xref: /dragonfly/sys/platform/pc64/x86_64/pmap.c (revision e65bc1c3)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1994 David Greenman
5  * Copyright (c) 2003 Peter Wemm
6  * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
7  * Copyright (c) 2008, 2009 The DragonFly Project.
8  * Copyright (c) 2008, 2009 Jordan Gordeev.
9  * Copyright (c) 2011-2012 Matthew Dillon
10  * All rights reserved.
11  *
12  * This code is derived from software contributed to Berkeley by
13  * the Systems Programming Group of the University of Utah Computer
14  * Science Department and William Jolitz of UUNET Technologies Inc.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  */
44 /*
45  * Manage physical address maps for x86-64 systems.
46  */
47 
48 #if JG
49 #include "opt_disable_pse.h"
50 #include "opt_pmap.h"
51 #endif
52 #include "opt_msgbuf.h"
53 
54 #include <sys/param.h>
55 #include <sys/systm.h>
56 #include <sys/kernel.h>
57 #include <sys/proc.h>
58 #include <sys/msgbuf.h>
59 #include <sys/vmmeter.h>
60 #include <sys/mman.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <sys/sysctl.h>
65 #include <sys/lock.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_object.h>
70 #include <vm/vm_extern.h>
71 #include <vm/vm_pageout.h>
72 #include <vm/vm_pager.h>
73 #include <vm/vm_zone.h>
74 
75 #include <sys/user.h>
76 #include <sys/thread2.h>
77 #include <sys/sysref2.h>
78 #include <sys/spinlock2.h>
79 #include <vm/vm_page2.h>
80 
81 #include <machine/cputypes.h>
82 #include <machine/md_var.h>
83 #include <machine/specialreg.h>
84 #include <machine/smp.h>
85 #include <machine_base/apic/apicreg.h>
86 #include <machine/globaldata.h>
87 #include <machine/pmap.h>
88 #include <machine/pmap_inval.h>
89 #include <machine/inttypes.h>
90 
91 #include <ddb/ddb.h>
92 
93 #define PMAP_KEEP_PDIRS
94 #ifndef PMAP_SHPGPERPROC
95 #define PMAP_SHPGPERPROC 2000
96 #endif
97 
98 #if defined(DIAGNOSTIC)
99 #define PMAP_DIAGNOSTIC
100 #endif
101 
102 #define MINPV 2048
103 
104 /*
105  * pmap debugging will report who owns a pv lock when blocking.
106  */
107 #ifdef PMAP_DEBUG
108 
109 #define PMAP_DEBUG_DECL		,const char *func, int lineno
110 #define PMAP_DEBUG_ARGS		, __func__, __LINE__
111 #define PMAP_DEBUG_COPY		, func, lineno
112 
113 #define pv_get(pmap, pindex)		_pv_get(pmap, pindex		\
114 							PMAP_DEBUG_ARGS)
115 #define pv_lock(pv)			_pv_lock(pv			\
116 							PMAP_DEBUG_ARGS)
117 #define pv_hold_try(pv)			_pv_hold_try(pv			\
118 							PMAP_DEBUG_ARGS)
119 #define pv_alloc(pmap, pindex, isnewp)	_pv_alloc(pmap, pindex, isnewp	\
120 							PMAP_DEBUG_ARGS)
121 
122 #else
123 
124 #define PMAP_DEBUG_DECL
125 #define PMAP_DEBUG_ARGS
126 #define PMAP_DEBUG_COPY
127 
128 #define pv_get(pmap, pindex)		_pv_get(pmap, pindex)
129 #define pv_lock(pv)			_pv_lock(pv)
130 #define pv_hold_try(pv)			_pv_hold_try(pv)
131 #define pv_alloc(pmap, pindex, isnewp)	_pv_alloc(pmap, pindex, isnewp)
132 
133 #endif
134 
135 /*
136  * Get PDEs and PTEs for user/kernel address space
137  */
138 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
139 
140 #define pmap_pde_v(pte)		((*(pd_entry_t *)pte & PG_V) != 0)
141 #define pmap_pte_w(pte)		((*(pt_entry_t *)pte & PG_W) != 0)
142 #define pmap_pte_m(pte)		((*(pt_entry_t *)pte & PG_M) != 0)
143 #define pmap_pte_u(pte)		((*(pt_entry_t *)pte & PG_A) != 0)
144 #define pmap_pte_v(pte)		((*(pt_entry_t *)pte & PG_V) != 0)
145 
146 /*
147  * Given a map and a machine independent protection code,
148  * convert to a vax protection code.
149  */
150 #define pte_prot(m, p)		\
151 	(protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
152 static int protection_codes[8];
153 
154 struct pmap kernel_pmap;
155 static TAILQ_HEAD(,pmap)	pmap_list = TAILQ_HEAD_INITIALIZER(pmap_list);
156 
157 MALLOC_DEFINE(M_OBJPMAP, "objpmap", "pmaps associated with VM objects");
158 
159 vm_paddr_t avail_start;		/* PA of first available physical page */
160 vm_paddr_t avail_end;		/* PA of last available physical page */
161 vm_offset_t virtual2_start;	/* cutout free area prior to kernel start */
162 vm_offset_t virtual2_end;
163 vm_offset_t virtual_start;	/* VA of first avail page (after kernel bss) */
164 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
165 vm_offset_t KvaStart;		/* VA start of KVA space */
166 vm_offset_t KvaEnd;		/* VA end of KVA space (non-inclusive) */
167 vm_offset_t KvaSize;		/* max size of kernel virtual address space */
168 static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
169 static int pgeflag;		/* PG_G or-in */
170 static int pseflag;		/* PG_PS or-in */
171 uint64_t PatMsr;
172 
173 static int ndmpdp;
174 static vm_paddr_t dmaplimit;
175 static int nkpt;
176 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
177 
178 #define PAT_INDEX_SIZE  8
179 static pt_entry_t pat_pte_index[PAT_INDEX_SIZE];	/* PAT -> PG_ bits */
180 /*static pt_entry_t pat_pde_index[PAT_INDEX_SIZE];*/	/* PAT -> PG_ bits */
181 
182 static uint64_t KPTbase;
183 static uint64_t KPTphys;
184 static uint64_t	KPDphys;	/* phys addr of kernel level 2 */
185 static uint64_t	KPDbase;	/* phys addr of kernel level 2 @ KERNBASE */
186 uint64_t KPDPphys;	/* phys addr of kernel level 3 */
187 uint64_t KPML4phys;	/* phys addr of kernel level 4 */
188 
189 static uint64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
190 static uint64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
191 
192 /*
193  * Data for the pv entry allocation mechanism
194  */
195 static vm_zone_t pvzone;
196 static struct vm_zone pvzone_store;
197 static struct vm_object pvzone_obj;
198 static int pv_entry_max=0, pv_entry_high_water=0;
199 static int pmap_pagedaemon_waken = 0;
200 static struct pv_entry *pvinit;
201 
202 /*
203  * All those kernel PT submaps that BSD is so fond of
204  */
205 pt_entry_t *CMAP1 = NULL, *ptmmap;
206 caddr_t CADDR1 = NULL, ptvmmap = NULL;
207 static pt_entry_t *msgbufmap;
208 struct msgbuf *msgbufp=NULL;
209 
210 /*
211  * Crashdump maps.
212  */
213 static pt_entry_t *pt_crashdumpmap;
214 static caddr_t crashdumpmap;
215 
216 static int pmap_yield_count = 64;
217 SYSCTL_INT(_machdep, OID_AUTO, pmap_yield_count, CTLFLAG_RW,
218     &pmap_yield_count, 0, "Yield during init_pt/release");
219 static int pmap_mmu_optimize = 0;
220 SYSCTL_INT(_machdep, OID_AUTO, pmap_mmu_optimize, CTLFLAG_RW,
221     &pmap_mmu_optimize, 0, "Share page table pages when possible");
222 
223 #define DISABLE_PSE
224 
225 static void pv_hold(pv_entry_t pv);
226 static int _pv_hold_try(pv_entry_t pv
227 				PMAP_DEBUG_DECL);
228 static void pv_drop(pv_entry_t pv);
229 static void _pv_lock(pv_entry_t pv
230 				PMAP_DEBUG_DECL);
231 static void pv_unlock(pv_entry_t pv);
232 static pv_entry_t _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew
233 				PMAP_DEBUG_DECL);
234 static pv_entry_t _pv_get(pmap_t pmap, vm_pindex_t pindex
235 				PMAP_DEBUG_DECL);
236 static pv_entry_t pv_get_try(pmap_t pmap, vm_pindex_t pindex, int *errorp);
237 static pv_entry_t pv_find(pmap_t pmap, vm_pindex_t pindex);
238 static void pv_put(pv_entry_t pv);
239 static void pv_free(pv_entry_t pv);
240 static void *pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex);
241 static pv_entry_t pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex,
242 		      pv_entry_t *pvpp);
243 static pv_entry_t pmap_allocpte_seg(pmap_t pmap, vm_pindex_t ptepindex,
244 		      pv_entry_t *pvpp, vm_map_entry_t entry, vm_offset_t va);
245 static void pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp,
246 		      struct pmap_inval_info *info);
247 static vm_page_t pmap_remove_pv_page(pv_entry_t pv);
248 static int pmap_release_pv(pv_entry_t pv, pv_entry_t pvp);
249 
250 struct pmap_scan_info;
251 static void pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
252 		      pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
253 		      vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
254 static void pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
255 		      pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
256 		      vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
257 
258 static void i386_protection_init (void);
259 static void create_pagetables(vm_paddr_t *firstaddr);
260 static void pmap_remove_all (vm_page_t m);
261 static boolean_t pmap_testbit (vm_page_t m, int bit);
262 
263 static pt_entry_t * pmap_pte_quick (pmap_t pmap, vm_offset_t va);
264 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
265 
266 static unsigned pdir4mb;
267 
268 static int
269 pv_entry_compare(pv_entry_t pv1, pv_entry_t pv2)
270 {
271 	if (pv1->pv_pindex < pv2->pv_pindex)
272 		return(-1);
273 	if (pv1->pv_pindex > pv2->pv_pindex)
274 		return(1);
275 	return(0);
276 }
277 
278 RB_GENERATE2(pv_entry_rb_tree, pv_entry, pv_entry,
279              pv_entry_compare, vm_pindex_t, pv_pindex);
280 
281 /*
282  * Move the kernel virtual free pointer to the next
283  * 2MB.  This is used to help improve performance
284  * by using a large (2MB) page for much of the kernel
285  * (.text, .data, .bss)
286  */
287 static
288 vm_offset_t
289 pmap_kmem_choose(vm_offset_t addr)
290 {
291 	vm_offset_t newaddr = addr;
292 
293 	newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
294 	return newaddr;
295 }
296 
297 /*
298  * pmap_pte_quick:
299  *
300  *	Super fast pmap_pte routine best used when scanning the pv lists.
301  *	This eliminates many course-grained invltlb calls.  Note that many of
302  *	the pv list scans are across different pmaps and it is very wasteful
303  *	to do an entire invltlb when checking a single mapping.
304  */
305 static __inline pt_entry_t *pmap_pte(pmap_t pmap, vm_offset_t va);
306 
307 static
308 pt_entry_t *
309 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
310 {
311 	return pmap_pte(pmap, va);
312 }
313 
314 /*
315  * Returns the pindex of a page table entry (representing a terminal page).
316  * There are NUPTE_TOTAL page table entries possible (a huge number)
317  *
318  * x86-64 has a 48-bit address space, where bit 47 is sign-extended out.
319  * We want to properly translate negative KVAs.
320  */
321 static __inline
322 vm_pindex_t
323 pmap_pte_pindex(vm_offset_t va)
324 {
325 	return ((va >> PAGE_SHIFT) & (NUPTE_TOTAL - 1));
326 }
327 
328 /*
329  * Returns the pindex of a page table.
330  */
331 static __inline
332 vm_pindex_t
333 pmap_pt_pindex(vm_offset_t va)
334 {
335 	return (NUPTE_TOTAL + ((va >> PDRSHIFT) & (NUPT_TOTAL - 1)));
336 }
337 
338 /*
339  * Returns the pindex of a page directory.
340  */
341 static __inline
342 vm_pindex_t
343 pmap_pd_pindex(vm_offset_t va)
344 {
345 	return (NUPTE_TOTAL + NUPT_TOTAL +
346 		((va >> PDPSHIFT) & (NUPD_TOTAL - 1)));
347 }
348 
349 static __inline
350 vm_pindex_t
351 pmap_pdp_pindex(vm_offset_t va)
352 {
353 	return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
354 		((va >> PML4SHIFT) & (NUPDP_TOTAL - 1)));
355 }
356 
357 static __inline
358 vm_pindex_t
359 pmap_pml4_pindex(void)
360 {
361 	return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL);
362 }
363 
364 /*
365  * Return various clipped indexes for a given VA
366  *
367  * Returns the index of a pte in a page table, representing a terminal
368  * page.
369  */
370 static __inline
371 vm_pindex_t
372 pmap_pte_index(vm_offset_t va)
373 {
374 	return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
375 }
376 
377 /*
378  * Returns the index of a pt in a page directory, representing a page
379  * table.
380  */
381 static __inline
382 vm_pindex_t
383 pmap_pt_index(vm_offset_t va)
384 {
385 	return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
386 }
387 
388 /*
389  * Returns the index of a pd in a page directory page, representing a page
390  * directory.
391  */
392 static __inline
393 vm_pindex_t
394 pmap_pd_index(vm_offset_t va)
395 {
396 	return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
397 }
398 
399 /*
400  * Returns the index of a pdp in the pml4 table, representing a page
401  * directory page.
402  */
403 static __inline
404 vm_pindex_t
405 pmap_pdp_index(vm_offset_t va)
406 {
407 	return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
408 }
409 
410 /*
411  * Generic procedure to index a pte from a pt, pd, or pdp.
412  *
413  * NOTE: Normally passed pindex as pmap_xx_index().  pmap_xx_pindex() is NOT
414  *	 a page table page index but is instead of PV lookup index.
415  */
416 static
417 void *
418 pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex)
419 {
420 	pt_entry_t *pte;
421 
422 	pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pv->pv_m));
423 	return(&pte[pindex]);
424 }
425 
426 /*
427  * Return pointer to PDP slot in the PML4
428  */
429 static __inline
430 pml4_entry_t *
431 pmap_pdp(pmap_t pmap, vm_offset_t va)
432 {
433 	return (&pmap->pm_pml4[pmap_pdp_index(va)]);
434 }
435 
436 /*
437  * Return pointer to PD slot in the PDP given a pointer to the PDP
438  */
439 static __inline
440 pdp_entry_t *
441 pmap_pdp_to_pd(pml4_entry_t pdp_pte, vm_offset_t va)
442 {
443 	pdp_entry_t *pd;
444 
445 	pd = (pdp_entry_t *)PHYS_TO_DMAP(pdp_pte & PG_FRAME);
446 	return (&pd[pmap_pd_index(va)]);
447 }
448 
449 /*
450  * Return pointer to PD slot in the PDP.
451  */
452 static __inline
453 pdp_entry_t *
454 pmap_pd(pmap_t pmap, vm_offset_t va)
455 {
456 	pml4_entry_t *pdp;
457 
458 	pdp = pmap_pdp(pmap, va);
459 	if ((*pdp & PG_V) == 0)
460 		return NULL;
461 	return (pmap_pdp_to_pd(*pdp, va));
462 }
463 
464 /*
465  * Return pointer to PT slot in the PD given a pointer to the PD
466  */
467 static __inline
468 pd_entry_t *
469 pmap_pd_to_pt(pdp_entry_t pd_pte, vm_offset_t va)
470 {
471 	pd_entry_t *pt;
472 
473 	pt = (pd_entry_t *)PHYS_TO_DMAP(pd_pte & PG_FRAME);
474 	return (&pt[pmap_pt_index(va)]);
475 }
476 
477 /*
478  * Return pointer to PT slot in the PD
479  *
480  * SIMPLE PMAP NOTE: Simple pmaps (embedded in objects) do not have PDPs,
481  *		     so we cannot lookup the PD via the PDP.  Instead we
482  *		     must look it up via the pmap.
483  */
484 static __inline
485 pd_entry_t *
486 pmap_pt(pmap_t pmap, vm_offset_t va)
487 {
488 	pdp_entry_t *pd;
489 	pv_entry_t pv;
490 	vm_pindex_t pd_pindex;
491 
492 	if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
493 		pd_pindex = pmap_pd_pindex(va);
494 		spin_lock(&pmap->pm_spin);
495 		pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pd_pindex);
496 		spin_unlock(&pmap->pm_spin);
497 		if (pv == NULL || pv->pv_m == NULL)
498 			return NULL;
499 		return (pmap_pd_to_pt(VM_PAGE_TO_PHYS(pv->pv_m), va));
500 	} else {
501 		pd = pmap_pd(pmap, va);
502 		if (pd == NULL || (*pd & PG_V) == 0)
503 			 return NULL;
504 		return (pmap_pd_to_pt(*pd, va));
505 	}
506 }
507 
508 /*
509  * Return pointer to PTE slot in the PT given a pointer to the PT
510  */
511 static __inline
512 pt_entry_t *
513 pmap_pt_to_pte(pd_entry_t pt_pte, vm_offset_t va)
514 {
515 	pt_entry_t *pte;
516 
517 	pte = (pt_entry_t *)PHYS_TO_DMAP(pt_pte & PG_FRAME);
518 	return (&pte[pmap_pte_index(va)]);
519 }
520 
521 /*
522  * Return pointer to PTE slot in the PT
523  */
524 static __inline
525 pt_entry_t *
526 pmap_pte(pmap_t pmap, vm_offset_t va)
527 {
528 	pd_entry_t *pt;
529 
530 	pt = pmap_pt(pmap, va);
531 	if (pt == NULL || (*pt & PG_V) == 0)
532 		 return NULL;
533 	if ((*pt & PG_PS) != 0)
534 		return ((pt_entry_t *)pt);
535 	return (pmap_pt_to_pte(*pt, va));
536 }
537 
538 /*
539  * Of all the layers (PTE, PT, PD, PDP, PML4) the best one to cache is
540  * the PT layer.  This will speed up core pmap operations considerably.
541  */
542 static __inline
543 void
544 pv_cache(pv_entry_t pv, vm_pindex_t pindex)
545 {
546 	if (pindex >= pmap_pt_pindex(0) && pindex <= pmap_pd_pindex(0))
547 		pv->pv_pmap->pm_pvhint = pv;
548 }
549 
550 
551 /*
552  * KVM - return address of PT slot in PD
553  */
554 static __inline
555 pd_entry_t *
556 vtopt(vm_offset_t va)
557 {
558 	uint64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
559 				  NPML4EPGSHIFT)) - 1);
560 
561 	return (PDmap + ((va >> PDRSHIFT) & mask));
562 }
563 
564 /*
565  * KVM - return address of PTE slot in PT
566  */
567 static __inline
568 pt_entry_t *
569 vtopte(vm_offset_t va)
570 {
571 	uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
572 				  NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
573 
574 	return (PTmap + ((va >> PAGE_SHIFT) & mask));
575 }
576 
577 static uint64_t
578 allocpages(vm_paddr_t *firstaddr, long n)
579 {
580 	uint64_t ret;
581 
582 	ret = *firstaddr;
583 	bzero((void *)ret, n * PAGE_SIZE);
584 	*firstaddr += n * PAGE_SIZE;
585 	return (ret);
586 }
587 
588 static
589 void
590 create_pagetables(vm_paddr_t *firstaddr)
591 {
592 	long i;		/* must be 64 bits */
593 	long nkpt_base;
594 	long nkpt_phys;
595 	int j;
596 
597 	/*
598 	 * We are running (mostly) V=P at this point
599 	 *
600 	 * Calculate NKPT - number of kernel page tables.  We have to
601 	 * accomodoate prealloction of the vm_page_array, dump bitmap,
602 	 * MSGBUF_SIZE, and other stuff.  Be generous.
603 	 *
604 	 * Maxmem is in pages.
605 	 *
606 	 * ndmpdp is the number of 1GB pages we wish to map.
607 	 */
608 	ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
609 	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
610 		ndmpdp = 4;
611 	KKASSERT(ndmpdp <= NKPDPE * NPDEPG);
612 
613 	/*
614 	 * Starting at the beginning of kvm (not KERNBASE).
615 	 */
616 	nkpt_phys = (Maxmem * sizeof(struct vm_page) + NBPDR - 1) / NBPDR;
617 	nkpt_phys += (Maxmem * sizeof(struct pv_entry) + NBPDR - 1) / NBPDR;
618 	nkpt_phys += ((nkpt + nkpt + 1 + NKPML4E + NKPDPE + NDMPML4E +
619 		       ndmpdp) + 511) / 512;
620 	nkpt_phys += 128;
621 
622 	/*
623 	 * Starting at KERNBASE - map 2G worth of page table pages.
624 	 * KERNBASE is offset -2G from the end of kvm.
625 	 */
626 	nkpt_base = (NPDPEPG - KPDPI) * NPTEPG;	/* typically 2 x 512 */
627 
628 	/*
629 	 * Allocate pages
630 	 */
631 	KPTbase = allocpages(firstaddr, nkpt_base);
632 	KPTphys = allocpages(firstaddr, nkpt_phys);
633 	KPML4phys = allocpages(firstaddr, 1);
634 	KPDPphys = allocpages(firstaddr, NKPML4E);
635 	KPDphys = allocpages(firstaddr, NKPDPE);
636 
637 	/*
638 	 * Calculate the page directory base for KERNBASE,
639 	 * that is where we start populating the page table pages.
640 	 * Basically this is the end - 2.
