", 0);
3027 			p = pv->pv_m;
3028 		} else {
3029 			p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
3030 		}
3031 #endif
3032 		pmap_inval_bulk(bulk, (vm_offset_t)-1, pt, 0);
3033 		KKASSERT(pv->pv_m == p);	/* debugging */
3034 	} else {
3035 		KKASSERT(0);
3036 	}
3037 
3038 	/*
3039 	 * If requested, scrap the underlying pv->pv_m and the underlying
3040 	 * pv.  If this is a page-table-page we must also free the page.
3041 	 *
3042 	 * pvp must be returned locked.
3043 	 */
3044 	if (destroy == 1) {
3045 		/*
3046 		 * page table page (PT, PD, PDP, PML4), caller was responsible
3047 		 * for testing wired_count.
3048 		 */
3049 		KKASSERT(pv->pv_m->wire_count == 1);
3050 		p = pmap_remove_pv_page(pv);
3051 		pv_free(pv, pvp);
3052 		pv = NULL;
3053 
3054 		vm_page_busy_wait(p, FALSE, "pgpun");
3055 		vm_page_unwire(p, 0);
3056 		vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
3057 		vm_page_free(p);
3058 	} else if (destroy == 2) {
3059 		/*
3060 		 * Normal page, remove from pmap and leave the underlying
3061 		 * page untouched.
3062 		 */
3063 		pmap_remove_pv_page(pv);
3064 		pv_free(pv, pvp);
3065 		pv = NULL;		/* safety */
3066 	}
3067 
3068 	/*
3069 	 * If we acquired pvp ourselves then we are responsible for
3070 	 * recursively deleting it.
3071 	 */
3072 	if (pvp && gotpvp) {
3073 		/*
3074 		 * Recursively destroy higher-level page tables.
3075 		 *
3076 		 * This is optional.  If we do not, they will still
3077 		 * be destroyed when the process exits.
3078 		 *
3079 		 * NOTE: Do not destroy pv_entry's with extra hold refs,
3080 		 *	 a caller may have unlocked it and intends to
3081 		 *	 continue to use it.
3082 		 */
3083 		if (pmap_dynamic_delete &&
3084 		    pvp->pv_m &&
3085 		    pvp->pv_m->wire_count == 1 &&
3086 		    (pvp->pv_hold & PV_HOLD_MASK) == 2 &&
3087 		    pvp->pv_pindex < pmap_pml4_pindex()) {
3088 			if (pmap != &kernel_pmap) {
3089 				pmap_remove_pv_pte(pvp, NULL, bulk, 1);
3090 				pvp = NULL;	/* safety */
3091 			} else {
3092 				kprintf("Attempt to remove kernel_pmap pindex "
3093 					"%jd\n", pvp->pv_pindex);
3094 				pv_put(pvp);
3095 			}
3096 		} else {
3097 			pv_put(pvp);
3098 		}
3099 	}
3100 }
3101 
3102 /*
3103  * Remove the vm_page association to a pv.  The pv must be locked.
3104  */
3105 static
3106 vm_page_t
3107 pmap_remove_pv_page(pv_entry_t pv)
3108 {
3109 	vm_page_t m;
3110 
3111 	m = pv->pv_m;
3112 	pv->pv_m = NULL;
3113 	vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
3114 
3115 	return(m);
3116 }
3117 
3118 /*
3119  * Grow the number of kernel page table entries, if needed.
3120  *
3121  * This routine is always called to validate any address space
3122  * beyond KERNBASE (for kldloads).  kernel_vm_end only governs the address
3123  * space below KERNBASE.
3124  *
3125  * kernel_map must be locked exclusively by the caller.
3126  */
3127 void
3128 pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
3129 {
3130 	vm_paddr_t paddr;
3131 	vm_offset_t ptppaddr;
3132 	vm_page_t nkpg;
3133 	pd_entry_t *pt, newpt;
3134 	pdp_entry_t *pd, newpd;
3135 	int update_kernel_vm_end;
3136 
3137 	/*
3138 	 * bootstrap kernel_vm_end on first real VM use
3139 	 */
3140 	if (kernel_vm_end == 0) {
3141 		kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
3142 
3143 		for (;;) {
3144 			pt = pmap_pt(&kernel_pmap, kernel_vm_end);
3145 			if (pt == NULL)
3146 				break;
3147 			if ((*pt & kernel_pmap.pmap_bits[PG_V_IDX]) == 0)
3148 				break;
3149 			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
3150 					~(vm_offset_t)(PAGE_SIZE * NPTEPG - 1);
3151 			if (kernel_vm_end - 1 >= vm_map_max(&kernel_map)) {
3152 				kernel_vm_end = vm_map_max(&kernel_map);
3153 				break;
3154 			}
3155 		}
3156 	}
3157 
3158 	/*
3159 	 * Fill in the gaps.  kernel_vm_end is only adjusted for ranges
3160 	 * below KERNBASE.  Ranges above KERNBASE are kldloaded and we
3161 	 * do not want to force-fill 128G worth of page tables.
3162 	 */
3163 	if (kstart < KERNBASE) {
3164 		if (kstart > kernel_vm_end)
3165 			kstart = kernel_vm_end;
3166 		KKASSERT(kend <= KERNBASE);
3167 		update_kernel_vm_end = 1;
3168 	} else {
3169 		update_kernel_vm_end = 0;
3170 	}
3171 
3172 	kstart = rounddown2(kstart, (vm_offset_t)(PAGE_SIZE * NPTEPG));
3173 	kend = roundup2(kend, (vm_offset_t)(PAGE_SIZE * NPTEPG));
3174 
3175 	if (kend - 1 >= vm_map_max(&kernel_map))
3176 		kend = vm_map_max(&kernel_map);
3177 
3178 	while (kstart < kend) {
3179 		pt = pmap_pt(&kernel_pmap, kstart);
3180 		if (pt == NULL) {
3181 			/*
3182 			 * We need a new PD entry
3183 			 */
3184 			nkpg = vm_page_alloc(NULL, mycpu->gd_rand_incr++,
3185 			                     VM_ALLOC_NORMAL |
3186 					     VM_ALLOC_SYSTEM |
3187 					     VM_ALLOC_INTERRUPT);
3188 			if (nkpg == NULL) {
3189 				panic("pmap_growkernel: no memory to grow "
3190 				      "kernel");
3191 			}
3192 			paddr = VM_PAGE_TO_PHYS(nkpg);
3193 			pmap_zero_page(paddr);
3194 			pd = pmap_pd(&kernel_pmap, kstart);
3195 
3196 			newpd = (pdp_entry_t)
3197 			    (paddr |
3198 			    kernel_pmap.pmap_bits[PG_V_IDX] |
3199 			    kernel_pmap.pmap_bits[PG_RW_IDX] |
3200 			    kernel_pmap.pmap_bits[PG_A_IDX]);
3201 			atomic_swap_long(pd, newpd);
3202 
3203 #if 0
3204 			kprintf("NEWPD pd=%p pde=%016jx phys=%016jx\n",
3205 				pd, newpd, paddr);
3206 #endif
3207 
3208 			continue; /* try again */
3209 		}
3210 
3211 		if ((*pt & kernel_pmap.pmap_bits[PG_V_IDX]) != 0) {
3212 			kstart = (kstart + PAGE_SIZE * NPTEPG) &
3213 				 ~(vm_offset_t)(PAGE_SIZE * NPTEPG - 1);
3214 			if (kstart - 1 >= vm_map_max(&kernel_map)) {
3215 				kstart = vm_map_max(&kernel_map);
3216 				break;
3217 			}
3218 			continue;
3219 		}
3220 
3221 		/*
3222 		 * We need a new PT
3223 		 *
3224 		 * This index is bogus, but out of the way
3225 		 */
3226 		nkpg = vm_page_alloc(NULL, mycpu->gd_rand_incr++,
3227 				     VM_ALLOC_NORMAL |
3228 				     VM_ALLOC_SYSTEM |
3229 				     VM_ALLOC_INTERRUPT);
3230 		if (nkpg == NULL)
3231 			panic("pmap_growkernel: no memory to grow kernel");
3232 
3233 		vm_page_wire(nkpg);
3234 		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
3235 		pmap_zero_page(ptppaddr);
3236 		newpt = (pd_entry_t)(ptppaddr |
3237 				     kernel_pmap.pmap_bits[PG_V_IDX] |
3238 				     kernel_pmap.pmap_bits[PG_RW_IDX] |
3239 				     kernel_pmap.pmap_bits[PG_A_IDX]);
3240 		atomic_swap_long(pt, newpt);
3241 
3242 		kstart = (kstart + PAGE_SIZE * NPTEPG) &
3243 			  ~(vm_offset_t)(PAGE_SIZE * NPTEPG - 1);
3244 
3245 		if (kstart - 1 >= vm_map_max(&kernel_map)) {
3246 			kstart = vm_map_max(&kernel_map);
3247 			break;
3248 		}
3249 	}
3250 
3251 	/*
3252 	 * Only update kernel_vm_end for areas below KERNBASE.
3253 	 */
3254 	if (update_kernel_vm_end && kernel_vm_end < kstart)
3255 		kernel_vm_end = kstart;
3256 }
3257 
3258 /*
3259  *	Add a reference to the specified pmap.
3260  */
3261 void
3262 pmap_reference(pmap_t pmap)
3263 {
3264 	if (pmap != NULL)
3265 		atomic_add_int(&pmap->pm_count, 1);
3266 }
3267 
3268 void
3269 pmap_maybethreaded(pmap_t pmap)
3270 {
3271 	atomic_set_int(&pmap->pm_flags, PMAP_MULTI);
3272 }
3273 
3274 /*
3275  * Called while page is hard-busied to clear the PG_MAPPED and PG_WRITEABLE
3276  * flags if able.
3277  */
3278 int
3279 pmap_mapped_sync(vm_page_t m)
3280 {
3281 	if (m->md.pmap_count == 0)
3282 		vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
3283 	return (m->flags);
3284 }
3285 
3286 /***************************************************
3287  * page management routines.
3288  ***************************************************/
3289 
3290 /*
3291  * Hold a pv without locking it
3292  */
3293 #if 0
3294 static void
3295 pv_hold(pv_entry_t pv)
3296 {
3297 	atomic_add_int(&pv->pv_hold, 1);
3298 }
3299 #endif
3300 
3301 /*
3302  * Hold a pv_entry, preventing its destruction.  TRUE is returned if the pv
3303  * was successfully locked, FALSE if it wasn't.  The caller must dispose of
3304  * the pv properly.
3305  *
3306  * Either the pmap->pm_spin or the related vm_page_spin (if traversing a
3307  * pv list via its page) must be held by the caller in order to stabilize
3308  * the pv.
3309  */
3310 static int
3311 _pv_hold_try(pv_entry_t pv PMAP_DEBUG_DECL)
3312 {
3313 	u_int count;
3314 
3315 	/*
3316 	 * Critical path shortcut expects pv to already have one ref
3317 	 * (for the pv->pv_pmap).
3318 	 */
3319 	count = pv->pv_hold;
3320 	cpu_ccfence();
3321 	for (;;) {
3322 		if ((count & PV_HOLD_LOCKED) == 0) {
3323 			if (atomic_fcmpset_int(&pv->pv_hold, &count,
3324 					      (count + 1) | PV_HOLD_LOCKED)) {
3325 #ifdef PMAP_DEBUG
3326 				pv->pv_func = func;
3327 				pv->pv_line = lineno;
3328 #endif
3329 				return TRUE;
3330 			}
3331 		} else {
3332 			if (atomic_fcmpset_int(&pv->pv_hold, &count, count + 1))
3333 				return FALSE;
3334 		}
3335 		/* retry */
3336 	}
3337 }
3338 
3339 /*
3340  * Drop a previously held pv_entry which could not be locked, allowing its
3341  * destruction.
3342  *
3343  * Must not be called with a spinlock held as we might zfree() the pv if it
3344  * is no longer associated with a pmap and this was the last hold count.
3345  */
3346 static void
3347 pv_drop(pv_entry_t pv)
3348 {
3349 	u_int count;
3350 
3351 	for (;;) {
3352 		count = pv->pv_hold;
3353 		cpu_ccfence();
3354 		KKASSERT((count & PV_HOLD_MASK) > 0);
3355 		KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) !=
3356 			 (PV_HOLD_LOCKED | 1));
3357 		if (atomic_cmpset_int(&pv->pv_hold, count, count - 1)) {
3358 			if ((count & PV_HOLD_MASK) == 1) {
3359 #ifdef PMAP_DEBUG2
3360 				if (pmap_enter_debug > 0) {
3361 					--pmap_enter_debug;
3362 					kprintf("pv_drop: free pv %p\n", pv);
3363 				}
3364 #endif
3365 				KKASSERT(count == 1);
3366 				KKASSERT(pv->pv_pmap == NULL);
3367 				zfree(pvzone, pv);
3368 			}
3369 			return;
3370 		}
3371 		/* retry */
3372 	}
3373 }
3374 
3375 /*
3376  * Find or allocate the requested PV entry, returning a locked, held pv.
3377  *
3378  * If (*isnew) is non-zero, the returned pv will have two hold counts, one
3379  * for the caller and one representing the pmap and vm_page association.
3380  *
3381  * If (*isnew) is zero, the returned pv will have only one hold count.
3382  *
3383  * Since both associations can only be adjusted while the pv is locked,
3384  * together they represent just one additional hold.
3385  */
3386 static
3387 pv_entry_t
3388 _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew PMAP_DEBUG_DECL)
3389 {
3390 	struct mdglobaldata *md = mdcpu;
3391 	pv_entry_t pv;
3392 	pv_entry_t pnew;
3393 	int pmap_excl = 0;
3394 
3395 	pnew = NULL;
3396 	if (md->gd_newpv) {
3397 #if 1
3398 		pnew = atomic_swap_ptr((void *)&md->gd_newpv, NULL);
3399 #else
3400 		crit_enter();
3401 		pnew = md->gd_newpv;	/* might race NULL */
3402 		md->gd_newpv = NULL;
3403 		crit_exit();
3404 #endif
3405 	}
3406 	if (pnew == NULL)
3407 		pnew = zalloc(pvzone);
3408 
3409 	spin_lock_shared(&pmap->pm_spin);
3410 	for (;;) {
3411 		/*
3412 		 * Shortcut cache
3413 		 */
3414 		pv = pv_entry_lookup(pmap, pindex);
3415 		if (pv == NULL) {
3416 			vm_pindex_t *pmark;
3417 
3418 			/*
3419 			 * Requires exclusive pmap spinlock
3420 			 */
3421 			if (pmap_excl == 0) {
3422 				pmap_excl = 1;
3423 				if (!spin_lock_upgrade_try(&pmap->pm_spin)) {
3424 					spin_unlock_shared(&pmap->pm_spin);
3425 					spin_lock(&pmap->pm_spin);
3426 					continue;
3427 				}
3428 			}
3429 
3430 			/*
3431 			 * We need to block if someone is holding our
3432 			 * placemarker.  As long as we determine the
3433 			 * placemarker has not been aquired we do not
3434 			 * need to get it as acquision also requires
3435 			 * the pmap spin lock.
3436 			 *
3437 			 * However, we can race the wakeup.
