xref: /dragonfly/sys/platform/pc64/x86_64/pmap.c (revision c8860c9a)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1994 David Greenman
5  * Copyright (c) 2003 Peter Wemm
6  * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
7  * Copyright (c) 2008, 2009 The DragonFly Project.
8  * Copyright (c) 2008, 2009 Jordan Gordeev.
9  * Copyright (c) 2011-2019 Matthew Dillon
10  * All rights reserved.
11  *
12  * This code is derived from software contributed to Berkeley by
13  * the Systems Programming Group of the University of Utah Computer
14  * Science Department and William Jolitz of UUNET Technologies Inc.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  */
44 /*
45  * Manage physical address maps for x86-64 systems.
46  *
47  * Some notes:
48  *	- The 'M'odified bit is only applicable to terminal PTEs.
49  *
50  *	- The 'U'ser access bit can be set for higher-level PTEs as
51  *	  long as it isn't set for terminal PTEs for pages we don't
52  *	  want user access to.
53  */
54 
55 #if 0 /* JG */
56 #include "opt_pmap.h"
57 #endif
58 #include "opt_msgbuf.h"
59 
60 #include <sys/param.h>
61 #include <sys/kernel.h>
62 #include <sys/proc.h>
63 #include <sys/msgbuf.h>
64 #include <sys/vmmeter.h>
65 #include <sys/mman.h>
66 #include <sys/systm.h>
67 
68 #include <vm/vm.h>
69 #include <vm/vm_param.h>
70 #include <sys/sysctl.h>
71 #include <sys/lock.h>
72 #include <vm/vm_kern.h>
73 #include <vm/vm_page.h>
74 #include <vm/vm_map.h>
75 #include <vm/vm_object.h>
76 #include <vm/vm_extern.h>
77 #include <vm/vm_pageout.h>
78 #include <vm/vm_pager.h>
79 #include <vm/vm_zone.h>
80 
81 #include <sys/thread2.h>
82 #include <sys/spinlock2.h>
83 #include <vm/vm_page2.h>
84 
85 #include <machine/cputypes.h>
86 #include <machine/cpu.h>
87 #include <machine/md_var.h>
88 #include <machine/specialreg.h>
89 #include <machine/smp.h>
90 #include <machine_base/apic/apicreg.h>
91 #include <machine/globaldata.h>
92 #include <machine/pmap.h>
93 #include <machine/pmap_inval.h>
94 
95 #include <ddb/ddb.h>
96 
97 #define PMAP_KEEP_PDIRS
98 
99 #if defined(DIAGNOSTIC)
100 #define PMAP_DIAGNOSTIC
101 #endif
102 
103 #define MINPV 2048
104 
105 /*
106  * pmap debugging will report who owns a pv lock when blocking.
107  */
108 #ifdef PMAP_DEBUG
109 
110 #define PMAP_DEBUG_DECL		,const char *func, int lineno
111 #define PMAP_DEBUG_ARGS		, __func__, __LINE__
112 #define PMAP_DEBUG_COPY		, func, lineno
113 
114 #define pv_get(pmap, pindex, pmarkp)	_pv_get(pmap, pindex, pmarkp	\
115 							PMAP_DEBUG_ARGS)
116 #define pv_lock(pv)			_pv_lock(pv			\
117 							PMAP_DEBUG_ARGS)
118 #define pv_hold_try(pv)			_pv_hold_try(pv			\
119 							PMAP_DEBUG_ARGS)
120 #define pv_alloc(pmap, pindex, isnewp)	_pv_alloc(pmap, pindex, isnewp	\
121 							PMAP_DEBUG_ARGS)
122 
123 #define pv_free(pv, pvp)		_pv_free(pv, pvp PMAP_DEBUG_ARGS)
124 
125 #else
126 
127 #define PMAP_DEBUG_DECL
128 #define PMAP_DEBUG_ARGS
129 #define PMAP_DEBUG_COPY
130 
131 #define pv_get(pmap, pindex, pmarkp)	_pv_get(pmap, pindex, pmarkp)
132 #define pv_lock(pv)			_pv_lock(pv)
133 #define pv_hold_try(pv)			_pv_hold_try(pv)
134 #define pv_alloc(pmap, pindex, isnewp)	_pv_alloc(pmap, pindex, isnewp)
135 #define pv_free(pv, pvp)		_pv_free(pv, pvp)
136 
137 #endif
138 
139 /*
140  * Get PDEs and PTEs for user/kernel address space
141  */
142 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
143 
144 #define pmap_pde_v(pmap, pte)	\
145 		((*(pd_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
146 #define pmap_pte_w(pmap, pte)	\
147 		((*(pt_entry_t *)pte & pmap->pmap_bits[PG_W_IDX]) != 0)
148 #define pmap_pte_m(pmap, pte)	\
149 		((*(pt_entry_t *)pte & pmap->pmap_bits[PG_M_IDX]) != 0)
150 #define pmap_pte_u(pmap, pte)	\
151 		((*(pt_entry_t *)pte & pmap->pmap_bits[PG_U_IDX]) != 0)
152 #define pmap_pte_v(pmap, pte)	\
153 		((*(pt_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
154 
155 /*
156  * Given a map and a machine independent protection code,
157  * convert to a vax protection code.
158  */
159 #define pte_prot(m, p)		\
160 	(m->protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
161 static uint64_t protection_codes[PROTECTION_CODES_SIZE];
162 
163 /*
164  * Backing scan macros.  Note that in the use case 'ipte' is only a tentitive
165  * value and must be validated by a pmap_inval_smp_cmpset*() or equivalent
166  * function.
167  *
168  * NOTE: cpu_ccfence() is required to prevent excessive optmization of
169  *	 of the (ipte) variable.
170  *
171  * NOTE: We don't bother locking the backing object if it isn't mapped
172  *	 to anything (backing_list is empty).
173  *
174  * NOTE: For now guarantee an interlock via iobj->backing_lk if the
175  *	 object exists and do not shortcut the lock by checking to see
176  *	 if the list is empty first.
177  */
178 #define PMAP_PAGE_BACKING_SCAN(m, match_pmap, ipmap, iptep, ipte, iva)	\
179 	if (m->object) {						\
180 		vm_object_t iobj = m->object;				\
181 		vm_map_backing_t iba, next_ba;				\
182 		struct pmap *ipmap;					\
183 		pt_entry_t ipte;					\
184 		pt_entry_t *iptep;					\
185 		vm_offset_t iva;					\
186 		vm_pindex_t ipindex_start;				\
187 		vm_pindex_t ipindex_end;				\
188 									\
189 		lockmgr(&iobj->backing_lk, LK_SHARED);			\
190 		next_ba = TAILQ_FIRST(&iobj->backing_list);		\
191 		while ((iba = next_ba) != NULL) {			\
192 			next_ba = TAILQ_NEXT(iba, entry);		\
193 			ipmap = iba->pmap;				\
194 			if (match_pmap && ipmap != match_pmap)		\
195 				continue;				\
196 			ipindex_start = iba->offset >> PAGE_SHIFT;	\
197 			ipindex_end = ipindex_start +			\
198 				  ((iba->end - iba->start) >> PAGE_SHIFT); \
199 			if (m->pindex < ipindex_start ||		\
200 			    m->pindex >= ipindex_end) {			\
201 				continue;				\
202 			}						\
203 			iva = iba->start +				\
204 			      ((m->pindex - ipindex_start) << PAGE_SHIFT); \
205 			iptep = pmap_pte(ipmap, iva);			\
206 			if (iptep == NULL)				\
207 				continue;				\
208 			ipte = *iptep;					\
209 			cpu_ccfence();					\
210 			if (m->phys_addr != (ipte & PG_FRAME))		\
211 				continue;				\
212 
213 #define PMAP_PAGE_BACKING_RETRY						\
214 			{						\
215 				next_ba = iba;				\
216 				continue;				\
217 			}						\
218 
219 #define PMAP_PAGE_BACKING_DONE						\
220 		}							\
221 		lockmgr(&iobj->backing_lk, LK_RELEASE);			\
222 	}								\
223 
224 struct pmap kernel_pmap;
225 static struct pmap iso_pmap;
226 
227 vm_paddr_t avail_start;		/* PA of first available physical page */
228 vm_paddr_t avail_end;		/* PA of last available physical page */
229 vm_offset_t virtual2_start;	/* cutout free area prior to kernel start */
230 vm_offset_t virtual2_end;
231 vm_offset_t virtual_start;	/* VA of first avail page (after kernel bss) */
232 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
233 vm_offset_t KvaStart;		/* VA start of KVA space */
234 vm_offset_t KvaEnd;		/* VA end of KVA space (non-inclusive) */
235 vm_offset_t KvaSize;		/* max size of kernel virtual address space */
236 vm_offset_t DMapMaxAddress;
237 /* Has pmap_init completed? */
238 __read_frequently static boolean_t pmap_initialized = FALSE;
239 //static int pgeflag;		/* PG_G or-in */
240 static uint64_t PatMsr;
241 
242 static int ndmpdp;
243 static vm_paddr_t dmaplimit;
244 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
245 
246 static pt_entry_t pat_pte_index[PAT_INDEX_SIZE];	/* PAT -> PG_ bits */
247 static pt_entry_t pat_pde_index[PAT_INDEX_SIZE];	/* PAT -> PG_ bits */
248 
249 static uint64_t KPTbase;
250 static uint64_t KPTphys;
251 static uint64_t	KPDphys;	/* phys addr of kernel level 2 */
252 static uint64_t	KPDbase;	/* phys addr of kernel level 2 @ KERNBASE */
253 uint64_t KPDPphys;		/* phys addr of kernel level 3 */
254 uint64_t KPML4phys;		/* phys addr of kernel level 4 */
255 
256 static uint64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
257 static uint64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
258 
259 /*
260  * Data for the pv entry allocation mechanism
261  */
262 __read_mostly static vm_zone_t pvzone;
263 __read_mostly static int pmap_pagedaemon_waken = 0;
264 static struct vm_zone pvzone_store;
265 static struct pv_entry *pvinit;
266 
267 /*
268  * All those kernel PT submaps that BSD is so fond of
269  */
270 pt_entry_t *CMAP1 = NULL;
271 caddr_t CADDR1 = NULL, ptvmmap = NULL;
272 static pt_entry_t *msgbufmap, *ptmmap;
273 struct msgbuf *msgbufp=NULL;
274 
275 /*
276  * PMAP default PG_* bits. Needed to be able to add
277  * EPT/NPT pagetable pmap_bits for the VMM module
278  */
279 __read_frequently static uint64_t pmap_bits_default[] = {
280 		REGULAR_PMAP,			/* TYPE_IDX		0 */
281 		X86_PG_V,			/* PG_V_IDX		1 */
282 		X86_PG_RW,			/* PG_RW_IDX		2 */
283 		X86_PG_U,			/* PG_U_IDX		3 */
284 		X86_PG_A,			/* PG_A_IDX		4 */
285 		X86_PG_M,			/* PG_M_IDX		5 */
286 		X86_PG_PS,			/* PG_PS_IDX3		6 */
287 		X86_PG_G,			/* PG_G_IDX		7 */
288 		X86_PG_AVAIL1,			/* PG_AVAIL1_IDX	8 */
289 		X86_PG_AVAIL2,			/* PG_AVAIL2_IDX	9 */
290 		X86_PG_AVAIL3,			/* PG_AVAIL3_IDX	10 */
291 		X86_PG_NC_PWT | X86_PG_NC_PCD,	/* PG_N_IDX		11 */
292 		X86_PG_NX,			/* PG_NX_IDX		12 */
293 };
294 
295 /*
296  * Crashdump maps.
297  */
298 static pt_entry_t *pt_crashdumpmap;
299 static caddr_t crashdumpmap;
300 
301 static int pmap_debug = 0;
302 SYSCTL_INT(_machdep, OID_AUTO, pmap_debug, CTLFLAG_RW,
303     &pmap_debug, 0, "Debug pmap's");
304 #ifdef PMAP_DEBUG2
305 static int pmap_enter_debug = 0;
306 SYSCTL_INT(_machdep, OID_AUTO, pmap_enter_debug, CTLFLAG_RW,
307     &pmap_enter_debug, 0, "Debug pmap_enter's");
308 #endif
309 static int pmap_yield_count = 64;
310 SYSCTL_INT(_machdep, OID_AUTO, pmap_yield_count, CTLFLAG_RW,
311     &pmap_yield_count, 0, "Yield during init_pt/release");
312 static int pmap_fast_kernel_cpusync = 0;
313 SYSCTL_INT(_machdep, OID_AUTO, pmap_fast_kernel_cpusync, CTLFLAG_RW,
314     &pmap_fast_kernel_cpusync, 0, "Share page table pages when possible");
315 static int pmap_dynamic_delete = 0;
316 SYSCTL_INT(_machdep, OID_AUTO, pmap_dynamic_delete, CTLFLAG_RW,
317     &pmap_dynamic_delete, 0, "Dynamically delete PT/PD/PDPs");
318 static int pmap_lock_delay = 100;
319 SYSCTL_INT(_machdep, OID_AUTO, pmap_lock_delay, CTLFLAG_RW,
320     &pmap_lock_delay, 0, "Spin loops");
321 static int meltdown_mitigation = -1;
322 TUNABLE_INT("machdep.meltdown_mitigation", &meltdown_mitigation);
323 SYSCTL_INT(_machdep, OID_AUTO, meltdown_mitigation, CTLFLAG_RW,
324     &meltdown_mitigation, 0, "Userland pmap isolation");
325 
326 static int pmap_nx_enable = -1;		/* -1 = auto */
327 /* needs manual TUNABLE in early probe, see below */
328 SYSCTL_INT(_machdep, OID_AUTO, pmap_nx_enable, CTLFLAG_RD,
329     &pmap_nx_enable, 0,
330     "no-execute support (0=disabled, 1=w/READ, 2=w/READ & WRITE)");
331 
332 static int pmap_pv_debug = 50;
333 SYSCTL_INT(_machdep, OID_AUTO, pmap_pv_debug, CTLFLAG_RW,
334     &pmap_pv_debug, 0, "");
335 
336 static long vm_pmap_pv_entries;
337 SYSCTL_LONG(_vm, OID_AUTO, pmap_pv_entries, CTLFLAG_RD,
338     &vm_pmap_pv_entries, 0, "");
339 
340 /* Standard user access funtions */
341 extern int std_copyinstr (const void *udaddr, void *kaddr, size_t len,
342     size_t *lencopied);
343 extern int std_copyin (const void *udaddr, void *kaddr, size_t len);
344 extern int std_copyout (const void *kaddr, void *udaddr, size_t len);
345 extern int std_fubyte (const uint8_t *base);
346 extern int std_subyte (uint8_t *base, uint8_t byte);
347 extern int32_t std_fuword32 (const uint32_t *base);
348 extern int64_t std_fuword64 (const uint64_t *base);
349 extern int std_suword64 (uint64_t *base, uint64_t word);
350 extern int std_suword32 (uint32_t *base, int word);
351 extern uint32_t std_swapu32 (volatile uint32_t *base, uint32_t v);
352 extern uint64_t std_swapu64 (volatile uint64_t *base, uint64_t v);
353 extern uint32_t std_fuwordadd32 (volatile uint32_t *base, uint32_t v);
354 extern uint64_t std_fuwordadd64 (volatile uint64_t *base, uint64_t v);
355 
356 #if 0
357 static void pv_hold(pv_entry_t pv);
358 #endif
359 static int _pv_hold_try(pv_entry_t pv
360 				PMAP_DEBUG_DECL);
361 static void pv_drop(pv_entry_t pv);
362 static void _pv_lock(pv_entry_t pv
363 				PMAP_DEBUG_DECL);
364 static void pv_unlock(pv_entry_t pv);
365 static pv_entry_t _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew
366 				PMAP_DEBUG_DECL);
367 static pv_entry_t _pv_get(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp
368 				PMAP_DEBUG_DECL);
369 static void _pv_free(pv_entry_t pv, pv_entry_t pvp PMAP_DEBUG_DECL);
370 static pv_entry_t pv_get_try(pmap_t pmap, vm_pindex_t pindex,
371 				vm_pindex_t **pmarkp, int *errorp);
372 static void pv_put(pv_entry_t pv);
373 static void *pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex);
374 static pv_entry_t pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex,
375 		      pv_entry_t *pvpp);
376 static void pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp,
377 			pmap_inval_bulk_t *bulk, int destroy);
378 static vm_page_t pmap_remove_pv_page(pv_entry_t pv, int clrpgbits);
379 static int pmap_release_pv(pv_entry_t pv, pv_entry_t pvp,
380 			pmap_inval_bulk_t *bulk);
381 
382 struct pmap_scan_info;
383 static void pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
384 		      vm_pindex_t *pte_placemark, pv_entry_t pt_pv,
385 		      vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
386 static void pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
387 		      vm_pindex_t *pte_placemark, pv_entry_t pt_pv,
388 		      vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
389 
390 static void x86_64_protection_init (void);
391 static void create_pagetables(vm_paddr_t *firstaddr);
392 static void pmap_remove_all (vm_page_t m);
393 static boolean_t pmap_testbit (vm_page_t m, int bit);
394 
395 static pt_entry_t *pmap_pte_quick (pmap_t pmap, vm_offset_t va);
396 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
397 
398 static void pmap_pinit_defaults(struct pmap *pmap);
399 static void pv_placemarker_wait(pmap_t pmap, vm_pindex_t *pmark);
400 static void pv_placemarker_wakeup(pmap_t pmap, vm_pindex_t *pmark);
401 
402 static int
403 pv_entry_compare(pv_entry_t pv1, pv_entry_t pv2)
404 {
405 	if (pv1->pv_pindex < pv2->pv_pindex)
406 		return(-1);
407 	if (pv1->pv_pindex > pv2->pv_pindex)
408 		return(1);
409 	return(0);
410 }
411 
412 RB_GENERATE2(pv_entry_rb_tree, pv_entry, pv_entry,
413              pv_entry_compare, vm_pindex_t, pv_pindex);
414 
415 /*
416  * We have removed a managed pte.  The page might not be hard or soft-busied
417  * at this point so we have to be careful.
418  *
419  * If advanced mode is enabled we can clear PG_MAPPED/WRITEABLE only if
420  * MAPPEDMULTI is not set.  This must be done atomically against possible
421  * concurrent pmap_enter()s occurring at the same time.  If MULTI is set
422  * then the kernel may have to call vm_page_protect() later on to clean
423  * the bits up.  This is particularly important for kernel_map/kernel_object
424  * mappings due to the expense of scanning the kernel_object's vm_backing's.
425  *
426  * If advanced mode is not enabled we update our tracking counts and
427  * synchronize PG_MAPPED/WRITEABLE later on in pmap_mapped_sync().
428  */
429 static __inline
430 void
431 pmap_removed_pte(vm_page_t m, pt_entry_t pte)
432 {
433 	int flags;
434 	int nflags;
435 
436 	flags = m->flags;
437 	cpu_ccfence();
438 	while ((flags & PG_MAPPEDMULTI) == 0) {
439 		nflags = flags & ~(PG_MAPPED | PG_WRITEABLE);
440 		if (atomic_fcmpset_int(&m->flags, &flags, nflags))
441 			break;
442 	}
443 }
444 
445 /*
446  * Move the kernel virtual free pointer to the next
447  * 2MB.  This is used to help improve performance
448  * by using a large (2MB) page for much of the kernel
449  * (.text, .data, .bss)
450  */
451 static
452 vm_offset_t
453 pmap_kmem_choose(vm_offset_t addr)
454 {
455 	vm_offset_t newaddr = addr;
456 
457 	newaddr = roundup2(addr, NBPDR);
458 	return newaddr;
459 }
460 
461 /*
462  * Returns the pindex of a page table entry (representing a terminal page).
463  * There are NUPTE_TOTAL page table entries possible (a huge number)
464  *
465  * x86-64 has a 48-bit address space, where bit 47 is sign-extended out.
466  * We want to properly translate negative KVAs.
467  */
468 static __inline
469 vm_pindex_t
470 pmap_pte_pindex(vm_offset_t va)
471 {
472 	return ((va >> PAGE_SHIFT) & (NUPTE_TOTAL - 1));
473 }
474 
475 /*
476  * Returns the pindex of a page table.
477  */
478 static __inline
479 vm_pindex_t
480 pmap_pt_pindex(vm_offset_t va)
481 {
482 	return (NUPTE_TOTAL + ((va >> PDRSHIFT) & (NUPT_TOTAL - 1)));
483 }
484 
485 /*
486  * Returns the pindex of a page directory.
487  */
488 static __inline
489 vm_pindex_t
490 pmap_pd_pindex(vm_offset_t va)
491 {
492 	return (NUPTE_TOTAL + NUPT_TOTAL +
493 		((va >> PDPSHIFT) & (NUPD_TOTAL - 1)));
494 }
495 
496 static __inline
497 vm_pindex_t
498 pmap_pdp_pindex(vm_offset_t va)
499 {
500 	return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
501 		((va >> PML4SHIFT) & (NUPDP_TOTAL - 1)));
502 }
503 
504 static __inline
505 vm_pindex_t
506 pmap_pml4_pindex(void)
507 {
508 	return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL);
509 }
510 
511 /*
512  * Return various clipped indexes for a given VA
513  *
514  * Returns the index of a pt in a page directory, representing a page
515  * table.
516  */
517 static __inline
518 vm_pindex_t
519 pmap_pt_index(vm_offset_t va)
520 {
521 	return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
522 }
523 
524 /*
525  * Returns the index of a pd in a page directory page, representing a page
526  * directory.
527  */
528 static __inline
529 vm_pindex_t
530 pmap_pd_index(vm_offset_t va)
531 {
532 	return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
533 }
534 
535 /*
536  * Returns the index of a pdp in the pml4 table, representing a page
537  * directory page.
538  */
539 static __inline
540 vm_pindex_t
541 pmap_pdp_index(vm_offset_t va)
542 {
543 	return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
544 }
545 
546 /*
547  * Of all the layers (PT, PD, PDP, PML4) the best one to cache is
548  * the PT layer.  This will speed up core pmap operations considerably.
549  *
550  * NOTE: The pmap spinlock does not need to be held but the passed-in pv
551  *	 must be in a known associated state (typically by being locked when
552  *	 the pmap spinlock isn't held).  We allow the race for that case.
553  *
554  * NOTE: pm_pvhint* is only accessed (read) with the spin-lock held, using
555  *	 cpu_ccfence() to prevent compiler optimizations from reloading the
556  *	 field.
557  */
558 static __inline
559 void
560 pv_cache(pmap_t pmap, pv_entry_t pv, vm_pindex_t pindex)
561 {
562 	if (pindex < pmap_pt_pindex(0)) {
563 		;
564 	} else if (pindex < pmap_pd_pindex(0)) {
565 		pmap->pm_pvhint_pt = pv;
566 	}
567 }
568 
569 /*
570  * Locate the requested pt_entry
571  */
572 static __inline
573 pv_entry_t
574 pv_entry_lookup(pmap_t pmap, vm_pindex_t pindex)
575 {
576 	pv_entry_t pv;
577 
578 	if (pindex < pmap_pt_pindex(0))
579 		return NULL;
580 #if 1
581 	if (pindex < pmap_pd_pindex(0))
582 		pv = pmap->pm_pvhint_pt;
583 	else
584 		pv = NULL;
585 	cpu_ccfence();
586 	if (pv == NULL || pv->pv_pmap != pmap) {
587 		pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
588 		if (pv)
589 			pv_cache(pmap, pv, pindex);
590 	} else if (pv->pv_pindex != pindex) {
591 		pv = pv_entry_rb_tree_RB_LOOKUP_REL(&pmap->pm_pvroot,
592 						    pindex, pv);
593 		if (pv)
594 			pv_cache(pmap, pv, pindex);
595 	}
596 #else
597 	pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
598 #endif
599 	return pv;
600 }
601 
602 /*
603  * pmap_pte_quick:
604  *
605  *	Super fast pmap_pte routine best used when scanning the pv lists.
606  *	This eliminates many course-grained invltlb calls.  Note that many of
607  *	the pv list scans are across different pmaps and it is very wasteful
608  *	to do an entire invltlb when checking a single mapping.
609  */
610 static __inline pt_entry_t *pmap_pte(pmap_t pmap, vm_offset_t va);
611 
612 static
613 pt_entry_t *
614 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
615 {
616 	return pmap_pte(pmap, va);
617 }
618 
619 /*
620  * The placemarker hash must be broken up into four zones so lock
621  * ordering semantics continue to work (e.g. pte, pt, pd, then pdp).
622  *
623  * Placemarkers are used to 'lock' page table indices that do not have
624  * a pv_entry.  This allows the pmap to support managed and unmanaged
625  * pages and shared page tables.
626  */
627 #define PM_PLACE_BASE	(PM_PLACEMARKS >> 2)
628 
629 static __inline
630 vm_pindex_t *
631 pmap_placemarker_hash(pmap_t pmap, vm_pindex_t pindex)
632 {
633 	int hi;
634 
635 	if (pindex < pmap_pt_pindex(0))		/* zone 0 - PTE */
636 		hi = 0;
637 	else if (pindex < pmap_pd_pindex(0))	/* zone 1 - PT */
638 		hi = PM_PLACE_BASE;
639 	else if (pindex < pmap_pdp_pindex(0))	/* zone 2 - PD */
640 		hi = PM_PLACE_BASE << 1;
641 	else					/* zone 3 - PDP (and PML4E) */
642 		hi = PM_PLACE_BASE | (PM_PLACE_BASE << 1);
643 	hi += pindex & (PM_PLACE_BASE - 1);
644 
645 	return (&pmap->pm_placemarks[hi]);
646 }
647 
648 
649 /*
650  * Generic procedure to index a pte from a pt, pd, or pdp.
651  *
652  * NOTE: Normally passed pindex as pmap_xx_index().  pmap_xx_pindex() is NOT
653  *	 a page table page index but is instead of PV lookup index.
654  */
655 static
656 void *
657 pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex)
658 {
659 	pt_entry_t *pte;
660 
661 	pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pv->pv_m));
662 	return(&pte[pindex]);
663 }
664 
665 /*
666  * Return pointer to PDP slot in the PML4
667  */
668 static __inline
669 pml4_entry_t *
670 pmap_pdp(pmap_t pmap, vm_offset_t va)
671 {
672 	return (&pmap->pm_pml4[pmap_pdp_index(va)]);
673 }
674 
675 /*
676  * Return pointer to PD slot in the PDP given a pointer to the PDP
677  */
678 static __inline
679 pdp_entry_t *
680 pmap_pdp_to_pd(pml4_entry_t pdp_pte, vm_offset_t va)
681 {
682 	pdp_entry_t *pd;
683 
684 	pd = (pdp_entry_t *)PHYS_TO_DMAP(pdp_pte & PG_FRAME);
685 	return (&pd[pmap_pd_index(va)]);
686 }
687 
688 /*
689  * Return pointer to PD slot in the PDP.
690  */
691 static __inline
692 pdp_entry_t *
693 pmap_pd(pmap_t pmap, vm_offset_t va)
694 {
695 	pml4_entry_t *pdp;
696 
697 	pdp = pmap_pdp(pmap, va);
698 	if ((*pdp & pmap->pmap_bits[PG_V_IDX]) == 0)
699 		return NULL;
700 	return (pmap_pdp_to_pd(*pdp, va));
701 }
702 
703 /*
704  * Return pointer to PT slot in the PD given a pointer to the PD
705  */
706 static __inline
707 pd_entry_t *
708 pmap_pd_to_pt(pdp_entry_t pd_pte, vm_offset_t va)
709 {
710 	pd_entry_t *pt;
711 
712 	pt = (pd_entry_t *)PHYS_TO_DMAP(pd_pte & PG_FRAME);
713 	return (&pt[pmap_pt_index(va)]);
714 }
715 
716 /*
717  * Return pointer to PT slot in the PD
718  *
719  * SIMPLE PMAP NOTE: Simple pmaps (embedded in objects) do not have PDPs,
720  *		     so we cannot lookup the PD via the PDP.  Instead we
721  *		     must look it up via the pmap.
722  */
723 static __inline
724 pd_entry_t *
725 pmap_pt(pmap_t pmap, vm_offset_t va)
726 {
727 	pdp_entry_t *pd;
728 	pv_entry_t pv;
729 	vm_pindex_t pd_pindex;
730 	vm_paddr_t phys;
731 
732 	if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
733 		pd_pindex = pmap_pd_pindex(va);
734 		spin_lock_shared(&pmap->pm_spin);
735 		pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pd_pindex);
736 		if (pv == NULL || pv->pv_m == NULL) {
737 			spin_unlock_shared(&pmap->pm_spin);
738 			return NULL;
739 		}
740 		phys = VM_PAGE_TO_PHYS(pv->pv_m);
741 		spin_unlock_shared(&pmap->pm_spin);
742 		return (pmap_pd_to_pt(phys, va));
743 	} else {
744 		pd = pmap_pd(pmap, va);
745 		if (pd == NULL || (*pd & pmap->pmap_bits[PG_V_IDX]) == 0)
746 			 return NULL;
747 		return (pmap_pd_to_pt(*pd, va));
748 	}
749 }
750 
751 /*
752  * Return pointer to PTE slot in the PT given a pointer to the PT
753  */
754 static __inline
755 pt_entry_t *
756 pmap_pt_to_pte(pd_entry_t pt_pte, vm_offset_t va)
757 {
758 	pt_entry_t *pte;
759 
760 	pte = (pt_entry_t *)PHYS_TO_DMAP(pt_pte & PG_FRAME);
761 	return (&pte[pmap_pte_index(va)]);
762 }
763 
764 /*
765  * Return pointer to PTE slot in the PT
766  */
767 static __inline
768 pt_entry_t *
769 pmap_pte(pmap_t pmap, vm_offset_t va)
770 {
771 	pd_entry_t *pt;
772 
773 	pt = pmap_pt(pmap, va);
774 	if (pt == NULL || (*pt & pmap->pmap_bits[PG_V_IDX]) == 0)
775 		 return NULL;
776 	if ((*pt & pmap->pmap_bits[PG_PS_IDX]) != 0)
777 		return ((pt_entry_t *)pt);
778 	return (pmap_pt_to_pte(*pt, va));
779 }
780 
781 /*
782  * Return address of PT slot in PD (KVM only)
783  *
784  * Cannot be used for user page tables because it might interfere with
785  * the shared page-table-page optimization (pmap_mmu_optimize).
786  */
787 static __inline
788 pd_entry_t *
789 vtopt(vm_offset_t va)
790 {
791 	uint64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
792 				  NPML4EPGSHIFT)) - 1);
793 
794 	return (PDmap + ((va >> PDRSHIFT) & mask));
795 }
796 
797 /*
798  * KVM - return address of PTE slot in PT
799  */
800 static __inline
801 pt_entry_t *
802 vtopte(vm_offset_t va)
803 {
804 	uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
805 				  NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
806 
807 	return (PTmap + ((va >> PAGE_SHIFT) & mask));
808 }
809 
810 /*
811  * Returns the physical address translation from va for a user address.
812  * (vm_paddr_t)-1 is returned on failure.
