xref: /dragonfly/sys/platform/pc64/x86_64/pmap.c (revision a4fe36f1)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1994 David Greenman
5  * Copyright (c) 2003 Peter Wemm
6  * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
7  * Copyright (c) 2008, 2009 The DragonFly Project.
8  * Copyright (c) 2008, 2009 Jordan Gordeev.
9  * Copyright (c) 2011-2012 Matthew Dillon
10  * All rights reserved.
11  *
12  * This code is derived from software contributed to Berkeley by
13  * the Systems Programming Group of the University of Utah Computer
14  * Science Department and William Jolitz of UUNET Technologies Inc.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  */
44 /*
45  * Manage physical address maps for x86-64 systems.
46  */
47 
48 #if 0 /* JG */
49 #include "opt_disable_pse.h"
50 #include "opt_pmap.h"
51 #endif
52 #include "opt_msgbuf.h"
53 
54 #include <sys/param.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/msgbuf.h>
58 #include <sys/vmmeter.h>
59 #include <sys/mman.h>
60 #include <sys/systm.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <sys/sysctl.h>
65 #include <sys/lock.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_object.h>
70 #include <vm/vm_extern.h>
71 #include <vm/vm_pageout.h>
72 #include <vm/vm_pager.h>
73 #include <vm/vm_zone.h>
74 
75 #include <sys/user.h>
76 #include <sys/thread2.h>
77 #include <sys/sysref2.h>
78 #include <sys/spinlock2.h>
79 #include <vm/vm_page2.h>
80 
81 #include <machine/cputypes.h>
82 #include <machine/md_var.h>
83 #include <machine/specialreg.h>
84 #include <machine/smp.h>
85 #include <machine_base/apic/apicreg.h>
86 #include <machine/globaldata.h>
87 #include <machine/pmap.h>
88 #include <machine/pmap_inval.h>
89 #include <machine/inttypes.h>
90 
91 #include <ddb/ddb.h>
92 
93 #define PMAP_KEEP_PDIRS
94 #ifndef PMAP_SHPGPERPROC
95 #define PMAP_SHPGPERPROC 2000
96 #endif
97 
98 #if defined(DIAGNOSTIC)
99 #define PMAP_DIAGNOSTIC
100 #endif
101 
102 #define MINPV 2048
103 
104 /*
105  * pmap debugging will report who owns a pv lock when blocking.
106  */
107 #ifdef PMAP_DEBUG
108 
109 #define PMAP_DEBUG_DECL		,const char *func, int lineno
110 #define PMAP_DEBUG_ARGS		, __func__, __LINE__
111 #define PMAP_DEBUG_COPY		, func, lineno
112 
113 #define pv_get(pmap, pindex)		_pv_get(pmap, pindex		\
114 							PMAP_DEBUG_ARGS)
115 #define pv_lock(pv)			_pv_lock(pv			\
116 							PMAP_DEBUG_ARGS)
117 #define pv_hold_try(pv)			_pv_hold_try(pv			\
118 							PMAP_DEBUG_ARGS)
119 #define pv_alloc(pmap, pindex, isnewp)	_pv_alloc(pmap, pindex, isnewp	\
120 							PMAP_DEBUG_ARGS)
121 
122 #else
123 
124 #define PMAP_DEBUG_DECL
125 #define PMAP_DEBUG_ARGS
126 #define PMAP_DEBUG_COPY
127 
128 #define pv_get(pmap, pindex)		_pv_get(pmap, pindex)
129 #define pv_lock(pv)			_pv_lock(pv)
130 #define pv_hold_try(pv)			_pv_hold_try(pv)
131 #define pv_alloc(pmap, pindex, isnewp)	_pv_alloc(pmap, pindex, isnewp)
132 
133 #endif
134 
135 /*
136  * Get PDEs and PTEs for user/kernel address space
137  */
138 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
139 
140 #define pmap_pde_v(pmap, pte)		((*(pd_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
141 #define pmap_pte_w(pmap, pte)		((*(pt_entry_t *)pte & pmap->pmap_bits[PG_W_IDX]) != 0)
142 #define pmap_pte_m(pmap, pte)		((*(pt_entry_t *)pte & pmap->pmap_bits[PG_M_IDX]) != 0)
143 #define pmap_pte_u(pmap, pte)		((*(pt_entry_t *)pte & pmap->pmap_bits[PG_U_IDX]) != 0)
144 #define pmap_pte_v(pmap, pte)		((*(pt_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
145 
146 /*
147  * Given a map and a machine independent protection code,
148  * convert to a vax protection code.
149  */
150 #define pte_prot(m, p)		\
151 	(m->protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
152 static int protection_codes[PROTECTION_CODES_SIZE];
153 
154 struct pmap kernel_pmap;
155 static TAILQ_HEAD(,pmap)	pmap_list = TAILQ_HEAD_INITIALIZER(pmap_list);
156 
157 MALLOC_DEFINE(M_OBJPMAP, "objpmap", "pmaps associated with VM objects");
158 
159 vm_paddr_t avail_start;		/* PA of first available physical page */
160 vm_paddr_t avail_end;		/* PA of last available physical page */
161 vm_offset_t virtual2_start;	/* cutout free area prior to kernel start */
162 vm_offset_t virtual2_end;
163 vm_offset_t virtual_start;	/* VA of first avail page (after kernel bss) */
164 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
165 vm_offset_t KvaStart;		/* VA start of KVA space */
166 vm_offset_t KvaEnd;		/* VA end of KVA space (non-inclusive) */
167 vm_offset_t KvaSize;		/* max size of kernel virtual address space */
168 static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
169 //static int pgeflag;		/* PG_G or-in */
170 //static int pseflag;		/* PG_PS or-in */
171 uint64_t PatMsr;
172 
173 static int ndmpdp;
174 static vm_paddr_t dmaplimit;
175 static int nkpt;
176 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
177 
178 static pt_entry_t pat_pte_index[PAT_INDEX_SIZE];	/* PAT -> PG_ bits */
179 /*static pt_entry_t pat_pde_index[PAT_INDEX_SIZE];*/	/* PAT -> PG_ bits */
180 
181 static uint64_t KPTbase;
182 static uint64_t KPTphys;
183 static uint64_t	KPDphys;	/* phys addr of kernel level 2 */
184 static uint64_t	KPDbase;	/* phys addr of kernel level 2 @ KERNBASE */
185 uint64_t KPDPphys;	/* phys addr of kernel level 3 */
186 uint64_t KPML4phys;	/* phys addr of kernel level 4 */
187 
188 static uint64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
189 static uint64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
190 
191 /*
192  * Data for the pv entry allocation mechanism
193  */
194 static vm_zone_t pvzone;
195 static struct vm_zone pvzone_store;
196 static struct vm_object pvzone_obj;
197 static int pv_entry_max=0, pv_entry_high_water=0;
198 static int pmap_pagedaemon_waken = 0;
199 static struct pv_entry *pvinit;
200 
201 /*
202  * All those kernel PT submaps that BSD is so fond of
203  */
204 pt_entry_t *CMAP1 = NULL, *ptmmap;
205 caddr_t CADDR1 = NULL, ptvmmap = NULL;
206 static pt_entry_t *msgbufmap;
207 struct msgbuf *msgbufp=NULL;
208 
209 /*
210  * PMAP default PG_* bits. Needed to be able to add
211  * EPT/NPT pagetable pmap_bits for the VMM module
212  */
213 uint64_t pmap_bits_default[] = {
214 		REGULAR_PMAP,					/* TYPE_IDX		0 */
215 		X86_PG_V,					/* PG_V_IDX		1 */
216 		X86_PG_RW,					/* PG_RW_IDX		2 */
217 		X86_PG_U,					/* PG_U_IDX		3 */
218 		X86_PG_A,					/* PG_A_IDX		4 */
219 		X86_PG_M,					/* PG_M_IDX		5 */
220 		X86_PG_PS,					/* PG_PS_IDX3		6 */
221 		X86_PG_G,					/* PG_G_IDX		7 */
222 		X86_PG_AVAIL1,					/* PG_AVAIL1_IDX	8 */
223 		X86_PG_AVAIL2,					/* PG_AVAIL2_IDX	9 */
224 		X86_PG_AVAIL3,					/* PG_AVAIL3_IDX	10 */
225 		X86_PG_NC_PWT | X86_PG_NC_PCD,			/* PG_N_IDX	11 */
226 };
227 /*
228  * Crashdump maps.
229  */
230 static pt_entry_t *pt_crashdumpmap;
231 static caddr_t crashdumpmap;
232 
233 #ifdef PMAP_DEBUG2
234 static int pmap_enter_debug = 0;
235 SYSCTL_INT(_machdep, OID_AUTO, pmap_enter_debug, CTLFLAG_RW,
236     &pmap_enter_debug, 0, "Debug pmap_enter's");
237 #endif
238 static int pmap_yield_count = 64;
239 SYSCTL_INT(_machdep, OID_AUTO, pmap_yield_count, CTLFLAG_RW,
240     &pmap_yield_count, 0, "Yield during init_pt/release");
241 static int pmap_mmu_optimize = 0;
242 SYSCTL_INT(_machdep, OID_AUTO, pmap_mmu_optimize, CTLFLAG_RW,
243     &pmap_mmu_optimize, 0, "Share page table pages when possible");
244 int pmap_fast_kernel_cpusync = 0;
245 SYSCTL_INT(_machdep, OID_AUTO, pmap_fast_kernel_cpusync, CTLFLAG_RW,
246     &pmap_fast_kernel_cpusync, 0, "Share page table pages when possible");
247 
248 #define DISABLE_PSE
249 
250 /* Standard user access funtions */
251 extern int std_copyinstr (const void *udaddr, void *kaddr, size_t len,
252     size_t *lencopied);
253 extern int std_copyin (const void *udaddr, void *kaddr, size_t len);
254 extern int std_copyout (const void *kaddr, void *udaddr, size_t len);
255 extern int std_fubyte (const void *base);
256 extern int std_subyte (void *base, int byte);
257 extern long std_fuword (const void *base);
258 extern int std_suword (void *base, long word);
259 extern int std_suword32 (void *base, int word);
260 
261 static void pv_hold(pv_entry_t pv);
262 static int _pv_hold_try(pv_entry_t pv
263 				PMAP_DEBUG_DECL);
264 static void pv_drop(pv_entry_t pv);
265 static void _pv_lock(pv_entry_t pv
266 				PMAP_DEBUG_DECL);
267 static void pv_unlock(pv_entry_t pv);
268 static pv_entry_t _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew
269 				PMAP_DEBUG_DECL);
270 static pv_entry_t _pv_get(pmap_t pmap, vm_pindex_t pindex
271 				PMAP_DEBUG_DECL);
272 static pv_entry_t pv_get_try(pmap_t pmap, vm_pindex_t pindex, int *errorp);
273 static pv_entry_t pv_find(pmap_t pmap, vm_pindex_t pindex);
274 static void pv_put(pv_entry_t pv);
275 static void pv_free(pv_entry_t pv);
276 static void *pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex);
277 static pv_entry_t pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex,
278 		      pv_entry_t *pvpp);
279 static pv_entry_t pmap_allocpte_seg(pmap_t pmap, vm_pindex_t ptepindex,
280 		      pv_entry_t *pvpp, vm_map_entry_t entry, vm_offset_t va);
281 static void pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp,
282 		      struct pmap_inval_info *info);
283 static vm_page_t pmap_remove_pv_page(pv_entry_t pv);
284 static int pmap_release_pv( struct pmap_inval_info *info,
285 		      pv_entry_t pv, pv_entry_t pvp);
286 
287 struct pmap_scan_info;
288 static void pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
289 		      pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
290 		      vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
291 static void pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
292 		      pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
293 		      vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
294 
295 static void i386_protection_init (void);
296 static void create_pagetables(vm_paddr_t *firstaddr);
297 static void pmap_remove_all (vm_page_t m);
298 static boolean_t pmap_testbit (vm_page_t m, int bit);
299 
300 static pt_entry_t * pmap_pte_quick (pmap_t pmap, vm_offset_t va);
301 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
302 
303 static void pmap_pinit_defaults(struct pmap *pmap);
304 
305 static unsigned pdir4mb;
306 
307 static int
308 pv_entry_compare(pv_entry_t pv1, pv_entry_t pv2)
309 {
310 	if (pv1->pv_pindex < pv2->pv_pindex)
311 		return(-1);
312 	if (pv1->pv_pindex > pv2->pv_pindex)
313 		return(1);
314 	return(0);
315 }
316 
317 RB_GENERATE2(pv_entry_rb_tree, pv_entry, pv_entry,
318              pv_entry_compare, vm_pindex_t, pv_pindex);
319 
320 static __inline
321 void
322 pmap_page_stats_adding(vm_page_t m)
323 {
324 	globaldata_t gd = mycpu;
325 
326 	if (TAILQ_EMPTY(&m->md.pv_list)) {
327 		++gd->gd_vmtotal.t_arm;
328 	} else if (TAILQ_FIRST(&m->md.pv_list) ==
329 		   TAILQ_LAST(&m->md.pv_list, md_page_pv_list)) {
330 		++gd->gd_vmtotal.t_armshr;
331 		++gd->gd_vmtotal.t_avmshr;
332 	} else {
333 		++gd->gd_vmtotal.t_avmshr;
334 	}
335 }
336 
337 static __inline
338 void
339 pmap_page_stats_deleting(vm_page_t m)
340 {
341 	globaldata_t gd = mycpu;
342 
343 	if (TAILQ_EMPTY(&m->md.pv_list)) {
344 		--gd->gd_vmtotal.t_arm;
345 	} else if (TAILQ_FIRST(&m->md.pv_list) ==
346 		   TAILQ_LAST(&m->md.pv_list, md_page_pv_list)) {
347 		--gd->gd_vmtotal.t_armshr;
348 		--gd->gd_vmtotal.t_avmshr;
349 	} else {
350 		--gd->gd_vmtotal.t_avmshr;
351 	}
352 }
353 
354 /*
355  * Move the kernel virtual free pointer to the next
356  * 2MB.  This is used to help improve performance
357  * by using a large (2MB) page for much of the kernel
358  * (.text, .data, .bss)
359  */
360 static
361 vm_offset_t
362 pmap_kmem_choose(vm_offset_t addr)
363 {
364 	vm_offset_t newaddr = addr;
365 
366 	newaddr = roundup2(addr, NBPDR);
367 	return newaddr;
368 }
369 
370 /*
371  * pmap_pte_quick:
372  *
373  *	Super fast pmap_pte routine best used when scanning the pv lists.
374  *	This eliminates many course-grained invltlb calls.  Note that many of
375  *	the pv list scans are across different pmaps and it is very wasteful
376  *	to do an entire invltlb when checking a single mapping.
377  */
378 static __inline pt_entry_t *pmap_pte(pmap_t pmap, vm_offset_t va);
379 
380 static
381 pt_entry_t *
382 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
383 {
384 	return pmap_pte(pmap, va);
385 }
386 
387 /*
388  * Returns the pindex of a page table entry (representing a terminal page).
389  * There are NUPTE_TOTAL page table entries possible (a huge number)
390  *
391  * x86-64 has a 48-bit address space, where bit 47 is sign-extended out.
392  * We want to properly translate negative KVAs.
393  */
394 static __inline
395 vm_pindex_t
396 pmap_pte_pindex(vm_offset_t va)
397 {
398 	return ((va >> PAGE_SHIFT) & (NUPTE_TOTAL - 1));
399 }
400 
401 /*
402  * Returns the pindex of a page table.
403  */
404 static __inline
405 vm_pindex_t
406 pmap_pt_pindex(vm_offset_t va)
407 {
408 	return (NUPTE_TOTAL + ((va >> PDRSHIFT) & (NUPT_TOTAL - 1)));
409 }
410 
411 /*
412  * Returns the pindex of a page directory.
413  */
414 static __inline
415 vm_pindex_t
416 pmap_pd_pindex(vm_offset_t va)
417 {
418 	return (NUPTE_TOTAL + NUPT_TOTAL +
419 		((va >> PDPSHIFT) & (NUPD_TOTAL - 1)));
420 }
421 
422 static __inline
423 vm_pindex_t
424 pmap_pdp_pindex(vm_offset_t va)
425 {
426 	return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
427 		((va >> PML4SHIFT) & (NUPDP_TOTAL - 1)));
428 }
429 
430 static __inline
431 vm_pindex_t
432 pmap_pml4_pindex(void)
433 {
434 	return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL);
435 }
436 
437 /*
438  * Return various clipped indexes for a given VA
439  *
440  * Returns the index of a pte in a page table, representing a terminal
441  * page.
442  */
443 static __inline
444 vm_pindex_t
445 pmap_pte_index(vm_offset_t va)
446 {
447 	return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
448 }
449 
450 /*
451  * Returns the index of a pt in a page directory, representing a page
452  * table.
453  */
454 static __inline
455 vm_pindex_t
456 pmap_pt_index(vm_offset_t va)
457 {
458 	return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
459 }
460 
461 /*
462  * Returns the index of a pd in a page directory page, representing a page
463  * directory.
464  */
465 static __inline
466 vm_pindex_t
467 pmap_pd_index(vm_offset_t va)
468 {
469 	return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
470 }
471 
472 /*
473  * Returns the index of a pdp in the pml4 table, representing a page
474  * directory page.
475  */
476 static __inline
477 vm_pindex_t
478 pmap_pdp_index(vm_offset_t va)
479 {
480 	return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
481 }
482 
483 /*
484  * Generic procedure to index a pte from a pt, pd, or pdp.
485  *
486  * NOTE: Normally passed pindex as pmap_xx_index().  pmap_xx_pindex() is NOT
487  *	 a page table page index but is instead of PV lookup index.
488  */
489 static
490 void *
491 pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex)
492 {
493 	pt_entry_t *pte;
494 
495 	pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pv->pv_m));
496 	return(&pte[pindex]);
497 }
498 
499 /*
500  * Return pointer to PDP slot in the PML4
501  */
502 static __inline
503 pml4_entry_t *
504 pmap_pdp(pmap_t pmap, vm_offset_t va)
505 {
506 	return (&pmap->pm_pml4[pmap_pdp_index(va)]);
507 }
508 
509 /*
510  * Return pointer to PD slot in the PDP given a pointer to the PDP
511  */
512 static __inline
513 pdp_entry_t *
514 pmap_pdp_to_pd(pml4_entry_t pdp_pte, vm_offset_t va)
515 {
516 	pdp_entry_t *pd;
517 
518 	pd = (pdp_entry_t *)PHYS_TO_DMAP(pdp_pte & PG_FRAME);
519 	return (&pd[pmap_pd_index(va)]);
520 }
521 
522 /*
523  * Return pointer to PD slot in the PDP.
524  */
525 static __inline
526 pdp_entry_t *
527 pmap_pd(pmap_t pmap, vm_offset_t va)
528 {
529 	pml4_entry_t *pdp;
530 
531 	pdp = pmap_pdp(pmap, va);
532 	if ((*pdp & pmap->pmap_bits[PG_V_IDX]) == 0)
533 		return NULL;
534 	return (pmap_pdp_to_pd(*pdp, va));
535 }
536 
537 /*
538  * Return pointer to PT slot in the PD given a pointer to the PD
539  */
540 static __inline
541 pd_entry_t *
542 pmap_pd_to_pt(pdp_entry_t pd_pte, vm_offset_t va)
543 {
544 	pd_entry_t *pt;
545 
546 	pt = (pd_entry_t *)PHYS_TO_DMAP(pd_pte & PG_FRAME);
547 	return (&pt[pmap_pt_index(va)]);
548 }
549 
550 /*
551  * Return pointer to PT slot in the PD
552  *
553  * SIMPLE PMAP NOTE: Simple pmaps (embedded in objects) do not have PDPs,
554  *		     so we cannot lookup the PD via the PDP.  Instead we
555  *		     must look it up via the pmap.
556  */
557 static __inline
558 pd_entry_t *
559 pmap_pt(pmap_t pmap, vm_offset_t va)
560 {
561 	pdp_entry_t *pd;
562 	pv_entry_t pv;
563 	vm_pindex_t pd_pindex;
564 
565 	if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
566 		pd_pindex = pmap_pd_pindex(va);
567 		spin_lock(&pmap->pm_spin);
568 		pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pd_pindex);
569 		spin_unlock(&pmap->pm_spin);
570 		if (pv == NULL || pv->pv_m == NULL)
571 			return NULL;
572 		return (pmap_pd_to_pt(VM_PAGE_TO_PHYS(pv->pv_m), va));
573 	} else {
574 		pd = pmap_pd(pmap, va);
575 		if (pd == NULL || (*pd & pmap->pmap_bits[PG_V_IDX]) == 0)
576 			 return NULL;
577 		return (pmap_pd_to_pt(*pd, va));
578 	}
579 }
580 
581 /*
582  * Return pointer to PTE slot in the PT given a pointer to the PT
583  */
584 static __inline
585 pt_entry_t *
586 pmap_pt_to_pte(pd_entry_t pt_pte, vm_offset_t va)
587 {
588 	pt_entry_t *pte;
589 
590 	pte = (pt_entry_t *)PHYS_TO_DMAP(pt_pte & PG_FRAME);
591 	return (&pte[pmap_pte_index(va)]);
592 }
593 
594 /*
595  * Return pointer to PTE slot in the PT
596  */
597 static __inline
598 pt_entry_t *
599 pmap_pte(pmap_t pmap, vm_offset_t va)
600 {
601 	pd_entry_t *pt;
602 
603 	pt = pmap_pt(pmap, va);
604 	if (pt == NULL || (*pt & pmap->pmap_bits[PG_V_IDX]) == 0)
605 		 return NULL;
606 	if ((*pt & pmap->pmap_bits[PG_PS_IDX]) != 0)
607 		return ((pt_entry_t *)pt);
608 	return (pmap_pt_to_pte(*pt, va));
609 }
610 
611 /*
612  * Of all the layers (PTE, PT, PD, PDP, PML4) the best one to cache is
613  * the PT layer.  This will speed up core pmap operations considerably.
614  *
615  * NOTE: The pmap spinlock does not need to be held but the passed-in pv
616  *	 must be in a known associated state (typically by being locked when
617  *	 the pmap spinlock isn't held).  We allow the race for that case.
618  */
619 static __inline
620 void
621 pv_cache(pv_entry_t pv, vm_pindex_t pindex)
622 {
623 	if (pindex >= pmap_pt_pindex(0) && pindex <= pmap_pd_pindex(0))
624 		pv->pv_pmap->pm_pvhint = pv;
625 }
626 
627 
628 /*
629  * Return address of PT slot in PD (KVM only)
630  *
631  * Cannot be used for user page tables because it might interfere with
632  * the shared page-table-page optimization (pmap_mmu_optimize).
633  */
634 static __inline
635 pd_entry_t *
636 vtopt(vm_offset_t va)
637 {
638 	uint64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
639 				  NPML4EPGSHIFT)) - 1);
640 
641 	return (PDmap + ((va >> PDRSHIFT) & mask));
642 }
643 
644 /*
645  * KVM - return address of PTE slot in PT
646  */
647 static __inline
648 pt_entry_t *
649 vtopte(vm_offset_t va)
650 {
651 	uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
652 				  NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
653 
654 	return (PTmap + ((va >> PAGE_SHIFT) & mask));
655 }
656 
657 static uint64_t
658 allocpages(vm_paddr_t *firstaddr, long n)
659 {
660 	uint64_t ret;
661 
662 	ret = *firstaddr;
663 	bzero((void *)ret, n * PAGE_SIZE);
664 	*firstaddr += n * PAGE_SIZE;
665 	return (ret);
666 }
667 
668 static
669 void
670 create_pagetables(vm_paddr_t *firstaddr)
671 {
672 	long i;		/* must be 64 bits */
673 	long nkpt_base;
674 	long nkpt_phys;
675 	int j;
676 
677 	/*
678 	 * We are running (mostly) V=P at this point
679 	 *
680 	 * Calculate NKPT - number of kernel page tables.  We have to
681 	 * accomodoate prealloction of the vm_page_array, dump bitmap,
682 	 * MSGBUF_SIZE, and other stuff.  Be generous.
683 	 *
684 	 * Maxmem is in pages.
685 	 *
686 	 * ndmpdp is the number of 1GB pages we wish to map.
687 	 */
688 	ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
689 	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
690 		ndmpdp = 4;
691 	KKASSERT(ndmpdp <= NKPDPE * NPDEPG);
692 
693 	/*
694 	 * Starting at the beginning of kvm (not KERNBASE).
695 	 */
696 	nkpt_phys = (Maxmem * sizeof(struct vm_page) + NBPDR - 1) / NBPDR;
697 	nkpt_phys += (Maxmem * sizeof(struct pv_entry) + NBPDR - 1) / NBPDR;
698 	nkpt_phys += ((nkpt + nkpt + 1 + NKPML4E + NKPDPE + NDMPML4E +
699 		       ndmpdp) + 511) / 512;
700 	nkpt_phys += 128;
701 
702 	/*
703 	 * Starting at KERNBASE - map 2G worth of page table pages.
704 	 * KERNBASE is offset -2G from the end of kvm.