3438 			 */
3439 			pmark = pmap_placemarker_hash(pmap, pindex);
3440 
3441 			if (((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
3442 				tsleep_interlock(pmark, 0);
3443 				atomic_set_long(pmark, PM_PLACEMARK_WAKEUP);
3444 				if (((*pmark ^ pindex) &
3445 				     ~PM_PLACEMARK_WAKEUP) == 0) {
3446 					spin_unlock(&pmap->pm_spin);
3447 					tsleep(pmark, PINTERLOCKED, "pvplc", 0);
3448 					spin_lock(&pmap->pm_spin);
3449 				}
3450 				continue;
3451 			}
3452 
3453 			/*
3454 			 * Setup the new entry
3455 			 */
3456 			pnew->pv_pmap = pmap;
3457 			pnew->pv_pindex = pindex;
3458 			pnew->pv_hold = PV_HOLD_LOCKED | 2;
3459 			pnew->pv_flags = 0;
3460 #ifdef PMAP_DEBUG
3461 			pnew->pv_func = func;
3462 			pnew->pv_line = lineno;
3463 			if (pnew->pv_line_lastfree > 0) {
3464 				pnew->pv_line_lastfree =
3465 						-pnew->pv_line_lastfree;
3466 			}
3467 #endif
3468 			pv = pv_entry_rb_tree_RB_INSERT(&pmap->pm_pvroot, pnew);
3469 			atomic_add_long(&pmap->pm_stats.resident_count, 1);
3470 			spin_unlock(&pmap->pm_spin);
3471 			*isnew = 1;
3472 
3473 			KASSERT(pv == NULL, ("pv insert failed %p->%p", pnew, pv));
3474 			return(pnew);
3475 		}
3476 
3477 		/*
3478 		 * We already have an entry, cleanup the staged pnew if
3479 		 * we can get the lock, otherwise block and retry.
3480 		 */
3481 		if (__predict_true(_pv_hold_try(pv PMAP_DEBUG_COPY))) {
3482 			if (pmap_excl)
3483 				spin_unlock(&pmap->pm_spin);
3484 			else
3485 				spin_unlock_shared(&pmap->pm_spin);
3486 #if 1
3487 			pnew = atomic_swap_ptr((void *)&md->gd_newpv, pnew);
3488 			if (pnew)
3489 				zfree(pvzone, pnew);
3490 #else
3491 			crit_enter();
3492 			if (md->gd_newpv == NULL)
3493 				md->gd_newpv = pnew;
3494 			else
3495 				zfree(pvzone, pnew);
3496 			crit_exit();
3497 #endif
3498 			KKASSERT(pv->pv_pmap == pmap &&
3499 				 pv->pv_pindex == pindex);
3500 			*isnew = 0;
3501 			return(pv);
3502 		}
3503 		if (pmap_excl) {
3504 			spin_unlock(&pmap->pm_spin);
3505 			_pv_lock(pv PMAP_DEBUG_COPY);
3506 			pv_put(pv);
3507 			spin_lock(&pmap->pm_spin);
3508 		} else {
3509 			spin_unlock_shared(&pmap->pm_spin);
3510 			_pv_lock(pv PMAP_DEBUG_COPY);
3511 			pv_put(pv);
3512 			spin_lock_shared(&pmap->pm_spin);
3513 		}
3514 	}
3515 	/* NOT REACHED */
3516 }
3517 
3518 /*
3519  * Find the requested PV entry, returning a locked+held pv or NULL
3520  */
3521 static
3522 pv_entry_t
3523 _pv_get(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp PMAP_DEBUG_DECL)
3524 {
3525 	pv_entry_t pv;
3526 	int pmap_excl = 0;
3527 
3528 	spin_lock_shared(&pmap->pm_spin);
3529 	for (;;) {
3530 		/*
3531 		 * Shortcut cache
3532 		 */
3533 		pv = pv_entry_lookup(pmap, pindex);
3534 		if (pv == NULL) {
3535 			/*
3536 			 * Block if there is ANY placemarker.  If we are to
3537 			 * return it, we must also aquire the spot, so we
3538 			 * have to block even if the placemarker is held on
3539 			 * a different address.
3540 			 *
3541 			 * OPTIMIZATION: If pmarkp is passed as NULL the
3542 			 * caller is just probing (or looking for a real
3543 			 * pv_entry), and in this case we only need to check
3544 			 * to see if the placemarker matches pindex.
3545 			 */
3546 			vm_pindex_t *pmark;
3547 
3548 			/*
3549 			 * Requires exclusive pmap spinlock
3550 			 */
3551 			if (pmap_excl == 0) {
3552 				pmap_excl = 1;
3553 				if (!spin_lock_upgrade_try(&pmap->pm_spin)) {
3554 					spin_unlock_shared(&pmap->pm_spin);
3555 					spin_lock(&pmap->pm_spin);
3556 					continue;
3557 				}
3558 			}
3559 
3560 			pmark = pmap_placemarker_hash(pmap, pindex);
3561 
3562 			if ((pmarkp && *pmark != PM_NOPLACEMARK) ||
3563 			    ((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
3564 				tsleep_interlock(pmark, 0);
3565 				atomic_set_long(pmark, PM_PLACEMARK_WAKEUP);
3566 				if ((pmarkp && *pmark != PM_NOPLACEMARK) ||
3567 				    ((*pmark ^ pindex) &
3568 				     ~PM_PLACEMARK_WAKEUP) == 0) {
3569 					spin_unlock(&pmap->pm_spin);
3570 					tsleep(pmark, PINTERLOCKED, "pvpld", 0);
3571 					spin_lock(&pmap->pm_spin);
3572 				}
3573 				continue;
3574 			}
3575 			if (pmarkp) {
3576 				if (atomic_swap_long(pmark, pindex) !=
3577 				    PM_NOPLACEMARK) {
3578 					panic("_pv_get: pmark race");
3579 				}
3580 				*pmarkp = pmark;
3581 			}
3582 			spin_unlock(&pmap->pm_spin);
3583 			return NULL;
3584 		}
3585 		if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
3586 			if (pmap_excl)
3587 				spin_unlock(&pmap->pm_spin);
3588 			else
3589 				spin_unlock_shared(&pmap->pm_spin);
3590 			KKASSERT(pv->pv_pmap == pmap &&
3591 				 pv->pv_pindex == pindex);
3592 			return(pv);
3593 		}
3594 		if (pmap_excl) {
3595 			spin_unlock(&pmap->pm_spin);
3596 			_pv_lock(pv PMAP_DEBUG_COPY);
3597 			pv_put(pv);
3598 			spin_lock(&pmap->pm_spin);
3599 		} else {
3600 			spin_unlock_shared(&pmap->pm_spin);
3601 			_pv_lock(pv PMAP_DEBUG_COPY);
3602 			pv_put(pv);
3603 			spin_lock_shared(&pmap->pm_spin);
3604 		}
3605 	}
3606 }
3607 
3608 /*
3609  * Lookup, hold, and attempt to lock (pmap,pindex).
3610  *
3611  * If the entry does not exist NULL is returned and *errorp is set to 0
3612  *
3613  * If the entry exists and could be successfully locked it is returned and
3614  * errorp is set to 0.
3615  *
3616  * If the entry exists but could NOT be successfully locked it is returned
3617  * held and *errorp is set to 1.
3618  *
3619  * If the entry is placemarked by someone else NULL is returned and *errorp
3620  * is set to 1.
3621  */
3622 static
3623 pv_entry_t
3624 pv_get_try(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp, int *errorp)
3625 {
3626 	pv_entry_t pv;
3627 
3628 	spin_lock_shared(&pmap->pm_spin);
3629 
3630 	pv = pv_entry_lookup(pmap, pindex);
3631 	if (pv == NULL) {
3632 		vm_pindex_t *pmark;
3633 
3634 		pmark = pmap_placemarker_hash(pmap, pindex);
3635 
3636 		if (((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
3637 			*errorp = 1;
3638 		} else if (pmarkp &&
3639 			   atomic_cmpset_long(pmark, PM_NOPLACEMARK, pindex)) {
3640 			*errorp = 0;
3641 		} else {
3642 			/*
3643 			 * Can't set a placemark with a NULL pmarkp, or if
3644 			 * pmarkp is non-NULL but we failed to set our
3645 			 * placemark.
3646 			 */
3647 			*errorp = 1;
3648 		}
3649 		if (pmarkp)
3650 			*pmarkp = pmark;
3651 		spin_unlock_shared(&pmap->pm_spin);
3652 
3653 		return NULL;
3654 	}
3655 
3656 	/*
3657 	 * XXX This has problems if the lock is shared, why?
3658 	 */
3659 	if (pv_hold_try(pv)) {
3660 		spin_unlock_shared(&pmap->pm_spin);
3661 		*errorp = 0;
3662 		KKASSERT(pv->pv_pmap == pmap && pv->pv_pindex == pindex);
3663 		return(pv);	/* lock succeeded */
3664 	}
3665 	spin_unlock_shared(&pmap->pm_spin);
3666 	*errorp = 1;
3667 
3668 	return (pv);		/* lock failed */
3669 }
3670 
3671 /*
3672  * Lock a held pv, keeping the hold count
3673  */
3674 static
3675 void
3676 _pv_lock(pv_entry_t pv PMAP_DEBUG_DECL)
3677 {
3678 	u_int count;
3679 
3680 	for (;;) {
3681 		count = pv->pv_hold;
3682 		cpu_ccfence();
3683 		if ((count & PV_HOLD_LOCKED) == 0) {
3684 			if (atomic_cmpset_int(&pv->pv_hold, count,
3685 					      count | PV_HOLD_LOCKED)) {
3686 #ifdef PMAP_DEBUG
3687 				pv->pv_func = func;
3688 				pv->pv_line = lineno;
3689 #endif
3690 				return;
3691 			}
3692 			continue;
3693 		}
3694 		tsleep_interlock(pv, 0);
3695 		if (atomic_cmpset_int(&pv->pv_hold, count,
3696 				      count | PV_HOLD_WAITING)) {
3697 #ifdef PMAP_DEBUG2
3698 			if (pmap_enter_debug > 0) {
3699 				--pmap_enter_debug;
3700 				kprintf("pv waiting on %s:%d\n",
3701 					pv->pv_func, pv->pv_line);
3702 			}
3703 #endif
3704 			tsleep(pv, PINTERLOCKED, "pvwait", hz);
3705 		}
3706 		/* retry */
3707 	}
3708 }
3709 
3710 /*
3711  * Unlock a held and locked pv, keeping the hold count.
3712  */
3713 static
3714 void
3715 pv_unlock(pv_entry_t pv)
3716 {
3717 	u_int count;
3718 
3719 	for (;;) {
3720 		count = pv->pv_hold;
3721 		cpu_ccfence();
3722 		KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) >=
3723 			 (PV_HOLD_LOCKED | 1));
3724 		if (atomic_cmpset_int(&pv->pv_hold, count,
3725 				      count &
3726 				      ~(PV_HOLD_LOCKED | PV_HOLD_WAITING))) {
3727 			if (count & PV_HOLD_WAITING)
3728 				wakeup(pv);
3729 			break;
3730 		}
3731 	}
3732 }
3733 
3734 /*
3735  * Unlock and drop a pv.  If the pv is no longer associated with a pmap
3736  * and the hold count drops to zero we will free it.
3737  *
3738  * Caller should not hold any spin locks.  We are protected from hold races
3739  * by virtue of holds only occuring only with a pmap_spin or vm_page_spin
3740  * lock held.  A pv cannot be located otherwise.
3741  */
3742 static
3743 void
3744 pv_put(pv_entry_t pv)
3745 {
3746 #ifdef PMAP_DEBUG2
3747 	if (pmap_enter_debug > 0) {
3748 		--pmap_enter_debug;
3749 		kprintf("pv_put pv=%p hold=%08x\n", pv, pv->pv_hold);
3750 	}
3751 #endif
3752 
3753 	/*
3754 	 * Normal put-aways must have a pv_m associated with the pv,
3755 	 * but allow the case where the pv has been destructed due
3756 	 * to pmap_dynamic_delete.
3757 	 */
3758 	KKASSERT(pv->pv_pmap == NULL || pv->pv_m != NULL);
3759 
3760 	/*
3761 	 * Fast - shortcut most common condition
3762 	 */
3763 	if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 1))
3764 		return;
3765 
3766 	/*
3767 	 * Slow
3768 	 */
3769 	pv_unlock(pv);
3770 	pv_drop(pv);
3771 }
3772 
3773 /*
3774  * Remove the pmap association from a pv, require that pv_m already be removed,
3775  * then unlock and drop the pv.  Any pte operations must have already been
3776  * completed.  This call may result in a last-drop which will physically free
3777  * the pv.
3778  *
3779  * Removing the pmap association entails an additional drop.
3780  *
3781  * pv must be exclusively locked on call and will be disposed of on return.
3782  */
3783 static
3784 void
3785 _pv_free(pv_entry_t pv, pv_entry_t pvp PMAP_DEBUG_DECL)
3786 {
3787 	pmap_t pmap;
3788 
3789 #ifdef PMAP_DEBUG
3790 	pv->pv_func_lastfree = func;
3791 	pv->pv_line_lastfree = lineno;
3792 #endif
3793 	KKASSERT(pv->pv_m == NULL);
3794 	KKASSERT((pv->pv_hold & (PV_HOLD_LOCKED|PV_HOLD_MASK)) >=
3795 		  (PV_HOLD_LOCKED|1));
3796 	if ((pmap = pv->pv_pmap) != NULL) {
3797 		spin_lock(&pmap->pm_spin);
3798 		KKASSERT(pv->pv_pmap == pmap);
3799 		if (pmap->pm_pvhint_pt == pv)
3800 			pmap->pm_pvhint_pt = NULL;
3801 		if (pmap->pm_pvhint_unused == pv)
3802 			pmap->pm_pvhint_unused = NULL;
3803 		pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
3804 		atomic_add_long(&pmap->pm_stats.resident_count, -1);
3805 		pv->pv_pmap = NULL;
3806 		pv->pv_pindex = 0;
3807 		spin_unlock(&pmap->pm_spin);
3808 
3809 		/*
3810 		 * Try to shortcut three atomic ops, otherwise fall through
3811 		 * and do it normally.  Drop two refs and the lock all in
3812 		 * one go.
3813 		 */
3814 		if (pvp) {
3815 			if (vm_page_unwire_quick(pvp->pv_m))
3816 				panic("_pv_free: bad wirecount on pvp");
3817 		}
3818 		if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 0)) {
3819 #ifdef PMAP_DEBUG2
3820 			if (pmap_enter_debug > 0) {
3821 				--pmap_enter_debug;
3822 				kprintf("pv_free: free pv %p\n", pv);
3823 			}
3824 #endif
3825 			zfree(pvzone, pv);
3826 			return;
3827 		}
3828 		pv_drop(pv);	/* ref for pv_pmap */
3829 	}
3830 	pv_unlock(pv);
3831 	pv_drop(pv);
3832 }
3833 
3834 /*
3835  * This routine is very drastic, but can save the system
3836  * in a pinch.