641 	 */
642 	KPDbase = KPDphys + ((NKPDPE - (NPDPEPG - KPDPI)) << PAGE_SHIFT);
643 
644 	DMPDPphys = allocpages(firstaddr, NDMPML4E);
645 	if ((amd_feature & AMDID_PAGE1GB) == 0)
646 		DMPDphys = allocpages(firstaddr, ndmpdp);
647 	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
648 
649 	/*
650 	 * Fill in the underlying page table pages for the area around
651 	 * KERNBASE.  This remaps low physical memory to KERNBASE.
652 	 *
653 	 * Read-only from zero to physfree
654 	 * XXX not fully used, underneath 2M pages
655 	 */
656 	for (i = 0; (i << PAGE_SHIFT) < *firstaddr; i++) {
657 		((pt_entry_t *)KPTbase)[i] = i << PAGE_SHIFT;
658 		((pt_entry_t *)KPTbase)[i] |= PG_RW | PG_V | PG_G;
659 	}
660 
661 	/*
662 	 * Now map the initial kernel page tables.  One block of page
663 	 * tables is placed at the beginning of kernel virtual memory,
664 	 * and another block is placed at KERNBASE to map the kernel binary,
665 	 * data, bss, and initial pre-allocations.
666 	 */
667 	for (i = 0; i < nkpt_base; i++) {
668 		((pd_entry_t *)KPDbase)[i] = KPTbase + (i << PAGE_SHIFT);
669 		((pd_entry_t *)KPDbase)[i] |= PG_RW | PG_V;
670 	}
671 	for (i = 0; i < nkpt_phys; i++) {
672 		((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
673 		((pd_entry_t *)KPDphys)[i] |= PG_RW | PG_V;
674 	}
675 
676 	/*
677 	 * Map from zero to end of allocations using 2M pages as an
678 	 * optimization.  This will bypass some of the KPTBase pages
679 	 * above in the KERNBASE area.
680 	 */
681 	for (i = 0; (i << PDRSHIFT) < *firstaddr; i++) {
682 		((pd_entry_t *)KPDbase)[i] = i << PDRSHIFT;
683 		((pd_entry_t *)KPDbase)[i] |= PG_RW | PG_V | PG_PS | PG_G;
684 	}
685 
686 	/*
687 	 * And connect up the PD to the PDP.  The kernel pmap is expected
688 	 * to pre-populate all of its PDs.  See NKPDPE in vmparam.h.
689 	 */
690 	for (i = 0; i < NKPDPE; i++) {
691 		((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] =
692 				KPDphys + (i << PAGE_SHIFT);
693 		((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] |=
694 				PG_RW | PG_V | PG_U;
695 	}
696 
697 	/*
698 	 * Now set up the direct map space using either 2MB or 1GB pages
699 	 * Preset PG_M and PG_A because demotion expects it.
700 	 *
701 	 * When filling in entries in the PD pages make sure any excess
702 	 * entries are set to zero as we allocated enough PD pages
703 	 */
704 	if ((amd_feature & AMDID_PAGE1GB) == 0) {
705 		for (i = 0; i < NPDEPG * ndmpdp; i++) {
706 			((pd_entry_t *)DMPDphys)[i] = i << PDRSHIFT;
707 			((pd_entry_t *)DMPDphys)[i] |= PG_RW | PG_V | PG_PS |
708 						       PG_G | PG_M | PG_A;
709 		}
710 
711 		/*
712 		 * And the direct map space's PDP
713 		 */
714 		for (i = 0; i < ndmpdp; i++) {
715 			((pdp_entry_t *)DMPDPphys)[i] = DMPDphys +
716 							(i << PAGE_SHIFT);
717 			((pdp_entry_t *)DMPDPphys)[i] |= PG_RW | PG_V | PG_U;
718 		}
719 	} else {
720 		for (i = 0; i < ndmpdp; i++) {
721 			((pdp_entry_t *)DMPDPphys)[i] =
722 						(vm_paddr_t)i << PDPSHIFT;
723 			((pdp_entry_t *)DMPDPphys)[i] |= PG_RW | PG_V | PG_PS |
724 							 PG_G | PG_M | PG_A;
725 		}
726 	}
727 
728 	/* And recursively map PML4 to itself in order to get PTmap */
729 	((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
730 	((pdp_entry_t *)KPML4phys)[PML4PML4I] |= PG_RW | PG_V | PG_U;
731 
732 	/*
733 	 * Connect the Direct Map slots up to the PML4
734 	 */
735 	for (j = 0; j < NDMPML4E; ++j) {
736 		((pdp_entry_t *)KPML4phys)[DMPML4I + j] =
737 			(DMPDPphys + ((vm_paddr_t)j << PML4SHIFT)) |
738 			PG_RW | PG_V | PG_U;
739 	}
740 
741 	/*
742 	 * Connect the KVA slot up to the PML4
743 	 */
744 	((pdp_entry_t *)KPML4phys)[KPML4I] = KPDPphys;
745 	((pdp_entry_t *)KPML4phys)[KPML4I] |= PG_RW | PG_V | PG_U;
746 }
747 
748 /*
749  *	Bootstrap the system enough to run with virtual memory.
750  *
751  *	On the i386 this is called after mapping has already been enabled
752  *	and just syncs the pmap module with what has already been done.
753  *	[We can't call it easily with mapping off since the kernel is not
754  *	mapped with PA == VA, hence we would have to relocate every address
755  *	from the linked base (virtual) address "KERNBASE" to the actual
756  *	(physical) address starting relative to 0]
757  */
758 void
759 pmap_bootstrap(vm_paddr_t *firstaddr)
760 {
761 	vm_offset_t va;
762 	pt_entry_t *pte;
763 
764 	KvaStart = VM_MIN_KERNEL_ADDRESS;
765 	KvaEnd = VM_MAX_KERNEL_ADDRESS;
766 	KvaSize = KvaEnd - KvaStart;
767 
768 	avail_start = *firstaddr;
769 
770 	/*
771 	 * Create an initial set of page tables to run the kernel in.
772 	 */
773 	create_pagetables(firstaddr);
774 
775 	virtual2_start = KvaStart;
776 	virtual2_end = PTOV_OFFSET;
777 
778 	virtual_start = (vm_offset_t) PTOV_OFFSET + *firstaddr;
779 	virtual_start = pmap_kmem_choose(virtual_start);
780 
781 	virtual_end = VM_MAX_KERNEL_ADDRESS;
782 
783 	/* XXX do %cr0 as well */
784 	load_cr4(rcr4() | CR4_PGE | CR4_PSE);
785 	load_cr3(KPML4phys);
786 
787 	/*
788 	 * Initialize protection array.
789 	 */
790 	i386_protection_init();
791 
792 	/*
793 	 * The kernel's pmap is statically allocated so we don't have to use
794 	 * pmap_create, which is unlikely to work correctly at this part of
795 	 * the boot sequence (XXX and which no longer exists).
796 	 */
797 	kernel_pmap.pm_pml4 = (pdp_entry_t *) (PTOV_OFFSET + KPML4phys);
798 	kernel_pmap.pm_count = 1;
799 	kernel_pmap.pm_active = (cpumask_t)-1 & ~CPUMASK_LOCK;
800 	RB_INIT(&kernel_pmap.pm_pvroot);
801 	spin_init(&kernel_pmap.pm_spin);
802 	lwkt_token_init(&kernel_pmap.pm_token, "kpmap_tok");
803 
804 	/*
805 	 * Reserve some special page table entries/VA space for temporary
806 	 * mapping of pages.
807 	 */
808 #define	SYSMAP(c, p, v, n)	\
809 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
810 
811 	va = virtual_start;
812 	pte = vtopte(va);
813 
814 	/*
815 	 * CMAP1/CMAP2 are used for zeroing and copying pages.
816 	 */
817 	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
818 
819 	/*
820 	 * Crashdump maps.
821 	 */
822 	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
823 
824 	/*
825 	 * ptvmmap is used for reading arbitrary physical pages via
826 	 * /dev/mem.
827 	 */
828 	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
829 
830 	/*
831 	 * msgbufp is used to map the system message buffer.
832 	 * XXX msgbufmap is not used.
833 	 */
834 	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
835 	       atop(round_page(MSGBUF_SIZE)))
836 
837 	virtual_start = va;
838 
839 	*CMAP1 = 0;
840 
841 	/*
842 	 * PG_G is terribly broken on SMP because we IPI invltlb's in some
843 	 * cases rather then invl1pg.  Actually, I don't even know why it
844 	 * works under UP because self-referential page table mappings
845 	 */
846 	pgeflag = 0;
847 
848 /*
849  * Initialize the 4MB page size flag
850  */
851 	pseflag = 0;
852 /*
853  * The 4MB page version of the initial
854  * kernel page mapping.
855  */
856 	pdir4mb = 0;
857 
858 #if !defined(DISABLE_PSE)
859 	if (cpu_feature & CPUID_PSE) {
860 		pt_entry_t ptditmp;
861 		/*
862 		 * Note that we have enabled PSE mode
863 		 */
864 		pseflag = PG_PS;
865 		ptditmp = *(PTmap + x86_64_btop(KERNBASE));
866 		ptditmp &= ~(NBPDR - 1);
867 		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
868 		pdir4mb = ptditmp;
869 	}
870 #endif
871 	cpu_invltlb();
872 
873 	/* Initialize the PAT MSR */
874 	pmap_init_pat();
875 }
876 
877 /*
878  * Setup the PAT MSR.
879  */
880 void
881 pmap_init_pat(void)
882 {
883 	uint64_t pat_msr;
884 	u_long cr0, cr4;
885 
886 	/*
887 	 * Default values mapping PATi,PCD,PWT bits at system reset.
888 	 * The default values effectively ignore the PATi bit by
889 	 * repeating the encodings for 0-3 in 4-7, and map the PCD
890 	 * and PWT bit combinations to the expected PAT types.
891 	 */
892 	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |	/* 000 */
893 		  PAT_VALUE(1, PAT_WRITE_THROUGH) |	/* 001 */
894 		  PAT_VALUE(2, PAT_UNCACHED) |		/* 010 */
895 		  PAT_VALUE(3, PAT_UNCACHEABLE) |	/* 011 */
896 		  PAT_VALUE(4, PAT_WRITE_BACK) |	/* 100 */
897 		  PAT_VALUE(5, PAT_WRITE_THROUGH) |	/* 101 */
898 		  PAT_VALUE(6, PAT_UNCACHED) |		/* 110 */
899 		  PAT_VALUE(7, PAT_UNCACHEABLE);	/* 111 */
900 	pat_pte_index[PAT_WRITE_BACK]	= 0;
901 	pat_pte_index[PAT_WRITE_THROUGH]= 0         | PG_NC_PWT;
902 	pat_pte_index[PAT_UNCACHED]	= PG_NC_PCD;
903 	pat_pte_index[PAT_UNCACHEABLE]	= PG_NC_PCD | PG_NC_PWT;
904 	pat_pte_index[PAT_WRITE_PROTECTED] = pat_pte_index[PAT_UNCACHEABLE];
905 	pat_pte_index[PAT_WRITE_COMBINING] = pat_pte_index[PAT_UNCACHEABLE];
906 
907 	if (cpu_feature & CPUID_PAT) {
908 		/*
909 		 * If we support the PAT then set-up entries for
910 		 * WRITE_PROTECTED and WRITE_COMBINING using bit patterns
911 		 * 4 and 5.
912 		 */
913 		pat_msr = (pat_msr & ~PAT_MASK(4)) |
914 			  PAT_VALUE(4, PAT_WRITE_PROTECTED);
915 		pat_msr = (pat_msr & ~PAT_MASK(5)) |
916 			  PAT_VALUE(5, PAT_WRITE_COMBINING);
917 		pat_pte_index[PAT_WRITE_PROTECTED] = PG_PTE_PAT | 0;
918 		pat_pte_index[PAT_WRITE_COMBINING] = PG_PTE_PAT | PG_NC_PWT;
919 
920 		/*
921 		 * Then enable the PAT
922 		 */
923 
924 		/* Disable PGE. */
925 		cr4 = rcr4();
926 		load_cr4(cr4 & ~CR4_PGE);
927 
928 		/* Disable caches (CD = 1, NW = 0). */
929 		cr0 = rcr0();
930 		load_cr0((cr0 & ~CR0_NW) | CR0_CD);
931 
932 		/* Flushes caches and TLBs. */
933 		wbinvd();
934 		cpu_invltlb();
935 
936 		/* Update PAT and index table. */
937 		wrmsr(MSR_PAT, pat_msr);
938 
939 		/* Flush caches and TLBs again. */
940 		wbinvd();
941 		cpu_invltlb();
942 
943 		/* Restore caches and PGE. */
944 		load_cr0(cr0);
945 		load_cr4(cr4);
946 		PatMsr = pat_msr;
947 	}
948 }
949 
950 /*
951  * Set 4mb pdir for mp startup
952  */
953 void
954 pmap_set_opt(void)
955 {
956 	if (pseflag && (cpu_feature & CPUID_PSE)) {
957 		load_cr4(rcr4() | CR4_PSE);
958 		if (pdir4mb && mycpu->gd_cpuid == 0) {	/* only on BSP */
959 			cpu_invltlb();
960 		}
961 	}
962 }
963 
964 /*
965  *	Initialize the pmap module.
966  *	Called by vm_init, to initialize any structures that the pmap
967  *	system needs to map virtual memory.
968  *	pmap_init has been enhanced to support in a fairly consistant
969  *	way, discontiguous physical memory.
970  */
971 void
972 pmap_init(void)
973 {
974 	int i;
975 	int initial_pvs;
976 
977 	/*
978 	 * Allocate memory for random pmap data structures.  Includes the
979 	 * pv_head_table.
980 	 */
981 
982 	for (i = 0; i < vm_page_array_size; i++) {
983 		vm_page_t m;
984 
985 		m = &vm_page_array[i];
986 		TAILQ_INIT(&m->md.pv_list);
987 	}
988 
989 	/*
990 	 * init the pv free list
991 	 */
992 	initial_pvs = vm_page_array_size;
993 	if (initial_pvs < MINPV)
994 		initial_pvs = MINPV;
995 	pvzone = &pvzone_store;
996 	pvinit = (void *)kmem_alloc(&kernel_map,
997 				    initial_pvs * sizeof (struct pv_entry));
998 	zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry),
999 		  pvinit, initial_pvs);
1000 
1001 	/*
1002 	 * Now it is safe to enable pv_table recording.
1003 	 */
1004 	pmap_initialized = TRUE;
1005 }
1006 
1007 /*
1008  * Initialize the address space (zone) for the pv_entries.  Set a
1009  * high water mark so that the system can recover from excessive
1010  * numbers of pv entries.
1011  */
1012 void
1013 pmap_init2(void)
1014 {
1015 	int shpgperproc = PMAP_SHPGPERPROC;
1016 	int entry_max;
1017 
1018 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1019 	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
1020 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1021 	pv_entry_high_water = 9 * (pv_entry_max / 10);
1022 
1023 	/*
1024 	 * Subtract out pages already installed in the zone (hack)
1025 	 */
1026 	entry_max = pv_entry_max - vm_page_array_size;
1027 	if (entry_max <= 0)
1028 		entry_max = 1;
1029 
1030 	zinitna(pvzone, &pvzone_obj, NULL, 0, entry_max, ZONE_INTERRUPT, 1);
1031 }
1032 
1033 
1034 /***************************************************
1035  * Low level helper routines.....
1036  ***************************************************/
1037 
1038 /*
1039  * this routine defines the region(s) of memory that should
1040  * not be tested for the modified bit.
1041  */
1042 static __inline
1043 int
1044 pmap_track_modified(vm_pindex_t pindex)
1045 {
1046 	vm_offset_t va = (vm_offset_t)pindex << PAGE_SHIFT;
1047 	if ((va < clean_sva) || (va >= clean_eva))
1048 		return 1;
1049 	else
1050 		return 0;
1051 }
1052 
1053 /*
1054  * Extract the physical page address associated with the map/VA pair.
1055  * The page must be wired for this to work reliably.
1056  *
1057  * XXX for the moment we're using pv_find() instead of pv_get(), as
1058  *     callers might be expecting non-blocking operation.
1059  */
1060 vm_paddr_t
1061 pmap_extract(pmap_t pmap, vm_offset_t va)
1062 {
1063 	vm_paddr_t rtval;
1064 	pv_entry_t pt_pv;
1065 	pt_entry_t *ptep;
1066 
1067 	rtval = 0;
1068 	if (va >= VM_MAX_USER_ADDRESS) {
1069 		/*
1070 		 * Kernel page directories might be direct-mapped and
1071 		 * there is typically no PV tracking of pte's
1072 		 */
1073 		pd_entry_t *pt;
1074 
1075 		pt = pmap_pt(pmap, va);
1076 		if (pt && (*pt & PG_V)) {
1077 			if (*pt & PG_PS) {
1078 				rtval = *pt & PG_PS_FRAME;
1079 				rtval |= va & PDRMASK;
1080 			} else {
1081 				ptep = pmap_pt_to_pte(*pt, va);
1082 				if (*pt & PG_V) {
1083 					rtval = *ptep & PG_FRAME;
1084 					rtval |= va & PAGE_MASK;
1085 				}
1086 			}
1087 		}
1088 	} else {
1089 		/*
1090 		 * User pages currently do not direct-map the page directory
1091 		 * and some pages might not used managed PVs.  But all PT's
1092 		 * will have a PV.
1093 		 */
1094 		pt_pv = pv_find(pmap, pmap_pt_pindex(va));
1095 		if (pt_pv) {
1096 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1097 			if (*ptep & PG_V) {
1098 				rtval = *ptep & PG_FRAME;
1099 				rtval |= va & PAGE_MASK;
1100 			}
1101 			pv_drop(pt_pv);
1102 		}
1103 	}
1104 	return rtval;
1105 }
1106 
1107 /*
1108  * Extract the physical page address associated kernel virtual address.
1109  */
1110 vm_paddr_t
1111 pmap_kextract(vm_offset_t va)
1112 {
1113 	pd_entry_t pt;		/* pt entry in pd */
1114 	vm_paddr_t pa;
1115 
1116 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
1117 		pa = DMAP_TO_PHYS(va);
1118 	} else {
1119 		pt = *vtopt(va);
1120 		if (pt & PG_PS) {
1121 			pa = (pt & PG_PS_FRAME) | (va & PDRMASK);
1122 		} else {
1123 			/*
1124 			 * Beware of a concurrent promotion that changes the
1125 			 * PDE at this point!  For example, vtopte() must not
1126 			 * be used to access the PTE because it would use the
1127 			 * new PDE.  It is, however, safe to use the old PDE
1128 			 * because the page table page is preserved by the
1129 			 * promotion.
1130 			 */
1131 			pa = *pmap_pt_to_pte(pt, va);
1132 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
1133 		}
1134 	}
1135 	return pa;
1136 }
1137 
1138 /***************************************************
1139  * Low level mapping routines.....
1140  ***************************************************/
1141 
1142 /*
1143  * Routine: pmap_kenter
1144  * Function:
1145  *  	Add a wired page to the KVA
1146  *  	NOTE! note that in order for the mapping to take effect -- you
1147  *  	should do an invltlb after doing the pmap_kenter().
1148  */
1149 void
1150 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1151 {
1152 	pt_entry_t *pte;
1153 	pt_entry_t npte;
1154 	pmap_inval_info info;
1155 
1156 	pmap_inval_init(&info);				/* XXX remove */
1157 	npte = pa | PG_RW | PG_V | pgeflag;
1158 	pte = vtopte(va);
1159 	pmap_inval_interlock(&info, &kernel_pmap, va);	/* XXX remove */
1160 	*pte = npte;
1161 	pmap_inval_deinterlock(&info, &kernel_pmap);	/* XXX remove */
1162 	pmap_inval_done(&info);				/* XXX remove */
1163 }
1164 
1165 /*
1166  * Routine: pmap_kenter_quick
1167  * Function:
1168  *  	Similar to pmap_kenter(), except we only invalidate the
1169  *  	mapping on the current CPU.
1170  */
1171 void
1172 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
1173 {
1174 	pt_entry_t *pte;
1175 	pt_entry_t npte;
1176 
1177 	npte = pa | PG_RW | PG_V | pgeflag;
1178 	pte = vtopte(va);
1179 	*pte = npte;
1180 	cpu_invlpg((void *)va);
1181 }
1182 
1183 void
1184 pmap_kenter_sync(vm_offset_t va)
1185 {
1186 	pmap_inval_info info;
1187 
1188 	pmap_inval_init(&info);
1189 	pmap_inval_interlock(&info, &kernel_pmap, va);
1190 	pmap_inval_deinterlock(&info, &kernel_pmap);
1191 	pmap_inval_done(&info);
1192 }
1193 
1194 void
1195 pmap_kenter_sync_quick(vm_offset_t va)
1196 {
1197 	cpu_invlpg((void *)va);
1198 }
1199 
1200 /*
1201  * remove a page from the kernel pagetables
1202  */
1203 void
1204 pmap_kremove(vm_offset_t va)
1205 {
1206 	pt_entry_t *pte;
1207 	pmap_inval_info info;
1208 
1209 	pmap_inval_init(&info);
1210 	pte = vtopte(va);
1211 	pmap_inval_interlock(&info, &kernel_pmap, va);
1212 	(void)pte_load_clear(pte);
1213 	pmap_inval_deinterlock(&info, &kernel_pmap);
1214 	pmap_inval_done(&info);
1215 }
1216 
1217 void
1218 pmap_kremove_quick(vm_offset_t va)
1219 {
1220 	pt_entry_t *pte;
1221 	pte = vtopte(va);
1222 	(void)pte_load_clear(pte);
1223 	cpu_invlpg((void *)va);
1224 }
1225 
1226 /*
1227  * XXX these need to be recoded.  They are not used in any critical path.