705 	 */
706 	nkpt_base = (NPDPEPG - KPDPI) * NPTEPG;	/* typically 2 x 512 */
707 
708 	/*
709 	 * Allocate pages
710 	 */
711 	KPTbase = allocpages(firstaddr, nkpt_base);
712 	KPTphys = allocpages(firstaddr, nkpt_phys);
713 	KPML4phys = allocpages(firstaddr, 1);
714 	KPDPphys = allocpages(firstaddr, NKPML4E);
715 	KPDphys = allocpages(firstaddr, NKPDPE);
716 
717 	/*
718 	 * Calculate the page directory base for KERNBASE,
719 	 * that is where we start populating the page table pages.
720 	 * Basically this is the end - 2.
721 	 */
722 	KPDbase = KPDphys + ((NKPDPE - (NPDPEPG - KPDPI)) << PAGE_SHIFT);
723 
724 	DMPDPphys = allocpages(firstaddr, NDMPML4E);
725 	if ((amd_feature & AMDID_PAGE1GB) == 0)
726 		DMPDphys = allocpages(firstaddr, ndmpdp);
727 	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
728 
729 	/*
730 	 * Fill in the underlying page table pages for the area around
731 	 * KERNBASE.  This remaps low physical memory to KERNBASE.
732 	 *
733 	 * Read-only from zero to physfree
734 	 * XXX not fully used, underneath 2M pages
735 	 */
736 	for (i = 0; (i << PAGE_SHIFT) < *firstaddr; i++) {
737 		((pt_entry_t *)KPTbase)[i] = i << PAGE_SHIFT;
738 		((pt_entry_t *)KPTbase)[i] |=
739 		    pmap_bits_default[PG_RW_IDX] |
740 		    pmap_bits_default[PG_V_IDX] |
741 		    pmap_bits_default[PG_G_IDX];
742 	}
743 
744 	/*
745 	 * Now map the initial kernel page tables.  One block of page
746 	 * tables is placed at the beginning of kernel virtual memory,
747 	 * and another block is placed at KERNBASE to map the kernel binary,
748 	 * data, bss, and initial pre-allocations.
749 	 */
750 	for (i = 0; i < nkpt_base; i++) {
751 		((pd_entry_t *)KPDbase)[i] = KPTbase + (i << PAGE_SHIFT);
752 		((pd_entry_t *)KPDbase)[i] |=
753 		    pmap_bits_default[PG_RW_IDX] |
754 		    pmap_bits_default[PG_V_IDX];
755 	}
756 	for (i = 0; i < nkpt_phys; i++) {
757 		((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
758 		((pd_entry_t *)KPDphys)[i] |=
759 		    pmap_bits_default[PG_RW_IDX] |
760 		    pmap_bits_default[PG_V_IDX];
761 	}
762 
763 	/*
764 	 * Map from zero to end of allocations using 2M pages as an
765 	 * optimization.  This will bypass some of the KPTBase pages
766 	 * above in the KERNBASE area.
767 	 */
768 	for (i = 0; (i << PDRSHIFT) < *firstaddr; i++) {
769 		((pd_entry_t *)KPDbase)[i] = i << PDRSHIFT;
770 		((pd_entry_t *)KPDbase)[i] |=
771 		    pmap_bits_default[PG_RW_IDX] |
772 		    pmap_bits_default[PG_V_IDX] |
773 		    pmap_bits_default[PG_PS_IDX] |
774 		    pmap_bits_default[PG_G_IDX];
775 	}
776 
777 	/*
778 	 * And connect up the PD to the PDP.  The kernel pmap is expected
779 	 * to pre-populate all of its PDs.  See NKPDPE in vmparam.h.
780 	 */
781 	for (i = 0; i < NKPDPE; i++) {
782 		((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] =
783 				KPDphys + (i << PAGE_SHIFT);
784 		((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] |=
785 		    pmap_bits_default[PG_RW_IDX] |
786 		    pmap_bits_default[PG_V_IDX] |
787 		    pmap_bits_default[PG_U_IDX];
788 	}
789 
790 	/*
791 	 * Now set up the direct map space using either 2MB or 1GB pages
792 	 * Preset PG_M and PG_A because demotion expects it.
793 	 *
794 	 * When filling in entries in the PD pages make sure any excess
795 	 * entries are set to zero as we allocated enough PD pages
796 	 */
797 	if ((amd_feature & AMDID_PAGE1GB) == 0) {
798 		for (i = 0; i < NPDEPG * ndmpdp; i++) {
799 			((pd_entry_t *)DMPDphys)[i] = i << PDRSHIFT;
800 			((pd_entry_t *)DMPDphys)[i] |=
801 			    pmap_bits_default[PG_RW_IDX] |
802 			    pmap_bits_default[PG_V_IDX] |
803 			    pmap_bits_default[PG_PS_IDX] |
804 			    pmap_bits_default[PG_G_IDX] |
805 			    pmap_bits_default[PG_M_IDX] |
806 			    pmap_bits_default[PG_A_IDX];
807 		}
808 
809 		/*
810 		 * And the direct map space's PDP
811 		 */
812 		for (i = 0; i < ndmpdp; i++) {
813 			((pdp_entry_t *)DMPDPphys)[i] = DMPDphys +
814 							(i << PAGE_SHIFT);
815 			((pdp_entry_t *)DMPDPphys)[i] |=
816 			    pmap_bits_default[PG_RW_IDX] |
817 			    pmap_bits_default[PG_V_IDX] |
818 			    pmap_bits_default[PG_U_IDX];
819 		}
820 	} else {
821 		for (i = 0; i < ndmpdp; i++) {
822 			((pdp_entry_t *)DMPDPphys)[i] =
823 						(vm_paddr_t)i << PDPSHIFT;
824 			((pdp_entry_t *)DMPDPphys)[i] |=
825 			    pmap_bits_default[PG_RW_IDX] |
826 			    pmap_bits_default[PG_V_IDX] |
827 			    pmap_bits_default[PG_PS_IDX] |
828 			    pmap_bits_default[PG_G_IDX] |
829 			    pmap_bits_default[PG_M_IDX] |
830 			    pmap_bits_default[PG_A_IDX];
831 		}
832 	}
833 
834 	/* And recursively map PML4 to itself in order to get PTmap */
835 	((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
836 	((pdp_entry_t *)KPML4phys)[PML4PML4I] |=
837 	    pmap_bits_default[PG_RW_IDX] |
838 	    pmap_bits_default[PG_V_IDX] |
839 	    pmap_bits_default[PG_U_IDX];
840 
841 	/*
842 	 * Connect the Direct Map slots up to the PML4
843 	 */
844 	for (j = 0; j < NDMPML4E; ++j) {
845 		((pdp_entry_t *)KPML4phys)[DMPML4I + j] =
846 		    (DMPDPphys + ((vm_paddr_t)j << PML4SHIFT)) |
847 		    pmap_bits_default[PG_RW_IDX] |
848 		    pmap_bits_default[PG_V_IDX] |
849 		    pmap_bits_default[PG_U_IDX];
850 	}
851 
852 	/*
853 	 * Connect the KVA slot up to the PML4
854 	 */
855 	((pdp_entry_t *)KPML4phys)[KPML4I] = KPDPphys;
856 	((pdp_entry_t *)KPML4phys)[KPML4I] |=
857 	    pmap_bits_default[PG_RW_IDX] |
858 	    pmap_bits_default[PG_V_IDX] |
859 	    pmap_bits_default[PG_U_IDX];
860 }
861 
862 /*
863  *	Bootstrap the system enough to run with virtual memory.
864  *
865  *	On the i386 this is called after mapping has already been enabled
866  *	and just syncs the pmap module with what has already been done.
867  *	[We can't call it easily with mapping off since the kernel is not
868  *	mapped with PA == VA, hence we would have to relocate every address
869  *	from the linked base (virtual) address "KERNBASE" to the actual
870  *	(physical) address starting relative to 0]
871  */
872 void
873 pmap_bootstrap(vm_paddr_t *firstaddr)
874 {
875 	vm_offset_t va;
876 	pt_entry_t *pte;
877 
878 	KvaStart = VM_MIN_KERNEL_ADDRESS;
879 	KvaEnd = VM_MAX_KERNEL_ADDRESS;
880 	KvaSize = KvaEnd - KvaStart;
881 
882 	avail_start = *firstaddr;
883 
884 	/*
885 	 * Create an initial set of page tables to run the kernel in.
886 	 */
887 	create_pagetables(firstaddr);
888 
889 	virtual2_start = KvaStart;
890 	virtual2_end = PTOV_OFFSET;
891 
892 	virtual_start = (vm_offset_t) PTOV_OFFSET + *firstaddr;
893 	virtual_start = pmap_kmem_choose(virtual_start);
894 
895 	virtual_end = VM_MAX_KERNEL_ADDRESS;
896 
897 	/* XXX do %cr0 as well */
898 	load_cr4(rcr4() | CR4_PGE | CR4_PSE);
899 	load_cr3(KPML4phys);
900 
901 	/*
902 	 * Initialize protection array.
903 	 */
904 	i386_protection_init();
905 
906 	/*
907 	 * The kernel's pmap is statically allocated so we don't have to use
908 	 * pmap_create, which is unlikely to work correctly at this part of
909 	 * the boot sequence (XXX and which no longer exists).
910 	 */
911 	kernel_pmap.pm_pml4 = (pdp_entry_t *) (PTOV_OFFSET + KPML4phys);
912 	kernel_pmap.pm_count = 1;
913 	CPUMASK_ASSALLONES(kernel_pmap.pm_active);
914 	RB_INIT(&kernel_pmap.pm_pvroot);
915 	spin_init(&kernel_pmap.pm_spin, "pmapbootstrap");
916 	lwkt_token_init(&kernel_pmap.pm_token, "kpmap_tok");
917 
918 	/*
919 	 * Reserve some special page table entries/VA space for temporary
920 	 * mapping of pages.
921 	 */
922 #define	SYSMAP(c, p, v, n)	\
923 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
924 
925 	va = virtual_start;
926 	pte = vtopte(va);
927 
928 	/*
929 	 * CMAP1/CMAP2 are used for zeroing and copying pages.
930 	 */
931 	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
932 
933 	/*
934 	 * Crashdump maps.
935 	 */
936 	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
937 
938 	/*
939 	 * ptvmmap is used for reading arbitrary physical pages via
940 	 * /dev/mem.
941 	 */
942 	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
943 
944 	/*
945 	 * msgbufp is used to map the system message buffer.
946 	 * XXX msgbufmap is not used.
947 	 */
948 	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
949 	       atop(round_page(MSGBUF_SIZE)))
950 
951 	virtual_start = va;
952 	virtual_start = pmap_kmem_choose(virtual_start);
953 
954 	*CMAP1 = 0;
955 
956 	/*
957 	 * PG_G is terribly broken on SMP because we IPI invltlb's in some
958 	 * cases rather then invl1pg.  Actually, I don't even know why it
959 	 * works under UP because self-referential page table mappings
960 	 */
961 //	pgeflag = 0;
962 
963 /*
964  * Initialize the 4MB page size flag
965  */
966 //	pseflag = 0;
967 /*
968  * The 4MB page version of the initial
969  * kernel page mapping.
970  */
971 	pdir4mb = 0;
972 
973 #if !defined(DISABLE_PSE)
974 	if (cpu_feature & CPUID_PSE) {
975 		pt_entry_t ptditmp;
976 		/*
977 		 * Note that we have enabled PSE mode
978 		 */
979 //		pseflag = kernel_pmap.pmap_bits[PG_PS_IDX];
980 		ptditmp = *(PTmap + x86_64_btop(KERNBASE));
981 		ptditmp &= ~(NBPDR - 1);
982 		ptditmp |= pmap_bits_default[PG_V_IDX] |
983 		    pmap_bits_default[PG_RW_IDX] |
984 		    pmap_bits_default[PG_PS_IDX] |
985 		    pmap_bits_default[PG_U_IDX];
986 //		    pgeflag;
987 		pdir4mb = ptditmp;
988 	}
989 #endif
990 	cpu_invltlb();
991 
992 	/* Initialize the PAT MSR */
993 	pmap_init_pat();
994 	pmap_pinit_defaults(&kernel_pmap);
995 
996 	TUNABLE_INT_FETCH("machdep.pmap_fast_kernel_cpusync",
997 			  &pmap_fast_kernel_cpusync);
998 
999 }
1000 
1001 /*
1002  * Setup the PAT MSR.
1003  */
1004 void
1005 pmap_init_pat(void)
1006 {
1007 	uint64_t pat_msr;
1008 	u_long cr0, cr4;
1009 
1010 	/*
1011 	 * Default values mapping PATi,PCD,PWT bits at system reset.
1012 	 * The default values effectively ignore the PATi bit by
1013 	 * repeating the encodings for 0-3 in 4-7, and map the PCD
1014 	 * and PWT bit combinations to the expected PAT types.
1015 	 */
1016 	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |	/* 000 */
1017 		  PAT_VALUE(1, PAT_WRITE_THROUGH) |	/* 001 */
1018 		  PAT_VALUE(2, PAT_UNCACHED) |		/* 010 */
1019 		  PAT_VALUE(3, PAT_UNCACHEABLE) |	/* 011 */
1020 		  PAT_VALUE(4, PAT_WRITE_BACK) |	/* 100 */
1021 		  PAT_VALUE(5, PAT_WRITE_THROUGH) |	/* 101 */
1022 		  PAT_VALUE(6, PAT_UNCACHED) |		/* 110 */
1023 		  PAT_VALUE(7, PAT_UNCACHEABLE);	/* 111 */
1024 	pat_pte_index[PAT_WRITE_BACK]	= 0;
1025 	pat_pte_index[PAT_WRITE_THROUGH]= 0         | X86_PG_NC_PWT;
1026 	pat_pte_index[PAT_UNCACHED]	= X86_PG_NC_PCD;
1027 	pat_pte_index[PAT_UNCACHEABLE]	= X86_PG_NC_PCD | X86_PG_NC_PWT;
1028 	pat_pte_index[PAT_WRITE_PROTECTED] = pat_pte_index[PAT_UNCACHEABLE];
1029 	pat_pte_index[PAT_WRITE_COMBINING] = pat_pte_index[PAT_UNCACHEABLE];
1030 
1031 	if (cpu_feature & CPUID_PAT) {
1032 		/*
1033 		 * If we support the PAT then set-up entries for
1034 		 * WRITE_PROTECTED and WRITE_COMBINING using bit patterns
1035 		 * 4 and 5.
1036 		 */
1037 		pat_msr = (pat_msr & ~PAT_MASK(4)) |
1038 			  PAT_VALUE(4, PAT_WRITE_PROTECTED);
1039 		pat_msr = (pat_msr & ~PAT_MASK(5)) |
1040 			  PAT_VALUE(5, PAT_WRITE_COMBINING);
1041 		pat_pte_index[PAT_WRITE_PROTECTED] = X86_PG_PTE_PAT | 0;
1042 		pat_pte_index[PAT_WRITE_COMBINING] = X86_PG_PTE_PAT | X86_PG_NC_PWT;
1043 
1044 		/*
1045 		 * Then enable the PAT
1046 		 */
1047 
1048 		/* Disable PGE. */
1049 		cr4 = rcr4();
1050 		load_cr4(cr4 & ~CR4_PGE);
1051 
1052 		/* Disable caches (CD = 1, NW = 0). */
1053 		cr0 = rcr0();
1054 		load_cr0((cr0 & ~CR0_NW) | CR0_CD);
1055 
1056 		/* Flushes caches and TLBs. */
1057 		wbinvd();
1058 		cpu_invltlb();
1059 
1060 		/* Update PAT and index table. */
1061 		wrmsr(MSR_PAT, pat_msr);
1062 
1063 		/* Flush caches and TLBs again. */
1064 		wbinvd();
1065 		cpu_invltlb();
1066 
1067 		/* Restore caches and PGE. */
1068 		load_cr0(cr0);
1069 		load_cr4(cr4);
1070 		PatMsr = pat_msr;
1071 	}
1072 }
1073 
1074 /*
1075  * Set 4mb pdir for mp startup
1076  */
1077 void
1078 pmap_set_opt(void)
1079 {
1080 	if (cpu_feature & CPUID_PSE) {
1081 		load_cr4(rcr4() | CR4_PSE);
1082 		if (pdir4mb && mycpu->gd_cpuid == 0) {	/* only on BSP */
1083 			cpu_invltlb();
1084 		}
1085 	}
1086 }
1087 
1088 /*
1089  *	Initialize the pmap module.
1090  *	Called by vm_init, to initialize any structures that the pmap
1091  *	system needs to map virtual memory.
1092  *	pmap_init has been enhanced to support in a fairly consistant
1093  *	way, discontiguous physical memory.
1094  */
1095 void
1096 pmap_init(void)
1097 {
1098 	int i;
1099 	int initial_pvs;
1100 
1101 	/*
1102 	 * Allocate memory for random pmap data structures.  Includes the
1103 	 * pv_head_table.
1104 	 */
1105 
1106 	for (i = 0; i < vm_page_array_size; i++) {
1107 		vm_page_t m;
1108 
1109 		m = &vm_page_array[i];
1110 		TAILQ_INIT(&m->md.pv_list);
1111 	}
1112 
1113 	/*
1114 	 * init the pv free list
1115 	 */
1116 	initial_pvs = vm_page_array_size;
1117 	if (initial_pvs < MINPV)
1118 		initial_pvs = MINPV;
1119 	pvzone = &pvzone_store;
1120 	pvinit = (void *)kmem_alloc(&kernel_map,
1121 				    initial_pvs * sizeof (struct pv_entry));
1122 	zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry),
1123 		  pvinit, initial_pvs);
1124 
1125 	/*
1126 	 * Now it is safe to enable pv_table recording.
1127 	 */
1128 	pmap_initialized = TRUE;
1129 }
1130 
1131 /*
1132  * Initialize the address space (zone) for the pv_entries.  Set a
1133  * high water mark so that the system can recover from excessive
1134  * numbers of pv entries.
1135  */
1136 void
1137 pmap_init2(void)
1138 {
1139 	int shpgperproc = PMAP_SHPGPERPROC;
1140 	int entry_max;
1141 
1142 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1143 	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
1144 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1145 	pv_entry_high_water = 9 * (pv_entry_max / 10);
1146 
1147 	/*
1148 	 * Subtract out pages already installed in the zone (hack)
1149 	 */
1150 	entry_max = pv_entry_max - vm_page_array_size;
1151 	if (entry_max <= 0)
1152 		entry_max = 1;
1153 
1154 	zinitna(pvzone, &pvzone_obj, NULL, 0, entry_max, ZONE_INTERRUPT, 1);
1155 }
1156 
1157 /*
1158  * Typically used to initialize a fictitious page by vm/device_pager.c
1159  */
1160 void
1161 pmap_page_init(struct vm_page *m)
1162 {
1163 	vm_page_init(m);
1164 	TAILQ_INIT(&m->md.pv_list);
1165 }
1166 
1167 /***************************************************
1168  * Low level helper routines.....
1169  ***************************************************/
1170 
1171 /*
1172  * this routine defines the region(s) of memory that should
1173  * not be tested for the modified bit.
1174  */
1175 static __inline
1176 int
1177 pmap_track_modified(vm_pindex_t pindex)
1178 {
1179 	vm_offset_t va = (vm_offset_t)pindex << PAGE_SHIFT;
1180 	if ((va < clean_sva) || (va >= clean_eva))
1181 		return 1;
1182 	else
1183 		return 0;
1184 }
1185 
1186 /*
1187  * Extract the physical page address associated with the map/VA pair.
1188  * The page must be wired for this to work reliably.
1189  *
1190  * XXX for the moment we're using pv_find() instead of pv_get(), as
1191  *     callers might be expecting non-blocking operation.
1192  */
1193 vm_paddr_t
1194 pmap_extract(pmap_t pmap, vm_offset_t va)
1195 {
1196 	vm_paddr_t rtval;
1197 	pv_entry_t pt_pv;
1198 	pt_entry_t *ptep;
1199 
1200 	rtval = 0;
1201 	if (va >= VM_MAX_USER_ADDRESS) {
1202 		/*
1203 		 * Kernel page directories might be direct-mapped and
1204 		 * there is typically no PV tracking of pte's
1205 		 */
1206 		pd_entry_t *pt;
1207 
1208 		pt = pmap_pt(pmap, va);
1209 		if (pt && (*pt & pmap->pmap_bits[PG_V_IDX])) {
1210 			if (*pt & pmap->pmap_bits[PG_PS_IDX]) {
1211 				rtval = *pt & PG_PS_FRAME;
1212 				rtval |= va & PDRMASK;
1213 			} else {
1214 				ptep = pmap_pt_to_pte(*pt, va);
1215 				if (*pt & pmap->pmap_bits[PG_V_IDX]) {
1216 					rtval = *ptep & PG_FRAME;
1217 					rtval |= va & PAGE_MASK;
1218 				}
1219 			}
1220 		}
1221 	} else {
1222 		/*
1223 		 * User pages currently do not direct-map the page directory
1224 		 * and some pages might not used managed PVs.  But all PT's
1225 		 * will have a PV.
1226 		 */
1227 		pt_pv = pv_find(pmap, pmap_pt_pindex(va));
1228 		if (pt_pv) {
1229 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1230 			if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
1231 				rtval = *ptep & PG_FRAME;
1232 				rtval |= va & PAGE_MASK;
1233 			}
1234 			pv_drop(pt_pv);
1235 		}
1236 	}
1237 	return rtval;
1238 }
1239 
1240 /*
1241  * Similar to extract but checks protections, SMP-friendly short-cut for
1242  * vm_fault_page[_quick]().  Can return NULL to cause the caller to
1243  * fall-through to the real fault code.
1244  *
1245  * The returned page, if not NULL, is held (and not busied).
1246  */
1247 vm_page_t
1248 pmap_fault_page_quick(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1249 {
1250 	if (pmap && va < VM_MAX_USER_ADDRESS) {
1251 		pv_entry_t pt_pv;
1252 		pv_entry_t pte_pv;
1253 		pt_entry_t *ptep;
1254 		pt_entry_t req;
1255 		vm_page_t m;
1256 		int error;
1257 
1258 		req = pmap->pmap_bits[PG_V_IDX] |
1259 		      pmap->pmap_bits[PG_U_IDX];
1260 		if (prot & VM_PROT_WRITE)
1261 			req |= pmap->pmap_bits[PG_RW_IDX];
1262 
1263 		pt_pv = pv_find(pmap, pmap_pt_pindex(va));
1264 		if (pt_pv == NULL)
1265 			return (NULL);
1266 		ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1267 		if ((*ptep & req) != req) {
1268 			pv_drop(pt_pv);
1269 			return (NULL);
1270 		}
1271 		pte_pv = pv_get_try(pmap, pmap_pte_pindex(va), &error);
1272 		if (pte_pv && error == 0) {
1273 			m = pte_pv->pv_m;
1274 			vm_page_hold(m);
1275 			if (prot & VM_PROT_WRITE)
1276 				vm_page_dirty(m);
1277 			pv_put(pte_pv);
1278 		} else if (pte_pv) {
1279 			pv_drop(pte_pv);
1280 			m = NULL;
1281 		} else {
1282 			m = NULL;
1283 		}
1284 		pv_drop(pt_pv);
1285 		return(m);
1286 	} else {
1287 		return(NULL);
1288 	}
1289 }
1290 
1291 /*
1292  * Extract the physical page address associated kernel virtual address.
1293  */
1294 vm_paddr_t
1295 pmap_kextract(vm_offset_t va)
1296 {
1297 	pd_entry_t pt;		/* pt entry in pd */
1298 	vm_paddr_t pa;
1299 
1300 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
1301 		pa = DMAP_TO_PHYS(va);
1302 	} else {
1303 		pt = *vtopt(va);
1304 		if (pt & kernel_pmap.pmap_bits[PG_PS_IDX]) {
1305 			pa = (pt & PG_PS_FRAME) | (va & PDRMASK);
1306 		} else {
1307 			/*
1308 			 * Beware of a concurrent promotion that changes the
1309 			 * PDE at this point!  For example, vtopte() must not
1310 			 * be used to access the PTE because it would use the
1311 			 * new PDE.  It is, however, safe to use the old PDE
1312 			 * because the page table page is preserved by the
1313 			 * promotion.
1314 			 */
1315 			pa = *pmap_pt_to_pte(pt, va);
1316 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
1317 		}
1318 	}
1319 	return pa;
1320 }
1321 
1322 /***************************************************
1323  * Low level mapping routines.....
1324  ***************************************************/
1325 
1326 /*
1327  * Routine: pmap_kenter
1328  * Function:
1329  *  	Add a wired page to the KVA
1330  *  	NOTE! note that in order for the mapping to take effect -- you
1331  *  	should do an invltlb after doing the pmap_kenter().
1332  */
1333 void
1334 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1335 {
1336 	pt_entry_t *pte;
1337 	pt_entry_t npte;
1338 	pmap_inval_info info;
1339 
1340 	pmap_inval_init(&info);				/* XXX remove */
1341 	npte = pa |
1342 	    kernel_pmap.pmap_bits[PG_RW_IDX] |
1343 	    kernel_pmap.pmap_bits[PG_V_IDX];
1344 //	    pgeflag;
1345 	pte = vtopte(va);
1346 	pmap_inval_interlock(&info, &kernel_pmap, va);	/* XXX remove */
1347 	*pte = npte;
1348 	pmap_inval_deinterlock(&info, &kernel_pmap);	/* XXX remove */
1349 	pmap_inval_done(&info);				/* XXX remove */
1350 }
1351 
1352 /*
1353  * Routine: pmap_kenter_quick
1354  * Function:
1355  *  	Similar to pmap_kenter(), except we only invalidate the
1356  *  	mapping on the current CPU.
