xref: /dragonfly/sys/platform/pc64/x86_64/pmap.c (revision ffe53622)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1994 David Greenman
5  * Copyright (c) 2003 Peter Wemm
6  * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
7  * Copyright (c) 2008, 2009 The DragonFly Project.
8  * Copyright (c) 2008, 2009 Jordan Gordeev.
9  * Copyright (c) 2011-2017 Matthew Dillon
10  * All rights reserved.
11  *
12  * This code is derived from software contributed to Berkeley by
13  * the Systems Programming Group of the University of Utah Computer
14  * Science Department and William Jolitz of UUNET Technologies Inc.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  */
44 /*
45  * Manage physical address maps for x86-64 systems.
46  */
47 
48 #if 0 /* JG */
49 #include "opt_pmap.h"
50 #endif
51 #include "opt_msgbuf.h"
52 
53 #include <sys/param.h>
54 #include <sys/kernel.h>
55 #include <sys/proc.h>
56 #include <sys/msgbuf.h>
57 #include <sys/vmmeter.h>
58 #include <sys/mman.h>
59 #include <sys/systm.h>
60 
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <sys/sysctl.h>
64 #include <sys/lock.h>
65 #include <vm/vm_kern.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_map.h>
68 #include <vm/vm_object.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_pageout.h>
71 #include <vm/vm_pager.h>
72 #include <vm/vm_zone.h>
73 
74 #include <sys/user.h>
75 #include <sys/thread2.h>
76 #include <sys/spinlock2.h>
77 #include <vm/vm_page2.h>
78 
79 #include <machine/cputypes.h>
80 #include <machine/md_var.h>
81 #include <machine/specialreg.h>
82 #include <machine/smp.h>
83 #include <machine_base/apic/apicreg.h>
84 #include <machine/globaldata.h>
85 #include <machine/pmap.h>
86 #include <machine/pmap_inval.h>
87 #include <machine/inttypes.h>
88 
89 #include <ddb/ddb.h>
90 
91 #define PMAP_KEEP_PDIRS
92 #ifndef PMAP_SHPGPERPROC
93 #define PMAP_SHPGPERPROC 2000
94 #endif
95 
96 #if defined(DIAGNOSTIC)
97 #define PMAP_DIAGNOSTIC
98 #endif
99 
100 #define MINPV 2048
101 
102 /*
103  * pmap debugging will report who owns a pv lock when blocking.
104  */
105 #ifdef PMAP_DEBUG
106 
107 #define PMAP_DEBUG_DECL		,const char *func, int lineno
108 #define PMAP_DEBUG_ARGS		, __func__, __LINE__
109 #define PMAP_DEBUG_COPY		, func, lineno
110 
111 #define pv_get(pmap, pindex, pmarkp)	_pv_get(pmap, pindex, pmarkp	\
112 							PMAP_DEBUG_ARGS)
113 #define pv_lock(pv)			_pv_lock(pv			\
114 							PMAP_DEBUG_ARGS)
115 #define pv_hold_try(pv)			_pv_hold_try(pv			\
116 							PMAP_DEBUG_ARGS)
117 #define pv_alloc(pmap, pindex, isnewp)	_pv_alloc(pmap, pindex, isnewp	\
118 							PMAP_DEBUG_ARGS)
119 
120 #define pv_free(pv, pvp)		_pv_free(pv, pvp PMAP_DEBUG_ARGS)
121 
122 #else
123 
124 #define PMAP_DEBUG_DECL
125 #define PMAP_DEBUG_ARGS
126 #define PMAP_DEBUG_COPY
127 
128 #define pv_get(pmap, pindex, pmarkp)		_pv_get(pmap, pindex, pmarkp)
129 #define pv_lock(pv)			_pv_lock(pv)
130 #define pv_hold_try(pv)			_pv_hold_try(pv)
131 #define pv_alloc(pmap, pindex, isnewp)	_pv_alloc(pmap, pindex, isnewp)
132 #define pv_free(pv, pvp)		_pv_free(pv, pvp)
133 
134 #endif
135 
136 /*
137  * Get PDEs and PTEs for user/kernel address space
138  */
139 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
140 
141 #define pmap_pde_v(pmap, pte)		((*(pd_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
142 #define pmap_pte_w(pmap, pte)		((*(pt_entry_t *)pte & pmap->pmap_bits[PG_W_IDX]) != 0)
143 #define pmap_pte_m(pmap, pte)		((*(pt_entry_t *)pte & pmap->pmap_bits[PG_M_IDX]) != 0)
144 #define pmap_pte_u(pmap, pte)		((*(pt_entry_t *)pte & pmap->pmap_bits[PG_U_IDX]) != 0)
145 #define pmap_pte_v(pmap, pte)		((*(pt_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
146 
147 /*
148  * Given a map and a machine independent protection code,
149  * convert to a vax protection code.