1228  */
1229 void
1230 pmap_kmodify_rw(vm_offset_t va)
1231 {
1232 	atomic_set_long(vtopte(va), PG_RW);
1233 	cpu_invlpg((void *)va);
1234 }
1235 
1236 void
1237 pmap_kmodify_nc(vm_offset_t va)
1238 {
1239 	atomic_set_long(vtopte(va), PG_N);
1240 	cpu_invlpg((void *)va);
1241 }
1242 
1243 /*
1244  * Used to map a range of physical addresses into kernel virtual
1245  * address space during the low level boot, typically to map the
1246  * dump bitmap, message buffer, and vm_page_array.
1247  *
1248  * These mappings are typically made at some pointer after the end of the
1249  * kernel text+data.
1250  *
1251  * We could return PHYS_TO_DMAP(start) here and not allocate any
1252  * via (*virtp), but then kmem from userland and kernel dumps won't
1253  * have access to the related pointers.
1254  */
1255 vm_offset_t
1256 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
1257 {
1258 	vm_offset_t va;
1259 	vm_offset_t va_start;
1260 
1261 	/*return PHYS_TO_DMAP(start);*/
1262 
1263 	va_start = *virtp;
1264 	va = va_start;
1265 
1266 	while (start < end) {
1267 		pmap_kenter_quick(va, start);
1268 		va += PAGE_SIZE;
1269 		start += PAGE_SIZE;
1270 	}
1271 	*virtp = va;
1272 	return va_start;
1273 }
1274 
1275 #define PMAP_CLFLUSH_THRESHOLD  (2 * 1024 * 1024)
1276 
1277 /*
1278  * Remove the specified set of pages from the data and instruction caches.
1279  *
1280  * In contrast to pmap_invalidate_cache_range(), this function does not
1281  * rely on the CPU's self-snoop feature, because it is intended for use
1282  * when moving pages into a different cache domain.
1283  */
1284 void
1285 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
1286 {
1287 	vm_offset_t daddr, eva;
1288 	int i;
1289 
1290 	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
1291 	    (cpu_feature & CPUID_CLFSH) == 0)
1292 		wbinvd();
1293 	else {
1294 		cpu_mfence();
1295 		for (i = 0; i < count; i++) {
1296 			daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
1297 			eva = daddr + PAGE_SIZE;
1298 			for (; daddr < eva; daddr += cpu_clflush_line_size)
1299 				clflush(daddr);
1300 		}
1301 		cpu_mfence();
1302 	}
1303 }
1304 
1305 void
1306 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
1307 {
1308 	KASSERT((sva & PAGE_MASK) == 0,
1309 	    ("pmap_invalidate_cache_range: sva not page-aligned"));
1310 	KASSERT((eva & PAGE_MASK) == 0,
1311 	    ("pmap_invalidate_cache_range: eva not page-aligned"));
1312 
1313 	if (cpu_feature & CPUID_SS) {
1314 		; /* If "Self Snoop" is supported, do nothing. */
1315 	} else {
1316 		/* Globally invalidate caches */
1317 		cpu_wbinvd_on_all_cpus();
1318 	}
1319 }
1320 void
1321 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1322 {
1323 	smp_invlpg_range(pmap->pm_active, sva, eva);
1324 }
1325 
1326 /*
1327  * Add a list of wired pages to the kva
1328  * this routine is only used for temporary
1329  * kernel mappings that do not need to have
1330  * page modification or references recorded.
1331  * Note that old mappings are simply written
1332  * over.  The page *must* be wired.
1333  */
1334 void
1335 pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
1336 {
1337 	vm_offset_t end_va;
1338 
1339 	end_va = va + count * PAGE_SIZE;
1340 
1341 	while (va < end_va) {
1342 		pt_entry_t *pte;
1343 
1344 		pte = vtopte(va);
1345 		*pte = VM_PAGE_TO_PHYS(*m) | PG_RW | PG_V |
1346 			pat_pte_index[(*m)->pat_mode] | pgeflag;
1347 		cpu_invlpg((void *)va);
1348 		va += PAGE_SIZE;
1349 		m++;
1350 	}
1351 	smp_invltlb();
1352 }
1353 
1354 /*
1355  * This routine jerks page mappings from the
1356  * kernel -- it is meant only for temporary mappings.
1357  *
1358  * MPSAFE, INTERRUPT SAFE (cluster callback)
1359  */
1360 void
1361 pmap_qremove(vm_offset_t va, int count)
1362 {
1363 	vm_offset_t end_va;
1364 
1365 	end_va = va + count * PAGE_SIZE;
1366 
1367 	while (va < end_va) {
1368 		pt_entry_t *pte;
1369 
1370 		pte = vtopte(va);
1371 		(void)pte_load_clear(pte);
1372 		cpu_invlpg((void *)va);
1373 		va += PAGE_SIZE;
1374 	}
1375 	smp_invltlb();
1376 }
1377 
1378 /*
1379  * Create a new thread and optionally associate it with a (new) process.
1380  * NOTE! the new thread's cpu may not equal the current cpu.
1381  */
1382 void
1383 pmap_init_thread(thread_t td)
1384 {
1385 	/* enforce pcb placement & alignment */
1386 	td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
1387 	td->td_pcb = (struct pcb *)((intptr_t)td->td_pcb & ~(intptr_t)0xF);
1388 	td->td_savefpu = &td->td_pcb->pcb_save;
1389 	td->td_sp = (char *)td->td_pcb;	/* no -16 */
1390 }
1391 
1392 /*
1393  * This routine directly affects the fork perf for a process.
1394  */
1395 void
1396 pmap_init_proc(struct proc *p)
1397 {
1398 }
1399 
1400 /*
1401  * Initialize pmap0/vmspace0.  This pmap is not added to pmap_list because
1402  * it, and IdlePTD, represents the template used to update all other pmaps.
1403  *
1404  * On architectures where the kernel pmap is not integrated into the user
1405  * process pmap, this pmap represents the process pmap, not the kernel pmap.
1406  * kernel_pmap should be used to directly access the kernel_pmap.
1407  */
1408 void
1409 pmap_pinit0(struct pmap *pmap)
1410 {
1411 	pmap->pm_pml4 = (pml4_entry_t *)(PTOV_OFFSET + KPML4phys);
1412 	pmap->pm_count = 1;
1413 	pmap->pm_active = 0;
1414 	pmap->pm_pvhint = NULL;
1415 	RB_INIT(&pmap->pm_pvroot);
1416 	spin_init(&pmap->pm_spin);
1417 	lwkt_token_init(&pmap->pm_token, "pmap_tok");
1418 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1419 }
1420 
1421 /*
1422  * Initialize a preallocated and zeroed pmap structure,
1423  * such as one in a vmspace structure.
1424  */
1425 static void
1426 pmap_pinit_simple(struct pmap *pmap)
1427 {
1428 	/*
1429 	 * Misc initialization
1430 	 */
1431 	pmap->pm_count = 1;
1432 	pmap->pm_active = 0;
1433 	pmap->pm_pvhint = NULL;
1434 	pmap->pm_flags = PMAP_FLAG_SIMPLE;
1435 
1436 	/*
1437 	 * Don't blow up locks/tokens on re-use (XXX fix/use drop code
1438 	 * for this).
1439 	 */
1440 	if (pmap->pm_pmlpv == NULL) {
1441 		RB_INIT(&pmap->pm_pvroot);
1442 		bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1443 		spin_init(&pmap->pm_spin);
1444 		lwkt_token_init(&pmap->pm_token, "pmap_tok");
1445 	}
1446 }
1447 
1448 void
1449 pmap_pinit(struct pmap *pmap)
1450 {
1451 	pv_entry_t pv;
1452 	int j;
1453 
1454 	pmap_pinit_simple(pmap);
1455 	pmap->pm_flags &= ~PMAP_FLAG_SIMPLE;
1456 
1457 	/*
1458 	 * No need to allocate page table space yet but we do need a valid
1459 	 * page directory table.
1460 	 */
1461 	if (pmap->pm_pml4 == NULL) {
1462 		pmap->pm_pml4 =
1463 		    (pml4_entry_t *)kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
1464 	}
1465 
1466 	/*
1467 	 * Allocate the page directory page, which wires it even though
1468 	 * it isn't being entered into some higher level page table (it
1469 	 * being the highest level).  If one is already cached we don't
1470 	 * have to do anything.
1471 	 */
1472 	if ((pv = pmap->pm_pmlpv) == NULL) {
1473 		pv = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
1474 		pmap->pm_pmlpv = pv;
1475 		pmap_kenter((vm_offset_t)pmap->pm_pml4,
1476 			    VM_PAGE_TO_PHYS(pv->pv_m));
1477 		pv_put(pv);
1478 
1479 		/*
1480 		 * Install DMAP and KMAP.
1481 		 */
1482 		for (j = 0; j < NDMPML4E; ++j) {
1483 			pmap->pm_pml4[DMPML4I + j] =
1484 				(DMPDPphys + ((vm_paddr_t)j << PML4SHIFT)) |
1485 				PG_RW | PG_V | PG_U;
1486 		}
1487 		pmap->pm_pml4[KPML4I] = KPDPphys | PG_RW | PG_V | PG_U;
1488 
1489 		/*
1490 		 * install self-referential address mapping entry
1491 		 */
1492 		pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pv->pv_m) |
1493 					   PG_V | PG_RW | PG_A | PG_M;
1494 	} else {
1495 		KKASSERT(pv->pv_m->flags & PG_MAPPED);
1496 		KKASSERT(pv->pv_m->flags & PG_WRITEABLE);
1497 	}
1498 	KKASSERT(pmap->pm_pml4[255] == 0);
1499 	KKASSERT(RB_ROOT(&pmap->pm_pvroot) == pv);
1500 	KKASSERT(pv->pv_entry.rbe_left == NULL);
1501 	KKASSERT(pv->pv_entry.rbe_right == NULL);
1502 }
1503 
1504 /*
1505  * Clean up a pmap structure so it can be physically freed.  This routine
1506  * is called by the vmspace dtor function.  A great deal of pmap data is
1507  * left passively mapped to improve vmspace management so we have a bit
1508  * of cleanup work to do here.
1509  */
1510 void
1511 pmap_puninit(pmap_t pmap)
1512 {
1513 	pv_entry_t pv;
1514 	vm_page_t p;
1515 
1516 	KKASSERT(pmap->pm_active == 0);
1517 	if ((pv = pmap->pm_pmlpv) != NULL) {
1518 		if (pv_hold_try(pv) == 0)
1519 			pv_lock(pv);
1520 		p = pmap_remove_pv_page(pv);
1521 		pv_free(pv);
1522 		pmap_kremove((vm_offset_t)pmap->pm_pml4);
1523 		vm_page_busy_wait(p, FALSE, "pgpun");
1524 		KKASSERT(p->flags & (PG_FICTITIOUS|PG_UNMANAGED));
1525 		vm_page_unwire(p, 0);
1526 		vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
1527 
1528 		/*
1529 		 * XXX eventually clean out PML4 static entries and
1530 		 * use vm_page_free_zero()
1531 		 */
1532 		vm_page_free(p);
1533 		pmap->pm_pmlpv = NULL;
1534 	}
1535 	if (pmap->pm_pml4) {
1536 		KKASSERT(pmap->pm_pml4 != (void *)(PTOV_OFFSET + KPML4phys));
1537 		kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pml4, PAGE_SIZE);
1538 		pmap->pm_pml4 = NULL;
1539 	}
1540 	KKASSERT(pmap->pm_stats.resident_count == 0);
1541 	KKASSERT(pmap->pm_stats.wired_count == 0);
1542 }
1543 
1544 /*
1545  * Wire in kernel global address entries.  To avoid a race condition
1546  * between pmap initialization and pmap_growkernel, this procedure
1547  * adds the pmap to the master list (which growkernel scans to update),
1548  * then copies the template.
1549  */
1550 void
1551 pmap_pinit2(struct pmap *pmap)
1552 {
1553 	spin_lock(&pmap_spin);
1554 	TAILQ_INSERT_TAIL(&pmap_list, pmap, pm_pmnode);
1555 	spin_unlock(&pmap_spin);
1556 }
1557 
1558 /*
1559  * This routine is called when various levels in the page table need to
1560  * be populated.  This routine cannot fail.
1561  *
1562  * This function returns two locked pv_entry's, one representing the
1563  * requested pv and one representing the requested pv's parent pv.  If
1564  * the pv did not previously exist it will be mapped into its parent
1565  * and wired, otherwise no additional wire count will be added.
1566  */
1567 static
1568 pv_entry_t
1569 pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp)
1570 {
1571 	pt_entry_t *ptep;
1572 	pv_entry_t pv;
1573 	pv_entry_t pvp;
1574 	vm_pindex_t pt_pindex;
1575 	vm_page_t m;
1576 	int isnew;
1577 	int ispt;
1578 
1579 	/*
1580 	 * If the pv already exists and we aren't being asked for the
1581 	 * parent page table page we can just return it.  A locked+held pv
1582 	 * is returned.
1583 	 */
1584 	ispt = 0;
1585 	pv = pv_alloc(pmap, ptepindex, &isnew);
1586 	if (isnew == 0 && pvpp == NULL)
1587 		return(pv);
1588 
1589 	/*
1590 	 * This is a new PV, we have to resolve its parent page table and
1591 	 * add an additional wiring to the page if necessary.
1592 	 */
1593 
1594 	/*
1595 	 * Special case terminal PVs.  These are not page table pages so
1596 	 * no vm_page is allocated (the caller supplied the vm_page).  If
1597 	 * pvpp is non-NULL we are being asked to also removed the pt_pv
1598 	 * for this pv.
1599 	 *
1600 	 * Note that pt_pv's are only returned for user VAs. We assert that
1601 	 * a pt_pv is not being requested for kernel VAs.
1602 	 */
1603 	if (ptepindex < pmap_pt_pindex(0)) {
1604 		if (ptepindex >= NUPTE_USER)
1605 			KKASSERT(pvpp == NULL);
1606 		else
1607 			KKASSERT(pvpp != NULL);
1608 		if (pvpp) {
1609 			pt_pindex = NUPTE_TOTAL + (ptepindex >> NPTEPGSHIFT);
1610 			pvp = pmap_allocpte(pmap, pt_pindex, NULL);
1611 			if (isnew)
1612 				vm_page_wire_quick(pvp->pv_m);
1613 			*pvpp = pvp;
1614 		} else {
1615 			pvp = NULL;
1616 		}
1617 		return(pv);
1618 	}
1619 
1620 	/*
1621 	 * Non-terminal PVs allocate a VM page to represent the page table,
1622 	 * so we have to resolve pvp and calculate ptepindex for the pvp
1623 	 * and then for the page table entry index in the pvp for
1624 	 * fall-through.
1625 	 */
1626 	if (ptepindex < pmap_pd_pindex(0)) {
1627 		/*
1628 		 * pv is PT, pvp is PD
1629 		 */
1630 		ptepindex = (ptepindex - pmap_pt_pindex(0)) >> NPDEPGSHIFT;
1631 		ptepindex += NUPTE_TOTAL + NUPT_TOTAL;
1632 		pvp = pmap_allocpte(pmap, ptepindex, NULL);
1633 		if (!isnew)
1634 			goto notnew;
1635 
1636 		/*
1637 		 * PT index in PD
1638 		 */
1639 		ptepindex = pv->pv_pindex - pmap_pt_pindex(0);
1640 		ptepindex &= ((1ul << NPDEPGSHIFT) - 1);
1641 		ispt = 1;
1642 	} else if (ptepindex < pmap_pdp_pindex(0)) {
1643 		/*
1644 		 * pv is PD, pvp is PDP
1645 		 *
1646 		 * SIMPLE PMAP NOTE: Simple pmaps do not allocate above
1647 		 *		     the PD.
1648 		 */
1649 		ptepindex = (ptepindex - pmap_pd_pindex(0)) >> NPDPEPGSHIFT;
1650 		ptepindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
1651 
1652 		if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
1653 			KKASSERT(pvpp == NULL);
1654 			pvp = NULL;
1655 		} else {
1656 			pvp = pmap_allocpte(pmap, ptepindex, NULL);
1657 		}
1658 		if (!isnew)
1659 			goto notnew;
1660 
1661 		/*
1662 		 * PD index in PDP
1663 		 */
1664 		ptepindex = pv->pv_pindex - pmap_pd_pindex(0);
1665 		ptepindex &= ((1ul << NPDPEPGSHIFT) - 1);
1666 	} else if (ptepindex < pmap_pml4_pindex()) {
1667 		/*
1668 		 * pv is PDP, pvp is the root pml4 table
1669 		 */
1670 		pvp = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
1671 		if (!isnew)
1672 			goto notnew;
1673 
1674 		/*
1675 		 * PDP index in PML4
1676 		 */
1677 		ptepindex = pv->pv_pindex - pmap_pdp_pindex(0);
1678 		ptepindex &= ((1ul << NPML4EPGSHIFT) - 1);
1679 	} else {
1680 		/*
1681 		 * pv represents the top-level PML4, there is no parent.
1682 		 */
1683 		pvp = NULL;
1684 		if (!isnew)
1685 			goto notnew;
1686 	}
1687 
1688 	/*
1689 	 * This code is only reached if isnew is TRUE and this is not a
1690 	 * terminal PV.  We need to allocate a vm_page for the page table
1691 	 * at this level and enter it into the parent page table.
1692 	 *
1693 	 * page table pages are marked PG_WRITEABLE and PG_MAPPED.
1694 	 */
1695 	for (;;) {
1696 		m = vm_page_alloc(NULL, pv->pv_pindex,
1697 				  VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
1698 				  VM_ALLOC_INTERRUPT);
1699 		if (m)
1700 			break;
1701 		vm_wait(0);
1702 	}
1703 	vm_page_spin_lock(m);
1704 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1705 	pv->pv_m = m;
1706 	vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1707 	vm_page_spin_unlock(m);
1708 	vm_page_unmanage(m);	/* m must be spinunlocked */
1709 
1710 	if ((m->flags & PG_ZERO) == 0) {
1711 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
1712 	}
1713 #ifdef PMAP_DEBUG
1714 	else {
1715 		pmap_page_assertzero(VM_PAGE_TO_PHYS(m));
1716 	}
1717 #endif
1718 	m->valid = VM_PAGE_BITS_ALL;
1719 	vm_page_flag_clear(m, PG_ZERO);
1720 	vm_page_wire(m);	/* wire for mapping in parent */
1721 
1722 	/*
1723 	 * Wire the page into pvp, bump the wire-count for pvp's page table
1724 	 * page.  Bump the resident_count for the pmap.  There is no pvp
1725 	 * for the top level, address the pm_pml4[] array directly.
1726 	 *
1727 	 * If the caller wants the parent we return it, otherwise
1728 	 * we just put it away.
1729 	 *
1730 	 * No interlock is needed for pte 0 -> non-zero.
1731 	 *
1732 	 * In the situation where *ptep is valid we might have an unmanaged
1733 	 * page table page shared from another page table which we need to
1734 	 * unshare before installing our private page table page.
1735 	 */
1736 	if (pvp) {
1737 		ptep = pv_pte_lookup(pvp, ptepindex);
1738 		if (*ptep & PG_V) {
1739 			pt_entry_t pte;
1740 			pmap_inval_info info;
1741 
1742 			if (ispt == 0) {
1743 				panic("pmap_allocpte: unexpected pte %p/%d",
1744 				      pvp, (int)ptepindex);
1745 			}
1746 			pmap_inval_init(&info);
1747 			pmap_inval_interlock(&info, pmap, (vm_offset_t)-1);
1748 			pte = pte_load_clear(ptep);
1749 			pmap_inval_deinterlock(&info, pmap);
1750 			pmap_inval_done(&info);
1751 			if (vm_page_unwire_quick(
1752 					PHYS_TO_VM_PAGE(pte & PG_FRAME))) {
1753 				panic("pmap_allocpte: shared pgtable "
1754 				      "pg bad wirecount");
1755 			}
1756 			atomic_add_long(&pmap->pm_stats.resident_count, -1);
1757 		} else {
1758 			vm_page_wire_quick(pvp->pv_m);
1759 		}
1760 		*ptep = VM_PAGE_TO_PHYS(m) | (PG_U | PG_RW | PG_V |
1761 					      PG_A | PG_M);
1762 	}
1763 	vm_page_wakeup(m);
1764 notnew:
1765 	if (pvpp)
1766 		*pvpp = pvp;
1767 	else if (pvp)
1768 		pv_put(pvp);
1769 	return (pv);
1770 }
1771 
1772 /*
1773  * This version of pmap_allocpte() checks for possible segment optimizations
1774  * that would allow page-table sharing.  It can be called for terminal
1775  * page or page table page ptepindex's.
1776  *
1777  * The function is called with page table page ptepindex's for fictitious
1778  * and unmanaged terminal pages.  That is, we don't want to allocate a
1779  * terminal pv, we just want the pt_pv.  pvpp is usually passed as NULL
1780  * for this case.
1781  *
1782  * This function can return a pv and *pvpp associated with the passed in pmap
1783  * OR a pv and *pvpp associated with the shared pmap.  In the latter case
1784  * an unmanaged page table page will be entered into the pass in pmap.
1785  */
1786 static
1787 pv_entry_t
1788 pmap_allocpte_seg(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp,
1789 		  vm_map_entry_t entry, vm_offset_t va)
1790 {
1791 	struct pmap_inval_info info;
1792 	vm_object_t object;
1793 	pmap_t obpmap;
1794 	pmap_t *obpmapp;
1795 	vm_offset_t b;
1796 	pv_entry_t pte_pv;	/* in original or shared pmap */
1797 	pv_entry_t pt_pv;	/* in original or shared pmap */
1798 	pv_entry_t proc_pd_pv;	/* in original pmap */
1799 	pv_entry_t proc_pt_pv;	/* in original pmap */
1800 	pv_entry_t xpv;		/* PT in shared pmap */
1801 	pd_entry_t *pt;		/* PT entry in PD of original pmap */
1802 	pd_entry_t opte;	/* contents of *pt */
1803 	pd_entry_t npte;	/* contents of *pt */
1804 	vm_page_t m;
1805 
1806 retry:
1807 	/*
1808 	 * Basic tests, require a non-NULL vm_map_entry, require proper
1809 	 * alignment and type for the vm_map_entry, require that the
1810 	 * underlying object already be allocated.