1357  */
1358 void
1359 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
1360 {
1361 	pt_entry_t *pte;
1362 	pt_entry_t npte;
1363 
1364 	npte = pa |
1365 	    kernel_pmap.pmap_bits[PG_RW_IDX] |
1366 	    kernel_pmap.pmap_bits[PG_V_IDX];
1367 //	    pgeflag;
1368 	pte = vtopte(va);
1369 	*pte = npte;
1370 	cpu_invlpg((void *)va);
1371 }
1372 
1373 void
1374 pmap_kenter_sync(vm_offset_t va)
1375 {
1376 	pmap_inval_info info;
1377 
1378 	pmap_inval_init(&info);
1379 	pmap_inval_interlock(&info, &kernel_pmap, va);
1380 	pmap_inval_deinterlock(&info, &kernel_pmap);
1381 	pmap_inval_done(&info);
1382 }
1383 
1384 void
1385 pmap_kenter_sync_quick(vm_offset_t va)
1386 {
1387 	cpu_invlpg((void *)va);
1388 }
1389 
1390 /*
1391  * remove a page from the kernel pagetables
1392  */
1393 void
1394 pmap_kremove(vm_offset_t va)
1395 {
1396 	pt_entry_t *pte;
1397 	pmap_inval_info info;
1398 
1399 	pmap_inval_init(&info);
1400 	pte = vtopte(va);
1401 	pmap_inval_interlock(&info, &kernel_pmap, va);
1402 	(void)pte_load_clear(pte);
1403 	pmap_inval_deinterlock(&info, &kernel_pmap);
1404 	pmap_inval_done(&info);
1405 }
1406 
1407 void
1408 pmap_kremove_quick(vm_offset_t va)
1409 {
1410 	pt_entry_t *pte;
1411 	pte = vtopte(va);
1412 	(void)pte_load_clear(pte);
1413 	cpu_invlpg((void *)va);
1414 }
1415 
1416 /*
1417  * XXX these need to be recoded.  They are not used in any critical path.
1418  */
1419 void
1420 pmap_kmodify_rw(vm_offset_t va)
1421 {
1422 	atomic_set_long(vtopte(va), kernel_pmap.pmap_bits[PG_RW_IDX]);
1423 	cpu_invlpg((void *)va);
1424 }
1425 
1426 /* NOT USED
1427 void
1428 pmap_kmodify_nc(vm_offset_t va)
1429 {
1430 	atomic_set_long(vtopte(va), PG_N);
1431 	cpu_invlpg((void *)va);
1432 }
1433 */
1434 
1435 /*
1436  * Used to map a range of physical addresses into kernel virtual
1437  * address space during the low level boot, typically to map the
1438  * dump bitmap, message buffer, and vm_page_array.
1439  *
1440  * These mappings are typically made at some pointer after the end of the
1441  * kernel text+data.
1442  *
1443  * We could return PHYS_TO_DMAP(start) here and not allocate any
1444  * via (*virtp), but then kmem from userland and kernel dumps won't
1445  * have access to the related pointers.
1446  */
1447 vm_offset_t
1448 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
1449 {
1450 	vm_offset_t va;
1451 	vm_offset_t va_start;
1452 
1453 	/*return PHYS_TO_DMAP(start);*/
1454 
1455 	va_start = *virtp;
1456 	va = va_start;
1457 
1458 	while (start < end) {
1459 		pmap_kenter_quick(va, start);
1460 		va += PAGE_SIZE;
1461 		start += PAGE_SIZE;
1462 	}
1463 	*virtp = va;
1464 	return va_start;
1465 }
1466 
1467 #define PMAP_CLFLUSH_THRESHOLD  (2 * 1024 * 1024)
1468 
1469 /*
1470  * Remove the specified set of pages from the data and instruction caches.
1471  *
1472  * In contrast to pmap_invalidate_cache_range(), this function does not
1473  * rely on the CPU's self-snoop feature, because it is intended for use
1474  * when moving pages into a different cache domain.
1475  */
1476 void
1477 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
1478 {
1479 	vm_offset_t daddr, eva;
1480 	int i;
1481 
1482 	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
1483 	    (cpu_feature & CPUID_CLFSH) == 0)
1484 		wbinvd();
1485 	else {
1486 		cpu_mfence();
1487 		for (i = 0; i < count; i++) {
1488 			daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
1489 			eva = daddr + PAGE_SIZE;
1490 			for (; daddr < eva; daddr += cpu_clflush_line_size)
1491 				clflush(daddr);
1492 		}
1493 		cpu_mfence();
1494 	}
1495 }
1496 
1497 void
1498 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
1499 {
1500 	KASSERT((sva & PAGE_MASK) == 0,
1501 	    ("pmap_invalidate_cache_range: sva not page-aligned"));
1502 	KASSERT((eva & PAGE_MASK) == 0,
1503 	    ("pmap_invalidate_cache_range: eva not page-aligned"));
1504 
1505 	if (cpu_feature & CPUID_SS) {
1506 		; /* If "Self Snoop" is supported, do nothing. */
1507 	} else {
1508 		/* Globally invalidate caches */
1509 		cpu_wbinvd_on_all_cpus();
1510 	}
1511 }
1512 void
1513 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1514 {
1515 	smp_invlpg_range(pmap->pm_active, sva, eva);
1516 }
1517 
1518 /*
1519  * Add a list of wired pages to the kva
1520  * this routine is only used for temporary
1521  * kernel mappings that do not need to have
1522  * page modification or references recorded.
1523  * Note that old mappings are simply written
1524  * over.  The page *must* be wired.
1525  */
1526 void
1527 pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
1528 {
1529 	vm_offset_t end_va;
1530 
1531 	end_va = va + count * PAGE_SIZE;
1532 
1533 	while (va < end_va) {
1534 		pt_entry_t *pte;
1535 
1536 		pte = vtopte(va);
1537 		*pte = VM_PAGE_TO_PHYS(*m) |
1538 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
1539 		    kernel_pmap.pmap_bits[PG_V_IDX] |
1540 		    kernel_pmap.pmap_cache_bits[(*m)->pat_mode];
1541 //		pgeflag;
1542 		cpu_invlpg((void *)va);
1543 		va += PAGE_SIZE;
1544 		m++;
1545 	}
1546 	smp_invltlb();
1547 }
1548 
1549 /*
1550  * This routine jerks page mappings from the
1551  * kernel -- it is meant only for temporary mappings.
1552  *
1553  * MPSAFE, INTERRUPT SAFE (cluster callback)
1554  */
1555 void
1556 pmap_qremove(vm_offset_t va, int count)
1557 {
1558 	vm_offset_t end_va;
1559 
1560 	end_va = va + count * PAGE_SIZE;
1561 
1562 	while (va < end_va) {
1563 		pt_entry_t *pte;
1564 
1565 		pte = vtopte(va);
1566 		(void)pte_load_clear(pte);
1567 		cpu_invlpg((void *)va);
1568 		va += PAGE_SIZE;
1569 	}
1570 	smp_invltlb();
1571 }
1572 
1573 /*
1574  * Create a new thread and optionally associate it with a (new) process.
1575  * NOTE! the new thread's cpu may not equal the current cpu.
1576  */
1577 void
1578 pmap_init_thread(thread_t td)
1579 {
1580 	/* enforce pcb placement & alignment */
1581 	td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
1582 	td->td_pcb = (struct pcb *)((intptr_t)td->td_pcb & ~(intptr_t)0xF);
1583 	td->td_savefpu = &td->td_pcb->pcb_save;
1584 	td->td_sp = (char *)td->td_pcb;	/* no -16 */
1585 }
1586 
1587 /*
1588  * This routine directly affects the fork perf for a process.
1589  */
1590 void
1591 pmap_init_proc(struct proc *p)
1592 {
1593 }
1594 
1595 static void
1596 pmap_pinit_defaults(struct pmap *pmap)
1597 {
1598 	bcopy(pmap_bits_default, pmap->pmap_bits,
1599 	      sizeof(pmap_bits_default));
1600 	bcopy(protection_codes, pmap->protection_codes,
1601 	      sizeof(protection_codes));
1602 	bcopy(pat_pte_index, pmap->pmap_cache_bits,
1603 	      sizeof(pat_pte_index));
1604 	pmap->pmap_cache_mask = X86_PG_NC_PWT | X86_PG_NC_PCD | X86_PG_PTE_PAT;
1605 	pmap->copyinstr = std_copyinstr;
1606 	pmap->copyin = std_copyin;
1607 	pmap->copyout = std_copyout;
1608 	pmap->fubyte = std_fubyte;
1609 	pmap->subyte = std_subyte;
1610 	pmap->fuword = std_fuword;
1611 	pmap->suword = std_suword;
1612 	pmap->suword32 = std_suword32;
1613 }
1614 /*
1615  * Initialize pmap0/vmspace0.  This pmap is not added to pmap_list because
1616  * it, and IdlePTD, represents the template used to update all other pmaps.
1617  *
1618  * On architectures where the kernel pmap is not integrated into the user
1619  * process pmap, this pmap represents the process pmap, not the kernel pmap.
1620  * kernel_pmap should be used to directly access the kernel_pmap.
1621  */
1622 void
1623 pmap_pinit0(struct pmap *pmap)
1624 {
1625 	pmap->pm_pml4 = (pml4_entry_t *)(PTOV_OFFSET + KPML4phys);
1626 	pmap->pm_count = 1;
1627 	CPUMASK_ASSZERO(pmap->pm_active);
1628 	pmap->pm_pvhint = NULL;
1629 	RB_INIT(&pmap->pm_pvroot);
1630 	spin_init(&pmap->pm_spin, "pmapinit0");
1631 	lwkt_token_init(&pmap->pm_token, "pmap_tok");
1632 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1633 	pmap_pinit_defaults(pmap);
1634 }
1635 
1636 /*
1637  * Initialize a preallocated and zeroed pmap structure,
1638  * such as one in a vmspace structure.
1639  */
1640 static void
1641 pmap_pinit_simple(struct pmap *pmap)
1642 {
1643 	/*
1644 	 * Misc initialization
1645 	 */
1646 	pmap->pm_count = 1;
1647 	CPUMASK_ASSZERO(pmap->pm_active);
1648 	pmap->pm_pvhint = NULL;
1649 	pmap->pm_flags = PMAP_FLAG_SIMPLE;
1650 
1651 	pmap_pinit_defaults(pmap);
1652 
1653 	/*
1654 	 * Don't blow up locks/tokens on re-use (XXX fix/use drop code
1655 	 * for this).
1656 	 */
1657 	if (pmap->pm_pmlpv == NULL) {
1658 		RB_INIT(&pmap->pm_pvroot);
1659 		bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1660 		spin_init(&pmap->pm_spin, "pmapinitsimple");
1661 		lwkt_token_init(&pmap->pm_token, "pmap_tok");
1662 	}
1663 }
1664 
1665 void
1666 pmap_pinit(struct pmap *pmap)
1667 {
1668 	pv_entry_t pv;
1669 	int j;
1670 
1671 	if (pmap->pm_pmlpv) {
1672 		if (pmap->pmap_bits[TYPE_IDX] != REGULAR_PMAP) {
1673 			pmap_puninit(pmap);
1674 		}
1675 	}
1676 
1677 	pmap_pinit_simple(pmap);
1678 	pmap->pm_flags &= ~PMAP_FLAG_SIMPLE;
1679 
1680 	/*
1681 	 * No need to allocate page table space yet but we do need a valid
1682 	 * page directory table.
1683 	 */
1684 	if (pmap->pm_pml4 == NULL) {
1685 		pmap->pm_pml4 =
1686 		    (pml4_entry_t *)kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
1687 	}
1688 
1689 	/*
1690 	 * Allocate the page directory page, which wires it even though
1691 	 * it isn't being entered into some higher level page table (it
1692 	 * being the highest level).  If one is already cached we don't
1693 	 * have to do anything.
1694 	 */
1695 	if ((pv = pmap->pm_pmlpv) == NULL) {
1696 		pv = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
1697 		pmap->pm_pmlpv = pv;
1698 		pmap_kenter((vm_offset_t)pmap->pm_pml4,
1699 			    VM_PAGE_TO_PHYS(pv->pv_m));
1700 		pv_put(pv);
1701 
1702 		/*
1703 		 * Install DMAP and KMAP.
1704 		 */
1705 		for (j = 0; j < NDMPML4E; ++j) {
1706 			pmap->pm_pml4[DMPML4I + j] =
1707 			    (DMPDPphys + ((vm_paddr_t)j << PML4SHIFT)) |
1708 			    pmap->pmap_bits[PG_RW_IDX] |
1709 			    pmap->pmap_bits[PG_V_IDX] |
1710 			    pmap->pmap_bits[PG_U_IDX];
1711 		}
1712 		pmap->pm_pml4[KPML4I] = KPDPphys |
1713 		    pmap->pmap_bits[PG_RW_IDX] |
1714 		    pmap->pmap_bits[PG_V_IDX] |
1715 		    pmap->pmap_bits[PG_U_IDX];
1716 
1717 		/*
1718 		 * install self-referential address mapping entry
1719 		 */
1720 		pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pv->pv_m) |
1721 		    pmap->pmap_bits[PG_V_IDX] |
1722 		    pmap->pmap_bits[PG_RW_IDX] |
1723 		    pmap->pmap_bits[PG_A_IDX] |
1724 		    pmap->pmap_bits[PG_M_IDX];
1725 	} else {
1726 		KKASSERT(pv->pv_m->flags & PG_MAPPED);
1727 		KKASSERT(pv->pv_m->flags & PG_WRITEABLE);
1728 	}
1729 	KKASSERT(pmap->pm_pml4[255] == 0);
1730 	KKASSERT(RB_ROOT(&pmap->pm_pvroot) == pv);
1731 	KKASSERT(pv->pv_entry.rbe_left == NULL);
1732 	KKASSERT(pv->pv_entry.rbe_right == NULL);
1733 }
1734 
1735 /*
1736  * Clean up a pmap structure so it can be physically freed.  This routine
1737  * is called by the vmspace dtor function.  A great deal of pmap data is
1738  * left passively mapped to improve vmspace management so we have a bit
1739  * of cleanup work to do here.
1740  */
1741 void
1742 pmap_puninit(pmap_t pmap)
1743 {
1744 	pv_entry_t pv;
1745 	vm_page_t p;
1746 
1747 	KKASSERT(CPUMASK_TESTZERO(pmap->pm_active));
1748 	if ((pv = pmap->pm_pmlpv) != NULL) {
1749 		if (pv_hold_try(pv) == 0)
1750 			pv_lock(pv);
1751 		KKASSERT(pv == pmap->pm_pmlpv);
1752 		p = pmap_remove_pv_page(pv);
1753 		pv_free(pv);
1754 		pmap_kremove((vm_offset_t)pmap->pm_pml4);
1755 		vm_page_busy_wait(p, FALSE, "pgpun");
1756 		KKASSERT(p->flags & (PG_FICTITIOUS|PG_UNMANAGED));
1757 		vm_page_unwire(p, 0);
1758 		vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
1759 
1760 		/*
1761 		 * XXX eventually clean out PML4 static entries and
1762 		 * use vm_page_free_zero()
1763 		 */
1764 		vm_page_free(p);
1765 		pmap->pm_pmlpv = NULL;
1766 	}
1767 	if (pmap->pm_pml4) {
1768 		KKASSERT(pmap->pm_pml4 != (void *)(PTOV_OFFSET + KPML4phys));
1769 		kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pml4, PAGE_SIZE);
1770 		pmap->pm_pml4 = NULL;
1771 	}
1772 	KKASSERT(pmap->pm_stats.resident_count == 0);
1773 	KKASSERT(pmap->pm_stats.wired_count == 0);
1774 }
1775 
1776 /*
1777  * Wire in kernel global address entries.  To avoid a race condition
1778  * between pmap initialization and pmap_growkernel, this procedure
1779  * adds the pmap to the master list (which growkernel scans to update),
1780  * then copies the template.
1781  */
1782 void
1783 pmap_pinit2(struct pmap *pmap)
1784 {
1785 	spin_lock(&pmap_spin);
1786 	TAILQ_INSERT_TAIL(&pmap_list, pmap, pm_pmnode);
1787 	spin_unlock(&pmap_spin);
1788 }
1789 
1790 /*
1791  * This routine is called when various levels in the page table need to
1792  * be populated.  This routine cannot fail.
1793  *
1794  * This function returns two locked pv_entry's, one representing the
1795  * requested pv and one representing the requested pv's parent pv.  If
1796  * the pv did not previously exist it will be mapped into its parent
1797  * and wired, otherwise no additional wire count will be added.
1798  */
1799 static
1800 pv_entry_t
1801 pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp)
1802 {
1803 	pt_entry_t *ptep;
1804 	pv_entry_t pv;
1805 	pv_entry_t pvp;
1806 	vm_pindex_t pt_pindex;
1807 	vm_page_t m;
1808 	int isnew;
1809 	int ispt;
1810 
1811 	/*
1812 	 * If the pv already exists and we aren't being asked for the
1813 	 * parent page table page we can just return it.  A locked+held pv
1814 	 * is returned.  The pv will also have a second hold related to the
1815 	 * pmap association that we don't have to worry about.
1816 	 */
1817 	ispt = 0;
1818 	pv = pv_alloc(pmap, ptepindex, &isnew);
1819 	if (isnew == 0 && pvpp == NULL)
1820 		return(pv);
1821 
1822 	/*
1823 	 * Special case terminal PVs.  These are not page table pages so
1824 	 * no vm_page is allocated (the caller supplied the vm_page).  If
1825 	 * pvpp is non-NULL we are being asked to also removed the pt_pv
1826 	 * for this pv.
1827 	 *
1828 	 * Note that pt_pv's are only returned for user VAs. We assert that
1829 	 * a pt_pv is not being requested for kernel VAs.
1830 	 */
1831 	if (ptepindex < pmap_pt_pindex(0)) {
1832 		if (ptepindex >= NUPTE_USER)
1833 			KKASSERT(pvpp == NULL);
1834 		else
1835 			KKASSERT(pvpp != NULL);
1836 		if (pvpp) {
1837 			pt_pindex = NUPTE_TOTAL + (ptepindex >> NPTEPGSHIFT);
1838 			pvp = pmap_allocpte(pmap, pt_pindex, NULL);
1839 			if (isnew)
1840 				vm_page_wire_quick(pvp->pv_m);
1841 			*pvpp = pvp;
1842 		} else {
1843 			pvp = NULL;
1844 		}
1845 		return(pv);
1846 	}
1847 
1848 	/*
1849 	 * Non-terminal PVs allocate a VM page to represent the page table,
1850 	 * so we have to resolve pvp and calculate ptepindex for the pvp
1851 	 * and then for the page table entry index in the pvp for
1852 	 * fall-through.
1853 	 */
1854 	if (ptepindex < pmap_pd_pindex(0)) {
1855 		/*
1856 		 * pv is PT, pvp is PD
1857 		 */
1858 		ptepindex = (ptepindex - pmap_pt_pindex(0)) >> NPDEPGSHIFT;
1859 		ptepindex += NUPTE_TOTAL + NUPT_TOTAL;
1860 		pvp = pmap_allocpte(pmap, ptepindex, NULL);
1861 		if (!isnew)
1862 			goto notnew;
1863 
1864 		/*
1865 		 * PT index in PD
1866 		 */
1867 		ptepindex = pv->pv_pindex - pmap_pt_pindex(0);
1868 		ptepindex &= ((1ul << NPDEPGSHIFT) - 1);
1869 		ispt = 1;
1870 	} else if (ptepindex < pmap_pdp_pindex(0)) {
1871 		/*
1872 		 * pv is PD, pvp is PDP
1873 		 *
1874 		 * SIMPLE PMAP NOTE: Simple pmaps do not allocate above
1875 		 *		     the PD.
1876 		 */
1877 		ptepindex = (ptepindex - pmap_pd_pindex(0)) >> NPDPEPGSHIFT;
1878 		ptepindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
1879 
1880 		if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
1881 			KKASSERT(pvpp == NULL);
1882 			pvp = NULL;
1883 		} else {
1884 			pvp = pmap_allocpte(pmap, ptepindex, NULL);
1885 		}
1886 		if (!isnew)
1887 			goto notnew;
1888 
1889 		/*
1890 		 * PD index in PDP
1891 		 */
1892 		ptepindex = pv->pv_pindex - pmap_pd_pindex(0);
1893 		ptepindex &= ((1ul << NPDPEPGSHIFT) - 1);
1894 	} else if (ptepindex < pmap_pml4_pindex()) {
1895 		/*
1896 		 * pv is PDP, pvp is the root pml4 table
1897 		 */
1898 		pvp = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
1899 		if (!isnew)
1900 			goto notnew;
1901 
1902 		/*
1903 		 * PDP index in PML4
1904 		 */
1905 		ptepindex = pv->pv_pindex - pmap_pdp_pindex(0);
1906 		ptepindex &= ((1ul << NPML4EPGSHIFT) - 1);
1907 	} else {
1908 		/*
1909 		 * pv represents the top-level PML4, there is no parent.
1910 		 */
1911 		pvp = NULL;
1912 		if (!isnew)
1913 			goto notnew;
1914 	}
1915 
1916 	/*
1917 	 * This code is only reached if isnew is TRUE and this is not a
1918 	 * terminal PV.  We need to allocate a vm_page for the page table
1919 	 * at this level and enter it into the parent page table.
1920 	 *
1921 	 * page table pages are marked PG_WRITEABLE and PG_MAPPED.
1922 	 */
1923 	for (;;) {
1924 		m = vm_page_alloc(NULL, pv->pv_pindex,
1925 				  VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
1926 				  VM_ALLOC_INTERRUPT);
1927 		if (m)
1928 			break;
1929 		vm_wait(0);
1930 	}
1931 	vm_page_spin_lock(m);
1932 	pmap_page_stats_adding(m);
1933 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1934 	pv->pv_m = m;
1935 	vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1936 	vm_page_spin_unlock(m);
1937 	vm_page_unmanage(m);	/* m must be spinunlocked */
1938 
1939 	if ((m->flags & PG_ZERO) == 0) {
1940 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
1941 	}
1942 #ifdef PMAP_DEBUG
1943 	else {
1944 		pmap_page_assertzero(VM_PAGE_TO_PHYS(m));
1945 	}
1946 #endif
1947 	m->valid = VM_PAGE_BITS_ALL;
1948 	vm_page_flag_clear(m, PG_ZERO);
1949 	vm_page_wire(m);	/* wire for mapping in parent */
1950 
1951 	/*
1952 	 * Wire the page into pvp, bump the wire-count for pvp's page table
1953 	 * page.  Bump the resident_count for the pmap.  There is no pvp
1954 	 * for the top level, address the pm_pml4[] array directly.
1955 	 *
1956 	 * If the caller wants the parent we return it, otherwise
1957 	 * we just put it away.
1958 	 *
1959 	 * No interlock is needed for pte 0 -> non-zero.
1960 	 *
1961 	 * In the situation where *ptep is valid we might have an unmanaged
1962 	 * page table page shared from another page table which we need to
1963 	 * unshare before installing our private page table page.
1964 	 */
1965 	if (pvp) {
1966 		ptep = pv_pte_lookup(pvp, ptepindex);
1967 		if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
1968 			pt_entry_t pte;
1969 			pmap_inval_info info;
1970 
1971 			if (ispt == 0) {
1972 				panic("pmap_allocpte: unexpected pte %p/%d",
1973 				      pvp, (int)ptepindex);
1974 			}
1975 			pmap_inval_init(&info);
1976 			pmap_inval_interlock(&info, pmap, (vm_offset_t)-1);
1977 			pte = pte_load_clear(ptep);
1978 			pmap_inval_deinterlock(&info, pmap);
1979 			pmap_inval_done(&info);
1980 			if (vm_page_unwire_quick(
1981 					PHYS_TO_VM_PAGE(pte & PG_FRAME))) {
1982 				panic("pmap_allocpte: shared pgtable "
1983 				      "pg bad wirecount");
1984 			}
1985 			atomic_add_long(&pmap->pm_stats.resident_count, -1);
1986 		} else {
1987 			vm_page_wire_quick(pvp->pv_m);
1988 		}
1989 		*ptep = VM_PAGE_TO_PHYS(m) |
1990 		    (pmap->pmap_bits[PG_U_IDX] |
1991 		    pmap->pmap_bits[PG_RW_IDX] |
1992 		    pmap->pmap_bits[PG_V_IDX] |
1993 		    pmap->pmap_bits[PG_A_IDX] |
1994 		    pmap->pmap_bits[PG_M_IDX]);
1995 	}
1996 	vm_page_wakeup(m);
1997 notnew:
1998 	if (pvpp)
1999 		*pvpp = pvp;
2000 	else if (pvp)
2001 		pv_put(pvp);
2002 	return (pv);
2003 }
2004 
2005 /*
2006  * This version of pmap_allocpte() checks for possible segment optimizations
2007  * that would allow page-table sharing.  It can be called for terminal
2008  * page or page table page ptepindex's.