3837  */
3838 void
3839 pmap_collect(void)
3840 {
3841 	int i;
3842 	vm_page_t m;
3843 	static int warningdone=0;
3844 
3845 	if (pmap_pagedaemon_waken == 0)
3846 		return;
3847 	pmap_pagedaemon_waken = 0;
3848 	if (warningdone < 5) {
3849 		kprintf("pmap_collect: pv_entries exhausted -- "
3850 			"suggest increasing vm.pmap_pv_entries above %ld\n",
3851 			vm_pmap_pv_entries);
3852 		warningdone++;
3853 	}
3854 
3855 	for (i = 0; i < vm_page_array_size; i++) {
3856 		m = &vm_page_array[i];
3857 		if (m->wire_count || m->hold_count)
3858 			continue;
3859 		if (vm_page_busy_try(m, TRUE) == 0) {
3860 			if (m->wire_count == 0 && m->hold_count == 0) {
3861 				pmap_remove_all(m);
3862 			}
3863 			vm_page_wakeup(m);
3864 		}
3865 	}
3866 }
3867 
3868 /*
3869  * Scan the pmap for active page table entries and issue a callback.
3870  * The callback must dispose of pte_pv, whos PTE entry is at *ptep in
3871  * its parent page table.
3872  *
3873  * pte_pv will be NULL if the page or page table is unmanaged.
3874  * pt_pv will point to the page table page containing the pte for the page.
3875  *
3876  * NOTE! If we come across an unmanaged page TABLE (verses an unmanaged page),
3877  *	 we pass a NULL pte_pv and we pass a pt_pv pointing to the passed
3878  *	 process pmap's PD and page to the callback function.  This can be
3879  *	 confusing because the pt_pv is really a pd_pv, and the target page
3880  *	 table page is simply aliased by the pmap and not owned by it.
3881  *
3882  * It is assumed that the start and end are properly rounded to the page size.
3883  *
3884  * It is assumed that PD pages and above are managed and thus in the RB tree,
3885  * allowing us to use RB_SCAN from the PD pages down for ranged scans.
3886  */
3887 struct pmap_scan_info {
3888 	struct pmap *pmap;
3889 	vm_offset_t sva;
3890 	vm_offset_t eva;
3891 	vm_pindex_t sva_pd_pindex;
3892 	vm_pindex_t eva_pd_pindex;
3893 	void (*func)(pmap_t, struct pmap_scan_info *,
3894 		     vm_pindex_t *, pv_entry_t, vm_offset_t,
3895 		     pt_entry_t *, void *);
3896 	void *arg;
3897 	pmap_inval_bulk_t bulk_core;
3898 	pmap_inval_bulk_t *bulk;
3899 	int count;
3900 	int stop;
3901 };
3902 
3903 static int pmap_scan_cmp(pv_entry_t pv, void *data);
3904 static int pmap_scan_callback(pv_entry_t pv, void *data);
3905 
3906 static void
3907 pmap_scan(struct pmap_scan_info *info, int smp_inval)
3908 {
3909 	struct pmap *pmap = info->pmap;
3910 	pv_entry_t pt_pv;	/* A page table PV */
3911 	pv_entry_t pte_pv;	/* A page table entry PV */
3912 	vm_pindex_t *pte_placemark;
3913 	vm_pindex_t *pt_placemark;
3914 	pt_entry_t *ptep;
3915 	pt_entry_t oldpte;
3916 	struct pv_entry dummy_pv;
3917 
3918 	info->stop = 0;
3919 	if (pmap == NULL)
3920 		return;
3921 	if (info->sva == info->eva)
3922 		return;
3923 	if (smp_inval) {
3924 		info->bulk = &info->bulk_core;
3925 		pmap_inval_bulk_init(&info->bulk_core, pmap);
3926 	} else {
3927 		info->bulk = NULL;
3928 	}
3929 
3930 	/*
3931 	 * Hold the token for stability; if the pmap is empty we have nothing
3932 	 * to do.
3933 	 */
3934 #if 0
3935 	if (pmap->pm_stats.resident_count == 0) {
3936 		return;
3937 	}
3938 #endif
3939 
3940 	info->count = 0;
3941 
3942 	/*
3943 	 * Special handling for scanning one page, which is a very common
3944 	 * operation (it is?).
3945 	 *
3946 	 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4
3947 	 */
3948 	if (info->sva + PAGE_SIZE == info->eva) {
3949 		if (info->sva >= VM_MAX_USER_ADDRESS) {
3950 			/*
3951 			 * Kernel mappings do not track wire counts on
3952 			 * page table pages and only maintain pd_pv and
3953 			 * pte_pv levels so pmap_scan() works.
3954 			 */
3955 			pt_pv = NULL;
3956 			pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva),
3957 					&pte_placemark);
3958 			KKASSERT(pte_pv == NULL);
3959 			ptep = vtopte(info->sva);
3960 		} else {
3961 			/*
3962 			 * We hold pte_placemark across the operation for
3963 			 * unmanaged pages.
3964 			 *
3965 			 * WARNING!  We must hold pt_placemark across the
3966 			 *	     *ptep test to prevent misintepreting
3967 			 *	     a non-zero *ptep as a shared page
3968 			 *	     table page.  Hold it across the function
3969 			 *	     callback as well for SMP safety.
3970 			 */
3971 			pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva),
3972 					&pte_placemark);
3973 			KKASSERT(pte_pv == NULL);
3974 			pt_pv = pv_get(pmap, pmap_pt_pindex(info->sva),
3975 				       &pt_placemark);
3976 			if (pt_pv == NULL) {
3977 #if 0
3978 				KKASSERT(0);
3979 				pd_pv = pv_get(pmap,
3980 					       pmap_pd_pindex(info->sva),
3981 					       NULL);
3982 				if (pd_pv) {
3983 					ptep = pv_pte_lookup(pd_pv,
3984 						    pmap_pt_index(info->sva));
3985 					if (*ptep) {
3986 						info->func(pmap, info,
3987 						     pt_placemark, pd_pv,
3988 						     info->sva, ptep,
3989 						     info->arg);
3990 					} else {
3991 						pv_placemarker_wakeup(pmap,
3992 								  pt_placemark);
3993 					}
3994 					pv_put(pd_pv);
3995 				} else {
3996 					pv_placemarker_wakeup(pmap,
3997 							      pt_placemark);
3998 				}
3999 #else
4000 				pv_placemarker_wakeup(pmap, pt_placemark);
4001 #endif
4002 				pv_placemarker_wakeup(pmap, pte_placemark);
4003 				goto fast_skip;
4004 			}
4005 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(info->sva));
4006 		}
4007 
4008 		/*
4009 		 * NOTE: *ptep can't be ripped out from under us if we hold
4010 		 *	 pte_pv (or pte_placemark) locked, but bits can
4011 		 *	 change.
4012 		 */
4013 		oldpte = *ptep;
4014 		cpu_ccfence();
4015 		if (oldpte == 0) {
4016 			KKASSERT(pte_pv == NULL);
4017 			pv_placemarker_wakeup(pmap, pte_placemark);
4018 		} else {
4019 			KASSERT((oldpte & pmap->pmap_bits[PG_V_IDX]) ==
4020 				pmap->pmap_bits[PG_V_IDX],
4021 			    ("badB *ptep %016lx/%016lx sva %016lx pte_pv NULL",
4022 			    *ptep, oldpte, info->sva));
4023 			info->func(pmap, info, pte_placemark, pt_pv,
4024 				   info->sva, ptep, info->arg);
4025 		}
4026 		if (pt_pv)
4027 			pv_put(pt_pv);
4028 fast_skip:
4029 		pmap_inval_bulk_flush(info->bulk);
4030 		return;
4031 	}
4032 
4033 	/*
4034 	 * Nominal scan case, RB_SCAN() for PD pages and iterate from
4035 	 * there.
4036 	 *
4037 	 * WARNING! eva can overflow our standard ((N + mask) >> bits)
4038 	 *	    bounds, resulting in a pd_pindex of 0.  To solve the
4039 	 *	    problem we use an inclusive range.
4040 	 */
4041 	info->sva_pd_pindex = pmap_pd_pindex(info->sva);
4042 	info->eva_pd_pindex = pmap_pd_pindex(info->eva - PAGE_SIZE);
4043 
4044 	if (info->sva >= VM_MAX_USER_ADDRESS) {
4045 		/*
4046 		 * The kernel does not currently maintain any pv_entry's for
4047 		 * higher-level page tables.
4048 		 */
4049 		bzero(&dummy_pv, sizeof(dummy_pv));
4050 		dummy_pv.pv_pindex = info->sva_pd_pindex;
4051 		spin_lock(&pmap->pm_spin);
4052 		while (dummy_pv.pv_pindex <= info->eva_pd_pindex) {
4053 			pmap_scan_callback(&dummy_pv, info);
4054 			++dummy_pv.pv_pindex;
4055 			if (dummy_pv.pv_pindex < info->sva_pd_pindex) /*wrap*/
4056 				break;
4057 		}
4058 		spin_unlock(&pmap->pm_spin);
4059 	} else {
4060 		/*
4061 		 * User page tables maintain local PML4, PDP, PD, and PT
4062 		 * pv_entry's.  pv_entry's are not used for PTEs.
4063 		 */
4064 		spin_lock(&pmap->pm_spin);
4065 		pv_entry_rb_tree_RB_SCAN(&pmap->pm_pvroot, pmap_scan_cmp,
4066 					 pmap_scan_callback, info);
4067 		spin_unlock(&pmap->pm_spin);
4068 	}
4069 	pmap_inval_bulk_flush(info->bulk);
4070 }
4071 
4072 /*
4073  * WARNING! pmap->pm_spin held
4074  *
4075  * WARNING! eva can overflow our standard ((N + mask) >> bits)
4076  *	    bounds, resulting in a pd_pindex of 0.  To solve the
4077  *	    problem we use an inclusive range.
4078  */
4079 static int
4080 pmap_scan_cmp(pv_entry_t pv, void *data)
4081 {
4082 	struct pmap_scan_info *info = data;
4083 	if (pv->pv_pindex < info->sva_pd_pindex)
4084 		return(-1);
4085 	if (pv->pv_pindex > info->eva_pd_pindex)
4086 		return(1);
4087 	return(0);
4088 }
4089 
4090 /*
4091  * pmap_scan() by PDs
4092  *
4093  * WARNING! pmap->pm_spin held
4094  */
4095 static int
4096 pmap_scan_callback(pv_entry_t pv, void *data)
4097 {
4098 	struct pmap_scan_info *info = data;
4099 	struct pmap *pmap = info->pmap;
4100 	pv_entry_t pd_pv;	/* A page directory PV */
4101 	pv_entry_t pt_pv;	/* A page table PV */
4102 	vm_pindex_t *pt_placemark;
4103 	pt_entry_t *ptep;
4104 	pt_entry_t oldpte;
4105 	vm_offset_t sva;
4106 	vm_offset_t eva;
4107 	vm_offset_t va_next;
4108 	vm_pindex_t pd_pindex;
4109 	int error;
4110 
4111 	/*
4112 	 * Stop if requested
4113 	 */
4114 	if (info->stop)
4115 		return -1;
4116 
4117 	/*
4118 	 * Pull the PD pindex from the pv before releasing the spinlock.
4119 	 *
4120 	 * WARNING: pv is faked for kernel pmap scans.
4121 	 */
4122 	pd_pindex = pv->pv_pindex;
4123 	spin_unlock(&pmap->pm_spin);
4124 	pv = NULL;	/* invalid after spinlock unlocked */
4125 
4126 	/*
4127 	 * Calculate the page range within the PD.  SIMPLE pmaps are
4128 	 * direct-mapped for the entire 2^64 address space.  Normal pmaps
4129 	 * reflect the user and kernel address space which requires
4130 	 * cannonicalization w/regards to converting pd_pindex's back
4131 	 * into addresses.
4132 	 */
4133 	sva = (pd_pindex - pmap_pd_pindex(0)) << PDPSHIFT;
4134 	if ((pmap->pm_flags & PMAP_FLAG_SIMPLE) == 0 &&
4135 	    (sva & PML4_SIGNMASK)) {
4136 		sva |= PML4_SIGNMASK;
4137 	}
4138 	eva = sva + NBPDP;	/* can overflow */
4139 	if (sva < info->sva)
4140 		sva = info->sva;
4141 	if (eva < info->sva || eva > info->eva)
4142 		eva = info->eva;
4143 
4144 	/*
4145 	 * NOTE: kernel mappings do not track page table pages, only
4146 	 * 	 terminal pages.
4147 	 *
4148 	 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4.
4149 	 *	 However, for the scan to be efficient we try to
4150 	 *	 cache items top-down.
4151 	 */
4152 	pd_pv = NULL;
4153 	pt_pv = NULL;
4154 
4155 	for (; sva < eva; sva = va_next) {
4156 		if (info->stop)
4157 			break;
4158 		if (sva >= VM_MAX_USER_ADDRESS) {
4159 			if (pt_pv) {
4160 				pv_put(pt_pv);
4161 				pt_pv = NULL;
4162 			}
4163 			goto kernel_skip;
4164 		}
4165 
4166 		/*
4167 		 * PD cache, scan shortcut if it doesn't exist.
4168 		 */
4169 		if (pd_pv == NULL) {
4170 			pd_pv = pv_get(pmap, pmap_pd_pindex(sva), NULL);
4171 		} else if (pd_pv->pv_pmap != pmap ||
4172 			   pd_pv->pv_pindex != pmap_pd_pindex(sva)) {
4173 			pv_put(pd_pv);
4174 			pd_pv = pv_get(pmap, pmap_pd_pindex(sva), NULL);
4175 		}
4176 		if (pd_pv == NULL) {
4177 			va_next = (sva + NBPDP) & ~PDPMASK;
4178 			if (va_next < sva)
4179 				va_next = eva;
4180 			continue;
4181 		}
4182 
4183 		/*
4184 		 * PT cache
4185 		 *
4186 		 * NOTE: The cached pt_pv can be removed from the pmap when
4187 		 *	 pmap_dynamic_delete is enabled.
4188 		 */
4189 		if (pt_pv && (pt_pv->pv_pmap != pmap ||
4190 			      pt_pv->pv_pindex != pmap_pt_pindex(sva))) {
4191 			pv_put(pt_pv);
4192 			pt_pv = NULL;
4193 		}
4194 		if (pt_pv == NULL) {
4195 			pt_pv = pv_get_try(pmap, pmap_pt_pindex(sva),
4196 					   &pt_placemark, &error);
4197 			if (error) {
4198 				pv_put(pd_pv);	/* lock order */
4199 				pd_pv = NULL;
4200 				if (pt_pv) {
4201 					pv_lock(pt_pv);
4202 					pv_put(pt_pv);
4203 					pt_pv = NULL;
4204 				} else {
4205 					pv_placemarker_wait(pmap, pt_placemark);
4206 				}
4207 				va_next = sva;
4208 				continue;
4209 			}
4210 			/* may have to re-check later if pt_pv is NULL here */
4211 		}
4212 
4213 		/*
4214 		 * If pt_pv is NULL we either have a shared page table
4215 		 * page (NOT IMPLEMENTED XXX) and must issue a callback
4216 		 * specific to that case, or there is no page table page.
4217 		 *
4218 		 * Either way we can skip the page table page.
4219 		 *
4220 		 * WARNING! pt_pv can also be NULL due to a pv creation
4221 		 *	    race where we find it to be NULL and then
4222 		 *	    later see a pte_pv.  But its possible the pt_pv
4223 		 *	    got created inbetween the two operations, so
4224 		 *	    we must check.