1811 	 *
1812 	 * We currently allow any type of object to use this optimization.
1813 	 * The object itself does NOT have to be sized to a multiple of the
1814 	 * segment size, but the memory mapping does.
1815 	 */
1816 	if (entry == NULL ||
1817 	    pmap_mmu_optimize == 0 ||			/* not enabled */
1818 	    ptepindex >= pmap_pd_pindex(0) ||		/* not terminal */
1819 	    entry->inheritance != VM_INHERIT_SHARE ||	/* not shared */
1820 	    entry->maptype != VM_MAPTYPE_NORMAL ||	/* weird map type */
1821 	    entry->object.vm_object == NULL ||		/* needs VM object */
1822 	    (entry->offset & SEG_MASK) ||		/* must be aligned */
1823 	    (entry->start & SEG_MASK)) {
1824 		return(pmap_allocpte(pmap, ptepindex, pvpp));
1825 	}
1826 
1827 	/*
1828 	 * Make sure the full segment can be represented.
1829 	 */
1830 	b = va & ~(vm_offset_t)SEG_MASK;
1831 	if (b < entry->start && b + SEG_SIZE > entry->end)
1832 		return(pmap_allocpte(pmap, ptepindex, pvpp));
1833 
1834 	/*
1835 	 * If the full segment can be represented dive the VM object's
1836 	 * shared pmap, allocating as required.
1837 	 */
1838 	object = entry->object.vm_object;
1839 
1840 	if (entry->protection & VM_PROT_WRITE)
1841 		obpmapp = &object->md.pmap_rw;
1842 	else
1843 		obpmapp = &object->md.pmap_ro;
1844 
1845 	/*
1846 	 * We allocate what appears to be a normal pmap but because portions
1847 	 * of this pmap are shared with other unrelated pmaps we have to
1848 	 * set pm_active to point to all cpus.
1849 	 *
1850 	 * XXX Currently using pmap_spin to interlock the update, can't use
1851 	 *     vm_object_hold/drop because the token might already be held
1852 	 *     shared OR exclusive and we don't know.
1853 	 */
1854 	while ((obpmap = *obpmapp) == NULL) {
1855 		obpmap = kmalloc(sizeof(*obpmap), M_OBJPMAP, M_WAITOK|M_ZERO);
1856 		pmap_pinit_simple(obpmap);
1857 		pmap_pinit2(obpmap);
1858 		spin_lock(&pmap_spin);
1859 		if (*obpmapp != NULL) {
1860 			/*
1861 			 * Handle race
1862 			 */
1863 			spin_unlock(&pmap_spin);
1864 			pmap_release(obpmap);
1865 			pmap_puninit(obpmap);
1866 			kfree(obpmap, M_OBJPMAP);
1867 		} else {
1868 			obpmap->pm_active = smp_active_mask;
1869 			*obpmapp = obpmap;
1870 			spin_unlock(&pmap_spin);
1871 		}
1872 	}
1873 
1874 	/*
1875 	 * Layering is: PTE, PT, PD, PDP, PML4.  We have to return the
1876 	 * pte/pt using the shared pmap from the object but also adjust
1877 	 * the process pmap's page table page as a side effect.
1878 	 */
1879 
1880 	/*
1881 	 * Resolve the terminal PTE and PT in the shared pmap.  This is what
1882 	 * we will return.  This is true if ptepindex represents a terminal
1883 	 * page, otherwise pte_pv is actually the PT and pt_pv is actually
1884 	 * the PD.
1885 	 */
1886 	pt_pv = NULL;
1887 	pte_pv = pmap_allocpte(obpmap, ptepindex, &pt_pv);
1888 	if (ptepindex >= pmap_pt_pindex(0))
1889 		xpv = pte_pv;
1890 	else
1891 		xpv = pt_pv;
1892 
1893 	/*
1894 	 * Resolve the PD in the process pmap so we can properly share the
1895 	 * page table page.  Lock order is bottom-up (leaf first)!
1896 	 *
1897 	 * NOTE: proc_pt_pv can be NULL.
1898 	 */
1899 	proc_pt_pv = pv_get(pmap, pmap_pt_pindex(b));
1900 	proc_pd_pv = pmap_allocpte(pmap, pmap_pd_pindex(b), NULL);
1901 
1902 	/*
1903 	 * xpv is the page table page pv from the shared object
1904 	 * (for convenience).
1905 	 *
1906 	 * Calculate the pte value for the PT to load into the process PD.
1907 	 * If we have to change it we must properly dispose of the previous
1908 	 * entry.
1909 	 */
1910 	pt = pv_pte_lookup(proc_pd_pv, pmap_pt_index(b));
1911 	npte = VM_PAGE_TO_PHYS(xpv->pv_m) |
1912 	       (PG_U | PG_RW | PG_V | PG_A | PG_M);
1913 
1914 	/*
1915 	 * Dispose of previous page table page if it was local to the
1916 	 * process pmap.  If the old pt is not empty we cannot dispose of it
1917 	 * until we clean it out.  This case should not arise very often so
1918 	 * it is not optimized.
1919 	 */
1920 	if (proc_pt_pv) {
1921 		if (proc_pt_pv->pv_m->wire_count != 1) {
1922 			pv_put(proc_pd_pv);
1923 			pv_put(proc_pt_pv);
1924 			pv_put(pt_pv);
1925 			pv_put(pte_pv);
1926 			pmap_remove(pmap,
1927 				    va & ~(vm_offset_t)SEG_MASK,
1928 				    (va + SEG_SIZE) & ~(vm_offset_t)SEG_MASK);
1929 			goto retry;
1930 		}
1931 		pmap_release_pv(proc_pt_pv, proc_pd_pv);
1932 		proc_pt_pv = NULL;
1933 		/* relookup */
1934 		pt = pv_pte_lookup(proc_pd_pv, pmap_pt_index(b));
1935 	}
1936 
1937 	/*
1938 	 * Handle remaining cases.
1939 	 */
1940 	if (*pt == 0) {
1941 		*pt = npte;
1942 		vm_page_wire_quick(xpv->pv_m);
1943 		vm_page_wire_quick(proc_pd_pv->pv_m);
1944 		atomic_add_long(&pmap->pm_stats.resident_count, 1);
1945 	} else if (*pt != npte) {
1946 		pmap_inval_init(&info);
1947 		pmap_inval_interlock(&info, pmap, (vm_offset_t)-1);
1948 
1949 		opte = pte_load_clear(pt);
1950 		KKASSERT(opte && opte != npte);
1951 
1952 		*pt = npte;
1953 		vm_page_wire_quick(xpv->pv_m);	/* pgtable pg that is npte */
1954 
1955 		/*
1956 		 * Clean up opte, bump the wire_count for the process
1957 		 * PD page representing the new entry if it was
1958 		 * previously empty.
1959 		 *
1960 		 * If the entry was not previously empty and we have
1961 		 * a PT in the proc pmap then opte must match that
1962 		 * pt.  The proc pt must be retired (this is done
1963 		 * later on in this procedure).
1964 		 *
1965 		 * NOTE: replacing valid pte, wire_count on proc_pd_pv
1966 		 * stays the same.
1967 		 */
1968 		KKASSERT(opte & PG_V);
1969 		m = PHYS_TO_VM_PAGE(opte & PG_FRAME);
1970 		if (vm_page_unwire_quick(m)) {
1971 			panic("pmap_allocpte_seg: "
1972 			      "bad wire count %p",
1973 			      m);
1974 		}
1975 
1976 		pmap_inval_deinterlock(&info, pmap);
1977 		pmap_inval_done(&info);
1978 	}
1979 
1980 	/*
1981 	 * The existing process page table was replaced and must be destroyed
1982 	 * here.
1983 	 */
1984 	if (proc_pd_pv)
1985 		pv_put(proc_pd_pv);
1986 	if (pvpp)
1987 		*pvpp = pt_pv;
1988 	else
1989 		pv_put(pt_pv);
1990 
1991 	return (pte_pv);
1992 }
1993 
1994 /*
1995  * Release any resources held by the given physical map.
1996  *
1997  * Called when a pmap initialized by pmap_pinit is being released.  Should
1998  * only be called if the map contains no valid mappings.
1999  *
2000  * Caller must hold pmap->pm_token
2001  */
2002 struct pmap_release_info {
2003 	pmap_t	pmap;
2004 	int	retry;
2005 };
2006 
2007 static int pmap_release_callback(pv_entry_t pv, void *data);
2008 
2009 void
2010 pmap_release(struct pmap *pmap)
2011 {
2012 	struct pmap_release_info info;
2013 
2014 	KASSERT(pmap->pm_active == 0,
2015 		("pmap still active! %016jx", (uintmax_t)pmap->pm_active));
2016 
2017 	spin_lock(&pmap_spin);
2018 	TAILQ_REMOVE(&pmap_list, pmap, pm_pmnode);
2019 	spin_unlock(&pmap_spin);
2020 
2021 	/*
2022 	 * Pull pv's off the RB tree in order from low to high and release
2023 	 * each page.
2024 	 */
2025 	info.pmap = pmap;
2026 	do {
2027 		info.retry = 0;
2028 		spin_lock(&pmap->pm_spin);
2029 		RB_SCAN(pv_entry_rb_tree, &pmap->pm_pvroot, NULL,
2030 			pmap_release_callback, &info);
2031 		spin_unlock(&pmap->pm_spin);
2032 	} while (info.retry);
2033 
2034 
2035 	/*
2036 	 * One resident page (the pml4 page) should remain.
2037 	 * No wired pages should remain.
2038 	 */
2039 	KKASSERT(pmap->pm_stats.resident_count ==
2040 		 ((pmap->pm_flags & PMAP_FLAG_SIMPLE) ? 0 : 1));
2041 
2042 	KKASSERT(pmap->pm_stats.wired_count == 0);
2043 }
2044 
2045 static int
2046 pmap_release_callback(pv_entry_t pv, void *data)
2047 {
2048 	struct pmap_release_info *info = data;
2049 	pmap_t pmap = info->pmap;
2050 	int r;
2051 
2052 	if (pv_hold_try(pv)) {
2053 		spin_unlock(&pmap->pm_spin);
2054 	} else {
2055 		spin_unlock(&pmap->pm_spin);
2056 		pv_lock(pv);
2057 		if (pv->pv_pmap != pmap) {
2058 			pv_put(pv);
2059 			spin_lock(&pmap->pm_spin);
2060 			info->retry = 1;
2061 			return(-1);
2062 		}
2063 	}
2064 	r = pmap_release_pv(pv, NULL);
2065 	spin_lock(&pmap->pm_spin);
2066 	return(r);
2067 }
2068 
2069 /*
2070  * Called with held (i.e. also locked) pv.  This function will dispose of
2071  * the lock along with the pv.
2072  *
2073  * If the caller already holds the locked parent page table for pv it
2074  * must pass it as pvp, allowing us to avoid a deadlock, else it can
2075  * pass NULL for pvp.
2076  */
2077 static int
2078 pmap_release_pv(pv_entry_t pv, pv_entry_t pvp)
2079 {
2080 	vm_page_t p;
2081 
2082 	/*
2083 	 * The pmap is currently not spinlocked, pv is held+locked.
2084 	 * Remove the pv's page from its parent's page table.  The
2085 	 * parent's page table page's wire_count will be decremented.
2086 	 */
2087 	pmap_remove_pv_pte(pv, pvp, NULL);
2088 
2089 	/*
2090 	 * Terminal pvs are unhooked from their vm_pages.  Because
2091 	 * terminal pages aren't page table pages they aren't wired
2092 	 * by us, so we have to be sure not to unwire them either.
2093 	 */
2094 	if (pv->pv_pindex < pmap_pt_pindex(0)) {
2095 		pmap_remove_pv_page(pv);
2096 		goto skip;
2097 	}
2098 
2099 	/*
2100 	 * We leave the top-level page table page cached, wired, and
2101 	 * mapped in the pmap until the dtor function (pmap_puninit())
2102 	 * gets called.
2103 	 *
2104 	 * Since we are leaving the top-level pv intact we need
2105 	 * to break out of what would otherwise be an infinite loop.
2106 	 */
2107 	if (pv->pv_pindex == pmap_pml4_pindex()) {
2108 		pv_put(pv);
2109 		return(-1);
2110 	}
2111 
2112 	/*
2113 	 * For page table pages (other than the top-level page),
2114 	 * remove and free the vm_page.  The representitive mapping
2115 	 * removed above by pmap_remove_pv_pte() did not undo the
2116 	 * last wire_count so we have to do that as well.
2117 	 */
2118 	p = pmap_remove_pv_page(pv);
2119 	vm_page_busy_wait(p, FALSE, "pmaprl");
2120 	if (p->wire_count != 1) {
2121 		kprintf("p->wire_count was %016lx %d\n",
2122 			pv->pv_pindex, p->wire_count);
2123 	}
2124 	KKASSERT(p->wire_count == 1);
2125 	KKASSERT(p->flags & PG_UNMANAGED);
2126 
2127 	vm_page_unwire(p, 0);
2128 	KKASSERT(p->wire_count == 0);
2129 
2130 	/*
2131 	 * Theoretically this page, if not the pml4 page, should contain
2132 	 * all-zeros.  But its just too dangerous to mark it PG_ZERO.  Free
2133 	 * normally.
2134 	 */
2135 	vm_page_free(p);
2136 skip:
2137 	pv_free(pv);
2138 	return 0;
2139 }
2140 
2141 /*
2142  * This function will remove the pte associated with a pv from its parent.
2143  * Terminal pv's are supported.  The removal will be interlocked if info
2144  * is non-NULL.  The caller must dispose of pv instead of just unlocking
2145  * it.
2146  *
2147  * The wire count will be dropped on the parent page table.  The wire
2148  * count on the page being removed (pv->pv_m) from the parent page table
2149  * is NOT touched.  Note that terminal pages will not have any additional
2150  * wire counts while page table pages will have at least one representing
2151  * the mapping, plus others representing sub-mappings.
2152  *
2153  * NOTE: Cannot be called on kernel page table pages, only KVM terminal
2154  *	 pages and user page table and terminal pages.
2155  *
2156  * The pv must be locked.
2157  *
2158  * XXX must lock parent pv's if they exist to remove pte XXX
2159  */
2160 static
2161 void
2162 pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp, struct pmap_inval_info *info)
2163 {
2164 	vm_pindex_t ptepindex = pv->pv_pindex;
2165 	pmap_t pmap = pv->pv_pmap;
2166 	vm_page_t p;
2167 	int gotpvp = 0;
2168 
2169 	KKASSERT(pmap);
2170 
2171 	if (ptepindex == pmap_pml4_pindex()) {
2172 		/*
2173 		 * We are the top level pml4 table, there is no parent.
2174 		 */
2175 		p = pmap->pm_pmlpv->pv_m;
2176 	} else if (ptepindex >= pmap_pdp_pindex(0)) {
2177 		/*
2178 		 * Remove a PDP page from the pml4e.  This can only occur
2179 		 * with user page tables.  We do not have to lock the
2180 		 * pml4 PV so just ignore pvp.
2181 		 */
2182 		vm_pindex_t pml4_pindex;
2183 		vm_pindex_t pdp_index;
2184 		pml4_entry_t *pdp;
2185 
2186 		pdp_index = ptepindex - pmap_pdp_pindex(0);
2187 		if (pvp == NULL) {
2188 			pml4_pindex = pmap_pml4_pindex();
2189 			pvp = pv_get(pv->pv_pmap, pml4_pindex);
2190 			KKASSERT(pvp);
2191 			gotpvp = 1;
2192 		}
2193 		pdp = &pmap->pm_pml4[pdp_index & ((1ul << NPML4EPGSHIFT) - 1)];
2194 		KKASSERT((*pdp & PG_V) != 0);
2195 		p = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
2196 		*pdp = 0;
2197 		KKASSERT(info == NULL);
2198 	} else if (ptepindex >= pmap_pd_pindex(0)) {
2199 		/*
2200 		 * Remove a PD page from the pdp
2201 		 *
2202 		 * SIMPLE PMAP NOTE: Non-existant pvp's are ok in the case
2203 		 *		     of a simple pmap because it stops at
2204 		 *		     the PD page.
2205 		 */
2206 		vm_pindex_t pdp_pindex;
2207 		vm_pindex_t pd_index;
2208 		pdp_entry_t *pd;
2209 
2210 		pd_index = ptepindex - pmap_pd_pindex(0);
2211 
2212 		if (pvp == NULL) {
2213 			pdp_pindex = NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
2214 				     (pd_index >> NPML4EPGSHIFT);
2215 			pvp = pv_get(pv->pv_pmap, pdp_pindex);
2216 			if (pvp)
2217 				gotpvp = 1;
2218 		}
2219 		if (pvp) {
2220 			pd = pv_pte_lookup(pvp, pd_index &
2221 						((1ul << NPDPEPGSHIFT) - 1));
2222 			KKASSERT((*pd & PG_V) != 0);
2223 			p = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
2224 			*pd = 0;
2225 		} else {
2226 			KKASSERT(pmap->pm_flags & PMAP_FLAG_SIMPLE);
2227 			p = pv->pv_m;		/* degenerate test later */
2228 		}
2229 		KKASSERT(info == NULL);
2230 	} else if (ptepindex >= pmap_pt_pindex(0)) {
2231 		/*
2232 		 *  Remove a PT page from the pd
2233 		 */
2234 		vm_pindex_t pd_pindex;
2235 		vm_pindex_t pt_index;
2236 		pd_entry_t *pt;
2237 
2238 		pt_index = ptepindex - pmap_pt_pindex(0);
2239 
2240 		if (pvp == NULL) {
2241 			pd_pindex = NUPTE_TOTAL + NUPT_TOTAL +
2242 				    (pt_index >> NPDPEPGSHIFT);
2243 			pvp = pv_get(pv->pv_pmap, pd_pindex);
2244 			KKASSERT(pvp);
2245 			gotpvp = 1;
2246 		}
2247 		pt = pv_pte_lookup(pvp, pt_index & ((1ul << NPDPEPGSHIFT) - 1));
2248 		KKASSERT((*pt & PG_V) != 0);
2249 		p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
2250 		*pt = 0;
2251 		KKASSERT(info == NULL);
2252 	} else {
2253 		/*
2254 		 * Remove a PTE from the PT page
2255 		 *
2256 		 * NOTE: pv's must be locked bottom-up to avoid deadlocking.
2257 		 *	 pv is a pte_pv so we can safely lock pt_pv.
2258 		 */
2259 		vm_pindex_t pt_pindex;
2260 		pt_entry_t *ptep;
2261 		pt_entry_t pte;
2262 		vm_offset_t va;
2263 
2264 		pt_pindex = ptepindex >> NPTEPGSHIFT;
2265 		va = (vm_offset_t)ptepindex << PAGE_SHIFT;
2266 
2267 		if (ptepindex >= NUPTE_USER) {
2268 			ptep = vtopte(ptepindex << PAGE_SHIFT);
2269 			KKASSERT(pvp == NULL);
2270 		} else {
2271 			if (pvp == NULL) {
2272 				pt_pindex = NUPTE_TOTAL +
2273 					    (ptepindex >> NPDPEPGSHIFT);
2274 				pvp = pv_get(pv->pv_pmap, pt_pindex);
2275 				KKASSERT(pvp);
2276 				gotpvp = 1;
2277 			}
2278 			ptep = pv_pte_lookup(pvp, ptepindex &
2279 						  ((1ul << NPDPEPGSHIFT) - 1));
2280 		}
2281 
2282 		if (info)
2283 			pmap_inval_interlock(info, pmap, va);
2284 		pte = pte_load_clear(ptep);
2285 		if (info)
2286 			pmap_inval_deinterlock(info, pmap);
2287 		else
2288 			cpu_invlpg((void *)va);
2289 
2290 		/*
2291 		 * Now update the vm_page_t
2292 		 */
2293 		if ((pte & (PG_MANAGED|PG_V)) != (PG_MANAGED|PG_V)) {
2294 			kprintf("remove_pte badpte %016lx %016lx %d\n",
2295 				pte, pv->pv_pindex,
2296 				pv->pv_pindex < pmap_pt_pindex(0));
2297 		}
2298 		/*KKASSERT((pte & (PG_MANAGED|PG_V)) == (PG_MANAGED|PG_V));*/
2299 		p = PHYS_TO_VM_PAGE(pte & PG_FRAME);
2300 
2301 		if (pte & PG_M) {
2302 			if (pmap_track_modified(ptepindex))
2303 				vm_page_dirty(p);
2304 		}
2305 		if (pte & PG_A) {
2306 			vm_page_flag_set(p, PG_REFERENCED);
2307 		}
2308 		if (pte & PG_W)
2309 			atomic_add_long(&pmap->pm_stats.wired_count, -1);
2310 		if (pte & PG_G)
2311 			cpu_invlpg((void *)va);
2312 	}
2313 
2314 	/*
2315 	 * Unwire the parent page table page.  The wire_count cannot go below
2316 	 * 1 here because the parent page table page is itself still mapped.
2317 	 *
2318 	 * XXX remove the assertions later.
2319 	 */
2320 	KKASSERT(pv->pv_m == p);
2321 	if (pvp && vm_page_unwire_quick(pvp->pv_m))
2322 		panic("pmap_remove_pv_pte: Insufficient wire_count");
2323 
2324 	if (gotpvp)
2325 		pv_put(pvp);
2326 }
2327 
2328 static
2329 vm_page_t
2330 pmap_remove_pv_page(pv_entry_t pv)
2331 {
2332 	vm_page_t m;
2333 
2334 	m = pv->pv_m;
2335 	KKASSERT(m);
2336 	vm_page_spin_lock(m);
2337 	pv->pv_m = NULL;
2338 	TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2339 	/*
2340 	if (m->object)
2341 		atomic_add_int(&m->object->agg_pv_list_count, -1);
2342 	*/
2343 	if (TAILQ_EMPTY(&m->md.pv_list))
2344 		vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2345 	vm_page_spin_unlock(m);
2346 	return(m);
2347 }
2348 
2349 /*
2350  * Grow the number of kernel page table entries, if needed.