813  */
814 vm_paddr_t
815 uservtophys(vm_offset_t va)
816 {
817 	uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
818 				  NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
819 	vm_paddr_t pa;
820 	pt_entry_t pte;
821 	pmap_t pmap;
822 
823 	pmap = vmspace_pmap(mycpu->gd_curthread->td_lwp->lwp_vmspace);
824 	pa = (vm_paddr_t)-1;
825 	if (va < VM_MAX_USER_ADDRESS) {
826 		pte = kreadmem64(PTmap + ((va >> PAGE_SHIFT) & mask));
827 		if (pte & pmap->pmap_bits[PG_V_IDX])
828 			pa = (pte & PG_FRAME) | (va & PAGE_MASK);
829 	}
830 	return pa;
831 }
832 
833 static uint64_t
834 allocpages(vm_paddr_t *firstaddr, long n)
835 {
836 	uint64_t ret;
837 
838 	ret = *firstaddr;
839 	bzero((void *)ret, n * PAGE_SIZE);
840 	*firstaddr += n * PAGE_SIZE;
841 	return (ret);
842 }
843 
844 static
845 void
846 create_pagetables(vm_paddr_t *firstaddr)
847 {
848 	long i;		/* must be 64 bits */
849 	long nkpt_base;
850 	long nkpt_phys;
851 	long nkpd_phys;
852 	int j;
853 
854 	/*
855 	 * We are running (mostly) V=P at this point
856 	 *
857 	 * Calculate how many 1GB PD entries in our PDP pages are needed
858 	 * for the DMAP.  This is only allocated if the system does not
859 	 * support 1GB pages.  Otherwise ndmpdp is simply a count of
860 	 * the number of 1G terminal entries in our PDP pages are needed.
861 	 *
862 	 * NOTE: Maxmem is in pages
863 	 */
864 	ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
865 	if (ndmpdp < 4)		/* Minimum 4GB of DMAP */
866 		ndmpdp = 4;
867 
868 #if 0
869 	/*
870 	 * HACK XXX fix me - Some laptops map the EFI framebuffer in
871 	 * very high physical addresses and the DMAP winds up being too
872 	 * small.  The EFI framebuffer has to be mapped for the console
873 	 * very early and the DMAP is how it does it.
874 	 */
875 	if (ndmpdp < 512)	/* Minimum 512GB of DMAP */
876 		ndmpdp = 512;
877 #endif
878 
879 	KKASSERT(ndmpdp <= NDMPML4E * NPML4EPG);
880 	DMapMaxAddress = DMAP_MIN_ADDRESS +
881 			 ((ndmpdp * NPDEPG) << PDRSHIFT);
882 
883 	/*
884 	 * Starting at KERNBASE - map all 2G worth of page table pages.
885 	 * KERNBASE is offset -2G from the end of kvm.  This will accomodate
886 	 * all KVM allocations above KERNBASE, including the SYSMAPs below.
887 	 *
888 	 * We do this by allocating 2*512 PT pages.  Each PT page can map
889 	 * 2MB, for 2GB total.
890 	 */
891 	nkpt_base = (NPDPEPG - KPDPI) * NPTEPG;	/* typically 2 x 512 */
892 
893 	/*
894 	 * Starting at the beginning of kvm (VM_MIN_KERNEL_ADDRESS),
895 	 * Calculate how many page table pages we need to preallocate
896 	 * for early vm_map allocations.
897 	 *
898 	 * A few extra won't hurt, they will get used up in the running
899 	 * system.
900 	 *
901 	 * vm_page array
902 	 * initial pventry's
903 	 */
904 	nkpt_phys = howmany(Maxmem * sizeof(struct vm_page), NBPDR);
905 	nkpt_phys += howmany(Maxmem * sizeof(struct pv_entry), NBPDR);
906 	nkpt_phys += 128;	/* a few extra */
907 
908 	/*
909 	 * The highest value nkpd_phys can be set to is
910 	 * NKPDPE - (NPDPEPG - KPDPI) (i.e. NKPDPE - 2).
911 	 *
912 	 * Doing so would cause all PD pages to be pre-populated for
913 	 * a maximal KVM space (approximately 16*512 pages, or 32MB.
914 	 * We can save memory by not doing this.
915 	 */
916 	nkpd_phys = (nkpt_phys + NPDPEPG - 1) / NPDPEPG;
917 
918 	/*
919 	 * Allocate pages
920 	 *
921 	 * Normally NKPML4E=1-16 (1-16 kernel PDP page)
922 	 * Normally NKPDPE= NKPML4E*512-1 (511 min kernel PD pages)
923 	 *
924 	 * Only allocate enough PD pages
925 	 * NOTE: We allocate all kernel PD pages up-front, typically
926 	 *	 ~511G of KVM, requiring 511 PD pages.
927 	 */
928 	KPTbase = allocpages(firstaddr, nkpt_base);	/* KERNBASE to end */
929 	KPTphys = allocpages(firstaddr, nkpt_phys);	/* KVA start */
930 	KPML4phys = allocpages(firstaddr, 1);		/* recursive PML4 map */
931 	KPDPphys = allocpages(firstaddr, NKPML4E);	/* kernel PDP pages */
932 	KPDphys = allocpages(firstaddr, nkpd_phys);	/* kernel PD pages */
933 
934 	/*
935 	 * Alloc PD pages for the area starting at KERNBASE.
936 	 */
937 	KPDbase = allocpages(firstaddr, NPDPEPG - KPDPI);
938 
939 	/*
940 	 * Stuff for our DMAP.  Use 2MB pages even when 1GB pages
941 	 * are available in order to allow APU code to adjust page
942 	 * attributes on a fixed grain (see pmap_change_attr()).
943 	 */
944 	DMPDPphys = allocpages(firstaddr, NDMPML4E);
945 #if 1
946 	DMPDphys = allocpages(firstaddr, ndmpdp);
947 #else
948 	if ((amd_feature & AMDID_PAGE1GB) == 0)
949 		DMPDphys = allocpages(firstaddr, ndmpdp);
950 #endif
951 	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
952 
953 	/*
954 	 * Fill in the underlying page table pages for the area around
955 	 * KERNBASE.  This remaps low physical memory to KERNBASE.
956 	 *
957 	 * Read-only from zero to physfree
958 	 * XXX not fully used, underneath 2M pages
959 	 */
960 	for (i = 0; (i << PAGE_SHIFT) < *firstaddr; i++) {
961 		((pt_entry_t *)KPTbase)[i] = i << PAGE_SHIFT;
962 		((pt_entry_t *)KPTbase)[i] |=
963 		    pmap_bits_default[PG_RW_IDX] |
964 		    pmap_bits_default[PG_V_IDX] |
965 		    pmap_bits_default[PG_G_IDX];
966 	}
967 
968 	/*
969 	 * Now map the initial kernel page tables.  One block of page
970 	 * tables is placed at the beginning of kernel virtual memory,
971 	 * and another block is placed at KERNBASE to map the kernel binary,
972 	 * data, bss, and initial pre-allocations.
973 	 */
974 	for (i = 0; i < nkpt_base; i++) {
975 		((pd_entry_t *)KPDbase)[i] = KPTbase + (i << PAGE_SHIFT);
976 		((pd_entry_t *)KPDbase)[i] |=
977 		    pmap_bits_default[PG_RW_IDX] |
978 		    pmap_bits_default[PG_V_IDX];
979 	}
980 	for (i = 0; i < nkpt_phys; i++) {
981 		((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
982 		((pd_entry_t *)KPDphys)[i] |=
983 		    pmap_bits_default[PG_RW_IDX] |
984 		    pmap_bits_default[PG_V_IDX];
985 	}
986 
987 	/*
988 	 * Map from zero to end of allocations using 2M pages as an
989 	 * optimization.  This will bypass some of the KPTBase pages
990 	 * above in the KERNBASE area.
991 	 */
992 	for (i = 0; (i << PDRSHIFT) < *firstaddr; i++) {
993 		((pd_entry_t *)KPDbase)[i] = i << PDRSHIFT;
994 		((pd_entry_t *)KPDbase)[i] |=
995 		    pmap_bits_default[PG_RW_IDX] |
996 		    pmap_bits_default[PG_V_IDX] |
997 		    pmap_bits_default[PG_PS_IDX] |
998 		    pmap_bits_default[PG_G_IDX];
999 	}
1000 
1001 	/*
1002 	 * Load PD addresses into the PDP pages for primary KVA space to
1003 	 * cover existing page tables.  PD's for KERNBASE are handled in
1004 	 * the next loop.
1005 	 *
1006 	 * expected to pre-populate all of its PDs.  See NKPDPE in vmparam.h.
1007 	 */
1008 	for (i = 0; i < nkpd_phys; i++) {
1009 		((pdp_entry_t *)KPDPphys)[NKPML4E * NPDPEPG - NKPDPE + i] =
1010 				KPDphys + (i << PAGE_SHIFT);
1011 		((pdp_entry_t *)KPDPphys)[NKPML4E * NPDPEPG - NKPDPE + i] |=
1012 		    pmap_bits_default[PG_RW_IDX] |
1013 		    pmap_bits_default[PG_V_IDX] |
1014 		    pmap_bits_default[PG_A_IDX];
1015 	}
1016 
1017 	/*
1018 	 * Load PDs for KERNBASE to the end
1019 	 */
1020 	i = (NKPML4E - 1) * NPDPEPG + KPDPI;
1021 	for (j = 0; j < NPDPEPG - KPDPI; ++j) {
1022 		((pdp_entry_t *)KPDPphys)[i + j] =
1023 				KPDbase + (j << PAGE_SHIFT);
1024 		((pdp_entry_t *)KPDPphys)[i + j] |=
1025 		    pmap_bits_default[PG_RW_IDX] |
1026 		    pmap_bits_default[PG_V_IDX] |
1027 		    pmap_bits_default[PG_A_IDX];
1028 	}
1029 
1030 	/*
1031 	 * Now set up the direct map space using either 2MB or 1GB pages
1032 	 * Preset PG_M and PG_A because demotion expects it.
1033 	 *
1034 	 * When filling in entries in the PD pages make sure any excess
1035 	 * entries are set to zero as we allocated enough PD pages
1036 	 *
1037 	 * Stuff for our DMAP.  Use 2MB pages even when 1GB pages
1038 	 * are available in order to allow APU code to adjust page
1039 	 * attributes on a fixed grain (see pmap_change_attr()).
1040 	 */
1041 #if 0
1042 	if ((amd_feature & AMDID_PAGE1GB) == 0)
1043 #endif
1044 	{
1045 		/*
1046 		 * Use 2MB pages
1047 		 */
1048 		for (i = 0; i < NPDEPG * ndmpdp; i++) {
1049 			((pd_entry_t *)DMPDphys)[i] = i << PDRSHIFT;
1050 			((pd_entry_t *)DMPDphys)[i] |=
1051 			    pmap_bits_default[PG_RW_IDX] |
1052 			    pmap_bits_default[PG_V_IDX] |
1053 			    pmap_bits_default[PG_PS_IDX] |
1054 			    pmap_bits_default[PG_G_IDX] |
1055 			    pmap_bits_default[PG_M_IDX] |
1056 			    pmap_bits_default[PG_A_IDX];
1057 		}
1058 
1059 		/*
1060 		 * And the direct map space's PDP
1061 		 */
1062 		for (i = 0; i < ndmpdp; i++) {
1063 			((pdp_entry_t *)DMPDPphys)[i] = DMPDphys +
1064 							(i << PAGE_SHIFT);
1065 			((pdp_entry_t *)DMPDPphys)[i] |=
1066 			    pmap_bits_default[PG_RW_IDX] |
1067 			    pmap_bits_default[PG_V_IDX] |
1068 			    pmap_bits_default[PG_A_IDX];
1069 		}
1070 	}
1071 #if 0
1072 	else {
1073 		/*
1074 		 * 1GB pages
1075 		 */
1076 		for (i = 0; i < ndmpdp; i++) {
1077 			((pdp_entry_t *)DMPDPphys)[i] =
1078 						(vm_paddr_t)i << PDPSHIFT;
1079 			((pdp_entry_t *)DMPDPphys)[i] |=
1080 			    pmap_bits_default[PG_RW_IDX] |
1081 			    pmap_bits_default[PG_V_IDX] |
1082 			    pmap_bits_default[PG_PS_IDX] |
1083 			    pmap_bits_default[PG_G_IDX] |
1084 			    pmap_bits_default[PG_M_IDX] |
1085 			    pmap_bits_default[PG_A_IDX];
1086 		}
1087 	}
1088 #endif
1089 
1090 	/* And recursively map PML4 to itself in order to get PTmap */
1091 	((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
1092 	((pdp_entry_t *)KPML4phys)[PML4PML4I] |=
1093 	    pmap_bits_default[PG_RW_IDX] |
1094 	    pmap_bits_default[PG_V_IDX] |
1095 	    pmap_bits_default[PG_A_IDX];
1096 
1097 	/*
1098 	 * Connect the Direct Map slots up to the PML4
1099 	 */
1100 	for (j = 0; j < NDMPML4E; ++j) {
1101 		((pdp_entry_t *)KPML4phys)[DMPML4I + j] =
1102 		    (DMPDPphys + ((vm_paddr_t)j << PAGE_SHIFT)) |
1103 		    pmap_bits_default[PG_RW_IDX] |
1104 		    pmap_bits_default[PG_V_IDX] |
1105 		    pmap_bits_default[PG_A_IDX];
1106 	}
1107 
1108 	/*
1109 	 * Connect the KVA slot up to the PML4
1110 	 */
1111 	for (j = 0; j < NKPML4E; ++j) {
1112 		((pdp_entry_t *)KPML4phys)[KPML4I + j] =
1113 		    KPDPphys + ((vm_paddr_t)j << PAGE_SHIFT);
1114 		((pdp_entry_t *)KPML4phys)[KPML4I + j] |=
1115 		    pmap_bits_default[PG_RW_IDX] |
1116 		    pmap_bits_default[PG_V_IDX] |
1117 		    pmap_bits_default[PG_A_IDX];
1118 	}
1119 	cpu_mfence();
1120 	cpu_invltlb();
1121 }
1122 
1123 /*
1124  *	Bootstrap the system enough to run with virtual memory.
1125  *
1126  *	On x86_64 this is called after mapping has already been enabled
1127  *	and just syncs the pmap module with what has already been done.
1128  *	[We can't call it easily with mapping off since the kernel is not
1129  *	mapped with PA == VA, hence we would have to relocate every address
1130  *	from the linked base (virtual) address "KERNBASE" to the actual
1131  *	(physical) address starting relative to 0]
1132  */
1133 void
1134 pmap_bootstrap(vm_paddr_t *firstaddr)
1135 {
1136 	vm_offset_t va;
1137 	pt_entry_t *pte;
1138 	int i;
1139 
1140 	KvaStart = VM_MIN_KERNEL_ADDRESS;
1141 	KvaEnd = VM_MAX_KERNEL_ADDRESS;
1142 	KvaSize = KvaEnd - KvaStart;
1143 
1144 	avail_start = *firstaddr;
1145 
1146 	/*
1147 	 * Create an initial set of page tables to run the kernel in.
1148 	 */
1149 	create_pagetables(firstaddr);
1150 
1151 	virtual2_start = KvaStart;
1152 	virtual2_end = PTOV_OFFSET;
1153 
1154 	virtual_start = (vm_offset_t) PTOV_OFFSET + *firstaddr;
1155 	virtual_start = pmap_kmem_choose(virtual_start);
1156 
1157 	virtual_end = VM_MAX_KERNEL_ADDRESS;
1158 
1159 	/* XXX do %cr0 as well */
1160 	load_cr4(rcr4() | CR4_PGE | CR4_PSE);
1161 	load_cr3(KPML4phys);
1162 
1163 	/*
1164 	 * Initialize protection array.
1165 	 */
1166 	x86_64_protection_init();
1167 
1168 	/*
1169 	 * The kernel's pmap is statically allocated so we don't have to use
1170 	 * pmap_create, which is unlikely to work correctly at this part of
1171 	 * the boot sequence (XXX and which no longer exists).
1172 	 */
1173 	kernel_pmap.pm_pml4 = (pdp_entry_t *) (PTOV_OFFSET + KPML4phys);
1174 	kernel_pmap.pm_count = 1;
1175 	CPUMASK_ASSALLONES(kernel_pmap.pm_active);
1176 	RB_INIT(&kernel_pmap.pm_pvroot);
1177 	spin_init(&kernel_pmap.pm_spin, "pmapbootstrap");
1178 	for (i = 0; i < PM_PLACEMARKS; ++i)
1179 		kernel_pmap.pm_placemarks[i] = PM_NOPLACEMARK;
1180 
1181 	/*
1182 	 * Reserve some special page table entries/VA space for temporary
1183 	 * mapping of pages.
1184 	 */
1185 #define	SYSMAP(c, p, v, n)	\
1186 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
1187 
1188 	va = virtual_start;
1189 	pte = vtopte(va);
1190 
1191 	/*
1192 	 * CMAP1/CMAP2 are used for zeroing and copying pages.
1193 	 */
1194 	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
1195 
1196 	/*
1197 	 * Crashdump maps.
1198 	 */
1199 	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
1200 
1201 	/*
1202 	 * ptvmmap is used for reading arbitrary physical pages via
1203 	 * /dev/mem.
1204 	 */
1205 	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
1206 
1207 	/*
1208 	 * msgbufp is used to map the system message buffer.
1209 	 * XXX msgbufmap is not used.
1210 	 */
1211 	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
1212 	       atop(round_page(MSGBUF_SIZE)))
1213 
1214 	virtual_start = va;
1215 	virtual_start = pmap_kmem_choose(virtual_start);
1216 
1217 	*CMAP1 = 0;
1218 
1219 	/*
1220 	 * PG_G is terribly broken on SMP because we IPI invltlb's in some
1221 	 * cases rather then invl1pg.  Actually, I don't even know why it
1222 	 * works under UP because self-referential page table mappings
1223 	 */
1224 //	pgeflag = 0;
1225 
1226 	cpu_invltlb();
1227 
1228 	/* Initialize the PAT MSR */
1229 	pmap_init_pat();
1230 	pmap_pinit_defaults(&kernel_pmap);
1231 
1232 	TUNABLE_INT_FETCH("machdep.pmap_fast_kernel_cpusync",
1233 			  &pmap_fast_kernel_cpusync);
1234 
1235 }
1236 
1237 /*
1238  * Setup the PAT MSR.
1239  */
1240 void
1241 pmap_init_pat(void)
1242 {
1243 	uint64_t pat_msr;
1244 	u_long cr0, cr4;
1245 	int i;
1246 
1247 	/*
1248 	 * Default values mapping PATi,PCD,PWT bits at system reset.
1249 	 * The default values effectively ignore the PATi bit by
1250 	 * repeating the encodings for 0-3 in 4-7, and map the PCD
1251 	 * and PWT bit combinations to the expected PAT types.
1252 	 */
1253 	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |	/* 000 */
1254 		  PAT_VALUE(1, PAT_WRITE_THROUGH) |	/* 001 */
1255 		  PAT_VALUE(2, PAT_UNCACHED) |		/* 010 */
1256 		  PAT_VALUE(3, PAT_UNCACHEABLE) |	/* 011 */
1257 		  PAT_VALUE(4, PAT_WRITE_BACK) |	/* 100 */
1258 		  PAT_VALUE(5, PAT_WRITE_THROUGH) |	/* 101 */
1259 		  PAT_VALUE(6, PAT_UNCACHED) |		/* 110 */
1260 		  PAT_VALUE(7, PAT_UNCACHEABLE);	/* 111 */
1261 	pat_pte_index[PAT_WRITE_BACK]	= 0;
1262 	pat_pte_index[PAT_WRITE_THROUGH]= 0         | X86_PG_NC_PWT;
1263 	pat_pte_index[PAT_UNCACHED]	= X86_PG_NC_PCD;
1264 	pat_pte_index[PAT_UNCACHEABLE]	= X86_PG_NC_PCD | X86_PG_NC_PWT;
1265 	pat_pte_index[PAT_WRITE_PROTECTED] = pat_pte_index[PAT_UNCACHEABLE];
1266 	pat_pte_index[PAT_WRITE_COMBINING] = pat_pte_index[PAT_UNCACHEABLE];
1267 
1268 	if (cpu_feature & CPUID_PAT) {
1269 		/*
1270 		 * If we support the PAT then set-up entries for
1271 		 * WRITE_PROTECTED and WRITE_COMBINING using bit patterns
1272 		 * 5 and 6.
1273 		 */
1274 		pat_msr = (pat_msr & ~PAT_MASK(5)) |
1275 			  PAT_VALUE(5, PAT_WRITE_PROTECTED);
1276 		pat_msr = (pat_msr & ~PAT_MASK(6)) |
1277 			  PAT_VALUE(6, PAT_WRITE_COMBINING);
1278 		pat_pte_index[PAT_WRITE_PROTECTED] = X86_PG_PTE_PAT | X86_PG_NC_PWT;
1279 		pat_pte_index[PAT_WRITE_COMBINING] = X86_PG_PTE_PAT | X86_PG_NC_PCD;
1280 
1281 		/*
1282 		 * Then enable the PAT
1283 		 */
1284 
1285 		/* Disable PGE. */
1286 		cr4 = rcr4();
1287 		load_cr4(cr4 & ~CR4_PGE);
1288 
1289 		/* Disable caches (CD = 1, NW = 0). */
1290 		cr0 = rcr0();
1291 		load_cr0((cr0 & ~CR0_NW) | CR0_CD);
1292 
1293 		/* Flushes caches and TLBs. */
1294 		wbinvd();
1295 		cpu_invltlb();
1296 
1297 		/* Update PAT and index table. */
1298 		wrmsr(MSR_PAT, pat_msr);
1299 
1300 		/* Flush caches and TLBs again. */
1301 		wbinvd();
1302 		cpu_invltlb();
1303 
1304 		/* Restore caches and PGE. */
1305 		load_cr0(cr0);
1306 		load_cr4(cr4);
1307 		PatMsr = pat_msr;
1308 	}
1309 
1310 	for (i = 0; i < 8; ++i) {
1311 		pt_entry_t pte;
1312 
1313 		pte = pat_pte_index[i];
1314 		if (pte & X86_PG_PTE_PAT) {
1315 			pte &= ~X86_PG_PTE_PAT;
1316 			pte |= X86_PG_PDE_PAT;
1317 		}
1318 		pat_pde_index[i] = pte;
1319 	}
1320 }
1321 
1322 /*
1323  * Set 4mb pdir for mp startup
1324  */
1325 void
1326 pmap_set_opt(void)
1327 {
1328 	if (cpu_feature & CPUID_PSE) {
1329 		load_cr4(rcr4() | CR4_PSE);
1330 		if (mycpu->gd_cpuid == 0) 	/* only on BSP */
1331 			cpu_invltlb();
1332 	}
1333 
1334 	/*
1335 	 * Check for SMAP support and enable if available.  Must be done
1336 	 * after cr3 is loaded, and on all cores.
1337 	 */
1338 	if (cpu_stdext_feature & CPUID_STDEXT_SMAP) {
1339 		load_cr4(rcr4() | CR4_SMAP);
1340 	}
1341 	if (cpu_stdext_feature & CPUID_STDEXT_SMEP) {
1342 		load_cr4(rcr4() | CR4_SMEP);
1343 	}
1344 }
1345 
1346 /*
1347  * SMAP is just a processor flag, but SMEP can only be enabled
1348  * and disabled via CR4.  We still use the processor flag to
1349  * disable SMAP because the page-fault/trap code checks it, in
1350  * order to allow a page-fault to actually occur.
1351  */
1352 void
1353 smap_smep_disable(void)
1354 {
1355 	/*
1356 	 * disable SMAP.  This also bypasses a software failsafe check
1357 	 * in the trap() code.
1358 	 */
1359 	smap_open();
1360 
1361 	/*
1362 	 * Also needed to bypass a software failsafe check in the trap()
1363 	 * code and allow the userspace address fault from kernel mode
1364 	 * to proceed.
1365 	 *
1366 	 * Note that This will not reload %rip because pcb_onfault_rsp will
1367 	 * not match.  Just setting it to non-NULL is sufficient to bypass
1368 	 * the checks.
1369 	 */
1370 	curthread->td_pcb->pcb_onfault = (void *)1;
1371 
1372 	/*
1373 	 * Disable SMEP (requires modifying cr4)
1374 	 */
1375 	if (cpu_stdext_feature & CPUID_STDEXT_SMEP)
1376 		load_cr4(rcr4() & ~CR4_SMEP);
1377 }
1378 
1379 void
1380 smap_smep_enable(void)
1381 {
1382 	if (cpu_stdext_feature & CPUID_STDEXT_SMEP)
1383 		load_cr4(rcr4() | CR4_SMEP);
1384 	curthread->td_pcb->pcb_onfault = NULL;
1385 	smap_close();
1386 }
1387 
1388 /*
1389  * Early initialization of the pmap module.
1390  *
1391  * Called by vm_init, to initialize any structures that the pmap
1392  * system needs to map virtual memory.  pmap_init has been enhanced to
1393  * support in a fairly consistant way, discontiguous physical memory.
1394  */
1395 void
1396 pmap_init(void)
1397 {
1398 	vm_pindex_t initial_pvs;
1399 	vm_pindex_t i;
1400 
1401 	/*
1402 	 * Allocate memory for random pmap data structures.  Includes the
1403 	 * pv_head_table.
1404 	 */
1405 	for (i = 0; i < vm_page_array_size; i++) {
1406 		vm_page_t m;
1407 
1408 		m = &vm_page_array[i];
1409 		m->md.interlock_count = 0;
1410 	}
1411 
1412 	/*
1413 	 * init the pv free list
1414 	 */
1415 	initial_pvs = vm_page_array_size;
1416 	if (initial_pvs < MINPV)
1417 		initial_pvs = MINPV;
1418 	pvzone = &pvzone_store;
1419 	pvinit = (void *)kmem_alloc(&kernel_map,
1420 				    initial_pvs * sizeof (struct pv_entry),
1421 				    VM_SUBSYS_PVENTRY);
1422 	zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry),
1423 		  pvinit, initial_pvs);
1424 
1425 	/*
1426 	 * Now it is safe to enable pv_table recording.
1427 	 */
1428 	pmap_initialized = TRUE;
1429 }
1430 
1431 /*
1432  * Initialize the address space (zone) for the pv_entries.  Set a
1433  * high water mark so that the system can recover from excessive
1434  * numbers of pv entries.
1435  *
1436  * Also create the kernel page table template for isolated user
1437  * pmaps.
1438  */
1439 static void pmap_init_iso_range(vm_offset_t base, size_t bytes);
1440 static void pmap_init2_iso_pmap(void);
1441 #if 0
1442 static void dump_pmap(pmap_t pmap, pt_entry_t pte, int level, vm_offset_t base);
1443 #endif
1444 
1445 void
1446 pmap_init2(void)
1447 {
1448 	vm_pindex_t entry_max;
1449 
1450 	/*
1451 	 * We can significantly reduce pv_entry_max from historical
1452 	 * levels because pv_entry's are no longer use for PTEs at the
1453 	 * leafs.  This prevents excessive pcpu caching on many-core
1454 	 * boxes (even with the further '/ 16' done in zinitna().
1455 	 *
1456 	 * Remember, however, that processes can share physical pages
1457 	 * with each process still needing the pdp/pd/pt infrstructure
1458 	 * (which still use pv_entry's).  And don't just assume that
1459 	 * every PT will be completely filled up.  So don't make it
1460 	 * too small.
1461 	 */
1462 	entry_max = maxproc * 32 + vm_page_array_size / 16;
1463 	TUNABLE_LONG_FETCH("vm.pmap.pv_entries", &entry_max);
1464 	vm_pmap_pv_entries = entry_max;
1465 
1466 	/*
1467 	 * Subtract out pages already installed in the zone (hack)
1468 	 */
1469 	if (entry_max <= MINPV)
1470 		entry_max = MINPV;
1471 
1472 	zinitna(pvzone, NULL, 0, entry_max, ZONE_INTERRUPT);
1473 
1474 	/*
1475 	 * Enable dynamic deletion of empty higher-level page table pages
1476 	 * by default only if system memory is < 8GB (use 7GB for slop).
1477 	 * This can save a little memory, but imposes significant
1478 	 * performance overhead for things like bulk builds, and for programs
1479 	 * which do a lot of memory mapping and memory unmapping.
1480 	 */
1481 #if 0
1482 	if (pmap_dynamic_delete < 0) {
1483 		if (vmstats.v_page_count < 7LL * 1024 * 1024 * 1024 / PAGE_SIZE)
1484 			pmap_dynamic_delete = 1;
1485 		else
1486 			pmap_dynamic_delete = 0;
1487 	}
1488 #endif
1489 	/*
1490 	 * Disable so vm_map_backing iterations do not race
1491 	 */
1492 	pmap_dynamic_delete = 0;
1493 
1494 	/*
1495 	 * Automatic detection of Intel meltdown bug requiring user/kernel
1496 	 * mmap isolation.
1497 	 *
1498 	 * Currently there are so many Intel cpu's impacted that its better
1499 	 * to whitelist future Intel CPUs.  Most? AMD cpus are not impacted
1500 	 * so the default is off for AMD.
1501 	 */
1502 	if (meltdown_mitigation < 0) {
1503 		if (cpu_vendor_id == CPU_VENDOR_INTEL) {
1504 			meltdown_mitigation = 1;
1505 			if (cpu_ia32_arch_caps & IA32_ARCH_CAP_RDCL_NO)
1506 				meltdown_mitigation = 0;
1507 		} else {
1508 			meltdown_mitigation = 0;
1509 		}
1510 	}
1511 	if (meltdown_mitigation) {
1512 		kprintf("machdep.meltdown_mitigation enabled to "
1513 			"protect against (mostly Intel) meltdown bug\n");
1514 		kprintf("system call performance will be impacted\n");
1515 	}
1516 
1517 	pmap_init2_iso_pmap();
1518 }
1519 
1520 /*
1521  * Create the isolation pmap template.  Once created, the template
1522  * is static and its PML4e entries are used to populate the
1523  * kernel portion of any isolated user pmaps.
1524  *
1525  * Our isolation pmap must contain:
1526  * (1) trampoline area for all cpus
1527  * (2) common_tss area for all cpus (its part of the trampoline area now)
1528  * (3) IDT for all cpus
1529  * (4) GDT for all cpus
1530  */
1531 static void
1532 pmap_init2_iso_pmap(void)
1533 {
1534 	int n;
1535 
1536 	if (bootverbose)
1537 		kprintf("Initialize isolation pmap\n");
1538 
1539 	/*
1540 	 * Try to use our normal API calls to make this easier.  We have
1541 	 * to scrap the shadowed kernel PDPs pmap_pinit() creates for our
1542 	 * iso_pmap.
1543 	 */
1544 	pmap_pinit(&iso_pmap);
1545 	bzero(iso_pmap.pm_pml4, PAGE_SIZE);
1546 
1547 	/*
1548 	 * Install areas needed by the cpu and trampoline.