4225 		 *
4226 		 *	    XXX This should no longer be the case because
4227 		 *	    we have pt_placemark.
4228 		 */
4229 		if (pt_pv == NULL) {
4230 #if 0
4231 			/* XXX REMOVED */
4232 			/*
4233 			 * Possible unmanaged (shared from another pmap)
4234 			 * page table page.
4235 			 *
4236 			 * WARNING!  We must hold pt_placemark across the
4237 			 *	     *ptep test to prevent misintepreting
4238 			 *	     a non-zero *ptep as a shared page
4239 			 *	     table page.  Hold it across the function
4240 			 *	     callback as well for SMP safety.
4241 			 */
4242 			KKASSERT(0);
4243 			ptep = pv_pte_lookup(pd_pv, pmap_pt_index(sva));
4244 			if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
4245 				info->func(pmap, info, pt_placemark, pd_pv,
4246 					   sva, ptep, info->arg);
4247 			} else {
4248 				pv_placemarker_wakeup(pmap, pt_placemark);
4249 			}
4250 #else
4251 			pv_placemarker_wakeup(pmap, pt_placemark);
4252 #endif
4253 
4254 			/*
4255 			 * Done, move to next page table page.
4256 			 */
4257 			va_next = (sva + NBPDR) & ~PDRMASK;
4258 			if (va_next < sva)
4259 				va_next = eva;
4260 			continue;
4261 		}
4262 
4263 		/*
4264 		 * From this point in the loop testing pt_pv for non-NULL
4265 		 * means we are in UVM, else if it is NULL we are in KVM.
4266 		 *
4267 		 * Limit our scan to either the end of the va represented
4268 		 * by the current page table page, or to the end of the
4269 		 * range being removed.
4270 		 */
4271 kernel_skip:
4272 		va_next = (sva + NBPDR) & ~PDRMASK;
4273 		if (va_next < sva)
4274 			va_next = eva;
4275 		if (va_next > eva)
4276 			va_next = eva;
4277 
4278 		/*
4279 		 * Scan the page table for pages.  Some pages may not be
4280 		 * managed (might not have a pv_entry).
4281 		 *
4282 		 * There is no page table management for kernel pages so
4283 		 * pt_pv will be NULL in that case, but otherwise pt_pv
4284 		 * is non-NULL, locked, and referenced.
4285 		 */
4286 
4287 		/*
4288 		 * At this point a non-NULL pt_pv means a UVA, and a NULL
4289 		 * pt_pv means a KVA.
4290 		 */
4291 		if (pt_pv)
4292 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(sva));
4293 		else
4294 			ptep = vtopte(sva);
4295 
4296 		while (sva < va_next) {
4297 			vm_pindex_t *pte_placemark;
4298 			pv_entry_t pte_pv;
4299 
4300 			/*
4301 			 * Yield every 64 pages, stop if requested.
4302 			 */
4303 			if ((++info->count & 63) == 0)
4304 				lwkt_user_yield();
4305 			if (info->stop)
4306 				break;
4307 
4308 			/*
4309 			 * We can shortcut our scan if *ptep == 0.  This is
4310 			 * an unlocked check.
4311 			 */
4312 			if (*ptep == 0) {
4313 				sva += PAGE_SIZE;
4314 				++ptep;
4315 				continue;
4316 			}
4317 			cpu_ccfence();
4318 
4319 			/*
4320 			 * Acquire the pte_placemark.  pte_pv's won't exist
4321 			 * for leaf pages.
4322 			 *
4323 			 * A multitude of races are possible here so if we
4324 			 * cannot lock definite state we clean out our cache
4325 			 * and break the inner while() loop to force a loop
4326 			 * up to the top of the for().
4327 			 *
4328 			 * XXX unlock/relock pd_pv, pt_pv, and re-test their
4329 			 *     validity instead of looping up?
4330 			 */
4331 			pte_pv = pv_get_try(pmap, pmap_pte_pindex(sva),
4332 					    &pte_placemark, &error);
4333 			KKASSERT(pte_pv == NULL);
4334 			if (error) {
4335 				if (pd_pv) {
4336 					pv_put(pd_pv);	/* lock order */
4337 					pd_pv = NULL;
4338 				}
4339 				if (pt_pv) {
4340 					pv_put(pt_pv);	/* lock order */
4341 					pt_pv = NULL;
4342 				}
4343 				pv_placemarker_wait(pmap, pte_placemark);
4344 				va_next = sva;		/* retry */
4345 				break;
4346 			}
4347 
4348 			/*
4349 			 * Reload *ptep after successfully locking the
4350 			 * pindex.
4351 			 */
4352 			cpu_ccfence();
4353 			oldpte = *ptep;
4354 			if (oldpte == 0) {
4355 				pv_placemarker_wakeup(pmap, pte_placemark);
4356 				sva += PAGE_SIZE;
4357 				++ptep;
4358 				continue;
4359 			}
4360 
4361 			/*
4362 			 * We can't hold pd_pv across the callback (because
4363 			 * we don't pass it to the callback and the callback
4364 			 * might deadlock)
4365 			 */
4366 			if (pd_pv) {
4367 				vm_page_wire_quick(pd_pv->pv_m);
4368 				pv_unlock(pd_pv);
4369 			}
4370 
4371 			/*
4372 			 * Ready for the callback.  The locked placemarker
4373 			 * is consumed by the callback.
4374 			 */
4375 			if (oldpte & pmap->pmap_bits[PG_MANAGED_IDX]) {
4376 				/*
4377 				 * Managed pte
4378 				 */
4379 				KASSERT((oldpte & pmap->pmap_bits[PG_V_IDX]),
4380 				    ("badC *ptep %016lx/%016lx sva %016lx",
4381 				    *ptep, oldpte, sva));
4382 				/*
4383 				 * We must unlock pd_pv across the callback
4384 				 * to avoid deadlocks on any recursive
4385 				 * disposal.  Re-check that it still exists
4386 				 * after re-locking.
4387 				 *
4388 				 * Call target disposes of pte_placemark
4389 				 * and may destroy but will not dispose
4390 				 * of pt_pv.
4391 				 */
4392 				info->func(pmap, info, pte_placemark, pt_pv,
4393 					   sva, ptep, info->arg);
4394 			} else {
4395 				/*
4396 				 * Unmanaged pte
4397 				 *
4398 				 * We must unlock pd_pv across the callback
4399 				 * to avoid deadlocks on any recursive
4400 				 * disposal.  Re-check that it still exists
4401 				 * after re-locking.
4402 				 *
4403 				 * Call target disposes of pte_placemark
4404 				 * and may destroy but will not dispose
4405 				 * of pt_pv.
4406 				 */
4407 				KASSERT((oldpte & pmap->pmap_bits[PG_V_IDX]),
4408 				    ("badD *ptep %016lx/%016lx sva %016lx ",
4409 				     *ptep, oldpte, sva));
4410 				info->func(pmap, info, pte_placemark, pt_pv,
4411 					   sva, ptep, info->arg);
4412 			}
4413 			if (pd_pv) {
4414 				pv_lock(pd_pv);
4415 				if (vm_page_unwire_quick(pd_pv->pv_m)) {
4416 					panic("pmap_scan_callback: "
4417 					      "bad wirecount on pd_pv");
4418 				}
4419 				if (pd_pv->pv_pmap == NULL) {
4420 					va_next = sva;		/* retry */
4421 					break;
4422 				}
4423 			}
4424 
4425 			/*
4426 			 * NOTE: The cached pt_pv can be removed from the
4427 			 *	 pmap when pmap_dynamic_delete is enabled,
4428 			 *	 which will cause ptep to become stale.
4429 			 *
4430 			 *	 This also means that no pages remain under
4431 			 *	 the PT, so we can just break out of the inner
4432 			 *	 loop and let the outer loop clean everything
4433 			 *	 up.
4434 			 */
4435 			if (pt_pv && pt_pv->pv_pmap != pmap)
4436 				break;
4437 			sva += PAGE_SIZE;
4438 			++ptep;
4439 		}
4440 	}
4441 	if (pd_pv) {
4442 		pv_put(pd_pv);
4443 		pd_pv = NULL;
4444 	}
4445 	if (pt_pv) {
4446 		pv_put(pt_pv);
4447 		pt_pv = NULL;
4448 	}
4449 	if ((++info->count & 7) == 0)
4450 		lwkt_user_yield();
4451 
4452 	/*
4453 	 * Relock before returning.
4454 	 */
4455 	spin_lock(&pmap->pm_spin);
4456 	return (0);
4457 }
4458 
4459 void
4460 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
4461 {
4462 	struct pmap_scan_info info;
4463 
4464 	info.pmap = pmap;
4465 	info.sva = sva;
4466 	info.eva = eva;
4467 	info.func = pmap_remove_callback;
4468 	info.arg = NULL;
4469 	pmap_scan(&info, 1);
4470 #if 0
4471 	cpu_invltlb();
4472 	if (eva - sva < 1024*1024) {
4473 		while (sva < eva) {
4474 			cpu_invlpg((void *)sva);
4475 			sva += PAGE_SIZE;
4476 		}
4477 	}
4478 #endif
4479 }
4480 
4481 static void
4482 pmap_remove_noinval(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
4483 {
4484 	struct pmap_scan_info info;
4485 
4486 	info.pmap = pmap;
4487 	info.sva = sva;
4488 	info.eva = eva;
4489 	info.func = pmap_remove_callback;
4490 	info.arg = NULL;
4491 	pmap_scan(&info, 0);
4492 }
4493 
4494 static void
4495 pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
4496 		     vm_pindex_t *pte_placemark, pv_entry_t pt_pv,
4497 		     vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
4498 {
4499 	pt_entry_t pte;
4500 
4501 	/*
4502 	 * Managed or unmanaged pte (pte_placemark is non-NULL)
4503 	 *
4504 	 * pt_pv's wire_count is still bumped by unmanaged pages
4505 	 * so we must decrement it manually.
4506 	 *
4507 	 * We have to unwire the target page table page.
4508 	 */
4509 	pte = pmap_inval_bulk(info->bulk, va, ptep, 0);
4510 	if (pte & pmap->pmap_bits[PG_MANAGED_IDX]) {
4511 		vm_page_t p;
4512 
4513 		p = PHYS_TO_VM_PAGE(pte & PG_FRAME);
4514 		KKASSERT(pte & pmap->pmap_bits[PG_V_IDX]);
4515 		if (pte & pmap->pmap_bits[PG_M_IDX])
4516 			vm_page_dirty(p);
4517 		if (pte & pmap->pmap_bits[PG_A_IDX])
4518 			vm_page_flag_set(p, PG_REFERENCED);
4519 
4520 		/*
4521 		 * NOTE: p is not hard-busied so it is not safe to
4522 		 *	 clear PG_MAPPED and PG_WRITEABLE on the 1->0
4523 		 *	 transition against them being set in
4524 		 *	 pmap_enter().
4525 		 */
4526 		if (pte & pmap->pmap_bits[PG_RW_IDX])
4527 			atomic_add_long(&p->md.writeable_count, -1);
4528 		pmap_page_stats_deleting(
4529 			atomic_fetchadd_long(&p->md.pmap_count, -1));
4530 	}
4531 	if (pte & pmap->pmap_bits[PG_V_IDX]) {
4532 		atomic_add_long(&pmap->pm_stats.resident_count, -1);
4533 		if (pt_pv && vm_page_unwire_quick(pt_pv->pv_m))
4534 			panic("pmap_remove: insufficient wirecount");
4535 	}
4536 	if (pte & pmap->pmap_bits[PG_W_IDX])
4537 		atomic_add_long(&pmap->pm_stats.wired_count, -1);
4538 	if (pte & pmap->pmap_bits[PG_G_IDX])
4539 		cpu_invlpg((void *)va);
4540 	pv_placemarker_wakeup(pmap, pte_placemark);
4541 }
4542 
4543 /*
4544  * Removes this physical page from all physical maps in which it resides.
4545  * Reflects back modify bits to the pager.
4546  *
4547  * This routine may not be called from an interrupt.
4548  *
4549  * The page must be busied by its caller, preventing new ptes from being
4550  * installed.  This allows us to assert that pmap_count is zero and safely
4551  * clear the MAPPED and WRITEABLE bits upon completion.
4552  */
4553 static
4554 void
4555 pmap_remove_all(vm_page_t m)
4556 {
4557 	int retry;
4558 
4559 	if (!pmap_initialized)
4560 		return;
4561 
4562 	/*
4563 	 * pmap_count doesn't cover fictitious pages, but PG_MAPPED does
4564 	 * (albeit without certain race protections).
4565 	 */
4566 #if 0
4567 	if (m->md.pmap_count == 0)
4568 		return;
4569 #endif
4570 	if ((m->flags & PG_MAPPED) == 0)
4571 		return;
4572 
4573 	retry = ticks + hz * 60;
4574 again:
4575 	PMAP_PAGE_BACKING_SCAN(m, NULL, ipmap, iptep, ipte, iva) {
4576 		if (!pmap_inval_smp_cmpset(ipmap, iva, iptep, ipte, 0))
4577 			PMAP_PAGE_BACKING_RETRY;
4578 		if (ipte & ipmap->pmap_bits[PG_MANAGED_IDX]) {
4579 			if (ipte & ipmap->pmap_bits[PG_M_IDX])
4580 				vm_page_dirty(m);
4581 			if (ipte & ipmap->pmap_bits[PG_A_IDX])
4582 				vm_page_flag_set(m, PG_REFERENCED);
4583 
4584 			/*
4585 			 * NOTE: m is not hard-busied so it is not safe to
4586 			 *	 clear PG_MAPPED and PG_WRITEABLE on the 1->0
4587 			 *	 transition against them being set in
4588 			 *	 pmap_enter().
4589 			 */
4590 			if (ipte & ipmap->pmap_bits[PG_RW_IDX])
4591 				atomic_add_long(&m->md.writeable_count, -1);
4592 			pmap_page_stats_deleting(
4593 				atomic_fetchadd_long(&m->md.pmap_count, -1));
4594 		}
4595 
4596 		/*
4597 		 * Cleanup various tracking counters.  pt_pv can't go away
4598 		 * due to our wired ref.
4599 		 */
4600 		if (ipmap != &kernel_pmap) {
4601 			pv_entry_t pt_pv;
4602 
4603 			spin_lock_shared(&ipmap->pm_spin);
4604 			pt_pv = pv_entry_lookup(ipmap, pmap_pt_pindex(iva));
4605 			spin_unlock_shared(&ipmap->pm_spin);
4606 
4607 			if (pt_pv) {
4608 				if (vm_page_unwire_quick(pt_pv->pv_m)) {
4609 					panic("pmap_remove_all: bad "
4610 					      "wire_count on pt_pv");
4611 				}
4612 				atomic_add_long(
4613 					&ipmap->pm_stats.resident_count, -1);
4614 			}
4615 		}
4616 		if (ipte & ipmap->pmap_bits[PG_W_IDX])
4617 			atomic_add_long(&ipmap->pm_stats.wired_count, -1);
4618 		if (ipte & ipmap->pmap_bits[PG_G_IDX])
4619 			cpu_invlpg((void *)iva);
4620 	} PMAP_PAGE_BACKING_DONE;
4621 
4622 	/*
4623 	 * pmap_count should be zero but it is possible to race a pmap_enter()
4624 	 * replacement (see 'oldm').  Once it is zero it cannot become
4625 	 * non-zero because the page is hard-busied.