150  */
151 #define pte_prot(m, p)		\
152 	(m->protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
153 static uint64_t protection_codes[PROTECTION_CODES_SIZE];
154 
155 struct pmap kernel_pmap;
156 
157 MALLOC_DEFINE(M_OBJPMAP, "objpmap", "pmaps associated with VM objects");
158 
159 vm_paddr_t avail_start;		/* PA of first available physical page */
160 vm_paddr_t avail_end;		/* PA of last available physical page */
161 vm_offset_t virtual2_start;	/* cutout free area prior to kernel start */
162 vm_offset_t virtual2_end;
163 vm_offset_t virtual_start;	/* VA of first avail page (after kernel bss) */
164 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
165 vm_offset_t KvaStart;		/* VA start of KVA space */
166 vm_offset_t KvaEnd;		/* VA end of KVA space (non-inclusive) */
167 vm_offset_t KvaSize;		/* max size of kernel virtual address space */
168 static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
169 //static int pgeflag;		/* PG_G or-in */
170 uint64_t PatMsr;
171 
172 static int ndmpdp;
173 static vm_paddr_t dmaplimit;
174 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
175 
176 static pt_entry_t pat_pte_index[PAT_INDEX_SIZE];	/* PAT -> PG_ bits */
177 /*static pt_entry_t pat_pde_index[PAT_INDEX_SIZE];*/	/* PAT -> PG_ bits */
178 
179 static uint64_t KPTbase;
180 static uint64_t KPTphys;
181 static uint64_t	KPDphys;	/* phys addr of kernel level 2 */
182 static uint64_t	KPDbase;	/* phys addr of kernel level 2 @ KERNBASE */
183 uint64_t KPDPphys;		/* phys addr of kernel level 3 */
184 uint64_t KPML4phys;		/* phys addr of kernel level 4 */
185 
186 static uint64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
187 static uint64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
188 
189 /*
190  * Data for the pv entry allocation mechanism
191  */
192 static vm_zone_t pvzone;
193 static struct vm_zone pvzone_store;
194 static vm_pindex_t pv_entry_max=0, pv_entry_high_water=0;
195 static int pmap_pagedaemon_waken = 0;
196 static struct pv_entry *pvinit;
197 
198 /*
199  * All those kernel PT submaps that BSD is so fond of
200  */
201 pt_entry_t *CMAP1 = NULL, *ptmmap;
202 caddr_t CADDR1 = NULL, ptvmmap = NULL;
203 static pt_entry_t *msgbufmap;
204 struct msgbuf *msgbufp=NULL;
205 
206 /*
207  * PMAP default PG_* bits. Needed to be able to add
208  * EPT/NPT pagetable pmap_bits for the VMM module
209  */
210 uint64_t pmap_bits_default[] = {
211 		REGULAR_PMAP,			/* TYPE_IDX		0 */
212 		X86_PG_V,			/* PG_V_IDX		1 */
213 		X86_PG_RW,			/* PG_RW_IDX		2 */
214 		X86_PG_U,			/* PG_U_IDX		3 */
215 		X86_PG_A,			/* PG_A_IDX		4 */
216 		X86_PG_M,			/* PG_M_IDX		5 */
217 		X86_PG_PS,			/* PG_PS_IDX3		6 */
218 		X86_PG_G,			/* PG_G_IDX		7 */
219 		X86_PG_AVAIL1,			/* PG_AVAIL1_IDX	8 */
220 		X86_PG_AVAIL2,			/* PG_AVAIL2_IDX	9 */
221 		X86_PG_AVAIL3,			/* PG_AVAIL3_IDX	10 */
222 		X86_PG_NC_PWT | X86_PG_NC_PCD,	/* PG_N_IDX		11 */
223 		X86_PG_NX,			/* PG_NX_IDX		12 */
224 };
225 /*
226  * Crashdump maps.
227  */
228 static pt_entry_t *pt_crashdumpmap;
229 static caddr_t crashdumpmap;
230 
231 static int pmap_debug = 0;
232 SYSCTL_INT(_machdep, OID_AUTO, pmap_debug, CTLFLAG_RW,
233     &pmap_debug, 0, "Debug pmap's");
234 #ifdef PMAP_DEBUG2
235 static int pmap_enter_debug = 0;
236 SYSCTL_INT(_machdep, OID_AUTO, pmap_enter_debug, CTLFLAG_RW,
237     &pmap_enter_debug, 0, "Debug pmap_enter's");
238 #endif
239 static int pmap_yield_count = 64;
240 SYSCTL_INT(_machdep, OID_AUTO, pmap_yield_count, CTLFLAG_RW,
241     &pmap_yield_count, 0, "Yield during init_pt/release");
242 static int pmap_mmu_optimize = 0;
243 SYSCTL_INT(_machdep, OID_AUTO, pmap_mmu_optimize, CTLFLAG_RW,
244     &pmap_mmu_optimize, 0, "Share page table pages when possible");
245 int pmap_fast_kernel_cpusync = 0;
246 SYSCTL_INT(_machdep, OID_AUTO, pmap_fast_kernel_cpusync, CTLFLAG_RW,
247     &pmap_fast_kernel_cpusync, 0, "Share page table pages when possible");
248 int pmap_dynamic_delete = 0;
249 SYSCTL_INT(_machdep, OID_AUTO, pmap_dynamic_delete, CTLFLAG_RW,
250     &pmap_dynamic_delete, 0, "Dynamically delete PT/PD/PDPs");
251 int pmap_lock_delay = 100;
252 SYSCTL_INT(_machdep, OID_AUTO, pmap_lock_delay, CTLFLAG_RW,
253     &pmap_lock_delay, 0, "Spin loops");
254 
255 static int pmap_nx_enable = 0;
256 /* needs manual TUNABLE in early probe, see below */
257 
258 /* Standard user access funtions */
259 extern int std_copyinstr (const void *udaddr, void *kaddr, size_t len,
260     size_t *lencopied);
261 extern int std_copyin (const void *udaddr, void *kaddr, size_t len);