1549 	 */
1550 	for (n = 0; n < ncpus; ++n) {
1551 		struct privatespace *ps;
1552 
1553 		ps = CPU_prvspace[n];
1554 		pmap_init_iso_range((vm_offset_t)&ps->trampoline,
1555 				    sizeof(ps->trampoline));
1556 		pmap_init_iso_range((vm_offset_t)&ps->dblstack,
1557 				    sizeof(ps->dblstack));
1558 		pmap_init_iso_range((vm_offset_t)&ps->dbgstack,
1559 				    sizeof(ps->dbgstack));
1560 		pmap_init_iso_range((vm_offset_t)&ps->common_tss,
1561 				    sizeof(ps->common_tss));
1562 		pmap_init_iso_range(r_idt_arr[n].rd_base,
1563 				    r_idt_arr[n].rd_limit + 1);
1564 	}
1565 	pmap_init_iso_range((register_t)gdt, sizeof(gdt));
1566 	pmap_init_iso_range((vm_offset_t)(int *)btext,
1567 			    (vm_offset_t)(int *)etext -
1568 			     (vm_offset_t)(int *)btext);
1569 
1570 #if 0
1571 	kprintf("Dump iso_pmap:\n");
1572 	dump_pmap(&iso_pmap, vtophys(iso_pmap.pm_pml4), 0, 0);
1573 	kprintf("\nDump kernel_pmap:\n");
1574 	dump_pmap(&kernel_pmap, vtophys(kernel_pmap.pm_pml4), 0, 0);
1575 #endif
1576 }
1577 
1578 /*
1579  * This adds a kernel virtual address range to the isolation pmap.
1580  */
1581 static void
1582 pmap_init_iso_range(vm_offset_t base, size_t bytes)
1583 {
1584 	pv_entry_t pv;
1585 	pv_entry_t pvp;
1586 	pt_entry_t *ptep;
1587 	pt_entry_t pte;
1588 	vm_offset_t va;
1589 
1590 	if (bootverbose) {
1591 		kprintf("isolate %016jx-%016jx (%zd)\n",
1592 			base, base + bytes, bytes);
1593 	}
1594 	va = base & ~(vm_offset_t)PAGE_MASK;
1595 	while (va < base + bytes) {
1596 		if ((va & PDRMASK) == 0 && va + NBPDR <= base + bytes &&
1597 		    (ptep = pmap_pt(&kernel_pmap, va)) != NULL &&
1598 		    (*ptep & kernel_pmap.pmap_bits[PG_V_IDX]) &&
1599 		    (*ptep & kernel_pmap.pmap_bits[PG_PS_IDX])) {
1600 			/*
1601 			 * Use 2MB pages if possible
1602 			 */
1603 			pte = *ptep;
1604 			pv = pmap_allocpte(&iso_pmap, pmap_pd_pindex(va), &pvp);
1605 			ptep = pv_pte_lookup(pv, (va >> PDRSHIFT) & 511);
1606 			*ptep = pte;
1607 			va += NBPDR;
1608 		} else {
1609 			/*
1610 			 * Otherwise use 4KB pages
1611 			 */
1612 			pv = pmap_allocpte(&iso_pmap, pmap_pt_pindex(va), &pvp);
1613 			ptep = pv_pte_lookup(pv, (va >> PAGE_SHIFT) & 511);
1614 			*ptep = vtophys(va) | kernel_pmap.pmap_bits[PG_RW_IDX] |
1615 					      kernel_pmap.pmap_bits[PG_V_IDX] |
1616 					      kernel_pmap.pmap_bits[PG_A_IDX] |
1617 					      kernel_pmap.pmap_bits[PG_M_IDX];
1618 
1619 			va += PAGE_SIZE;
1620 		}
1621 		pv_put(pv);
1622 		pv_put(pvp);
1623 	}
1624 }
1625 
1626 #if 0
1627 /*
1628  * Useful debugging pmap dumper, do not remove (#if 0 when not in use)
1629  */
1630 static
1631 void
1632 dump_pmap(pmap_t pmap, pt_entry_t pte, int level, vm_offset_t base)
1633 {
1634 	pt_entry_t *ptp;
1635 	vm_offset_t incr;
1636 	int i;
1637 
1638 	switch(level) {
1639 	case 0:					/* PML4e page, 512G entries */
1640 		incr = (1LL << 48) / 512;
1641 		break;
1642 	case 1:					/* PDP page, 1G entries */
1643 		incr = (1LL << 39) / 512;
1644 		break;
1645 	case 2:					/* PD page, 2MB entries */
1646 		incr = (1LL << 30) / 512;
1647 		break;
1648 	case 3:					/* PT page, 4KB entries */
1649 		incr = (1LL << 21) / 512;
1650 		break;
1651 	default:
1652 		incr = 0;
1653 		break;
1654 	}
1655 
1656 	if (level == 0)
1657 		kprintf("cr3 %016jx @ va=%016jx\n", pte, base);
1658 	ptp = (void *)PHYS_TO_DMAP(pte & ~(pt_entry_t)PAGE_MASK);
1659 	for (i = 0; i < 512; ++i) {
1660 		if (level == 0 && i == 128)
1661 			base += 0xFFFF000000000000LLU;
1662 		if (ptp[i]) {
1663 			kprintf("%*.*s ", level * 4, level * 4, "");
1664 			if (level == 1 && (ptp[i] & 0x180) == 0x180) {
1665 				kprintf("va=%016jx %3d term %016jx (1GB)\n",
1666 					base, i, ptp[i]);
1667 			} else if (level == 2 && (ptp[i] & 0x180) == 0x180) {
1668 				kprintf("va=%016jx %3d term %016jx (2MB)\n",
1669 					base, i, ptp[i]);
1670 			} else if (level == 3) {
1671 				kprintf("va=%016jx %3d term %016jx\n",
1672 					base, i, ptp[i]);
1673 			} else {
1674 				kprintf("va=%016jx %3d deep %016jx\n",
1675 					base, i, ptp[i]);
1676 				dump_pmap(pmap, ptp[i], level + 1, base);
1677 			}
1678 		}
1679 		base += incr;
1680 	}
1681 }
1682 
1683 #endif
1684 
1685 /*
1686  * Typically used to initialize a fictitious page by vm/device_pager.c
1687  */
1688 void
1689 pmap_page_init(struct vm_page *m)
1690 {
1691 	vm_page_init(m);
1692 	m->md.interlock_count = 0;
1693 }
1694 
1695 /***************************************************
1696  * Low level helper routines.....
1697  ***************************************************/
1698 
1699 /*
1700  * Extract the physical page address associated with the map/VA pair.
1701  * The page must be wired for this to work reliably.
1702  */
1703 vm_paddr_t
1704 pmap_extract(pmap_t pmap, vm_offset_t va, void **handlep)
1705 {
1706 	vm_paddr_t rtval;
1707 	pv_entry_t pt_pv;
1708 	pt_entry_t *ptep;
1709 
1710 	rtval = 0;
1711 	if (va >= VM_MAX_USER_ADDRESS) {
1712 		/*
1713 		 * Kernel page directories might be direct-mapped and
1714 		 * there is typically no PV tracking of pte's
1715 		 */
1716 		pd_entry_t *pt;
1717 
1718 		pt = pmap_pt(pmap, va);
1719 		if (pt && (*pt & pmap->pmap_bits[PG_V_IDX])) {
1720 			if (*pt & pmap->pmap_bits[PG_PS_IDX]) {
1721 				rtval = *pt & PG_PS_FRAME;
1722 				rtval |= va & PDRMASK;
1723 			} else {
1724 				ptep = pmap_pt_to_pte(*pt, va);
1725 				if (*pt & pmap->pmap_bits[PG_V_IDX]) {
1726 					rtval = *ptep & PG_FRAME;
1727 					rtval |= va & PAGE_MASK;
1728 				}
1729 			}
1730 		}
1731 		if (handlep)
1732 			*handlep = NULL;
1733 	} else {
1734 		/*
1735 		 * User pages currently do not direct-map the page directory
1736 		 * and some pages might not used managed PVs.  But all PT's
1737 		 * will have a PV.
1738 		 */
1739 		pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
1740 		if (pt_pv) {
1741 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1742 			if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
1743 				rtval = *ptep & PG_FRAME;
1744 				rtval |= va & PAGE_MASK;
1745 			}
1746 			if (handlep)
1747 				*handlep = pt_pv;	/* locked until done */
1748 			else
1749 				pv_put (pt_pv);
1750 		} else if (handlep) {
1751 			*handlep = NULL;
1752 		}
1753 	}
1754 	return rtval;
1755 }
1756 
1757 void
1758 pmap_extract_done(void *handle)
1759 {
1760 	if (handle)
1761 		pv_put((pv_entry_t)handle);
1762 }
1763 
1764 /*
1765  * Similar to extract but checks protections, SMP-friendly short-cut for
1766  * vm_fault_page[_quick]().  Can return NULL to cause the caller to
1767  * fall-through to the real fault code.  Does not work with HVM page
1768  * tables.
1769  *
1770  * if busyp is NULL the returned page, if not NULL, is held (and not busied).
1771  *
1772  * If busyp is not NULL and this function sets *busyp non-zero, the returned
1773  * page is busied (and not held).
1774  *
1775  * If busyp is not NULL and this function sets *busyp to zero, the returned
1776  * page is held (and not busied).
1777  *
1778  * If VM_PROT_WRITE is set in prot, and the pte is already writable, the
1779  * returned page will be dirtied.  If the pte is not already writable NULL
1780  * is returned.  In otherwords, if the bit is set and a vm_page_t is returned,
1781  * any COW will already have happened and that page can be written by the
1782  * caller.
1783  *
1784  * WARNING! THE RETURNED PAGE IS ONLY HELD AND NOT SUITABLE FOR READING
1785  *	    OR WRITING AS-IS.
1786  */
1787 vm_page_t
1788 pmap_fault_page_quick(pmap_t pmap, vm_offset_t va, vm_prot_t prot, int *busyp)
1789 {
1790 	if (pmap &&
1791 	    va < VM_MAX_USER_ADDRESS &&
1792 	    (pmap->pm_flags & PMAP_HVM) == 0) {
1793 		pv_entry_t pt_pv;
1794 		pv_entry_t pte_pv;
1795 		pt_entry_t *ptep;
1796 		pt_entry_t req;
1797 		vm_page_t m;
1798 		int error;
1799 
1800 		req = pmap->pmap_bits[PG_V_IDX] |
1801 		      pmap->pmap_bits[PG_U_IDX];
1802 		if (prot & VM_PROT_WRITE)
1803 			req |= pmap->pmap_bits[PG_RW_IDX];
1804 
1805 		pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
1806 		if (pt_pv == NULL)
1807 			return (NULL);
1808 		ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1809 		if ((*ptep & req) != req) {
1810 			pv_put(pt_pv);
1811 			return (NULL);
1812 		}
1813 		pte_pv = pv_get_try(pmap, pmap_pte_pindex(va), NULL, &error);
1814 		if (pte_pv && error == 0) {
1815 			m = pte_pv->pv_m;
1816 			if (prot & VM_PROT_WRITE) {
1817 				/* interlocked by presence of pv_entry */
1818 				vm_page_dirty(m);
1819 			}
1820 			if (busyp) {
1821 				if (prot & VM_PROT_WRITE) {
1822 					if (vm_page_busy_try(m, TRUE))
1823 						m = NULL;
1824 					*busyp = 1;
1825 				} else {
1826 					vm_page_hold(m);
1827 					*busyp = 0;
1828 				}
1829 			} else {
1830 				vm_page_hold(m);
1831 			}
1832 			pv_put(pte_pv);
1833 		} else if (pte_pv) {
1834 			pv_drop(pte_pv);
1835 			m = NULL;
1836 		} else {
1837 			/* error, since we didn't request a placemarker */
1838 			m = NULL;
1839 		}
1840 		pv_put(pt_pv);
1841 		return(m);
1842 	} else {
1843 		return(NULL);
1844 	}
1845 }
1846 
1847 /*
1848  * Extract the physical page address associated kernel virtual address.
1849  */
1850 vm_paddr_t
1851 pmap_kextract(vm_offset_t va)
1852 {
1853 	pd_entry_t pt;		/* pt entry in pd */
1854 	vm_paddr_t pa;
1855 
1856 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
1857 		pa = DMAP_TO_PHYS(va);
1858 	} else {
1859 		pt = *vtopt(va);
1860 		if (pt & kernel_pmap.pmap_bits[PG_PS_IDX]) {
1861 			pa = (pt & PG_PS_FRAME) | (va & PDRMASK);
1862 		} else {
1863 			/*
1864 			 * Beware of a concurrent promotion that changes the
1865 			 * PDE at this point!  For example, vtopte() must not
1866 			 * be used to access the PTE because it would use the
1867 			 * new PDE.  It is, however, safe to use the old PDE
1868 			 * because the page table page is preserved by the
1869 			 * promotion.
1870 			 */
1871 			pa = *pmap_pt_to_pte(pt, va);
1872 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
1873 		}
1874 	}
1875 	return pa;
1876 }
1877 
1878 /***************************************************
1879  * Low level mapping routines.....
1880  ***************************************************/
1881 
1882 /*
1883  * Add a wired page to the KVA and invalidate the mapping on all CPUs.
1884  */
1885 void
1886 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1887 {
1888 	pt_entry_t *ptep;
1889 	pt_entry_t npte;
1890 
1891 	npte = pa |
1892 	       kernel_pmap.pmap_bits[PG_RW_IDX] |
1893 	       kernel_pmap.pmap_bits[PG_V_IDX];
1894 //	       pgeflag;
1895 	ptep = vtopte(va);
1896 #if 1
1897 	pmap_inval_smp(&kernel_pmap, va, 1, ptep, npte);
1898 #else
1899 	/* FUTURE */
1900 	if (*ptep)
1901 		pmap_inval_smp(&kernel_pmap, va, ptep, npte);
1902 	else
1903 		*ptep = npte;
1904 #endif
1905 }
1906 
1907 /*
1908  * Similar to pmap_kenter(), except we only invalidate the mapping on the
1909  * current CPU.  Returns 0 if the previous pte was 0, 1 if it wasn't
1910  * (caller can conditionalize calling smp_invltlb()).
1911  */
1912 int
1913 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
1914 {
1915 	pt_entry_t *ptep;
1916 	pt_entry_t npte;
1917 	int res;
1918 
1919 	npte = pa | kernel_pmap.pmap_bits[PG_RW_IDX] |
1920 		    kernel_pmap.pmap_bits[PG_V_IDX];
1921 	// npte |= pgeflag;
1922 	ptep = vtopte(va);
1923 #if 1
1924 	res = 1;
1925 #else
1926 	/* FUTURE */
1927 	res = (*ptep != 0);
1928 #endif
1929 	atomic_swap_long(ptep, npte);
1930 	cpu_invlpg((void *)va);
1931 
1932 	return res;
1933 }
1934 
1935 /*
1936  * Enter addresses into the kernel pmap but don't bother
1937  * doing any tlb invalidations.  Caller will do a rollup
1938  * invalidation via pmap_rollup_inval().
1939  */
1940 int
1941 pmap_kenter_noinval(vm_offset_t va, vm_paddr_t pa)
1942 {
1943 	pt_entry_t *ptep;
1944 	pt_entry_t npte;
1945 	int res;
1946 
1947 	npte = pa |
1948 	    kernel_pmap.pmap_bits[PG_RW_IDX] |
1949 	    kernel_pmap.pmap_bits[PG_V_IDX];
1950 //	    pgeflag;
1951 	ptep = vtopte(va);
1952 #if 1
1953 	res = 1;
1954 #else
1955 	/* FUTURE */
1956 	res = (*ptep != 0);
1957 #endif
1958 	atomic_swap_long(ptep, npte);
1959 	cpu_invlpg((void *)va);
1960 
1961 	return res;
1962 }
1963 
1964 /*
1965  * remove a page from the kernel pagetables
1966  */
1967 void
1968 pmap_kremove(vm_offset_t va)
1969 {
1970 	pt_entry_t *ptep;
1971 
1972 	ptep = vtopte(va);
1973 	pmap_inval_smp(&kernel_pmap, va, 1, ptep, 0);
1974 }
1975 
1976 void
1977 pmap_kremove_quick(vm_offset_t va)
1978 {
1979 	pt_entry_t *ptep;
1980 
1981 	ptep = vtopte(va);
1982 	(void)pte_load_clear(ptep);
1983 	cpu_invlpg((void *)va);
1984 }
1985 
1986 /*
1987  * Remove addresses from the kernel pmap but don't bother
1988  * doing any tlb invalidations.  Caller will do a rollup
1989  * invalidation via pmap_rollup_inval().
1990  */
1991 void
1992 pmap_kremove_noinval(vm_offset_t va)
1993 {
1994 	pt_entry_t *ptep;
1995 
1996 	ptep = vtopte(va);
1997 	(void)pte_load_clear(ptep);
1998 }
1999 
2000 /*
2001  * XXX these need to be recoded.  They are not used in any critical path.
2002  */
2003 void
2004 pmap_kmodify_rw(vm_offset_t va)
2005 {
2006 	atomic_set_long(vtopte(va), kernel_pmap.pmap_bits[PG_RW_IDX]);
2007 	cpu_invlpg((void *)va);
2008 }
2009 
2010 /* NOT USED
2011 void
2012 pmap_kmodify_nc(vm_offset_t va)
2013 {
2014 	atomic_set_long(vtopte(va), PG_N);
2015 	cpu_invlpg((void *)va);
2016 }
2017 */
2018 
2019 /*
2020  * Used to map a range of physical addresses into kernel virtual
2021  * address space during the low level boot, typically to map the
2022  * dump bitmap, message buffer, and vm_page_array.
2023  *
2024  * These mappings are typically made at some pointer after the end of the
2025  * kernel text+data.
2026  *
2027  * We could return PHYS_TO_DMAP(start) here and not allocate any
2028  * via (*virtp), but then kmem from userland and kernel dumps won't
2029  * have access to the related pointers.
2030  */
2031 vm_offset_t
2032 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
2033 {
2034 	vm_offset_t va;
2035 	vm_offset_t va_start;
2036 
2037 	/*return PHYS_TO_DMAP(start);*/
2038 
2039 	va_start = *virtp;
2040 	va = va_start;
2041 
2042 	while (start < end) {
2043 		pmap_kenter_quick(va, start);
2044 		va += PAGE_SIZE;
2045 		start += PAGE_SIZE;
2046 	}
2047 	*virtp = va;
2048 	return va_start;
2049 }
2050 
2051 #define PMAP_CLFLUSH_THRESHOLD  (2 * 1024 * 1024)
2052 
2053 /*
2054  * Remove the specified set of pages from the data and instruction caches.
2055  *
2056  * In contrast to pmap_invalidate_cache_range(), this function does not
2057  * rely on the CPU's self-snoop feature, because it is intended for use
2058  * when moving pages into a different cache domain.
2059  */
2060 void
2061 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
2062 {
2063 	vm_offset_t daddr, eva;
2064 	int i;
2065 
2066 	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
2067 	    (cpu_feature & CPUID_CLFSH) == 0)
2068 		wbinvd();
2069 	else {
2070 		cpu_mfence();
2071 		for (i = 0; i < count; i++) {
2072 			daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
2073 			eva = daddr + PAGE_SIZE;
2074 			for (; daddr < eva; daddr += cpu_clflush_line_size)
2075 				clflush(daddr);
2076 		}
2077 		cpu_mfence();
2078 	}
2079 }
2080 
2081 void
2082 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
2083 {
2084 	KASSERT((sva & PAGE_MASK) == 0,
2085 	    ("pmap_invalidate_cache_range: sva not page-aligned"));
2086 	KASSERT((eva & PAGE_MASK) == 0,
2087 	    ("pmap_invalidate_cache_range: eva not page-aligned"));
2088 
2089 	if (cpu_feature & CPUID_SS) {
2090 		; /* If "Self Snoop" is supported, do nothing. */
2091 	} else {
2092 		/* Globally invalidate caches */
2093 		cpu_wbinvd_on_all_cpus();
2094 	}
2095 }
2096 
2097 /*
2098  * Invalidate the specified range of virtual memory on all cpus associated
2099  * with the pmap.
2100  */
2101 void
2102 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2103 {
2104 	pmap_inval_smp(pmap, sva, (eva - sva) >> PAGE_SHIFT, NULL, 0);
2105 }
2106 
2107 /*
2108  * Add a list of wired pages to the kva.  This routine is used for temporary
2109  * kernel mappings such as those found in buffer cache buffer.  Page
2110  * modifications and accesses are not tracked or recorded.
2111  *
2112  * NOTE! Old mappings are simply overwritten, and we cannot assume relaxed
2113  *	 semantics as previous mappings may have been zerod without any
2114  *	 invalidation.
2115  *
2116  * The page *must* be wired.
2117  */
2118 static __inline void
2119 _pmap_qenter(vm_offset_t beg_va, vm_page_t *m, int count, int doinval)
2120 {
2121 	vm_offset_t end_va;
2122 	vm_offset_t va;
2123 
2124 	end_va = beg_va + count * PAGE_SIZE;
2125 
2126 	for (va = beg_va; va < end_va; va += PAGE_SIZE) {
2127 		pt_entry_t pte;
2128 		pt_entry_t *ptep;
2129 
2130 		ptep = vtopte(va);
2131 		pte = VM_PAGE_TO_PHYS(*m) |
2132 			kernel_pmap.pmap_bits[PG_RW_IDX] |
2133 			kernel_pmap.pmap_bits[PG_V_IDX] |
2134 			kernel_pmap.pmap_cache_bits_pte[(*m)->pat_mode];
2135 //		pgeflag;
2136 		atomic_swap_long(ptep, pte);
2137 		m++;
2138 	}
2139 	if (doinval)
2140 		pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
2141 }
2142 
2143 void
2144 pmap_qenter(vm_offset_t beg_va, vm_page_t *m, int count)
2145 {
2146 	_pmap_qenter(beg_va, m, count, 1);
2147 }
2148 
2149 void
2150 pmap_qenter_noinval(vm_offset_t beg_va, vm_page_t *m, int count)
2151 {
2152 	_pmap_qenter(beg_va, m, count, 0);
2153 }
2154 
2155 /*
2156  * This routine jerks page mappings from the kernel -- it is meant only
2157  * for temporary mappings such as those found in buffer cache buffers.
2158  * No recording modified or access status occurs.
2159  *
2160  * MPSAFE, INTERRUPT SAFE (cluster callback)
2161  */
2162 void
2163 pmap_qremove(vm_offset_t beg_va, int count)
2164 {
2165 	vm_offset_t end_va;
2166 	vm_offset_t va;
2167 
2168 	end_va = beg_va + count * PAGE_SIZE;
2169 
2170 	for (va = beg_va; va < end_va; va += PAGE_SIZE) {
2171 		pt_entry_t *pte;
2172 
2173 		pte = vtopte(va);
2174 		(void)pte_load_clear(pte);
2175 		cpu_invlpg((void *)va);
2176 	}
2177 	pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
2178 }
2179 
2180 /*
2181  * This routine removes temporary kernel mappings, only invalidating them
2182  * on the current cpu.  It should only be used under carefully controlled
2183  * conditions.
2184  */
2185 void
2186 pmap_qremove_quick(vm_offset_t beg_va, int count)
2187 {
2188 	vm_offset_t end_va;
2189 	vm_offset_t va;
2190 
2191 	end_va = beg_va + count * PAGE_SIZE;
2192 
2193 	for (va = beg_va; va < end_va; va += PAGE_SIZE) {
2194 		pt_entry_t *pte;
2195 
2196 		pte = vtopte(va);
2197 		(void)pte_load_clear(pte);
2198 		cpu_invlpg((void *)va);
2199 	}
2200 }
2201 
2202 /*
2203  * This routine removes temporary kernel mappings *without* invalidating
2204  * the TLB.  It can only be used on permanent kva reservations such as those
2205  * found in buffer cache buffers, under carefully controlled circumstances.
2206  *
2207  * NOTE: Repopulating these KVAs requires unconditional invalidation.
2208  *	 (pmap_qenter() does unconditional invalidation).
2209  */
2210 void
2211 pmap_qremove_noinval(vm_offset_t beg_va, int count)
2212 {
2213 	vm_offset_t end_va;
2214 	vm_offset_t va;
2215 
2216 	end_va = beg_va + count * PAGE_SIZE;
2217 
2218 	for (va = beg_va; va < end_va; va += PAGE_SIZE) {
2219 		pt_entry_t *pte;
2220 
2221 		pte = vtopte(va);
2222 		(void)pte_load_clear(pte);
2223 	}
2224 }
2225 
2226 /*
2227  * Create a new thread and optionally associate it with a (new) process.
2228  * NOTE! the new thread's cpu may not equal the current cpu.
2229  */
2230 void
2231 pmap_init_thread(thread_t td)
2232 {
2233 	/* enforce pcb placement & alignment */
2234 	td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
2235 	td->td_pcb = (struct pcb *)((intptr_t)td->td_pcb & ~(intptr_t)0xF);
2236 	td->td_savefpu = &td->td_pcb->pcb_save;
2237 	td->td_sp = (char *)td->td_pcb;	/* no -16 */
2238 }
2239 
2240 /*
2241  * This routine directly affects the fork perf for a process.
2242  */
2243 void
2244 pmap_init_proc(struct proc *p)
2245 {
2246 }
2247 
2248 static void
2249 pmap_pinit_defaults(struct pmap *pmap)
2250 {
2251 	bcopy(pmap_bits_default, pmap->pmap_bits,
2252 	      sizeof(pmap_bits_default));
2253 	bcopy(protection_codes, pmap->protection_codes,
2254 	      sizeof(protection_codes));
2255 	bcopy(pat_pte_index, pmap->pmap_cache_bits_pte,
2256 	      sizeof(pat_pte_index));
2257 	bcopy(pat_pde_index, pmap->pmap_cache_bits_pde,
2258 	      sizeof(pat_pte_index));
2259 	pmap->pmap_cache_mask_pte = X86_PG_NC_PWT | X86_PG_NC_PCD | X86_PG_PTE_PAT;
2260 	pmap->pmap_cache_mask_pde = X86_PG_NC_PWT | X86_PG_NC_PCD | X86_PG_PDE_PAT;
2261 	pmap->copyinstr = std_copyinstr;
2262 	pmap->copyin = std_copyin;
2263 	pmap->copyout = std_copyout;
2264 	pmap->fubyte = std_fubyte;
2265 	pmap->subyte = std_subyte;
2266 	pmap->fuword32 = std_fuword32;
2267 	pmap->fuword64 = std_fuword64;
2268 	pmap->suword32 = std_suword32;
2269 	pmap->suword64 = std_suword64;
2270 	pmap->swapu32 = std_swapu32;
2271 	pmap->swapu64 = std_swapu64;
2272 	pmap->fuwordadd32 = std_fuwordadd32;
2273 	pmap->fuwordadd64 = std_fuwordadd64;
2274 }
2275 /*
2276  * Initialize pmap0/vmspace0.
2277  *
2278  * On architectures where the kernel pmap is not integrated into the user
2279  * process pmap, this pmap represents the process pmap, not the kernel pmap.
2280  * kernel_pmap should be used to directly access the kernel_pmap.
2281  */
2282 void
2283 pmap_pinit0(struct pmap *pmap)
2284 {
2285 	int i;
2286 
2287 	pmap->pm_pml4 = (pml4_entry_t *)(PTOV_OFFSET + KPML4phys);
2288 	pmap->pm_count = 1;
2289 	CPUMASK_ASSZERO(pmap->pm_active);
2290 	pmap->pm_pvhint_pt = NULL;
2291 	pmap->pm_pvhint_unused = NULL;
2292 	RB_INIT(&pmap->pm_pvroot);
2293 	spin_init(&pmap->pm_spin, "pmapinit0");
2294 	for (i = 0; i < PM_PLACEMARKS; ++i)
2295 		pmap->pm_placemarks[i] = PM_NOPLACEMARK;
2296 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2297 	pmap_pinit_defaults(pmap);
2298 }
2299 
2300 /*
2301  * Initialize a preallocated and zeroed pmap structure,
2302  * such as one in a vmspace structure.
2303  */
2304 static void
2305 pmap_pinit_simple(struct pmap *pmap)
2306 {
2307 	int i;
2308 
2309 	/*
2310 	 * Misc initialization
2311 	 */
2312 	pmap->pm_count = 1;
2313 	CPUMASK_ASSZERO(pmap->pm_active);
2314 	pmap->pm_pvhint_pt = NULL;
2315 	pmap->pm_pvhint_unused = NULL;
2316 	pmap->pm_flags = PMAP_FLAG_SIMPLE;
2317 
2318 	pmap_pinit_defaults(pmap);
2319 
2320 	/*
2321 	 * Don't blow up locks/tokens on re-use (XXX fix/use drop code
2322 	 * for this).
2323 	 */
2324 	if (pmap->pm_pmlpv == NULL) {
2325 		RB_INIT(&pmap->pm_pvroot);
2326 		bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2327 		spin_init(&pmap->pm_spin, "pmapinitsimple");
2328 		for (i = 0; i < PM_PLACEMARKS; ++i)
2329 			pmap->pm_placemarks[i] = PM_NOPLACEMARK;
2330 	}
2331 }
2332 
2333 void
2334 pmap_pinit(struct pmap *pmap)
2335 {
2336 	pv_entry_t pv;
2337 	int j;
2338 
2339 	if (pmap->pm_pmlpv) {
2340 		if (pmap->pmap_bits[TYPE_IDX] != REGULAR_PMAP) {
2341 			pmap_puninit(pmap);
2342 		}
2343 	}
2344 
2345 	pmap_pinit_simple(pmap);
2346 	pmap->pm_flags &= ~PMAP_FLAG_SIMPLE;
2347 
2348 	/*
2349 	 * No need to allocate page table space yet but we do need a valid
2350 	 * page directory table.
2351 	 */
2352 	if (pmap->pm_pml4 == NULL) {
2353 		pmap->pm_pml4 =
2354 		    (pml4_entry_t *)kmem_alloc_pageable(&kernel_map,
2355 							PAGE_SIZE * 2,
2356 							VM_SUBSYS_PML4);
2357 		pmap->pm_pml4_iso = (void *)((char *)pmap->pm_pml4 + PAGE_SIZE);
2358 	}
2359 
2360 	/*
2361 	 * Allocate the PML4e table, which wires it even though it isn't
2362 	 * being entered into some higher level page table (it being the
2363 	 * highest level).  If one is already cached we don't have to do
2364 	 * anything.
2365 	 */
2366 	if ((pv = pmap->pm_pmlpv) == NULL) {
2367 		pv = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
2368 		pmap->pm_pmlpv = pv;
2369 		pmap_kenter((vm_offset_t)pmap->pm_pml4,
2370 			    VM_PAGE_TO_PHYS(pv->pv_m));
2371 		pv_put(pv);
2372 
2373 		/*
2374 		 * Install DMAP and KMAP.