4626 	 */
4627 	if (m->md.pmap_count || m->md.writeable_count) {
4628 		tsleep(&m->md.pmap_count, 0, "pgunm", 1);
4629 		if (retry - ticks > 0)
4630 			goto again;
4631 		panic("pmap_remove_all: cannot return pmap_count "
4632 		      "to 0 (%ld, %ld)",
4633 		      m->md.pmap_count, m->md.writeable_count);
4634 	}
4635 	vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
4636 }
4637 
4638 /*
4639  * Removes the page from a particular pmap.
4640  *
4641  * The page must be busied by the caller.
4642  */
4643 void
4644 pmap_remove_specific(pmap_t pmap_match, vm_page_t m)
4645 {
4646 	if (!pmap_initialized)
4647 		return;
4648 
4649 	/*
4650 	 * PG_MAPPED test works for both non-fictitious and fictitious pages.
4651 	 */
4652 	if ((m->flags & PG_MAPPED) == 0)
4653 		return;
4654 
4655 	PMAP_PAGE_BACKING_SCAN(m, pmap_match, ipmap, iptep, ipte, iva) {
4656 		if (!pmap_inval_smp_cmpset(ipmap, iva, iptep, ipte, 0))
4657 			PMAP_PAGE_BACKING_RETRY;
4658 		if (ipte & ipmap->pmap_bits[PG_MANAGED_IDX]) {
4659 			if (ipte & ipmap->pmap_bits[PG_M_IDX])
4660 				vm_page_dirty(m);
4661 			if (ipte & ipmap->pmap_bits[PG_A_IDX])
4662 				vm_page_flag_set(m, PG_REFERENCED);
4663 
4664 			/*
4665 			 * NOTE: m is not hard-busied so it is not safe to
4666 			 *	 clear PG_MAPPED and PG_WRITEABLE on the 1->0
4667 			 *	 transition against them being set in
4668 			 *	 pmap_enter().
4669 			 */
4670 			if (ipte & ipmap->pmap_bits[PG_RW_IDX])
4671 				atomic_add_long(&m->md.writeable_count, -1);
4672 			pmap_page_stats_deleting(
4673 				atomic_fetchadd_long(&m->md.pmap_count, -1));
4674 		}
4675 
4676 		/*
4677 		 * Cleanup various tracking counters.  pt_pv can't go away
4678 		 * due to our wired ref.
4679 		 */
4680 		if (ipmap != &kernel_pmap) {
4681 			pv_entry_t pt_pv;
4682 
4683 			spin_lock_shared(&ipmap->pm_spin);
4684 			pt_pv = pv_entry_lookup(ipmap, pmap_pt_pindex(iva));
4685 			spin_unlock_shared(&ipmap->pm_spin);
4686 
4687 			if (pt_pv) {
4688 				atomic_add_long(
4689 					&ipmap->pm_stats.resident_count, -1);
4690 				if (vm_page_unwire_quick(pt_pv->pv_m)) {
4691 					panic("pmap_remove_specific: bad "
4692 					      "wire_count on pt_pv");
4693 				}
4694 			}
4695 		}
4696 		if (ipte & ipmap->pmap_bits[PG_W_IDX])
4697 			atomic_add_long(&ipmap->pm_stats.wired_count, -1);
4698 		if (ipte & ipmap->pmap_bits[PG_G_IDX])
4699 			cpu_invlpg((void *)iva);
4700 	} PMAP_PAGE_BACKING_DONE;
4701 }
4702 
4703 /*
4704  * Set the physical protection on the specified range of this map
4705  * as requested.  This function is typically only used for debug watchpoints
4706  * and COW pages.
4707  *
4708  * This function may not be called from an interrupt if the map is
4709  * not the kernel_pmap.
4710  *
4711  * NOTE!  For shared page table pages we just unmap the page.
4712  */
4713 void
4714 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
4715 {
4716 	struct pmap_scan_info info;
4717 	/* JG review for NX */
4718 
4719 	if (pmap == NULL)
4720 		return;
4721 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == VM_PROT_NONE) {
4722 		pmap_remove(pmap, sva, eva);
4723 		return;
4724 	}
4725 	if (prot & VM_PROT_WRITE)
4726 		return;
4727 	info.pmap = pmap;
4728 	info.sva = sva;
4729 	info.eva = eva;
4730 	info.func = pmap_protect_callback;
4731 	info.arg = &prot;
4732 	pmap_scan(&info, 1);
4733 }
4734 
4735 static
4736 void
4737 pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
4738 		      vm_pindex_t *pte_placemark,
4739 		      pv_entry_t pt_pv, vm_offset_t va,
4740 		      pt_entry_t *ptep, void *arg __unused)
4741 {
4742 	pt_entry_t pbits;
4743 	pt_entry_t cbits;
4744 	vm_page_t m;
4745 
4746 again:
4747 	pbits = *ptep;
4748 	cpu_ccfence();
4749 	cbits = pbits;
4750 	if (pbits & pmap->pmap_bits[PG_MANAGED_IDX]) {
4751 		cbits &= ~pmap->pmap_bits[PG_A_IDX];
4752 		cbits &= ~pmap->pmap_bits[PG_M_IDX];
4753 	}
4754 	/* else unmanaged page, adjust bits, no wire changes */
4755 
4756 	if (ptep) {
4757 		cbits &= ~pmap->pmap_bits[PG_RW_IDX];
4758 #ifdef PMAP_DEBUG2
4759 		if (pmap_enter_debug > 0) {
4760 			--pmap_enter_debug;
4761 			kprintf("pmap_protect va=%lx ptep=%p "
4762 				"pt_pv=%p cbits=%08lx\n",
4763 				va, ptep, pt_pv, cbits
4764 			);
4765 		}
4766 #endif
4767 		if (pbits != cbits) {
4768 			if (!pmap_inval_smp_cmpset(pmap, va,
4769 						   ptep, pbits, cbits)) {
4770 				goto again;
4771 			}
4772 		}
4773 		if (pbits & pmap->pmap_bits[PG_MANAGED_IDX]) {
4774 			m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
4775 			if (pbits & pmap->pmap_bits[PG_A_IDX])
4776 				vm_page_flag_set(m, PG_REFERENCED);
4777 			if (pbits & pmap->pmap_bits[PG_M_IDX])
4778 				vm_page_dirty(m);
4779 			if (pbits & pmap->pmap_bits[PG_RW_IDX])
4780 				atomic_add_long(&m->md.writeable_count, -1);
4781 
4782 		}
4783 	}
4784 	pv_placemarker_wakeup(pmap, pte_placemark);
4785 }
4786 
4787 /*
4788  * Insert the vm_page (m) at the virtual address (va), replacing any prior
4789  * mapping at that address.  Set protection and wiring as requested.
4790  *
4791  * If entry is non-NULL we check to see if the SEG_SIZE optimization is
4792  * possible.  If it is we enter the page into the appropriate shared pmap
4793  * hanging off the related VM object instead of the passed pmap, then we
4794  * share the page table page from the VM object's pmap into the current pmap.
4795  *
4796  * NOTE: This routine MUST insert the page into the pmap now, it cannot
4797  *	 lazy-evaluate.
4798  */
4799 void
4800 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
4801 	   boolean_t wired, vm_map_entry_t entry)
4802 {
4803 	pv_entry_t pt_pv;	/* page table */
4804 	pv_entry_t pte_pv;	/* page table entry */
4805 	vm_pindex_t *pte_placemark;
4806 	pt_entry_t *ptep;
4807 	pt_entry_t origpte;
4808 	vm_paddr_t opa;
4809 	vm_page_t oldm;
4810 	pt_entry_t newpte;
4811 	vm_paddr_t pa;
4812 
4813 	if (pmap == NULL)
4814 		return;
4815 	va = trunc_page(va);
4816 #ifdef PMAP_DIAGNOSTIC
4817 	if (va >= KvaEnd)
4818 		panic("pmap_enter: toobig");
4819 	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
4820 		panic("pmap_enter: invalid to pmap_enter page table "
4821 		      "pages (va: 0x%lx)", va);
4822 #endif
4823 	if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
4824 		kprintf("Warning: pmap_enter called on UVA with "
4825 			"kernel_pmap\n");
4826 #ifdef DDB
4827 		db_print_backtrace();
4828 #endif
4829 	}
4830 	if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
4831 		kprintf("Warning: pmap_enter called on KVA without"
4832 			"kernel_pmap\n");
4833 #ifdef DDB
4834 		db_print_backtrace();
4835 #endif
4836 	}
4837 
4838 	/*
4839 	 * Get the locked page table page (pt_pv) for our new page table
4840 	 * entry, allocating it if necessary.
4841 	 *
4842 	 * There is no pte_pv for a terminal pte so the terminal pte will
4843 	 * be locked via pte_placemark.
4844 	 *
4845 	 * Only MMU actions by the CPU itself can modify the ptep out from
4846 	 * under us.
4847 	 *
4848 	 * If the pmap is still being initialized we assume existing
4849 	 * page tables.
4850 	 *
4851 	 * NOTE: Kernel mapppings do not track page table pages
4852 	 *	 (i.e. there is no pt_pv pt_pv structure).
4853 	 *
4854 	 * NOTE: origpte here is 'tentative', used only to check for
4855 	 *	 the degenerate case where the entry already exists and
4856 	 *	 matches.
4857 	 */
4858 	if (pmap_initialized == FALSE) {
4859 		pte_pv = NULL;
4860 		pt_pv = NULL;
4861 		pte_placemark = NULL;
4862 		ptep = vtopte(va);
4863 		origpte = *ptep;
4864 	} else {
4865 		pte_pv = pv_get(pmap, pmap_pte_pindex(va), &pte_placemark);
4866 		KKASSERT(pte_pv == NULL);
4867 		if (va >= VM_MAX_USER_ADDRESS) {
4868 			pt_pv = NULL;
4869 			ptep = vtopte(va);
4870 		} else {
4871 			pt_pv = pmap_allocpte(pmap, pmap_pt_pindex(va), NULL);
4872 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
4873 		}
4874 		origpte = *ptep;
4875 		cpu_ccfence();
4876 	}
4877 
4878 	pa = VM_PAGE_TO_PHYS(m);
4879 
4880 	/*
4881 	 * Calculate the new PTE.
4882 	 */
4883 	newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) |
4884 		 pmap->pmap_bits[PG_V_IDX] | pmap->pmap_bits[PG_A_IDX]);
4885 	if (wired)
4886 		newpte |= pmap->pmap_bits[PG_W_IDX];
4887 	if (va < VM_MAX_USER_ADDRESS)
4888 		newpte |= pmap->pmap_bits[PG_U_IDX];
4889 	if ((m->flags & PG_FICTITIOUS) == 0)
4890 		newpte |= pmap->pmap_bits[PG_MANAGED_IDX];
4891 //	if (pmap == &kernel_pmap)
4892 //		newpte |= pgeflag;
4893 	newpte |= pmap->pmap_cache_bits[m->pat_mode];
4894 
4895 	/*
4896 	 * It is possible for multiple faults to occur in threaded
4897 	 * environments, the existing pte might be correct.
4898 	 */
4899 	if (((origpte ^ newpte) &
4900 	    ~(pt_entry_t)(pmap->pmap_bits[PG_M_IDX] |
4901 			  pmap->pmap_bits[PG_A_IDX])) == 0) {
4902 		goto done;
4903 	}
4904 
4905 	/*
4906 	 * Adjust page flags.  The page is soft-busied or hard-busied, we
4907 	 * should be able to safely set PG_* flag bits even with the (shared)
4908 	 * soft-busy.
4909 	 *
4910 	 * The pmap_count and writeable_count is only tracked for
4911 	 * non-fictitious pages.  As a bit of a safety, bump pmap_count
4912 	 * and set the PG_* bits before mapping the page.  If another part
4913 	 * of the system does not properly hard-busy the page (against our
4914 	 * soft-busy or hard-busy) in order to remove mappings it might not
4915 	 * see the pte that we are about to add and thus will not be able to
4916 	 * drop pmap_count to 0.
4917 	 *
4918 	 * The PG_MAPPED and PG_WRITEABLE flags are set for any type of page.
4919 	 *
4920 	 * NOTE! PG_MAPPED and PG_WRITEABLE can only be cleared when
4921 	 *	 the page is hard-busied AND pmap_count is 0.  This
4922 	 *	 interlocks our setting of the flags here.
4923 	 */
4924 	/*vm_page_spin_lock(m);*/
4925 	if ((m->flags & PG_FICTITIOUS) == 0) {
4926 		pmap_page_stats_adding(
4927 			atomic_fetchadd_long(&m->md.pmap_count, 1));
4928 		if (newpte & pmap->pmap_bits[PG_RW_IDX])
4929 			atomic_add_long(&m->md.writeable_count, 1);
4930 	}
4931 	if (newpte & pmap->pmap_bits[PG_RW_IDX]) {
4932 		if ((m->flags & (PG_MAPPED | PG_WRITEABLE)) == 0)
4933 			vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
4934 	} else {
4935 		if ((m->flags & PG_MAPPED) == 0)
4936 			vm_page_flag_set(m, PG_MAPPED);
4937 	}
4938 	/*vm_page_spin_unlock(m);*/
4939 
4940 	/*
4941 	 * A race can develop when replacing an existing mapping.  The new
4942 	 * page has been busied and the pte is placemark-locked, but the
4943 	 * old page is could be ripped out from under us at any time by
4944 	 * a backing scan.
4945 	 *
4946 	 * The race is handled by having the backing scans check pmap_count
4947 	 * writeable_count when doing operations that should ensure one
4948 	 * becomes 0.
4949 	 */
4950 	opa = origpte & PG_FRAME;
4951 	if (opa && (origpte & pmap->pmap_bits[PG_MANAGED_IDX])) {
4952 		oldm = PHYS_TO_VM_PAGE(opa);
4953 		KKASSERT(opa == oldm->phys_addr);
4954 		KKASSERT(entry != NULL);
4955 	} else {
4956 		oldm = NULL;
4957 	}
4958 
4959 	/*
4960 	 * Swap the new and old PTEs and perform any necessary SMP
4961 	 * synchronization.
4962 	 */
4963 	if ((prot & VM_PROT_NOSYNC) || (opa == 0 && pt_pv != NULL)) {
4964 		/*
4965 		 * Explicitly permitted to avoid pmap cpu mask synchronization
4966 		 * or the prior content of a non-kernel-related pmap was
4967 		 * invalid.
4968 		 */
4969 		origpte = atomic_swap_long(ptep, newpte);
4970 		if (opa)
4971 			cpu_invlpg((void *)va);
4972 	} else {
4973 		/*
4974 		 * Not permitted to avoid pmap cpu mask synchronization
4975 		 * or there prior content being replaced or this is a kernel
4976 		 * related pmap.
4977 		 *
4978 		 * Due to other kernel optimizations, we cannot assume a
4979 		 * 0->non_zero transition of *ptep can be done with a swap.