262 extern int std_copyout (const void *kaddr, void *udaddr, size_t len);
263 extern int std_fubyte (const uint8_t *base);
264 extern int std_subyte (uint8_t *base, uint8_t byte);
265 extern int32_t std_fuword32 (const uint32_t *base);
266 extern int64_t std_fuword64 (const uint64_t *base);
267 extern int std_suword64 (uint64_t *base, uint64_t word);
268 extern int std_suword32 (uint32_t *base, int word);
269 extern uint32_t std_swapu32 (volatile uint32_t *base, uint32_t v);
270 extern uint64_t std_swapu64 (volatile uint64_t *base, uint64_t v);
271 
272 static void pv_hold(pv_entry_t pv);
273 static int _pv_hold_try(pv_entry_t pv
274 				PMAP_DEBUG_DECL);
275 static void pv_drop(pv_entry_t pv);
276 static void _pv_lock(pv_entry_t pv
277 				PMAP_DEBUG_DECL);
278 static void pv_unlock(pv_entry_t pv);
279 static pv_entry_t _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew
280 				PMAP_DEBUG_DECL);
281 static pv_entry_t _pv_get(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp
282 				PMAP_DEBUG_DECL);
283 static void _pv_free(pv_entry_t pv, pv_entry_t pvp PMAP_DEBUG_DECL);
284 static pv_entry_t pv_get_try(pmap_t pmap, vm_pindex_t pindex,
285 				vm_pindex_t **pmarkp, int *errorp);
286 static void pv_put(pv_entry_t pv);
287 static void *pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex);
288 static pv_entry_t pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex,
289 		      pv_entry_t *pvpp);
290 static pv_entry_t pmap_allocpte_seg(pmap_t pmap, vm_pindex_t ptepindex,
291 		      pv_entry_t *pvpp, vm_map_entry_t entry, vm_offset_t va);
292 static void pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp,
293 			pmap_inval_bulk_t *bulk, int destroy);
294 static vm_page_t pmap_remove_pv_page(pv_entry_t pv);
295 static int pmap_release_pv(pv_entry_t pv, pv_entry_t pvp,
296 			pmap_inval_bulk_t *bulk);
297 
298 struct pmap_scan_info;
299 static void pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
300 		      pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
301 		      pv_entry_t pt_pv, int sharept,
302 		      vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
303 static void pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
304 		      pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
305 		      pv_entry_t pt_pv, int sharept,
306 		      vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
307 
308 static void i386_protection_init (void);
309 static void create_pagetables(vm_paddr_t *firstaddr);
310 static void pmap_remove_all (vm_page_t m);
311 static boolean_t pmap_testbit (vm_page_t m, int bit);
312 
313 static pt_entry_t * pmap_pte_quick (pmap_t pmap, vm_offset_t va);
314 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
315 
316 static void pmap_pinit_defaults(struct pmap *pmap);
317 static void pv_placemarker_wait(pmap_t pmap, vm_pindex_t *pmark);
318 static void pv_placemarker_wakeup(pmap_t pmap, vm_pindex_t *pmark);
319 
320 static int
321 pv_entry_compare(pv_entry_t pv1, pv_entry_t pv2)
322 {
323 	if (pv1->pv_pindex < pv2->pv_pindex)
324 		return(-1);
325 	if (pv1->pv_pindex > pv2->pv_pindex)
326 		return(1);
327 	return(0);
328 }
329 
330 RB_GENERATE2(pv_entry_rb_tree, pv_entry, pv_entry,
331              pv_entry_compare, vm_pindex_t, pv_pindex);
332 
333 static __inline
334 void
335 pmap_page_stats_adding(vm_page_t m)
336 {
337 	globaldata_t gd = mycpu;
338 
339 	if (TAILQ_EMPTY(&m->md.pv_list)) {
340 		++gd->gd_vmtotal.t_arm;
341 	} else if (TAILQ_FIRST(&m->md.pv_list) ==
342 		   TAILQ_LAST(&m->md.pv_list, md_page_pv_list)) {
343 		++gd->gd_vmtotal.t_armshr;
344 		++gd->gd_vmtotal.t_avmshr;
345 	} else {
346 		++gd->gd_vmtotal.t_avmshr;
347 	}
348 }
349 
350 static __inline
351 void
352 pmap_page_stats_deleting(vm_page_t m)
353 {
354 	globaldata_t gd = mycpu;
355 
356 	if (TAILQ_EMPTY(&m->md.pv_list)) {
357 		--gd->gd_vmtotal.t_arm;
358 	} else if (TAILQ_FIRST(&m->md.pv_list) ==
359 		   TAILQ_LAST(&m->md.pv_list, md_page_pv_list)) {
360 		--gd->gd_vmtotal.t_armshr;
361 		--gd->gd_vmtotal.t_avmshr;
362 	} else {
363 		--gd->gd_vmtotal.t_avmshr;
364 	}
365 }
366 
367 /*
368  * This is an ineligent crowbar to prevent heavily threaded programs
369  * from creating long live-locks in the pmap code when pmap_mmu_optimize
370  * is enabled.  Without it a pmap-local page table page can wind up being
371  * constantly created and destroyed (without injury, but also without
372  * progress) as the optimization tries to switch to the object's shared page
373  * table page.