2375 		 */
2376 		for (j = 0; j < NDMPML4E; ++j) {
2377 			pmap->pm_pml4[DMPML4I + j] =
2378 			    (DMPDPphys + ((vm_paddr_t)j << PAGE_SHIFT)) |
2379 			    pmap->pmap_bits[PG_RW_IDX] |
2380 			    pmap->pmap_bits[PG_V_IDX] |
2381 			    pmap->pmap_bits[PG_A_IDX];
2382 		}
2383 		for (j = 0; j < NKPML4E; ++j) {
2384 			pmap->pm_pml4[KPML4I + j] =
2385 			    (KPDPphys + ((vm_paddr_t)j << PAGE_SHIFT)) |
2386 			    pmap->pmap_bits[PG_RW_IDX] |
2387 			    pmap->pmap_bits[PG_V_IDX] |
2388 			    pmap->pmap_bits[PG_A_IDX];
2389 		}
2390 
2391 		/*
2392 		 * install self-referential address mapping entry
2393 		 */
2394 		pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pv->pv_m) |
2395 		    pmap->pmap_bits[PG_V_IDX] |
2396 		    pmap->pmap_bits[PG_RW_IDX] |
2397 		    pmap->pmap_bits[PG_A_IDX];
2398 	} else {
2399 		KKASSERT(pv->pv_m->flags & PG_MAPPED);
2400 		KKASSERT(pv->pv_m->flags & PG_WRITEABLE);
2401 	}
2402 	KKASSERT(pmap->pm_pml4[255] == 0);
2403 
2404 	/*
2405 	 * When implementing an isolated userland pmap, a second PML4e table
2406 	 * is needed.  We use pmap_pml4_pindex() + 1 for convenience, but
2407 	 * note that we do not operate on this table using our API functions
2408 	 * so handling of the + 1 case is mostly just to prevent implosions.
2409 	 *
2410 	 * We install an isolated version of the kernel PDPs into this
2411 	 * second PML4e table.  The pmap code will mirror all user PDPs
2412 	 * between the primary and secondary PML4e table.
2413 	 */
2414 	if ((pv = pmap->pm_pmlpv_iso) == NULL && meltdown_mitigation &&
2415 	    pmap != &iso_pmap) {
2416 		pv = pmap_allocpte(pmap, pmap_pml4_pindex() + 1, NULL);
2417 		pmap->pm_pmlpv_iso = pv;
2418 		pmap_kenter((vm_offset_t)pmap->pm_pml4_iso,
2419 			    VM_PAGE_TO_PHYS(pv->pv_m));
2420 		pv_put(pv);
2421 
2422 		/*
2423 		 * Install an isolated version of the kernel pmap for
2424 		 * user consumption, using PDPs constructed in iso_pmap.
2425 		 */
2426 		for (j = 0; j < NKPML4E; ++j) {
2427 			pmap->pm_pml4_iso[KPML4I + j] =
2428 				iso_pmap.pm_pml4[KPML4I + j];
2429 		}
2430 	} else if (pv) {
2431 		KKASSERT(pv->pv_m->flags & PG_MAPPED);
2432 		KKASSERT(pv->pv_m->flags & PG_WRITEABLE);
2433 	}
2434 }
2435 
2436 /*
2437  * Clean up a pmap structure so it can be physically freed.  This routine
2438  * is called by the vmspace dtor function.  A great deal of pmap data is
2439  * left passively mapped to improve vmspace management so we have a bit
2440  * of cleanup work to do here.
2441  */
2442 void
2443 pmap_puninit(pmap_t pmap)
2444 {
2445 	pv_entry_t pv;
2446 	vm_page_t p;
2447 
2448 	KKASSERT(CPUMASK_TESTZERO(pmap->pm_active));
2449 	if ((pv = pmap->pm_pmlpv) != NULL) {
2450 		if (pv_hold_try(pv) == 0)
2451 			pv_lock(pv);
2452 		KKASSERT(pv == pmap->pm_pmlpv);
2453 		p = pmap_remove_pv_page(pv, 1);
2454 		pv_free(pv, NULL);
2455 		pv = NULL;	/* safety */
2456 		pmap_kremove((vm_offset_t)pmap->pm_pml4);
2457 		vm_page_busy_wait(p, FALSE, "pgpun");
2458 		KKASSERT(p->flags & PG_UNQUEUED);
2459 		vm_page_unwire(p, 0);
2460 		vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
2461 		vm_page_free(p);
2462 		pmap->pm_pmlpv = NULL;
2463 	}
2464 	if ((pv = pmap->pm_pmlpv_iso) != NULL) {
2465 		if (pv_hold_try(pv) == 0)
2466 			pv_lock(pv);
2467 		KKASSERT(pv == pmap->pm_pmlpv_iso);
2468 		p = pmap_remove_pv_page(pv, 1);
2469 		pv_free(pv, NULL);
2470 		pv = NULL;	/* safety */
2471 		pmap_kremove((vm_offset_t)pmap->pm_pml4_iso);
2472 		vm_page_busy_wait(p, FALSE, "pgpun");
2473 		KKASSERT(p->flags & PG_UNQUEUED);
2474 		vm_page_unwire(p, 0);
2475 		vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
2476 		vm_page_free(p);
2477 		pmap->pm_pmlpv_iso = NULL;
2478 	}
2479 	if (pmap->pm_pml4) {
2480 		KKASSERT(pmap->pm_pml4 != (void *)(PTOV_OFFSET + KPML4phys));
2481 		kmem_free(&kernel_map,
2482 			  (vm_offset_t)pmap->pm_pml4, PAGE_SIZE * 2);
2483 		pmap->pm_pml4 = NULL;
2484 		pmap->pm_pml4_iso = NULL;
2485 	}
2486 	KKASSERT(pmap->pm_stats.resident_count == 0);
2487 	KKASSERT(pmap->pm_stats.wired_count == 0);
2488 }
2489 
2490 /*
2491  * This function is now unused (used to add the pmap to the pmap_list)
2492  */
2493 void
2494 pmap_pinit2(struct pmap *pmap)
2495 {
2496 }
2497 
2498 /*
2499  * This routine is called when various levels in the page table need to
2500  * be populated.  This routine cannot fail.
2501  *
2502  * This function returns two locked pv_entry's, one representing the
2503  * requested pv and one representing the requested pv's parent pv.  If
2504  * an intermediate page table does not exist it will be created, mapped,
2505  * wired, and the parent page table will be given an additional hold
2506  * count representing the presence of the child pv_entry.
2507  */
2508 static
2509 pv_entry_t
2510 pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp)
2511 {
2512 	pt_entry_t *ptep;
2513 	pt_entry_t *ptep_iso;
2514 	pv_entry_t pv;
2515 	pv_entry_t pvp;
2516 	pt_entry_t v;
2517 	vm_page_t m;
2518 	int isnew;
2519 	int ispt;
2520 
2521 	/*
2522 	 * If the pv already exists and we aren't being asked for the
2523 	 * parent page table page we can just return it.  A locked+held pv
2524 	 * is returned.  The pv will also have a second hold related to the
2525 	 * pmap association that we don't have to worry about.
2526 	 */
2527 	ispt = 0;
2528 	pv = pv_alloc(pmap, ptepindex, &isnew);
2529 	if (isnew == 0 && pvpp == NULL)
2530 		return(pv);
2531 
2532 	/*
2533 	 * DragonFly doesn't use PV's to represent terminal PTEs any more.
2534 	 * The index range is still used for placemarkers, but not for
2535 	 * actual pv_entry's.
2536 	 */
2537 	KKASSERT(ptepindex >= pmap_pt_pindex(0));
2538 
2539 	/*
2540 	 * Note that pt_pv's are only returned for user VAs. We assert that
2541 	 * a pt_pv is not being requested for kernel VAs.  The kernel
2542 	 * pre-wires all higher-level page tables so don't overload managed
2543 	 * higher-level page tables on top of it!
2544 	 *
2545 	 * However, its convenient for us to allow the case when creating
2546 	 * iso_pmap.  This is a bit of a hack but it simplifies iso_pmap
2547 	 * a lot.
2548 	 */
2549 
2550 	/*
2551 	 * The kernel never uses managed PT/PD/PDP pages.
2552 	 */
2553 	KKASSERT(pmap != &kernel_pmap);
2554 
2555 	/*
2556 	 * Non-terminal PVs allocate a VM page to represent the page table,
2557 	 * so we have to resolve pvp and calculate ptepindex for the pvp
2558 	 * and then for the page table entry index in the pvp for
2559 	 * fall-through.
2560 	 */
2561 	if (ptepindex < pmap_pd_pindex(0)) {
2562 		/*
2563 		 * pv is PT, pvp is PD
2564 		 */
2565 		ptepindex = (ptepindex - pmap_pt_pindex(0)) >> NPDEPGSHIFT;
2566 		ptepindex += NUPTE_TOTAL + NUPT_TOTAL;
2567 		pvp = pmap_allocpte(pmap, ptepindex, NULL);
2568 
2569 		/*
2570 		 * PT index in PD
2571 		 */
2572 		ptepindex = pv->pv_pindex - pmap_pt_pindex(0);
2573 		ptepindex &= ((1ul << NPDEPGSHIFT) - 1);
2574 		ispt = 1;
2575 	} else if (ptepindex < pmap_pdp_pindex(0)) {
2576 		/*
2577 		 * pv is PD, pvp is PDP
2578 		 *
2579 		 * SIMPLE PMAP NOTE: Simple pmaps do not allocate above
2580 		 *		     the PD.
2581 		 */
2582 		ptepindex = (ptepindex - pmap_pd_pindex(0)) >> NPDPEPGSHIFT;
2583 		ptepindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
2584 
2585 		if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
2586 			KKASSERT(pvpp == NULL);
2587 			pvp = NULL;
2588 		} else {
2589 			pvp = pmap_allocpte(pmap, ptepindex, NULL);
2590 		}
2591 
2592 		/*
2593 		 * PD index in PDP
2594 		 */
2595 		ptepindex = pv->pv_pindex - pmap_pd_pindex(0);
2596 		ptepindex &= ((1ul << NPDPEPGSHIFT) - 1);
2597 	} else if (ptepindex < pmap_pml4_pindex()) {
2598 		/*
2599 		 * pv is PDP, pvp is the root pml4 table
2600 		 */
2601 		pvp = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
2602 
2603 		/*
2604 		 * PDP index in PML4
2605 		 */
2606 		ptepindex = pv->pv_pindex - pmap_pdp_pindex(0);
2607 		ptepindex &= ((1ul << NPML4EPGSHIFT) - 1);
2608 	} else {
2609 		/*
2610 		 * pv represents the top-level PML4, there is no parent.
2611 		 */
2612 		pvp = NULL;
2613 	}
2614 
2615 	if (isnew == 0)
2616 		goto notnew;
2617 
2618 	/*
2619 	 * (isnew) is TRUE.
2620 	 *
2621 	 * (1) Add a wire count to the parent page table (pvp).
2622 	 * (2) Allocate a VM page for the page table.
2623 	 * (3) Enter the VM page into the parent page table.
2624 	 *
2625 	 * page table pages are marked PG_WRITEABLE and PG_MAPPED.
2626 	 */
2627 	if (pvp)
2628 		vm_page_wire_quick(pvp->pv_m);
2629 
2630 	for (;;) {
2631 		m = vm_page_alloc(NULL, pv->pv_pindex,
2632 				  VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
2633 				  VM_ALLOC_INTERRUPT);
2634 		if (m)
2635 			break;
2636 		vm_wait(0);
2637 	}
2638 	vm_page_wire(m);	/* wire for mapping in parent */
2639 	pmap_zero_page(VM_PAGE_TO_PHYS(m));
2640 	m->valid = VM_PAGE_BITS_ALL;
2641 	vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_UNQUEUED);
2642 	KKASSERT(m->queue == PQ_NONE);
2643 
2644 	pv->pv_m = m;
2645 
2646 	/*
2647 	 * (isnew) is TRUE.
2648 	 *
2649 	 * Wire the page into pvp.  Bump the resident_count for the pmap.
2650 	 * There is no pvp for the top level, address the pm_pml4[] array
2651 	 * directly.
2652 	 *
2653 	 * If the caller wants the parent we return it, otherwise
2654 	 * we just put it away.
2655 	 *
2656 	 * No interlock is needed for pte 0 -> non-zero.
2657 	 *
2658 	 * In the situation where *ptep is valid we might have an unmanaged
2659 	 * page table page shared from another page table which we need to
2660 	 * unshare before installing our private page table page.
2661 	 */
2662 	if (pvp) {
2663 		v = VM_PAGE_TO_PHYS(m) |
2664 		    (pmap->pmap_bits[PG_RW_IDX] |
2665 		     pmap->pmap_bits[PG_V_IDX] |
2666 		     pmap->pmap_bits[PG_A_IDX]);
2667 		if (ptepindex < NUPTE_USER)
2668 			v |= pmap->pmap_bits[PG_U_IDX];
2669 		if (ptepindex < pmap_pt_pindex(0))
2670 			v |= pmap->pmap_bits[PG_M_IDX];
2671 
2672 		ptep = pv_pte_lookup(pvp, ptepindex);
2673 		if (pvp == pmap->pm_pmlpv && pmap->pm_pmlpv_iso)
2674 			ptep_iso = pv_pte_lookup(pmap->pm_pmlpv_iso, ptepindex);
2675 		else
2676 			ptep_iso  = NULL;
2677 		if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
2678 			panic("pmap_allocpte: ptpte present without pv_entry!");
2679 		} else {
2680 			pt_entry_t pte;
2681 
2682 			pte = atomic_swap_long(ptep, v);
2683 			if (ptep_iso)
2684 				atomic_swap_long(ptep_iso, v);
2685 			if (pte != 0) {
2686 				kprintf("install pgtbl mixup 0x%016jx "
2687 					"old/new 0x%016jx/0x%016jx\n",
2688 					(intmax_t)ptepindex, pte, v);
2689 			}
2690 		}
2691 	}
2692 	vm_page_wakeup(m);
2693 
2694 notnew:
2695 	/*
2696 	 * (isnew) may be TRUE or FALSE.
2697 	 */
2698 	if (pvp) {
2699 		KKASSERT(pvp->pv_m != NULL);
2700 		ptep = pv_pte_lookup(pvp, ptepindex);
2701 		v = VM_PAGE_TO_PHYS(pv->pv_m) |
2702 		    (pmap->pmap_bits[PG_RW_IDX] |
2703 		     pmap->pmap_bits[PG_V_IDX] |
2704 		     pmap->pmap_bits[PG_A_IDX]);
2705 		if (ptepindex < NUPTE_USER)
2706 			v |= pmap->pmap_bits[PG_U_IDX];
2707 		if (ptepindex < pmap_pt_pindex(0))
2708 			v |= pmap->pmap_bits[PG_M_IDX];
2709 		if (*ptep != v) {
2710 			kprintf("mismatched upper level pt %016jx/%016jx\n",
2711 				*ptep, v);
2712 		}
2713 	}
2714 	if (pvpp)
2715 		*pvpp = pvp;
2716 	else if (pvp)
2717 		pv_put(pvp);
2718 	return (pv);
2719 }
2720 
2721 /*
2722  * Release any resources held by the given physical map.
2723  *
2724  * Called when a pmap initialized by pmap_pinit is being released.  Should
2725  * only be called if the map contains no valid mappings.
2726  */
2727 struct pmap_release_info {
2728 	pmap_t	pmap;
2729 	int	retry;
2730 	pv_entry_t pvp;
2731 };
2732 
2733 static int pmap_release_callback(pv_entry_t pv, void *data);
2734 
2735 void
2736 pmap_release(struct pmap *pmap)
2737 {
2738 	struct pmap_release_info info;
2739 
2740 	KASSERT(CPUMASK_TESTZERO(pmap->pm_active),
2741 		("pmap still active! %016jx",
2742 		(uintmax_t)CPUMASK_LOWMASK(pmap->pm_active)));
2743 
2744 	/*
2745 	 * There is no longer a pmap_list, if there were we would remove the
2746 	 * pmap from it here.
2747 	 */
2748 
2749 	/*
2750 	 * Pull pv's off the RB tree in order from low to high and release
2751 	 * each page.
2752 	 */
2753 	info.pmap = pmap;
2754 	do {
2755 		info.retry = 0;
2756 		info.pvp = NULL;
2757 
2758 		spin_lock(&pmap->pm_spin);
2759 		RB_SCAN(pv_entry_rb_tree, &pmap->pm_pvroot, NULL,
2760 			pmap_release_callback, &info);
2761 		spin_unlock(&pmap->pm_spin);
2762 
2763 		if (info.pvp)
2764 			pv_put(info.pvp);
2765 	} while (info.retry);
2766 
2767 
2768 	/*
2769 	 * One resident page (the pml4 page) should remain.  Two if
2770 	 * the pmap has implemented an isolated userland PML4E table.
2771 	 * No wired pages should remain.
2772 	 */
2773 	int expected_res = 0;
2774 
2775 	if ((pmap->pm_flags & PMAP_FLAG_SIMPLE) == 0)
2776 		++expected_res;
2777 	if (pmap->pm_pmlpv_iso)
2778 		++expected_res;
2779 
2780 #if 1
2781 	if (pmap->pm_stats.resident_count != expected_res ||
2782 	    pmap->pm_stats.wired_count != 0) {
2783 		kprintf("fatal pmap problem - pmap %p flags %08x "
2784 			"rescnt=%jd wirecnt=%jd\n",
2785 			pmap,
2786 			pmap->pm_flags,
2787 			pmap->pm_stats.resident_count,
2788 			pmap->pm_stats.wired_count);
2789 		tsleep(pmap, 0, "DEAD", 0);
2790 	}
2791 #else
2792 	KKASSERT(pmap->pm_stats.resident_count == expected_res);
2793 	KKASSERT(pmap->pm_stats.wired_count == 0);
2794 #endif
2795 }
2796 
2797 /*
2798  * Called from low to high.  We must cache the proper parent pv so we
2799  * can adjust its wired count.
2800  */
2801 static int
2802 pmap_release_callback(pv_entry_t pv, void *data)
2803 {
2804 	struct pmap_release_info *info = data;
2805 	pmap_t pmap = info->pmap;
2806 	vm_pindex_t pindex;
2807 	int r;
2808 
2809 	/*
2810 	 * Acquire a held and locked pv, check for release race
2811 	 */
2812 	pindex = pv->pv_pindex;
2813 	if (info->pvp == pv) {
2814 		spin_unlock(&pmap->pm_spin);
2815 		info->pvp = NULL;
2816 	} else if (pv_hold_try(pv)) {
2817 		spin_unlock(&pmap->pm_spin);
2818 	} else {
2819 		spin_unlock(&pmap->pm_spin);
2820 		pv_lock(pv);
2821 		pv_put(pv);
2822 		info->retry = 1;
2823 		spin_lock(&pmap->pm_spin);
2824 
2825 		return -1;
2826 	}
2827 	KKASSERT(pv->pv_pmap == pmap && pindex == pv->pv_pindex);
2828 
2829 	if (pv->pv_pindex < pmap_pt_pindex(0)) {
2830 		/*
2831 		 * I am PTE, parent is PT
2832 		 */
2833 		pindex = pv->pv_pindex >> NPTEPGSHIFT;
2834 		pindex += NUPTE_TOTAL;
2835 	} else if (pv->pv_pindex < pmap_pd_pindex(0)) {
2836 		/*
2837 		 * I am PT, parent is PD
2838 		 */
2839 		pindex = (pv->pv_pindex - NUPTE_TOTAL) >> NPDEPGSHIFT;
2840 		pindex += NUPTE_TOTAL + NUPT_TOTAL;
2841 	} else if (pv->pv_pindex < pmap_pdp_pindex(0)) {
2842 		/*
2843 		 * I am PD, parent is PDP
2844 		 */
2845 		pindex = (pv->pv_pindex - NUPTE_TOTAL - NUPT_TOTAL) >>
2846 			 NPDPEPGSHIFT;
2847 		pindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
2848 	} else if (pv->pv_pindex < pmap_pml4_pindex()) {
2849 		/*
2850 		 * I am PDP, parent is PML4.  We always calculate the
2851 		 * normal PML4 here, not the isolated PML4.
2852 		 */
2853 		pindex = pmap_pml4_pindex();
2854 	} else {
2855 		/*
2856 		 * parent is NULL
2857 		 */
2858 		if (info->pvp) {
2859 			pv_put(info->pvp);
2860 			info->pvp = NULL;
2861 		}
2862 		pindex = 0;
2863 	}
2864 	if (pindex) {
2865 		if (info->pvp && info->pvp->pv_pindex != pindex) {
2866 			pv_put(info->pvp);
2867 			info->pvp = NULL;
2868 		}
2869 		if (info->pvp == NULL)
2870 			info->pvp = pv_get(pmap, pindex, NULL);
2871 	} else {
2872 		if (info->pvp) {
2873 			pv_put(info->pvp);
2874 			info->pvp = NULL;
2875 		}
2876 	}
2877 	r = pmap_release_pv(pv, info->pvp, NULL);
2878 	spin_lock(&pmap->pm_spin);
2879 
2880 	return(r);
2881 }
2882 
2883 /*
2884  * Called with held (i.e. also locked) pv.  This function will dispose of
2885  * the lock along with the pv.
2886  *
2887  * If the caller already holds the locked parent page table for pv it
2888  * must pass it as pvp, allowing us to avoid a deadlock, else it can
2889  * pass NULL for pvp.
2890  */
2891 static int
2892 pmap_release_pv(pv_entry_t pv, pv_entry_t pvp, pmap_inval_bulk_t *bulk)
2893 {
2894 	vm_page_t p;
2895 
2896 	/*
2897 	 * The pmap is currently not spinlocked, pv is held+locked.
2898 	 * Remove the pv's page from its parent's page table.  The
2899 	 * parent's page table page's wire_count will be decremented.
2900 	 *
2901 	 * This will clean out the pte at any level of the page table.
2902 	 * If smp != 0 all cpus are affected.
2903 	 *
2904 	 * Do not tear-down recursively, its faster to just let the
2905 	 * release run its course.
2906 	 */
2907 	pmap_remove_pv_pte(pv, pvp, bulk, 0);
2908 
2909 	/*
2910 	 * Terminal pvs are unhooked from their vm_pages.  Because
2911 	 * terminal pages aren't page table pages they aren't wired
2912 	 * by us, so we have to be sure not to unwire them either.
2913 	 *
2914 	 * XXX It is unclear if this code ever gets called because we
2915 	 *     no longer use pv's to track terminal pages.
2916 	 */
2917 	if (pv->pv_pindex < pmap_pt_pindex(0)) {
2918 		pmap_remove_pv_page(pv, 0);
2919 		goto skip;
2920 	}
2921 
2922 	/*
2923 	 * We leave the top-level page table page cached, wired, and
2924 	 * mapped in the pmap until the dtor function (pmap_puninit())
2925 	 * gets called.
2926 	 *
2927 	 * Since we are leaving the top-level pv intact we need
2928 	 * to break out of what would otherwise be an infinite loop.
2929 	 *
2930 	 * This covers both the normal and the isolated PML4 page.
2931 	 */
2932 	if (pv->pv_pindex >= pmap_pml4_pindex()) {
2933 		pv_put(pv);
2934 		return(-1);
2935 	}
2936 
2937 	/*
2938 	 * For page table pages (other than the top-level page),
2939 	 * remove and free the vm_page.  The representitive mapping
2940 	 * removed above by pmap_remove_pv_pte() did not undo the
2941 	 * last wire_count so we have to do that as well.
2942 	 */
2943 	p = pmap_remove_pv_page(pv, 1);
2944 	vm_page_busy_wait(p, FALSE, "pmaprl");
2945 	if (p->wire_count != 1) {
2946 		const char *tstr;
2947 
2948 		if (pv->pv_pindex >= pmap_pdp_pindex(0))
2949 			tstr = "PDP";
2950 		else if (pv->pv_pindex >= pmap_pd_pindex(0))
2951 			tstr = "PD";
2952 		else if (pv->pv_pindex >= pmap_pt_pindex(0))
2953 			tstr = "PT";
2954 		else
2955 			tstr = "PTE";
2956 
2957 		kprintf("p(%s) p->wire_count was %016lx %d\n",
2958 			tstr, pv->pv_pindex, p->wire_count);
2959 	}
2960 	KKASSERT(p->wire_count == 1);
2961 	KKASSERT(p->flags & PG_UNQUEUED);
2962 
2963 	vm_page_unwire(p, 0);
2964 	KKASSERT(p->wire_count == 0);
2965 
2966 	vm_page_free(p);
2967 skip:
2968 	pv_free(pv, pvp);
2969 
2970 	return 0;
2971 }
2972 
2973 /*
2974  * This function will remove the pte associated with a pv from its parent.
2975  * Terminal pv's are supported.  All cpus specified by (bulk) are properly
2976  * invalidated.
2977  *
2978  * The wire count will be dropped on the parent page table.  The wire
2979  * count on the page being removed (pv->pv_m) from the parent page table
2980  * is NOT touched.  Note that terminal pages will not have any additional
2981  * wire counts while page table pages will have at least one representing
2982  * the mapping, plus others representing sub-mappings.
2983  *
2984  * NOTE: Cannot be called on kernel page table pages, only KVM terminal
2985  *	 pages and user page table and terminal pages.
2986  *
2987  * NOTE: The pte being removed might be unmanaged, and the pv supplied might
2988  *	 be freshly allocated and not imply that the pte is managed.  In this
2989  *	 case pv->pv_m should be NULL.
2990  *
2991  * The pv must be locked.  The pvp, if supplied, must be locked.  All
2992  * supplied pv's will remain locked on return.
2993  *
2994  * XXX must lock parent pv's if they exist to remove pte XXX
2995  */
2996 static
2997 void
2998 pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp, pmap_inval_bulk_t *bulk,
2999 		   int destroy)
3000 {
3001 	vm_pindex_t ptepindex = pv->pv_pindex;
3002 	pmap_t pmap = pv->pv_pmap;
3003 	vm_page_t p;
3004 	int gotpvp = 0;
3005 
3006 	KKASSERT(pmap);
3007 
3008 	if (ptepindex >= pmap_pml4_pindex()) {
3009 		/*
3010 		 * We are the top level PML4E table, there is no parent.
3011 		 *
3012 		 * This is either the normal or isolated PML4E table.
3013 		 * Only the normal is used in regular operation, the isolated
3014 		 * is only passed in when breaking down the whole pmap.
3015 		 */
3016 		p = pmap->pm_pmlpv->pv_m;
3017 		KKASSERT(pv->pv_m == p);	/* debugging */
3018 	} else if (ptepindex >= pmap_pdp_pindex(0)) {
3019 		/*
3020 		 * Remove a PDP page from the PML4E.  This can only occur
3021 		 * with user page tables.  We do not have to lock the
3022 		 * pml4 PV so just ignore pvp.
3023 		 */
3024 		vm_pindex_t pml4_pindex;
3025 		vm_pindex_t pdp_index;
3026 		pml4_entry_t *pdp;
3027 		pml4_entry_t *pdp_iso;
3028 
3029 		pdp_index = ptepindex - pmap_pdp_pindex(0);
3030 		if (pvp == NULL) {
3031 			pml4_pindex = pmap_pml4_pindex();
3032 			pvp = pv_get(pv->pv_pmap, pml4_pindex, NULL);
3033 			KKASSERT(pvp);
3034 			gotpvp = 1;
3035 		}
3036 
3037 		pdp = &pmap->pm_pml4[pdp_index & ((1ul << NPML4EPGSHIFT) - 1)];
3038 		KKASSERT((*pdp & pmap->pmap_bits[PG_V_IDX]) != 0);
3039 		p = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
3040 		pmap_inval_bulk(bulk, (vm_offset_t)-1, pdp, 0);
3041 
3042 		/*
3043 		 * Also remove the PDP from the isolated PML4E if the
3044 		 * process uses one.
3045 		 */
3046 		if (pvp == pmap->pm_pmlpv && pmap->pm_pmlpv_iso) {
3047 			pdp_iso = &pmap->pm_pml4_iso[pdp_index &
3048 						((1ul << NPML4EPGSHIFT) - 1)];
3049 			pmap_inval_bulk(bulk, (vm_offset_t)-1, pdp_iso, 0);
3050 		}
3051 		KKASSERT(pv->pv_m == p);	/* debugging */
3052 	} else if (ptepindex >= pmap_pd_pindex(0)) {
3053 		/*
3054 		 * Remove a PD page from the PDP
3055 		 *
3056 		 * SIMPLE PMAP NOTE: Non-existant pvp's are ok in the case
3057 		 *		     of a simple pmap because it stops at
3058 		 *		     the PD page.
3059 		 */
3060 		vm_pindex_t pdp_pindex;
3061 		vm_pindex_t pd_index;
3062 		pdp_entry_t *pd;
3063 
3064 		pd_index = ptepindex - pmap_pd_pindex(0);
3065 
3066 		if (pvp == NULL) {
3067 			pdp_pindex = NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
3068 				     (pd_index >> NPML4EPGSHIFT);
3069 			pvp = pv_get(pv->pv_pmap, pdp_pindex, NULL);
3070 			gotpvp = 1;
3071 		}
3072 
3073 		if (pvp) {
3074 			pd = pv_pte_lookup(pvp, pd_index &
3075 						((1ul << NPDPEPGSHIFT) - 1));
3076 			KKASSERT((*pd & pmap->pmap_bits[PG_V_IDX]) != 0);
3077 			p = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
3078 			pmap_inval_bulk(bulk, (vm_offset_t)-1, pd, 0);
3079 		} else {
3080 			KKASSERT(pmap->pm_flags & PMAP_FLAG_SIMPLE);
3081 			p = pv->pv_m;		/* degenerate test later */
3082 		}
3083 		KKASSERT(pv->pv_m == p);	/* debugging */
3084 	} else if (ptepindex >= pmap_pt_pindex(0)) {
3085 		/*
3086 		 *  Remove a PT page from the PD
3087 		 */
3088 		vm_pindex_t pd_pindex;
3089 		vm_pindex_t pt_index;
3090 		pd_entry_t *pt;
3091 
3092 		pt_index = ptepindex - pmap_pt_pindex(0);
3093 
3094 		if (pvp == NULL) {
3095 			pd_pindex = NUPTE_TOTAL + NUPT_TOTAL +
3096 				    (pt_index >> NPDPEPGSHIFT);
3097 			pvp = pv_get(pv->pv_pmap, pd_pindex, NULL);
3098 			KKASSERT(pvp);
3099 			gotpvp = 1;
3100 		}
3101 
3102 		pt = pv_pte_lookup(pvp, pt_index & ((1ul << NPDPEPGSHIFT) - 1));
3103 #if 0
3104 		KASSERT((*pt & pmap->pmap_bits[PG_V_IDX]) != 0,
3105 			("*pt unexpectedly invalid %016jx "
3106 			 "gotpvp=%d ptepindex=%ld ptindex=%ld pv=%p pvp=%p",
3107 			*pt, gotpvp, ptepindex, pt_index, pv, pvp));
3108 		p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
3109 #else
3110 		if ((*pt & pmap->pmap_bits[PG_V_IDX]) == 0) {
3111 			kprintf("*pt unexpectedly invalid %016jx "
3112 			        "gotpvp=%d ptepindex=%ld ptindex=%ld "
3113 				"pv=%p pvp=%p\n",
3114 				*pt, gotpvp, ptepindex, pt_index, pv, pvp);
3115 			tsleep(pt, 0, "DEAD", 0);
3116 			p = pv->pv_m;
3117 		} else {
3118 			p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
3119 		}
3120 #endif
3121 		pmap_inval_bulk(bulk, (vm_offset_t)-1, pt, 0);
3122 		KKASSERT(pv->pv_m == p);	/* debugging */
3123 	} else {
3124 		KKASSERT(0);
3125 	}
3126 
3127 	/*
3128 	 * If requested, scrap the underlying pv->pv_m and the underlying
3129 	 * pv.  If this is a page-table-page we must also free the page.