4980 		 */
4981 		origpte = pmap_inval_smp(pmap, va, 1, ptep, newpte);
4982 	}
4983 	opa = origpte & PG_FRAME;
4984 
4985 #ifdef PMAP_DEBUG2
4986 	if (pmap_enter_debug > 0) {
4987 		--pmap_enter_debug;
4988 		kprintf("pmap_enter: va=%lx m=%p origpte=%lx newpte=%lx ptep=%p"
4989 			" pte_pv=%p pt_pv=%p opa=%lx prot=%02x\n",
4990 			va, m,
4991 			origpte, newpte, ptep,
4992 			pte_pv, pt_pv, opa, prot);
4993 	}
4994 #endif
4995 
4996 	/*
4997 	 * Account for the changes in the pt_pv and pmap.
4998 	 *
4999 	 * Retain the same wiring count due to replacing an existing page,
5000 	 * or bump the wiring count for a new page.
5001 	 */
5002 	if (pt_pv && opa == 0) {
5003 		vm_page_wire_quick(pt_pv->pv_m);
5004 		atomic_add_long(&pt_pv->pv_pmap->pm_stats.resident_count, 1);
5005 	}
5006 	if (wired && (origpte & pmap->pmap_bits[PG_W_IDX]) == 0)
5007 		atomic_add_long(&pmap->pm_stats.wired_count, 1);
5008 
5009 	/*
5010 	 * Account for the removal of the old page.  pmap and pt_pv stats
5011 	 * have already been fully adjusted for both.
5012 	 *
5013 	 * WARNING! oldm is not soft or hard-busied.  The pte at worst can
5014 	 *	    only be removed out from under us since we hold the
5015 	 *	    placemarker.  So if it is still there, it must not have
5016 	 *	    changed.
5017 	 */
5018 	if (opa && (origpte & pmap->pmap_bits[PG_MANAGED_IDX])) {
5019 		KKASSERT(oldm == PHYS_TO_VM_PAGE(opa));
5020 		if (origpte & pmap->pmap_bits[PG_M_IDX])
5021 			vm_page_dirty(oldm);
5022 		if (origpte & pmap->pmap_bits[PG_A_IDX])
5023 			vm_page_flag_set(oldm, PG_REFERENCED);
5024 
5025 		/*
5026 		 * NOTE: oldm is not hard-busied so it is not safe to
5027 		 *	 clear PG_MAPPED and PG_WRITEABLE on the 1->0
5028 		 *	 transition against them being set in
5029 		 *	 pmap_enter().
5030 		 */
5031 		if (origpte & pmap->pmap_bits[PG_RW_IDX])
5032 			atomic_add_long(&oldm->md.writeable_count, -1);
5033 		pmap_page_stats_deleting(
5034 			atomic_fetchadd_long(&oldm->md.pmap_count, -1));
5035 	}
5036 
5037 done:
5038 	KKASSERT((newpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0 ||
5039 		 (m->flags & PG_MAPPED));
5040 
5041 	/*
5042 	 * Cleanup the pv entry, allowing other accessors.  If the new page
5043 	 * is not managed but we have a pte_pv (which was locking our
5044 	 * operation), we can free it now.  pte_pv->pv_m should be NULL.
5045 	 */
5046 	if (pte_placemark)
5047 		pv_placemarker_wakeup(pmap, pte_placemark);
5048 	if (pt_pv)
5049 		pv_put(pt_pv);
5050 }
5051 
5052 /*
5053  * Make a temporary mapping for a physical address.  This is only intended
5054  * to be used for panic dumps.
5055  *
5056  * The caller is responsible for calling smp_invltlb().
5057  */
5058 void *
5059 pmap_kenter_temporary(vm_paddr_t pa, long i)
5060 {
5061 	pmap_kenter_quick((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
5062 	return ((void *)crashdumpmap);
5063 }
5064 
5065 #if 0
5066 #define MAX_INIT_PT (96)
5067 
5068 /*
5069  * This routine preloads the ptes for a given object into the specified pmap.
5070  * This eliminates the blast of soft faults on process startup and
5071  * immediately after an mmap.
5072  */
5073 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
5074 #endif
5075 
5076 void
5077 pmap_object_init_pt(pmap_t pmap, vm_map_entry_t entry,
5078 		    vm_offset_t addr, vm_size_t size, int limit)
5079 {
5080 #if 0
5081 	vm_prot_t prot = entry->protection;
5082 	vm_object_t object = entry->ba.object;
5083 	vm_pindex_t pindex = atop(entry->ba.offset + (addr - entry->ba.start));
5084 	struct rb_vm_page_scan_info info;
5085 	struct lwp *lp;
5086 	vm_size_t psize;
5087 
5088 	/*
5089 	 * We can't preinit if read access isn't set or there is no pmap
5090 	 * or object.
5091 	 */
5092 	if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
5093 		return;
5094 
5095 	/*
5096 	 * We can't preinit if the pmap is not the current pmap
5097 	 */
5098 	lp = curthread->td_lwp;
5099 	if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
5100 		return;
5101 
5102 	/*
5103 	 * Misc additional checks
5104 	 */
5105 	psize = x86_64_btop(size);
5106 
5107 	if ((object->type != OBJT_VNODE) ||
5108 		((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
5109 			(object->resident_page_count > MAX_INIT_PT))) {
5110 		return;
5111 	}
5112 
5113 	if (pindex + psize > object->size) {
5114 		if (object->size < pindex)
5115 			return;
5116 		psize = object->size - pindex;
5117 	}
5118 
5119 	if (psize == 0)
5120 		return;
5121 
5122 	/*
5123 	 * If everything is segment-aligned do not pre-init here.  Instead
5124 	 * allow the normal vm_fault path to pass a segment hint to
5125 	 * pmap_enter() which will then use an object-referenced shared
5126 	 * page table page.
5127 	 */
5128 	if ((addr & SEG_MASK) == 0 &&
5129 	    (ctob(psize) & SEG_MASK) == 0 &&
5130 	    (ctob(pindex) & SEG_MASK) == 0) {
5131 		return;
5132 	}
5133 
5134 	/*
5135 	 * Use a red-black scan to traverse the requested range and load
5136 	 * any valid pages found into the pmap.
5137 	 *
5138 	 * We cannot safely scan the object's memq without holding the
5139 	 * object token.
5140 	 */
5141 	info.start_pindex = pindex;
5142 	info.end_pindex = pindex + psize - 1;
5143 	info.limit = limit;
5144 	info.mpte = NULL;
5145 	info.addr = addr;
5146 	info.pmap = pmap;
5147 	info.object = object;
5148 	info.entry = entry;
5149 
5150 	/*
5151 	 * By using the NOLK scan, the callback function must be sure
5152 	 * to return -1 if the VM page falls out of the object.
5153 	 */
5154 	vm_object_hold_shared(object);
5155 	vm_page_rb_tree_RB_SCAN_NOLK(&object->rb_memq, rb_vm_page_scancmp,
5156 				     pmap_object_init_pt_callback, &info);
5157 	vm_object_drop(object);
5158 #endif
5159 }
5160 
5161 #if 0
5162 
5163 static
5164 int
5165 pmap_object_init_pt_callback(vm_page_t p, void *data)
5166 {
5167 	struct rb_vm_page_scan_info *info = data;
5168 	vm_pindex_t rel_index;
5169 	int hard_busy;
5170 
5171 	/*
5172 	 * don't allow an madvise to blow away our really
5173 	 * free pages allocating pv entries.
5174 	 */
5175 	if ((info->limit & MAP_PREFAULT_MADVISE) &&
5176 		vmstats.v_free_count < vmstats.v_free_reserved) {
5177 		    return(-1);
5178 	}
5179 
5180 	/*
5181 	 * Ignore list markers and ignore pages we cannot instantly
5182 	 * busy (while holding the object token).
5183 	 */
5184 	if (p->flags & PG_MARKER)
5185 		return 0;
5186 	hard_busy = 0;
5187 again:
5188 	if (hard_busy) {
5189 		if (vm_page_busy_try(p, TRUE))
5190 			return 0;
5191 	} else {
5192 		if (vm_page_sbusy_try(p))
5193 			return 0;
5194 	}
5195 	if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
5196 	    (p->flags & PG_FICTITIOUS) == 0) {
5197 		if ((p->queue - p->pc) == PQ_CACHE) {
5198 			if (hard_busy == 0) {
5199 				vm_page_sbusy_drop(p);
5200 				hard_busy = 1;
5201 				goto again;
5202 			}
5203 			vm_page_deactivate(p);
5204 		}
5205 		rel_index = p->pindex - info->start_pindex;
5206 		pmap_enter(info->pmap, info->addr + x86_64_ptob(rel_index), p,
5207 			   VM_PROT_READ, FALSE, info->entry);
5208 	}
5209 	if (hard_busy)
5210 		vm_page_wakeup(p);
5211 	else
5212 		vm_page_sbusy_drop(p);
5213 
5214 	/*
5215 	 * We are using an unlocked scan (that is, the scan expects its
5216 	 * current element to remain in the tree on return).  So we have
5217 	 * to check here and abort the scan if it isn't.
5218 	 */
5219 	if (p->object != info->object)
5220 		return -1;
5221 	lwkt_yield();
5222 	return(0);
5223 }
5224 
5225 #endif
5226 
5227 /*
5228  * Return TRUE if the pmap is in shape to trivially pre-fault the specified
5229  * address.
5230  *
5231  * Returns FALSE if it would be non-trivial or if a pte is already loaded
5232  * into the slot.
5233  *
5234  * The address must reside within a vm_map mapped range to ensure that the
5235  * page table doesn't get ripped out from under us.
5236  *
5237  * XXX This is safe only because page table pages are not freed.
5238  */
5239 int
5240 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
5241 {
5242 	pt_entry_t *pte;
5243 
5244 	/*spin_lock(&pmap->pm_spin);*/
5245 	if ((pte = pmap_pte(pmap, addr)) != NULL) {
5246 		if (*pte & pmap->pmap_bits[PG_V_IDX]) {
5247 			/*spin_unlock(&pmap->pm_spin);*/
5248 			return FALSE;
5249 		}
5250 	}
5251 	/*spin_unlock(&pmap->pm_spin);*/
5252 	return TRUE;
5253 }
5254 
5255 /*
5256  * Change the wiring attribute for a pmap/va pair.  The mapping must already
5257  * exist in the pmap.  The mapping may or may not be managed.  The wiring in
5258  * the page is not changed, the page is returned so the caller can adjust
5259  * its wiring (the page is not locked in any way).
5260  *
5261  * Wiring is not a hardware characteristic so there is no need to invalidate
5262  * TLB.  However, in an SMP environment we must use a locked bus cycle to
5263  * update the pte (if we are not using the pmap_inval_*() API that is)...
5264  * it's ok to do this for simple wiring changes.
5265  */
5266 vm_page_t
5267 pmap_unwire(pmap_t pmap, vm_offset_t va)
5268 {
5269 	pt_entry_t *ptep;
5270 	pv_entry_t pt_pv;
5271 	vm_paddr_t pa;
5272 	vm_page_t m;
5273 
5274 	if (pmap == NULL)
5275 		return NULL;
5276 
5277 	/*
5278 	 * Assume elements in the kernel pmap are stable
5279 	 */
5280 	if (pmap == &kernel_pmap) {
5281 		if (pmap_pt(pmap, va) == 0)
5282 			return NULL;
5283 		ptep = pmap_pte_quick(pmap, va);
5284 		if (pmap_pte_v(pmap, ptep)) {
5285 			if (pmap_pte_w(pmap, ptep))
5286 				atomic_add_long(&pmap->pm_stats.wired_count,-1);
5287 			atomic_clear_long(ptep, pmap->pmap_bits[PG_W_IDX]);
5288 			pa = *ptep & PG_FRAME;
5289 			m = PHYS_TO_VM_PAGE(pa);
5290 		} else {
5291 			m = NULL;
5292 		}
5293 	} else {
5294 		/*
5295 		 * We can only [un]wire pmap-local pages (we cannot wire
5296 		 * shared pages)
5297 		 */
5298 		pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
5299 		if (pt_pv == NULL)
5300 			return NULL;
5301 
5302 		ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
5303 		if ((*ptep & pmap->pmap_bits[PG_V_IDX]) == 0) {
5304 			pv_put(pt_pv);
5305 			return NULL;
5306 		}
5307 
5308 		if (pmap_pte_w(pmap, ptep)) {
5309 			atomic_add_long(&pt_pv->pv_pmap->pm_stats.wired_count,
5310 					-1);
5311 		}
5312 		/* XXX else return NULL so caller doesn't unwire m ? */
5313 
5314 		atomic_clear_long(ptep, pmap->pmap_bits[PG_W_IDX]);
5315 
5316 		pa = *ptep & PG_FRAME;
5317 		m = PHYS_TO_VM_PAGE(pa);	/* held by wired count */
5318 		pv_put(pt_pv);
5319 	}
5320 	return m;
5321 }
5322 
5323 /*
5324  * Copy the range specified by src_addr/len from the source map to
5325  * the range dst_addr/len in the destination map.
5326  *
5327  * This routine is only advisory and need not do anything.
5328  */
5329 void
5330 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
5331 	  vm_size_t len, vm_offset_t src_addr)
5332 {
5333 }
5334 
5335 /*
5336  * pmap_zero_page:
5337  *
5338  *	Zero the specified physical page.
5339  *
5340  *	This function may be called from an interrupt and no locking is
5341  *	required.
5342  */
5343 void
5344 pmap_zero_page(vm_paddr_t phys)
5345 {
5346 	vm_offset_t va = PHYS_TO_DMAP(phys);
5347 
5348 	pagezero((void *)va);
5349 }
5350 
5351 /*
5352  * pmap_zero_page:
5353  *
5354  *	Zero part of a physical page by mapping it into memory and clearing
5355  *	its contents with bzero.
5356  *
5357  *	off and size may not cover an area beyond a single hardware page.
5358  */
5359 void
5360 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
5361 {
5362 	vm_offset_t virt = PHYS_TO_DMAP(phys);
5363 
5364 	bzero((char *)virt + off, size);
5365 }
5366 
5367 /*
5368  * pmap_copy_page:
5369  *
5370  *	Copy the physical page from the source PA to the target PA.
5371  *	This function may be called from an interrupt.  No locking
5372  *	is required.
5373  */
5374 void
5375 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
5376 {
5377 	vm_offset_t src_virt, dst_virt;
5378 
5379 	src_virt = PHYS_TO_DMAP(src);
5380 	dst_virt = PHYS_TO_DMAP(dst);
5381 	bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
5382 }
5383 
5384 /*
5385  * pmap_copy_page_frag:
5386  *
5387  *	Copy the physical page from the source PA to the target PA.
5388  *	This function may be called from an interrupt.  No locking
5389  *	is required.
5390  */
5391 void
5392 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
5393 {
5394 	vm_offset_t src_virt, dst_virt;
5395 
5396 	src_virt = PHYS_TO_DMAP(src);
5397 	dst_virt = PHYS_TO_DMAP(dst);
5398 
5399 	bcopy((char *)src_virt + (src & PAGE_MASK),
5400 	      (char *)dst_virt + (dst & PAGE_MASK),
5401 	      bytes);
5402 }
5403 
5404 /*
5405  * Remove all pages from specified address space this aids process exit
5406  * speeds.  Also, this code may be special cased for the current process
5407  * only.