374  */
375 static __inline void
376 pmap_softwait(pmap_t pmap)
377 {
378 	while (pmap->pm_softhold) {
379 		tsleep_interlock(&pmap->pm_softhold, 0);
380 		if (pmap->pm_softhold)
381 			tsleep(&pmap->pm_softhold, PINTERLOCKED, "mmopt", 0);
382 	}
383 }
384 
385 static __inline void
386 pmap_softhold(pmap_t pmap)
387 {
388 	while (atomic_swap_int(&pmap->pm_softhold, 1) == 1) {
389 		tsleep_interlock(&pmap->pm_softhold, 0);
390 		if (atomic_swap_int(&pmap->pm_softhold, 1) == 1)
391 			tsleep(&pmap->pm_softhold, PINTERLOCKED, "mmopt", 0);
392 	}
393 }
394 
395 static __inline void
396 pmap_softdone(pmap_t pmap)
397 {
398 	atomic_swap_int(&pmap->pm_softhold, 0);
399 	wakeup(&pmap->pm_softhold);
400 }
401 
402 /*
403  * Move the kernel virtual free pointer to the next
404  * 2MB.  This is used to help improve performance
405  * by using a large (2MB) page for much of the kernel
406  * (.text, .data, .bss)
407  */
408 static
409 vm_offset_t
410 pmap_kmem_choose(vm_offset_t addr)
411 {
412 	vm_offset_t newaddr = addr;
413 
414 	newaddr = roundup2(addr, NBPDR);
415 	return newaddr;
416 }
417 
418 /*
419  * Returns the pindex of a page table entry (representing a terminal page).
420  * There are NUPTE_TOTAL page table entries possible (a huge number)
421  *
422  * x86-64 has a 48-bit address space, where bit 47 is sign-extended out.
423  * We want to properly translate negative KVAs.
424  */
425 static __inline
426 vm_pindex_t
427 pmap_pte_pindex(vm_offset_t va)
428 {
429 	return ((va >> PAGE_SHIFT) & (NUPTE_TOTAL - 1));
430 }
431 
432 /*
433  * Returns the pindex of a page table.
434  */
435 static __inline
436 vm_pindex_t
437 pmap_pt_pindex(vm_offset_t va)
438 {
439 	return (NUPTE_TOTAL + ((va >> PDRSHIFT) & (NUPT_TOTAL - 1)));
440 }
441 
442 /*
443  * Returns the pindex of a page directory.
444  */
445 static __inline
446 vm_pindex_t
447 pmap_pd_pindex(vm_offset_t va)
448 {
449 	return (NUPTE_TOTAL + NUPT_TOTAL +
450 		((va >> PDPSHIFT) & (NUPD_TOTAL - 1)));
451 }
452 
453 static __inline
454 vm_pindex_t
455 pmap_pdp_pindex(vm_offset_t va)
456 {
457 	return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
458 		((va >> PML4SHIFT) & (NUPDP_TOTAL - 1)));
459 }
460 
461 static __inline
462 vm_pindex_t
463 pmap_pml4_pindex(void)
464 {
465 	return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL);
466 }
467 
468 /*
469  * Return various clipped indexes for a given VA
470  *
471  * Returns the index of a pt in a page directory, representing a page
472  * table.
473  */
474 static __inline
475 vm_pindex_t
476 pmap_pt_index(vm_offset_t va)
477 {
478 	return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
479 }
480 
481 /*
482  * Returns the index of a pd in a page directory page, representing a page
483  * directory.
484  */
485 static __inline
486 vm_pindex_t
487 pmap_pd_index(vm_offset_t va)
488 {
489 	return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
490 }
491 
492 /*
493  * Returns the index of a pdp in the pml4 table, representing a page
494  * directory page.