3130 	 *
3131 	 * pvp must be returned locked.
3132 	 */
3133 	if (destroy == 1) {
3134 		/*
3135 		 * page table page (PT, PD, PDP, PML4), caller was responsible
3136 		 * for testing wired_count.
3137 		 */
3138 		KKASSERT(pv->pv_m->wire_count == 1);
3139 		p = pmap_remove_pv_page(pv, 1);
3140 		pv_free(pv, pvp);
3141 		pv = NULL;
3142 
3143 		vm_page_busy_wait(p, FALSE, "pgpun");
3144 		vm_page_unwire(p, 0);
3145 		vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
3146 		vm_page_free(p);
3147 	}
3148 
3149 	/*
3150 	 * If we acquired pvp ourselves then we are responsible for
3151 	 * recursively deleting it.
3152 	 */
3153 	if (pvp && gotpvp) {
3154 		/*
3155 		 * Recursively destroy higher-level page tables.
3156 		 *
3157 		 * This is optional.  If we do not, they will still
3158 		 * be destroyed when the process exits.
3159 		 *
3160 		 * NOTE: Do not destroy pv_entry's with extra hold refs,
3161 		 *	 a caller may have unlocked it and intends to
3162 		 *	 continue to use it.
3163 		 */
3164 		if (pmap_dynamic_delete &&
3165 		    pvp->pv_m &&
3166 		    pvp->pv_m->wire_count == 1 &&
3167 		    (pvp->pv_hold & PV_HOLD_MASK) == 2 &&
3168 		    pvp->pv_pindex < pmap_pml4_pindex()) {
3169 			if (pmap != &kernel_pmap) {
3170 				pmap_remove_pv_pte(pvp, NULL, bulk, 1);
3171 				pvp = NULL;	/* safety */
3172 			} else {
3173 				kprintf("Attempt to remove kernel_pmap pindex "
3174 					"%jd\n", pvp->pv_pindex);
3175 				pv_put(pvp);
3176 			}
3177 		} else {
3178 			pv_put(pvp);
3179 		}
3180 	}
3181 }
3182 
3183 /*
3184  * Remove the vm_page association to a pv.  The pv must be locked.
3185  */
3186 static
3187 vm_page_t
3188 pmap_remove_pv_page(pv_entry_t pv, int clrpgbits)
3189 {
3190 	vm_page_t m;
3191 
3192 	m = pv->pv_m;
3193 	pv->pv_m = NULL;
3194 	if (clrpgbits)
3195 		vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
3196 
3197 	return(m);
3198 }
3199 
3200 /*
3201  * Grow the number of kernel page table entries, if needed.
3202  *
3203  * This routine is always called to validate any address space
3204  * beyond KERNBASE (for kldloads).  kernel_vm_end only governs the address
3205  * space below KERNBASE.
3206  *
3207  * kernel_map must be locked exclusively by the caller.
3208  */
3209 void
3210 pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
3211 {
3212 	vm_paddr_t paddr;
3213 	vm_offset_t ptppaddr;
3214 	vm_page_t nkpg;
3215 	pd_entry_t *pt, newpt;
3216 	pdp_entry_t *pd, newpd;
3217 	int update_kernel_vm_end;
3218 
3219 	/*
3220 	 * bootstrap kernel_vm_end on first real VM use
3221 	 */
3222 	if (kernel_vm_end == 0) {
3223 		kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
3224 
3225 		for (;;) {
3226 			pt = pmap_pt(&kernel_pmap, kernel_vm_end);
3227 			if (pt == NULL)
3228 				break;
3229 			if ((*pt & kernel_pmap.pmap_bits[PG_V_IDX]) == 0)
3230 				break;
3231 			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
3232 					~(vm_offset_t)(PAGE_SIZE * NPTEPG - 1);
3233 			if (kernel_vm_end - 1 >= vm_map_max(&kernel_map)) {
3234 				kernel_vm_end = vm_map_max(&kernel_map);
3235 				break;
3236 			}
3237 		}
3238 	}
3239 
3240 	/*
3241 	 * Fill in the gaps.  kernel_vm_end is only adjusted for ranges
3242 	 * below KERNBASE.  Ranges above KERNBASE are kldloaded and we
3243 	 * do not want to force-fill 128G worth of page tables.
3244 	 */
3245 	if (kstart < KERNBASE) {
3246 		if (kstart > kernel_vm_end)
3247 			kstart = kernel_vm_end;
3248 		KKASSERT(kend <= KERNBASE);
3249 		update_kernel_vm_end = 1;
3250 	} else {
3251 		update_kernel_vm_end = 0;
3252 	}
3253 
3254 	kstart = rounddown2(kstart, (vm_offset_t)(PAGE_SIZE * NPTEPG));
3255 	kend = roundup2(kend, (vm_offset_t)(PAGE_SIZE * NPTEPG));
3256 
3257 	if (kend - 1 >= vm_map_max(&kernel_map))
3258 		kend = vm_map_max(&kernel_map);
3259 
3260 	while (kstart < kend) {
3261 		pt = pmap_pt(&kernel_pmap, kstart);
3262 		if (pt == NULL) {
3263 			/*
3264 			 * We need a new PD entry
3265 			 */
3266 			nkpg = vm_page_alloc(NULL, mycpu->gd_rand_incr++,
3267 			                     VM_ALLOC_NORMAL |
3268 					     VM_ALLOC_SYSTEM |
3269 					     VM_ALLOC_INTERRUPT);
3270 			if (nkpg == NULL) {
3271 				panic("pmap_growkernel: no memory to grow "
3272 				      "kernel");
3273 			}
3274 			paddr = VM_PAGE_TO_PHYS(nkpg);
3275 			pmap_zero_page(paddr);
3276 			pd = pmap_pd(&kernel_pmap, kstart);
3277 
3278 			newpd = (pdp_entry_t)
3279 			    (paddr |
3280 			    kernel_pmap.pmap_bits[PG_V_IDX] |
3281 			    kernel_pmap.pmap_bits[PG_RW_IDX] |
3282 			    kernel_pmap.pmap_bits[PG_A_IDX]);
3283 			atomic_swap_long(pd, newpd);
3284 
3285 #if 0
3286 			kprintf("NEWPD pd=%p pde=%016jx phys=%016jx\n",
3287 				pd, newpd, paddr);
3288 #endif
3289 
3290 			continue; /* try again */
3291 		}
3292 
3293 		if ((*pt & kernel_pmap.pmap_bits[PG_V_IDX]) != 0) {
3294 			kstart = (kstart + PAGE_SIZE * NPTEPG) &
3295 				 ~(vm_offset_t)(PAGE_SIZE * NPTEPG - 1);
3296 			if (kstart - 1 >= vm_map_max(&kernel_map)) {
3297 				kstart = vm_map_max(&kernel_map);
3298 				break;
3299 			}
3300 			continue;
3301 		}
3302 
3303 		/*
3304 		 * We need a new PT
3305 		 *
3306 		 * This index is bogus, but out of the way
3307 		 */
3308 		nkpg = vm_page_alloc(NULL, mycpu->gd_rand_incr++,
3309 				     VM_ALLOC_NORMAL |
3310 				     VM_ALLOC_SYSTEM |
3311 				     VM_ALLOC_INTERRUPT);
3312 		if (nkpg == NULL)
3313 			panic("pmap_growkernel: no memory to grow kernel");
3314 
3315 		vm_page_wire(nkpg);
3316 		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
3317 		pmap_zero_page(ptppaddr);
3318 		newpt = (pd_entry_t)(ptppaddr |
3319 				     kernel_pmap.pmap_bits[PG_V_IDX] |
3320 				     kernel_pmap.pmap_bits[PG_RW_IDX] |
3321 				     kernel_pmap.pmap_bits[PG_A_IDX]);
3322 		atomic_swap_long(pt, newpt);
3323 
3324 		kstart = (kstart + PAGE_SIZE * NPTEPG) &
3325 			  ~(vm_offset_t)(PAGE_SIZE * NPTEPG - 1);
3326 
3327 		if (kstart - 1 >= vm_map_max(&kernel_map)) {
3328 			kstart = vm_map_max(&kernel_map);
3329 			break;
3330 		}
3331 	}
3332 
3333 	/*
3334 	 * Only update kernel_vm_end for areas below KERNBASE.
3335 	 */
3336 	if (update_kernel_vm_end && kernel_vm_end < kstart)
3337 		kernel_vm_end = kstart;
3338 }
3339 
3340 /*
3341  *	Add a reference to the specified pmap.
3342  */
3343 void
3344 pmap_reference(pmap_t pmap)
3345 {
3346 	if (pmap != NULL)
3347 		atomic_add_int(&pmap->pm_count, 1);
3348 }
3349 
3350 void
3351 pmap_maybethreaded(pmap_t pmap)
3352 {
3353 	atomic_set_int(&pmap->pm_flags, PMAP_MULTI);
3354 }
3355 
3356 /*
3357  * Called while page is hard-busied to clear the PG_MAPPED and PG_WRITEABLE
3358  * flags if able.  This can happen when the pmap code is unable to clear
3359  * the bits in prior actions due to not holding the page hard-busied at
3360  * the time.
3361  *
3362  * The clearing of PG_MAPPED/WRITEABLE is an optional optimization done
3363  * when the pte is removed and only if the pte has not been multiply-mapped.
3364  * The caller may have to call vm_page_protect() if the bits are still set
3365  * here.
3366  *
3367  * This function is expected to be quick.
3368  */
3369 int
3370 pmap_mapped_sync(vm_page_t m)
3371 {
3372 	return (m->flags);
3373 }
3374 
3375 /***************************************************
3376  * page management routines.
3377  ***************************************************/
3378 
3379 /*
3380  * Hold a pv without locking it
3381  */
3382 #if 0
3383 static void
3384 pv_hold(pv_entry_t pv)
3385 {
3386 	atomic_add_int(&pv->pv_hold, 1);
3387 }
3388 #endif
3389 
3390 /*
3391  * Hold a pv_entry, preventing its destruction.  TRUE is returned if the pv
3392  * was successfully locked, FALSE if it wasn't.  The caller must dispose of
3393  * the pv properly.
3394  *
3395  * Either the pmap->pm_spin or the related vm_page_spin (if traversing a
3396  * pv list via its page) must be held by the caller in order to stabilize
3397  * the pv.
3398  */
3399 static int
3400 _pv_hold_try(pv_entry_t pv PMAP_DEBUG_DECL)
3401 {
3402 	u_int count;
3403 
3404 	/*
3405 	 * Critical path shortcut expects pv to already have one ref
3406 	 * (for the pv->pv_pmap).
3407 	 */
3408 	count = pv->pv_hold;
3409 	cpu_ccfence();
3410 	for (;;) {
3411 		if ((count & PV_HOLD_LOCKED) == 0) {
3412 			if (atomic_fcmpset_int(&pv->pv_hold, &count,
3413 					      (count + 1) | PV_HOLD_LOCKED)) {
3414 #ifdef PMAP_DEBUG
3415 				pv->pv_func = func;
3416 				pv->pv_line = lineno;
3417 #endif
3418 				return TRUE;
3419 			}
3420 		} else {
3421 			if (atomic_fcmpset_int(&pv->pv_hold, &count, count + 1))
3422 				return FALSE;
3423 		}
3424 		/* retry */
3425 	}
3426 }
3427 
3428 /*
3429  * Drop a previously held pv_entry which could not be locked, allowing its
3430  * destruction.
3431  *
3432  * Must not be called with a spinlock held as we might zfree() the pv if it
3433  * is no longer associated with a pmap and this was the last hold count.
3434  */
3435 static void
3436 pv_drop(pv_entry_t pv)
3437 {
3438 	u_int count;
3439 
3440 	for (;;) {
3441 		count = pv->pv_hold;
3442 		cpu_ccfence();
3443 		KKASSERT((count & PV_HOLD_MASK) > 0);
3444 		KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) !=
3445 			 (PV_HOLD_LOCKED | 1));
3446 		if (atomic_cmpset_int(&pv->pv_hold, count, count - 1)) {
3447 			if ((count & PV_HOLD_MASK) == 1) {
3448 #ifdef PMAP_DEBUG2
3449 				if (pmap_enter_debug > 0) {
3450 					--pmap_enter_debug;
3451 					kprintf("pv_drop: free pv %p\n", pv);
3452 				}
3453 #endif
3454 				KKASSERT(count == 1);
3455 				KKASSERT(pv->pv_pmap == NULL);
3456 				zfree(pvzone, pv);
3457 			}
3458 			return;
3459 		}
3460 		/* retry */
3461 	}
3462 }
3463 
3464 /*
3465  * Find or allocate the requested PV entry, returning a locked, held pv.
3466  *
3467  * If (*isnew) is non-zero, the returned pv will have two hold counts, one
3468  * for the caller and one representing the pmap and vm_page association.
3469  *
3470  * If (*isnew) is zero, the returned pv will have only one hold count.
3471  *
3472  * Since both associations can only be adjusted while the pv is locked,
3473  * together they represent just one additional hold.
3474  */
3475 static
3476 pv_entry_t
3477 _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew PMAP_DEBUG_DECL)
3478 {
3479 	struct mdglobaldata *md = mdcpu;
3480 	pv_entry_t pv;
3481 	pv_entry_t pnew;
3482 	int pmap_excl = 0;
3483 
3484 	pnew = NULL;
3485 	if (md->gd_newpv) {
3486 #if 1
3487 		pnew = atomic_swap_ptr((void *)&md->gd_newpv, NULL);
3488 #else
3489 		crit_enter();
3490 		pnew = md->gd_newpv;	/* might race NULL */
3491 		md->gd_newpv = NULL;
3492 		crit_exit();
3493 #endif
3494 	}
3495 	if (pnew == NULL)
3496 		pnew = zalloc(pvzone);
3497 
3498 	spin_lock_shared(&pmap->pm_spin);
3499 	for (;;) {
3500 		/*
3501 		 * Shortcut cache
3502 		 */
3503 		pv = pv_entry_lookup(pmap, pindex);
3504 		if (pv == NULL) {
3505 			vm_pindex_t *pmark;
3506 
3507 			/*
3508 			 * Requires exclusive pmap spinlock
3509 			 */
3510 			if (pmap_excl == 0) {
3511 				pmap_excl = 1;
3512 				if (!spin_lock_upgrade_try(&pmap->pm_spin)) {
3513 					spin_unlock_shared(&pmap->pm_spin);
3514 					spin_lock(&pmap->pm_spin);
3515 					continue;
3516 				}
3517 			}
3518 
3519 			/*
3520 			 * We need to block if someone is holding our
3521 			 * placemarker.  As long as we determine the
3522 			 * placemarker has not been aquired we do not
3523 			 * need to get it as acquision also requires
3524 			 * the pmap spin lock.
3525 			 *
3526 			 * However, we can race the wakeup.
3527 			 */
3528 			pmark = pmap_placemarker_hash(pmap, pindex);
3529 
3530 			if (((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
3531 				tsleep_interlock(pmark, 0);
3532 				atomic_set_long(pmark, PM_PLACEMARK_WAKEUP);
3533 				if (((*pmark ^ pindex) &
3534 				     ~PM_PLACEMARK_WAKEUP) == 0) {
3535 					spin_unlock(&pmap->pm_spin);
3536 					tsleep(pmark, PINTERLOCKED, "pvplc", 0);
3537 					spin_lock(&pmap->pm_spin);
3538 				}
3539 				continue;
3540 			}
3541 
3542 			/*
3543 			 * Setup the new entry
3544 			 */
3545 			pnew->pv_pmap = pmap;
3546 			pnew->pv_pindex = pindex;
3547 			pnew->pv_hold = PV_HOLD_LOCKED | 2;
3548 			pnew->pv_flags = 0;
3549 #ifdef PMAP_DEBUG
3550 			pnew->pv_func = func;
3551 			pnew->pv_line = lineno;
3552 			if (pnew->pv_line_lastfree > 0) {
3553 				pnew->pv_line_lastfree =
3554 						-pnew->pv_line_lastfree;
3555 			}
3556 #endif
3557 			pv = pv_entry_rb_tree_RB_INSERT(&pmap->pm_pvroot, pnew);
3558 			atomic_add_long(&pmap->pm_stats.resident_count, 1);
3559 			spin_unlock(&pmap->pm_spin);
3560 			*isnew = 1;
3561 
3562 			KASSERT(pv == NULL, ("pv insert failed %p->%p", pnew, pv));
3563 			return(pnew);
3564 		}
3565 
3566 		/*
3567 		 * We already have an entry, cleanup the staged pnew if
3568 		 * we can get the lock, otherwise block and retry.
3569 		 */
3570 		if (__predict_true(_pv_hold_try(pv PMAP_DEBUG_COPY))) {
3571 			if (pmap_excl)
3572 				spin_unlock(&pmap->pm_spin);
3573 			else
3574 				spin_unlock_shared(&pmap->pm_spin);
3575 #if 1
3576 			pnew = atomic_swap_ptr((void *)&md->gd_newpv, pnew);
3577 			if (pnew)
3578 				zfree(pvzone, pnew);
3579 #else
3580 			crit_enter();
3581 			if (md->gd_newpv == NULL)
3582 				md->gd_newpv = pnew;
3583 			else
3584 				zfree(pvzone, pnew);
3585 			crit_exit();
3586 #endif
3587 			KKASSERT(pv->pv_pmap == pmap &&
3588 				 pv->pv_pindex == pindex);
3589 			*isnew = 0;
3590 			return(pv);
3591 		}
3592 		if (pmap_excl) {
3593 			spin_unlock(&pmap->pm_spin);
3594 			_pv_lock(pv PMAP_DEBUG_COPY);
3595 			pv_put(pv);
3596 			spin_lock(&pmap->pm_spin);
3597 		} else {
3598 			spin_unlock_shared(&pmap->pm_spin);
3599 			_pv_lock(pv PMAP_DEBUG_COPY);
3600 			pv_put(pv);
3601 			spin_lock_shared(&pmap->pm_spin);
3602 		}
3603 	}
3604 	/* NOT REACHED */
3605 }
3606 
3607 /*
3608  * Find the requested PV entry, returning a locked+held pv or NULL
3609  */
3610 static
3611 pv_entry_t
3612 _pv_get(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp PMAP_DEBUG_DECL)
3613 {
3614 	pv_entry_t pv;
3615 	int pmap_excl = 0;
3616 
3617 	spin_lock_shared(&pmap->pm_spin);
3618 	for (;;) {
3619 		/*
3620 		 * Shortcut cache
3621 		 */
3622 		pv = pv_entry_lookup(pmap, pindex);
3623 		if (pv == NULL) {
3624 			/*
3625 			 * Block if there is ANY placemarker.  If we are to
3626 			 * return it, we must also aquire the spot, so we
3627 			 * have to block even if the placemarker is held on
3628 			 * a different address.
3629 			 *
3630 			 * OPTIMIZATION: If pmarkp is passed as NULL the
3631 			 * caller is just probing (or looking for a real
3632 			 * pv_entry), and in this case we only need to check
3633 			 * to see if the placemarker matches pindex.
3634 			 */
3635 			vm_pindex_t *pmark;
3636 
3637 			/*
3638 			 * Requires exclusive pmap spinlock
3639 			 */
3640 			if (pmap_excl == 0) {
3641 				pmap_excl = 1;
3642 				if (!spin_lock_upgrade_try(&pmap->pm_spin)) {
3643 					spin_unlock_shared(&pmap->pm_spin);
3644 					spin_lock(&pmap->pm_spin);
3645 					continue;
3646 				}
3647 			}
3648 
3649 			pmark = pmap_placemarker_hash(pmap, pindex);
3650 
3651 			if ((pmarkp && *pmark != PM_NOPLACEMARK) ||
3652 			    ((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
3653 				tsleep_interlock(pmark, 0);
3654 				atomic_set_long(pmark, PM_PLACEMARK_WAKEUP);
3655 				if ((pmarkp && *pmark != PM_NOPLACEMARK) ||
3656 				    ((*pmark ^ pindex) &
3657 				     ~PM_PLACEMARK_WAKEUP) == 0) {
3658 					spin_unlock(&pmap->pm_spin);
3659 					tsleep(pmark, PINTERLOCKED, "pvpld", 0);
3660 					spin_lock(&pmap->pm_spin);
3661 				}
3662 				continue;
3663 			}
3664 			if (pmarkp) {
3665 				if (atomic_swap_long(pmark, pindex) !=
3666 				    PM_NOPLACEMARK) {
3667 					panic("_pv_get: pmark race");
3668 				}
3669 				*pmarkp = pmark;
3670 			}
3671 			spin_unlock(&pmap->pm_spin);
3672 			return NULL;
3673 		}
3674 		if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
3675 			if (pmap_excl)
3676 				spin_unlock(&pmap->pm_spin);
3677 			else
3678 				spin_unlock_shared(&pmap->pm_spin);
3679 			KKASSERT(pv->pv_pmap == pmap &&
3680 				 pv->pv_pindex == pindex);
3681 			return(pv);
3682 		}
3683 		if (pmap_excl) {
3684 			spin_unlock(&pmap->pm_spin);
3685 			_pv_lock(pv PMAP_DEBUG_COPY);
3686 			pv_put(pv);
3687 			spin_lock(&pmap->pm_spin);
3688 		} else {
3689 			spin_unlock_shared(&pmap->pm_spin);
3690 			_pv_lock(pv PMAP_DEBUG_COPY);
3691 			pv_put(pv);
3692 			spin_lock_shared(&pmap->pm_spin);
3693 		}
3694 	}
3695 }
3696 
3697 /*
3698  * Lookup, hold, and attempt to lock (pmap,pindex).
3699  *
3700  * If the entry does not exist NULL is returned and *errorp is set to 0
3701  *
3702  * If the entry exists and could be successfully locked it is returned and
3703  * errorp is set to 0.
3704  *
3705  * If the entry exists but could NOT be successfully locked it is returned
3706  * held and *errorp is set to 1.
3707  *
3708  * If the entry is placemarked by someone else NULL is returned and *errorp
3709  * is set to 1.
3710  */
3711 static
3712 pv_entry_t
3713 pv_get_try(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp, int *errorp)
3714 {
3715 	pv_entry_t pv;
3716 
3717 	spin_lock_shared(&pmap->pm_spin);
3718 
3719 	pv = pv_entry_lookup(pmap, pindex);
3720 	if (pv == NULL) {
3721 		vm_pindex_t *pmark;
3722 
3723 		pmark = pmap_placemarker_hash(pmap, pindex);
3724 
3725 		if (((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
3726 			*errorp = 1;
3727 		} else if (pmarkp &&
3728 			   atomic_cmpset_long(pmark, PM_NOPLACEMARK, pindex)) {
3729 			*errorp = 0;
3730 		} else {
3731 			/*
3732 			 * Can't set a placemark with a NULL pmarkp, or if
3733 			 * pmarkp is non-NULL but we failed to set our
3734 			 * placemark.
3735 			 */
3736 			*errorp = 1;
3737 		}
3738 		if (pmarkp)
3739 			*pmarkp = pmark;
3740 		spin_unlock_shared(&pmap->pm_spin);
3741 
3742 		return NULL;
3743 	}
3744 
3745 	/*
3746 	 * XXX This has problems if the lock is shared, why?
3747 	 */
3748 	if (pv_hold_try(pv)) {
3749 		spin_unlock_shared(&pmap->pm_spin);
3750 		*errorp = 0;
3751 		KKASSERT(pv->pv_pmap == pmap && pv->pv_pindex == pindex);
3752 		return(pv);	/* lock succeeded */
3753 	}
3754 	spin_unlock_shared(&pmap->pm_spin);
3755 	*errorp = 1;
3756 
3757 	return (pv);		/* lock failed */
3758 }
3759 
3760 /*
3761  * Lock a held pv, keeping the hold count
3762  */
3763 static
3764 void
3765 _pv_lock(pv_entry_t pv PMAP_DEBUG_DECL)
3766 {
3767 	u_int count;
3768 
3769 	for (;;) {
3770 		count = pv->pv_hold;
3771 		cpu_ccfence();
3772 		if ((count & PV_HOLD_LOCKED) == 0) {
3773 			if (atomic_cmpset_int(&pv->pv_hold, count,
3774 					      count | PV_HOLD_LOCKED)) {
3775 #ifdef PMAP_DEBUG
3776 				pv->pv_func = func;
3777 				pv->pv_line = lineno;
3778 #endif
3779 				return;
3780 			}
3781 			continue;
3782 		}
3783 		tsleep_interlock(pv, 0);
3784 		if (atomic_cmpset_int(&pv->pv_hold, count,
3785 				      count | PV_HOLD_WAITING)) {
3786 #ifdef PMAP_DEBUG2
3787 			if (pmap_enter_debug > 0) {
3788 				--pmap_enter_debug;
3789 				kprintf("pv waiting on %s:%d\n",
3790 					pv->pv_func, pv->pv_line);
3791 			}
3792 #endif
3793 			tsleep(pv, PINTERLOCKED, "pvwait", hz);
3794 		}
3795 		/* retry */
3796 	}
3797 }
3798 
3799 /*
3800  * Unlock a held and locked pv, keeping the hold count.
3801  */
3802 static
3803 void
3804 pv_unlock(pv_entry_t pv)
3805 {
3806 	u_int count;
3807 
3808 	for (;;) {
3809 		count = pv->pv_hold;
3810 		cpu_ccfence();
3811 		KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) >=
3812 			 (PV_HOLD_LOCKED | 1));
3813 		if (atomic_cmpset_int(&pv->pv_hold, count,
3814 				      count &
3815 				      ~(PV_HOLD_LOCKED | PV_HOLD_WAITING))) {
3816 			if (count & PV_HOLD_WAITING)
3817 				wakeup(pv);
3818 			break;
3819 		}
3820 	}
3821 }
3822 
3823 /*
3824  * Unlock and drop a pv.  If the pv is no longer associated with a pmap
3825  * and the hold count drops to zero we will free it.
3826  *
3827  * Caller should not hold any spin locks.  We are protected from hold races
3828  * by virtue of holds only occuring only with a pmap_spin or vm_page_spin
3829  * lock held.  A pv cannot be located otherwise.
3830  */
3831 static
3832 void
3833 pv_put(pv_entry_t pv)
3834 {
3835 #ifdef PMAP_DEBUG2
3836 	if (pmap_enter_debug > 0) {
3837 		--pmap_enter_debug;
3838 		kprintf("pv_put pv=%p hold=%08x\n", pv, pv->pv_hold);
3839 	}
3840 #endif
3841 
3842 	/*
3843 	 * Normal put-aways must have a pv_m associated with the pv,
3844 	 * but allow the case where the pv has been destructed due
3845 	 * to pmap_dynamic_delete.
3846 	 */
3847 	KKASSERT(pv->pv_pmap == NULL || pv->pv_m != NULL);
3848 
3849 	/*
3850 	 * Fast - shortcut most common condition
3851 	 */
3852 	if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 1))
3853 		return;
3854 
3855 	/*
3856 	 * Slow
3857 	 */
3858 	pv_unlock(pv);
3859 	pv_drop(pv);
3860 }
3861 
3862 /*
3863  * Remove the pmap association from a pv, require that pv_m already be removed,
3864  * then unlock and drop the pv.  Any pte operations must have already been
3865  * completed.  This call may result in a last-drop which will physically free
3866  * the pv.
3867  *
3868  * Removing the pmap association entails an additional drop.
3869  *
3870  * pv must be exclusively locked on call and will be disposed of on return.
3871  */
3872 static
3873 void
3874 _pv_free(pv_entry_t pv, pv_entry_t pvp PMAP_DEBUG_DECL)
3875 {
3876 	pmap_t pmap;
3877 
3878 #ifdef PMAP_DEBUG
3879 	pv->pv_func_lastfree = func;
3880 	pv->pv_line_lastfree = lineno;
3881 #endif
3882 	KKASSERT(pv->pv_m == NULL);
3883 	KKASSERT((pv->pv_hold & (PV_HOLD_LOCKED|PV_HOLD_MASK)) >=
3884 		  (PV_HOLD_LOCKED|1));
3885 	if ((pmap = pv->pv_pmap) != NULL) {
3886 		spin_lock(&pmap->pm_spin);
3887 		KKASSERT(pv->pv_pmap == pmap);
3888 		if (pmap->pm_pvhint_pt == pv)
3889 			pmap->pm_pvhint_pt = NULL;
3890 		if (pmap->pm_pvhint_unused == pv)
3891 			pmap->pm_pvhint_unused = NULL;
3892 		pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
3893 		atomic_add_long(&pmap->pm_stats.resident_count, -1);
3894 		pv->pv_pmap = NULL;
3895 		pv->pv_pindex = 0;
3896 		spin_unlock(&pmap->pm_spin);
3897 
3898 		/*
3899 		 * Try to shortcut three atomic ops, otherwise fall through
3900 		 * and do it normally.  Drop two refs and the lock all in
3901 		 * one go.
3902 		 */
3903 		if (pvp) {
3904 			if (vm_page_unwire_quick(pvp->pv_m))
3905 				panic("_pv_free: bad wirecount on pvp");
3906 		}
3907 		if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 0)) {
3908 #ifdef PMAP_DEBUG2
3909 			if (pmap_enter_debug > 0) {
3910 				--pmap_enter_debug;
3911 				kprintf("pv_free: free pv %p\n", pv);
3912 			}
3913 #endif
3914 			zfree(pvzone, pv);
3915 			return;
3916 		}
3917 		pv_drop(pv);	/* ref for pv_pmap */
3918 	}
3919 	pv_unlock(pv);
3920 	pv_drop(pv);
3921 }
3922 
3923 /*
3924  * This routine is very drastic, but can save the system
3925  * in a pinch.
3926  */
3927 void
3928 pmap_collect(void)
3929 {
3930 	int i;
3931 	vm_page_t m;
3932 	static int warningdone=0;
3933 
3934 	if (pmap_pagedaemon_waken == 0)
3935 		return;
3936 	pmap_pagedaemon_waken = 0;
3937 	if (warningdone < 5) {
3938 		kprintf("pmap_collect: pv_entries exhausted -- "
3939 			"suggest increasing vm.pmap_pv_entries above %ld\n",
3940 			vm_pmap_pv_entries);
3941 		warningdone++;
3942 	}
3943 
3944 	for (i = 0; i < vm_page_array_size; i++) {
3945 		m = &vm_page_array[i];
3946 		if (m->wire_count || m->hold_count)
3947 			continue;
3948 		if (vm_page_busy_try(m, TRUE) == 0) {
3949 			if (m->wire_count == 0 && m->hold_count == 0) {
3950 				pmap_remove_all(m);
3951 			}
3952 			vm_page_wakeup(m);
3953 		}
3954 	}
3955 }
3956 
3957 /*
3958  * Scan the pmap for active page table entries and issue a callback.
3959  * The callback must dispose of pte_pv, whos PTE entry is at *ptep in
3960  * its parent page table.
3961  *
3962  * pte_pv will be NULL if the page or page table is unmanaged.
3963  * pt_pv will point to the page table page containing the pte for the page.
3964  *
3965  * NOTE! If we come across an unmanaged page TABLE (verses an unmanaged page),
3966  *	 we pass a NULL pte_pv and we pass a pt_pv pointing to the passed
3967  *	 process pmap's PD and page to the callback function.  This can be
3968  *	 confusing because the pt_pv is really a pd_pv, and the target page
3969  *	 table page is simply aliased by the pmap and not owned by it.