5408  */
5409 void
5410 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5411 {
5412 	pmap_remove_noinval(pmap, sva, eva);
5413 	cpu_invltlb();
5414 }
5415 
5416 /*
5417  * pmap_testbit tests bits in pte's note that the testbit/clearbit
5418  * routines are inline, and a lot of things compile-time evaluate.
5419  */
5420 static
5421 boolean_t
5422 pmap_testbit(vm_page_t m, int bit)
5423 {
5424 	int res = FALSE;
5425 
5426 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
5427 		return FALSE;
5428 	/*
5429 	 * Nothing to do if all the mappings are already read-only.
5430 	 * The page's [M]odify bits have already been synchronized
5431 	 * to the vm_page_t and cleaned out.
5432 	 */
5433 	if (bit == PG_M_IDX && m->md.writeable_count == 0)
5434 		return FALSE;
5435 
5436 	/*
5437 	 * Iterate the mapping
5438 	 */
5439 	PMAP_PAGE_BACKING_SCAN(m, NULL, ipmap, iptep, ipte, iva) {
5440 		if (ipte & ipmap->pmap_bits[bit]) {
5441 			res = TRUE;
5442 			break;
5443 		}
5444 	} PMAP_PAGE_BACKING_DONE;
5445 	return res;
5446 }
5447 
5448 /*
5449  * This routine is used to modify bits in ptes.  Only one bit should be
5450  * specified.  PG_RW requires special handling.  This call works with
5451  * any sort of mapped page.  PG_FICTITIOUS pages might not be optimal.
5452  *
5453  * Caller must NOT hold any spin locks
5454  * Caller must hold (m) hard-busied
5455  *
5456  * NOTE: When clearing PG_M we could also (not implemented) drop
5457  *       through to the PG_RW code and clear PG_RW too, forcing
5458  *       a fault on write to redetect PG_M for virtual kernels, but
5459  *       it isn't necessary since virtual kernels invalidate the
5460  *       pte when they clear the VPTE_M bit in their virtual page
5461  *       tables.
5462  *
5463  * NOTE: Does not re-dirty the page when clearing only PG_M.
5464  *
5465  * NOTE: Because we do not lock the pv, *pte can be in a state of
5466  *       flux.  Despite this the value of *pte is still somewhat
5467  *       related while we hold the vm_page spin lock.
5468  *
5469  *       *pte can be zero due to this race.  Since we are clearing
5470  *       bits we basically do no harm when this race occurs.
5471  */
5472 static __inline
5473 void
5474 pmap_clearbit(vm_page_t m, int bit_index)
5475 {
5476 	pt_entry_t npte;
5477 	int retry;
5478 
5479 	/*
5480 	 * Too early in the boot
5481 	 */
5482 	if (!pmap_initialized) {
5483 		if (bit_index == PG_RW_IDX)
5484 			vm_page_flag_clear(m, PG_WRITEABLE);
5485 		return;
5486 	}
5487 
5488 	/*
5489 	 * Being asked to clear other random bits, we don't track them
5490 	 * so we have to iterate.
5491 	 */
5492 	if (bit_index != PG_RW_IDX) {
5493 		PMAP_PAGE_BACKING_SCAN(m, NULL, ipmap, iptep, ipte, iva) {
5494 			if (ipte & ipmap->pmap_bits[bit_index]) {
5495 				atomic_clear_long(iptep,
5496 						  ipmap->pmap_bits[bit_index]);
5497 			}
5498 		} PMAP_PAGE_BACKING_DONE;
5499 		return;
5500 	}
5501 
5502 	/*
5503 	 * Being asked to clear the RW bit.
5504 	 *
5505 	 * Nothing to do if all the mappings are already read-only
5506 	 */
5507 	if (m->md.writeable_count == 0)
5508 		return;
5509 
5510 	/*
5511 	 * Iterate the mappings and check.
5512 	 */
5513 	retry = ticks + hz * 60;
5514 again:
5515 	/*
5516 	 * Clear PG_RW. This also clears PG_M and marks the page dirty if
5517 	 * PG_M was set.
5518 	 *
5519 	 * Since the caller holds the page hard-busied we can safely clear
5520 	 * PG_WRITEABLE, and callers expect us to for the PG_RW_IDX path.
5521 	 */
5522 	PMAP_PAGE_BACKING_SCAN(m, NULL, ipmap, iptep, ipte, iva) {
5523 #if 0
5524 		if ((ipte & ipmap->pmap_bits[PG_MANAGED_IDX]) == 0)
5525 			continue;
5526 #endif
5527 		if ((ipte & ipmap->pmap_bits[PG_RW_IDX]) == 0)
5528 			continue;
5529 		npte = ipte & ~(ipmap->pmap_bits[PG_RW_IDX] |
5530 				ipmap->pmap_bits[PG_M_IDX]);
5531 		if (!pmap_inval_smp_cmpset(ipmap, iva, iptep, ipte, npte))
5532 			PMAP_PAGE_BACKING_RETRY;
5533 		if (ipte & ipmap->pmap_bits[PG_M_IDX])
5534 			vm_page_dirty(m);
5535 
5536 		/*
5537 		 * NOTE: m is not hard-busied so it is not safe to
5538 		 *	 clear PG_WRITEABLE on the 1->0 transition
5539 		 *	 against it being set in pmap_enter().
5540 		 *
5541 		 *	 pmap_count and writeable_count are only applicable
5542 		 *	 to non-fictitious pages (PG_MANAGED_IDX from pte)
5543 		 */
5544 		if (ipte & ipmap->pmap_bits[PG_MANAGED_IDX])
5545 			atomic_add_long(&m->md.writeable_count, -1);
5546 	} PMAP_PAGE_BACKING_DONE;
5547 
5548 	/*
5549 	 * writeable_count should be zero but it is possible to race
5550 	 * a pmap_enter() replacement (see 'oldm').  Once it is zero
5551 	 * it cannot become non-zero because the page is hard-busied.
5552 	 */
5553 	if (m->md.writeable_count != 0) {
5554 		tsleep(&m->md.writeable_count, 0, "pgwab", 1);
5555 		if (retry - ticks > 0)
5556 			goto again;
5557 		panic("pmap_remove_all: cannot return writeable_count "
5558 		      "to 0 (%ld)",
5559 		      m->md.writeable_count);
5560 	}
5561 	vm_page_flag_clear(m, PG_WRITEABLE);
5562 }
5563 
5564 /*
5565  * Lower the permission for all mappings to a given page.
5566  *
5567  * Page must be hard-busied by caller.  Because the page is busied by the
5568  * caller, this should not be able to race a pmap_enter().
5569  */
5570 void
5571 pmap_page_protect(vm_page_t m, vm_prot_t prot)
5572 {
5573 	/* JG NX support? */
5574 	if ((prot & VM_PROT_WRITE) == 0) {
5575 		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
5576 			/*
5577 			 * NOTE: pmap_clearbit(.. PG_RW) also clears
5578 			 *	 the PG_WRITEABLE flag in (m).
5579 			 */
5580 			pmap_clearbit(m, PG_RW_IDX);
5581 		} else {
5582 			pmap_remove_all(m);
5583 		}
5584 	}
5585 }
5586 
5587 vm_paddr_t
5588 pmap_phys_address(vm_pindex_t ppn)
5589 {
5590 	return (x86_64_ptob(ppn));
5591 }
5592 
5593 /*
5594  * Return a count of reference bits for a page, clearing those bits.
5595  * It is not necessary for every reference bit to be cleared, but it
5596  * is necessary that 0 only be returned when there are truly no
5597  * reference bits set.
5598  *
5599  * XXX: The exact number of bits to check and clear is a matter that
5600  * should be tested and standardized at some point in the future for
5601  * optimal aging of shared pages.
5602  *
5603  * This routine may not block.
5604  */
5605 int
5606 pmap_ts_referenced(vm_page_t m)
5607 {
5608 	int rval = 0;
5609 	pt_entry_t npte;
5610 
5611 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
5612 		return rval;
5613 	PMAP_PAGE_BACKING_SCAN(m, NULL, ipmap, iptep, ipte, iva) {
5614 		if (ipte & ipmap->pmap_bits[PG_A_IDX]) {
5615 			npte = ipte & ~ipmap->pmap_bits[PG_A_IDX];
5616 			if (!atomic_cmpset_long(iptep, ipte, npte))
5617 				PMAP_PAGE_BACKING_RETRY;
5618 			++rval;
5619 			if (rval > 4)
5620 				break;
5621 		}
5622 	} PMAP_PAGE_BACKING_DONE;
5623 	return rval;
5624 }
5625 
5626 /*
5627  *	pmap_is_modified:
5628  *
5629  *	Return whether or not the specified physical page was modified
5630  *	in any physical maps.
5631  */
5632 boolean_t
5633 pmap_is_modified(vm_page_t m)
5634 {
5635 	boolean_t res;
5636 
5637 	res = pmap_testbit(m, PG_M_IDX);
5638 	return (res);
5639 }
5640 
5641 /*
5642  * Clear the modify bit on the vm_page.
5643  *
5644  * The page must be hard-busied.
5645  */
5646 void
5647 pmap_clear_modify(vm_page_t m)
5648 {
5649 	pmap_clearbit(m, PG_M_IDX);
5650 }
5651 
5652 /*
5653  *	pmap_clear_reference:
5654  *
5655  *	Clear the reference bit on the specified physical page.
5656  */
5657 void
5658 pmap_clear_reference(vm_page_t m)
5659 {
5660 	pmap_clearbit(m, PG_A_IDX);
5661 }
5662 
5663 /*
5664  * Miscellaneous support routines follow
5665  */
5666 
5667 static
5668 void
5669 x86_64_protection_init(void)
5670 {
5671 	uint64_t *kp;
5672 	int prot;
5673 
5674 	/*
5675 	 * NX supported? (boot time loader.conf override only)
5676 	 *
5677 	 * -1	Automatic (sets mode 1)
5678 	 *  0	Disabled
5679 	 *  1	NX implemented, differentiates PROT_READ vs PROT_READ|PROT_EXEC
5680 	 *  2	NX implemented for all cases
5681 	 */
5682 	TUNABLE_INT_FETCH("machdep.pmap_nx_enable", &pmap_nx_enable);
5683 	if ((amd_feature & AMDID_NX) == 0) {
5684 		pmap_bits_default[PG_NX_IDX] = 0;
5685 		pmap_nx_enable = 0;
5686 	} else if (pmap_nx_enable < 0) {
5687 		pmap_nx_enable = 1;		/* default to mode 1 (READ) */
5688 	}
5689 
5690 	/*
5691 	 * 0 is basically read-only access, but also set the NX (no-execute)
5692 	 * bit when VM_PROT_EXECUTE is not specified.
5693 	 */
5694 	kp = protection_codes;
5695 	for (prot = 0; prot < PROTECTION_CODES_SIZE; prot++) {
5696 		switch (prot) {
5697 		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
5698 			/*
5699 			 * This case handled elsewhere
5700 			 */
5701 			*kp = 0;
5702 			break;
5703 		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
5704 			/*
5705 			 * Read-only is 0|NX	(pmap_nx_enable mode >= 1)
5706 			 */
5707 			if (pmap_nx_enable >= 1)
5708 				*kp = pmap_bits_default[PG_NX_IDX];
5709 			break;
5710 		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
5711 		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
5712 			/*
5713 			 * Execute requires read access
5714 			 */
5715 			*kp = 0;
5716 			break;
5717 		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
5718 		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
5719 			/*
5720 			 * Write without execute is RW|NX
5721 			 *			(pmap_nx_enable mode >= 2)
5722 			 */
5723 			*kp = pmap_bits_default[PG_RW_IDX];
5724 			if (pmap_nx_enable >= 2)
5725 				*kp |= pmap_bits_default[PG_NX_IDX];
5726 			break;
5727 		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
5728 		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
5729 			/*
5730 			 * Write with execute is RW
5731 			 */
5732 			*kp = pmap_bits_default[PG_RW_IDX];
5733 			break;
5734 		}
5735 		++kp;
5736 	}
5737 }
5738 
5739 /*
5740  * Map a set of physical memory pages into the kernel virtual
5741  * address space. Return a pointer to where it is mapped. This
5742  * routine is intended to be used for mapping device memory,
5743  * NOT real memory.
5744  *
5745  * NOTE: We can't use pgeflag unless we invalidate the pages one at
5746  *	 a time.
5747  *
5748  * NOTE: The PAT attributes {WRITE_BACK, WRITE_THROUGH, UNCACHED, UNCACHEABLE}
5749  *	 work whether the cpu supports PAT or not.  The remaining PAT
5750  *	 attributes {WRITE_PROTECTED, WRITE_COMBINING} only work if the cpu
5751  *	 supports PAT.
5752  */
5753 void *
5754 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
5755 {
5756 	return(pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5757 }
5758 
5759 void *
5760 pmap_mapdev_uncacheable(vm_paddr_t pa, vm_size_t size)
5761 {
5762 	return(pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
5763 }
5764 
5765 void *
5766 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
5767 {
5768 	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5769 }
5770 
5771 /*
5772  * Map a set of physical memory pages into the kernel virtual
5773  * address space. Return a pointer to where it is mapped. This
5774  * routine is intended to be used for mapping device memory,
5775  * NOT real memory.
5776  */
5777 void *
5778 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
5779 {
5780 	vm_offset_t va, tmpva, offset;
5781 	pt_entry_t *pte;
5782 	vm_size_t tmpsize;
5783 
5784 	offset = pa & PAGE_MASK;
5785 	size = roundup(offset + size, PAGE_SIZE);
5786 
5787 	va = kmem_alloc_nofault(&kernel_map, size, VM_SUBSYS_MAPDEV, PAGE_SIZE);
5788 	if (va == 0)
5789 		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
5790 
5791 	pa = pa & ~PAGE_MASK;
5792 	for (tmpva = va, tmpsize = size; tmpsize > 0;) {
5793 		pte = vtopte(tmpva);
5794 		*pte = pa |
5795 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
5796 		    kernel_pmap.pmap_bits[PG_V_IDX] | /* pgeflag | */
5797 		    kernel_pmap.pmap_cache_bits[mode];
5798 		tmpsize -= PAGE_SIZE;
5799 		tmpva += PAGE_SIZE;
5800 		pa += PAGE_SIZE;
5801 	}
5802 	pmap_invalidate_range(&kernel_pmap, va, va + size);
5803 	pmap_invalidate_cache_range(va, va + size);
5804 
5805 	return ((void *)(va + offset));
5806 }
5807 
5808 void
5809 pmap_unmapdev(vm_offset_t va, vm_size_t size)
5810 {
5811 	vm_offset_t base, offset;
5812 
5813 	base = va & ~PAGE_MASK;
5814 	offset = va & PAGE_MASK;
5815 	size = roundup(offset + size, PAGE_SIZE);
5816 	pmap_qremove(va, size >> PAGE_SHIFT);
5817 	kmem_free(&kernel_map, base, size);
5818 }
5819 
5820 /*
5821  * Sets the memory attribute for the specified page.
5822  */
5823 void
5824 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5825 {
5826 
5827     m->pat_mode = ma;
5828 
5829     /*
5830      * If "m" is a normal page, update its direct mapping.  This update
5831      * can be relied upon to perform any cache operations that are
5832      * required for data coherence.