495  */
496 static __inline
497 vm_pindex_t
498 pmap_pdp_index(vm_offset_t va)
499 {
500 	return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
501 }
502 
503 /*
504  * Locate the requested pt_entry
505  */
506 static __inline
507 pv_entry_t
508 pv_entry_lookup(pmap_t pmap, vm_pindex_t pindex)
509 {
510 	pv_entry_t pv;
511 
512 	if (pindex < pmap_pt_pindex(0))
513 		pv = pmap->pm_pvhint_pte;
514 	else if (pindex < pmap_pd_pindex(0))
515 		pv = pmap->pm_pvhint_pt;
516 	else
517 		pv = NULL;
518 	cpu_ccfence();
519 	if (pv == NULL || pv->pv_pmap != pmap) {
520 		pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
521 						pindex);
522 	} else if (pv->pv_pindex != pindex) {
523 		pv = pv_entry_rb_tree_RB_LOOKUP_REL(&pmap->pm_pvroot,
524 						    pindex, pv);
525 	}
526 	return pv;
527 }
528 
529 /*
530  * pmap_pte_quick:
531  *
532  *	Super fast pmap_pte routine best used when scanning the pv lists.
533  *	This eliminates many course-grained invltlb calls.  Note that many of
534  *	the pv list scans are across different pmaps and it is very wasteful
535  *	to do an entire invltlb when checking a single mapping.
536  */
537 static __inline pt_entry_t *pmap_pte(pmap_t pmap, vm_offset_t va);
538 
539 static
540 pt_entry_t *
541 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
542 {
543 	return pmap_pte(pmap, va);
544 }
545 
546 /*
547  * The placemarker hash must be broken up into four zones so lock
548  * ordering semantics continue to work (e.g. pte, pt, pd, then pdp).
549  *
550  * Placemarkers are used to 'lock' page table indices that do not have
551  * a pv_entry.  This allows the pmap to support managed and unmanaged
552  * pages and shared page tables.
553  */
554 #define PM_PLACE_BASE	(PM_PLACEMARKS >> 2)
555 
556 static __inline
557 vm_pindex_t *
558 pmap_placemarker_hash(pmap_t pmap, vm_pindex_t pindex)
559 {
560 	int hi;
561 
562 	if (pindex < pmap_pt_pindex(0))		/* zone 0 - PTE */
563 		hi = 0;
564 	else if (pindex < pmap_pd_pindex(0))	/* zone 1 - PT */
565 		hi = PM_PLACE_BASE;
566 	else if (pindex < pmap_pdp_pindex(0))	/* zone 2 - PD */
567 		hi = PM_PLACE_BASE << 1;
568 	else					/* zone 3 - PDP (and PML4E) */
569 		hi = PM_PLACE_BASE | (PM_PLACE_BASE << 1);
570 	hi += pindex & (PM_PLACE_BASE - 1);
571 
572 	return (&pmap->pm_placemarks[hi]);
573 }
574 
575 
576 /*
577  * Generic procedure to index a pte from a pt, pd, or pdp.
578  *
579  * NOTE: Normally passed pindex as pmap_xx_index().  pmap_xx_pindex() is NOT
580  *	 a page table page index but is instead of PV lookup index.
581  */
582 static
583 void *
584 pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex)
585 {
586 	pt_entry_t *pte;
587 
588 	pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pv->pv_m));
589 	return(&pte[pindex]);
590 }
591 
592 /*
593  * Return pointer to PDP slot in the PML4
594  */
595 static __inline
596 pml4_entry_t *
597 pmap_pdp(pmap_t pmap, vm_offset_t va)
598 {
599 	return (&pmap->pm_pml4[pmap_pdp_index(va)]);
600 }
601 
602 /*
603  * Return pointer to PD slot in the PDP given a pointer to the PDP
604  */
605 static __inline
606 pdp_entry_t *
607 pmap_pdp_to_pd(pml4_entry_t pdp_pte, vm_offset_t va)
608 {
609 	pdp_entry_t *pd;
610 
611 	pd = (pdp_entry_t *)PHYS_TO_DMAP(pdp_pte & PG_FRAME);
612 	return (&pd[pmap_pd_index(va)]);
613 }
614 
615 /*
616  * Return pointer to PD slot in the PDP.
617  */
618 static __inline
619 pdp_entry_t *
620 pmap_pd(pmap_t pmap, vm_offset_t va)
621 {
622 	pml4_entry_t *pdp;
623 
624 	pdp = pmap_pdp(pmap, va);
625 	if ((*pdp & pmap->pmap_bits[PG_V_IDX]) == 0)
626 		return NULL;
627 	return (pmap_pdp_to_pd(*pdp, va));
628 }
629 
630 /*
631  * Return pointer to PT slot in the PD given a pointer to the PD
632  */
633 static __inline
634 pd_entry_t *
635 pmap_pd_to_pt(pdp_entry_t pd_pte, vm_offset_t va)
636 {
637 	pd_entry_t *pt;
638 
639 	pt = (pd_entry_t *)PHYS_TO_DMAP(pd_pte & PG_FRAME);
640 	return (&pt[pmap_pt_index(va)]);
641 }
642 
643 /*
644  * Return pointer to PT slot in the PD
645  *
646  * SIMPLE PMAP NOTE: Simple pmaps (embedded in objects) do not have PDPs,
647  *		     so we cannot lookup the PD via the PDP.  Instead we
648  *		     must look it up via the pmap.