3970  *
3971  * It is assumed that the start and end are properly rounded to the page size.
3972  *
3973  * It is assumed that PD pages and above are managed and thus in the RB tree,
3974  * allowing us to use RB_SCAN from the PD pages down for ranged scans.
3975  */
3976 struct pmap_scan_info {
3977 	struct pmap *pmap;
3978 	vm_offset_t sva;
3979 	vm_offset_t eva;
3980 	vm_pindex_t sva_pd_pindex;
3981 	vm_pindex_t eva_pd_pindex;
3982 	void (*func)(pmap_t, struct pmap_scan_info *,
3983 		     vm_pindex_t *, pv_entry_t, vm_offset_t,
3984 		     pt_entry_t *, void *);
3985 	void *arg;
3986 	pmap_inval_bulk_t bulk_core;
3987 	pmap_inval_bulk_t *bulk;
3988 	int count;
3989 	int stop;
3990 };
3991 
3992 static int pmap_scan_cmp(pv_entry_t pv, void *data);
3993 static int pmap_scan_callback(pv_entry_t pv, void *data);
3994 
3995 static void
3996 pmap_scan(struct pmap_scan_info *info, int smp_inval)
3997 {
3998 	struct pmap *pmap = info->pmap;
3999 	pv_entry_t pt_pv;	/* A page table PV */
4000 	pv_entry_t pte_pv;	/* A page table entry PV */
4001 	vm_pindex_t *pte_placemark;
4002 	vm_pindex_t *pt_placemark;
4003 	pt_entry_t *ptep;
4004 	pt_entry_t oldpte;
4005 	struct pv_entry dummy_pv;
4006 
4007 	info->stop = 0;
4008 	if (pmap == NULL)
4009 		return;
4010 	if (info->sva == info->eva)
4011 		return;
4012 	if (smp_inval) {
4013 		info->bulk = &info->bulk_core;
4014 		pmap_inval_bulk_init(&info->bulk_core, pmap);
4015 	} else {
4016 		info->bulk = NULL;
4017 	}
4018 
4019 	/*
4020 	 * Hold the token for stability; if the pmap is empty we have nothing
4021 	 * to do.
4022 	 */
4023 #if 0
4024 	if (pmap->pm_stats.resident_count == 0) {
4025 		return;
4026 	}
4027 #endif
4028 
4029 	info->count = 0;
4030 
4031 	/*
4032 	 * Special handling for scanning one page, which is a very common
4033 	 * operation (it is?).
4034 	 *
4035 	 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4
4036 	 */
4037 	if (info->sva + PAGE_SIZE == info->eva) {
4038 		if (info->sva >= VM_MAX_USER_ADDRESS) {
4039 			/*
4040 			 * Kernel mappings do not track wire counts on
4041 			 * page table pages and only maintain pd_pv and
4042 			 * pte_pv levels so pmap_scan() works.
4043 			 */
4044 			pt_pv = NULL;
4045 			pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva),
4046 					&pte_placemark);
4047 			KKASSERT(pte_pv == NULL);
4048 			ptep = vtopte(info->sva);
4049 		} else {
4050 			/*
4051 			 * We hold pte_placemark across the operation for
4052 			 * unmanaged pages.
4053 			 *
4054 			 * WARNING!  We must hold pt_placemark across the
4055 			 *	     *ptep test to prevent misintepreting
4056 			 *	     a non-zero *ptep as a shared page
4057 			 *	     table page.  Hold it across the function
4058 			 *	     callback as well for SMP safety.
4059 			 */
4060 			pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva),
4061 					&pte_placemark);
4062 			KKASSERT(pte_pv == NULL);
4063 			pt_pv = pv_get(pmap, pmap_pt_pindex(info->sva),
4064 				       &pt_placemark);
4065 			if (pt_pv == NULL) {
4066 #if 0
4067 				KKASSERT(0);
4068 				pd_pv = pv_get(pmap,
4069 					       pmap_pd_pindex(info->sva),
4070 					       NULL);
4071 				if (pd_pv) {
4072 					ptep = pv_pte_lookup(pd_pv,
4073 						    pmap_pt_index(info->sva));
4074 					if (*ptep) {
4075 						info->func(pmap, info,
4076 						     pt_placemark, pd_pv,
4077 						     info->sva, ptep,
4078 						     info->arg);
4079 					} else {
4080 						pv_placemarker_wakeup(pmap,
4081 								  pt_placemark);
4082 					}
4083 					pv_put(pd_pv);
4084 				} else {
4085 					pv_placemarker_wakeup(pmap,
4086 							      pt_placemark);
4087 				}
4088 #else
4089 				pv_placemarker_wakeup(pmap, pt_placemark);
4090 #endif
4091 				pv_placemarker_wakeup(pmap, pte_placemark);
4092 				goto fast_skip;
4093 			}
4094 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(info->sva));
4095 		}
4096 
4097 		/*
4098 		 * NOTE: *ptep can't be ripped out from under us if we hold
4099 		 *	 pte_pv (or pte_placemark) locked, but bits can
4100 		 *	 change.
4101 		 */
4102 		oldpte = *ptep;
4103 		cpu_ccfence();
4104 		if (oldpte == 0) {
4105 			KKASSERT(pte_pv == NULL);
4106 			pv_placemarker_wakeup(pmap, pte_placemark);
4107 		} else {
4108 			KASSERT((oldpte & pmap->pmap_bits[PG_V_IDX]) ==
4109 				pmap->pmap_bits[PG_V_IDX],
4110 			    ("badB *ptep %016lx/%016lx sva %016lx pte_pv NULL",
4111 			    *ptep, oldpte, info->sva));
4112 			info->func(pmap, info, pte_placemark, pt_pv,
4113 				   info->sva, ptep, info->arg);
4114 		}
4115 		if (pt_pv)
4116 			pv_put(pt_pv);
4117 fast_skip:
4118 		pmap_inval_bulk_flush(info->bulk);
4119 		return;
4120 	}
4121 
4122 	/*
4123 	 * Nominal scan case, RB_SCAN() for PD pages and iterate from
4124 	 * there.
4125 	 *
4126 	 * WARNING! eva can overflow our standard ((N + mask) >> bits)
4127 	 *	    bounds, resulting in a pd_pindex of 0.  To solve the
4128 	 *	    problem we use an inclusive range.
4129 	 */
4130 	info->sva_pd_pindex = pmap_pd_pindex(info->sva);
4131 	info->eva_pd_pindex = pmap_pd_pindex(info->eva - PAGE_SIZE);
4132 
4133 	if (info->sva >= VM_MAX_USER_ADDRESS) {
4134 		/*
4135 		 * The kernel does not currently maintain any pv_entry's for
4136 		 * higher-level page tables.
4137 		 */
4138 		bzero(&dummy_pv, sizeof(dummy_pv));
4139 		dummy_pv.pv_pindex = info->sva_pd_pindex;
4140 		spin_lock(&pmap->pm_spin);
4141 		while (dummy_pv.pv_pindex <= info->eva_pd_pindex) {
4142 			pmap_scan_callback(&dummy_pv, info);
4143 			++dummy_pv.pv_pindex;
4144 			if (dummy_pv.pv_pindex < info->sva_pd_pindex) /*wrap*/
4145 				break;
4146 		}
4147 		spin_unlock(&pmap->pm_spin);
4148 	} else {
4149 		/*
4150 		 * User page tables maintain local PML4, PDP, PD, and PT
4151 		 * pv_entry's.  pv_entry's are not used for PTEs.
4152 		 */
4153 		spin_lock(&pmap->pm_spin);
4154 		pv_entry_rb_tree_RB_SCAN(&pmap->pm_pvroot, pmap_scan_cmp,
4155 					 pmap_scan_callback, info);
4156 		spin_unlock(&pmap->pm_spin);
4157 	}
4158 	pmap_inval_bulk_flush(info->bulk);
4159 }
4160 
4161 /*
4162  * WARNING! pmap->pm_spin held
4163  *
4164  * WARNING! eva can overflow our standard ((N + mask) >> bits)
4165  *	    bounds, resulting in a pd_pindex of 0.  To solve the
4166  *	    problem we use an inclusive range.
4167  */
4168 static int
4169 pmap_scan_cmp(pv_entry_t pv, void *data)
4170 {
4171 	struct pmap_scan_info *info = data;
4172 	if (pv->pv_pindex < info->sva_pd_pindex)
4173 		return(-1);
4174 	if (pv->pv_pindex > info->eva_pd_pindex)
4175 		return(1);
4176 	return(0);
4177 }
4178 
4179 /*
4180  * pmap_scan() by PDs
4181  *
4182  * WARNING! pmap->pm_spin held
4183  */
4184 static int
4185 pmap_scan_callback(pv_entry_t pv, void *data)
4186 {
4187 	struct pmap_scan_info *info = data;
4188 	struct pmap *pmap = info->pmap;
4189 	pv_entry_t pd_pv;	/* A page directory PV */
4190 	pv_entry_t pt_pv;	/* A page table PV */
4191 	vm_pindex_t *pt_placemark;
4192 	pt_entry_t *ptep;
4193 	pt_entry_t oldpte;
4194 	vm_offset_t sva;
4195 	vm_offset_t eva;
4196 	vm_offset_t va_next;
4197 	vm_pindex_t pd_pindex;
4198 	int error;
4199 
4200 	/*
4201 	 * Stop if requested
4202 	 */
4203 	if (info->stop)
4204 		return -1;
4205 
4206 	/*
4207 	 * Pull the PD pindex from the pv before releasing the spinlock.
4208 	 *
4209 	 * WARNING: pv is faked for kernel pmap scans.
4210 	 */
4211 	pd_pindex = pv->pv_pindex;
4212 	spin_unlock(&pmap->pm_spin);
4213 	pv = NULL;	/* invalid after spinlock unlocked */
4214 
4215 	/*
4216 	 * Calculate the page range within the PD.  SIMPLE pmaps are
4217 	 * direct-mapped for the entire 2^64 address space.  Normal pmaps
4218 	 * reflect the user and kernel address space which requires
4219 	 * cannonicalization w/regards to converting pd_pindex's back
4220 	 * into addresses.
4221 	 */
4222 	sva = (pd_pindex - pmap_pd_pindex(0)) << PDPSHIFT;
4223 	if ((pmap->pm_flags & PMAP_FLAG_SIMPLE) == 0 &&
4224 	    (sva & PML4_SIGNMASK)) {
4225 		sva |= PML4_SIGNMASK;
4226 	}
4227 	eva = sva + NBPDP;	/* can overflow */
4228 	if (sva < info->sva)
4229 		sva = info->sva;
4230 	if (eva < info->sva || eva > info->eva)
4231 		eva = info->eva;
4232 
4233 	/*
4234 	 * NOTE: kernel mappings do not track page table pages, only
4235 	 * 	 terminal pages.
4236 	 *
4237 	 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4.
4238 	 *	 However, for the scan to be efficient we try to
4239 	 *	 cache items top-down.
4240 	 */
4241 	pd_pv = NULL;
4242 	pt_pv = NULL;
4243 
4244 	for (; sva < eva; sva = va_next) {
4245 		if (info->stop)
4246 			break;
4247 		if (sva >= VM_MAX_USER_ADDRESS) {
4248 			if (pt_pv) {
4249 				pv_put(pt_pv);
4250 				pt_pv = NULL;
4251 			}
4252 			goto kernel_skip;
4253 		}
4254 
4255 		/*
4256 		 * PD cache, scan shortcut if it doesn't exist.
4257 		 */
4258 		if (pd_pv == NULL) {
4259 			pd_pv = pv_get(pmap, pmap_pd_pindex(sva), NULL);
4260 		} else if (pd_pv->pv_pmap != pmap ||
4261 			   pd_pv->pv_pindex != pmap_pd_pindex(sva)) {
4262 			pv_put(pd_pv);
4263 			pd_pv = pv_get(pmap, pmap_pd_pindex(sva), NULL);
4264 		}
4265 		if (pd_pv == NULL) {
4266 			va_next = (sva + NBPDP) & ~PDPMASK;
4267 			if (va_next < sva)
4268 				va_next = eva;
4269 			continue;
4270 		}
4271 
4272 		/*
4273 		 * PT cache
4274 		 *
4275 		 * NOTE: The cached pt_pv can be removed from the pmap when
4276 		 *	 pmap_dynamic_delete is enabled.
4277 		 */
4278 		if (pt_pv && (pt_pv->pv_pmap != pmap ||
4279 			      pt_pv->pv_pindex != pmap_pt_pindex(sva))) {
4280 			pv_put(pt_pv);
4281 			pt_pv = NULL;
4282 		}
4283 		if (pt_pv == NULL) {
4284 			pt_pv = pv_get_try(pmap, pmap_pt_pindex(sva),
4285 					   &pt_placemark, &error);
4286 			if (error) {
4287 				pv_put(pd_pv);	/* lock order */
4288 				pd_pv = NULL;
4289 				if (pt_pv) {
4290 					pv_lock(pt_pv);
4291 					pv_put(pt_pv);
4292 					pt_pv = NULL;
4293 				} else {
4294 					pv_placemarker_wait(pmap, pt_placemark);
4295 				}
4296 				va_next = sva;
4297 				continue;
4298 			}
4299 			/* may have to re-check later if pt_pv is NULL here */
4300 		}
4301 
4302 		/*
4303 		 * If pt_pv is NULL we either have a shared page table
4304 		 * page (NOT IMPLEMENTED XXX) and must issue a callback
4305 		 * specific to that case, or there is no page table page.
4306 		 *
4307 		 * Either way we can skip the page table page.
4308 		 *
4309 		 * WARNING! pt_pv can also be NULL due to a pv creation
4310 		 *	    race where we find it to be NULL and then
4311 		 *	    later see a pte_pv.  But its possible the pt_pv
4312 		 *	    got created inbetween the two operations, so
4313 		 *	    we must check.
4314 		 *
4315 		 *	    XXX This should no longer be the case because
4316 		 *	    we have pt_placemark.
4317 		 */
4318 		if (pt_pv == NULL) {
4319 #if 0
4320 			/* XXX REMOVED */
4321 			/*
4322 			 * Possible unmanaged (shared from another pmap)
4323 			 * page table page.
4324 			 *
4325 			 * WARNING!  We must hold pt_placemark across the
4326 			 *	     *ptep test to prevent misintepreting
4327 			 *	     a non-zero *ptep as a shared page
4328 			 *	     table page.  Hold it across the function
4329 			 *	     callback as well for SMP safety.
4330 			 */
4331 			KKASSERT(0);
4332 			ptep = pv_pte_lookup(pd_pv, pmap_pt_index(sva));
4333 			if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
4334 				info->func(pmap, info, pt_placemark, pd_pv,
4335 					   sva, ptep, info->arg);
4336 			} else {
4337 				pv_placemarker_wakeup(pmap, pt_placemark);
4338 			}
4339 #else
4340 			pv_placemarker_wakeup(pmap, pt_placemark);
4341 #endif
4342 
4343 			/*
4344 			 * Done, move to next page table page.
4345 			 */
4346 			va_next = (sva + NBPDR) & ~PDRMASK;
4347 			if (va_next < sva)
4348 				va_next = eva;
4349 			continue;
4350 		}
4351 
4352 		/*
4353 		 * From this point in the loop testing pt_pv for non-NULL
4354 		 * means we are in UVM, else if it is NULL we are in KVM.
4355 		 *
4356 		 * Limit our scan to either the end of the va represented
4357 		 * by the current page table page, or to the end of the
4358 		 * range being removed.
4359 		 */
4360 kernel_skip:
4361 		va_next = (sva + NBPDR) & ~PDRMASK;
4362 		if (va_next < sva)
4363 			va_next = eva;
4364 		if (va_next > eva)
4365 			va_next = eva;
4366 
4367 		/*
4368 		 * Scan the page table for pages.  Some pages may not be
4369 		 * managed (might not have a pv_entry).
4370 		 *
4371 		 * There is no page table management for kernel pages so
4372 		 * pt_pv will be NULL in that case, but otherwise pt_pv
4373 		 * is non-NULL, locked, and referenced.
4374 		 */
4375 
4376 		/*
4377 		 * At this point a non-NULL pt_pv means a UVA, and a NULL
4378 		 * pt_pv means a KVA.
4379 		 */
4380 		if (pt_pv)
4381 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(sva));
4382 		else
4383 			ptep = vtopte(sva);
4384 
4385 		while (sva < va_next) {
4386 			vm_pindex_t *pte_placemark;
4387 			pv_entry_t pte_pv;
4388 
4389 			/*
4390 			 * Yield every 64 pages, stop if requested.
4391 			 */
4392 			if ((++info->count & 63) == 0)
4393 				lwkt_user_yield();
4394 			if (info->stop)
4395 				break;
4396 
4397 			/*
4398 			 * We can shortcut our scan if *ptep == 0.  This is
4399 			 * an unlocked check.
4400 			 */
4401 			if (*ptep == 0) {
4402 				sva += PAGE_SIZE;
4403 				++ptep;
4404 				continue;
4405 			}
4406 			cpu_ccfence();
4407 
4408 			/*
4409 			 * Acquire the pte_placemark.  pte_pv's won't exist
4410 			 * for leaf pages.
4411 			 *
4412 			 * A multitude of races are possible here so if we
4413 			 * cannot lock definite state we clean out our cache
4414 			 * and break the inner while() loop to force a loop
4415 			 * up to the top of the for().
4416 			 *
4417 			 * XXX unlock/relock pd_pv, pt_pv, and re-test their
4418 			 *     validity instead of looping up?
4419 			 */
4420 			pte_pv = pv_get_try(pmap, pmap_pte_pindex(sva),
4421 					    &pte_placemark, &error);
4422 			KKASSERT(pte_pv == NULL);
4423 			if (error) {
4424 				if (pd_pv) {
4425 					pv_put(pd_pv);	/* lock order */
4426 					pd_pv = NULL;
4427 				}
4428 				if (pt_pv) {
4429 					pv_put(pt_pv);	/* lock order */
4430 					pt_pv = NULL;
4431 				}
4432 				pv_placemarker_wait(pmap, pte_placemark);
4433 				va_next = sva;		/* retry */
4434 				break;
4435 			}
4436 
4437 			/*
4438 			 * Reload *ptep after successfully locking the
4439 			 * pindex.
4440 			 */
4441 			cpu_ccfence();
4442 			oldpte = *ptep;
4443 			if (oldpte == 0) {
4444 				pv_placemarker_wakeup(pmap, pte_placemark);
4445 				sva += PAGE_SIZE;
4446 				++ptep;
4447 				continue;
4448 			}
4449 
4450 			/*
4451 			 * We can't hold pd_pv across the callback (because
4452 			 * we don't pass it to the callback and the callback
4453 			 * might deadlock)
4454 			 */
4455 			if (pd_pv) {
4456 				vm_page_wire_quick(pd_pv->pv_m);
4457 				pv_unlock(pd_pv);
4458 			}
4459 
4460 			/*
4461 			 * Ready for the callback.  The locked placemarker
4462 			 * is consumed by the callback.
4463 			 */
4464 			if (oldpte & pmap->pmap_bits[PG_MANAGED_IDX]) {
4465 				/*
4466 				 * Managed pte
4467 				 */
4468 				KASSERT((oldpte & pmap->pmap_bits[PG_V_IDX]),
4469 				    ("badC *ptep %016lx/%016lx sva %016lx",
4470 				    *ptep, oldpte, sva));
4471 				/*
4472 				 * We must unlock pd_pv across the callback
4473 				 * to avoid deadlocks on any recursive
4474 				 * disposal.  Re-check that it still exists
4475 				 * after re-locking.
4476 				 *
4477 				 * Call target disposes of pte_placemark
4478 				 * and may destroy but will not dispose
4479 				 * of pt_pv.
4480 				 */
4481 				info->func(pmap, info, pte_placemark, pt_pv,
4482 					   sva, ptep, info->arg);
4483 			} else {
4484 				/*
4485 				 * Unmanaged pte
4486 				 *
4487 				 * We must unlock pd_pv across the callback
4488 				 * to avoid deadlocks on any recursive
4489 				 * disposal.  Re-check that it still exists
4490 				 * after re-locking.
4491 				 *
4492 				 * Call target disposes of pte_placemark
4493 				 * and may destroy but will not dispose
4494 				 * of pt_pv.
4495 				 */
4496 				KASSERT((oldpte & pmap->pmap_bits[PG_V_IDX]),
4497 				    ("badD *ptep %016lx/%016lx sva %016lx ",
4498 				     *ptep, oldpte, sva));
4499 				info->func(pmap, info, pte_placemark, pt_pv,
4500 					   sva, ptep, info->arg);
4501 			}
4502 			if (pd_pv) {
4503 				pv_lock(pd_pv);
4504 				if (vm_page_unwire_quick(pd_pv->pv_m)) {
4505 					panic("pmap_scan_callback: "
4506 					      "bad wirecount on pd_pv");
4507 				}
4508 				if (pd_pv->pv_pmap == NULL) {
4509 					va_next = sva;		/* retry */
4510 					break;
4511 				}
4512 			}
4513 
4514 			/*
4515 			 * NOTE: The cached pt_pv can be removed from the
4516 			 *	 pmap when pmap_dynamic_delete is enabled,
4517 			 *	 which will cause ptep to become stale.
4518 			 *
4519 			 *	 This also means that no pages remain under
4520 			 *	 the PT, so we can just break out of the inner
4521 			 *	 loop and let the outer loop clean everything
4522 			 *	 up.
4523 			 */
4524 			if (pt_pv && pt_pv->pv_pmap != pmap)
4525 				break;
4526 			sva += PAGE_SIZE;
4527 			++ptep;
4528 		}
4529 	}
4530 	if (pd_pv) {
4531 		pv_put(pd_pv);
4532 		pd_pv = NULL;
4533 	}
4534 	if (pt_pv) {
4535 		pv_put(pt_pv);
4536 		pt_pv = NULL;
4537 	}
4538 	if ((++info->count & 7) == 0)
4539 		lwkt_user_yield();
4540 
4541 	/*
4542 	 * Relock before returning.
4543 	 */
4544 	spin_lock(&pmap->pm_spin);
4545 	return (0);
4546 }
4547 
4548 void
4549 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
4550 {
4551 	struct pmap_scan_info info;
4552 
4553 	info.pmap = pmap;
4554 	info.sva = sva;
4555 	info.eva = eva;
4556 	info.func = pmap_remove_callback;
4557 	info.arg = NULL;
4558 	pmap_scan(&info, 1);
4559 #if 0
4560 	cpu_invltlb();
4561 	if (eva - sva < 1024*1024) {
4562 		while (sva < eva) {
4563 			cpu_invlpg((void *)sva);
4564 			sva += PAGE_SIZE;
4565 		}
4566 	}
4567 #endif
4568 }
4569 
4570 static void
4571 pmap_remove_noinval(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
4572 {
4573 	struct pmap_scan_info info;
4574 
4575 	info.pmap = pmap;
4576 	info.sva = sva;
4577 	info.eva = eva;
4578 	info.func = pmap_remove_callback;
4579 	info.arg = NULL;
4580 	pmap_scan(&info, 0);
4581 }
4582 
4583 static void
4584 pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
4585 		     vm_pindex_t *pte_placemark, pv_entry_t pt_pv,
4586 		     vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
4587 {
4588 	pt_entry_t pte;
4589 	vm_page_t oldm;
4590 
4591 	/*
4592 	 * Managed or unmanaged pte (pte_placemark is non-NULL)
4593 	 *
4594 	 * pt_pv's wire_count is still bumped by unmanaged pages
4595 	 * so we must decrement it manually.
4596 	 *
4597 	 * We have to unwire the target page table page.
4598 	 */
4599 	pte = *ptep;
4600 	if (pte & pmap->pmap_bits[PG_MANAGED_IDX]) {
4601 		oldm = PHYS_TO_VM_PAGE(pte & PG_FRAME);
4602 		atomic_add_long(&oldm->md.interlock_count, 1);
4603 	} else {
4604 		oldm = NULL;
4605 	}
4606 
4607 	pte = pmap_inval_bulk(info->bulk, va, ptep, 0);
4608 	if (pte & pmap->pmap_bits[PG_MANAGED_IDX]) {
4609 		vm_page_t p;
4610 
4611 		p = PHYS_TO_VM_PAGE(pte & PG_FRAME);
4612 		KKASSERT(pte & pmap->pmap_bits[PG_V_IDX]);
4613 		if (pte & pmap->pmap_bits[PG_M_IDX])
4614 			vm_page_dirty(p);
4615 		if (pte & pmap->pmap_bits[PG_A_IDX])
4616 			vm_page_flag_set(p, PG_REFERENCED);
4617 
4618 		/*
4619 		 * (p) is not hard-busied.
4620 		 *
4621 		 * We can safely clear PG_MAPPED and PG_WRITEABLE only
4622 		 * if PG_MAPPEDMULTI is not set, atomically.
4623 		 */
4624 		pmap_removed_pte(p, pte);
4625 	}
4626 	if (pte & pmap->pmap_bits[PG_V_IDX]) {
4627 		atomic_add_long(&pmap->pm_stats.resident_count, -1);
4628 		if (pt_pv && vm_page_unwire_quick(pt_pv->pv_m))
4629 			panic("pmap_remove: insufficient wirecount");
4630 	}
4631 	if (pte & pmap->pmap_bits[PG_W_IDX])
4632 		atomic_add_long(&pmap->pm_stats.wired_count, -1);
4633 	if (pte & pmap->pmap_bits[PG_G_IDX])
4634 		cpu_invlpg((void *)va);
4635 	pv_placemarker_wakeup(pmap, pte_placemark);
4636 	if (oldm) {
4637 		if ((atomic_fetchadd_long(&oldm->md.interlock_count, -1) &
4638 		     0x7FFFFFFFFFFFFFFFLU) == 0x4000000000000001LU) {
4639 			atomic_clear_long(&oldm->md.interlock_count,
4640 					  0x4000000000000000LU);
4641 			wakeup(&oldm->md.interlock_count);
4642 		}
4643 	}
4644 }
4645 
4646 /*
4647  * Removes this physical page from all physical maps in which it resides.
4648  * Reflects back modify bits to the pager.
4649  *
4650  * This routine may not be called from an interrupt.
4651  *
4652  * The page must be busied by its caller, preventing new ptes from being
4653  * installed.  This allows us to assert that pmap_count is zero and safely
4654  * clear the MAPPED and WRITEABLE bits upon completion.
4655  */
4656 static
4657 void
4658 pmap_remove_all(vm_page_t m)
4659 {
4660 	long icount;
4661 	int retry;
4662 
4663 	if (__predict_false(!pmap_initialized))
4664 		return;
4665 
4666 	/*
4667 	 * pmap_count doesn't cover fictitious pages, but PG_MAPPED does
4668 	 * (albeit without certain race protections).
4669 	 */
4670 #if 0
4671 	if (m->md.pmap_count == 0)
4672 		return;
4673 #endif
4674 	if ((m->flags & PG_MAPPED) == 0)
4675 		return;
4676 
4677 	retry = ticks + hz * 60;
4678 again:
4679 	PMAP_PAGE_BACKING_SCAN(m, NULL, ipmap, iptep, ipte, iva) {
4680 		if (!pmap_inval_smp_cmpset(ipmap, iva, iptep, ipte, 0))
4681 			PMAP_PAGE_BACKING_RETRY;
4682 		if (ipte & ipmap->pmap_bits[PG_MANAGED_IDX]) {
4683 			if (ipte & ipmap->pmap_bits[PG_M_IDX])
4684 				vm_page_dirty(m);
4685 			if (ipte & ipmap->pmap_bits[PG_A_IDX])
4686 				vm_page_flag_set(m, PG_REFERENCED);
4687 
4688 			/*
4689 			 * NOTE: m is not hard-busied so it is not safe to
4690 			 *	 clear PG_MAPPED and PG_WRITEABLE on the 1->0
4691 			 *	 transition against them being set in
4692 			 *	 pmap_enter().
4693 			 */
4694 			pmap_removed_pte(m, ipte);
4695 		}
4696 
4697 		/*
4698 		 * Cleanup various tracking counters.  pt_pv can't go away
4699 		 * due to our wired ref.
4700 		 */
4701 		if (ipmap != &kernel_pmap) {
4702 			pv_entry_t pt_pv;
4703 
4704 			spin_lock_shared(&ipmap->pm_spin);
4705 			pt_pv = pv_entry_lookup(ipmap, pmap_pt_pindex(iva));
4706 			spin_unlock_shared(&ipmap->pm_spin);
4707 
4708 			if (pt_pv) {
4709 				if (vm_page_unwire_quick(pt_pv->pv_m)) {
4710 					panic("pmap_remove_all: bad "
4711 					      "wire_count on pt_pv");
4712 				}
4713 				atomic_add_long(
4714 					&ipmap->pm_stats.resident_count, -1);
4715 			}
4716 		}
4717 		if (ipte & ipmap->pmap_bits[PG_W_IDX])
4718 			atomic_add_long(&ipmap->pm_stats.wired_count, -1);
4719 		if (ipte & ipmap->pmap_bits[PG_G_IDX])
4720 			cpu_invlpg((void *)iva);
4721 	} PMAP_PAGE_BACKING_DONE;
4722 
4723 	/*
4724 	 * If our scan lost a pte swap race oldm->md.interlock_count might
4725 	 * be set from the pmap_enter() code.  If so sleep a little and try
4726 	 * again.
4727 	 */
4728 	icount = atomic_fetchadd_long(&m->md.interlock_count,
4729 				      0x8000000000000000LU) +
4730 		 0x8000000000000000LU;
4731 	cpu_ccfence();
4732 	while (icount & 0x3FFFFFFFFFFFFFFFLU) {
4733 		tsleep_interlock(&m->md.interlock_count, 0);
4734 		if (atomic_fcmpset_long(&m->md.interlock_count, &icount,
4735 					icount | 0x4000000000000000LU)) {
4736 			tsleep(&m->md.interlock_count, PINTERLOCKED,
4737 			       "pgunm", 1);
4738 			icount = m->md.interlock_count;
4739 			if (retry - ticks > 0)
4740 				goto again;
4741 			panic("pmap_remove_all: cannot return interlock_count "
4742 			      "to 0 (%p, %ld)",
4743 			      m, m->md.interlock_count);
4744 		}
4745 	}
4746 	vm_page_flag_clear(m, PG_MAPPED | PG_MAPPEDMULTI | PG_WRITEABLE);
4747 }
4748 
4749 /*
4750  * Removes the page from a particular pmap.
4751  *
4752  * The page must be busied by the caller.
4753  */
4754 void
4755 pmap_remove_specific(pmap_t pmap_match, vm_page_t m)
4756 {
4757 	if (__predict_false(!pmap_initialized))
4758 		return;
4759 
4760 	/*
4761 	 * PG_MAPPED test works for both non-fictitious and fictitious pages.