2009  *
2010  * The function is called with page table page ptepindex's for fictitious
2011  * and unmanaged terminal pages.  That is, we don't want to allocate a
2012  * terminal pv, we just want the pt_pv.  pvpp is usually passed as NULL
2013  * for this case.
2014  *
2015  * This function can return a pv and *pvpp associated with the passed in pmap
2016  * OR a pv and *pvpp associated with the shared pmap.  In the latter case
2017  * an unmanaged page table page will be entered into the pass in pmap.
2018  */
2019 static
2020 pv_entry_t
2021 pmap_allocpte_seg(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp,
2022 		  vm_map_entry_t entry, vm_offset_t va)
2023 {
2024 	struct pmap_inval_info info;
2025 	vm_object_t object;
2026 	pmap_t obpmap;
2027 	pmap_t *obpmapp;
2028 	vm_offset_t b;
2029 	pv_entry_t pte_pv;	/* in original or shared pmap */
2030 	pv_entry_t pt_pv;	/* in original or shared pmap */
2031 	pv_entry_t proc_pd_pv;	/* in original pmap */
2032 	pv_entry_t proc_pt_pv;	/* in original pmap */
2033 	pv_entry_t xpv;		/* PT in shared pmap */
2034 	pd_entry_t *pt;		/* PT entry in PD of original pmap */
2035 	pd_entry_t opte;	/* contents of *pt */
2036 	pd_entry_t npte;	/* contents of *pt */
2037 	vm_page_t m;
2038 
2039 retry:
2040 	/*
2041 	 * Basic tests, require a non-NULL vm_map_entry, require proper
2042 	 * alignment and type for the vm_map_entry, require that the
2043 	 * underlying object already be allocated.
2044 	 *
2045 	 * We allow almost any type of object to use this optimization.
2046 	 * The object itself does NOT have to be sized to a multiple of the
2047 	 * segment size, but the memory mapping does.
2048 	 *
2049 	 * XXX don't handle devices currently, because VM_PAGE_TO_PHYS()
2050 	 *     won't work as expected.
2051 	 */
2052 	if (entry == NULL ||
2053 	    pmap_mmu_optimize == 0 ||			/* not enabled */
2054 	    ptepindex >= pmap_pd_pindex(0) ||		/* not terminal or pt */
2055 	    entry->inheritance != VM_INHERIT_SHARE ||	/* not shared */
2056 	    entry->maptype != VM_MAPTYPE_NORMAL ||	/* weird map type */
2057 	    entry->object.vm_object == NULL ||		/* needs VM object */
2058 	    entry->object.vm_object->type == OBJT_DEVICE ||	/* ick */
2059 	    entry->object.vm_object->type == OBJT_MGTDEVICE ||	/* ick */
2060 	    (entry->offset & SEG_MASK) ||		/* must be aligned */
2061 	    (entry->start & SEG_MASK)) {
2062 		return(pmap_allocpte(pmap, ptepindex, pvpp));
2063 	}
2064 
2065 	/*
2066 	 * Make sure the full segment can be represented.
2067 	 */
2068 	b = va & ~(vm_offset_t)SEG_MASK;
2069 	if (b < entry->start || b + SEG_SIZE > entry->end)
2070 		return(pmap_allocpte(pmap, ptepindex, pvpp));
2071 
2072 	/*
2073 	 * If the full segment can be represented dive the VM object's
2074 	 * shared pmap, allocating as required.
2075 	 */
2076 	object = entry->object.vm_object;
2077 
2078 	if (entry->protection & VM_PROT_WRITE)
2079 		obpmapp = &object->md.pmap_rw;
2080 	else
2081 		obpmapp = &object->md.pmap_ro;
2082 
2083 #ifdef PMAP_DEBUG2
2084 	if (pmap_enter_debug > 0) {
2085 		--pmap_enter_debug;
2086 		kprintf("pmap_allocpte_seg: va=%jx prot %08x o=%p "
2087 			"obpmapp %p %p\n",
2088 			va, entry->protection, object,
2089 			obpmapp, *obpmapp);
2090 		kprintf("pmap_allocpte_seg: entry %p %jx-%jx\n",
2091 			entry, entry->start, entry->end);
2092 	}
2093 #endif
2094 
2095 	/*
2096 	 * We allocate what appears to be a normal pmap but because portions
2097 	 * of this pmap are shared with other unrelated pmaps we have to
2098 	 * set pm_active to point to all cpus.
2099 	 *
2100 	 * XXX Currently using pmap_spin to interlock the update, can't use
2101 	 *     vm_object_hold/drop because the token might already be held
2102 	 *     shared OR exclusive and we don't know.
2103 	 */
2104 	while ((obpmap = *obpmapp) == NULL) {
2105 		obpmap = kmalloc(sizeof(*obpmap), M_OBJPMAP, M_WAITOK|M_ZERO);
2106 		pmap_pinit_simple(obpmap);
2107 		pmap_pinit2(obpmap);
2108 		spin_lock(&pmap_spin);
2109 		if (*obpmapp != NULL) {
2110 			/*
2111 			 * Handle race
2112 			 */
2113 			spin_unlock(&pmap_spin);
2114 			pmap_release(obpmap);
2115 			pmap_puninit(obpmap);
2116 			kfree(obpmap, M_OBJPMAP);
2117 			obpmap = *obpmapp; /* safety */
2118 		} else {
2119 			obpmap->pm_active = smp_active_mask;
2120 			*obpmapp = obpmap;
2121 			spin_unlock(&pmap_spin);
2122 		}
2123 	}
2124 
2125 	/*
2126 	 * Layering is: PTE, PT, PD, PDP, PML4.  We have to return the
2127 	 * pte/pt using the shared pmap from the object but also adjust
2128 	 * the process pmap's page table page as a side effect.
2129 	 */
2130 
2131 	/*
2132 	 * Resolve the terminal PTE and PT in the shared pmap.  This is what
2133 	 * we will return.  This is true if ptepindex represents a terminal
2134 	 * page, otherwise pte_pv is actually the PT and pt_pv is actually
2135 	 * the PD.
2136 	 */
2137 	pt_pv = NULL;
2138 	pte_pv = pmap_allocpte(obpmap, ptepindex, &pt_pv);
2139 	if (ptepindex >= pmap_pt_pindex(0))
2140 		xpv = pte_pv;
2141 	else
2142 		xpv = pt_pv;
2143 
2144 	/*
2145 	 * Resolve the PD in the process pmap so we can properly share the
2146 	 * page table page.  Lock order is bottom-up (leaf first)!
2147 	 *
2148 	 * NOTE: proc_pt_pv can be NULL.
2149 	 */
2150 	proc_pt_pv = pv_get(pmap, pmap_pt_pindex(b));
2151 	proc_pd_pv = pmap_allocpte(pmap, pmap_pd_pindex(b), NULL);
2152 #ifdef PMAP_DEBUG2
2153 	if (pmap_enter_debug > 0) {
2154 		--pmap_enter_debug;
2155 		kprintf("proc_pt_pv %p (wc %d) pd_pv %p va=%jx\n",
2156 			proc_pt_pv,
2157 			(proc_pt_pv ? proc_pt_pv->pv_m->wire_count : -1),
2158 			proc_pd_pv,
2159 			va);
2160 	}
2161 #endif
2162 
2163 	/*
2164 	 * xpv is the page table page pv from the shared object
2165 	 * (for convenience), from above.
2166 	 *
2167 	 * Calculate the pte value for the PT to load into the process PD.
2168 	 * If we have to change it we must properly dispose of the previous
2169 	 * entry.
2170 	 */
2171 	pt = pv_pte_lookup(proc_pd_pv, pmap_pt_index(b));
2172 	npte = VM_PAGE_TO_PHYS(xpv->pv_m) |
2173 	    (pmap->pmap_bits[PG_U_IDX] |
2174 	    pmap->pmap_bits[PG_RW_IDX] |
2175 	    pmap->pmap_bits[PG_V_IDX] |
2176 	    pmap->pmap_bits[PG_A_IDX] |
2177 	    pmap->pmap_bits[PG_M_IDX]);
2178 
2179 	/*
2180 	 * Dispose of previous page table page if it was local to the
2181 	 * process pmap.  If the old pt is not empty we cannot dispose of it
2182 	 * until we clean it out.  This case should not arise very often so
2183 	 * it is not optimized.
2184 	 */
2185 	if (proc_pt_pv) {
2186 		if (proc_pt_pv->pv_m->wire_count != 1) {
2187 			pv_put(proc_pd_pv);
2188 			pv_put(proc_pt_pv);
2189 			pv_put(pt_pv);
2190 			pv_put(pte_pv);
2191 			pmap_remove(pmap,
2192 				    va & ~(vm_offset_t)SEG_MASK,
2193 				    (va + SEG_SIZE) & ~(vm_offset_t)SEG_MASK);
2194 			goto retry;
2195 		}
2196 
2197 		/*
2198 		 * The release call will indirectly clean out *pt
2199 		 */
2200 		pmap_inval_init(&info);
2201 		pmap_release_pv(&info, proc_pt_pv, proc_pd_pv);
2202 		pmap_inval_done(&info);
2203 		proc_pt_pv = NULL;
2204 		/* relookup */
2205 		pt = pv_pte_lookup(proc_pd_pv, pmap_pt_index(b));
2206 	}
2207 
2208 	/*
2209 	 * Handle remaining cases.
2210 	 */
2211 	if (*pt == 0) {
2212 		*pt = npte;
2213 		vm_page_wire_quick(xpv->pv_m);
2214 		vm_page_wire_quick(proc_pd_pv->pv_m);
2215 		atomic_add_long(&pmap->pm_stats.resident_count, 1);
2216 	} else if (*pt != npte) {
2217 		pmap_inval_init(&info);
2218 		pmap_inval_interlock(&info, pmap, (vm_offset_t)-1);
2219 
2220 		opte = pte_load_clear(pt);
2221 		KKASSERT(opte && opte != npte);
2222 
2223 		*pt = npte;
2224 		vm_page_wire_quick(xpv->pv_m);	/* pgtable pg that is npte */
2225 
2226 		/*
2227 		 * Clean up opte, bump the wire_count for the process
2228 		 * PD page representing the new entry if it was
2229 		 * previously empty.
2230 		 *
2231 		 * If the entry was not previously empty and we have
2232 		 * a PT in the proc pmap then opte must match that
2233 		 * pt.  The proc pt must be retired (this is done
2234 		 * later on in this procedure).
2235 		 *
2236 		 * NOTE: replacing valid pte, wire_count on proc_pd_pv
2237 		 * stays the same.
2238 		 */
2239 		KKASSERT(opte & pmap->pmap_bits[PG_V_IDX]);
2240 		m = PHYS_TO_VM_PAGE(opte & PG_FRAME);
2241 		if (vm_page_unwire_quick(m)) {
2242 			panic("pmap_allocpte_seg: "
2243 			      "bad wire count %p",
2244 			      m);
2245 		}
2246 
2247 		pmap_inval_deinterlock(&info, pmap);
2248 		pmap_inval_done(&info);
2249 	}
2250 
2251 	/*
2252 	 * The existing process page table was replaced and must be destroyed
2253 	 * here.
2254 	 */
2255 	if (proc_pd_pv)
2256 		pv_put(proc_pd_pv);
2257 	if (pvpp)
2258 		*pvpp = pt_pv;
2259 	else
2260 		pv_put(pt_pv);
2261 
2262 	return (pte_pv);
2263 }
2264 
2265 /*
2266  * Release any resources held by the given physical map.
2267  *
2268  * Called when a pmap initialized by pmap_pinit is being released.  Should
2269  * only be called if the map contains no valid mappings.
2270  *
2271  * Caller must hold pmap->pm_token
2272  */
2273 struct pmap_release_info {
2274 	pmap_t	pmap;
2275 	int	retry;
2276 };
2277 
2278 static int pmap_release_callback(pv_entry_t pv, void *data);
2279 
2280 void
2281 pmap_release(struct pmap *pmap)
2282 {
2283 	struct pmap_release_info info;
2284 
2285 	KASSERT(CPUMASK_TESTZERO(pmap->pm_active),
2286 		("pmap still active! %016jx",
2287 		(uintmax_t)CPUMASK_LOWMASK(pmap->pm_active)));
2288 
2289 	spin_lock(&pmap_spin);
2290 	TAILQ_REMOVE(&pmap_list, pmap, pm_pmnode);
2291 	spin_unlock(&pmap_spin);
2292 
2293 	/*
2294 	 * Pull pv's off the RB tree in order from low to high and release
2295 	 * each page.
2296 	 */
2297 	info.pmap = pmap;
2298 	do {
2299 		info.retry = 0;
2300 		spin_lock(&pmap->pm_spin);
2301 		RB_SCAN(pv_entry_rb_tree, &pmap->pm_pvroot, NULL,
2302 			pmap_release_callback, &info);
2303 		spin_unlock(&pmap->pm_spin);
2304 	} while (info.retry);
2305 
2306 
2307 	/*
2308 	 * One resident page (the pml4 page) should remain.
2309 	 * No wired pages should remain.
2310 	 */
2311 	KKASSERT(pmap->pm_stats.resident_count ==
2312 		 ((pmap->pm_flags & PMAP_FLAG_SIMPLE) ? 0 : 1));
2313 
2314 	KKASSERT(pmap->pm_stats.wired_count == 0);
2315 }
2316 
2317 static int
2318 pmap_release_callback(pv_entry_t pv, void *data)
2319 {
2320 	struct pmap_release_info *info = data;
2321 	pmap_t pmap = info->pmap;
2322 	int r;
2323 
2324 	if (pv_hold_try(pv)) {
2325 		spin_unlock(&pmap->pm_spin);
2326 	} else {
2327 		spin_unlock(&pmap->pm_spin);
2328 		pv_lock(pv);
2329 	}
2330 	if (pv->pv_pmap != pmap) {
2331 		pv_put(pv);
2332 		spin_lock(&pmap->pm_spin);
2333 		info->retry = 1;
2334 		return(-1);
2335 	}
2336 	r = pmap_release_pv(NULL, pv, NULL);
2337 	spin_lock(&pmap->pm_spin);
2338 	return(r);
2339 }
2340 
2341 /*
2342  * Called with held (i.e. also locked) pv.  This function will dispose of
2343  * the lock along with the pv.
2344  *
2345  * If the caller already holds the locked parent page table for pv it
2346  * must pass it as pvp, allowing us to avoid a deadlock, else it can
2347  * pass NULL for pvp.
2348  */
2349 static int
2350 pmap_release_pv(struct pmap_inval_info *info, pv_entry_t pv, pv_entry_t pvp)
2351 {
2352 	vm_page_t p;
2353 
2354 	/*
2355 	 * The pmap is currently not spinlocked, pv is held+locked.
2356 	 * Remove the pv's page from its parent's page table.  The
2357 	 * parent's page table page's wire_count will be decremented.
2358 	 *
2359 	 * This will clean out the pte at any level of the page table.
2360 	 * If info is not NULL the appropriate invlpg/invltlb/smp
2361 	 * invalidation will be made.
2362 	 */
2363 	pmap_remove_pv_pte(pv, pvp, info);
2364 
2365 	/*
2366 	 * Terminal pvs are unhooked from their vm_pages.  Because
2367 	 * terminal pages aren't page table pages they aren't wired
2368 	 * by us, so we have to be sure not to unwire them either.
2369 	 */
2370 	if (pv->pv_pindex < pmap_pt_pindex(0)) {
2371 		pmap_remove_pv_page(pv);
2372 		goto skip;
2373 	}
2374 
2375 	/*
2376 	 * We leave the top-level page table page cached, wired, and
2377 	 * mapped in the pmap until the dtor function (pmap_puninit())
2378 	 * gets called.
2379 	 *
2380 	 * Since we are leaving the top-level pv intact we need
2381 	 * to break out of what would otherwise be an infinite loop.
2382 	 */
2383 	if (pv->pv_pindex == pmap_pml4_pindex()) {
2384 		pv_put(pv);
2385 		return(-1);
2386 	}
2387 
2388 	/*
2389 	 * For page table pages (other than the top-level page),
2390 	 * remove and free the vm_page.  The representitive mapping
2391 	 * removed above by pmap_remove_pv_pte() did not undo the
2392 	 * last wire_count so we have to do that as well.
2393 	 */
2394 	p = pmap_remove_pv_page(pv);
2395 	vm_page_busy_wait(p, FALSE, "pmaprl");
2396 	if (p->wire_count != 1) {
2397 		kprintf("p->wire_count was %016lx %d\n",
2398 			pv->pv_pindex, p->wire_count);
2399 	}
2400 	KKASSERT(p->wire_count == 1);
2401 	KKASSERT(p->flags & PG_UNMANAGED);
2402 
2403 	vm_page_unwire(p, 0);
2404 	KKASSERT(p->wire_count == 0);
2405 
2406 	/*
2407 	 * Theoretically this page, if not the pml4 page, should contain
2408 	 * all-zeros.  But its just too dangerous to mark it PG_ZERO.  Free
2409 	 * normally.
2410 	 */
2411 	vm_page_free(p);
2412 skip:
2413 	pv_free(pv);
2414 	return 0;
2415 }
2416 
2417 /*
2418  * This function will remove the pte associated with a pv from its parent.
2419  * Terminal pv's are supported.  The removal will be interlocked if info
2420  * is non-NULL.  The caller must dispose of pv instead of just unlocking
2421  * it.
2422  *
2423  * The wire count will be dropped on the parent page table.  The wire
2424  * count on the page being removed (pv->pv_m) from the parent page table
2425  * is NOT touched.  Note that terminal pages will not have any additional
2426  * wire counts while page table pages will have at least one representing
2427  * the mapping, plus others representing sub-mappings.
2428  *
2429  * NOTE: Cannot be called on kernel page table pages, only KVM terminal
2430  *	 pages and user page table and terminal pages.
2431  *
2432  * The pv must be locked.
2433  *
2434  * XXX must lock parent pv's if they exist to remove pte XXX
2435  */
2436 static
2437 void
2438 pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp, struct pmap_inval_info *info)
2439 {
2440 	vm_pindex_t ptepindex = pv->pv_pindex;
2441 	pmap_t pmap = pv->pv_pmap;
2442 	vm_page_t p;
2443 	int gotpvp = 0;
2444 
2445 	KKASSERT(pmap);
2446 
2447 	if (ptepindex == pmap_pml4_pindex()) {
2448 		/*
2449 		 * We are the top level pml4 table, there is no parent.
2450 		 */
2451 		p = pmap->pm_pmlpv->pv_m;
2452 	} else if (ptepindex >= pmap_pdp_pindex(0)) {
2453 		/*
2454 		 * Remove a PDP page from the pml4e.  This can only occur
2455 		 * with user page tables.  We do not have to lock the
2456 		 * pml4 PV so just ignore pvp.
2457 		 */
2458 		vm_pindex_t pml4_pindex;
2459 		vm_pindex_t pdp_index;
2460 		pml4_entry_t *pdp;
2461 
2462 		pdp_index = ptepindex - pmap_pdp_pindex(0);
2463 		if (pvp == NULL) {
2464 			pml4_pindex = pmap_pml4_pindex();
2465 			pvp = pv_get(pv->pv_pmap, pml4_pindex);
2466 			KKASSERT(pvp);
2467 			gotpvp = 1;
2468 		}
2469 		pdp = &pmap->pm_pml4[pdp_index & ((1ul << NPML4EPGSHIFT) - 1)];
2470 		KKASSERT((*pdp & pmap->pmap_bits[PG_V_IDX]) != 0);
2471 		p = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
2472 		if (info) {
2473 			pmap_inval_interlock(info, pmap, (vm_offset_t)-1);
2474 			pte_load_clear(pdp);
2475 			pmap_inval_deinterlock(info, pmap);
2476 		} else {
2477 			*pdp = 0;
2478 		}
2479 	} else if (ptepindex >= pmap_pd_pindex(0)) {
2480 		/*
2481 		 * Remove a PD page from the pdp
2482 		 *
2483 		 * SIMPLE PMAP NOTE: Non-existant pvp's are ok in the case
2484 		 *		     of a simple pmap because it stops at
2485 		 *		     the PD page.
2486 		 */
2487 		vm_pindex_t pdp_pindex;
2488 		vm_pindex_t pd_index;
2489 		pdp_entry_t *pd;
2490 
2491 		pd_index = ptepindex - pmap_pd_pindex(0);
2492 
2493 		if (pvp == NULL) {
2494 			pdp_pindex = NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
2495 				     (pd_index >> NPML4EPGSHIFT);
2496 			pvp = pv_get(pv->pv_pmap, pdp_pindex);
2497 			if (pvp)
2498 				gotpvp = 1;
2499 		}
2500 		if (pvp) {
2501 			pd = pv_pte_lookup(pvp, pd_index &
2502 						((1ul << NPDPEPGSHIFT) - 1));
2503 			KKASSERT((*pd & pmap->pmap_bits[PG_V_IDX]) != 0);
2504 			p = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
2505 			if (info) {
2506 				pmap_inval_interlock(info, pmap,
2507 						     (vm_offset_t)-1);
2508 				pte_load_clear(pd);
2509 				pmap_inval_deinterlock(info, pmap);
2510 			} else {
2511 				*pd = 0;
2512 			}
2513 		} else {
2514 			KKASSERT(pmap->pm_flags & PMAP_FLAG_SIMPLE);
2515 			p = pv->pv_m;		/* degenerate test later */
2516 		}
2517 	} else if (ptepindex >= pmap_pt_pindex(0)) {
2518 		/*
2519 		 *  Remove a PT page from the pd
2520 		 */
2521 		vm_pindex_t pd_pindex;
2522 		vm_pindex_t pt_index;
2523 		pd_entry_t *pt;
2524 
2525 		pt_index = ptepindex - pmap_pt_pindex(0);
2526 
2527 		if (pvp == NULL) {
2528 			pd_pindex = NUPTE_TOTAL + NUPT_TOTAL +
2529 				    (pt_index >> NPDPEPGSHIFT);
2530 			pvp = pv_get(pv->pv_pmap, pd_pindex);
2531 			KKASSERT(pvp);
2532 			gotpvp = 1;
2533 		}
2534 		pt = pv_pte_lookup(pvp, pt_index & ((1ul << NPDPEPGSHIFT) - 1));
2535 		KKASSERT((*pt & pmap->pmap_bits[PG_V_IDX]) != 0);
2536 		p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
2537 		if (info) {
2538 			pmap_inval_interlock(info, pmap, (vm_offset_t)-1);
2539 			pte_load_clear(pt);
2540 			pmap_inval_deinterlock(info, pmap);
2541 		} else {
2542 			*pt = 0;
2543 		}
2544 	} else {
2545 		/*
2546 		 * Remove a PTE from the PT page
2547 		 *
2548 		 * NOTE: pv's must be locked bottom-up to avoid deadlocking.
2549 		 *	 pv is a pte_pv so we can safely lock pt_pv.
2550 		 *
2551 		 * NOTE: FICTITIOUS pages may have multiple physical mappings
2552 		 *	 so PHYS_TO_VM_PAGE() will not necessarily work for
2553 		 *	 terminal ptes.
2554 		 */
2555 		vm_pindex_t pt_pindex;
2556 		pt_entry_t *ptep;
2557 		pt_entry_t pte;
2558 		vm_offset_t va;
2559 
2560 		pt_pindex = ptepindex >> NPTEPGSHIFT;
2561 		va = (vm_offset_t)ptepindex << PAGE_SHIFT;
2562 
2563 		if (ptepindex >= NUPTE_USER) {
2564 			ptep = vtopte(ptepindex << PAGE_SHIFT);
2565 			KKASSERT(pvp == NULL);
2566 		} else {
2567 			if (pvp == NULL) {
2568 				pt_pindex = NUPTE_TOTAL +
2569 					    (ptepindex >> NPDPEPGSHIFT);
2570 				pvp = pv_get(pv->pv_pmap, pt_pindex);
2571 				KKASSERT(pvp);
2572 				gotpvp = 1;
2573 			}
2574 			ptep = pv_pte_lookup(pvp, ptepindex &
2575 						  ((1ul << NPDPEPGSHIFT) - 1));
2576 		}
2577 
2578 		if (info)
2579 			pmap_inval_interlock(info, pmap, va);
2580 		pte = pte_load_clear(ptep);
2581 		if (info)
2582 			pmap_inval_deinterlock(info, pmap);
2583 		else
2584 			cpu_invlpg((void *)va);
2585 
2586 		/*
2587 		 * Now update the vm_page_t
2588 		 */
2589 		if ((pte & (pmap->pmap_bits[PG_MANAGED_IDX] | pmap->pmap_bits[PG_V_IDX])) !=
2590 		    (pmap->pmap_bits[PG_MANAGED_IDX]|pmap->pmap_bits[PG_V_IDX])) {
2591 			kprintf("remove_pte badpte %016lx %016lx %d\n",
2592 				pte, pv->pv_pindex,
2593 				pv->pv_pindex < pmap_pt_pindex(0));
2594 		}
2595 		/* PHYS_TO_VM_PAGE() will not work for FICTITIOUS pages */
2596 		/*KKASSERT((pte & (PG_MANAGED|PG_V)) == (PG_MANAGED|PG_V));*/
2597 		if (pte & pmap->pmap_bits[PG_DEVICE_IDX])
2598 			p = pv->pv_m;
2599 		else
2600 			p = PHYS_TO_VM_PAGE(pte & PG_FRAME);
2601 		/* p = pv->pv_m; */
2602 
2603 		if (pte & pmap->pmap_bits[PG_M_IDX]) {
2604 			if (pmap_track_modified(ptepindex))
2605 				vm_page_dirty(p);
2606 		}
2607 		if (pte & pmap->pmap_bits[PG_A_IDX]) {
2608 			vm_page_flag_set(p, PG_REFERENCED);
2609 		}
2610 		if (pte & pmap->pmap_bits[PG_W_IDX])
2611 			atomic_add_long(&pmap->pm_stats.wired_count, -1);
2612 		if (pte & pmap->pmap_bits[PG_G_IDX])
2613 			cpu_invlpg((void *)va);
2614 	}
2615 
2616 	/*
2617 	 * Unwire the parent page table page.  The wire_count cannot go below
2618 	 * 1 here because the parent page table page is itself still mapped.