5833      */
5834     if ((m->flags & PG_FICTITIOUS) == 0)
5835         pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), 1, m->pat_mode);
5836 }
5837 
5838 /*
5839  * Change the PAT attribute on an existing kernel memory map.  Caller
5840  * must ensure that the virtual memory in question is not accessed
5841  * during the adjustment.
5842  */
5843 void
5844 pmap_change_attr(vm_offset_t va, vm_size_t count, int mode)
5845 {
5846 	pt_entry_t *pte;
5847 	vm_offset_t base;
5848 	int changed = 0;
5849 
5850 	if (va == 0)
5851 		panic("pmap_change_attr: va is NULL");
5852 	base = trunc_page(va);
5853 
5854 	while (count) {
5855 		pte = vtopte(va);
5856 		*pte = (*pte & ~(pt_entry_t)(kernel_pmap.pmap_cache_mask)) |
5857 		       kernel_pmap.pmap_cache_bits[mode];
5858 		--count;
5859 		va += PAGE_SIZE;
5860 	}
5861 
5862 	changed = 1;	/* XXX: not optimal */
5863 
5864 	/*
5865 	 * Flush CPU caches if required to make sure any data isn't cached that
5866 	 * shouldn't be, etc.
5867 	 */
5868 	if (changed) {
5869 		pmap_invalidate_range(&kernel_pmap, base, va);
5870 		pmap_invalidate_cache_range(base, va);
5871 	}
5872 }
5873 
5874 /*
5875  * perform the pmap work for mincore
5876  */
5877 int
5878 pmap_mincore(pmap_t pmap, vm_offset_t addr)
5879 {
5880 	pt_entry_t *ptep, pte;
5881 	vm_page_t m;
5882 	int val = 0;
5883 
5884 	ptep = pmap_pte(pmap, addr);
5885 
5886 	if (ptep && (pte = *ptep) != 0) {
5887 		vm_offset_t pa;
5888 
5889 		val = MINCORE_INCORE;
5890 		pa = pte & PG_FRAME;
5891 		if (pte & pmap->pmap_bits[PG_MANAGED_IDX])
5892 			m = PHYS_TO_VM_PAGE(pa);
5893 		else
5894 			m = NULL;
5895 
5896 		/*
5897 		 * Modified by us
5898 		 */
5899 		if (pte & pmap->pmap_bits[PG_M_IDX])
5900 			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
5901 
5902 		/*
5903 		 * Modified by someone
5904 		 */
5905 		else if (m && (m->dirty || pmap_is_modified(m)))
5906 			val |= MINCORE_MODIFIED_OTHER;
5907 
5908 		/*
5909 		 * Referenced by us, or someone else.
5910 		 */
5911 		if (pte & pmap->pmap_bits[PG_A_IDX]) {
5912 			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
5913 		} else if (m && ((m->flags & PG_REFERENCED) ||
5914 				 pmap_ts_referenced(m))) {
5915 			val |= MINCORE_REFERENCED_OTHER;
5916 			vm_page_flag_set(m, PG_REFERENCED);
5917 		}
5918 	}
5919 	return val;
5920 }
5921 
5922 /*
5923  * Replace p->p_vmspace with a new one.  If adjrefs is non-zero the new
5924  * vmspace will be ref'd and the old one will be deref'd.
5925  *
5926  * The vmspace for all lwps associated with the process will be adjusted
5927  * and cr3 will be reloaded if any lwp is the current lwp.
5928  *
5929  * The process must hold the vmspace->vm_map.token for oldvm and newvm
5930  */
5931 void
5932 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
5933 {
5934 	struct vmspace *oldvm;
5935 	struct lwp *lp;
5936 
5937 	oldvm = p->p_vmspace;
5938 	if (oldvm != newvm) {
5939 		if (adjrefs)
5940 			vmspace_ref(newvm);
5941 		p->p_vmspace = newvm;
5942 		KKASSERT(p->p_nthreads == 1);
5943 		lp = RB_ROOT(&p->p_lwp_tree);
5944 		pmap_setlwpvm(lp, newvm);
5945 		if (adjrefs)
5946 			vmspace_rel(oldvm);
5947 	}
5948 }
5949 
5950 /*
5951  * Set the vmspace for a LWP.  The vmspace is almost universally set the
5952  * same as the process vmspace, but virtual kernels need to swap out contexts
5953  * on a per-lwp basis.
5954  *
5955  * Caller does not necessarily hold any vmspace tokens.  Caller must control
5956  * the lwp (typically be in the context of the lwp).  We use a critical
5957  * section to protect against statclock and hardclock (statistics collection).
5958  */
5959 void
5960 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
5961 {
5962 	struct vmspace *oldvm;
5963 	struct pmap *pmap;
5964 	thread_t td;
5965 
5966 	oldvm = lp->lwp_vmspace;
5967 
5968 	if (oldvm != newvm) {
5969 		crit_enter();
5970 		td = curthread;
5971 		KKASSERT((newvm->vm_refcnt & VM_REF_DELETED) == 0);
5972 		lp->lwp_vmspace = newvm;
5973 		if (td->td_lwp == lp) {
5974 			pmap = vmspace_pmap(newvm);
5975 			ATOMIC_CPUMASK_ORBIT(pmap->pm_active, mycpu->gd_cpuid);
5976 			if (pmap->pm_active_lock & CPULOCK_EXCL)
5977 				pmap_interlock_wait(newvm);
5978 #if defined(SWTCH_OPTIM_STATS)
5979 			tlb_flush_count++;
5980 #endif
5981 			if (pmap->pmap_bits[TYPE_IDX] == REGULAR_PMAP) {
5982 				td->td_pcb->pcb_cr3 = vtophys(pmap->pm_pml4);
5983 				if (meltdown_mitigation && pmap->pm_pmlpv_iso) {
5984 					td->td_pcb->pcb_cr3_iso =
5985 						vtophys(pmap->pm_pml4_iso);
5986 					td->td_pcb->pcb_flags |= PCB_ISOMMU;
5987 				} else {
5988 					td->td_pcb->pcb_cr3_iso = 0;
5989 					td->td_pcb->pcb_flags &= ~PCB_ISOMMU;
5990 				}
5991 			} else if (pmap->pmap_bits[TYPE_IDX] == EPT_PMAP) {
5992 				td->td_pcb->pcb_cr3 = KPML4phys;
5993 				td->td_pcb->pcb_cr3_iso = 0;
5994 				td->td_pcb->pcb_flags &= ~PCB_ISOMMU;
5995 			} else {
5996 				panic("pmap_setlwpvm: unknown pmap type\n");
5997 			}
5998 
5999 			/*
6000 			 * The MMU separation fields needs to be updated.
6001 			 * (it can't access the pcb directly from the
6002 			 * restricted user pmap).
6003 			 */
6004 			{
6005 				struct trampframe *tramp;
6006 
6007 				tramp = &pscpu->trampoline;
6008 				tramp->tr_pcb_cr3 = td->td_pcb->pcb_cr3;
6009 				tramp->tr_pcb_cr3_iso = td->td_pcb->pcb_cr3_iso;
6010 				tramp->tr_pcb_flags = td->td_pcb->pcb_flags;
6011 				tramp->tr_pcb_rsp = (register_t)td->td_pcb;
6012 				/* tr_pcb_rsp doesn't change */
6013 			}
6014 
6015 			/*
6016 			 * In kernel-land we always use the normal PML4E
6017 			 * so the kernel is fully mapped and can also access
6018 			 * user memory.
6019 			 */
6020 			load_cr3(td->td_pcb->pcb_cr3);
6021 			pmap = vmspace_pmap(oldvm);
6022 			ATOMIC_CPUMASK_NANDBIT(pmap->pm_active,
6023 					       mycpu->gd_cpuid);
6024 		}
6025 		crit_exit();
6026 	}
6027 }
6028 
6029 /*
6030  * Called when switching to a locked pmap, used to interlock against pmaps
6031  * undergoing modifications to prevent us from activating the MMU for the
6032  * target pmap until all such modifications have completed.  We have to do
6033  * this because the thread making the modifications has already set up its
6034  * SMP synchronization mask.
6035  *
6036  * This function cannot sleep!
6037  *
6038  * No requirements.
6039  */
6040 void
6041 pmap_interlock_wait(struct vmspace *vm)
6042 {
6043 	struct pmap *pmap = &vm->vm_pmap;
6044 
6045 	if (pmap->pm_active_lock & CPULOCK_EXCL) {
6046 		crit_enter();
6047 		KKASSERT(curthread->td_critcount >= 2);
6048 		DEBUG_PUSH_INFO("pmap_interlock_wait");
6049 		while (pmap->pm_active_lock & CPULOCK_EXCL) {
6050 			cpu_ccfence();
6051 			lwkt_process_ipiq();
6052 		}
6053 		DEBUG_POP_INFO();
6054 		crit_exit();
6055 	}
6056 }
6057 
6058 vm_offset_t
6059 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
6060 {
6061 
6062 	if ((obj == NULL) || (size < NBPDR) ||
6063 	    ((obj->type != OBJT_DEVICE) && (obj->type != OBJT_MGTDEVICE))) {
6064 		return addr;
6065 	}
6066 
6067 	addr = roundup2(addr, NBPDR);
6068 	return addr;
6069 }
6070 
6071 /*
6072  * Used by kmalloc/kfree, page already exists at va
6073  */
6074 vm_page_t
6075 pmap_kvtom(vm_offset_t va)
6076 {
6077 	pt_entry_t *ptep = vtopte(va);
6078 
6079 	return(PHYS_TO_VM_PAGE(*ptep & PG_FRAME));
6080 }
6081 
6082 /*
6083  * Initialize machine-specific shared page directory support.  This
6084  * is executed when a VM object is created.
6085  */
6086 void
6087 pmap_object_init(vm_object_t object)
6088 {
6089 }
6090 
6091 /*
6092  * Clean up machine-specific shared page directory support.  This
6093  * is executed when a VM object is destroyed.
6094  */
6095 void
6096 pmap_object_free(vm_object_t object)
6097 {
6098 }
6099 
6100 /*
6101  * pmap_pgscan_callback - Used by pmap_pgscan to acquire the related
6102  * VM page and issue a pginfo->callback.
6103  */
6104 static
6105 void
6106 pmap_pgscan_callback(pmap_t pmap, struct pmap_scan_info *info,
6107 		      vm_pindex_t *pte_placemark,
6108 		      pv_entry_t pt_pv, vm_offset_t va,
6109 		      pt_entry_t *ptep, void *arg)
6110 {
6111 	struct pmap_pgscan_info *pginfo = arg;
6112 	vm_page_t m;
6113 	pt_entry_t pte;
6114 
6115 	pte = *ptep;
6116 	cpu_ccfence();
6117 
6118 	if (pte & pmap->pmap_bits[PG_MANAGED_IDX]) {
6119 		/*
6120 		 * Try to busy the page while we hold the pte_placemark locked.
6121 		 */
6122 		m = PHYS_TO_VM_PAGE(*ptep & PG_FRAME);
6123 		if (vm_page_busy_try(m, TRUE) == 0) {
6124 			if (m == PHYS_TO_VM_PAGE(*ptep & PG_FRAME)) {
6125 				/*
6126 				 * The callback is issued with the pt_pv
6127 				 * unlocked.
6128 				 */
6129 				pv_placemarker_wakeup(pmap, pte_placemark);
6130 				if (pt_pv) {
6131 					vm_page_wire_quick(pt_pv->pv_m);
6132 					pv_unlock(pt_pv);
6133 				}
6134 				if (pginfo->callback(pginfo, va, m) < 0)
6135 					info->stop = 1;
6136 				if (pt_pv) {
6137 					pv_lock(pt_pv);
6138 					if (vm_page_unwire_quick(pt_pv->pv_m)) {
6139 						panic("pmap_pgscan: bad wire_"
6140 						      "count on pt_pv");
6141 					}
6142 				}
6143 			} else {
6144 				vm_page_wakeup(m);
6145 				pv_placemarker_wakeup(pmap, pte_placemark);
6146 			}
6147 		} else {
6148 			++pginfo->busycount;
6149 			pv_placemarker_wakeup(pmap, pte_placemark);
6150 		}
6151 	} else {
6152 		/*
6153 		 * Shared page table or unmanaged page (sharept or !sharept)
6154 		 */
6155 		pv_placemarker_wakeup(pmap, pte_placemark);
6156 	}
6157 }
6158 
6159 void
6160 pmap_pgscan(struct pmap_pgscan_info *pginfo)
6161 {
6162 	struct pmap_scan_info info;
6163 
6164 	pginfo->offset = pginfo->beg_addr;
6165 	info.pmap = pginfo->pmap;
6166 	info.sva = pginfo->beg_addr;
6167 	info.eva = pginfo->end_addr;
6168 	info.func = pmap_pgscan_callback;
6169 	info.arg = pginfo;
6170 	pmap_scan(&info, 0);
6171 	if (info.stop == 0)
6172 		pginfo->offset = pginfo->end_addr;
6173 }
6174 
6175 /*
6176  * Wait for a placemarker that we do not own to clear.  The placemarker
6177  * in question is not necessarily set to the pindex we want, we may have
6178  * to wait on the element because we want to reserve it ourselves.
6179  *
6180  * NOTE: PM_PLACEMARK_WAKEUP sets a bit which is already set in
6181  *	 PM_NOPLACEMARK, so it does not interfere with placemarks
6182  *	 which have already been woken up.
6183  *
6184  * NOTE: This routine is called without the pmap spin-lock and so can
6185  *	 race changes to *pmark.  Due to the sensitivity of the routine
6186  *	 to possible MULTIPLE interactions from other cpus, and the
6187  *	 overloading of the WAKEUP bit on PM_NOPLACEMARK, we have to
6188  *	 use a cmpset loop to avoid a race that might cause the WAKEUP
6189  *	 bit to be lost.
6190  *
6191  * Caller is expected to retry its operation upon return.
6192  */
6193 static
6194 void
6195 pv_placemarker_wait(pmap_t pmap, vm_pindex_t *pmark)
6196 {
6197 	vm_pindex_t mark;
6198 
6199 	mark = *pmark;
6200 	cpu_ccfence();
6201 	while (mark != PM_NOPLACEMARK) {
6202 		tsleep_interlock(pmark, 0);
6203 		if (atomic_fcmpset_long(pmark, &mark,
6204 				       mark | PM_PLACEMARK_WAKEUP)) {
6205 			tsleep(pmark, PINTERLOCKED, "pvplw", 0);
6206 			break;
6207 		}
6208 	}
6209 }
6210 
6211 /*
6212  * Wakeup a placemarker that we own.  Replace the entry with
6213  * PM_NOPLACEMARK and issue a wakeup() if necessary.
6214  */
6215 static
6216 void
6217 pv_placemarker_wakeup(pmap_t pmap, vm_pindex_t *pmark)
6218 {
6219 	vm_pindex_t pindex;
6220 
6221 	pindex = atomic_swap_long(pmark, PM_NOPLACEMARK);
6222 	KKASSERT(pindex != PM_NOPLACEMARK);
6223 	if (pindex & PM_PLACEMARK_WAKEUP)
6224 		wakeup(pmark);
6225 }
6226