4762 	 */
4763 	if ((m->flags & PG_MAPPED) == 0)
4764 		return;
4765 
4766 	PMAP_PAGE_BACKING_SCAN(m, pmap_match, ipmap, iptep, ipte, iva) {
4767 		if (!pmap_inval_smp_cmpset(ipmap, iva, iptep, ipte, 0))
4768 			PMAP_PAGE_BACKING_RETRY;
4769 		if (ipte & ipmap->pmap_bits[PG_MANAGED_IDX]) {
4770 			if (ipte & ipmap->pmap_bits[PG_M_IDX])
4771 				vm_page_dirty(m);
4772 			if (ipte & ipmap->pmap_bits[PG_A_IDX])
4773 				vm_page_flag_set(m, PG_REFERENCED);
4774 
4775 			/*
4776 			 * NOTE: m is not hard-busied so it is not safe to
4777 			 *	 clear PG_MAPPED and PG_WRITEABLE on the 1->0
4778 			 *	 transition against them being set in
4779 			 *	 pmap_enter().
4780 			 */
4781 			pmap_removed_pte(m, ipte);
4782 		}
4783 
4784 		/*
4785 		 * Cleanup various tracking counters.  pt_pv can't go away
4786 		 * due to our wired ref.
4787 		 */
4788 		if (ipmap != &kernel_pmap) {
4789 			pv_entry_t pt_pv;
4790 
4791 			spin_lock_shared(&ipmap->pm_spin);
4792 			pt_pv = pv_entry_lookup(ipmap, pmap_pt_pindex(iva));
4793 			spin_unlock_shared(&ipmap->pm_spin);
4794 
4795 			if (pt_pv) {
4796 				atomic_add_long(
4797 					&ipmap->pm_stats.resident_count, -1);
4798 				if (vm_page_unwire_quick(pt_pv->pv_m)) {
4799 					panic("pmap_remove_specific: bad "
4800 					      "wire_count on pt_pv");
4801 				}
4802 			}
4803 		}
4804 		if (ipte & ipmap->pmap_bits[PG_W_IDX])
4805 			atomic_add_long(&ipmap->pm_stats.wired_count, -1);
4806 		if (ipte & ipmap->pmap_bits[PG_G_IDX])
4807 			cpu_invlpg((void *)iva);
4808 	} PMAP_PAGE_BACKING_DONE;
4809 }
4810 
4811 /*
4812  * Set the physical protection on the specified range of this map
4813  * as requested.  This function is typically only used for debug watchpoints
4814  * and COW pages.
4815  *
4816  * This function may not be called from an interrupt if the map is
4817  * not the kernel_pmap.
4818  *
4819  * NOTE!  For shared page table pages we just unmap the page.
4820  */
4821 void
4822 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
4823 {
4824 	struct pmap_scan_info info;
4825 	/* JG review for NX */
4826 
4827 	if (pmap == NULL)
4828 		return;
4829 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == VM_PROT_NONE) {
4830 		pmap_remove(pmap, sva, eva);
4831 		return;
4832 	}
4833 	if (prot & VM_PROT_WRITE)
4834 		return;
4835 	info.pmap = pmap;
4836 	info.sva = sva;
4837 	info.eva = eva;
4838 	info.func = pmap_protect_callback;
4839 	info.arg = &prot;
4840 	pmap_scan(&info, 1);
4841 }
4842 
4843 static
4844 void
4845 pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
4846 		      vm_pindex_t *pte_placemark,
4847 		      pv_entry_t pt_pv, vm_offset_t va,
4848 		      pt_entry_t *ptep, void *arg __unused)
4849 {
4850 	pt_entry_t pbits;
4851 	pt_entry_t cbits;
4852 	vm_page_t m;
4853 
4854 again:
4855 	pbits = *ptep;
4856 	cpu_ccfence();
4857 	cbits = pbits;
4858 	if (pbits & pmap->pmap_bits[PG_MANAGED_IDX]) {
4859 		cbits &= ~pmap->pmap_bits[PG_A_IDX];
4860 		cbits &= ~pmap->pmap_bits[PG_M_IDX];
4861 	}
4862 	/* else unmanaged page, adjust bits, no wire changes */
4863 
4864 	if (ptep) {
4865 		cbits &= ~pmap->pmap_bits[PG_RW_IDX];
4866 #ifdef PMAP_DEBUG2
4867 		if (pmap_enter_debug > 0) {
4868 			--pmap_enter_debug;
4869 			kprintf("pmap_protect va=%lx ptep=%p "
4870 				"pt_pv=%p cbits=%08lx\n",
4871 				va, ptep, pt_pv, cbits
4872 			);
4873 		}
4874 #endif
4875 		if (pbits != cbits) {
4876 			if (!pmap_inval_smp_cmpset(pmap, va,
4877 						   ptep, pbits, cbits)) {
4878 				goto again;
4879 			}
4880 		}
4881 		if (pbits & pmap->pmap_bits[PG_MANAGED_IDX]) {
4882 			m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
4883 			if (pbits & pmap->pmap_bits[PG_A_IDX])
4884 				vm_page_flag_set(m, PG_REFERENCED);
4885 			if (pbits & pmap->pmap_bits[PG_M_IDX])
4886 				vm_page_dirty(m);
4887 		}
4888 	}
4889 	pv_placemarker_wakeup(pmap, pte_placemark);
4890 }
4891 
4892 /*
4893  * Insert the vm_page (m) at the virtual address (va), replacing any prior
4894  * mapping at that address.  Set protection and wiring as requested.
4895  *
4896  * If entry is non-NULL we check to see if the SEG_SIZE optimization is
4897  * possible.  If it is we enter the page into the appropriate shared pmap
4898  * hanging off the related VM object instead of the passed pmap, then we
4899  * share the page table page from the VM object's pmap into the current pmap.
4900  *
4901  * NOTE: This routine MUST insert the page into the pmap now, it cannot
4902  *	 lazy-evaluate.
4903  */
4904 void
4905 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
4906 	   boolean_t wired, vm_map_entry_t entry)
4907 {
4908 	pv_entry_t pt_pv;	/* page table */
4909 	pv_entry_t pte_pv;	/* page table entry */
4910 	vm_pindex_t *pte_placemark;
4911 	pt_entry_t *ptep;
4912 	pt_entry_t origpte;
4913 	vm_paddr_t opa;
4914 	vm_page_t oldm;
4915 	pt_entry_t newpte;
4916 	vm_paddr_t pa;
4917 	int flags;
4918 	int nflags;
4919 
4920 	if (pmap == NULL)
4921 		return;
4922 	va = trunc_page(va);
4923 #ifdef PMAP_DIAGNOSTIC
4924 	if (va >= KvaEnd)
4925 		panic("pmap_enter: toobig");
4926 	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
4927 		panic("pmap_enter: invalid to pmap_enter page table "
4928 		      "pages (va: 0x%lx)", va);
4929 #endif
4930 	if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
4931 		kprintf("Warning: pmap_enter called on UVA with "
4932 			"kernel_pmap\n");
4933 #ifdef DDB
4934 		db_print_backtrace();
4935 #endif
4936 	}
4937 	if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
4938 		kprintf("Warning: pmap_enter called on KVA without"
4939 			"kernel_pmap\n");
4940 #ifdef DDB
4941 		db_print_backtrace();
4942 #endif
4943 	}
4944 
4945 	/*
4946 	 * Get the locked page table page (pt_pv) for our new page table
4947 	 * entry, allocating it if necessary.
4948 	 *
4949 	 * There is no pte_pv for a terminal pte so the terminal pte will
4950 	 * be locked via pte_placemark.
4951 	 *
4952 	 * Only MMU actions by the CPU itself can modify the ptep out from
4953 	 * under us.
4954 	 *
4955 	 * If the pmap is still being initialized we assume existing
4956 	 * page tables.
4957 	 *
4958 	 * NOTE: Kernel mapppings do not track page table pages
4959 	 *	 (i.e. there is no pt_pv pt_pv structure).
4960 	 *
4961 	 * NOTE: origpte here is 'tentative', used only to check for
4962 	 *	 the degenerate case where the entry already exists and
4963 	 *	 matches.
4964 	 */
4965 	if (__predict_false(pmap_initialized == FALSE)) {
4966 		pte_pv = NULL;
4967 		pt_pv = NULL;
4968 		pte_placemark = NULL;
4969 		ptep = vtopte(va);
4970 		origpte = *ptep;
4971 	} else {
4972 		pte_pv = pv_get(pmap, pmap_pte_pindex(va), &pte_placemark);
4973 		KKASSERT(pte_pv == NULL);
4974 		if (va >= VM_MAX_USER_ADDRESS) {
4975 			pt_pv = NULL;
4976 			ptep = vtopte(va);
4977 		} else {
4978 			pt_pv = pmap_allocpte(pmap, pmap_pt_pindex(va), NULL);
4979 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
4980 		}
4981 		origpte = *ptep;
4982 		cpu_ccfence();
4983 	}
4984 
4985 	pa = VM_PAGE_TO_PHYS(m);
4986 
4987 	/*
4988 	 * Calculate the new PTE.
4989 	 */
4990 	newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) |
4991 		 pmap->pmap_bits[PG_V_IDX] | pmap->pmap_bits[PG_A_IDX]);
4992 	if (wired)
4993 		newpte |= pmap->pmap_bits[PG_W_IDX];
4994 	if (va < VM_MAX_USER_ADDRESS)
4995 		newpte |= pmap->pmap_bits[PG_U_IDX];
4996 	if ((m->flags & PG_FICTITIOUS) == 0)
4997 		newpte |= pmap->pmap_bits[PG_MANAGED_IDX];
4998 //	if (pmap == &kernel_pmap)
4999 //		newpte |= pgeflag;
5000 	newpte |= pmap->pmap_cache_bits_pte[m->pat_mode];
5001 
5002 	/*
5003 	 * It is possible for multiple faults to occur in threaded
5004 	 * environments, the existing pte might be correct.
5005 	 */
5006 	if (((origpte ^ newpte) &
5007 	    ~(pt_entry_t)(pmap->pmap_bits[PG_M_IDX] |
5008 			  pmap->pmap_bits[PG_A_IDX])) == 0) {
5009 		goto done;
5010 	}
5011 
5012 	/*
5013 	 * Adjust page flags.  The page is soft-busied or hard-busied, we
5014 	 * should be able to safely set PG_* flag bits even with the (shared)
5015 	 * soft-busy.
5016 	 *
5017 	 * The pmap_count and writeable_count is only tracked for
5018 	 * non-fictitious pages.  As a bit of a safety, bump pmap_count
5019 	 * and set the PG_* bits before mapping the page.  If another part
5020 	 * of the system does not properly hard-busy the page (against our
5021 	 * soft-busy or hard-busy) in order to remove mappings it might not
5022 	 * see the pte that we are about to add and thus will not be able to
5023 	 * drop pmap_count to 0.
5024 	 *
5025 	 * The PG_MAPPED and PG_WRITEABLE flags are set for any type of page.
5026 	 *
5027 	 * NOTE! PG_MAPPED and PG_WRITEABLE can only be cleared when
5028 	 *	 the page is hard-busied AND pmap_count is 0.  This
5029 	 *	 interlocks our setting of the flags here.
5030 	 */
5031 	/*vm_page_spin_lock(m);*/
5032 
5033 	/*
5034 	 * In advanced mode we keep track of single mappings verses
5035 	 * multiple mappings in order to avoid unnecessary vm_page_protect()
5036 	 * calls (particularly on the kernel_map).
5037 	 *
5038 	 * If non-advanced mode we track the mapping count for similar effect.
5039 	 *
5040 	 * Avoid modifying the vm_page as much as possible, conditionalize
5041 	 * updates to reduce cache line ping-ponging.
5042 	 */
5043 	flags = m->flags;
5044 	cpu_ccfence();
5045 	for (;;) {
5046 		nflags = PG_MAPPED;
5047 		if (newpte & pmap->pmap_bits[PG_RW_IDX])
5048 			nflags |= PG_WRITEABLE;
5049 		if (flags & PG_MAPPED)
5050 			nflags |= PG_MAPPEDMULTI;
5051 		if (flags == (flags | nflags))
5052 			break;
5053 		if (atomic_fcmpset_int(&m->flags, &flags, flags | nflags))
5054 			break;
5055 	}
5056 	/*vm_page_spin_unlock(m);*/
5057 
5058 	/*
5059 	 * A race can develop when replacing an existing mapping.  The new
5060 	 * page has been busied and the pte is placemark-locked, but the
5061 	 * old page could be ripped out from under us at any time by
5062 	 * a backing scan.
5063 	 *
5064 	 * If we do nothing, a concurrent backing scan may clear
5065 	 * PG_WRITEABLE and PG_MAPPED before we can act on oldm.
5066 	 */
5067 	opa = origpte & PG_FRAME;
5068 	if (opa && (origpte & pmap->pmap_bits[PG_MANAGED_IDX])) {
5069 		oldm = PHYS_TO_VM_PAGE(opa);
5070 		KKASSERT(opa == oldm->phys_addr);
5071 		KKASSERT(entry != NULL);
5072 		atomic_add_long(&oldm->md.interlock_count, 1);
5073 	} else {
5074 		oldm = NULL;
5075 	}
5076 
5077 	/*
5078 	 * Swap the new and old PTEs and perform any necessary SMP
5079 	 * synchronization.
5080 	 */
5081 	if ((prot & VM_PROT_NOSYNC) || (opa == 0 && pt_pv != NULL)) {
5082 		/*
5083 		 * Explicitly permitted to avoid pmap cpu mask synchronization
5084 		 * or the prior content of a non-kernel-related pmap was
5085 		 * invalid.
5086 		 */
5087 		origpte = atomic_swap_long(ptep, newpte);
5088 		if (opa)
5089 			cpu_invlpg((void *)va);
5090 	} else {
5091 		/*
5092 		 * Not permitted to avoid pmap cpu mask synchronization
5093 		 * or there prior content being replaced or this is a kernel
5094 		 * related pmap.
5095 		 *
5096 		 * Due to other kernel optimizations, we cannot assume a
5097 		 * 0->non_zero transition of *ptep can be done with a swap.
5098 		 */
5099 		origpte = pmap_inval_smp(pmap, va, 1, ptep, newpte);
5100 	}
5101 	opa = origpte & PG_FRAME;
5102 
5103 #ifdef PMAP_DEBUG2
5104 	if (pmap_enter_debug > 0) {
5105 		--pmap_enter_debug;
5106 		kprintf("pmap_enter: va=%lx m=%p origpte=%lx newpte=%lx ptep=%p"
5107 			" pte_pv=%p pt_pv=%p opa=%lx prot=%02x\n",
5108 			va, m,
5109 			origpte, newpte, ptep,
5110 			pte_pv, pt_pv, opa, prot);
5111 	}
5112 #endif
5113 
5114 	/*
5115 	 * Account for the changes in the pt_pv and pmap.
5116 	 *
5117 	 * Retain the same wiring count due to replacing an existing page,
5118 	 * or bump the wiring count for a new page.
5119 	 */
5120 	if (pt_pv && opa == 0) {
5121 		vm_page_wire_quick(pt_pv->pv_m);
5122 		atomic_add_long(&pt_pv->pv_pmap->pm_stats.resident_count, 1);
5123 	}
5124 	if (wired && (origpte & pmap->pmap_bits[PG_W_IDX]) == 0)
5125 		atomic_add_long(&pmap->pm_stats.wired_count, 1);
5126 
5127 	/*
5128 	 * Account for the removal of the old page.  pmap and pt_pv stats
5129 	 * have already been fully adjusted for both.
5130 	 *
5131 	 * WARNING! oldm is not soft or hard-busied.  The pte at worst can
5132 	 *	    only be removed out from under us since we hold the
5133 	 *	    placemarker.  So if it is still there, it must not have
5134 	 *	    changed.
5135 	 *
5136 	 * WARNING! A backing scan can clear PG_WRITEABLE and/or PG_MAPPED
5137 	 *	    and rip oldm away from us, possibly even freeing or
5138 	 *	    paging it, and not setting our dirtying below.
5139 	 *
5140 	 *	    To deal with this, oldm->md.interlock_count is bumped
5141 	 *	    to indicate that we might (only might) have won the pte
5142 	 *	    swap race, and then released below.
5143 	 */
5144 	if (opa && (origpte & pmap->pmap_bits[PG_MANAGED_IDX])) {
5145 		KKASSERT(oldm == PHYS_TO_VM_PAGE(opa));
5146 		if (origpte & pmap->pmap_bits[PG_M_IDX])
5147 			vm_page_dirty(oldm);
5148 		if (origpte & pmap->pmap_bits[PG_A_IDX])
5149 			vm_page_flag_set(oldm, PG_REFERENCED);
5150 
5151 		/*
5152 		 * NOTE: oldm is not hard-busied so it is not safe to
5153 		 *	 clear PG_MAPPED and PG_WRITEABLE on the 1->0
5154 		 *	 transition against them being set in
5155 		 *	 pmap_enter().
5156 		 */
5157 		pmap_removed_pte(oldm, origpte);
5158 	}
5159 	if (oldm) {
5160 		if ((atomic_fetchadd_long(&oldm->md.interlock_count, -1) &
5161 		     0x7FFFFFFFFFFFFFFFLU) == 0x4000000000000001LU) {
5162 			atomic_clear_long(&oldm->md.interlock_count,
5163 					  0x4000000000000000LU);
5164 			wakeup(&oldm->md.interlock_count);
5165 		}
5166 	}
5167 
5168 done:
5169 	KKASSERT((newpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0 ||
5170 		 (m->flags & PG_MAPPED));
5171 
5172 	/*
5173 	 * Cleanup the pv entry, allowing other accessors.  If the new page
5174 	 * is not managed but we have a pte_pv (which was locking our
5175 	 * operation), we can free it now.  pte_pv->pv_m should be NULL.
5176 	 */
5177 	if (pte_placemark)
5178 		pv_placemarker_wakeup(pmap, pte_placemark);
5179 	if (pt_pv)
5180 		pv_put(pt_pv);
5181 }
5182 
5183 /*
5184  * Make a temporary mapping for a physical address.  This is only intended
5185  * to be used for panic dumps.
5186  *
5187  * The caller is responsible for calling smp_invltlb().
5188  */
5189 void *
5190 pmap_kenter_temporary(vm_paddr_t pa, long i)
5191 {
5192 	pmap_kenter_quick((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
5193 	return ((void *)crashdumpmap);
5194 }
5195 
5196 #if 0
5197 #define MAX_INIT_PT (96)
5198 
5199 /*
5200  * This routine preloads the ptes for a given object into the specified pmap.
5201  * This eliminates the blast of soft faults on process startup and
5202  * immediately after an mmap.
5203  */
5204 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
5205 #endif
5206 
5207 void
5208 pmap_object_init_pt(pmap_t pmap, vm_map_entry_t entry,
5209 		    vm_offset_t addr, vm_size_t size, int limit)
5210 {
5211 #if 0
5212 	vm_prot_t prot = entry->protection;
5213 	vm_object_t object = entry->ba.object;
5214 	vm_pindex_t pindex = atop(entry->ba.offset + (addr - entry->ba.start));
5215 	struct rb_vm_page_scan_info info;
5216 	struct lwp *lp;
5217 	vm_size_t psize;
5218 
5219 	/*
5220 	 * We can't preinit if read access isn't set or there is no pmap
5221 	 * or object.
5222 	 */
5223 	if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
5224 		return;
5225 
5226 	/*
5227 	 * We can't preinit if the pmap is not the current pmap
5228 	 */
5229 	lp = curthread->td_lwp;
5230 	if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
5231 		return;
5232 
5233 	/*
5234 	 * Misc additional checks
5235 	 */
5236 	psize = x86_64_btop(size);
5237 
5238 	if ((object->type != OBJT_VNODE) ||
5239 		((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
5240 			(object->resident_page_count > MAX_INIT_PT))) {
5241 		return;
5242 	}
5243 
5244 	if (pindex + psize > object->size) {
5245 		if (object->size < pindex)
5246 			return;
5247 		psize = object->size - pindex;
5248 	}
5249 
5250 	if (psize == 0)
5251 		return;
5252 
5253 	/*
5254 	 * If everything is segment-aligned do not pre-init here.  Instead
5255 	 * allow the normal vm_fault path to pass a segment hint to
5256 	 * pmap_enter() which will then use an object-referenced shared
5257 	 * page table page.
5258 	 */
5259 	if ((addr & SEG_MASK) == 0 &&
5260 	    (ctob(psize) & SEG_MASK) == 0 &&
5261 	    (ctob(pindex) & SEG_MASK) == 0) {
5262 		return;
5263 	}
5264 
5265 	/*
5266 	 * Use a red-black scan to traverse the requested range and load
5267 	 * any valid pages found into the pmap.
5268 	 *
5269 	 * We cannot safely scan the object's memq without holding the
5270 	 * object token.
5271 	 */
5272 	info.start_pindex = pindex;
5273 	info.end_pindex = pindex + psize - 1;
5274 	info.limit = limit;
5275 	info.mpte = NULL;
5276 	info.addr = addr;
5277 	info.pmap = pmap;
5278 	info.object = object;
5279 	info.entry = entry;
5280 
5281 	/*
5282 	 * By using the NOLK scan, the callback function must be sure
5283 	 * to return -1 if the VM page falls out of the object.
5284 	 */
5285 	vm_object_hold_shared(object);
5286 	vm_page_rb_tree_RB_SCAN_NOLK(&object->rb_memq, rb_vm_page_scancmp,
5287 				     pmap_object_init_pt_callback, &info);
5288 	vm_object_drop(object);
5289 #endif
5290 }
5291 
5292 #if 0
5293 
5294 static
5295 int
5296 pmap_object_init_pt_callback(vm_page_t p, void *data)
5297 {
5298 	struct rb_vm_page_scan_info *info = data;
5299 	vm_pindex_t rel_index;
5300 	int hard_busy;
5301 
5302 	/*
5303 	 * don't allow an madvise to blow away our really
5304 	 * free pages allocating pv entries.
5305 	 */
5306 	if ((info->limit & MAP_PREFAULT_MADVISE) &&
5307 		vmstats.v_free_count < vmstats.v_free_reserved) {
5308 		    return(-1);
5309 	}
5310 
5311 	/*
5312 	 * Ignore list markers and ignore pages we cannot instantly
5313 	 * busy (while holding the object token).
5314 	 */
5315 	if (p->flags & PG_MARKER)
5316 		return 0;
5317 	hard_busy = 0;
5318 again:
5319 	if (hard_busy) {
5320 		if (vm_page_busy_try(p, TRUE))
5321 			return 0;
5322 	} else {
5323 		if (vm_page_sbusy_try(p))
5324 			return 0;
5325 	}
5326 	if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
5327 	    (p->flags & PG_FICTITIOUS) == 0) {
5328 		if ((p->queue - p->pc) == PQ_CACHE) {
5329 			if (hard_busy == 0) {
5330 				vm_page_sbusy_drop(p);
5331 				hard_busy = 1;
5332 				goto again;
5333 			}
5334 			vm_page_deactivate(p);
5335 		}
5336 		rel_index = p->pindex - info->start_pindex;
5337 		pmap_enter(info->pmap, info->addr + x86_64_ptob(rel_index), p,
5338 			   VM_PROT_READ, FALSE, info->entry);
5339 	}
5340 	if (hard_busy)
5341 		vm_page_wakeup(p);
5342 	else
5343 		vm_page_sbusy_drop(p);
5344 
5345 	/*
5346 	 * We are using an unlocked scan (that is, the scan expects its
5347 	 * current element to remain in the tree on return).  So we have
5348 	 * to check here and abort the scan if it isn't.
5349 	 */
5350 	if (p->object != info->object)
5351 		return -1;
5352 	lwkt_yield();
5353 	return(0);
5354 }
5355 
5356 #endif
5357 
5358 /*
5359  * Return TRUE if the pmap is in shape to trivially pre-fault the specified
5360  * address.
5361  *
5362  * Returns FALSE if it would be non-trivial or if a pte is already loaded
5363  * into the slot.
5364  *
5365  * The address must reside within a vm_map mapped range to ensure that the
5366  * page table doesn't get ripped out from under us.
5367  *
5368  * XXX This is safe only because page table pages are not freed.
5369  */
5370 int
5371 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
5372 {
5373 	pt_entry_t *pte;
5374 
5375 	/*spin_lock(&pmap->pm_spin);*/
5376 	if ((pte = pmap_pte(pmap, addr)) != NULL) {
5377 		if (*pte & pmap->pmap_bits[PG_V_IDX]) {
5378 			/*spin_unlock(&pmap->pm_spin);*/
5379 			return FALSE;
5380 		}
5381 	}
5382 	/*spin_unlock(&pmap->pm_spin);*/
5383 	return TRUE;
5384 }
5385 
5386 /*
5387  * Change the wiring attribute for a pmap/va pair.  The mapping must already
5388  * exist in the pmap.  The mapping may or may not be managed.  The wiring in
5389  * the page is not changed, the page is returned so the caller can adjust
5390  * its wiring (the page is not locked in any way).
5391  *
5392  * Wiring is not a hardware characteristic so there is no need to invalidate
5393  * TLB.  However, in an SMP environment we must use a locked bus cycle to
5394  * update the pte (if we are not using the pmap_inval_*() API that is)...
5395  * it's ok to do this for simple wiring changes.
5396  */
5397 vm_page_t
5398 pmap_unwire(pmap_t pmap, vm_offset_t va)
5399 {
5400 	pt_entry_t *ptep;
5401 	pv_entry_t pt_pv;
5402 	vm_paddr_t pa;
5403 	vm_page_t m;
5404 
5405 	if (pmap == NULL)
5406 		return NULL;
5407 
5408 	/*
5409 	 * Assume elements in the kernel pmap are stable
5410 	 */
5411 	if (pmap == &kernel_pmap) {
5412 		if (pmap_pt(pmap, va) == 0)
5413 			return NULL;
5414 		ptep = pmap_pte_quick(pmap, va);
5415 		if (pmap_pte_v(pmap, ptep)) {
5416 			if (pmap_pte_w(pmap, ptep))
5417 				atomic_add_long(&pmap->pm_stats.wired_count,-1);
5418 			atomic_clear_long(ptep, pmap->pmap_bits[PG_W_IDX]);
5419 			pa = *ptep & PG_FRAME;
5420 			m = PHYS_TO_VM_PAGE(pa);
5421 		} else {
5422 			m = NULL;
5423 		}
5424 	} else {
5425 		/*
5426 		 * We can only [un]wire pmap-local pages (we cannot wire
5427 		 * shared pages)
5428 		 */
5429 		pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
5430 		if (pt_pv == NULL)
5431 			return NULL;
5432 
5433 		ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
5434 		if ((*ptep & pmap->pmap_bits[PG_V_IDX]) == 0) {
5435 			pv_put(pt_pv);
5436 			return NULL;
5437 		}
5438 
5439 		if (pmap_pte_w(pmap, ptep)) {
5440 			atomic_add_long(&pt_pv->pv_pmap->pm_stats.wired_count,
5441 					-1);
5442 		}
5443 		/* XXX else return NULL so caller doesn't unwire m ? */
5444 
5445 		atomic_clear_long(ptep, pmap->pmap_bits[PG_W_IDX]);
5446 
5447 		pa = *ptep & PG_FRAME;
5448 		m = PHYS_TO_VM_PAGE(pa);	/* held by wired count */
5449 		pv_put(pt_pv);
5450 	}
5451 	return m;
5452 }
5453 
5454 /*
5455  * Copy the range specified by src_addr/len from the source map to
5456  * the range dst_addr/len in the destination map.
5457  *
5458  * This routine is only advisory and need not do anything.
5459  */
5460 void
5461 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
5462 	  vm_size_t len, vm_offset_t src_addr)
5463 {
5464 }
5465 
5466 /*
5467  * pmap_zero_page:
5468  *
5469  *	Zero the specified physical page.
5470  *
5471  *	This function may be called from an interrupt and no locking is
5472  *	required.
5473  */
5474 void
5475 pmap_zero_page(vm_paddr_t phys)
5476 {
5477 	vm_offset_t va = PHYS_TO_DMAP(phys);
5478 
5479 	pagezero((void *)va);
5480 }
5481 
5482 /*
5483  * pmap_zero_page:
5484  *
5485  *	Zero part of a physical page by mapping it into memory and clearing
5486  *	its contents with bzero.
5487  *
5488  *	off and size may not cover an area beyond a single hardware page.
5489  */
5490 void
5491 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
5492 {
5493 	vm_offset_t virt = PHYS_TO_DMAP(phys);
5494 
5495 	bzero((char *)virt + off, size);
5496 }
5497 
5498 /*
5499  * pmap_copy_page:
5500  *
5501  *	Copy the physical page from the source PA to the target PA.
5502  *	This function may be called from an interrupt.  No locking
5503  *	is required.
5504  */
5505 void
5506 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
5507 {
5508 	vm_offset_t src_virt, dst_virt;
5509 
5510 	src_virt = PHYS_TO_DMAP(src);
5511 	dst_virt = PHYS_TO_DMAP(dst);
5512 	bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
5513 }
5514 
5515 /*
5516  * pmap_copy_page_frag:
5517  *
5518  *	Copy the physical page from the source PA to the target PA.
5519  *	This function may be called from an interrupt.  No locking
5520  *	is required.
5521  */
5522 void
5523 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
5524 {
5525 	vm_offset_t src_virt, dst_virt;
5526 
5527 	src_virt = PHYS_TO_DMAP(src);
5528 	dst_virt = PHYS_TO_DMAP(dst);
5529 
5530 	bcopy((char *)src_virt + (src & PAGE_MASK),
5531 	      (char *)dst_virt + (dst & PAGE_MASK),
5532 	      bytes);
5533 }
5534 
5535 /*
5536  * Remove all pages from specified address space this aids process exit
5537  * speeds.  Also, this code may be special cased for the current process
5538  * only.
5539  */
5540 void
5541 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5542 {
5543 	pmap_remove_noinval(pmap, sva, eva);
5544 	cpu_invltlb();
5545 }
5546 
5547 /*
5548  * pmap_testbit tests bits in pte's note that the testbit/clearbit
5549  * routines are inline, and a lot of things compile-time evaluate.
5550  *
5551  * Currently only used to test the 'M'odified bit.  If the page
5552  * is not PG_WRITEABLE, the 'M'odified bit cannot be set and we
5553  * return immediately.  Fictitious pages do not track this bit.
5554  */
5555 static
5556 boolean_t
5557 pmap_testbit(vm_page_t m, int bit)
5558 {
5559 	int res = FALSE;
5560 
5561 	if (__predict_false(!pmap_initialized || (m->flags & PG_FICTITIOUS)))
5562 		return FALSE;
5563 	/*
5564 	 * Nothing to do if all the mappings are already read-only.
5565 	 * The page's [M]odify bits have already been synchronized
5566 	 * to the vm_page_t and cleaned out.
5567 	 */
5568 	if (bit == PG_M_IDX && (m->flags & PG_WRITEABLE) == 0)
5569 		return FALSE;
5570 
5571 	/*
5572 	 * Iterate the mapping
5573 	 */
5574 	PMAP_PAGE_BACKING_SCAN(m, NULL, ipmap, iptep, ipte, iva) {
5575 		if (ipte & ipmap->pmap_bits[bit]) {
5576 			res = TRUE;
5577 			break;
5578 		}
5579 	} PMAP_PAGE_BACKING_DONE;
5580 	return res;
5581 }
5582 
5583 /*
5584  * This routine is used to modify bits in ptes.  Only one bit should be
5585  * specified.  PG_RW requires special handling.  This call works with
5586  * any sort of mapped page.  PG_FICTITIOUS pages might not be optimal.