2619 	 *
2620 	 * XXX remove the assertions later.
2621 	 */
2622 	KKASSERT(pv->pv_m == p);
2623 	if (pvp && vm_page_unwire_quick(pvp->pv_m))
2624 		panic("pmap_remove_pv_pte: Insufficient wire_count");
2625 
2626 	if (gotpvp)
2627 		pv_put(pvp);
2628 }
2629 
2630 /*
2631  * Remove the vm_page association to a pv.  The pv must be locked.
2632  */
2633 static
2634 vm_page_t
2635 pmap_remove_pv_page(pv_entry_t pv)
2636 {
2637 	vm_page_t m;
2638 
2639 	m = pv->pv_m;
2640 	KKASSERT(m);
2641 	vm_page_spin_lock(m);
2642 	pv->pv_m = NULL;
2643 	TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2644 	pmap_page_stats_deleting(m);
2645 	/*
2646 	if (m->object)
2647 		atomic_add_int(&m->object->agg_pv_list_count, -1);
2648 	*/
2649 	if (TAILQ_EMPTY(&m->md.pv_list))
2650 		vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2651 	vm_page_spin_unlock(m);
2652 	return(m);
2653 }
2654 
2655 /*
2656  * Grow the number of kernel page table entries, if needed.
2657  *
2658  * This routine is always called to validate any address space
2659  * beyond KERNBASE (for kldloads).  kernel_vm_end only governs the address
2660  * space below KERNBASE.
2661  */
2662 void
2663 pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
2664 {
2665 	vm_paddr_t paddr;
2666 	vm_offset_t ptppaddr;
2667 	vm_page_t nkpg;
2668 	pd_entry_t *pt, newpt;
2669 	pdp_entry_t newpd;
2670 	int update_kernel_vm_end;
2671 
2672 	/*
2673 	 * bootstrap kernel_vm_end on first real VM use
2674 	 */
2675 	if (kernel_vm_end == 0) {
2676 		kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
2677 		nkpt = 0;
2678 		while ((*pmap_pt(&kernel_pmap, kernel_vm_end) & kernel_pmap.pmap_bits[PG_V_IDX]) != 0) {
2679 			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
2680 					~(PAGE_SIZE * NPTEPG - 1);
2681 			nkpt++;
2682 			if (kernel_vm_end - 1 >= kernel_map.max_offset) {
2683 				kernel_vm_end = kernel_map.max_offset;
2684 				break;
2685 			}
2686 		}
2687 	}
2688 
2689 	/*
2690 	 * Fill in the gaps.  kernel_vm_end is only adjusted for ranges
2691 	 * below KERNBASE.  Ranges above KERNBASE are kldloaded and we
2692 	 * do not want to force-fill 128G worth of page tables.
2693 	 */
2694 	if (kstart < KERNBASE) {
2695 		if (kstart > kernel_vm_end)
2696 			kstart = kernel_vm_end;
2697 		KKASSERT(kend <= KERNBASE);
2698 		update_kernel_vm_end = 1;
2699 	} else {
2700 		update_kernel_vm_end = 0;
2701 	}
2702 
2703 	kstart = rounddown2(kstart, PAGE_SIZE * NPTEPG);
2704 	kend = roundup2(kend, PAGE_SIZE * NPTEPG);
2705 
2706 	if (kend - 1 >= kernel_map.max_offset)
2707 		kend = kernel_map.max_offset;
2708 
2709 	while (kstart < kend) {
2710 		pt = pmap_pt(&kernel_pmap, kstart);
2711 		if (pt == NULL) {
2712 			/* We need a new PDP entry */
2713 			nkpg = vm_page_alloc(NULL, nkpt,
2714 			                     VM_ALLOC_NORMAL |
2715 					     VM_ALLOC_SYSTEM |
2716 					     VM_ALLOC_INTERRUPT);
2717 			if (nkpg == NULL) {
2718 				panic("pmap_growkernel: no memory to grow "
2719 				      "kernel");
2720 			}
2721 			paddr = VM_PAGE_TO_PHYS(nkpg);
2722 			if ((nkpg->flags & PG_ZERO) == 0)
2723 				pmap_zero_page(paddr);
2724 			vm_page_flag_clear(nkpg, PG_ZERO);
2725 			newpd = (pdp_entry_t)
2726 			    (paddr |
2727 			    kernel_pmap.pmap_bits[PG_V_IDX] |
2728 			    kernel_pmap.pmap_bits[PG_RW_IDX] |
2729 			    kernel_pmap.pmap_bits[PG_A_IDX] |
2730 			    kernel_pmap.pmap_bits[PG_M_IDX]);
2731 			*pmap_pd(&kernel_pmap, kstart) = newpd;
2732 			nkpt++;
2733 			continue; /* try again */
2734 		}
2735 		if ((*pt & kernel_pmap.pmap_bits[PG_V_IDX]) != 0) {
2736 			kstart = (kstart + PAGE_SIZE * NPTEPG) &
2737 				 ~(PAGE_SIZE * NPTEPG - 1);
2738 			if (kstart - 1 >= kernel_map.max_offset) {
2739 				kstart = kernel_map.max_offset;
2740 				break;
2741 			}
2742 			continue;
2743 		}
2744 
2745 		/*
2746 		 * This index is bogus, but out of the way
2747 		 */
2748 		nkpg = vm_page_alloc(NULL, nkpt,
2749 				     VM_ALLOC_NORMAL |
2750 				     VM_ALLOC_SYSTEM |
2751 				     VM_ALLOC_INTERRUPT);
2752 		if (nkpg == NULL)
2753 			panic("pmap_growkernel: no memory to grow kernel");
2754 
2755 		vm_page_wire(nkpg);
2756 		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
2757 		pmap_zero_page(ptppaddr);
2758 		vm_page_flag_clear(nkpg, PG_ZERO);
2759 		newpt = (pd_entry_t) (ptppaddr |
2760 		    kernel_pmap.pmap_bits[PG_V_IDX] |
2761 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
2762 		    kernel_pmap.pmap_bits[PG_A_IDX] |
2763 		    kernel_pmap.pmap_bits[PG_M_IDX]);
2764 		*pmap_pt(&kernel_pmap, kstart) = newpt;
2765 		nkpt++;
2766 
2767 		kstart = (kstart + PAGE_SIZE * NPTEPG) &
2768 			  ~(PAGE_SIZE * NPTEPG - 1);
2769 
2770 		if (kstart - 1 >= kernel_map.max_offset) {
2771 			kstart = kernel_map.max_offset;
2772 			break;
2773 		}
2774 	}
2775 
2776 	/*
2777 	 * Only update kernel_vm_end for areas below KERNBASE.
2778 	 */
2779 	if (update_kernel_vm_end && kernel_vm_end < kstart)
2780 		kernel_vm_end = kstart;
2781 }
2782 
2783 /*
2784  *	Add a reference to the specified pmap.
2785  */
2786 void
2787 pmap_reference(pmap_t pmap)
2788 {
2789 	if (pmap != NULL) {
2790 		lwkt_gettoken(&pmap->pm_token);
2791 		++pmap->pm_count;
2792 		lwkt_reltoken(&pmap->pm_token);
2793 	}
2794 }
2795 
2796 /***************************************************
2797  * page management routines.
2798  ***************************************************/
2799 
2800 /*
2801  * Hold a pv without locking it
2802  */
2803 static void
2804 pv_hold(pv_entry_t pv)
2805 {
2806 	atomic_add_int(&pv->pv_hold, 1);
2807 }
2808 
2809 /*
2810  * Hold a pv_entry, preventing its destruction.  TRUE is returned if the pv
2811  * was successfully locked, FALSE if it wasn't.  The caller must dispose of
2812  * the pv properly.
2813  *
2814  * Either the pmap->pm_spin or the related vm_page_spin (if traversing a
2815  * pv list via its page) must be held by the caller.
2816  */
2817 static int
2818 _pv_hold_try(pv_entry_t pv PMAP_DEBUG_DECL)
2819 {
2820 	u_int count;
2821 
2822 	/*
2823 	 * Critical path shortcut expects pv to already have one ref
2824 	 * (for the pv->pv_pmap).
2825 	 */
2826 	if (atomic_cmpset_int(&pv->pv_hold, 1, PV_HOLD_LOCKED | 2)) {
2827 #ifdef PMAP_DEBUG
2828 		pv->pv_func = func;
2829 		pv->pv_line = lineno;
2830 #endif
2831 		return TRUE;
2832 	}
2833 
2834 	for (;;) {
2835 		count = pv->pv_hold;
2836 		cpu_ccfence();
2837 		if ((count & PV_HOLD_LOCKED) == 0) {
2838 			if (atomic_cmpset_int(&pv->pv_hold, count,
2839 					      (count + 1) | PV_HOLD_LOCKED)) {
2840 #ifdef PMAP_DEBUG
2841 				pv->pv_func = func;
2842 				pv->pv_line = lineno;
2843 #endif
2844 				return TRUE;
2845 			}
2846 		} else {
2847 			if (atomic_cmpset_int(&pv->pv_hold, count, count + 1))
2848 				return FALSE;
2849 		}
2850 		/* retry */
2851 	}
2852 }
2853 
2854 /*
2855  * Drop a previously held pv_entry which could not be locked, allowing its
2856  * destruction.
2857  *
2858  * Must not be called with a spinlock held as we might zfree() the pv if it
2859  * is no longer associated with a pmap and this was the last hold count.
2860  */
2861 static void
2862 pv_drop(pv_entry_t pv)
2863 {
2864 	u_int count;
2865 
2866 	for (;;) {
2867 		count = pv->pv_hold;
2868 		cpu_ccfence();
2869 		KKASSERT((count & PV_HOLD_MASK) > 0);
2870 		KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) !=
2871 			 (PV_HOLD_LOCKED | 1));
2872 		if (atomic_cmpset_int(&pv->pv_hold, count, count - 1)) {
2873 			if ((count & PV_HOLD_MASK) == 1) {
2874 #ifdef PMAP_DEBUG2
2875 				if (pmap_enter_debug > 0) {
2876 					--pmap_enter_debug;
2877 					kprintf("pv_drop: free pv %p\n", pv);
2878 				}
2879 #endif
2880 				KKASSERT(count == 1);
2881 				KKASSERT(pv->pv_pmap == NULL);
2882 				zfree(pvzone, pv);
2883 			}
2884 			return;
2885 		}
2886 		/* retry */
2887 	}
2888 }
2889 
2890 /*
2891  * Find or allocate the requested PV entry, returning a locked, held pv.
2892  *
2893  * If (*isnew) is non-zero, the returned pv will have two hold counts, one
2894  * for the caller and one representing the pmap and vm_page association.
2895  *
2896  * If (*isnew) is zero, the returned pv will have only one hold count.
2897  *
2898  * Since both associations can only be adjusted while the pv is locked,
2899  * together they represent just one additional hold.
2900  */
2901 static
2902 pv_entry_t
2903 _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew PMAP_DEBUG_DECL)
2904 {
2905 	pv_entry_t pv;
2906 	pv_entry_t pnew = NULL;
2907 
2908 	spin_lock(&pmap->pm_spin);
2909 	for (;;) {
2910 		if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex) {
2911 			pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
2912 							pindex);
2913 		}
2914 		if (pv == NULL) {
2915 			if (pnew == NULL) {
2916 				spin_unlock(&pmap->pm_spin);
2917 				pnew = zalloc(pvzone);
2918 				spin_lock(&pmap->pm_spin);
2919 				continue;
2920 			}
2921 			pnew->pv_pmap = pmap;
2922 			pnew->pv_pindex = pindex;
2923 			pnew->pv_hold = PV_HOLD_LOCKED | 2;
2924 #ifdef PMAP_DEBUG
2925 			pnew->pv_func = func;
2926 			pnew->pv_line = lineno;
2927 #endif
2928 			pv_entry_rb_tree_RB_INSERT(&pmap->pm_pvroot, pnew);
2929 			++pmap->pm_generation;
2930 			atomic_add_long(&pmap->pm_stats.resident_count, 1);
2931 			spin_unlock(&pmap->pm_spin);
2932 			*isnew = 1;
2933 			return(pnew);
2934 		}
2935 		if (pnew) {
2936 			spin_unlock(&pmap->pm_spin);
2937 			zfree(pvzone, pnew);
2938 			pnew = NULL;
2939 			spin_lock(&pmap->pm_spin);
2940 			continue;
2941 		}
2942 		if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
2943 			spin_unlock(&pmap->pm_spin);
2944 		} else {
2945 			spin_unlock(&pmap->pm_spin);
2946 			_pv_lock(pv PMAP_DEBUG_COPY);
2947 		}
2948 		if (pv->pv_pmap == pmap && pv->pv_pindex == pindex) {
2949 			*isnew = 0;
2950 			return(pv);
2951 		}
2952 		pv_put(pv);
2953 		spin_lock(&pmap->pm_spin);
2954 	}
2955 }
2956 
2957 /*
2958  * Find the requested PV entry, returning a locked+held pv or NULL
2959  */
2960 static
2961 pv_entry_t
2962 _pv_get(pmap_t pmap, vm_pindex_t pindex PMAP_DEBUG_DECL)
2963 {
2964 	pv_entry_t pv;
2965 
2966 	spin_lock(&pmap->pm_spin);
2967 	for (;;) {
2968 		/*
2969 		 * Shortcut cache
2970 		 */
2971 		if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex) {
2972 			pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
2973 							pindex);
2974 		}
2975 		if (pv == NULL) {
2976 			spin_unlock(&pmap->pm_spin);
2977 			return NULL;
2978 		}
2979 		if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
2980 			spin_unlock(&pmap->pm_spin);
2981 		} else {
2982 			spin_unlock(&pmap->pm_spin);
2983 			_pv_lock(pv PMAP_DEBUG_COPY);
2984 		}
2985 		if (pv->pv_pmap == pmap && pv->pv_pindex == pindex) {
2986 			pv_cache(pv, pindex);
2987 			return(pv);
2988 		}
2989 		pv_put(pv);
2990 		spin_lock(&pmap->pm_spin);
2991 	}
2992 }
2993 
2994 /*
2995  * Lookup, hold, and attempt to lock (pmap,pindex).
2996  *
2997  * If the entry does not exist NULL is returned and *errorp is set to 0
2998  *
2999  * If the entry exists and could be successfully locked it is returned and
3000  * errorp is set to 0.
3001  *
3002  * If the entry exists but could NOT be successfully locked it is returned
3003  * held and *errorp is set to 1.
3004  */
3005 static
3006 pv_entry_t
3007 pv_get_try(pmap_t pmap, vm_pindex_t pindex, int *errorp)
3008 {
3009 	pv_entry_t pv;
3010 
3011 	spin_lock_shared(&pmap->pm_spin);
3012 	if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex)
3013 		pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
3014 	if (pv == NULL) {
3015 		spin_unlock_shared(&pmap->pm_spin);
3016 		*errorp = 0;
3017 		return NULL;
3018 	}
3019 	if (pv_hold_try(pv)) {
3020 		pv_cache(pv, pindex);
3021 		spin_unlock_shared(&pmap->pm_spin);
3022 		*errorp = 0;
3023 		KKASSERT(pv->pv_pmap == pmap && pv->pv_pindex == pindex);
3024 		return(pv);	/* lock succeeded */
3025 	}
3026 	spin_unlock_shared(&pmap->pm_spin);
3027 	*errorp = 1;
3028 	return (pv);		/* lock failed */
3029 }
3030 
3031 /*
3032  * Find the requested PV entry, returning a held pv or NULL
3033  */
3034 static
3035 pv_entry_t
3036 pv_find(pmap_t pmap, vm_pindex_t pindex)
3037 {
3038 	pv_entry_t pv;
3039 
3040 	spin_lock_shared(&pmap->pm_spin);
3041 
3042 	if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex)
3043 		pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
3044 	if (pv == NULL) {
3045 		spin_unlock_shared(&pmap->pm_spin);
3046 		return NULL;
3047 	}
3048 	pv_hold(pv);
3049 	pv_cache(pv, pindex);
3050 	spin_unlock_shared(&pmap->pm_spin);
3051 	return(pv);
3052 }
3053 
3054 /*
3055  * Lock a held pv, keeping the hold count
3056  */
3057 static
3058 void
3059 _pv_lock(pv_entry_t pv PMAP_DEBUG_DECL)
3060 {
3061 	u_int count;
3062 
3063 	for (;;) {
3064 		count = pv->pv_hold;
3065 		cpu_ccfence();
3066 		if ((count & PV_HOLD_LOCKED) == 0) {
3067 			if (atomic_cmpset_int(&pv->pv_hold, count,
3068 					      count | PV_HOLD_LOCKED)) {
3069 #ifdef PMAP_DEBUG
3070 				pv->pv_func = func;
3071 				pv->pv_line = lineno;
3072 #endif
3073 				return;
3074 			}
3075 			continue;
3076 		}
3077 		tsleep_interlock(pv, 0);
3078 		if (atomic_cmpset_int(&pv->pv_hold, count,
3079 				      count | PV_HOLD_WAITING)) {
3080 #ifdef PMAP_DEBUG
3081 			kprintf("pv waiting on %s:%d\n",
3082 					pv->pv_func, pv->pv_line);
3083 #endif
3084 			tsleep(pv, PINTERLOCKED, "pvwait", hz);
3085 		}
3086 		/* retry */
3087 	}
3088 }
3089 
3090 /*
3091  * Unlock a held and locked pv, keeping the hold count.
3092  */
3093 static
3094 void
3095 pv_unlock(pv_entry_t pv)
3096 {
3097 	u_int count;
3098 
3099 	for (;;) {
3100 		count = pv->pv_hold;
3101 		cpu_ccfence();
3102 		KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) >=
3103 			 (PV_HOLD_LOCKED | 1));
3104 		if (atomic_cmpset_int(&pv->pv_hold, count,
3105 				      count &
3106 				      ~(PV_HOLD_LOCKED | PV_HOLD_WAITING))) {
3107 			if (count & PV_HOLD_WAITING)
3108 				wakeup(pv);
3109 			break;
3110 		}
3111 	}
3112 }
3113 
3114 /*
3115  * Unlock and drop a pv.  If the pv is no longer associated with a pmap
3116  * and the hold count drops to zero we will free it.
3117  *
3118  * Caller should not hold any spin locks.  We are protected from hold races
3119  * by virtue of holds only occuring only with a pmap_spin or vm_page_spin
3120  * lock held.  A pv cannot be located otherwise.
3121  */
3122 static
3123 void
3124 pv_put(pv_entry_t pv)
3125 {
3126 #ifdef PMAP_DEBUG2
3127 	if (pmap_enter_debug > 0) {
3128 		--pmap_enter_debug;
3129 		kprintf("pv_put pv=%p hold=%08x\n", pv, pv->pv_hold);
3130 	}
3131 #endif
3132 
3133 	/*
3134 	 * Fast - shortcut most common condition
3135 	 */
3136 	if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 1))
3137 		return;
3138 
3139 	/*
3140 	 * Slow
3141 	 */
3142 	pv_unlock(pv);
3143 	pv_drop(pv);
3144 }
3145 
3146 /*
3147  * Remove the pmap association from a pv, require that pv_m already be removed,
3148  * then unlock and drop the pv.  Any pte operations must have already been
3149  * completed.  This call may result in a last-drop which will physically free
3150  * the pv.
3151  *
3152  * Removing the pmap association entails an additional drop.
3153  *
3154  * pv must be exclusively locked on call and will be disposed of on return.
3155  */
3156 static
3157 void
3158 pv_free(pv_entry_t pv)
3159 {
3160 	pmap_t pmap;
3161 
3162 	KKASSERT(pv->pv_m == NULL);
3163 	KKASSERT((pv->pv_hold & PV_HOLD_MASK) >= 2);
3164 	if ((pmap = pv->pv_pmap) != NULL) {
3165 		spin_lock(&pmap->pm_spin);
3166 		pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
3167 		++pmap->pm_generation;
3168 		if (pmap->pm_pvhint == pv)
3169 			pmap->pm_pvhint = NULL;
3170 		atomic_add_long(&pmap->pm_stats.resident_count, -1);
3171 		pv->pv_pmap = NULL;
3172 		pv->pv_pindex = 0;
3173 		spin_unlock(&pmap->pm_spin);
3174 
3175 		/*
3176 		 * Try to shortcut three atomic ops, otherwise fall through
3177 		 * and do it normally.  Drop two refs and the lock all in
3178 		 * one go.
3179 		 */
3180 		if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 0)) {
3181 #ifdef PMAP_DEBUG2
3182 			if (pmap_enter_debug > 0) {
3183 				--pmap_enter_debug;
3184 				kprintf("pv_free: free pv %p\n", pv);
3185 			}
3186 #endif
3187 			zfree(pvzone, pv);
3188 			return;
3189 		}
3190 		pv_drop(pv);	/* ref for pv_pmap */
3191 	}
3192 	pv_put(pv);
3193 }
3194 
3195 /*
3196  * This routine is very drastic, but can save the system
3197  * in a pinch.
3198  */
3199 void
3200 pmap_collect(void)
3201 {
3202 	int i;
3203 	vm_page_t m;
3204 	static int warningdone=0;
3205 
3206 	if (pmap_pagedaemon_waken == 0)
3207 		return;
3208 	pmap_pagedaemon_waken = 0;
3209 	if (warningdone < 5) {
3210 		kprintf("pmap_collect: collecting pv entries -- "
3211 			"suggest increasing PMAP_SHPGPERPROC\n");
3212 		warningdone++;
3213 	}
3214 
3215 	for (i = 0; i < vm_page_array_size; i++) {
3216 		m = &vm_page_array[i];
3217 		if (m->wire_count || m->hold_count)
3218 			continue;
3219 		if (vm_page_busy_try(m, TRUE) == 0) {
3220 			if (m->wire_count == 0 && m->hold_count == 0) {
3221 				pmap_remove_all(m);
3222 			}
3223 			vm_page_wakeup(m);
3224 		}
3225 	}
3226 }
3227 
3228 /*
3229  * Scan the pmap for active page table entries and issue a callback.
3230  * The callback must dispose of pte_pv, whos PTE entry is at *ptep in
3231  * its parent page table.
3232  *
3233  * pte_pv will be NULL if the page or page table is unmanaged.
3234  * pt_pv will point to the page table page containing the pte for the page.
3235  *
3236  * NOTE! If we come across an unmanaged page TABLE (verses an unmanaged page),
3237  *	 we pass a NULL pte_pv and we pass a pt_pv pointing to the passed
3238  *	 process pmap's PD and page to the callback function.  This can be
3239  *	 confusing because the pt_pv is really a pd_pv, and the target page
3240  *	 table page is simply aliased by the pmap and not owned by it.
3241  *
3242  * It is assumed that the start and end are properly rounded to the page size.
3243  *
3244  * It is assumed that PD pages and above are managed and thus in the RB tree,
3245  * allowing us to use RB_SCAN from the PD pages down for ranged scans.
3246  */
3247 struct pmap_scan_info {
3248 	struct pmap *pmap;
3249 	vm_offset_t sva;
3250 	vm_offset_t eva;
3251 	vm_pindex_t sva_pd_pindex;
3252 	vm_pindex_t eva_pd_pindex;
3253 	void (*func)(pmap_t, struct pmap_scan_info *,
3254 		     pv_entry_t, pv_entry_t, int, vm_offset_t,
3255 		     pt_entry_t *, void *);
3256 	void *arg;
3257 	int doinval;
3258 	struct pmap_inval_info inval;
3259 };
3260 
3261 static int pmap_scan_cmp(pv_entry_t pv, void *data);
3262 static int pmap_scan_callback(pv_entry_t pv, void *data);
3263 
3264 static void
3265 pmap_scan(struct pmap_scan_info *info)
3266 {
3267 	struct pmap *pmap = info->pmap;
3268 	pv_entry_t pd_pv;	/* A page directory PV */
3269 	pv_entry_t pt_pv;	/* A page table PV */
3270 	pv_entry_t pte_pv;	/* A page table entry PV */
3271 	pt_entry_t *ptep;
3272 	pt_entry_t oldpte;
3273 	struct pv_entry dummy_pv;
3274 	int generation;
3275 
3276 	if (pmap == NULL)
3277 		return;
3278 
3279 	/*
3280 	 * Hold the token for stability; if the pmap is empty we have nothing
3281 	 * to do.