649  */
650 static __inline
651 pd_entry_t *
652 pmap_pt(pmap_t pmap, vm_offset_t va)
653 {
654 	pdp_entry_t *pd;
655 	pv_entry_t pv;
656 	vm_pindex_t pd_pindex;
657 	vm_paddr_t phys;
658 
659 	if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
660 		pd_pindex = pmap_pd_pindex(va);
661 		spin_lock_shared(&pmap->pm_spin);
662 		pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pd_pindex);
663 		if (pv == NULL || pv->pv_m == NULL) {
664 			spin_unlock_shared(&pmap->pm_spin);
665 			return NULL;
666 		}
667 		phys = VM_PAGE_TO_PHYS(pv->pv_m);
668 		spin_unlock_shared(&pmap->pm_spin);
669 		return (pmap_pd_to_pt(phys, va));
670 	} else {
671 		pd = pmap_pd(pmap, va);
672 		if (pd == NULL || (*pd & pmap->pmap_bits[PG_V_IDX]) == 0)
673 			 return NULL;
674 		return (pmap_pd_to_pt(*pd, va));
675 	}
676 }
677 
678 /*
679  * Return pointer to PTE slot in the PT given a pointer to the PT
680  */
681 static __inline
682 pt_entry_t *
683 pmap_pt_to_pte(pd_entry_t pt_pte, vm_offset_t va)
684 {
685 	pt_entry_t *pte;
686 
687 	pte = (pt_entry_t *)PHYS_TO_DMAP(pt_pte & PG_FRAME);
688 	return (&pte[pmap_pte_index(va)]);
689 }
690 
691 /*
692  * Return pointer to PTE slot in the PT
693  */
694 static __inline
695 pt_entry_t *
696 pmap_pte(pmap_t pmap, vm_offset_t va)
697 {
698 	pd_entry_t *pt;
699 
700 	pt = pmap_pt(pmap, va);
701 	if (pt == NULL || (*pt & pmap->pmap_bits[PG_V_IDX]) == 0)
702 		 return NULL;
703 	if ((*pt & pmap->pmap_bits[PG_PS_IDX]) != 0)
704 		return ((pt_entry_t *)pt);
705 	return (pmap_pt_to_pte(*pt, va));
706 }
707 
708 /*
709  * Of all the layers (PTE, PT, PD, PDP, PML4) the best one to cache is
710  * the PT layer.  This will speed up core pmap operations considerably.
711  *
712  * NOTE: The pmap spinlock does not need to be held but the passed-in pv
713  *	 must be in a known associated state (typically by being locked when
714  *	 the pmap spinlock isn't held).  We allow the race for that case.
715  *
716  * NOTE: pm_pvhint* is only accessed (read) with the spin-lock held, using
717  *	 cpu_ccfence() to prevent compiler optimizations from reloading the
718  *	 field.
719  */
720 static __inline
721 void
722 pv_cache(pv_entry_t pv, vm_pindex_t pindex)
723 {
724 	if (pindex < pmap_pt_pindex(0)) {
725 		if (pv->pv_pmap)
726 			pv->pv_pmap->pm_pvhint_pte = pv;
727 	} else if (pindex < pmap_pd_pindex(0)) {
728 		if (pv->pv_pmap)
729 			pv->pv_pmap->pm_pvhint_pt = pv;
730 	}
731 }
732 
733 
734 /*
735  * Return address of PT slot in PD (KVM only)
736  *
737  * Cannot be used for user page tables because it might interfere with
738  * the shared page-table-page optimization (pmap_mmu_optimize).
739  */
740 static __inline
741 pd_entry_t *
742 vtopt(vm_offset_t va)
743 {
744 	uint64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
745 				  NPML4EPGSHIFT)) - 1);
746 
747 	return (PDmap + ((va >> PDRSHIFT) & mask));
748 }
749 
750 /*
751  * KVM - return address of PTE slot in PT
752  */
753 static __inline
754 pt_entry_t *
755 vtopte(vm_offset_t va)
756 {
757 	uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
758 				  NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
759 
760 	return (PTmap + ((va >> PAGE_SHIFT) & mask));
761 }
762 
763 /*
764  * Returns the physical address translation from va for a user address.
765  * (vm_paddr_t)-1 is returned on failure.
766  */
767 vm_paddr_t
768 uservtophys(vm_offset_t va)
769 {
770 	uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
771 				  NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
772 	vm_paddr_t pa;
773 	pt_entry_t pte;
774 	pmap_t pmap;
775 
776 	pmap = vmspace_pmap(mycpu->gd_curthread->td_lwp->lwp_vmspace);
777 	pa = (vm_paddr_t)-1;
778 	if (va < VM_MAX_USER_ADDRESS) {
779 		pte = kreadmem64(PTmap + ((va >> PAGE_SHIFT) & mask));
780 		if (pte & pmap->pmap_bits[PG_V_IDX])
781 			pa = (pte & PG_FRAME) | (va & PAGE_MASK);
782 	}
783 	return pa;
784 }
785 
786 static uint64_t
787 allocpages(vm_paddr_t *firstaddr, long n)
788 {
789 	uint64_t ret;
790 
791 	ret = *firstaddr;
792 	bzero((void *)ret, n * PAGE_SIZE);
793 	*firstaddr += n * PAGE_SIZE;
794 	return (ret);
795 }
796 
797 static
798 void
799 create_pagetables(vm_paddr_t *firstaddr)
800 {
801 	long i;		/* must be 64 bits */
802 	long nkpt_base;
803 	long nkpt_phys;
804 	long nkpd_phys;
805 	int j;
806 
807 	/*
808 	 * We are running (mostly) V=P at this point
809 	 *
810 	 * Calculate how many 1GB PD entries in our PDP pages are needed
811 	 * for the DMAP.  This is only allocated if the system does not
812 	 * support 1GB pages.  Otherwise ndmpdp is simply a count of
813 	 * the number of 1G terminal entries in our PDP pages are needed.