2351  *
2352  * This routine is always called to validate any address space
2353  * beyond KERNBASE (for kldloads).  kernel_vm_end only governs the address
2354  * space below KERNBASE.
2355  */
2356 void
2357 pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
2358 {
2359 	vm_paddr_t paddr;
2360 	vm_offset_t ptppaddr;
2361 	vm_page_t nkpg;
2362 	pd_entry_t *pt, newpt;
2363 	pdp_entry_t newpd;
2364 	int update_kernel_vm_end;
2365 
2366 	/*
2367 	 * bootstrap kernel_vm_end on first real VM use
2368 	 */
2369 	if (kernel_vm_end == 0) {
2370 		kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
2371 		nkpt = 0;
2372 		while ((*pmap_pt(&kernel_pmap, kernel_vm_end) & PG_V) != 0) {
2373 			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
2374 					~(PAGE_SIZE * NPTEPG - 1);
2375 			nkpt++;
2376 			if (kernel_vm_end - 1 >= kernel_map.max_offset) {
2377 				kernel_vm_end = kernel_map.max_offset;
2378 				break;
2379 			}
2380 		}
2381 	}
2382 
2383 	/*
2384 	 * Fill in the gaps.  kernel_vm_end is only adjusted for ranges
2385 	 * below KERNBASE.  Ranges above KERNBASE are kldloaded and we
2386 	 * do not want to force-fill 128G worth of page tables.
2387 	 */
2388 	if (kstart < KERNBASE) {
2389 		if (kstart > kernel_vm_end)
2390 			kstart = kernel_vm_end;
2391 		KKASSERT(kend <= KERNBASE);
2392 		update_kernel_vm_end = 1;
2393 	} else {
2394 		update_kernel_vm_end = 0;
2395 	}
2396 
2397 	kstart = rounddown2(kstart, PAGE_SIZE * NPTEPG);
2398 	kend = roundup2(kend, PAGE_SIZE * NPTEPG);
2399 
2400 	if (kend - 1 >= kernel_map.max_offset)
2401 		kend = kernel_map.max_offset;
2402 
2403 	while (kstart < kend) {
2404 		pt = pmap_pt(&kernel_pmap, kstart);
2405 		if (pt == NULL) {
2406 			/* We need a new PDP entry */
2407 			nkpg = vm_page_alloc(NULL, nkpt,
2408 			                     VM_ALLOC_NORMAL |
2409 					     VM_ALLOC_SYSTEM |
2410 					     VM_ALLOC_INTERRUPT);
2411 			if (nkpg == NULL) {
2412 				panic("pmap_growkernel: no memory to grow "
2413 				      "kernel");
2414 			}
2415 			paddr = VM_PAGE_TO_PHYS(nkpg);
2416 			if ((nkpg->flags & PG_ZERO) == 0)
2417 				pmap_zero_page(paddr);
2418 			vm_page_flag_clear(nkpg, PG_ZERO);
2419 			newpd = (pdp_entry_t)
2420 				(paddr | PG_V | PG_RW | PG_A | PG_M);
2421 			*pmap_pd(&kernel_pmap, kstart) = newpd;
2422 			nkpt++;
2423 			continue; /* try again */
2424 		}
2425 		if ((*pt & PG_V) != 0) {
2426 			kstart = (kstart + PAGE_SIZE * NPTEPG) &
2427 				 ~(PAGE_SIZE * NPTEPG - 1);
2428 			if (kstart - 1 >= kernel_map.max_offset) {
2429 				kstart = kernel_map.max_offset;
2430 				break;
2431 			}
2432 			continue;
2433 		}
2434 
2435 		/*
2436 		 * This index is bogus, but out of the way
2437 		 */
2438 		nkpg = vm_page_alloc(NULL, nkpt,
2439 				     VM_ALLOC_NORMAL |
2440 				     VM_ALLOC_SYSTEM |
2441 				     VM_ALLOC_INTERRUPT);
2442 		if (nkpg == NULL)
2443 			panic("pmap_growkernel: no memory to grow kernel");
2444 
2445 		vm_page_wire(nkpg);
2446 		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
2447 		pmap_zero_page(ptppaddr);
2448 		vm_page_flag_clear(nkpg, PG_ZERO);
2449 		newpt = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
2450 		*pmap_pt(&kernel_pmap, kstart) = newpt;
2451 		nkpt++;
2452 
2453 		kstart = (kstart + PAGE_SIZE * NPTEPG) &
2454 			  ~(PAGE_SIZE * NPTEPG - 1);
2455 
2456 		if (kstart - 1 >= kernel_map.max_offset) {
2457 			kstart = kernel_map.max_offset;
2458 			break;
2459 		}
2460 	}
2461 
2462 	/*
2463 	 * Only update kernel_vm_end for areas below KERNBASE.
2464 	 */
2465 	if (update_kernel_vm_end && kernel_vm_end < kstart)
2466 		kernel_vm_end = kstart;
2467 }
2468 
2469 /*
2470  *	Add a reference to the specified pmap.
2471  */
2472 void
2473 pmap_reference(pmap_t pmap)
2474 {
2475 	if (pmap != NULL) {
2476 		lwkt_gettoken(&pmap->pm_token);
2477 		++pmap->pm_count;
2478 		lwkt_reltoken(&pmap->pm_token);
2479 	}
2480 }
2481 
2482 /***************************************************
2483  * page management routines.
2484  ***************************************************/
2485 
2486 /*
2487  * Hold a pv without locking it
2488  */
2489 static void
2490 pv_hold(pv_entry_t pv)
2491 {
2492 	u_int count;
2493 
2494 	if (atomic_cmpset_int(&pv->pv_hold, 0, 1))
2495 		return;
2496 
2497 	for (;;) {
2498 		count = pv->pv_hold;
2499 		cpu_ccfence();
2500 		if (atomic_cmpset_int(&pv->pv_hold, count, count + 1))
2501 			return;
2502 		/* retry */
2503 	}
2504 }
2505 
2506 /*
2507  * Hold a pv_entry, preventing its destruction.  TRUE is returned if the pv
2508  * was successfully locked, FALSE if it wasn't.  The caller must dispose of
2509  * the pv properly.
2510  *
2511  * Either the pmap->pm_spin or the related vm_page_spin (if traversing a
2512  * pv list via its page) must be held by the caller.
2513  */
2514 static int
2515 _pv_hold_try(pv_entry_t pv PMAP_DEBUG_DECL)
2516 {
2517 	u_int count;
2518 
2519 	if (atomic_cmpset_int(&pv->pv_hold, 0, PV_HOLD_LOCKED | 1)) {
2520 #ifdef PMAP_DEBUG
2521 		pv->pv_func = func;
2522 		pv->pv_line = lineno;
2523 #endif
2524 		return TRUE;
2525 	}
2526 
2527 	for (;;) {
2528 		count = pv->pv_hold;
2529 		cpu_ccfence();
2530 		if ((count & PV_HOLD_LOCKED) == 0) {
2531 			if (atomic_cmpset_int(&pv->pv_hold, count,
2532 					      (count + 1) | PV_HOLD_LOCKED)) {
2533 #ifdef PMAP_DEBUG
2534 				pv->pv_func = func;
2535 				pv->pv_line = lineno;
2536 #endif
2537 				return TRUE;
2538 			}
2539 		} else {
2540 			if (atomic_cmpset_int(&pv->pv_hold, count, count + 1))
2541 				return FALSE;
2542 		}
2543 		/* retry */
2544 	}
2545 }
2546 
2547 /*
2548  * Drop a previously held pv_entry which could not be locked, allowing its
2549  * destruction.
2550  *
2551  * Must not be called with a spinlock held as we might zfree() the pv if it
2552  * is no longer associated with a pmap and this was the last hold count.
2553  */
2554 static void
2555 pv_drop(pv_entry_t pv)
2556 {
2557 	u_int count;
2558 
2559 	if (atomic_cmpset_int(&pv->pv_hold, 1, 0)) {
2560 		if (pv->pv_pmap == NULL)
2561 			zfree(pvzone, pv);
2562 		return;
2563 	}
2564 
2565 	for (;;) {
2566 		count = pv->pv_hold;
2567 		cpu_ccfence();
2568 		KKASSERT((count & PV_HOLD_MASK) > 0);
2569 		KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) !=
2570 			 (PV_HOLD_LOCKED | 1));
2571 		if (atomic_cmpset_int(&pv->pv_hold, count, count - 1)) {
2572 			if (count == 1 && pv->pv_pmap == NULL)
2573 				zfree(pvzone, pv);
2574 			return;
2575 		}
2576 		/* retry */
2577 	}
2578 }
2579 
2580 /*
2581  * Find or allocate the requested PV entry, returning a locked pv
2582  */
2583 static
2584 pv_entry_t
2585 _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew PMAP_DEBUG_DECL)
2586 {
2587 	pv_entry_t pv;
2588 	pv_entry_t pnew = NULL;
2589 
2590 	spin_lock(&pmap->pm_spin);
2591 	for (;;) {
2592 		if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex) {
2593 			pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
2594 							pindex);
2595 		}
2596 		if (pv == NULL) {
2597 			if (pnew == NULL) {
2598 				spin_unlock(&pmap->pm_spin);
2599 				pnew = zalloc(pvzone);
2600 				spin_lock(&pmap->pm_spin);
2601 				continue;
2602 			}
2603 			pnew->pv_pmap = pmap;
2604 			pnew->pv_pindex = pindex;
2605 			pnew->pv_hold = PV_HOLD_LOCKED | 1;
2606 #ifdef PMAP_DEBUG
2607 			pnew->pv_func = func;
2608 			pnew->pv_line = lineno;
2609 #endif
2610 			pv_entry_rb_tree_RB_INSERT(&pmap->pm_pvroot, pnew);
2611 			atomic_add_long(&pmap->pm_stats.resident_count, 1);
2612 			spin_unlock(&pmap->pm_spin);
2613 			*isnew = 1;
2614 			return(pnew);
2615 		}
2616 		if (pnew) {
2617 			spin_unlock(&pmap->pm_spin);
2618 			zfree(pvzone, pnew);
2619 			pnew = NULL;
2620 			spin_lock(&pmap->pm_spin);
2621 			continue;
2622 		}
2623 		if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
2624 			spin_unlock(&pmap->pm_spin);
2625 			*isnew = 0;
2626 			return(pv);
2627 		}
2628 		spin_unlock(&pmap->pm_spin);
2629 		_pv_lock(pv PMAP_DEBUG_COPY);
2630 		if (pv->pv_pmap == pmap && pv->pv_pindex == pindex) {
2631 			*isnew = 0;
2632 			return(pv);
2633 		}
2634 		pv_put(pv);
2635 		spin_lock(&pmap->pm_spin);
2636 	}
2637 
2638 
2639 }
2640 
2641 /*
2642  * Find the requested PV entry, returning a locked+held pv or NULL
2643  */
2644 static
2645 pv_entry_t
2646 _pv_get(pmap_t pmap, vm_pindex_t pindex PMAP_DEBUG_DECL)
2647 {
2648 	pv_entry_t pv;
2649 
2650 	spin_lock(&pmap->pm_spin);
2651 	for (;;) {
2652 		/*
2653 		 * Shortcut cache
2654 		 */
2655 		if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex) {
2656 			pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
2657 							pindex);
2658 		}
2659 		if (pv == NULL) {
2660 			spin_unlock(&pmap->pm_spin);
2661 			return NULL;
2662 		}
2663 		if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
2664 			pv_cache(pv, pindex);
2665 			spin_unlock(&pmap->pm_spin);
2666 			return(pv);
2667 		}
2668 		spin_unlock(&pmap->pm_spin);
2669 		_pv_lock(pv PMAP_DEBUG_COPY);
2670 		if (pv->pv_pmap == pmap && pv->pv_pindex == pindex)
2671 			return(pv);
2672 		pv_put(pv);
2673 		spin_lock(&pmap->pm_spin);
2674 	}
2675 }
2676 
2677 /*
2678  * Lookup, hold, and attempt to lock (pmap,pindex).
2679  *
2680  * If the entry does not exist NULL is returned and *errorp is set to 0
2681  *
2682  * If the entry exists and could be successfully locked it is returned and
2683  * errorp is set to 0.
2684  *
2685  * If the entry exists but could NOT be successfully locked it is returned
2686  * held and *errorp is set to 1.
2687  */
2688 static
2689 pv_entry_t
2690 pv_get_try(pmap_t pmap, vm_pindex_t pindex, int *errorp)
2691 {
2692 	pv_entry_t pv;
2693 
2694 	spin_lock(&pmap->pm_spin);
2695 	if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex)
2696 		pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
2697 	if (pv == NULL) {
2698 		spin_unlock(&pmap->pm_spin);
2699 		*errorp = 0;
2700 		return NULL;
2701 	}
2702 	if (pv_hold_try(pv)) {
2703 		pv_cache(pv, pindex);
2704 		spin_unlock(&pmap->pm_spin);
2705 		*errorp = 0;
2706 		return(pv);	/* lock succeeded */
2707 	}
2708 	spin_unlock(&pmap->pm_spin);
2709 	*errorp = 1;
2710 	return (pv);		/* lock failed */
2711 }
2712 
2713 /*
2714  * Find the requested PV entry, returning a held pv or NULL
2715  */
2716 static
2717 pv_entry_t
2718 pv_find(pmap_t pmap, vm_pindex_t pindex)
2719 {
2720 	pv_entry_t pv;
2721 
2722 	spin_lock(&pmap->pm_spin);
2723 
2724 	if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex)
2725 		pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
2726 	if (pv == NULL) {
2727 		spin_unlock(&pmap->pm_spin);
2728 		return NULL;
2729 	}
2730 	pv_hold(pv);
2731 	pv_cache(pv, pindex);
2732 	spin_unlock(&pmap->pm_spin);
2733 	return(pv);
2734 }
2735 
2736 /*
2737  * Lock a held pv, keeping the hold count
2738  */
2739 static
2740 void
2741 _pv_lock(pv_entry_t pv PMAP_DEBUG_DECL)
2742 {
2743 	u_int count;
2744 
2745 	for (;;) {
2746 		count = pv->pv_hold;
2747 		cpu_ccfence();
2748 		if ((count & PV_HOLD_LOCKED) == 0) {
2749 			if (atomic_cmpset_int(&pv->pv_hold, count,
2750 					      count | PV_HOLD_LOCKED)) {
2751 #ifdef PMAP_DEBUG
2752 				pv->pv_func = func;
2753 				pv->pv_line = lineno;
2754 #endif
2755 				return;
2756 			}
2757 			continue;
2758 		}
2759 		tsleep_interlock(pv, 0);
2760 		if (atomic_cmpset_int(&pv->pv_hold, count,
2761 				      count | PV_HOLD_WAITING)) {
2762 #ifdef PMAP_DEBUG
2763 			kprintf("pv waiting on %s:%d\n",
2764 					pv->pv_func, pv->pv_line);
2765 #endif
2766 			tsleep(pv, PINTERLOCKED, "pvwait", hz);
2767 		}
2768 		/* retry */
2769 	}
2770 }
2771 
2772 /*
2773  * Unlock a held and locked pv, keeping the hold count.
2774  */
2775 static
2776 void
2777 pv_unlock(pv_entry_t pv)
2778 {
2779 	u_int count;
2780 
2781 	if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 1, 1))
2782 		return;
2783 
2784 	for (;;) {
2785 		count = pv->pv_hold;
2786 		cpu_ccfence();
2787 		KKASSERT((count & (PV_HOLD_LOCKED|PV_HOLD_MASK)) >=
2788 			 (PV_HOLD_LOCKED | 1));
2789 		if (atomic_cmpset_int(&pv->pv_hold, count,
2790 				      count &
2791 				      ~(PV_HOLD_LOCKED | PV_HOLD_WAITING))) {
2792 			if (count & PV_HOLD_WAITING)
2793 				wakeup(pv);
2794 			break;
2795 		}
2796 	}
2797 }
2798 
2799 /*
2800  * Unlock and drop a pv.  If the pv is no longer associated with a pmap
2801  * and the hold count drops to zero we will free it.
2802  *
2803  * Caller should not hold any spin locks.  We are protected from hold races
2804  * by virtue of holds only occuring only with a pmap_spin or vm_page_spin
2805  * lock held.  A pv cannot be located otherwise.
2806  */
2807 static
2808 void
2809 pv_put(pv_entry_t pv)
2810 {
2811 	if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 1, 0)) {
2812 		if (pv->pv_pmap == NULL)
2813 			zfree(pvzone, pv);
2814 		return;
2815 	}
2816 	pv_unlock(pv);
2817 	pv_drop(pv);
2818 }
2819 
2820 /*
2821  * Unlock, drop, and free a pv, destroying it.  The pv is removed from its
2822  * pmap.  Any pte operations must have already been completed.
2823  */
2824 static
2825 void
2826 pv_free(pv_entry_t pv)
2827 {
2828 	pmap_t pmap;
2829 
2830 	KKASSERT(pv->pv_m == NULL);
2831 	if ((pmap = pv->pv_pmap) != NULL) {
2832 		spin_lock(&pmap->pm_spin);
2833 		pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
2834 		if (pmap->pm_pvhint == pv)
2835 			pmap->pm_pvhint = NULL;
2836 		atomic_add_long(&pmap->pm_stats.resident_count, -1);
2837 		pv->pv_pmap = NULL;
2838 		pv->pv_pindex = 0;
2839 		spin_unlock(&pmap->pm_spin);
2840 	}
2841 	pv_put(pv);
2842 }
2843 
2844 /*
2845  * This routine is very drastic, but can save the system
2846  * in a pinch.
2847  */
2848 void
2849 pmap_collect(void)
2850 {
2851 	int i;
2852 	vm_page_t m;
2853 	static int warningdone=0;
2854 
2855 	if (pmap_pagedaemon_waken == 0)
2856 		return;
2857 	pmap_pagedaemon_waken = 0;
2858 	if (warningdone < 5) {
2859 		kprintf("pmap_collect: collecting pv entries -- "
2860 			"suggest increasing PMAP_SHPGPERPROC\n");
2861 		warningdone++;
2862 	}
2863 
2864 	for (i = 0; i < vm_page_array_size; i++) {
2865 		m = &vm_page_array[i];
2866 		if (m->wire_count || m->hold_count)
2867 			continue;
2868 		if (vm_page_busy_try(m, TRUE) == 0) {
2869 			if (m->wire_count == 0 && m->hold_count == 0) {
2870 				pmap_remove_all(m);
2871 			}
2872 			vm_page_wakeup(m);
2873 		}
2874 	}
2875 }
2876 
2877 /*
2878  * Scan the pmap for active page table entries and issue a callback.
2879  * The callback must dispose of pte_pv, whos PTE entry is at *ptep in
2880  * its parent page table.
2881  *
2882  * pte_pv will be NULL if the page or page table is unmanaged.
2883  * pt_pv will point to the page table page containing the pte for the page.
2884  *
2885  * NOTE! If we come across an unmanaged page TABLE (verses an unmanaged page),
2886  *	 we pass a NULL pte_pv and we pass a pt_pv pointing to the passed
2887  *	 process pmap's PD and page to the callback function.  This can be
2888  *	 confusing because the pt_pv is really a pd_pv, and the target page
2889  *	 table page is simply aliased by the pmap and not owned by it.
2890  *
2891  * It is assumed that the start and end are properly rounded to the page size.
2892  *
2893  * It is assumed that PD pages and above are managed and thus in the RB tree,
2894  * allowing us to use RB_SCAN from the PD pages down for ranged scans.
2895  */
2896 struct pmap_scan_info {
2897 	struct pmap *pmap;
2898 	vm_offset_t sva;
2899 	vm_offset_t eva;
2900 	vm_pindex_t sva_pd_pindex;
2901 	vm_pindex_t eva_pd_pindex;
2902 	void (*func)(pmap_t, struct pmap_scan_info *,
2903 		     pv_entry_t, pv_entry_t, int, vm_offset_t,
2904 		     pt_entry_t *, void *);
2905 	void *arg;
2906 	int doinval;
2907 	struct pmap_inval_info inval;
2908 };
2909 
2910 static int pmap_scan_cmp(pv_entry_t pv, void *data);
2911 static int pmap_scan_callback(pv_entry_t pv, void *data);
2912 
2913 static void
2914 pmap_scan(struct pmap_scan_info *info)
2915 {
2916 	struct pmap *pmap = info->pmap;
2917 	pv_entry_t pd_pv;	/* A page directory PV */
2918 	pv_entry_t pt_pv;	/* A page table PV */
2919 	pv_entry_t pte_pv;	/* A page table entry PV */
2920 	pt_entry_t *ptep;
2921 	struct pv_entry dummy_pv;
2922 
2923 	if (pmap == NULL)
2924 		return;
2925 
2926 	/*
2927 	 * Hold the token for stability; if the pmap is empty we have nothing
2928 	 * to do.
2929 	 */
2930 	lwkt_gettoken(&pmap->pm_token);
2931 #if 0
2932 	if (pmap->pm_stats.resident_count == 0) {
2933 		lwkt_reltoken(&pmap->pm_token);
2934 		return;
2935 	}
2936 #endif
2937 
2938 	pmap_inval_init(&info->inval);
2939 
2940 	/*
2941 	 * Special handling for scanning one page, which is a very common
2942 	 * operation (it is?).