3282 	 */
3283 	lwkt_gettoken(&pmap->pm_token);
3284 #if 0
3285 	if (pmap->pm_stats.resident_count == 0) {
3286 		lwkt_reltoken(&pmap->pm_token);
3287 		return;
3288 	}
3289 #endif
3290 
3291 	pmap_inval_init(&info->inval);
3292 
3293 again:
3294 	/*
3295 	 * Special handling for scanning one page, which is a very common
3296 	 * operation (it is?).
3297 	 *
3298 	 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4
3299 	 */
3300 	if (info->sva + PAGE_SIZE == info->eva) {
3301 		generation = pmap->pm_generation;
3302 		if (info->sva >= VM_MAX_USER_ADDRESS) {
3303 			/*
3304 			 * Kernel mappings do not track wire counts on
3305 			 * page table pages and only maintain pd_pv and
3306 			 * pte_pv levels so pmap_scan() works.
3307 			 */
3308 			pt_pv = NULL;
3309 			pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva));
3310 			ptep = vtopte(info->sva);
3311 		} else {
3312 			/*
3313 			 * User pages which are unmanaged will not have a
3314 			 * pte_pv.  User page table pages which are unmanaged
3315 			 * (shared from elsewhere) will also not have a pt_pv.
3316 			 * The func() callback will pass both pte_pv and pt_pv
3317 			 * as NULL in that case.
3318 			 */
3319 			pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva));
3320 			pt_pv = pv_get(pmap, pmap_pt_pindex(info->sva));
3321 			if (pt_pv == NULL) {
3322 				KKASSERT(pte_pv == NULL);
3323 				pd_pv = pv_get(pmap, pmap_pd_pindex(info->sva));
3324 				if (pd_pv) {
3325 					ptep = pv_pte_lookup(pd_pv,
3326 						    pmap_pt_index(info->sva));
3327 					if (*ptep) {
3328 						info->func(pmap, info,
3329 						     NULL, pd_pv, 1,
3330 						     info->sva, ptep,
3331 						     info->arg);
3332 					}
3333 					pv_put(pd_pv);
3334 				}
3335 				goto fast_skip;
3336 			}
3337 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(info->sva));
3338 		}
3339 
3340 		/*
3341 		 * NOTE: *ptep can't be ripped out from under us if we hold
3342 		 *	 pte_pv locked, but bits can change.  However, there is
3343 		 *	 a race where another thread may be inserting pte_pv
3344 		 *	 and setting *ptep just after our pte_pv lookup fails.
3345 		 *
3346 		 *	 In this situation we can end up with a NULL pte_pv
3347 		 *	 but find that we have a managed *ptep.  We explicitly
3348 		 *	 check for this race.
3349 		 */
3350 		oldpte = *ptep;
3351 		cpu_ccfence();
3352 		if (oldpte == 0) {
3353 			/*
3354 			 * Unlike the pv_find() case below we actually
3355 			 * acquired a locked pv in this case so any
3356 			 * race should have been resolved.  It is expected
3357 			 * to not exist.
3358 			 */
3359 			KKASSERT(pte_pv == NULL);
3360 		} else if (pte_pv) {
3361 			KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] |
3362 					   pmap->pmap_bits[PG_V_IDX])) ==
3363 				(pmap->pmap_bits[PG_MANAGED_IDX] |
3364 				 pmap->pmap_bits[PG_V_IDX]),
3365 			    ("badA *ptep %016lx/%016lx sva %016lx pte_pv %p"
3366 			     "generation %d/%d",
3367 			    *ptep, oldpte, info->sva, pte_pv,
3368 			    generation, pmap->pm_generation));
3369 			info->func(pmap, info, pte_pv, pt_pv, 0,
3370 				   info->sva, ptep, info->arg);
3371 		} else {
3372 			/*
3373 			 * Check for insertion race
3374 			 */
3375 			if ((oldpte & pmap->pmap_bits[PG_MANAGED_IDX]) &&
3376 			    pt_pv) {
3377 				pte_pv = pv_find(pmap,
3378 						 pmap_pte_pindex(info->sva));
3379 				if (pte_pv) {
3380 					pv_drop(pte_pv);
3381 					pv_put(pt_pv);
3382 					kprintf("pmap_scan: RACE1 "
3383 						"%016jx, %016lx\n",
3384 						info->sva, oldpte);
3385 					goto again;
3386 				}
3387 			}
3388 
3389 			/*
3390 			 * Didn't race
3391 			 */
3392 			KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] |
3393 					   pmap->pmap_bits[PG_V_IDX])) ==
3394 			    pmap->pmap_bits[PG_V_IDX],
3395 			    ("badB *ptep %016lx/%016lx sva %016lx pte_pv NULL"
3396 			     "generation %d/%d",
3397 			    *ptep, oldpte, info->sva,
3398 			    generation, pmap->pm_generation));
3399 			info->func(pmap, info, NULL, pt_pv, 0,
3400 			    info->sva, ptep, info->arg);
3401 		}
3402 		if (pt_pv)
3403 			pv_put(pt_pv);
3404 fast_skip:
3405 		pmap_inval_done(&info->inval);
3406 		lwkt_reltoken(&pmap->pm_token);
3407 		return;
3408 	}
3409 
3410 	/*
3411 	 * Nominal scan case, RB_SCAN() for PD pages and iterate from
3412 	 * there.
3413 	 */
3414 	info->sva_pd_pindex = pmap_pd_pindex(info->sva);
3415 	info->eva_pd_pindex = pmap_pd_pindex(info->eva + NBPDP - 1);
3416 
3417 	if (info->sva >= VM_MAX_USER_ADDRESS) {
3418 		/*
3419 		 * The kernel does not currently maintain any pv_entry's for
3420 		 * higher-level page tables.
3421 		 */
3422 		bzero(&dummy_pv, sizeof(dummy_pv));
3423 		dummy_pv.pv_pindex = info->sva_pd_pindex;
3424 		spin_lock(&pmap->pm_spin);
3425 		while (dummy_pv.pv_pindex < info->eva_pd_pindex) {
3426 			pmap_scan_callback(&dummy_pv, info);
3427 			++dummy_pv.pv_pindex;
3428 		}
3429 		spin_unlock(&pmap->pm_spin);
3430 	} else {
3431 		/*
3432 		 * User page tables maintain local PML4, PDP, and PD
3433 		 * pv_entry's at the very least.  PT pv's might be
3434 		 * unmanaged and thus not exist.  PTE pv's might be
3435 		 * unmanaged and thus not exist.
3436 		 */
3437 		spin_lock(&pmap->pm_spin);
3438 		pv_entry_rb_tree_RB_SCAN(&pmap->pm_pvroot,
3439 			pmap_scan_cmp, pmap_scan_callback, info);
3440 		spin_unlock(&pmap->pm_spin);
3441 	}
3442 	pmap_inval_done(&info->inval);
3443 	lwkt_reltoken(&pmap->pm_token);
3444 }
3445 
3446 /*
3447  * WARNING! pmap->pm_spin held
3448  */
3449 static int
3450 pmap_scan_cmp(pv_entry_t pv, void *data)
3451 {
3452 	struct pmap_scan_info *info = data;
3453 	if (pv->pv_pindex < info->sva_pd_pindex)
3454 		return(-1);
3455 	if (pv->pv_pindex >= info->eva_pd_pindex)
3456 		return(1);
3457 	return(0);
3458 }
3459 
3460 /*
3461  * WARNING! pmap->pm_spin held
3462  */
3463 static int
3464 pmap_scan_callback(pv_entry_t pv, void *data)
3465 {
3466 	struct pmap_scan_info *info = data;
3467 	struct pmap *pmap = info->pmap;
3468 	pv_entry_t pd_pv;	/* A page directory PV */
3469 	pv_entry_t pt_pv;	/* A page table PV */
3470 	pv_entry_t pte_pv;	/* A page table entry PV */
3471 	pt_entry_t *ptep;
3472 	pt_entry_t oldpte;
3473 	vm_offset_t sva;
3474 	vm_offset_t eva;
3475 	vm_offset_t va_next;
3476 	vm_pindex_t pd_pindex;
3477 	int error;
3478 	int generation;
3479 
3480 	/*
3481 	 * Pull the PD pindex from the pv before releasing the spinlock.
3482 	 *
3483 	 * WARNING: pv is faked for kernel pmap scans.
3484 	 */
3485 	pd_pindex = pv->pv_pindex;
3486 	spin_unlock(&pmap->pm_spin);
3487 	pv = NULL;	/* invalid after spinlock unlocked */
3488 
3489 	/*
3490 	 * Calculate the page range within the PD.  SIMPLE pmaps are
3491 	 * direct-mapped for the entire 2^64 address space.  Normal pmaps
3492 	 * reflect the user and kernel address space which requires
3493 	 * cannonicalization w/regards to converting pd_pindex's back
3494 	 * into addresses.
3495 	 */
3496 	sva = (pd_pindex - NUPTE_TOTAL - NUPT_TOTAL) << PDPSHIFT;
3497 	if ((pmap->pm_flags & PMAP_FLAG_SIMPLE) == 0 &&
3498 	    (sva & PML4_SIGNMASK)) {
3499 		sva |= PML4_SIGNMASK;
3500 	}
3501 	eva = sva + NBPDP;	/* can overflow */
3502 	if (sva < info->sva)
3503 		sva = info->sva;
3504 	if (eva < info->sva || eva > info->eva)
3505 		eva = info->eva;
3506 
3507 	/*
3508 	 * NOTE: kernel mappings do not track page table pages, only
3509 	 * 	 terminal pages.
3510 	 *
3511 	 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4.
3512 	 *	 However, for the scan to be efficient we try to
3513 	 *	 cache items top-down.
3514 	 */
3515 	pd_pv = NULL;
3516 	pt_pv = NULL;
3517 
3518 	for (; sva < eva; sva = va_next) {
3519 		if (sva >= VM_MAX_USER_ADDRESS) {
3520 			if (pt_pv) {
3521 				pv_put(pt_pv);
3522 				pt_pv = NULL;
3523 			}
3524 			goto kernel_skip;
3525 		}
3526 
3527 		/*
3528 		 * PD cache (degenerate case if we skip).  It is possible
3529 		 * for the PD to not exist due to races.  This is ok.
3530 		 */
3531 		if (pd_pv == NULL) {
3532 			pd_pv = pv_get(pmap, pmap_pd_pindex(sva));
3533 		} else if (pd_pv->pv_pindex != pmap_pd_pindex(sva)) {
3534 			pv_put(pd_pv);
3535 			pd_pv = pv_get(pmap, pmap_pd_pindex(sva));
3536 		}
3537 		if (pd_pv == NULL) {
3538 			va_next = (sva + NBPDP) & ~PDPMASK;
3539 			if (va_next < sva)
3540 				va_next = eva;
3541 			continue;
3542 		}
3543 
3544 		/*
3545 		 * PT cache
3546 		 */
3547 		if (pt_pv == NULL) {
3548 			if (pd_pv) {
3549 				pv_put(pd_pv);
3550 				pd_pv = NULL;
3551 			}
3552 			pt_pv = pv_get(pmap, pmap_pt_pindex(sva));
3553 		} else if (pt_pv->pv_pindex != pmap_pt_pindex(sva)) {
3554 			if (pd_pv) {
3555 				pv_put(pd_pv);
3556 				pd_pv = NULL;
3557 			}
3558 			pv_put(pt_pv);
3559 			pt_pv = pv_get(pmap, pmap_pt_pindex(sva));
3560 		}
3561 
3562 		/*
3563 		 * If pt_pv is NULL we either have an shared page table
3564 		 * page and must issue a callback specific to that case,
3565 		 * or there is no page table page.
3566 		 *
3567 		 * Either way we can skip the page table page.
3568 		 */
3569 		if (pt_pv == NULL) {
3570 			/*
3571 			 * Possible unmanaged (shared from another pmap)
3572 			 * page table page.
3573 			 */
3574 			if (pd_pv == NULL)
3575 				pd_pv = pv_get(pmap, pmap_pd_pindex(sva));
3576 			KKASSERT(pd_pv != NULL);
3577 			ptep = pv_pte_lookup(pd_pv, pmap_pt_index(sva));
3578 			if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
3579 				info->func(pmap, info, NULL, pd_pv, 1,
3580 					   sva, ptep, info->arg);
3581 			}
3582 
3583 			/*
3584 			 * Done, move to next page table page.
3585 			 */
3586 			va_next = (sva + NBPDR) & ~PDRMASK;
3587 			if (va_next < sva)
3588 				va_next = eva;
3589 			continue;
3590 		}
3591 
3592 		/*
3593 		 * From this point in the loop testing pt_pv for non-NULL
3594 		 * means we are in UVM, else if it is NULL we are in KVM.
3595 		 *
3596 		 * Limit our scan to either the end of the va represented
3597 		 * by the current page table page, or to the end of the
3598 		 * range being removed.
3599 		 */
3600 kernel_skip:
3601 		va_next = (sva + NBPDR) & ~PDRMASK;
3602 		if (va_next < sva)
3603 			va_next = eva;
3604 		if (va_next > eva)
3605 			va_next = eva;
3606 
3607 		/*
3608 		 * Scan the page table for pages.  Some pages may not be
3609 		 * managed (might not have a pv_entry).
3610 		 *
3611 		 * There is no page table management for kernel pages so
3612 		 * pt_pv will be NULL in that case, but otherwise pt_pv
3613 		 * is non-NULL, locked, and referenced.
3614 		 */
3615 
3616 		/*
3617 		 * At this point a non-NULL pt_pv means a UVA, and a NULL
3618 		 * pt_pv means a KVA.
3619 		 */
3620 		if (pt_pv)
3621 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(sva));
3622 		else
3623 			ptep = vtopte(sva);
3624 
3625 		while (sva < va_next) {
3626 			/*
3627 			 * Acquire the related pte_pv, if any.  If *ptep == 0
3628 			 * the related pte_pv should not exist, but if *ptep
3629 			 * is not zero the pte_pv may or may not exist (e.g.
3630 			 * will not exist for an unmanaged page).
3631 			 *
3632 			 * However a multitude of races are possible here.
3633 			 *
3634 			 * In addition, the (pt_pv, pte_pv) lock order is
3635 			 * backwards, so we have to be careful in aquiring
3636 			 * a properly locked pte_pv.
3637 			 */
3638 			generation = pmap->pm_generation;
3639 			if (pt_pv) {
3640 				pte_pv = pv_get_try(pmap, pmap_pte_pindex(sva),
3641 						    &error);
3642 				if (error) {
3643 					if (pd_pv) {
3644 						pv_put(pd_pv);
3645 						pd_pv = NULL;
3646 					}
3647 					pv_put(pt_pv);	 /* must be non-NULL */
3648 					pt_pv = NULL;
3649 					pv_lock(pte_pv); /* safe to block now */
3650 					pv_put(pte_pv);
3651 					pte_pv = NULL;
3652 					pt_pv = pv_get(pmap,
3653 						       pmap_pt_pindex(sva));
3654 					/*
3655 					 * pt_pv reloaded, need new ptep
3656 					 */
3657 					KKASSERT(pt_pv != NULL);
3658 					ptep = pv_pte_lookup(pt_pv,
3659 							pmap_pte_index(sva));
3660 					continue;
3661 				}
3662 			} else {
3663 				pte_pv = pv_get(pmap, pmap_pte_pindex(sva));
3664 			}
3665 
3666 			/*
3667 			 * Ok, if *ptep == 0 we had better NOT have a pte_pv.
3668 			 */
3669 			oldpte = *ptep;
3670 			if (oldpte == 0) {
3671 				if (pte_pv) {
3672 					kprintf("Unexpected non-NULL pte_pv "
3673 						"%p pt_pv %p "
3674 						"*ptep = %016lx/%016lx\n",
3675 						pte_pv, pt_pv, *ptep, oldpte);
3676 					panic("Unexpected non-NULL pte_pv");
3677 				}
3678 				sva += PAGE_SIZE;
3679 				++ptep;
3680 				continue;
3681 			}
3682 
3683 			/*
3684 			 * Ready for the callback.  The locked pte_pv (if any)
3685 			 * is consumed by the callback.  pte_pv will exist if
3686 			 *  the page is managed, and will not exist if it
3687 			 * isn't.
3688 			 */
3689 			if (pte_pv) {
3690 				KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] | pmap->pmap_bits[PG_V_IDX])) ==
3691 				    (pmap->pmap_bits[PG_MANAGED_IDX] | pmap->pmap_bits[PG_V_IDX]),
3692 				    ("badC *ptep %016lx/%016lx sva %016lx "
3693 				    "pte_pv %p pm_generation %d/%d",
3694 				    *ptep, oldpte, sva, pte_pv,
3695 				    generation, pmap->pm_generation));
3696 				info->func(pmap, info, pte_pv, pt_pv, 0,
3697 				    sva, ptep, info->arg);
3698 			} else {
3699 				/*
3700 				 * Check for insertion race.  Since there is no
3701 				 * pte_pv to guard us it is possible for us
3702 				 * to race another thread doing an insertion.
3703 				 * Our lookup misses the pte_pv but our *ptep
3704 				 * check sees the inserted pte.
3705 				 *
3706 				 * XXX panic case seems to occur within a
3707 				 * vm_fork() of /bin/sh, which frankly
3708 				 * shouldn't happen since no other threads
3709 				 * should be inserting to our pmap in that
3710 				 * situation.  Removing, possibly.  Inserting,
3711 				 * shouldn't happen.
3712 				 */
3713 				if ((oldpte & pmap->pmap_bits[PG_MANAGED_IDX]) &&
3714 				    pt_pv) {
3715 					pte_pv = pv_find(pmap,
3716 							 pmap_pte_pindex(sva));
3717 					if (pte_pv) {
3718 						pv_drop(pte_pv);
3719 						kprintf("pmap_scan: RACE2 "
3720 							"%016jx, %016lx\n",
3721 							sva, oldpte);
3722 						continue;
3723 					}
3724 				}
3725 
3726 				/*
3727 				 * Didn't race
3728 				 */
3729 				KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] | pmap->pmap_bits[PG_V_IDX])) ==
3730 				    pmap->pmap_bits[PG_V_IDX],
3731 				    ("badD *ptep %016lx/%016lx sva %016lx "
3732 				    "pte_pv NULL pm_generation %d/%d",
3733 				     *ptep, oldpte, sva,
3734 				     generation, pmap->pm_generation));
3735 				info->func(pmap, info, NULL, pt_pv, 0,
3736 				    sva, ptep, info->arg);
3737 			}
3738 			pte_pv = NULL;
3739 			sva += PAGE_SIZE;
3740 			++ptep;
3741 		}
3742 		lwkt_yield();
3743 	}
3744 	if (pd_pv) {
3745 		pv_put(pd_pv);
3746 		pd_pv = NULL;
3747 	}
3748 	if (pt_pv) {
3749 		pv_put(pt_pv);
3750 		pt_pv = NULL;
3751 	}
3752 	lwkt_yield();
3753 
3754 	/*
3755 	 * Relock before returning.
3756 	 */
3757 	spin_lock(&pmap->pm_spin);
3758 	return (0);
3759 }
3760 
3761 void
3762 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
3763 {
3764 	struct pmap_scan_info info;
3765 
3766 	info.pmap = pmap;
3767 	info.sva = sva;
3768 	info.eva = eva;
3769 	info.func = pmap_remove_callback;
3770 	info.arg = NULL;
3771 	info.doinval = 1;	/* normal remove requires pmap inval */
3772 	pmap_scan(&info);
3773 }
3774 
3775 static void
3776 pmap_remove_noinval(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
3777 {
3778 	struct pmap_scan_info info;
3779 
3780 	info.pmap = pmap;
3781 	info.sva = sva;
3782 	info.eva = eva;
3783 	info.func = pmap_remove_callback;
3784 	info.arg = NULL;
3785 	info.doinval = 0;	/* normal remove requires pmap inval */
3786 	pmap_scan(&info);
3787 }
3788 
3789 static void
3790 pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
3791 		     pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
3792 		     vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
3793 {
3794 	pt_entry_t pte;
3795 
3796 	if (pte_pv) {
3797 		/*
3798 		 * This will also drop pt_pv's wire_count. Note that
3799 		 * terminal pages are not wired based on mmu presence.
3800 		 */
3801 		if (info->doinval)
3802 			pmap_remove_pv_pte(pte_pv, pt_pv, &info->inval);
3803 		else
3804 			pmap_remove_pv_pte(pte_pv, pt_pv, NULL);
3805 		pmap_remove_pv_page(pte_pv);
3806 		pv_free(pte_pv);
3807 	} else if (sharept == 0) {
3808 		/*
3809 		 * Unmanaged page table (pt, pd, or pdp. Not pte).
3810 		 *
3811 		 * pt_pv's wire_count is still bumped by unmanaged pages
3812 		 * so we must decrement it manually.
3813 		 *
3814 		 * We have to unwire the target page table page.
3815 		 *
3816 		 * It is unclear how we can invalidate a segment so we
3817 		 * invalidate -1 which invlidates the tlb.
3818 		 */
3819 		if (info->doinval)
3820 			pmap_inval_interlock(&info->inval, pmap, -1);
3821 		pte = pte_load_clear(ptep);
3822 		if (info->doinval)
3823 			pmap_inval_deinterlock(&info->inval, pmap);
3824 		if (pte & pmap->pmap_bits[PG_W_IDX])
3825 			atomic_add_long(&pmap->pm_stats.wired_count, -1);
3826 		atomic_add_long(&pmap->pm_stats.resident_count, -1);
3827 		if (vm_page_unwire_quick(pt_pv->pv_m))
3828 			panic("pmap_remove: insufficient wirecount");
3829 	} else {
3830 		/*
3831 		 * Unmanaged page table (pt, pd, or pdp. Not pte) for
3832 		 * a shared page table.
3833 		 *
3834 		 * pt_pv is actually the pd_pv for our pmap (not the shared
3835 		 * object pmap).
3836 		 *
3837 		 * We have to unwire the target page table page and we
3838 		 * have to unwire our page directory page.
3839 		 *
3840 		 * It is unclear how we can invalidate a segment so we
3841 		 * invalidate -1 which invlidates the tlb.
3842 		 */
3843 		if (info->doinval)
3844 			pmap_inval_interlock(&info->inval, pmap, -1);
3845 		pte = pte_load_clear(ptep);
3846 		if (info->doinval)
3847 			pmap_inval_deinterlock(&info->inval, pmap);
3848 		atomic_add_long(&pmap->pm_stats.resident_count, -1);
3849 		KKASSERT((pte & pmap->pmap_bits[PG_DEVICE_IDX]) == 0);
3850 		if (vm_page_unwire_quick(PHYS_TO_VM_PAGE(pte & PG_FRAME)))
3851 			panic("pmap_remove: shared pgtable1 bad wirecount");
3852 		if (vm_page_unwire_quick(pt_pv->pv_m))
3853 			panic("pmap_remove: shared pgtable2 bad wirecount");
3854 	}
3855 }
3856 
3857 /*
3858  * Removes this physical page from all physical maps in which it resides.
3859  * Reflects back modify bits to the pager.
3860  *
3861  * This routine may not be called from an interrupt.
3862  */
3863 static
3864 void
3865 pmap_remove_all(vm_page_t m)
3866 {
3867 	struct pmap_inval_info info;
3868 	pv_entry_t pv;
3869 
3870 	if (!pmap_initialized /* || (m->flags & PG_FICTITIOUS)*/)
3871 		return;
3872 
3873 	pmap_inval_init(&info);
3874 	vm_page_spin_lock(m);
3875 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3876 		KKASSERT(pv->pv_m == m);
3877 		if (pv_hold_try(pv)) {
3878 			vm_page_spin_unlock(m);
3879 		} else {
3880 			vm_page_spin_unlock(m);
3881 			pv_lock(pv);
3882 		}
3883 		if (pv->pv_m != m) {
3884 			pv_put(pv);
3885 			vm_page_spin_lock(m);
3886 			continue;
3887 		}
3888 
3889 		/*
3890 		 * Holding no spinlocks, pv is locked.
3891 		 */
3892 		pmap_remove_pv_pte(pv, NULL, &info);
3893 		pmap_remove_pv_page(pv);
3894 		pv_free(pv);
3895 		vm_page_spin_lock(m);
3896 	}
3897 	KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
3898 	vm_page_spin_unlock(m);
3899 	pmap_inval_done(&info);
3900 }
3901 
3902 /*
3903  * Set the physical protection on the specified range of this map
3904  * as requested.  This function is typically only used for debug watchpoints
3905  * and COW pages.
3906  *
3907  * This function may not be called from an interrupt if the map is
3908  * not the kernel_pmap.
3909  *
3910  * NOTE!  For shared page table pages we just unmap the page.
3911  */
3912 void
3913 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
3914 {
3915 	struct pmap_scan_info info;
3916 	/* JG review for NX */
3917 
3918 	if (pmap == NULL)
3919 		return;
3920 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
3921 		pmap_remove(pmap, sva, eva);
3922 		return;
3923 	}
3924 	if (prot & VM_PROT_WRITE)
3925 		return;
3926 	info.pmap = pmap;
3927 	info.sva = sva;
3928 	info.eva = eva;
3929 	info.func = pmap_protect_callback;
3930 	info.arg = &prot;
3931 	info.doinval = 1;
3932 	pmap_scan(&info);
3933 }
3934 
3935 static
3936 void
3937 pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
3938 		      pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
3939 		      vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
3940 {
3941 	pt_entry_t pbits;
3942 	pt_entry_t cbits;
3943 	pt_entry_t pte;
3944 	vm_page_t m;
3945 
3946 	/*
3947 	 * XXX non-optimal.