814 	 *
815 	 * NOTE: Maxmem is in pages
816 	 */
817 	ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
818 	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
819 		ndmpdp = 4;
820 	KKASSERT(ndmpdp <= NDMPML4E * NPML4EPG);
821 
822 	/*
823 	 * Starting at KERNBASE - map all 2G worth of page table pages.
824 	 * KERNBASE is offset -2G from the end of kvm.  This will accomodate
825 	 * all KVM allocations above KERNBASE, including the SYSMAPs below.
826 	 *
827 	 * We do this by allocating 2*512 PT pages.  Each PT page can map
828 	 * 2MB, for 2GB total.
829 	 */
830 	nkpt_base = (NPDPEPG - KPDPI) * NPTEPG;	/* typically 2 x 512 */
831 
832 	/*
833 	 * Starting at the beginning of kvm (VM_MIN_KERNEL_ADDRESS),
834 	 * Calculate how many page table pages we need to preallocate
835 	 * for early vm_map allocations.
836 	 *
837 	 * A few extra won't hurt, they will get used up in the running
838 	 * system.
839 	 *
840 	 * vm_page array
841 	 * initial pventry's
842 	 */
843 	nkpt_phys = (Maxmem * sizeof(struct vm_page) + NBPDR - 1) / NBPDR;
844 	nkpt_phys += (Maxmem * sizeof(struct pv_entry) + NBPDR - 1) / NBPDR;
845 	nkpt_phys += 128;	/* a few extra */
846 
847 	/*
848 	 * The highest value nkpd_phys can be set to is
849 	 * NKPDPE - (NPDPEPG - KPDPI) (i.e. NKPDPE - 2).
850 	 *
851 	 * Doing so would cause all PD pages to be pre-populated for
852 	 * a maximal KVM space (approximately 16*512 pages, or 32MB.
853 	 * We can save memory by not doing this.
854 	 */
855 	nkpd_phys = (nkpt_phys + NPDPEPG - 1) / NPDPEPG;
856 
857 	/*
858 	 * Allocate pages
859 	 *
860 	 * Normally NKPML4E=1-16 (1-16 kernel PDP page)
861 	 * Normally NKPDPE= NKPML4E*512-1 (511 min kernel PD pages)
862 	 *
863 	 * Only allocate enough PD pages
864 	 * NOTE: We allocate all kernel PD pages up-front, typically
865 	 *	 ~511G of KVM, requiring 511 PD pages.
866 	 */
867 	KPTbase = allocpages(firstaddr, nkpt_base);	/* KERNBASE to end */
868 	KPTphys = allocpages(firstaddr, nkpt_phys);	/* KVA start */
869 	KPML4phys = allocpages(firstaddr, 1);		/* recursive PML4 map */
870 	KPDPphys = allocpages(firstaddr, NKPML4E);	/* kernel PDP pages */
871 	KPDphys = allocpages(firstaddr, nkpd_phys);	/* kernel PD pages */
872 
873 	/*
874 	 * Alloc PD pages for the area starting at KERNBASE.
875 	 */
876 	KPDbase = allocpages(firstaddr, NPDPEPG - KPDPI);
877 
878 	/*
879 	 * Stuff for our DMAP
880 	 */
881 	DMPDPphys = allocpages(firstaddr, NDMPML4E);
882 	if ((amd_feature & AMDID_PAGE1GB) == 0)
883 		DMPDphys = allocpages(firstaddr, ndmpdp);
884 	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
885 
886 	/*
887 	 * Fill in the underlying page table pages for the area around
888 	 * KERNBASE.  This remaps low physical memory to KERNBASE.
889 	 *
890 	 * Read-only from zero to physfree
891 	 * XXX not fully used, underneath 2M pages
892 	 */
893 	for (i = 0; (i << PAGE_SHIFT) < *firstaddr; i++) {
894 		((pt_entry_t *)KPTbase)[i] = i << PAGE_SHIFT;
895 		((pt_entry_t *)KPTbase)[i] |=
896 		    pmap_bits_default[PG_RW_IDX] |
897 		    pmap_bits_default[PG_V_IDX] |
898 		    pmap_bits_default[PG_G_IDX];
899 	}
900 
901 	/*
902 	 * Now map the initial kernel page tables.  One block of page
903 	 * tables is placed at the beginning of kernel virtual memory,
904 	 * and another block is placed at KERNBASE to map the kernel binary,
905 	 * data, bss, and initial pre-allocations.