5587  *
5588  * Caller must NOT hold any spin locks
5589  * Caller must hold (m) hard-busied
5590  *
5591  * NOTE: When clearing PG_M we could also (not implemented) drop
5592  *       through to the PG_RW code and clear PG_RW too, forcing
5593  *       a fault on write to redetect PG_M for virtual kernels, but
5594  *       it isn't necessary since virtual kernels invalidate the
5595  *       pte when they clear the VPTE_M bit in their virtual page
5596  *       tables.
5597  *
5598  * NOTE: Does not re-dirty the page when clearing only PG_M.
5599  *
5600  * NOTE: Because we do not lock the pv, *pte can be in a state of
5601  *       flux.  Despite this the value of *pte is still somewhat
5602  *       related while we hold the vm_page spin lock.
5603  *
5604  *       *pte can be zero due to this race.  Since we are clearing
5605  *       bits we basically do no harm when this race occurs.
5606  */
5607 static __inline
5608 void
5609 pmap_clearbit(vm_page_t m, int bit_index)
5610 {
5611 	pt_entry_t npte;
5612 	int retry;
5613 	long icount;
5614 
5615 	/*
5616 	 * Too early in the boot
5617 	 */
5618 	if (__predict_false(!pmap_initialized)) {
5619 		if (bit_index == PG_RW_IDX)
5620 			vm_page_flag_clear(m, PG_WRITEABLE);
5621 		return;
5622 	}
5623 	if ((m->flags & (PG_MAPPED | PG_WRITEABLE)) == 0)
5624 		return;
5625 
5626 	/*
5627 	 * Being asked to clear other random bits, we don't track them
5628 	 * so we have to iterate.
5629 	 *
5630 	 * pmap_clear_reference() is called (into here) with the page
5631 	 * hard-busied to check whether the page is still mapped and
5632 	 * will clear PG_MAPPED and PG_WRITEABLE if it isn't.
5633 	 */
5634 	if (bit_index != PG_RW_IDX) {
5635 #if 0
5636 		long icount;
5637 
5638 		icount = 0;
5639 #endif
5640 		PMAP_PAGE_BACKING_SCAN(m, NULL, ipmap, iptep, ipte, iva) {
5641 #if 0
5642 			++icount;
5643 #endif
5644 			if (ipte & ipmap->pmap_bits[bit_index]) {
5645 				atomic_clear_long(iptep,
5646 						  ipmap->pmap_bits[bit_index]);
5647 			}
5648 		} PMAP_PAGE_BACKING_DONE;
5649 #if 0
5650 		if (icount == 0) {
5651 			icount = atomic_fetchadd_long(&m->md.interlock_count,
5652 						      0x8000000000000000LU);
5653 			if ((icount & 0x3FFFFFFFFFFFFFFFLU) == 0) {
5654 				vm_page_flag_clear(m, PG_MAPPED |
5655 						      PG_MAPPEDMULTI |
5656 						      PG_WRITEABLE);
5657 			}
5658 		}
5659 #endif
5660 		return;
5661 	}
5662 
5663 	/*
5664 	 * Being asked to clear the RW bit.
5665 	 *
5666 	 * Nothing to do if all the mappings are already read-only
5667 	 */
5668 	if ((m->flags & PG_WRITEABLE) == 0)
5669 		return;
5670 
5671 	/*
5672 	 * Iterate the mappings and check.
5673 	 */
5674 	retry = ticks + hz * 60;
5675 again:
5676 	/*
5677 	 * Clear PG_RW. This also clears PG_M and marks the page dirty if
5678 	 * PG_M was set.
5679 	 *
5680 	 * Since the caller holds the page hard-busied we can safely clear
5681 	 * PG_WRITEABLE, and callers expect us to for the PG_RW_IDX path.
5682 	 */
5683 	PMAP_PAGE_BACKING_SCAN(m, NULL, ipmap, iptep, ipte, iva) {
5684 #if 0
5685 		if ((ipte & ipmap->pmap_bits[PG_MANAGED_IDX]) == 0)
5686 			continue;
5687 #endif
5688 		if ((ipte & ipmap->pmap_bits[PG_RW_IDX]) == 0)
5689 			continue;
5690 		npte = ipte & ~(ipmap->pmap_bits[PG_RW_IDX] |
5691 				ipmap->pmap_bits[PG_M_IDX]);
5692 		if (!pmap_inval_smp_cmpset(ipmap, iva, iptep, ipte, npte))
5693 			PMAP_PAGE_BACKING_RETRY;
5694 		if (ipte & ipmap->pmap_bits[PG_M_IDX])
5695 			vm_page_dirty(m);
5696 
5697 		/*
5698 		 * NOTE: m is not hard-busied so it is not safe to
5699 		 *	 clear PG_WRITEABLE on the 1->0 transition
5700 		 *	 against it being set in pmap_enter().
5701 		 *
5702 		 *	 pmap_count and writeable_count are only applicable
5703 		 *	 to non-fictitious pages (PG_MANAGED_IDX from pte)
5704 		 */
5705 	} PMAP_PAGE_BACKING_DONE;
5706 
5707 	/*
5708 	 * If our scan lost a pte swap race oldm->md.interlock_count might
5709 	 * be set from the pmap_enter() code.  If so sleep a little and try
5710 	 * again.
5711 	 *
5712 	 * Use an atomic op to access interlock_count to ensure ordering.
5713 	 */
5714 	icount = atomic_fetchadd_long(&m->md.interlock_count,
5715 				      0x8000000000000000LU) +
5716 		 0x8000000000000000LU;
5717 	cpu_ccfence();
5718 	while (icount & 0x3FFFFFFFFFFFFFFFLU) {
5719 		tsleep_interlock(&m->md.interlock_count, 0);
5720 		if (atomic_fcmpset_long(&m->md.interlock_count, &icount,
5721 				        icount | 0x4000000000000000LU)) {
5722 			tsleep(&m->md.interlock_count, PINTERLOCKED,
5723 			       "pgunm", 1);
5724 			icount = m->md.interlock_count;
5725 			if (retry - ticks > 0)
5726 				goto again;
5727 			panic("pmap_clearbit: cannot return interlock_count "
5728 			      "to 0 (%p, %ld)",
5729 			      m, m->md.interlock_count);
5730 		}
5731 	}
5732 	vm_page_flag_clear(m, PG_WRITEABLE);
5733 }
5734 
5735 /*
5736  * Lower the permission for all mappings to a given page.
5737  *
5738  * Page must be hard-busied by caller.  Because the page is busied by the
5739  * caller, this should not be able to race a pmap_enter().
5740  */
5741 void
5742 pmap_page_protect(vm_page_t m, vm_prot_t prot)
5743 {
5744 	/* JG NX support? */
5745 	if ((prot & VM_PROT_WRITE) == 0) {
5746 		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
5747 			/*
5748 			 * NOTE: pmap_clearbit(.. PG_RW) also clears
5749 			 *	 the PG_WRITEABLE flag in (m).
5750 			 */
5751 			pmap_clearbit(m, PG_RW_IDX);
5752 		} else {
5753 			pmap_remove_all(m);
5754 		}
5755 	}
5756 }
5757 
5758 vm_paddr_t
5759 pmap_phys_address(vm_pindex_t ppn)
5760 {
5761 	return (x86_64_ptob(ppn));
5762 }
5763 
5764 /*
5765  * Return a count of reference bits for a page, clearing those bits.
5766  * It is not necessary for every reference bit to be cleared, but it
5767  * is necessary that 0 only be returned when there are truly no
5768  * reference bits set.
5769  *
5770  * XXX: The exact number of bits to check and clear is a matter that
5771  * should be tested and standardized at some point in the future for
5772  * optimal aging of shared pages.
5773  *
5774  * This routine may not block.
5775  */
5776 int
5777 pmap_ts_referenced(vm_page_t m)
5778 {
5779 	int rval = 0;
5780 	pt_entry_t npte;
5781 
5782 	if (__predict_false(!pmap_initialized || (m->flags & PG_FICTITIOUS)))
5783 		return rval;
5784 	PMAP_PAGE_BACKING_SCAN(m, NULL, ipmap, iptep, ipte, iva) {
5785 		if (ipte & ipmap->pmap_bits[PG_A_IDX]) {
5786 			npte = ipte & ~ipmap->pmap_bits[PG_A_IDX];
5787 			if (!atomic_cmpset_long(iptep, ipte, npte))
5788 				PMAP_PAGE_BACKING_RETRY;
5789 			++rval;
5790 			if (rval > 4)
5791 				break;
5792 		}
5793 	} PMAP_PAGE_BACKING_DONE;
5794 	return rval;
5795 }
5796 
5797 /*
5798  *	pmap_is_modified:
5799  *
5800  *	Return whether or not the specified physical page was modified
5801  *	in any physical maps.
5802  */
5803 boolean_t
5804 pmap_is_modified(vm_page_t m)
5805 {
5806 	boolean_t res;
5807 
5808 	res = pmap_testbit(m, PG_M_IDX);
5809 	return (res);
5810 }
5811 
5812 /*
5813  * Clear the modify bit on the vm_page.
5814  *
5815  * The page must be hard-busied.
5816  */
5817 void
5818 pmap_clear_modify(vm_page_t m)
5819 {
5820 	pmap_clearbit(m, PG_M_IDX);
5821 }
5822 
5823 /*
5824  *	pmap_clear_reference:
5825  *
5826  *	Clear the reference bit on the specified physical page.
5827  */
5828 void
5829 pmap_clear_reference(vm_page_t m)
5830 {
5831 	pmap_clearbit(m, PG_A_IDX);
5832 }
5833 
5834 /*
5835  * Miscellaneous support routines follow
5836  */
5837 
5838 static
5839 void
5840 x86_64_protection_init(void)
5841 {
5842 	uint64_t *kp;
5843 	int prot;
5844 
5845 	/*
5846 	 * NX supported? (boot time loader.conf override only)
5847 	 *
5848 	 * -1	Automatic (sets mode 1)
5849 	 *  0	Disabled
5850 	 *  1	NX implemented, differentiates PROT_READ vs PROT_READ|PROT_EXEC
5851 	 *  2	NX implemented for all cases
5852 	 */
5853 	TUNABLE_INT_FETCH("machdep.pmap_nx_enable", &pmap_nx_enable);
5854 	if ((amd_feature & AMDID_NX) == 0) {
5855 		pmap_bits_default[PG_NX_IDX] = 0;
5856 		pmap_nx_enable = 0;
5857 	} else if (pmap_nx_enable < 0) {
5858 		pmap_nx_enable = 1;		/* default to mode 1 (READ) */
5859 	}
5860 
5861 	/*
5862 	 * 0 is basically read-only access, but also set the NX (no-execute)
5863 	 * bit when VM_PROT_EXECUTE is not specified.
5864 	 */
5865 	kp = protection_codes;
5866 	for (prot = 0; prot < PROTECTION_CODES_SIZE; prot++) {
5867 		switch (prot) {
5868 		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
5869 			/*
5870 			 * This case handled elsewhere
5871 			 */
5872 			*kp = 0;
5873 			break;
5874 		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
5875 			/*
5876 			 * Read-only is 0|NX	(pmap_nx_enable mode >= 1)
5877 			 */
5878 			if (pmap_nx_enable >= 1)
5879 				*kp = pmap_bits_default[PG_NX_IDX];
5880 			break;
5881 		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
5882 		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
5883 			/*
5884 			 * Execute requires read access
5885 			 */
5886 			*kp = 0;
5887 			break;
5888 		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
5889 		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
5890 			/*
5891 			 * Write without execute is RW|NX
5892 			 *			(pmap_nx_enable mode >= 2)
5893 			 */
5894 			*kp = pmap_bits_default[PG_RW_IDX];
5895 			if (pmap_nx_enable >= 2)
5896 				*kp |= pmap_bits_default[PG_NX_IDX];
5897 			break;
5898 		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
5899 		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
5900 			/*
5901 			 * Write with execute is RW
5902 			 */
5903 			*kp = pmap_bits_default[PG_RW_IDX];
5904 			break;
5905 		}
5906 		++kp;
5907 	}
5908 }
5909 
5910 /*
5911  * Map a set of physical memory pages into the kernel virtual
5912  * address space. Return a pointer to where it is mapped. This
5913  * routine is intended to be used for mapping device memory,
5914  * NOT real memory.
5915  *
5916  * NOTE: We can't use pgeflag unless we invalidate the pages one at
5917  *	 a time.
5918  *
5919  * NOTE: The PAT attributes {WRITE_BACK, WRITE_THROUGH, UNCACHED, UNCACHEABLE}
5920  *	 work whether the cpu supports PAT or not.  The remaining PAT
5921  *	 attributes {WRITE_PROTECTED, WRITE_COMBINING} only work if the cpu
5922  *	 supports PAT.
5923  */
5924 void *
5925 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
5926 {
5927 	return(pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5928 }
5929 
5930 void *
5931 pmap_mapdev_uncacheable(vm_paddr_t pa, vm_size_t size)
5932 {
5933 	return(pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
5934 }
5935 
5936 void *
5937 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
5938 {
5939 	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5940 }
5941 
5942 /*
5943  * Map a set of physical memory pages into the kernel virtual
5944  * address space. Return a pointer to where it is mapped. This
5945  * routine is intended to be used for mapping device memory,
5946  * NOT real memory.
5947  */
5948 void *
5949 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
5950 {
5951 	vm_offset_t va, tmpva, offset;
5952 	pt_entry_t *pte;
5953 	vm_size_t tmpsize;
5954 
5955 	offset = pa & PAGE_MASK;
5956 	size = roundup(offset + size, PAGE_SIZE);
5957 
5958 	va = kmem_alloc_nofault(&kernel_map, size, VM_SUBSYS_MAPDEV, PAGE_SIZE);
5959 	if (va == 0)
5960 		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
5961 
5962 	pa = pa & ~PAGE_MASK;
5963 	for (tmpva = va, tmpsize = size; tmpsize > 0;) {
5964 		pte = vtopte(tmpva);
5965 		*pte = pa |
5966 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
5967 		    kernel_pmap.pmap_bits[PG_V_IDX] | /* pgeflag | */
5968 		    kernel_pmap.pmap_cache_bits_pte[mode];
5969 		tmpsize -= PAGE_SIZE;
5970 		tmpva += PAGE_SIZE;
5971 		pa += PAGE_SIZE;
5972 	}
5973 	pmap_invalidate_range(&kernel_pmap, va, va + size);
5974 	pmap_invalidate_cache_range(va, va + size);
5975 
5976 	return ((void *)(va + offset));
5977 }
5978 
5979 void
5980 pmap_unmapdev(vm_offset_t va, vm_size_t size)
5981 {
5982 	vm_offset_t base, offset;
5983 
5984 	base = va & ~PAGE_MASK;
5985 	offset = va & PAGE_MASK;
5986 	size = roundup(offset + size, PAGE_SIZE);
5987 	pmap_qremove(va, size >> PAGE_SHIFT);
5988 	kmem_free(&kernel_map, base, size);
5989 }
5990 
5991 /*
5992  * Sets the memory attribute for the specified page.
5993  */
5994 void
5995 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5996 {
5997 
5998     m->pat_mode = ma;
5999 
6000     /*
6001      * If "m" is a normal page, update its direct mapping.  This update
6002      * can be relied upon to perform any cache operations that are
6003      * required for data coherence.
6004      */
6005     if ((m->flags & PG_FICTITIOUS) == 0)
6006         pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), 1, m->pat_mode);
6007 }
6008 
6009 /*
6010  * Change the PAT attribute on an existing kernel memory map.  Caller
6011  * must ensure that the virtual memory in question is not accessed
6012  * during the adjustment.
6013  *
6014  * If the va is within the DMAP we cannot use vtopte() because the DMAP
6015  * utilizes 2MB or 1GB pages.  2MB is forced atm so calculate the pd_entry
6016  * pointer based on that.
6017  */
6018 void
6019 pmap_change_attr(vm_offset_t va, vm_size_t count, int mode)
6020 {
6021 	pt_entry_t *pte;
6022 	vm_offset_t base;
6023 	int changed = 0;
6024 
6025 	if (va == 0)
6026 		panic("pmap_change_attr: va is NULL");
6027 	base = trunc_page(va);
6028 
6029 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
6030 		pd_entry_t *pd;
6031 
6032 		KKASSERT(va < DMapMaxAddress);
6033 		pd = (pd_entry_t *)PHYS_TO_DMAP(DMPDphys);
6034 		pd += (va - DMAP_MIN_ADDRESS) >> PDRSHIFT;
6035 
6036 		while ((long)count > 0) {
6037 			*pd =
6038 			   (*pd & ~(pd_entry_t)(kernel_pmap.pmap_cache_mask_pde)) |
6039 			   kernel_pmap.pmap_cache_bits_pde[mode];
6040 			count -= NBPDR / PAGE_SIZE;
6041 			va += NBPDR;
6042 			++pd;
6043 		}
6044 	} else {
6045 		while (count) {
6046 			pte = vtopte(va);
6047 			*pte =
6048 			   (*pte & ~(pt_entry_t)(kernel_pmap.pmap_cache_mask_pte)) |
6049 			   kernel_pmap.pmap_cache_bits_pte[mode];
6050 			--count;
6051 			va += PAGE_SIZE;
6052 		}
6053 	}
6054 
6055 	changed = 1;	/* XXX: not optimal */
6056 
6057 	/*
6058 	 * Flush CPU caches if required to make sure any data isn't cached that
6059 	 * shouldn't be, etc.
6060 	 */
6061 	if (changed) {
6062 		pmap_invalidate_range(&kernel_pmap, base, va);
6063 		pmap_invalidate_cache_range(base, va);
6064 	}
6065 }
6066 
6067 /*
6068  * perform the pmap work for mincore
6069  */
6070 int
6071 pmap_mincore(pmap_t pmap, vm_offset_t addr)
6072 {
6073 	pt_entry_t *ptep, pte;
6074 	vm_page_t m;
6075 	int val = 0;
6076 
6077 	ptep = pmap_pte(pmap, addr);
6078 
6079 	if (ptep && (pte = *ptep) != 0) {
6080 		vm_offset_t pa;
6081 
6082 		val = MINCORE_INCORE;
6083 		pa = pte & PG_FRAME;
6084 		if (pte & pmap->pmap_bits[PG_MANAGED_IDX])
6085 			m = PHYS_TO_VM_PAGE(pa);
6086 		else
6087 			m = NULL;
6088 
6089 		/*
6090 		 * Modified by us
6091 		 */
6092 		if (pte & pmap->pmap_bits[PG_M_IDX])
6093 			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
6094 
6095 		/*
6096 		 * Modified by someone
6097 		 */
6098 		else if (m && (m->dirty || pmap_is_modified(m)))
6099 			val |= MINCORE_MODIFIED_OTHER;
6100 
6101 		/*
6102 		 * Referenced by us, or someone else.
6103 		 */
6104 		if (pte & pmap->pmap_bits[PG_A_IDX]) {
6105 			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
6106 		} else if (m && ((m->flags & PG_REFERENCED) ||
6107 				 pmap_ts_referenced(m))) {
6108 			val |= MINCORE_REFERENCED_OTHER;
6109 			vm_page_flag_set(m, PG_REFERENCED);
6110 		}
6111 	}
6112 	return val;
6113 }
6114 
6115 /*
6116  * Replace p->p_vmspace with a new one.  If adjrefs is non-zero the new
6117  * vmspace will be ref'd and the old one will be deref'd.
6118  *
6119  * The vmspace for all lwps associated with the process will be adjusted
6120  * and cr3 will be reloaded if any lwp is the current lwp.
6121  *
6122  * The process must hold the vmspace->vm_map.token for oldvm and newvm
6123  */
6124 void
6125 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
6126 {
6127 	struct vmspace *oldvm;
6128 	struct lwp *lp;
6129 
6130 	oldvm = p->p_vmspace;
6131 	if (oldvm != newvm) {
6132 		if (adjrefs)
6133 			vmspace_ref(newvm);
6134 		p->p_vmspace = newvm;
6135 		KKASSERT(p->p_nthreads == 1);
6136 		lp = RB_ROOT(&p->p_lwp_tree);
6137 		pmap_setlwpvm(lp, newvm);
6138 		if (adjrefs)
6139 			vmspace_rel(oldvm);
6140 	}
6141 }
6142 
6143 /*
6144  * Set the vmspace for a LWP.  The vmspace is almost universally set the
6145  * same as the process vmspace, but virtual kernels need to swap out contexts
6146  * on a per-lwp basis.
6147  *
6148  * Caller does not necessarily hold any vmspace tokens.  Caller must control
6149  * the lwp (typically be in the context of the lwp).  We use a critical
6150  * section to protect against statclock and hardclock (statistics collection).
6151  */
6152 void
6153 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
6154 {
6155 	struct vmspace *oldvm;
6156 	struct pmap *pmap;
6157 	thread_t td;
6158 
6159 	oldvm = lp->lwp_vmspace;
6160 
6161 	if (oldvm != newvm) {
6162 		crit_enter();
6163 		td = curthread;
6164 		KKASSERT((newvm->vm_refcnt & VM_REF_DELETED) == 0);
6165 		lp->lwp_vmspace = newvm;
6166 		if (td->td_lwp == lp) {
6167 			pmap = vmspace_pmap(newvm);
6168 			ATOMIC_CPUMASK_ORBIT(pmap->pm_active, mycpu->gd_cpuid);
6169 			if (pmap->pm_active_lock & CPULOCK_EXCL)
6170 				pmap_interlock_wait(newvm);
6171 #if defined(SWTCH_OPTIM_STATS)
6172 			tlb_flush_count++;
6173 #endif
6174 			if (pmap->pmap_bits[TYPE_IDX] == REGULAR_PMAP) {
6175 				td->td_pcb->pcb_cr3 = vtophys(pmap->pm_pml4);
6176 				if (meltdown_mitigation && pmap->pm_pmlpv_iso) {
6177 					td->td_pcb->pcb_cr3_iso =
6178 						vtophys(pmap->pm_pml4_iso);
6179 					td->td_pcb->pcb_flags |= PCB_ISOMMU;
6180 				} else {
6181 					td->td_pcb->pcb_cr3_iso = 0;
6182 					td->td_pcb->pcb_flags &= ~PCB_ISOMMU;
6183 				}
6184 			} else if (pmap->pmap_bits[TYPE_IDX] == EPT_PMAP) {
6185 				td->td_pcb->pcb_cr3 = KPML4phys;
6186 				td->td_pcb->pcb_cr3_iso = 0;
6187 				td->td_pcb->pcb_flags &= ~PCB_ISOMMU;
6188 			} else {
6189 				panic("pmap_setlwpvm: unknown pmap type\n");
6190 			}
6191 
6192 			/*
6193 			 * The MMU separation fields needs to be updated.
6194 			 * (it can't access the pcb directly from the
6195 			 * restricted user pmap).
6196 			 */
6197 			{
6198 				struct trampframe *tramp;
6199 
6200 				tramp = &pscpu->trampoline;
6201 				tramp->tr_pcb_cr3 = td->td_pcb->pcb_cr3;
6202 				tramp->tr_pcb_cr3_iso = td->td_pcb->pcb_cr3_iso;
6203 				tramp->tr_pcb_flags = td->td_pcb->pcb_flags;
6204 				tramp->tr_pcb_rsp = (register_t)td->td_pcb;
6205 				/* tr_pcb_rsp doesn't change */
6206 			}
6207 
6208 			/*
6209 			 * In kernel-land we always use the normal PML4E
6210 			 * so the kernel is fully mapped and can also access
6211 			 * user memory.
6212 			 */
6213 			load_cr3(td->td_pcb->pcb_cr3);
6214 			pmap = vmspace_pmap(oldvm);
6215 			ATOMIC_CPUMASK_NANDBIT(pmap->pm_active,
6216 					       mycpu->gd_cpuid);
6217 		}
6218 		crit_exit();
6219 	}
6220 }
6221 
6222 /*
6223  * Called when switching to a locked pmap, used to interlock against pmaps
6224  * undergoing modifications to prevent us from activating the MMU for the
6225  * target pmap until all such modifications have completed.  We have to do
6226  * this because the thread making the modifications has already set up its
6227  * SMP synchronization mask.
6228  *
6229  * This function cannot sleep!
6230  *
6231  * No requirements.
6232  */
6233 void
6234 pmap_interlock_wait(struct vmspace *vm)
6235 {
6236 	struct pmap *pmap = &vm->vm_pmap;
6237 
6238 	if (pmap->pm_active_lock & CPULOCK_EXCL) {
6239 		crit_enter();
6240 		KKASSERT(curthread->td_critcount >= 2);
6241 		DEBUG_PUSH_INFO("pmap_interlock_wait");
6242 		while (pmap->pm_active_lock & CPULOCK_EXCL) {
6243 			cpu_ccfence();
6244 			lwkt_process_ipiq();
6245 		}
6246 		DEBUG_POP_INFO();
6247 		crit_exit();
6248 	}
6249 }
6250 
6251 vm_offset_t
6252 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
6253 {
6254 
6255 	if ((obj == NULL) || (size < NBPDR) ||
6256 	    ((obj->type != OBJT_DEVICE) && (obj->type != OBJT_MGTDEVICE))) {
6257 		return addr;
6258 	}
6259 
6260 	addr = roundup2(addr, NBPDR);
6261 	return addr;
6262 }
6263 
6264 /*
6265  * Used by kmalloc/kfree, page already exists at va
6266  */
6267 vm_page_t
6268 pmap_kvtom(vm_offset_t va)
6269 {
6270 	pt_entry_t *ptep = vtopte(va);
6271 
6272 	return(PHYS_TO_VM_PAGE(*ptep & PG_FRAME));
6273 }
6274 
6275 /*
6276  * Initialize machine-specific shared page directory support.  This
6277  * is executed when a VM object is created.
6278  */
6279 void
6280 pmap_object_init(vm_object_t object)
6281 {
6282 }
6283 
6284 /*
6285  * Clean up machine-specific shared page directory support.  This
6286  * is executed when a VM object is destroyed.
6287  */
6288 void
6289 pmap_object_free(vm_object_t object)
6290 {
6291 }
6292 
6293 /*
6294  * pmap_pgscan_callback - Used by pmap_pgscan to acquire the related
6295  * VM page and issue a pginfo->callback.
6296  */
6297 static
6298 void
6299 pmap_pgscan_callback(pmap_t pmap, struct pmap_scan_info *info,
6300 		      vm_pindex_t *pte_placemark,
6301 		      pv_entry_t pt_pv, vm_offset_t va,
6302 		      pt_entry_t *ptep, void *arg)
6303 {
6304 	struct pmap_pgscan_info *pginfo = arg;
6305 	vm_page_t m;
6306 	pt_entry_t pte;
6307 
6308 	pte = *ptep;
6309 	cpu_ccfence();
6310 
6311 	if (pte & pmap->pmap_bits[PG_MANAGED_IDX]) {
6312 		/*
6313 		 * Try to busy the page while we hold the pte_placemark locked.
6314 		 */
6315 		m = PHYS_TO_VM_PAGE(*ptep & PG_FRAME);
6316 		if (vm_page_busy_try(m, TRUE) == 0) {
6317 			if (m == PHYS_TO_VM_PAGE(*ptep & PG_FRAME)) {
6318 				/*
6319 				 * The callback is issued with the pt_pv
6320 				 * unlocked.
6321 				 */
6322 				pv_placemarker_wakeup(pmap, pte_placemark);
6323 				if (pt_pv) {
6324 					vm_page_wire_quick(pt_pv->pv_m);
6325 					pv_unlock(pt_pv);
6326 				}
6327 				if (pginfo->callback(pginfo, va, m) < 0)
6328 					info->stop = 1;
6329 				if (pt_pv) {
6330 					pv_lock(pt_pv);
6331 					if (vm_page_unwire_quick(pt_pv->pv_m)) {
6332 						panic("pmap_pgscan: bad wire_"
6333 						      "count on pt_pv");
6334 					}
6335 				}
6336 			} else {
6337 				vm_page_wakeup(m);
6338 				pv_placemarker_wakeup(pmap, pte_placemark);
6339 			}
6340 		} else {
6341 			++pginfo->busycount;
6342 			pv_placemarker_wakeup(pmap, pte_placemark);
6343 		}
6344 	} else {
6345 		/*
6346 		 * Shared page table or unmanaged page (sharept or !sharept)
6347 		 */
6348 		pv_placemarker_wakeup(pmap, pte_placemark);
6349 	}
6350 }
6351 
6352 void
6353 pmap_pgscan(struct pmap_pgscan_info *pginfo)
6354 {
6355 	struct pmap_scan_info info;
6356 
6357 	pginfo->offset = pginfo->beg_addr;
6358 	info.pmap = pginfo->pmap;
6359 	info.sva = pginfo->beg_addr;
6360 	info.eva = pginfo->end_addr;
6361 	info.func = pmap_pgscan_callback;
6362 	info.arg = pginfo;
6363 	pmap_scan(&info, 0);
6364 	if (info.stop == 0)
6365 		pginfo->offset = pginfo->end_addr;
6366 }
6367 
6368 /*
6369  * Wait for a placemarker that we do not own to clear.  The placemarker
6370  * in question is not necessarily set to the pindex we want, we may have
6371  * to wait on the element because we want to reserve it ourselves.
6372  *
6373  * NOTE: PM_PLACEMARK_WAKEUP sets a bit which is already set in
6374  *	 PM_NOPLACEMARK, so it does not interfere with placemarks
6375  *	 which have already been woken up.
6376  *
6377  * NOTE: This routine is called without the pmap spin-lock and so can
6378  *	 race changes to *pmark.  Due to the sensitivity of the routine
6379  *	 to possible MULTIPLE interactions from other cpus, and the
6380  *	 overloading of the WAKEUP bit on PM_NOPLACEMARK, we have to
6381  *	 use a cmpset loop to avoid a race that might cause the WAKEUP
6382  *	 bit to be lost.
6383  *
6384  * Caller is expected to retry its operation upon return.
6385  */
6386 static
6387 void
6388 pv_placemarker_wait(pmap_t pmap, vm_pindex_t *pmark)
6389 {
6390 	vm_pindex_t mark;
6391 
6392 	mark = *pmark;
6393 	cpu_ccfence();
6394 	while (mark != PM_NOPLACEMARK) {
6395 		tsleep_interlock(pmark, 0);
6396 		if (atomic_fcmpset_long(pmark, &mark,
6397 				       mark | PM_PLACEMARK_WAKEUP)) {
6398 			tsleep(pmark, PINTERLOCKED, "pvplw", 0);
6399 			break;
6400 		}
6401 	}
6402 }
6403 
6404 /*
6405  * Wakeup a placemarker that we own.  Replace the entry with
6406  * PM_NOPLACEMARK and issue a wakeup() if necessary.
6407  */
6408 static
6409 void
6410 pv_placemarker_wakeup(pmap_t pmap, vm_pindex_t *pmark)
6411 {
6412 	vm_pindex_t pindex;
6413 
6414 	pindex = atomic_swap_long(pmark, PM_NOPLACEMARK);
6415 	KKASSERT(pindex != PM_NOPLACEMARK);
6416 	if (pindex & PM_PLACEMARK_WAKEUP)
6417 		wakeup(pmark);
6418 }
6419