3948 	 */
3949 	pmap_inval_interlock(&info->inval, pmap, va);
3950 again:
3951 	pbits = *ptep;
3952 	cbits = pbits;
3953 	if (pte_pv) {
3954 		m = NULL;
3955 		if (pbits & pmap->pmap_bits[PG_A_IDX]) {
3956 			if ((pbits & pmap->pmap_bits[PG_DEVICE_IDX]) == 0) {
3957 				m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
3958 				KKASSERT(m == pte_pv->pv_m);
3959 				vm_page_flag_set(m, PG_REFERENCED);
3960 			}
3961 			cbits &= ~pmap->pmap_bits[PG_A_IDX];
3962 		}
3963 		if (pbits & pmap->pmap_bits[PG_M_IDX]) {
3964 			if (pmap_track_modified(pte_pv->pv_pindex)) {
3965 				if ((pbits & pmap->pmap_bits[PG_DEVICE_IDX]) == 0) {
3966 					if (m == NULL) {
3967 						m = PHYS_TO_VM_PAGE(pbits &
3968 								    PG_FRAME);
3969 					}
3970 					vm_page_dirty(m);
3971 				}
3972 				cbits &= ~pmap->pmap_bits[PG_M_IDX];
3973 			}
3974 		}
3975 	} else if (sharept) {
3976 		/*
3977 		 * Unmanaged page table, pt_pv is actually the pd_pv
3978 		 * for our pmap (not the object's shared pmap).
3979 		 *
3980 		 * When asked to protect something in a shared page table
3981 		 * page we just unmap the page table page.  We have to
3982 		 * invalidate the tlb in this situation.
3983 		 *
3984 		 * XXX Warning, shared page tables will not be used for
3985 		 * OBJT_DEVICE or OBJT_MGTDEVICE (PG_FICTITIOUS) mappings
3986 		 * so PHYS_TO_VM_PAGE() should be safe here.
3987 		 */
3988 		pte = pte_load_clear(ptep);
3989 		pmap_inval_invltlb(&info->inval);
3990 		if (vm_page_unwire_quick(PHYS_TO_VM_PAGE(pte & PG_FRAME)))
3991 			panic("pmap_protect: pgtable1 pg bad wirecount");
3992 		if (vm_page_unwire_quick(pt_pv->pv_m))
3993 			panic("pmap_protect: pgtable2 pg bad wirecount");
3994 		ptep = NULL;
3995 	}
3996 	/* else unmanaged page, adjust bits, no wire changes */
3997 
3998 	if (ptep) {
3999 		cbits &= ~pmap->pmap_bits[PG_RW_IDX];
4000 #ifdef PMAP_DEBUG2
4001 		if (pmap_enter_debug > 0) {
4002 			--pmap_enter_debug;
4003 			kprintf("pmap_protect va=%lx ptep=%p pte_pv=%p "
4004 				"pt_pv=%p cbits=%08lx\n",
4005 				va, ptep, pte_pv,
4006 				pt_pv, cbits
4007 			);
4008 		}
4009 #endif
4010 		if (pbits != cbits && !atomic_cmpset_long(ptep, pbits, cbits)) {
4011 			goto again;
4012 		}
4013 	}
4014 	pmap_inval_deinterlock(&info->inval, pmap);
4015 	if (pte_pv)
4016 		pv_put(pte_pv);
4017 }
4018 
4019 /*
4020  * Insert the vm_page (m) at the virtual address (va), replacing any prior
4021  * mapping at that address.  Set protection and wiring as requested.
4022  *
4023  * If entry is non-NULL we check to see if the SEG_SIZE optimization is
4024  * possible.  If it is we enter the page into the appropriate shared pmap
4025  * hanging off the related VM object instead of the passed pmap, then we
4026  * share the page table page from the VM object's pmap into the current pmap.
4027  *
4028  * NOTE: This routine MUST insert the page into the pmap now, it cannot
4029  *	 lazy-evaluate.
4030  */
4031 void
4032 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
4033 	   boolean_t wired, vm_map_entry_t entry)
4034 {
4035 	pmap_inval_info info;
4036 	pv_entry_t pt_pv;	/* page table */
4037 	pv_entry_t pte_pv;	/* page table entry */
4038 	pt_entry_t *ptep;
4039 	vm_paddr_t opa;
4040 	pt_entry_t origpte, newpte;
4041 	vm_paddr_t pa;
4042 
4043 	if (pmap == NULL)
4044 		return;
4045 	va = trunc_page(va);
4046 #ifdef PMAP_DIAGNOSTIC
4047 	if (va >= KvaEnd)
4048 		panic("pmap_enter: toobig");
4049 	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
4050 		panic("pmap_enter: invalid to pmap_enter page table "
4051 		      "pages (va: 0x%lx)", va);
4052 #endif
4053 	if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
4054 		kprintf("Warning: pmap_enter called on UVA with "
4055 			"kernel_pmap\n");
4056 #ifdef DDB
4057 		db_print_backtrace();
4058 #endif
4059 	}
4060 	if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
4061 		kprintf("Warning: pmap_enter called on KVA without"
4062 			"kernel_pmap\n");
4063 #ifdef DDB
4064 		db_print_backtrace();
4065 #endif
4066 	}
4067 
4068 	/*
4069 	 * Get locked PV entries for our new page table entry (pte_pv)
4070 	 * and for its parent page table (pt_pv).  We need the parent
4071 	 * so we can resolve the location of the ptep.
4072 	 *
4073 	 * Only hardware MMU actions can modify the ptep out from
4074 	 * under us.
4075 	 *
4076 	 * if (m) is fictitious or unmanaged we do not create a managing
4077 	 * pte_pv for it.  Any pre-existing page's management state must
4078 	 * match (avoiding code complexity).
4079 	 *
4080 	 * If the pmap is still being initialized we assume existing
4081 	 * page tables.
4082 	 *
4083 	 * Kernel mapppings do not track page table pages (i.e. pt_pv).
4084 	 */
4085 	if (pmap_initialized == FALSE) {
4086 		pte_pv = NULL;
4087 		pt_pv = NULL;
4088 		ptep = vtopte(va);
4089 		origpte = *ptep;
4090 	} else if (m->flags & (/*PG_FICTITIOUS |*/ PG_UNMANAGED)) { /* XXX */
4091 		pte_pv = NULL;
4092 		if (va >= VM_MAX_USER_ADDRESS) {
4093 			pt_pv = NULL;
4094 			ptep = vtopte(va);
4095 		} else {
4096 			pt_pv = pmap_allocpte_seg(pmap, pmap_pt_pindex(va),
4097 						  NULL, entry, va);
4098 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
4099 		}
4100 		origpte = *ptep;
4101 		cpu_ccfence();
4102 		KASSERT(origpte == 0 ||
4103 			 (origpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0,
4104 			 ("Invalid PTE 0x%016jx @ 0x%016jx\n", origpte, va));
4105 	} else {
4106 		if (va >= VM_MAX_USER_ADDRESS) {
4107 			/*
4108 			 * Kernel map, pv_entry-tracked.
4109 			 */
4110 			pt_pv = NULL;
4111 			pte_pv = pmap_allocpte(pmap, pmap_pte_pindex(va), NULL);
4112 			ptep = vtopte(va);
4113 		} else {
4114 			/*
4115 			 * User map
4116 			 */
4117 			pte_pv = pmap_allocpte_seg(pmap, pmap_pte_pindex(va),
4118 						   &pt_pv, entry, va);
4119 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
4120 		}
4121 		origpte = *ptep;
4122 		cpu_ccfence();
4123 		KASSERT(origpte == 0 ||
4124 			 (origpte & pmap->pmap_bits[PG_MANAGED_IDX]),
4125 			 ("Invalid PTE 0x%016jx @ 0x%016jx\n", origpte, va));
4126 	}
4127 
4128 	pa = VM_PAGE_TO_PHYS(m);
4129 	opa = origpte & PG_FRAME;
4130 
4131 	newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) |
4132 		 pmap->pmap_bits[PG_V_IDX] | pmap->pmap_bits[PG_A_IDX]);
4133 	if (wired)
4134 		newpte |= pmap->pmap_bits[PG_W_IDX];
4135 	if (va < VM_MAX_USER_ADDRESS)
4136 		newpte |= pmap->pmap_bits[PG_U_IDX];
4137 	if (pte_pv)
4138 		newpte |= pmap->pmap_bits[PG_MANAGED_IDX];
4139 //	if (pmap == &kernel_pmap)
4140 //		newpte |= pgeflag;
4141 	newpte |= pmap->pmap_cache_bits[m->pat_mode];
4142 	if (m->flags & PG_FICTITIOUS)
4143 		newpte |= pmap->pmap_bits[PG_DEVICE_IDX];
4144 
4145 	/*
4146 	 * It is possible for multiple faults to occur in threaded
4147 	 * environments, the existing pte might be correct.
4148 	 */
4149 	if (((origpte ^ newpte) & ~(pt_entry_t)(pmap->pmap_bits[PG_M_IDX] |
4150 	    pmap->pmap_bits[PG_A_IDX])) == 0)
4151 		goto done;
4152 
4153 	if ((prot & VM_PROT_NOSYNC) == 0)
4154 		pmap_inval_init(&info);
4155 
4156 	/*
4157 	 * Ok, either the address changed or the protection or wiring
4158 	 * changed.
4159 	 *
4160 	 * Clear the current entry, interlocking the removal.  For managed
4161 	 * pte's this will also flush the modified state to the vm_page.
4162 	 * Atomic ops are mandatory in order to ensure that PG_M events are
4163 	 * not lost during any transition.
4164 	 *
4165 	 * WARNING: The caller has busied the new page but not the original
4166 	 *	    vm_page which we are trying to replace.  Because we hold
4167 	 *	    the pte_pv lock, but have not busied the page, PG bits
4168 	 *	    can be cleared out from under us.
4169 	 */
4170 	if (opa) {
4171 		if (pte_pv) {
4172 			/*
4173 			 * pmap_remove_pv_pte() unwires pt_pv and assumes
4174 			 * we will free pte_pv, but since we are reusing
4175 			 * pte_pv we want to retain the wire count.
4176 			 *
4177 			 * pt_pv won't exist for a kernel page (managed or
4178 			 * otherwise).
4179 			 */
4180 			if (pt_pv)
4181 				vm_page_wire_quick(pt_pv->pv_m);
4182 			if (prot & VM_PROT_NOSYNC)
4183 				pmap_remove_pv_pte(pte_pv, pt_pv, NULL);
4184 			else
4185 				pmap_remove_pv_pte(pte_pv, pt_pv, &info);
4186 			if (pte_pv->pv_m)
4187 				pmap_remove_pv_page(pte_pv);
4188 		} else if (prot & VM_PROT_NOSYNC) {
4189 			/*
4190 			 * Unmanaged page, NOSYNC (no mmu sync) requested.
4191 			 *
4192 			 * Leave wire count on PT page intact.
4193 			 */
4194 			(void)pte_load_clear(ptep);
4195 			cpu_invlpg((void *)va);
4196 			atomic_add_long(&pmap->pm_stats.resident_count, -1);
4197 		} else {
4198 			/*
4199 			 * Unmanaged page, normal enter.
4200 			 *
4201 			 * Leave wire count on PT page intact.
4202 			 */
4203 			pmap_inval_interlock(&info, pmap, va);
4204 			(void)pte_load_clear(ptep);
4205 			pmap_inval_deinterlock(&info, pmap);
4206 			atomic_add_long(&pmap->pm_stats.resident_count, -1);
4207 		}
4208 		KKASSERT(*ptep == 0);
4209 	}
4210 
4211 #ifdef PMAP_DEBUG2
4212 	if (pmap_enter_debug > 0) {
4213 		--pmap_enter_debug;
4214 		kprintf("pmap_enter: va=%lx m=%p origpte=%lx newpte=%lx ptep=%p"
4215 			" pte_pv=%p pt_pv=%p opa=%lx prot=%02x\n",
4216 			va, m,
4217 			origpte, newpte, ptep,
4218 			pte_pv, pt_pv, opa, prot);
4219 	}
4220 #endif
4221 
4222 	if (pte_pv) {
4223 		/*
4224 		 * Enter on the PV list if part of our managed memory.
4225 		 * Wiring of the PT page is already handled.
4226 		 */
4227 		KKASSERT(pte_pv->pv_m == NULL);
4228 		vm_page_spin_lock(m);
4229 		pte_pv->pv_m = m;
4230 		pmap_page_stats_adding(m);
4231 		TAILQ_INSERT_TAIL(&m->md.pv_list, pte_pv, pv_list);
4232 		vm_page_flag_set(m, PG_MAPPED);
4233 		vm_page_spin_unlock(m);
4234 	} else if (pt_pv && opa == 0) {
4235 		/*
4236 		 * We have to adjust the wire count on the PT page ourselves
4237 		 * for unmanaged entries.  If opa was non-zero we retained
4238 		 * the existing wire count from the removal.
4239 		 */
4240 		vm_page_wire_quick(pt_pv->pv_m);
4241 	}
4242 
4243 	/*
4244 	 * Kernel VMAs (pt_pv == NULL) require pmap invalidation interlocks.
4245 	 *
4246 	 * User VMAs do not because those will be zero->non-zero, so no
4247 	 * stale entries to worry about at this point.
4248 	 *
4249 	 * For KVM there appear to still be issues.  Theoretically we
4250 	 * should be able to scrap the interlocks entirely but we
4251 	 * get crashes.
4252 	 */
4253 	if ((prot & VM_PROT_NOSYNC) == 0 && pt_pv == NULL)
4254 		pmap_inval_interlock(&info, pmap, va);
4255 
4256 	/*
4257 	 * Set the pte
4258 	 */
4259 	*(volatile pt_entry_t *)ptep = newpte;
4260 
4261 	if ((prot & VM_PROT_NOSYNC) == 0 && pt_pv == NULL)
4262 		pmap_inval_deinterlock(&info, pmap);
4263 	else if (pt_pv == NULL)
4264 		cpu_invlpg((void *)va);
4265 
4266 	if (wired) {
4267 		if (pte_pv) {
4268 			atomic_add_long(&pte_pv->pv_pmap->pm_stats.wired_count,
4269 					1);
4270 		} else {
4271 			atomic_add_long(&pmap->pm_stats.wired_count, 1);
4272 		}
4273 	}
4274 	if (newpte & pmap->pmap_bits[PG_RW_IDX])
4275 		vm_page_flag_set(m, PG_WRITEABLE);
4276 
4277 	/*
4278 	 * Unmanaged pages need manual resident_count tracking.
4279 	 */
4280 	if (pte_pv == NULL && pt_pv)
4281 		atomic_add_long(&pt_pv->pv_pmap->pm_stats.resident_count, 1);
4282 
4283 	/*
4284 	 * Cleanup
4285 	 */
4286 	if ((prot & VM_PROT_NOSYNC) == 0 || pte_pv == NULL)
4287 		pmap_inval_done(&info);
4288 done:
4289 	KKASSERT((newpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0 ||
4290 		 (m->flags & PG_MAPPED));
4291 
4292 	/*
4293 	 * Cleanup the pv entry, allowing other accessors.
4294 	 */
4295 	if (pte_pv)
4296 		pv_put(pte_pv);
4297 	if (pt_pv)
4298 		pv_put(pt_pv);
4299 }
4300 
4301 /*
4302  * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
4303  * This code also assumes that the pmap has no pre-existing entry for this
4304  * VA.
4305  *
4306  * This code currently may only be used on user pmaps, not kernel_pmap.
4307  */
4308 void
4309 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
4310 {
4311 	pmap_enter(pmap, va, m, VM_PROT_READ, FALSE, NULL);
4312 }
4313 
4314 /*
4315  * Make a temporary mapping for a physical address.  This is only intended
4316  * to be used for panic dumps.
4317  *
4318  * The caller is responsible for calling smp_invltlb().
4319  */
4320 void *
4321 pmap_kenter_temporary(vm_paddr_t pa, long i)
4322 {
4323 	pmap_kenter_quick((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
4324 	return ((void *)crashdumpmap);
4325 }
4326 
4327 #define MAX_INIT_PT (96)
4328 
4329 /*
4330  * This routine preloads the ptes for a given object into the specified pmap.
4331  * This eliminates the blast of soft faults on process startup and
4332  * immediately after an mmap.
4333  */
4334 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
4335 
4336 void
4337 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
4338 		    vm_object_t object, vm_pindex_t pindex,
4339 		    vm_size_t size, int limit)
4340 {
4341 	struct rb_vm_page_scan_info info;
4342 	struct lwp *lp;
4343 	vm_size_t psize;
4344 
4345 	/*
4346 	 * We can't preinit if read access isn't set or there is no pmap
4347 	 * or object.
4348 	 */
4349 	if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
4350 		return;
4351 
4352 	/*
4353 	 * We can't preinit if the pmap is not the current pmap
4354 	 */
4355 	lp = curthread->td_lwp;
4356 	if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
4357 		return;
4358 
4359 	/*
4360 	 * Misc additional checks
4361 	 */
4362 	psize = x86_64_btop(size);
4363 
4364 	if ((object->type != OBJT_VNODE) ||
4365 		((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
4366 			(object->resident_page_count > MAX_INIT_PT))) {
4367 		return;
4368 	}
4369 
4370 	if (pindex + psize > object->size) {
4371 		if (object->size < pindex)
4372 			return;
4373 		psize = object->size - pindex;
4374 	}
4375 
4376 	if (psize == 0)
4377 		return;
4378 
4379 	/*
4380 	 * If everything is segment-aligned do not pre-init here.  Instead
4381 	 * allow the normal vm_fault path to pass a segment hint to
4382 	 * pmap_enter() which will then use an object-referenced shared
4383 	 * page table page.
4384 	 */
4385 	if ((addr & SEG_MASK) == 0 &&
4386 	    (ctob(psize) & SEG_MASK) == 0 &&
4387 	    (ctob(pindex) & SEG_MASK) == 0) {
4388 		return;
4389 	}
4390 
4391 	/*
4392 	 * Use a red-black scan to traverse the requested range and load
4393 	 * any valid pages found into the pmap.
4394 	 *
4395 	 * We cannot safely scan the object's memq without holding the
4396 	 * object token.
4397 	 */
4398 	info.start_pindex = pindex;
4399 	info.end_pindex = pindex + psize - 1;
4400 	info.limit = limit;
4401 	info.mpte = NULL;
4402 	info.addr = addr;
4403 	info.pmap = pmap;
4404 
4405 	vm_object_hold_shared(object);
4406 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
4407 				pmap_object_init_pt_callback, &info);
4408 	vm_object_drop(object);
4409 }
4410 
4411 static
4412 int
4413 pmap_object_init_pt_callback(vm_page_t p, void *data)
4414 {
4415 	struct rb_vm_page_scan_info *info = data;
4416 	vm_pindex_t rel_index;
4417 
4418 	/*
4419 	 * don't allow an madvise to blow away our really
4420 	 * free pages allocating pv entries.
4421 	 */
4422 	if ((info->limit & MAP_PREFAULT_MADVISE) &&
4423 		vmstats.v_free_count < vmstats.v_free_reserved) {
4424 		    return(-1);
4425 	}
4426 
4427 	/*
4428 	 * Ignore list markers and ignore pages we cannot instantly
4429 	 * busy (while holding the object token).
4430 	 */
4431 	if (p->flags & PG_MARKER)
4432 		return 0;
4433 	if (vm_page_busy_try(p, TRUE))
4434 		return 0;
4435 	if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
4436 	    (p->flags & PG_FICTITIOUS) == 0) {
4437 		if ((p->queue - p->pc) == PQ_CACHE)
4438 			vm_page_deactivate(p);
4439 		rel_index = p->pindex - info->start_pindex;
4440 		pmap_enter_quick(info->pmap,
4441 				 info->addr + x86_64_ptob(rel_index), p);
4442 	}
4443 	vm_page_wakeup(p);
4444 	lwkt_yield();
4445 	return(0);
4446 }
4447 
4448 /*
4449  * Return TRUE if the pmap is in shape to trivially pre-fault the specified
4450  * address.
4451  *
4452  * Returns FALSE if it would be non-trivial or if a pte is already loaded
4453  * into the slot.
4454  *
4455  * XXX This is safe only because page table pages are not freed.
4456  */
4457 int
4458 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
4459 {
4460 	pt_entry_t *pte;
4461 
4462 	/*spin_lock(&pmap->pm_spin);*/
4463 	if ((pte = pmap_pte(pmap, addr)) != NULL) {
4464 		if (*pte & pmap->pmap_bits[PG_V_IDX]) {
4465 			/*spin_unlock(&pmap->pm_spin);*/
4466 			return FALSE;
4467 		}
4468 	}
4469 	/*spin_unlock(&pmap->pm_spin);*/
4470 	return TRUE;
4471 }
4472 
4473 /*
4474  * Change the wiring attribute for a pmap/va pair.  The mapping must already
4475  * exist in the pmap.  The mapping may or may not be managed.
4476  */
4477 void
4478 pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired,
4479 		   vm_map_entry_t entry)
4480 {
4481 	pt_entry_t *ptep;
4482 	pv_entry_t pv;
4483 
4484 	if (pmap == NULL)
4485 		return;
4486 	lwkt_gettoken(&pmap->pm_token);
4487 	pv = pmap_allocpte_seg(pmap, pmap_pt_pindex(va), NULL, entry, va);
4488 	ptep = pv_pte_lookup(pv, pmap_pte_index(va));
4489 
4490 	if (wired && !pmap_pte_w(pmap, ptep))
4491 		atomic_add_long(&pv->pv_pmap->pm_stats.wired_count, 1);
4492 	else if (!wired && pmap_pte_w(pmap, ptep))
4493 		atomic_add_long(&pv->pv_pmap->pm_stats.wired_count, -1);
4494 
4495 	/*
4496 	 * Wiring is not a hardware characteristic so there is no need to
4497 	 * invalidate TLB.  However, in an SMP environment we must use
4498 	 * a locked bus cycle to update the pte (if we are not using
4499 	 * the pmap_inval_*() API that is)... it's ok to do this for simple
4500 	 * wiring changes.
4501 	 */
4502 	if (wired)
4503 		atomic_set_long(ptep, pmap->pmap_bits[PG_W_IDX]);
4504 	else
4505 		atomic_clear_long(ptep, pmap->pmap_bits[PG_W_IDX]);
4506 	pv_put(pv);
4507 	lwkt_reltoken(&pmap->pm_token);
4508 }
4509 
4510 
4511 
4512 /*
4513  * Copy the range specified by src_addr/len from the source map to
4514  * the range dst_addr/len in the destination map.
4515  *
4516  * This routine is only advisory and need not do anything.
4517  */
4518 void
4519 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
4520 	  vm_size_t len, vm_offset_t src_addr)
4521 {
4522 }
4523 
4524 /*
4525  * pmap_zero_page:
4526  *
4527  *	Zero the specified physical page.
4528  *
4529  *	This function may be called from an interrupt and no locking is
4530  *	required.
4531  */
4532 void
4533 pmap_zero_page(vm_paddr_t phys)
4534 {
4535 	vm_offset_t va = PHYS_TO_DMAP(phys);
4536 
4537 	pagezero((void *)va);
4538 }
4539 
4540 /*
4541  * pmap_page_assertzero:
4542  *
4543  *	Assert that a page is empty, panic if it isn't.
4544  */
4545 void
4546 pmap_page_assertzero(vm_paddr_t phys)
4547 {
4548 	vm_offset_t va = PHYS_TO_DMAP(phys);
4549 	size_t i;
4550 
4551 	for (i = 0; i < PAGE_SIZE; i += sizeof(long)) {
4552 		if (*(long *)((char *)va + i) != 0) {
4553 			panic("pmap_page_assertzero() @ %p not zero!",
4554 			      (void *)(intptr_t)va);
4555 		}
4556 	}
4557 }
4558 
4559 /*
4560  * pmap_zero_page:
4561  *
4562  *	Zero part of a physical page by mapping it into memory and clearing
4563  *	its contents with bzero.
4564  *
4565  *	off and size may not cover an area beyond a single hardware page.
4566  */
4567 void
4568 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
4569 {
4570 	vm_offset_t virt = PHYS_TO_DMAP(phys);
4571 
4572 	bzero((char *)virt + off, size);
4573 }
4574 
4575 /*
4576  * pmap_copy_page:
4577  *
4578  *	Copy the physical page from the source PA to the target PA.
4579  *	This function may be called from an interrupt.  No locking
4580  *	is required.
4581  */
4582 void
4583 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
4584 {
4585 	vm_offset_t src_virt, dst_virt;
4586 
4587 	src_virt = PHYS_TO_DMAP(src);
4588 	dst_virt = PHYS_TO_DMAP(dst);
4589 	bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
4590 }
4591 
4592 /*
4593  * pmap_copy_page_frag:
4594  *
4595  *	Copy the physical page from the source PA to the target PA.
4596  *	This function may be called from an interrupt.  No locking
4597  *	is required.