2943 	 *
2944 	 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4
2945 	 */
2946 	if (info->sva + PAGE_SIZE == info->eva) {
2947 		if (info->sva >= VM_MAX_USER_ADDRESS) {
2948 			/*
2949 			 * Kernel mappings do not track wire counts on
2950 			 * page table pages and only maintain pd_pv and
2951 			 * pte_pv levels so pmap_scan() works.
2952 			 */
2953 			pt_pv = NULL;
2954 			pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva));
2955 			ptep = vtopte(info->sva);
2956 		} else {
2957 			/*
2958 			 * User pages which are unmanaged will not have a
2959 			 * pte_pv.  User page table pages which are unmanaged
2960 			 * (shared from elsewhere) will also not have a pt_pv.
2961 			 * The func() callback will pass both pte_pv and pt_pv
2962 			 * as NULL in that case.
2963 			 */
2964 			pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva));
2965 			pt_pv = pv_get(pmap, pmap_pt_pindex(info->sva));
2966 			if (pt_pv == NULL) {
2967 				KKASSERT(pte_pv == NULL);
2968 				pd_pv = pv_get(pmap, pmap_pd_pindex(info->sva));
2969 				if (pd_pv) {
2970 					ptep = pv_pte_lookup(pd_pv,
2971 						    pmap_pt_index(info->sva));
2972 					if (*ptep) {
2973 						info->func(pmap, info,
2974 						     NULL, pd_pv, 1,
2975 						     info->sva, ptep,
2976 						     info->arg);
2977 					}
2978 					pv_put(pd_pv);
2979 				}
2980 				goto fast_skip;
2981 			}
2982 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(info->sva));
2983 		}
2984 		if (*ptep == 0) {
2985 			/*
2986 			 * Unlike the pv_find() case below we actually
2987 			 * acquired a locked pv in this case so any
2988 			 * race should have been resolved.  It is expected
2989 			 * to not exist.
2990 			 */
2991 			KKASSERT(pte_pv == NULL);
2992 		} else if (pte_pv) {
2993 			KASSERT((*ptep & (PG_MANAGED|PG_V)) == (PG_MANAGED|
2994 								PG_V),
2995 				("bad *ptep %016lx sva %016lx pte_pv %p",
2996 				*ptep, info->sva, pte_pv));
2997 			info->func(pmap, info, pte_pv, pt_pv, 0,
2998 				   info->sva, ptep, info->arg);
2999 		} else {
3000 			KASSERT((*ptep & (PG_MANAGED|PG_V)) == PG_V,
3001 				("bad *ptep %016lx sva %016lx pte_pv NULL",
3002 				*ptep, info->sva));
3003 			info->func(pmap, info, NULL, pt_pv, 0,
3004 				   info->sva, ptep, info->arg);
3005 		}
3006 		if (pt_pv)
3007 			pv_put(pt_pv);
3008 fast_skip:
3009 		pmap_inval_done(&info->inval);
3010 		lwkt_reltoken(&pmap->pm_token);
3011 		return;
3012 	}
3013 
3014 	/*
3015 	 * Nominal scan case, RB_SCAN() for PD pages and iterate from
3016 	 * there.
3017 	 */
3018 	info->sva_pd_pindex = pmap_pd_pindex(info->sva);
3019 	info->eva_pd_pindex = pmap_pd_pindex(info->eva + NBPDP - 1);
3020 
3021 	if (info->sva >= VM_MAX_USER_ADDRESS) {
3022 		/*
3023 		 * The kernel does not currently maintain any pv_entry's for
3024 		 * higher-level page tables.
3025 		 */
3026 		bzero(&dummy_pv, sizeof(dummy_pv));
3027 		dummy_pv.pv_pindex = info->sva_pd_pindex;
3028 		spin_lock(&pmap->pm_spin);
3029 		while (dummy_pv.pv_pindex < info->eva_pd_pindex) {
3030 			pmap_scan_callback(&dummy_pv, info);
3031 			++dummy_pv.pv_pindex;
3032 		}
3033 		spin_unlock(&pmap->pm_spin);
3034 	} else {
3035 		/*
3036 		 * User page tables maintain local PML4, PDP, and PD
3037 		 * pv_entry's at the very least.  PT pv's might be
3038 		 * unmanaged and thus not exist.  PTE pv's might be
3039 		 * unmanaged and thus not exist.
3040 		 */
3041 		spin_lock(&pmap->pm_spin);
3042 		pv_entry_rb_tree_RB_SCAN(&pmap->pm_pvroot,
3043 			pmap_scan_cmp, pmap_scan_callback, info);
3044 		spin_unlock(&pmap->pm_spin);
3045 	}
3046 	pmap_inval_done(&info->inval);
3047 	lwkt_reltoken(&pmap->pm_token);
3048 }
3049 
3050 /*
3051  * WARNING! pmap->pm_spin held
3052  */
3053 static int
3054 pmap_scan_cmp(pv_entry_t pv, void *data)
3055 {
3056 	struct pmap_scan_info *info = data;
3057 	if (pv->pv_pindex < info->sva_pd_pindex)
3058 		return(-1);
3059 	if (pv->pv_pindex >= info->eva_pd_pindex)
3060 		return(1);
3061 	return(0);
3062 }
3063 
3064 /*
3065  * WARNING! pmap->pm_spin held
3066  */
3067 static int
3068 pmap_scan_callback(pv_entry_t pv, void *data)
3069 {
3070 	struct pmap_scan_info *info = data;
3071 	struct pmap *pmap = info->pmap;
3072 	pv_entry_t pd_pv;	/* A page directory PV */
3073 	pv_entry_t pt_pv;	/* A page table PV */
3074 	pv_entry_t pte_pv;	/* A page table entry PV */
3075 	pt_entry_t *ptep;
3076 	vm_offset_t sva;
3077 	vm_offset_t eva;
3078 	vm_offset_t va_next;
3079 	vm_pindex_t pd_pindex;
3080 	int error;
3081 
3082 	/*
3083 	 * Pull the PD pindex from the pv before releasing the spinlock.
3084 	 *
3085 	 * WARNING: pv is faked for kernel pmap scans.
3086 	 */
3087 	pd_pindex = pv->pv_pindex;
3088 	spin_unlock(&pmap->pm_spin);
3089 	pv = NULL;	/* invalid after spinlock unlocked */
3090 
3091 	/*
3092 	 * Calculate the page range within the PD.  SIMPLE pmaps are
3093 	 * direct-mapped for the entire 2^64 address space.  Normal pmaps
3094 	 * reflect the user and kernel address space which requires
3095 	 * cannonicalization w/regards to converting pd_pindex's back
3096 	 * into addresses.
3097 	 */
3098 	sva = (pd_pindex - NUPTE_TOTAL - NUPT_TOTAL) << PDPSHIFT;
3099 	if ((pmap->pm_flags & PMAP_FLAG_SIMPLE) == 0 &&
3100 	    (sva & PML4_SIGNMASK)) {
3101 		sva |= PML4_SIGNMASK;
3102 	}
3103 	eva = sva + NBPDP;	/* can overflow */
3104 	if (sva < info->sva)
3105 		sva = info->sva;
3106 	if (eva < info->sva || eva > info->eva)
3107 		eva = info->eva;
3108 
3109 	/*
3110 	 * NOTE: kernel mappings do not track page table pages, only
3111 	 * 	 terminal pages.
3112 	 *
3113 	 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4.
3114 	 *	 However, for the scan to be efficient we try to
3115 	 *	 cache items top-down.
3116 	 */
3117 	pd_pv = NULL;
3118 	pt_pv = NULL;
3119 
3120 	for (; sva < eva; sva = va_next) {
3121 		if (sva >= VM_MAX_USER_ADDRESS) {
3122 			if (pt_pv) {
3123 				pv_put(pt_pv);
3124 				pt_pv = NULL;
3125 			}
3126 			goto kernel_skip;
3127 		}
3128 
3129 		/*
3130 		 * PD cache (degenerate case if we skip).  It is possible
3131 		 * for the PD to not exist due to races.  This is ok.
3132 		 */
3133 		if (pd_pv == NULL) {
3134 			pd_pv = pv_get(pmap, pmap_pd_pindex(sva));
3135 		} else if (pd_pv->pv_pindex != pmap_pd_pindex(sva)) {
3136 			pv_put(pd_pv);
3137 			pd_pv = pv_get(pmap, pmap_pd_pindex(sva));
3138 		}
3139 		if (pd_pv == NULL) {
3140 			va_next = (sva + NBPDP) & ~PDPMASK;
3141 			if (va_next < sva)
3142 				va_next = eva;
3143 			continue;
3144 		}
3145 
3146 		/*
3147 		 * PT cache
3148 		 */
3149 		if (pt_pv == NULL) {
3150 			if (pd_pv) {
3151 				pv_put(pd_pv);
3152 				pd_pv = NULL;
3153 			}
3154 			pt_pv = pv_get(pmap, pmap_pt_pindex(sva));
3155 		} else if (pt_pv->pv_pindex != pmap_pt_pindex(sva)) {
3156 			if (pd_pv) {
3157 				pv_put(pd_pv);
3158 				pd_pv = NULL;
3159 			}
3160 			pv_put(pt_pv);
3161 			pt_pv = pv_get(pmap, pmap_pt_pindex(sva));
3162 		}
3163 
3164 		/*
3165 		 * If pt_pv is NULL we either have an shared page table
3166 		 * page and must issue a callback specific to that case,
3167 		 * or there is no page table page.
3168 		 *
3169 		 * Either way we can skip the page table page.
3170 		 */
3171 		if (pt_pv == NULL) {
3172 			/*
3173 			 * Possible unmanaged (shared from another pmap)
3174 			 * page table page.
3175 			 */
3176 			if (pd_pv == NULL)
3177 				pd_pv = pv_get(pmap, pmap_pd_pindex(sva));
3178 			KKASSERT(pd_pv != NULL);
3179 			ptep = pv_pte_lookup(pd_pv, pmap_pt_index(sva));
3180 			if (*ptep & PG_V) {
3181 				info->func(pmap, info, NULL, pd_pv, 1,
3182 					   sva, ptep, info->arg);
3183 			}
3184 
3185 			/*
3186 			 * Done, move to next page table page.
3187 			 */
3188 			va_next = (sva + NBPDR) & ~PDRMASK;
3189 			if (va_next < sva)
3190 				va_next = eva;
3191 			continue;
3192 		}
3193 
3194 		/*
3195 		 * From this point in the loop testing pt_pv for non-NULL
3196 		 * means we are in UVM, else if it is NULL we are in KVM.
3197 		 *
3198 		 * Limit our scan to either the end of the va represented
3199 		 * by the current page table page, or to the end of the
3200 		 * range being removed.
3201 		 */
3202 kernel_skip:
3203 		va_next = (sva + NBPDR) & ~PDRMASK;
3204 		if (va_next < sva)
3205 			va_next = eva;
3206 		if (va_next > eva)
3207 			va_next = eva;
3208 
3209 		/*
3210 		 * Scan the page table for pages.  Some pages may not be
3211 		 * managed (might not have a pv_entry).
3212 		 *
3213 		 * There is no page table management for kernel pages so
3214 		 * pt_pv will be NULL in that case, but otherwise pt_pv
3215 		 * is non-NULL, locked, and referenced.
3216 		 */
3217 
3218 		/*
3219 		 * At this point a non-NULL pt_pv means a UVA, and a NULL
3220 		 * pt_pv means a KVA.
3221 		 */
3222 		if (pt_pv)
3223 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(sva));
3224 		else
3225 			ptep = vtopte(sva);
3226 
3227 		while (sva < va_next) {
3228 			/*
3229 			 * Acquire the related pte_pv, if any.  If *ptep == 0
3230 			 * the related pte_pv should not exist, but if *ptep
3231 			 * is not zero the pte_pv may or may not exist (e.g.
3232 			 * will not exist for an unmanaged page).
3233 			 *
3234 			 * However a multitude of races are possible here.
3235 			 *
3236 			 * In addition, the (pt_pv, pte_pv) lock order is
3237 			 * backwards, so we have to be careful in aquiring
3238 			 * a properly locked pte_pv.
3239 			 */
3240 			if (pt_pv) {
3241 				pte_pv = pv_get_try(pmap, pmap_pte_pindex(sva),
3242 						    &error);
3243 				if (error) {
3244 					if (pd_pv) {
3245 						pv_put(pd_pv);
3246 						pd_pv = NULL;
3247 					}
3248 					pv_put(pt_pv);	 /* must be non-NULL */
3249 					pt_pv = NULL;
3250 					pv_lock(pte_pv); /* safe to block now */
3251 					pv_put(pte_pv);
3252 					pte_pv = NULL;
3253 					pt_pv = pv_get(pmap,
3254 						       pmap_pt_pindex(sva));
3255 					/*
3256 					 * pt_pv reloaded, need new ptep
3257 					 */
3258 					KKASSERT(pt_pv != NULL);
3259 					ptep = pv_pte_lookup(pt_pv,
3260 							pmap_pte_index(sva));
3261 					continue;
3262 				}
3263 			} else {
3264 				pte_pv = pv_get(pmap, pmap_pte_pindex(sva));
3265 			}
3266 
3267 			/*
3268 			 * Ok, if *ptep == 0 we had better NOT have a pte_pv.
3269 			 */
3270 			if (*ptep == 0) {
3271 				if (pte_pv) {
3272 					kprintf("Unexpected non-NULL pte_pv "
3273 						"%p pt_pv %p *ptep = %016lx\n",
3274 						pte_pv, pt_pv, *ptep);
3275 					panic("Unexpected non-NULL pte_pv");
3276 				}
3277 				sva += PAGE_SIZE;
3278 				++ptep;
3279 				continue;
3280 			}
3281 
3282 			/*
3283 			 * Ready for the callback.  The locked pte_pv (if any)
3284 			 * is consumed by the callback.  pte_pv will exist if
3285 			 *  the page is managed, and will not exist if it
3286 			 * isn't.
3287 			 */
3288 			if (pte_pv) {
3289 				KASSERT((*ptep & (PG_MANAGED|PG_V)) ==
3290 					 (PG_MANAGED|PG_V),
3291 					("bad *ptep %016lx sva %016lx "
3292 					 "pte_pv %p",
3293 					 *ptep, sva, pte_pv));
3294 				info->func(pmap, info, pte_pv, pt_pv, 0,
3295 					   sva, ptep, info->arg);
3296 			} else {
3297 				KASSERT((*ptep & (PG_MANAGED|PG_V)) ==
3298 					 PG_V,
3299 					("bad *ptep %016lx sva %016lx "
3300 					 "pte_pv NULL",
3301 					 *ptep, sva));
3302 				info->func(pmap, info, NULL, pt_pv, 0,
3303 					   sva, ptep, info->arg);
3304 			}
3305 			pte_pv = NULL;
3306 			sva += PAGE_SIZE;
3307 			++ptep;
3308 		}
3309 		lwkt_yield();
3310 	}
3311 	if (pd_pv) {
3312 		pv_put(pd_pv);
3313 		pd_pv = NULL;
3314 	}
3315 	if (pt_pv) {
3316 		pv_put(pt_pv);
3317 		pt_pv = NULL;
3318 	}
3319 	lwkt_yield();
3320 
3321 	/*
3322 	 * Relock before returning.
3323 	 */
3324 	spin_lock(&pmap->pm_spin);
3325 	return (0);
3326 }
3327 
3328 void
3329 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
3330 {
3331 	struct pmap_scan_info info;
3332 
3333 	info.pmap = pmap;
3334 	info.sva = sva;
3335 	info.eva = eva;
3336 	info.func = pmap_remove_callback;
3337 	info.arg = NULL;
3338 	info.doinval = 1;	/* normal remove requires pmap inval */
3339 	pmap_scan(&info);
3340 }
3341 
3342 static void
3343 pmap_remove_noinval(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
3344 {
3345 	struct pmap_scan_info info;
3346 
3347 	info.pmap = pmap;
3348 	info.sva = sva;
3349 	info.eva = eva;
3350 	info.func = pmap_remove_callback;
3351 	info.arg = NULL;
3352 	info.doinval = 0;	/* normal remove requires pmap inval */
3353 	pmap_scan(&info);
3354 }
3355 
3356 static void
3357 pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
3358 		     pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
3359 		     vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
3360 {
3361 	pt_entry_t pte;
3362 
3363 	if (pte_pv) {
3364 		/*
3365 		 * This will also drop pt_pv's wire_count. Note that
3366 		 * terminal pages are not wired based on mmu presence.
3367 		 */
3368 		if (info->doinval)
3369 			pmap_remove_pv_pte(pte_pv, pt_pv, &info->inval);
3370 		else
3371 			pmap_remove_pv_pte(pte_pv, pt_pv, NULL);
3372 		pmap_remove_pv_page(pte_pv);
3373 		pv_free(pte_pv);
3374 	} else if (sharept == 0) {
3375 		/*
3376 		 * Unmanaged page
3377 		 *
3378 		 * pt_pv's wire_count is still bumped by unmanaged pages
3379 		 * so we must decrement it manually.
3380 		 */
3381 		if (info->doinval)
3382 			pmap_inval_interlock(&info->inval, pmap, va);
3383 		pte = pte_load_clear(ptep);
3384 		if (info->doinval)
3385 			pmap_inval_deinterlock(&info->inval, pmap);
3386 		if (pte & PG_W)
3387 			atomic_add_long(&pmap->pm_stats.wired_count, -1);
3388 		atomic_add_long(&pmap->pm_stats.resident_count, -1);
3389 		if (vm_page_unwire_quick(pt_pv->pv_m))
3390 			panic("pmap_remove: insufficient wirecount");
3391 	} else {
3392 		/*
3393 		 * Unmanaged page table, pt_pv is actually the pd_pv
3394 		 * for our pmap (not the share object pmap).
3395 		 *
3396 		 * We have to unwire the target page table page and we
3397 		 * have to unwire our page directory page.
3398 		 */
3399 		if (info->doinval)
3400 			pmap_inval_interlock(&info->inval, pmap, va);
3401 		pte = pte_load_clear(ptep);
3402 		if (info->doinval)
3403 			pmap_inval_deinterlock(&info->inval, pmap);
3404 		atomic_add_long(&pmap->pm_stats.resident_count, -1);
3405 		if (vm_page_unwire_quick(PHYS_TO_VM_PAGE(pte & PG_FRAME)))
3406 			panic("pmap_remove: shared pgtable1 bad wirecount");
3407 		if (vm_page_unwire_quick(pt_pv->pv_m))
3408 			panic("pmap_remove: shared pgtable2 bad wirecount");
3409 	}
3410 }
3411 
3412 /*
3413  * Removes this physical page from all physical maps in which it resides.
3414  * Reflects back modify bits to the pager.
3415  *
3416  * This routine may not be called from an interrupt.
3417  */
3418 static
3419 void
3420 pmap_remove_all(vm_page_t m)
3421 {
3422 	struct pmap_inval_info info;
3423 	pv_entry_t pv;
3424 
3425 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3426 		return;
3427 
3428 	pmap_inval_init(&info);
3429 	vm_page_spin_lock(m);
3430 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3431 		KKASSERT(pv->pv_m == m);
3432 		if (pv_hold_try(pv)) {
3433 			vm_page_spin_unlock(m);
3434 		} else {
3435 			vm_page_spin_unlock(m);
3436 			pv_lock(pv);
3437 			if (pv->pv_m != m) {
3438 				pv_put(pv);
3439 				vm_page_spin_lock(m);
3440 				continue;
3441 			}
3442 		}
3443 		/*
3444 		 * Holding no spinlocks, pv is locked.
3445 		 */
3446 		pmap_remove_pv_pte(pv, NULL, &info);
3447 		pmap_remove_pv_page(pv);
3448 		pv_free(pv);
3449 		vm_page_spin_lock(m);
3450 	}
3451 	KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
3452 	vm_page_spin_unlock(m);
3453 	pmap_inval_done(&info);
3454 }
3455 
3456 /*
3457  * Set the physical protection on the specified range of this map
3458  * as requested.  This function is typically only used for debug watchpoints
3459  * and COW pages.
3460  *
3461  * This function may not be called from an interrupt if the map is
3462  * not the kernel_pmap.
3463  *
3464  * NOTE!  For shared page table pages we just unmap the page.
3465  */
3466 void
3467 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
3468 {
3469 	struct pmap_scan_info info;
3470 	/* JG review for NX */
3471 
3472 	if (pmap == NULL)
3473 		return;
3474 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
3475 		pmap_remove(pmap, sva, eva);
3476 		return;
3477 	}
3478 	if (prot & VM_PROT_WRITE)
3479 		return;
3480 	info.pmap = pmap;
3481 	info.sva = sva;
3482 	info.eva = eva;
3483 	info.func = pmap_protect_callback;
3484 	info.arg = &prot;
3485 	info.doinval = 1;
3486 	pmap_scan(&info);
3487 }
3488 
3489 static
3490 void
3491 pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
3492 		      pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
3493 		      vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
3494 {
3495 	pt_entry_t pbits;
3496 	pt_entry_t cbits;
3497 	pt_entry_t pte;
3498 	vm_page_t m;
3499 
3500 	/*
3501 	 * XXX non-optimal.
3502 	 */
3503 	pmap_inval_interlock(&info->inval, pmap, va);
3504 again:
3505 	pbits = *ptep;
3506 	cbits = pbits;
3507 	if (pte_pv) {
3508 		m = NULL;
3509 		if (pbits & PG_A) {
3510 			m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
3511 			KKASSERT(m == pte_pv->pv_m);
3512 			vm_page_flag_set(m, PG_REFERENCED);
3513 			cbits &= ~PG_A;
3514 		}
3515 		if (pbits & PG_M) {
3516 			if (pmap_track_modified(pte_pv->pv_pindex)) {
3517 				if (m == NULL)
3518 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
3519 				vm_page_dirty(m);
3520 				cbits &= ~PG_M;
3521 			}
3522 		}
3523 	} else if (sharept) {
3524 		/*
3525 		 * Unmanaged page table, pt_pv is actually the pd_pv
3526 		 * for our pmap (not the share object pmap).
3527 		 *
3528 		 * When asked to protect something in a shared page table
3529 		 * page we just unmap the page table page.  We have to
3530 		 * invalidate the tlb in this situation.
3531 		 */
3532 		pte = pte_load_clear(ptep);
3533 		pmap_inval_invltlb(&info->inval);
3534 		if (vm_page_unwire_quick(PHYS_TO_VM_PAGE(pte & PG_FRAME)))
3535 			panic("pmap_protect: pgtable1 pg bad wirecount");
3536 		if (vm_page_unwire_quick(pt_pv->pv_m))
3537 			panic("pmap_protect: pgtable2 pg bad wirecount");
3538 		ptep = NULL;
3539 	}
3540 	/* else unmanaged page, adjust bits, no wire changes */
3541 
3542 	if (ptep) {
3543 		cbits &= ~PG_RW;
3544 		if (pbits != cbits && !atomic_cmpset_long(ptep, pbits, cbits)) {
3545 			goto again;
3546 		}
3547 	}
3548 	pmap_inval_deinterlock(&info->inval, pmap);
3549 	if (pte_pv)
3550 		pv_put(pte_pv);
3551 }
3552 
3553 /*
3554  * Insert the vm_page (m) at the virtual address (va), replacing any prior
3555  * mapping at that address.  Set protection and wiring as requested.
3556  *
3557  * If entry is non-NULL we check to see if the SEG_SIZE optimization is
3558  * possible.  If it is we enter the page into the appropriate shared pmap
3559  * hanging off the related VM object instead of the passed pmap, then we
3560  * share the page table page from the VM object's pmap into the current pmap.
3561  *
3562  * NOTE: This routine MUST insert the page into the pmap now, it cannot
3563  *	 lazy-evaluate.
3564  */
3565 void
3566 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3567 	   boolean_t wired, vm_map_entry_t entry)
3568 {
3569 	pmap_inval_info info;
3570 	pv_entry_t pt_pv;	/* page table */
3571 	pv_entry_t pte_pv;	/* page table entry */
3572 	pt_entry_t *ptep;
3573 	vm_paddr_t opa;
3574 	pt_entry_t origpte, newpte;
3575 	vm_paddr_t pa;
3576 
3577 	if (pmap == NULL)
3578 		return;
3579 	va = trunc_page(va);
3580 #ifdef PMAP_DIAGNOSTIC
3581 	if (va >= KvaEnd)
3582 		panic("pmap_enter: toobig");
3583 	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
3584 		panic("pmap_enter: invalid to pmap_enter page table "
3585 		      "pages (va: 0x%lx)", va);
3586 #endif
3587 	if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
3588 		kprintf("Warning: pmap_enter called on UVA with "
3589 			"kernel_pmap\n");
3590 #ifdef DDB
3591 		db_print_backtrace();
3592 #endif
3593 	}
3594 	if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
3595 		kprintf("Warning: pmap_enter called on KVA without"
3596 			"kernel_pmap\n");
3597 #ifdef DDB
3598 		db_print_backtrace();
3599 #endif
3600 	}
3601 
3602 	/*
3603 	 * Get locked PV entries for our new page table entry (pte_pv)
3604 	 * and for its parent page table (pt_pv).  We need the parent
3605 	 * so we can resolve the location of the ptep.
3606 	 *
3607 	 * Only hardware MMU actions can modify the ptep out from
3608 	 * under us.
3609 	 *
3610 	 * if (m) is fictitious or unmanaged we do not create a managing
3611 	 * pte_pv for it.  Any pre-existing page's management state must
3612 	 * match (avoiding code complexity).
3613 	 *
3614 	 * If the pmap is still being initialized we assume existing
3615 	 * page tables.
3616 	 *
3617 	 * Kernel mapppings do not track page table pages (i.e. pt_pv).
3618 	 * pmap_allocpte() checks the
3619 	 */
3620 	if (pmap_initialized == FALSE) {
3621 		pte_pv = NULL;
3622 		pt_pv = NULL;
3623 		ptep = vtopte(va);
3624 	} else if (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) { /* XXX */
3625 		pte_pv = NULL;
3626 		if (va >= VM_MAX_USER_ADDRESS) {
3627 			pt_pv = NULL;
3628 			ptep = vtopte(va);
3629 		} else {
3630 			pt_pv = pmap_allocpte_seg(pmap, pmap_pt_pindex(va),
3631 						  NULL, entry, va);
3632 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
3633 		}
3634 		KKASSERT(*ptep == 0 || (*ptep & PG_MANAGED) == 0);
3635 	} else {
3636 		if (va >= VM_MAX_USER_ADDRESS) {
3637 			/*
3638 			 * Kernel map, pv_entry-tracked.
3639 			 */
3640 			pt_pv = NULL;
3641 			pte_pv = pmap_allocpte(pmap, pmap_pte_pindex(va), NULL);
3642 			ptep = vtopte(va);
3643 		} else {
3644 			/*
3645 			 * User map
3646 			 */
3647 			pte_pv = pmap_allocpte_seg(pmap, pmap_pte_pindex(va),
3648 						   &pt_pv, entry, va);
3649 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
3650 		}
3651 		KKASSERT(*ptep == 0 || (*ptep & PG_MANAGED));
3652 	}
3653 
3654 	pa = VM_PAGE_TO_PHYS(m);
3655 	origpte = *ptep;
3656 	opa = origpte & PG_FRAME;
3657 
3658 	newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) | PG_V | PG_A);
3659 	if (wired)
3660 		newpte |= PG_W;
3661 	if (va < VM_MAX_USER_ADDRESS)
3662 		newpte |= PG_U;
3663 	if (pte_pv)
3664 		newpte |= PG_MANAGED;
3665 	if (pmap == &kernel_pmap)
3666 		newpte |= pgeflag;
3667 	newpte |= pat_pte_index[m->pat_mode];
3668 
3669 	/*
3670 	 * It is possible for multiple faults to occur in threaded
3671 	 * environments, the existing pte might be correct.
3672 	 */
3673 	if (((origpte ^ newpte) & ~(pt_entry_t)(PG_M|PG_A)) == 0)
3674 		goto done;
3675 
3676 	if ((prot & VM_PROT_NOSYNC) == 0)
3677 		pmap_inval_init(&info);
3678 
3679 	/*
3680 	 * Ok, either the address changed or the protection or wiring
3681 	 * changed.
3682 	 *
3683 	 * Clear the current entry, interlocking the removal.  For managed
3684 	 * pte's this will also flush the modified state to the vm_page.
3685 	 * Atomic ops are mandatory in order to ensure that PG_M events are
3686 	 * not lost during any transition.
3687 	 */
3688 	if (opa) {
3689 		if (pte_pv) {
3690 			/*
3691 			 * pmap_remove_pv_pte() unwires pt_pv and assumes
3692 			 * we will free pte_pv, but since we are reusing
3693 			 * pte_pv we want to retain the wire count.
3694 			 *
3695 			 * pt_pv won't exist for a kernel page (managed or
3696 			 * otherwise).
3697 			 */
3698 			if (pt_pv)
3699 				vm_page_wire_quick(pt_pv->pv_m);
3700 			if (prot & VM_PROT_NOSYNC)
3701 				pmap_remove_pv_pte(pte_pv, pt_pv, NULL);
3702 			else
3703 				pmap_remove_pv_pte(pte_pv, pt_pv, &info);
3704 			if (pte_pv->pv_m)
3705 				pmap_remove_pv_page(pte_pv);
3706 		} else if (prot & VM_PROT_NOSYNC) {
3707 			/*
3708 			 * Unmanaged page, NOSYNC (no mmu sync) requested.
3709 			 *
3710 			 * Leave wire count on PT page intact.
3711 			 */
3712 			(void)pte_load_clear(ptep);
3713 			cpu_invlpg((void *)va);
3714 			atomic_add_long(&pmap->pm_stats.resident_count, -1);
3715 		} else {
3716 			/*
3717 			 * Unmanaged page, normal enter.
3718 			 *
3719 			 * Leave wire count on PT page intact.
3720 			 */
3721 			pmap_inval_interlock(&info, pmap, va);
3722 			(void)pte_load_clear(ptep);
3723 			pmap_inval_deinterlock(&info, pmap);
3724 			atomic_add_long(&pmap->pm_stats.resident_count, -1);
3725 		}
3726 		KKASSERT(*ptep == 0);
3727 	}
3728 
3729 	if (pte_pv) {
3730 		/*
3731 		 * Enter on the PV list if part of our managed memory.
3732 		 * Wiring of the PT page is already handled.
3733 		 */
3734 		KKASSERT(pte_pv->pv_m == NULL);
3735 		vm_page_spin_lock(m);
3736 		pte_pv->pv_m = m;
3737 		TAILQ_INSERT_TAIL(&m->md.pv_list, pte_pv, pv_list);
3738 		/*
3739 		if (m->object)
3740 			atomic_add_int(&m->object->agg_pv_list_count, 1);
3741 		*/
3742 		vm_page_flag_set(m, PG_MAPPED);
3743 		vm_page_spin_unlock(m);
3744 	} else if (pt_pv && opa == 0) {
3745 		/*
3746 		 * We have to adjust the wire count on the PT page ourselves
3747 		 * for unmanaged entries.  If opa was non-zero we retained
3748 		 * the existing wire count from the removal.
3749 		 */
3750 		vm_page_wire_quick(pt_pv->pv_m);
3751 	}
3752 
3753 	/*
3754 	 * Kernel VMAs (pt_pv == NULL) require pmap invalidation interlocks.
3755 	 *
3756 	 * User VMAs do not because those will be zero->non-zero, so no
3757 	 * stale entries to worry about at this point.
3758 	 *
3759 	 * For KVM there appear to still be issues.  Theoretically we
3760 	 * should be able to scrap the interlocks entirely but we
3761 	 * get crashes.
3762 	 */
3763 	if ((prot & VM_PROT_NOSYNC) == 0 && pt_pv == NULL)
3764 		pmap_inval_interlock(&info, pmap, va);
3765 
3766 	/*
3767 	 * Set the pte
3768 	 */
3769 	*(volatile pt_entry_t *)ptep = newpte;
3770 
3771 	if ((prot & VM_PROT_NOSYNC) == 0 && pt_pv == NULL)
3772 		pmap_inval_deinterlock(&info, pmap);
3773 	else if (pt_pv == NULL)
3774 		cpu_invlpg((void *)va);
3775 
3776 	if (wired) {
3777 		if (pte_pv) {
3778 			atomic_add_long(&pte_pv->pv_pmap->pm_stats.wired_count,
3779 					1);
3780 		} else {
3781 			atomic_add_long(&pmap->pm_stats.wired_count, 1);
3782 		}
3783 	}
3784 	if (newpte & PG_RW)
3785 		vm_page_flag_set(m, PG_WRITEABLE);
3786 
3787 	/*
3788 	 * Unmanaged pages need manual resident_count tracking.
3789 	 */
3790 	if (pte_pv == NULL && pt_pv)
3791 		atomic_add_long(&pt_pv->pv_pmap->pm_stats.resident_count, 1);
3792 
3793 	/*
3794 	 * Cleanup
3795 	 */
3796 	if ((prot & VM_PROT_NOSYNC) == 0 || pte_pv == NULL)
3797 		pmap_inval_done(&info);
3798 done:
3799 	KKASSERT((newpte & PG_MANAGED) == 0 || (m->flags & PG_MAPPED));
3800 
3801 	/*
3802 	 * Cleanup the pv entry, allowing other accessors.
3803 	 */
3804 	if (pte_pv)
3805 		pv_put(pte_pv);
3806 	if (pt_pv)
3807 		pv_put(pt_pv);
3808 }
3809 
3810 /*
3811  * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
3812  * This code also assumes that the pmap has no pre-existing entry for this
3813  * VA.
3814  *
3815  * This code currently may only be used on user pmaps, not kernel_pmap.
3816  */
3817 void
3818 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
3819 {
3820 	pmap_enter(pmap, va, m, VM_PROT_READ, FALSE, NULL);
3821 }
3822 
3823 /*
3824  * Make a temporary mapping for a physical address.  This is only intended
3825  * to be used for panic dumps.
3826  *
3827  * The caller is responsible for calling smp_invltlb().
3828  */
3829 void *
3830 pmap_kenter_temporary(vm_paddr_t pa, long i)
3831 {
3832 	pmap_kenter_quick((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
3833 	return ((void *)crashdumpmap);
3834 }
3835 
3836 #define MAX_INIT_PT (96)
3837 
3838 /*
3839  * This routine preloads the ptes for a given object into the specified pmap.
3840  * This eliminates the blast of soft faults on process startup and
3841  * immediately after an mmap.
3842  */
3843 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
3844 
3845 void
3846 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
3847 		    vm_object_t object, vm_pindex_t pindex,
3848 		    vm_size_t size, int limit)
3849 {
3850 	struct rb_vm_page_scan_info info;
3851 	struct lwp *lp;
3852 	vm_size_t psize;
3853 
3854 	/*
3855 	 * We can't preinit if read access isn't set or there is no pmap
3856 	 * or object.
3857 	 */
3858 	if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
3859 		return;
3860 
3861 	/*
3862 	 * We can't preinit if the pmap is not the current pmap
3863 	 */
3864 	lp = curthread->td_lwp;
3865 	if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
3866 		return;
3867 
3868 	/*
3869 	 * Misc additional checks
3870 	 */
3871 	psize = x86_64_btop(size);
3872 
3873 	if ((object->type != OBJT_VNODE) ||
3874 		((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
3875 			(object->resident_page_count > MAX_INIT_PT))) {
3876 		return;
3877 	}
3878 
3879 	if (pindex + psize > object->size) {
3880 		if (object->size < pindex)
3881 			return;
3882 		psize = object->size - pindex;
3883 	}
3884 
3885 	if (psize == 0)
3886 		return;
3887 
3888 	/*
3889 	 * If everything is segment-aligned do not pre-init here.  Instead
3890 	 * allow the normal vm_fault path to pass a segment hint to
3891 	 * pmap_enter() which will then use an object-referenced shared
3892 	 * page table page.
3893 	 */
3894 	if ((addr & SEG_MASK) == 0 &&
3895 	    (ctob(psize) & SEG_MASK) == 0 &&
3896 	    (ctob(pindex) & SEG_MASK) == 0) {
3897 		return;
3898 	}
3899 
3900 	/*
3901 	 * Use a red-black scan to traverse the requested range and load
3902 	 * any valid pages found into the pmap.
3903 	 *
3904 	 * We cannot safely scan the object's memq without holding the
3905 	 * object token.
3906 	 */
3907 	info.start_pindex = pindex;
3908 	info.end_pindex = pindex + psize - 1;
3909 	info.limit = limit;
3910 	info.mpte = NULL;
3911 	info.addr = addr;
3912 	info.pmap = pmap;
3913 
3914 	vm_object_hold_shared(object);
3915 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
3916 				pmap_object_init_pt_callback, &info);
3917 	vm_object_drop(object);
3918 }
3919 
3920 static
3921 int
3922 pmap_object_init_pt_callback(vm_page_t p, void *data)
3923 {
3924 	struct rb_vm_page_scan_info *info = data;
3925 	vm_pindex_t rel_index;
3926 
3927 	/*
3928 	 * don't allow an madvise to blow away our really
3929 	 * free pages allocating pv entries.
3930 	 */
3931 	if ((info->limit & MAP_PREFAULT_MADVISE) &&
3932 		vmstats.v_free_count < vmstats.v_free_reserved) {
3933 		    return(-1);
3934 	}
3935 
3936 	/*
3937 	 * Ignore list markers and ignore pages we cannot instantly
3938 	 * busy (while holding the object token).
3939 	 */
3940 	if (p->flags & PG_MARKER)
3941 		return 0;
3942 	if (vm_page_busy_try(p, TRUE))
3943 		return 0;
3944 	if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
3945 	    (p->flags & PG_FICTITIOUS) == 0) {
3946 		if ((p->queue - p->pc) == PQ_CACHE)
3947 			vm_page_deactivate(p);
3948 		rel_index = p->pindex - info->start_pindex;
3949 		pmap_enter_quick(info->pmap,
3950 				 info->addr + x86_64_ptob(rel_index), p);
3951 	}
3952 	vm_page_wakeup(p);
3953 	lwkt_yield();
3954 	return(0);
3955 }
3956 
3957 /*
3958  * Return TRUE if the pmap is in shape to trivially pre-fault the specified
3959  * address.
3960  *
3961  * Returns FALSE if it would be non-trivial or if a pte is already loaded
3962  * into the slot.
3963  *
3964  * XXX This is safe only because page table pages are not freed.
3965  */
3966 int
3967 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
3968 {
3969 	pt_entry_t *pte;
3970 
3971 	/*spin_lock(&pmap->pm_spin);*/
3972 	if ((pte = pmap_pte(pmap, addr)) != NULL) {
3973 		if (*pte & PG_V) {
3974 			/*spin_unlock(&pmap->pm_spin);*/
3975 			return FALSE;
3976 		}
3977 	}
3978 	/*spin_unlock(&pmap->pm_spin);*/
3979 	return TRUE;
3980 }
3981 
3982 /*
3983  * Change the wiring attribute for a pmap/va pair.  The mapping must already
3984  * exist in the pmap.  The mapping may or may not be managed.
3985  */
3986 void
3987 pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired,
3988 		   vm_map_entry_t entry)
3989 {
3990 	pt_entry_t *ptep;
3991 	pv_entry_t pv;
3992 
3993 	if (pmap == NULL)
3994 		return;
3995 	lwkt_gettoken(&pmap->pm_token);
3996 	pv = pmap_allocpte_seg(pmap, pmap_pt_pindex(va), NULL, entry, va);
3997 	ptep = pv_pte_lookup(pv, pmap_pte_index(va));
3998 
3999 	if (wired && !pmap_pte_w(ptep))
4000 		atomic_add_long(&pv->pv_pmap->pm_stats.wired_count, 1);
4001 	else if (!wired && pmap_pte_w(ptep))
4002 		atomic_add_long(&pv->pv_pmap->pm_stats.wired_count, -1);
4003 
4004 	/*
4005 	 * Wiring is not a hardware characteristic so there is no need to
4006 	 * invalidate TLB.  However, in an SMP environment we must use
4007 	 * a locked bus cycle to update the pte (if we are not using
4008 	 * the pmap_inval_*() API that is)... it's ok to do this for simple
4009 	 * wiring changes.
4010 	 */
4011 	if (wired)
4012 		atomic_set_long(ptep, PG_W);
4013 	else
4014 		atomic_clear_long(ptep, PG_W);
4015 	pv_put(pv);
4016 	lwkt_reltoken(&pmap->pm_token);
4017 }
4018 
4019 
4020 
4021 /*
4022  * Copy the range specified by src_addr/len from the source map to
4023  * the range dst_addr/len in the destination map.
4024  *
4025  * This routine is only advisory and need not do anything.
4026  */
4027 void
4028 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
4029 	  vm_size_t len, vm_offset_t src_addr)
4030 {
4031 }
4032 
4033 /*
4034  * pmap_zero_page:
4035  *
4036  *	Zero the specified physical page.
4037  *
4038  *	This function may be called from an interrupt and no locking is
4039  *	required.
4040  */
4041 void
4042 pmap_zero_page(vm_paddr_t phys)
4043 {
4044 	vm_offset_t va = PHYS_TO_DMAP(phys);
4045 
4046 	pagezero((void *)va);
4047 }
4048 
4049 /*
4050  * pmap_page_assertzero:
4051  *
4052  *	Assert that a page is empty, panic if it isn't.
4053  */
4054 void
4055 pmap_page_assertzero(vm_paddr_t phys)
4056 {
4057 	vm_offset_t va = PHYS_TO_DMAP(phys);
4058 	size_t i;
4059 
4060 	for (i = 0; i < PAGE_SIZE; i += sizeof(long)) {
4061 		if (*(long *)((char *)va + i) != 0) {
4062 			panic("pmap_page_assertzero() @ %p not zero!",
4063 			      (void *)(intptr_t)va);
4064 		}
4065 	}
4066 }
4067 
4068 /*
4069  * pmap_zero_page:
4070  *
4071  *	Zero part of a physical page by mapping it into memory and clearing
4072  *	its contents with bzero.
4073  *
4074  *	off and size may not cover an area beyond a single hardware page.
4075  */
4076 void
4077 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
4078 {
4079 	vm_offset_t virt = PHYS_TO_DMAP(phys);
4080 
4081 	bzero((char *)virt + off, size);
4082 }
4083 
4084 /*
4085  * pmap_copy_page:
4086  *
4087  *	Copy the physical page from the source PA to the target PA.
4088  *	This function may be called from an interrupt.  No locking
4089  *	is required.
4090  */
4091 void
4092 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
4093 {
4094 	vm_offset_t src_virt, dst_virt;
4095 
4096 	src_virt = PHYS_TO_DMAP(src);
4097 	dst_virt = PHYS_TO_DMAP(dst);
4098 	bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
4099 }
4100 
4101 /*
4102  * pmap_copy_page_frag:
4103  *
4104  *	Copy the physical page from the source PA to the target PA.
4105  *	This function may be called from an interrupt.  No locking
4106  *	is required.
4107  */
4108 void
4109 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
4110 {
4111 	vm_offset_t src_virt, dst_virt;
4112 
4113 	src_virt = PHYS_TO_DMAP(src);
4114 	dst_virt = PHYS_TO_DMAP(dst);
4115 
4116 	bcopy((char *)src_virt + (src & PAGE_MASK),
4117 	      (char *)dst_virt + (dst & PAGE_MASK),
4118 	      bytes);
4119 }
4120 
4121 /*
4122  * Returns true if the pmap's pv is one of the first 16 pvs linked to from
4123  * this page.  This count may be changed upwards or downwards in the future;
4124  * it is only necessary that true be returned for a small subset of pmaps
4125  * for proper page aging.