4598  */
4599 void
4600 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
4601 {
4602 	vm_offset_t src_virt, dst_virt;
4603 
4604 	src_virt = PHYS_TO_DMAP(src);
4605 	dst_virt = PHYS_TO_DMAP(dst);
4606 
4607 	bcopy((char *)src_virt + (src & PAGE_MASK),
4608 	      (char *)dst_virt + (dst & PAGE_MASK),
4609 	      bytes);
4610 }
4611 
4612 /*
4613  * Returns true if the pmap's pv is one of the first 16 pvs linked to from
4614  * this page.  This count may be changed upwards or downwards in the future;
4615  * it is only necessary that true be returned for a small subset of pmaps
4616  * for proper page aging.
4617  */
4618 boolean_t
4619 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
4620 {
4621 	pv_entry_t pv;
4622 	int loops = 0;
4623 
4624 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
4625 		return FALSE;
4626 
4627 	vm_page_spin_lock(m);
4628 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4629 		if (pv->pv_pmap == pmap) {
4630 			vm_page_spin_unlock(m);
4631 			return TRUE;
4632 		}
4633 		loops++;
4634 		if (loops >= 16)
4635 			break;
4636 	}
4637 	vm_page_spin_unlock(m);
4638 	return (FALSE);
4639 }
4640 
4641 /*
4642  * Remove all pages from specified address space this aids process exit
4643  * speeds.  Also, this code may be special cased for the current process
4644  * only.
4645  */
4646 void
4647 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4648 {
4649 	pmap_remove_noinval(pmap, sva, eva);
4650 	cpu_invltlb();
4651 }
4652 
4653 /*
4654  * pmap_testbit tests bits in pte's note that the testbit/clearbit
4655  * routines are inline, and a lot of things compile-time evaluate.
4656  */
4657 static
4658 boolean_t
4659 pmap_testbit(vm_page_t m, int bit)
4660 {
4661 	pv_entry_t pv;
4662 	pt_entry_t *pte;
4663 	pmap_t pmap;
4664 
4665 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
4666 		return FALSE;
4667 
4668 	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
4669 		return FALSE;
4670 	vm_page_spin_lock(m);
4671 	if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
4672 		vm_page_spin_unlock(m);
4673 		return FALSE;
4674 	}
4675 
4676 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4677 
4678 #if defined(PMAP_DIAGNOSTIC)
4679 		if (pv->pv_pmap == NULL) {
4680 			kprintf("Null pmap (tb) at pindex: %"PRIu64"\n",
4681 			    pv->pv_pindex);
4682 			continue;
4683 		}
4684 #endif
4685 		pmap = pv->pv_pmap;
4686 
4687 		/*
4688 		 * If the bit being tested is the modified bit, then
4689 		 * mark clean_map and ptes as never
4690 		 * modified.
4691 		 *
4692 		 * WARNING!  Because we do not lock the pv, *pte can be in a
4693 		 *	     state of flux.  Despite this the value of *pte
4694 		 *	     will still be related to the vm_page in some way
4695 		 *	     because the pv cannot be destroyed as long as we
4696 		 *	     hold the vm_page spin lock.
4697 		 */
4698 		if (bit == PG_A_IDX || bit == PG_M_IDX) {
4699 				//& (pmap->pmap_bits[PG_A_IDX] | pmap->pmap_bits[PG_M_IDX])) {
4700 			if (!pmap_track_modified(pv->pv_pindex))
4701 				continue;
4702 		}
4703 
4704 		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
4705 		if (*pte & pmap->pmap_bits[bit]) {
4706 			vm_page_spin_unlock(m);
4707 			return TRUE;
4708 		}
4709 	}
4710 	vm_page_spin_unlock(m);
4711 	return (FALSE);
4712 }
4713 
4714 /*
4715  * This routine is used to modify bits in ptes.  Only one bit should be
4716  * specified.  PG_RW requires special handling.
4717  *
4718  * Caller must NOT hold any spin locks
4719  */
4720 static __inline
4721 void
4722 pmap_clearbit(vm_page_t m, int bit_index)
4723 {
4724 	struct pmap_inval_info info;
4725 	pv_entry_t pv;
4726 	pt_entry_t *pte;
4727 	pt_entry_t pbits;
4728 	pmap_t pmap;
4729 
4730 	if (bit_index == PG_RW_IDX)
4731 		vm_page_flag_clear(m, PG_WRITEABLE);
4732 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
4733 		return;
4734 	}
4735 
4736 	/*
4737 	 * PG_M or PG_A case
4738 	 *
4739 	 * Loop over all current mappings setting/clearing as appropos If
4740 	 * setting RO do we need to clear the VAC?
4741 	 *
4742 	 * NOTE: When clearing PG_M we could also (not implemented) drop
4743 	 *	 through to the PG_RW code and clear PG_RW too, forcing
4744 	 *	 a fault on write to redetect PG_M for virtual kernels, but
4745 	 *	 it isn't necessary since virtual kernels invalidate the
4746 	 *	 pte when they clear the VPTE_M bit in their virtual page
4747 	 *	 tables.
4748 	 *
4749 	 * NOTE: Does not re-dirty the page when clearing only PG_M.
4750 	 *
4751 	 * NOTE: Because we do not lock the pv, *pte can be in a state of
4752 	 *	 flux.  Despite this the value of *pte is still somewhat
4753 	 *	 related while we hold the vm_page spin lock.
4754 	 *
4755 	 *	 *pte can be zero due to this race.  Since we are clearing
4756 	 *	 bits we basically do no harm when this race  ccurs.
4757 	 */
4758 	if (bit_index != PG_RW_IDX) {
4759 		vm_page_spin_lock(m);
4760 		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4761 #if defined(PMAP_DIAGNOSTIC)
4762 			if (pv->pv_pmap == NULL) {
4763 				kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
4764 				    pv->pv_pindex);
4765 				continue;
4766 			}
4767 #endif
4768 			pmap = pv->pv_pmap;
4769 			pte = pmap_pte_quick(pv->pv_pmap,
4770 					     pv->pv_pindex << PAGE_SHIFT);
4771 			pbits = *pte;
4772 			if (pbits & pmap->pmap_bits[bit_index])
4773 				atomic_clear_long(pte, pmap->pmap_bits[bit_index]);
4774 		}
4775 		vm_page_spin_unlock(m);
4776 		return;
4777 	}
4778 
4779 	/*
4780 	 * Clear PG_RW.  Also clears PG_M and marks the page dirty if PG_M
4781 	 * was set.
4782 	 */
4783 	pmap_inval_init(&info);
4784 
4785 restart:
4786 	vm_page_spin_lock(m);
4787 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4788 		/*
4789 		 * don't write protect pager mappings
4790 		 */
4791 		if (!pmap_track_modified(pv->pv_pindex))
4792 			continue;
4793 
4794 #if defined(PMAP_DIAGNOSTIC)
4795 		if (pv->pv_pmap == NULL) {
4796 			kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
4797 			    pv->pv_pindex);
4798 			continue;
4799 		}
4800 #endif
4801 		pmap = pv->pv_pmap;
4802 		/*
4803 		 * Skip pages which do not have PG_RW set.
4804 		 */
4805 		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
4806 		if ((*pte & pmap->pmap_bits[PG_RW_IDX]) == 0)
4807 			continue;
4808 
4809 		/*
4810 		 * Lock the PV
4811 		 */
4812 		if (pv_hold_try(pv)) {
4813 			vm_page_spin_unlock(m);
4814 		} else {
4815 			vm_page_spin_unlock(m);
4816 			pv_lock(pv);	/* held, now do a blocking lock */
4817 		}
4818 		if (pv->pv_pmap != pmap || pv->pv_m != m) {
4819 			pv_put(pv);	/* and release */
4820 			goto restart;	/* anything could have happened */
4821 		}
4822 		pmap_inval_interlock(&info, pmap,
4823 				     (vm_offset_t)pv->pv_pindex << PAGE_SHIFT);
4824 		KKASSERT(pv->pv_pmap == pmap);
4825 		for (;;) {
4826 			pbits = *pte;
4827 			cpu_ccfence();
4828 			if (atomic_cmpset_long(pte, pbits, pbits &
4829 			    ~(pmap->pmap_bits[PG_RW_IDX] |
4830 			    pmap->pmap_bits[PG_M_IDX]))) {
4831 				break;
4832 			}
4833 		}
4834 		pmap_inval_deinterlock(&info, pmap);
4835 		vm_page_spin_lock(m);
4836 
4837 		/*
4838 		 * If PG_M was found to be set while we were clearing PG_RW
4839 		 * we also clear PG_M (done above) and mark the page dirty.
4840 		 * Callers expect this behavior.
4841 		 */
4842 		if (pbits & pmap->pmap_bits[PG_M_IDX])
4843 			vm_page_dirty(m);
4844 		pv_put(pv);
4845 	}
4846 	vm_page_spin_unlock(m);
4847 	pmap_inval_done(&info);
4848 }
4849 
4850 /*
4851  * Lower the permission for all mappings to a given page.
4852  *
4853  * Page must be busied by caller.  Because page is busied by caller this
4854  * should not be able to race a pmap_enter().
4855  */
4856 void
4857 pmap_page_protect(vm_page_t m, vm_prot_t prot)
4858 {
4859 	/* JG NX support? */
4860 	if ((prot & VM_PROT_WRITE) == 0) {
4861 		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
4862 			/*
4863 			 * NOTE: pmap_clearbit(.. PG_RW) also clears
4864 			 *	 the PG_WRITEABLE flag in (m).
4865 			 */
4866 			pmap_clearbit(m, PG_RW_IDX);
4867 		} else {
4868 			pmap_remove_all(m);
4869 		}
4870 	}
4871 }
4872 
4873 vm_paddr_t
4874 pmap_phys_address(vm_pindex_t ppn)
4875 {
4876 	return (x86_64_ptob(ppn));
4877 }
4878 
4879 /*
4880  * Return a count of reference bits for a page, clearing those bits.
4881  * It is not necessary for every reference bit to be cleared, but it
4882  * is necessary that 0 only be returned when there are truly no
4883  * reference bits set.
4884  *
4885  * XXX: The exact number of bits to check and clear is a matter that
4886  * should be tested and standardized at some point in the future for
4887  * optimal aging of shared pages.
4888  *
4889  * This routine may not block.
4890  */
4891 int
4892 pmap_ts_referenced(vm_page_t m)
4893 {
4894 	pv_entry_t pv;
4895 	pt_entry_t *pte;
4896 	pmap_t pmap;
4897 	int rtval = 0;
4898 
4899 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
4900 		return (rtval);
4901 
4902 	vm_page_spin_lock(m);
4903 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4904 		if (!pmap_track_modified(pv->pv_pindex))
4905 			continue;
4906 		pmap = pv->pv_pmap;
4907 		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
4908 		if (pte && (*pte & pmap->pmap_bits[PG_A_IDX])) {
4909 			atomic_clear_long(pte, pmap->pmap_bits[PG_A_IDX]);
4910 			rtval++;
4911 			if (rtval > 4)
4912 				break;
4913 		}
4914 	}
4915 	vm_page_spin_unlock(m);
4916 	return (rtval);
4917 }
4918 
4919 /*
4920  *	pmap_is_modified:
4921  *
4922  *	Return whether or not the specified physical page was modified
4923  *	in any physical maps.
4924  */
4925 boolean_t
4926 pmap_is_modified(vm_page_t m)
4927 {
4928 	boolean_t res;
4929 
4930 	res = pmap_testbit(m, PG_M_IDX);
4931 	return (res);
4932 }
4933 
4934 /*
4935  *	Clear the modify bits on the specified physical page.
4936  */
4937 void
4938 pmap_clear_modify(vm_page_t m)
4939 {
4940 	pmap_clearbit(m, PG_M_IDX);
4941 }
4942 
4943 /*
4944  *	pmap_clear_reference:
4945  *
4946  *	Clear the reference bit on the specified physical page.
4947  */
4948 void
4949 pmap_clear_reference(vm_page_t m)
4950 {
4951 	pmap_clearbit(m, PG_A_IDX);
4952 }
4953 
4954 /*
4955  * Miscellaneous support routines follow
4956  */
4957 
4958 static
4959 void
4960 i386_protection_init(void)
4961 {
4962 	int *kp, prot;
4963 
4964 	/* JG NX support may go here; No VM_PROT_EXECUTE ==> set NX bit  */
4965 	kp = protection_codes;
4966 	for (prot = 0; prot < PROTECTION_CODES_SIZE; prot++) {
4967 		switch (prot) {
4968 		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
4969 			/*
4970 			 * Read access is also 0. There isn't any execute bit,
4971 			 * so just make it readable.
4972 			 */
4973 		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
4974 		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
4975 		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
4976 			*kp++ = 0;
4977 			break;
4978 		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
4979 		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
4980 		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
4981 		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
4982 			*kp++ = pmap_bits_default[PG_RW_IDX];
4983 			break;
4984 		}
4985 	}
4986 }
4987 
4988 /*
4989  * Map a set of physical memory pages into the kernel virtual
4990  * address space. Return a pointer to where it is mapped. This
4991  * routine is intended to be used for mapping device memory,
4992  * NOT real memory.
4993  *
4994  * NOTE: We can't use pgeflag unless we invalidate the pages one at
4995  *	 a time.
4996  *
4997  * NOTE: The PAT attributes {WRITE_BACK, WRITE_THROUGH, UNCACHED, UNCACHEABLE}
4998  *	 work whether the cpu supports PAT or not.  The remaining PAT
4999  *	 attributes {WRITE_PROTECTED, WRITE_COMBINING} only work if the cpu
5000  *	 supports PAT.
5001  */
5002 void *
5003 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
5004 {
5005 	return(pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5006 }
5007 
5008 void *
5009 pmap_mapdev_uncacheable(vm_paddr_t pa, vm_size_t size)
5010 {
5011 	return(pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
5012 }
5013 
5014 void *
5015 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
5016 {
5017 	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5018 }
5019 
5020 /*
5021  * Map a set of physical memory pages into the kernel virtual
5022  * address space. Return a pointer to where it is mapped. This
5023  * routine is intended to be used for mapping device memory,
5024  * NOT real memory.
5025  */
5026 void *
5027 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
5028 {
5029 	vm_offset_t va, tmpva, offset;
5030 	pt_entry_t *pte;
5031 	vm_size_t tmpsize;
5032 
5033 	offset = pa & PAGE_MASK;
5034 	size = roundup(offset + size, PAGE_SIZE);
5035 
5036 	va = kmem_alloc_nofault(&kernel_map, size, PAGE_SIZE);
5037 	if (va == 0)
5038 		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
5039 
5040 	pa = pa & ~PAGE_MASK;
5041 	for (tmpva = va, tmpsize = size; tmpsize > 0;) {
5042 		pte = vtopte(tmpva);
5043 		*pte = pa |
5044 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
5045 		    kernel_pmap.pmap_bits[PG_V_IDX] | /* pgeflag | */
5046 		    kernel_pmap.pmap_cache_bits[mode];
5047 		tmpsize -= PAGE_SIZE;
5048 		tmpva += PAGE_SIZE;
5049 		pa += PAGE_SIZE;
5050 	}
5051 	pmap_invalidate_range(&kernel_pmap, va, va + size);
5052 	pmap_invalidate_cache_range(va, va + size);
5053 
5054 	return ((void *)(va + offset));
5055 }
5056 
5057 void
5058 pmap_unmapdev(vm_offset_t va, vm_size_t size)
5059 {
5060 	vm_offset_t base, offset;
5061 
5062 	base = va & ~PAGE_MASK;
5063 	offset = va & PAGE_MASK;
5064 	size = roundup(offset + size, PAGE_SIZE);
5065 	pmap_qremove(va, size >> PAGE_SHIFT);
5066 	kmem_free(&kernel_map, base, size);
5067 }
5068 
5069 /*
5070  * Sets the memory attribute for the specified page.
5071  */
5072 void
5073 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5074 {
5075 
5076     m->pat_mode = ma;
5077 
5078     /*
5079      * If "m" is a normal page, update its direct mapping.  This update
5080      * can be relied upon to perform any cache operations that are
5081      * required for data coherence.
5082      */
5083     if ((m->flags & PG_FICTITIOUS) == 0)
5084         pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), 1, m->pat_mode);
5085 }
5086 
5087 /*
5088  * Change the PAT attribute on an existing kernel memory map.  Caller
5089  * must ensure that the virtual memory in question is not accessed
5090  * during the adjustment.
5091  */
5092 void
5093 pmap_change_attr(vm_offset_t va, vm_size_t count, int mode)
5094 {
5095 	pt_entry_t *pte;
5096 	vm_offset_t base;
5097 	int changed = 0;
5098 
5099 	if (va == 0)
5100 		panic("pmap_change_attr: va is NULL");
5101 	base = trunc_page(va);
5102 
5103 	while (count) {
5104 		pte = vtopte(va);
5105 		*pte = (*pte & ~(pt_entry_t)(kernel_pmap.pmap_cache_mask)) |
5106 		       kernel_pmap.pmap_cache_bits[mode];
5107 		--count;
5108 		va += PAGE_SIZE;
5109 	}
5110 
5111 	changed = 1;	/* XXX: not optimal */
5112 
5113 	/*
5114 	 * Flush CPU caches if required to make sure any data isn't cached that
5115 	 * shouldn't be, etc.
5116 	 */
5117 	if (changed) {
5118 		pmap_invalidate_range(&kernel_pmap, base, va);
5119 		pmap_invalidate_cache_range(base, va);
5120 	}
5121 }
5122 
5123 /*
5124  * perform the pmap work for mincore
5125  */
5126 int
5127 pmap_mincore(pmap_t pmap, vm_offset_t addr)
5128 {
5129 	pt_entry_t *ptep, pte;
5130 	vm_page_t m;
5131 	int val = 0;
5132 
5133 	lwkt_gettoken(&pmap->pm_token);
5134 	ptep = pmap_pte(pmap, addr);
5135 
5136 	if (ptep && (pte = *ptep) != 0) {
5137 		vm_offset_t pa;
5138 
5139 		val = MINCORE_INCORE;
5140 		if ((pte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0)
5141 			goto done;
5142 
5143 		pa = pte & PG_FRAME;
5144 
5145 		if (pte & pmap->pmap_bits[PG_DEVICE_IDX])
5146 			m = NULL;
5147 		else
5148 			m = PHYS_TO_VM_PAGE(pa);
5149 
5150 		/*
5151 		 * Modified by us
5152 		 */
5153 		if (pte & pmap->pmap_bits[PG_M_IDX])
5154 			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
5155 		/*
5156 		 * Modified by someone
5157 		 */
5158 		else if (m && (m->dirty || pmap_is_modified(m)))
5159 			val |= MINCORE_MODIFIED_OTHER;
5160 		/*
5161 		 * Referenced by us
5162 		 */
5163 		if (pte & pmap->pmap_bits[PG_A_IDX])
5164 			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
5165 
5166 		/*
5167 		 * Referenced by someone
5168 		 */
5169 		else if (m && ((m->flags & PG_REFERENCED) ||
5170 				pmap_ts_referenced(m))) {
5171 			val |= MINCORE_REFERENCED_OTHER;
5172 			vm_page_flag_set(m, PG_REFERENCED);
5173 		}
5174 	}
5175 done:
5176 	lwkt_reltoken(&pmap->pm_token);
5177 
5178 	return val;
5179 }
5180 
5181 /*
5182  * Replace p->p_vmspace with a new one.  If adjrefs is non-zero the new
5183  * vmspace will be ref'd and the old one will be deref'd.
5184  *
5185  * The vmspace for all lwps associated with the process will be adjusted
5186  * and cr3 will be reloaded if any lwp is the current lwp.
5187  *
5188  * The process must hold the vmspace->vm_map.token for oldvm and newvm
5189  */
5190 void
5191 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
5192 {
5193 	struct vmspace *oldvm;
5194 	struct lwp *lp;
5195 
5196 	oldvm = p->p_vmspace;
5197 	if (oldvm != newvm) {
5198 		if (adjrefs)
5199 			vmspace_ref(newvm);
5200 		p->p_vmspace = newvm;
5201 		KKASSERT(p->p_nthreads == 1);
5202 		lp = RB_ROOT(&p->p_lwp_tree);
5203 		pmap_setlwpvm(lp, newvm);
5204 		if (adjrefs)
5205 			vmspace_rel(oldvm);
5206 	}
5207 }
5208 
5209 /*
5210  * Set the vmspace for a LWP.  The vmspace is almost universally set the
5211  * same as the process vmspace, but virtual kernels need to swap out contexts
5212  * on a per-lwp basis.
5213  *
5214  * Caller does not necessarily hold any vmspace tokens.  Caller must control
5215  * the lwp (typically be in the context of the lwp).  We use a critical
5216  * section to protect against statclock and hardclock (statistics collection).
5217  */
5218 void
5219 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
5220 {
5221 	struct vmspace *oldvm;
5222 	struct pmap *pmap;
5223 
5224 	oldvm = lp->lwp_vmspace;
5225 
5226 	if (oldvm != newvm) {
5227 		crit_enter();
5228 		lp->lwp_vmspace = newvm;
5229 		if (curthread->td_lwp == lp) {
5230 			pmap = vmspace_pmap(newvm);
5231 			ATOMIC_CPUMASK_ORBIT(pmap->pm_active, mycpu->gd_cpuid);
5232 			if (pmap->pm_active_lock & CPULOCK_EXCL)
5233 				pmap_interlock_wait(newvm);
5234 #if defined(SWTCH_OPTIM_STATS)
5235 			tlb_flush_count++;
5236 #endif
5237 			if (pmap->pmap_bits[TYPE_IDX] == REGULAR_PMAP) {
5238 				curthread->td_pcb->pcb_cr3 = vtophys(pmap->pm_pml4);
5239 			} else if (pmap->pmap_bits[TYPE_IDX] == EPT_PMAP) {
5240 				curthread->td_pcb->pcb_cr3 = KPML4phys;
5241 			} else {
5242 				panic("pmap_setlwpvm: unknown pmap type\n");
5243 			}
5244 			load_cr3(curthread->td_pcb->pcb_cr3);
5245 			pmap = vmspace_pmap(oldvm);
5246 			ATOMIC_CPUMASK_NANDBIT(pmap->pm_active,
5247 					       mycpu->gd_cpuid);
5248 		}
5249 		crit_exit();
5250 	}
5251 }
5252 
5253 /*
5254  * Called when switching to a locked pmap, used to interlock against pmaps
5255  * undergoing modifications to prevent us from activating the MMU for the
5256  * target pmap until all such modifications have completed.  We have to do
5257  * this because the thread making the modifications has already set up its
5258  * SMP synchronization mask.
5259  *
5260  * This function cannot sleep!
5261  *
5262  * No requirements.
5263  */
5264 void
5265 pmap_interlock_wait(struct vmspace *vm)
5266 {
5267 	struct pmap *pmap = &vm->vm_pmap;
5268 
5269 	if (pmap->pm_active_lock & CPULOCK_EXCL) {
5270 		crit_enter();
5271 		KKASSERT(curthread->td_critcount >= 2);
5272 		DEBUG_PUSH_INFO("pmap_interlock_wait");
5273 		while (pmap->pm_active_lock & CPULOCK_EXCL) {
5274 			cpu_ccfence();
5275 			lwkt_process_ipiq();
5276 		}
5277 		DEBUG_POP_INFO();
5278 		crit_exit();
5279 	}
5280 }
5281 
5282 vm_offset_t
5283 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
5284 {
5285 
5286 	if ((obj == NULL) || (size < NBPDR) ||
5287 	    ((obj->type != OBJT_DEVICE) && (obj->type != OBJT_MGTDEVICE))) {
5288 		return addr;
5289 	}
5290 
5291 	addr = roundup2(addr, NBPDR);
5292 	return addr;
5293 }
5294 
5295 /*
5296  * Used by kmalloc/kfree, page already exists at va
5297  */
5298 vm_page_t
5299 pmap_kvtom(vm_offset_t va)
5300 {
5301 	pt_entry_t *ptep = vtopte(va);
5302 
5303 	KKASSERT((*ptep & kernel_pmap.pmap_bits[PG_DEVICE_IDX]) == 0);
5304 	return(PHYS_TO_VM_PAGE(*ptep & PG_FRAME));
5305 }
5306 
5307 /*
5308  * Initialize machine-specific shared page directory support.  This
5309  * is executed when a VM object is created.
5310  */
5311 void
5312 pmap_object_init(vm_object_t object)
5313 {
5314 	object->md.pmap_rw = NULL;
5315 	object->md.pmap_ro = NULL;
5316 }
5317 
5318 /*
5319  * Clean up machine-specific shared page directory support.  This
5320  * is executed when a VM object is destroyed.
5321  */
5322 void
5323 pmap_object_free(vm_object_t object)
5324 {
5325 	pmap_t pmap;
5326 
5327 	if ((pmap = object->md.pmap_rw) != NULL) {
5328 		object->md.pmap_rw = NULL;
5329 		pmap_remove_noinval(pmap,
5330 				  VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
5331 		CPUMASK_ASSZERO(pmap->pm_active);
5332 		pmap_release(pmap);
5333 		pmap_puninit(pmap);
5334 		kfree(pmap, M_OBJPMAP);
5335 	}
5336 	if ((pmap = object->md.pmap_ro) != NULL) {
5337 		object->md.pmap_ro = NULL;
5338 		pmap_remove_noinval(pmap,
5339 				  VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
5340 		CPUMASK_ASSZERO(pmap->pm_active);
5341 		pmap_release(pmap);
5342 		pmap_puninit(pmap);
5343 		kfree(pmap, M_OBJPMAP);
5344 	}
5345 }
5346