4126  */
4127 boolean_t
4128 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
4129 {
4130 	pv_entry_t pv;
4131 	int loops = 0;
4132 
4133 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
4134 		return FALSE;
4135 
4136 	vm_page_spin_lock(m);
4137 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4138 		if (pv->pv_pmap == pmap) {
4139 			vm_page_spin_unlock(m);
4140 			return TRUE;
4141 		}
4142 		loops++;
4143 		if (loops >= 16)
4144 			break;
4145 	}
4146 	vm_page_spin_unlock(m);
4147 	return (FALSE);
4148 }
4149 
4150 /*
4151  * Remove all pages from specified address space this aids process exit
4152  * speeds.  Also, this code may be special cased for the current process
4153  * only.
4154  */
4155 void
4156 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4157 {
4158 	pmap_remove_noinval(pmap, sva, eva);
4159 	cpu_invltlb();
4160 }
4161 
4162 /*
4163  * pmap_testbit tests bits in pte's note that the testbit/clearbit
4164  * routines are inline, and a lot of things compile-time evaluate.
4165  */
4166 static
4167 boolean_t
4168 pmap_testbit(vm_page_t m, int bit)
4169 {
4170 	pv_entry_t pv;
4171 	pt_entry_t *pte;
4172 
4173 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
4174 		return FALSE;
4175 
4176 	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
4177 		return FALSE;
4178 	vm_page_spin_lock(m);
4179 	if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
4180 		vm_page_spin_unlock(m);
4181 		return FALSE;
4182 	}
4183 
4184 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4185 		/*
4186 		 * if the bit being tested is the modified bit, then
4187 		 * mark clean_map and ptes as never
4188 		 * modified.
4189 		 */
4190 		if (bit & (PG_A|PG_M)) {
4191 			if (!pmap_track_modified(pv->pv_pindex))
4192 				continue;
4193 		}
4194 
4195 #if defined(PMAP_DIAGNOSTIC)
4196 		if (pv->pv_pmap == NULL) {
4197 			kprintf("Null pmap (tb) at pindex: %"PRIu64"\n",
4198 			    pv->pv_pindex);
4199 			continue;
4200 		}
4201 #endif
4202 		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
4203 		if (*pte & bit) {
4204 			vm_page_spin_unlock(m);
4205 			return TRUE;
4206 		}
4207 	}
4208 	vm_page_spin_unlock(m);
4209 	return (FALSE);
4210 }
4211 
4212 /*
4213  * This routine is used to modify bits in ptes.  Only one bit should be
4214  * specified.  PG_RW requires special handling.
4215  *
4216  * Caller must NOT hold any spin locks
4217  */
4218 static __inline
4219 void
4220 pmap_clearbit(vm_page_t m, int bit)
4221 {
4222 	struct pmap_inval_info info;
4223 	pv_entry_t pv;
4224 	pt_entry_t *pte;
4225 	pt_entry_t pbits;
4226 	pmap_t save_pmap;
4227 
4228 	if (bit == PG_RW)
4229 		vm_page_flag_clear(m, PG_WRITEABLE);
4230 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
4231 		return;
4232 	}
4233 
4234 	/*
4235 	 * PG_M or PG_A case
4236 	 *
4237 	 * Loop over all current mappings setting/clearing as appropos If
4238 	 * setting RO do we need to clear the VAC?
4239 	 *
4240 	 * NOTE: When clearing PG_M we could also (not implemented) drop
4241 	 *	 through to the PG_RW code and clear PG_RW too, forcing
4242 	 *	 a fault on write to redetect PG_M for virtual kernels, but
4243 	 *	 it isn't necessary since virtual kernels invalidate the
4244 	 *	 pte when they clear the VPTE_M bit in their virtual page
4245 	 *	 tables.
4246 	 *
4247 	 * NOTE: Does not re-dirty the page when clearing only PG_M.
4248 	 */
4249 	if ((bit & PG_RW) == 0) {
4250 		vm_page_spin_lock(m);
4251 		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4252 	#if defined(PMAP_DIAGNOSTIC)
4253 			if (pv->pv_pmap == NULL) {
4254 				kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
4255 				    pv->pv_pindex);
4256 				continue;
4257 			}
4258 	#endif
4259 			pte = pmap_pte_quick(pv->pv_pmap,
4260 					     pv->pv_pindex << PAGE_SHIFT);
4261 			pbits = *pte;
4262 			if (pbits & bit)
4263 				atomic_clear_long(pte, bit);
4264 		}
4265 		vm_page_spin_unlock(m);
4266 		return;
4267 	}
4268 
4269 	/*
4270 	 * Clear PG_RW.  Also clears PG_M and marks the page dirty if PG_M
4271 	 * was set.
4272 	 */
4273 	pmap_inval_init(&info);
4274 
4275 restart:
4276 	vm_page_spin_lock(m);
4277 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4278 		/*
4279 		 * don't write protect pager mappings
4280 		 */
4281 		if (!pmap_track_modified(pv->pv_pindex))
4282 			continue;
4283 
4284 #if defined(PMAP_DIAGNOSTIC)
4285 		if (pv->pv_pmap == NULL) {
4286 			kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
4287 			    pv->pv_pindex);
4288 			continue;
4289 		}
4290 #endif
4291 		/*
4292 		 * Skip pages which do not have PG_RW set.
4293 		 */
4294 		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
4295 		if ((*pte & PG_RW) == 0)
4296 			continue;
4297 
4298 		/*
4299 		 * Lock the PV
4300 		 */
4301 		if (pv_hold_try(pv) == 0) {
4302 			vm_page_spin_unlock(m);
4303 			pv_lock(pv);	/* held, now do a blocking lock */
4304 			pv_put(pv);	/* and release */
4305 			goto restart;	/* anything could have happened */
4306 		}
4307 
4308 		save_pmap = pv->pv_pmap;
4309 		vm_page_spin_unlock(m);
4310 		pmap_inval_interlock(&info, save_pmap,
4311 				     (vm_offset_t)pv->pv_pindex << PAGE_SHIFT);
4312 		KKASSERT(pv->pv_pmap == save_pmap);
4313 		for (;;) {
4314 			pbits = *pte;
4315 			cpu_ccfence();
4316 			if (atomic_cmpset_long(pte, pbits,
4317 					       pbits & ~(PG_RW|PG_M))) {
4318 				break;
4319 			}
4320 		}
4321 		pmap_inval_deinterlock(&info, save_pmap);
4322 		vm_page_spin_lock(m);
4323 
4324 		/*
4325 		 * If PG_M was found to be set while we were clearing PG_RW
4326 		 * we also clear PG_M (done above) and mark the page dirty.
4327 		 * Callers expect this behavior.
4328 		 */
4329 		if (pbits & PG_M)
4330 			vm_page_dirty(m);
4331 		pv_put(pv);
4332 	}
4333 	vm_page_spin_unlock(m);
4334 	pmap_inval_done(&info);
4335 }
4336 
4337 /*
4338  * Lower the permission for all mappings to a given page.
4339  *
4340  * Page must be busied by caller.
4341  */
4342 void
4343 pmap_page_protect(vm_page_t m, vm_prot_t prot)
4344 {
4345 	/* JG NX support? */
4346 	if ((prot & VM_PROT_WRITE) == 0) {
4347 		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
4348 			/*
4349 			 * NOTE: pmap_clearbit(.. PG_RW) also clears
4350 			 *	 the PG_WRITEABLE flag in (m).
4351 			 */
4352 			pmap_clearbit(m, PG_RW);
4353 		} else {
4354 			pmap_remove_all(m);
4355 		}
4356 	}
4357 }
4358 
4359 vm_paddr_t
4360 pmap_phys_address(vm_pindex_t ppn)
4361 {
4362 	return (x86_64_ptob(ppn));
4363 }
4364 
4365 /*
4366  * Return a count of reference bits for a page, clearing those bits.
4367  * It is not necessary for every reference bit to be cleared, but it
4368  * is necessary that 0 only be returned when there are truly no
4369  * reference bits set.
4370  *
4371  * XXX: The exact number of bits to check and clear is a matter that
4372  * should be tested and standardized at some point in the future for
4373  * optimal aging of shared pages.
4374  *
4375  * This routine may not block.
4376  */
4377 int
4378 pmap_ts_referenced(vm_page_t m)
4379 {
4380 	pv_entry_t pv;
4381 	pt_entry_t *pte;
4382 	int rtval = 0;
4383 
4384 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
4385 		return (rtval);
4386 
4387 	vm_page_spin_lock(m);
4388 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4389 		if (!pmap_track_modified(pv->pv_pindex))
4390 			continue;
4391 		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
4392 		if (pte && (*pte & PG_A)) {
4393 			atomic_clear_long(pte, PG_A);
4394 			rtval++;
4395 			if (rtval > 4)
4396 				break;
4397 		}
4398 	}
4399 	vm_page_spin_unlock(m);
4400 	return (rtval);
4401 }
4402 
4403 /*
4404  *	pmap_is_modified:
4405  *
4406  *	Return whether or not the specified physical page was modified
4407  *	in any physical maps.
4408  */
4409 boolean_t
4410 pmap_is_modified(vm_page_t m)
4411 {
4412 	boolean_t res;
4413 
4414 	res = pmap_testbit(m, PG_M);
4415 	return (res);
4416 }
4417 
4418 /*
4419  *	Clear the modify bits on the specified physical page.
4420  */
4421 void
4422 pmap_clear_modify(vm_page_t m)
4423 {
4424 	pmap_clearbit(m, PG_M);
4425 }
4426 
4427 /*
4428  *	pmap_clear_reference:
4429  *
4430  *	Clear the reference bit on the specified physical page.
4431  */
4432 void
4433 pmap_clear_reference(vm_page_t m)
4434 {
4435 	pmap_clearbit(m, PG_A);
4436 }
4437 
4438 /*
4439  * Miscellaneous support routines follow
4440  */
4441 
4442 static
4443 void
4444 i386_protection_init(void)
4445 {
4446 	int *kp, prot;
4447 
4448 	/* JG NX support may go here; No VM_PROT_EXECUTE ==> set NX bit  */
4449 	kp = protection_codes;
4450 	for (prot = 0; prot < 8; prot++) {
4451 		switch (prot) {
4452 		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
4453 			/*
4454 			 * Read access is also 0. There isn't any execute bit,
4455 			 * so just make it readable.
4456 			 */
4457 		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
4458 		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
4459 		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
4460 			*kp++ = 0;
4461 			break;
4462 		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
4463 		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
4464 		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
4465 		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
4466 			*kp++ = PG_RW;
4467 			break;
4468 		}
4469 	}
4470 }
4471 
4472 /*
4473  * Map a set of physical memory pages into the kernel virtual
4474  * address space. Return a pointer to where it is mapped. This
4475  * routine is intended to be used for mapping device memory,
4476  * NOT real memory.
4477  *
4478  * NOTE: We can't use pgeflag unless we invalidate the pages one at
4479  *	 a time.
4480  *
4481  * NOTE: The PAT attributes {WRITE_BACK, WRITE_THROUGH, UNCACHED, UNCACHEABLE}
4482  *	 work whether the cpu supports PAT or not.  The remaining PAT
4483  *	 attributes {WRITE_PROTECTED, WRITE_COMBINING} only work if the cpu
4484  *	 supports PAT.
4485  */
4486 void *
4487 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
4488 {
4489 	return(pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
4490 }
4491 
4492 void *
4493 pmap_mapdev_uncacheable(vm_paddr_t pa, vm_size_t size)
4494 {
4495 	return(pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
4496 }
4497 
4498 void *
4499 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
4500 {
4501 	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
4502 }
4503 
4504 /*
4505  * Map a set of physical memory pages into the kernel virtual
4506  * address space. Return a pointer to where it is mapped. This
4507  * routine is intended to be used for mapping device memory,
4508  * NOT real memory.
4509  */
4510 void *
4511 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
4512 {
4513 	vm_offset_t va, tmpva, offset;
4514 	pt_entry_t *pte;
4515 	vm_size_t tmpsize;
4516 
4517 	offset = pa & PAGE_MASK;
4518 	size = roundup(offset + size, PAGE_SIZE);
4519 
4520 	va = kmem_alloc_nofault(&kernel_map, size, PAGE_SIZE);
4521 	if (va == 0)
4522 		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
4523 
4524 	pa = pa & ~PAGE_MASK;
4525 	for (tmpva = va, tmpsize = size; tmpsize > 0;) {
4526 		pte = vtopte(tmpva);
4527 		*pte = pa | PG_RW | PG_V | /* pgeflag | */
4528 		       pat_pte_index[mode];
4529 		tmpsize -= PAGE_SIZE;
4530 		tmpva += PAGE_SIZE;
4531 		pa += PAGE_SIZE;
4532 	}
4533 	pmap_invalidate_range(&kernel_pmap, va, va + size);
4534 	pmap_invalidate_cache_range(va, va + size);
4535 
4536 	return ((void *)(va + offset));
4537 }
4538 
4539 void
4540 pmap_unmapdev(vm_offset_t va, vm_size_t size)
4541 {
4542 	vm_offset_t base, offset;
4543 
4544 	base = va & ~PAGE_MASK;
4545 	offset = va & PAGE_MASK;
4546 	size = roundup(offset + size, PAGE_SIZE);
4547 	pmap_qremove(va, size >> PAGE_SHIFT);
4548 	kmem_free(&kernel_map, base, size);
4549 }
4550 
4551 /*
4552  * Change the PAT attribute on an existing kernel memory map.  Caller
4553  * must ensure that the virtual memory in question is not accessed
4554  * during the adjustment.
4555  */
4556 void
4557 pmap_change_attr(vm_offset_t va, vm_size_t count, int mode)
4558 {
4559 	pt_entry_t *pte;
4560 	vm_offset_t base;
4561 	int changed = 0;
4562 
4563 	if (va == 0)
4564 		panic("pmap_change_attr: va is NULL");
4565 	base = trunc_page(va);
4566 
4567 	while (count) {
4568 		pte = vtopte(va);
4569 		*pte = (*pte & ~(pt_entry_t)(PG_PTE_PAT | PG_NC_PCD |
4570 					     PG_NC_PWT)) |
4571 		       pat_pte_index[mode];
4572 		--count;
4573 		va += PAGE_SIZE;
4574 	}
4575 
4576 	changed = 1;	/* XXX: not optimal */
4577 
4578 	/*
4579 	 * Flush CPU caches if required to make sure any data isn't cached that
4580 	 * shouldn't be, etc.
4581 	 */
4582 	if (changed) {
4583 		pmap_invalidate_range(&kernel_pmap, base, va);
4584 		pmap_invalidate_cache_range(base, va);
4585 	}
4586 }
4587 
4588 /*
4589  * perform the pmap work for mincore
4590  */
4591 int
4592 pmap_mincore(pmap_t pmap, vm_offset_t addr)
4593 {
4594 	pt_entry_t *ptep, pte;
4595 	vm_page_t m;
4596 	int val = 0;
4597 
4598 	lwkt_gettoken(&pmap->pm_token);
4599 	ptep = pmap_pte(pmap, addr);
4600 
4601 	if (ptep && (pte = *ptep) != 0) {
4602 		vm_offset_t pa;
4603 
4604 		val = MINCORE_INCORE;
4605 		if ((pte & PG_MANAGED) == 0)
4606 			goto done;
4607 
4608 		pa = pte & PG_FRAME;
4609 
4610 		m = PHYS_TO_VM_PAGE(pa);
4611 
4612 		/*
4613 		 * Modified by us
4614 		 */
4615 		if (pte & PG_M)
4616 			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
4617 		/*
4618 		 * Modified by someone
4619 		 */
4620 		else if (m->dirty || pmap_is_modified(m))
4621 			val |= MINCORE_MODIFIED_OTHER;
4622 		/*
4623 		 * Referenced by us
4624 		 */
4625 		if (pte & PG_A)
4626 			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
4627 
4628 		/*
4629 		 * Referenced by someone
4630 		 */
4631 		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
4632 			val |= MINCORE_REFERENCED_OTHER;
4633 			vm_page_flag_set(m, PG_REFERENCED);
4634 		}
4635 	}
4636 done:
4637 	lwkt_reltoken(&pmap->pm_token);
4638 
4639 	return val;
4640 }
4641 
4642 /*
4643  * Replace p->p_vmspace with a new one.  If adjrefs is non-zero the new
4644  * vmspace will be ref'd and the old one will be deref'd.
4645  *
4646  * The vmspace for all lwps associated with the process will be adjusted
4647  * and cr3 will be reloaded if any lwp is the current lwp.
4648  *
4649  * The process must hold the vmspace->vm_map.token for oldvm and newvm
4650  */
4651 void
4652 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
4653 {
4654 	struct vmspace *oldvm;
4655 	struct lwp *lp;
4656 
4657 	oldvm = p->p_vmspace;
4658 	if (oldvm != newvm) {
4659 		if (adjrefs)
4660 			sysref_get(&newvm->vm_sysref);
4661 		p->p_vmspace = newvm;
4662 		KKASSERT(p->p_nthreads == 1);
4663 		lp = RB_ROOT(&p->p_lwp_tree);
4664 		pmap_setlwpvm(lp, newvm);
4665 		if (adjrefs)
4666 			sysref_put(&oldvm->vm_sysref);
4667 	}
4668 }
4669 
4670 /*
4671  * Set the vmspace for a LWP.  The vmspace is almost universally set the
4672  * same as the process vmspace, but virtual kernels need to swap out contexts
4673  * on a per-lwp basis.
4674  *
4675  * Caller does not necessarily hold any vmspace tokens.  Caller must control
4676  * the lwp (typically be in the context of the lwp).  We use a critical
4677  * section to protect against statclock and hardclock (statistics collection).
4678  */
4679 void
4680 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
4681 {
4682 	struct vmspace *oldvm;
4683 	struct pmap *pmap;
4684 
4685 	oldvm = lp->lwp_vmspace;
4686 
4687 	if (oldvm != newvm) {
4688 		crit_enter();
4689 		lp->lwp_vmspace = newvm;
4690 		if (curthread->td_lwp == lp) {
4691 			pmap = vmspace_pmap(newvm);
4692 			atomic_set_cpumask(&pmap->pm_active, mycpu->gd_cpumask);
4693 			if (pmap->pm_active & CPUMASK_LOCK)
4694 				pmap_interlock_wait(newvm);
4695 #if defined(SWTCH_OPTIM_STATS)
4696 			tlb_flush_count++;
4697 #endif
4698 			curthread->td_pcb->pcb_cr3 = vtophys(pmap->pm_pml4);
4699 			load_cr3(curthread->td_pcb->pcb_cr3);
4700 			pmap = vmspace_pmap(oldvm);
4701 			atomic_clear_cpumask(&pmap->pm_active, mycpu->gd_cpumask);
4702 		}
4703 		crit_exit();
4704 	}
4705 }
4706 
4707 /*
4708  * Called when switching to a locked pmap, used to interlock against pmaps
4709  * undergoing modifications to prevent us from activating the MMU for the
4710  * target pmap until all such modifications have completed.  We have to do
4711  * this because the thread making the modifications has already set up its
4712  * SMP synchronization mask.
4713  *
4714  * This function cannot sleep!
4715  *
4716  * No requirements.
4717  */
4718 void
4719 pmap_interlock_wait(struct vmspace *vm)
4720 {
4721 	struct pmap *pmap = &vm->vm_pmap;
4722 
4723 	if (pmap->pm_active & CPUMASK_LOCK) {
4724 		crit_enter();
4725 		KKASSERT(curthread->td_critcount >= 2);
4726 		DEBUG_PUSH_INFO("pmap_interlock_wait");
4727 		while (pmap->pm_active & CPUMASK_LOCK) {
4728 			cpu_ccfence();
4729 			lwkt_process_ipiq();
4730 		}
4731 		DEBUG_POP_INFO();
4732 		crit_exit();
4733 	}
4734 }
4735 
4736 vm_offset_t
4737 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
4738 {
4739 
4740 	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
4741 		return addr;
4742 	}
4743 
4744 	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
4745 	return addr;
4746 }
4747 
4748 /*
4749  * Used by kmalloc/kfree, page already exists at va
4750  */
4751 vm_page_t
4752 pmap_kvtom(vm_offset_t va)
4753 {
4754 	return(PHYS_TO_VM_PAGE(*vtopte(va) & PG_FRAME));
4755 }
4756 
4757 /*
4758  * Initialize machine-specific shared page directory support.  This
4759  * is executed when a VM object is created.
4760  */
4761 void
4762 pmap_object_init(vm_object_t object)
4763 {
4764 	object->md.pmap_rw = NULL;
4765 	object->md.pmap_ro = NULL;
4766 }
4767 
4768 /*
4769  * Clean up machine-specific shared page directory support.  This
4770  * is executed when a VM object is destroyed.
4771  */
4772 void
4773 pmap_object_free(vm_object_t object)
4774 {
4775 	pmap_t pmap;
4776 
4777 	if ((pmap = object->md.pmap_rw) != NULL) {
4778 		object->md.pmap_rw = NULL;
4779 		pmap_remove_noinval(pmap,
4780 				  VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
4781 		pmap->pm_active = 0;
4782 		pmap_release(pmap);
4783 		pmap_puninit(pmap);
4784 		kfree(pmap, M_OBJPMAP);
4785 	}
4786 	if ((pmap = object->md.pmap_ro) != NULL) {
4787 		object->md.pmap_ro = NULL;
4788 		pmap_remove_noinval(pmap,
4789 				  VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
4790 		pmap->pm_active = 0;
4791 		pmap_release(pmap);
4792 		pmap_puninit(pmap);
4793 		kfree(pmap, M_OBJPMAP);
4794 	}
4795 }
4796