906 	 */
907 	for (i = 0; i < nkpt_base; i++) {
908 		((pd_entry_t *)KPDbase)[i] = KPTbase + (i << PAGE_SHIFT);
909 		((pd_entry_t *)KPDbase)[i] |=
910 		    pmap_bits_default[PG_RW_IDX] |
911 		    pmap_bits_default[PG_V_IDX];
912 	}
913 	for (i = 0; i < nkpt_phys; i++) {
914 		((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
915 		((pd_entry_t *)KPDphys)[i] |=
916 		    pmap_bits_default[PG_RW_IDX] |
917 		    pmap_bits_default[PG_V_IDX];
918 	}
919 
920 	/*
921 	 * Map from zero to end of allocations using 2M pages as an
922 	 * optimization.  This will bypass some of the KPTBase pages
923 	 * above in the KERNBASE area.
924 	 */
925 	for (i = 0; (i << PDRSHIFT) < *firstaddr; i++) {
926 		((pd_entry_t *)KPDbase)[i] = i << PDRSHIFT;
927 		((pd_entry_t *)KPDbase)[i] |=
928 		    pmap_bits_default[PG_RW_IDX] |
929 		    pmap_bits_default[PG_V_IDX] |
930 		    pmap_bits_default[PG_PS_IDX] |
931 		    pmap_bits_default[PG_G_IDX];
932 	}
933 
934 	/*
935 	 * Load PD addresses into the PDP pages for primary KVA space to
936 	 * cover existing page tables.  PD's for KERNBASE are handled in
937 	 * the next loop.
938 	 *
939 	 * expected to pre-populate all of its PDs.  See NKPDPE in vmparam.h.
940 	 */
941 	for (i = 0; i < nkpd_phys; i++) {
942 		((pdp_entry_t *)KPDPphys)[NKPML4E * NPDPEPG - NKPDPE + i] =
943 				KPDphys + (i << PAGE_SHIFT);
944 		((pdp_entry_t *)KPDPphys)[NKPML4E * NPDPEPG - NKPDPE + i] |=
945 		    pmap_bits_default[PG_RW_IDX] |
946 		    pmap_bits_default[PG_V_IDX] |
947 		    pmap_bits_default[PG_U_IDX];
948 	}
949 
950 	/*
951 	 * Load PDs for KERNBASE to the end
952 	 */
953 	i = (NKPML4E - 1) * NPDPEPG + KPDPI;
954 	for (j = 0; j < NPDPEPG - KPDPI; ++j) {
955 		((pdp_entry_t *)KPDPphys)[i + j] =
956 				KPDbase + (j << PAGE_SHIFT);
957 		((pdp_entry_t *)KPDPphys)[i + j] |=
958 		    pmap_bits_default[PG_RW_IDX] |
959 		    pmap_bits_default[PG_V_IDX] |
960 		    pmap_bits_default[PG_U_IDX];
961 	}
962 
963 	/*
964 	 * Now set up the direct map space using either 2MB or 1GB pages
965 	 * Preset PG_M and PG_A because demotion expects it.
966 	 *
967 	 * When filling in entries in the PD pages make sure any excess
968 	 * entries are set to zero as we allocated enough PD pages
969 	 */
970 	if ((amd_feature & AMDID_PAGE1GB) == 0) {
971 		for (i = 0; i < NPDEPG * ndmpdp; i++) {
972 			((pd_entry_t *)DMPDphys)[i] = i << PDRSHIFT;
973 			((pd_entry_t *)DMPDphys)[i] |=
974 			    pmap_bits_default[PG_RW_IDX] |
975 			    pmap_bits_default[PG_V_IDX] |
976 			    pmap_bits_default[PG_PS_IDX] |
977 			    pmap_bits_default[PG_G_IDX] |
978 			    pmap_bits_default[PG_M_IDX] |
979 			    pmap_bits_default[PG_A_IDX];
980 		}
981 
982 		/*
983 		 * And the direct map space's PDP
984 		 */
985 		for (i = 0; i < ndmpdp; i++) {
986 			((pdp_entry_t *)DMPDPphys)[i] = DMPDphys +
987 							(i << PAGE_SHIFT);
988 			((pdp_entry_t *)DMPDPphys)[i] |=
989 			    pmap_bits_default[PG_RW_IDX] |
990 			    pmap_bits_default[PG_V_IDX] |
991 			    pmap_bits_default[PG_U_IDX];
992 		}
993 	} else {
994 		for (i = 0; i < ndmpdp; i++) {
995 			((pdp_entry_t *)DMPDPphys)[i] =
996 						(vm_paddr_t)i << PDPSHIFT;
997 			((pdp_entry_t *)DMPDPphys)[i] |=
998 			    pmap_bits_default[PG_RW_IDX] |
999 			    pmap_bits_default[PG_V_IDX] |
1000 			    pmap_bits_default[PG_PS_IDX] |
1001 			    pmap_bits_default[PG_G_IDX] |
1002 			    pmap_bits_default[PG_M_IDX] |
1003 			    pmap_bits_default[PG_A_IDX];
1004 		}
1005 	}
1006 
1007 	/* And recursively map PML4 to itself in order to get PTmap */
1008 	((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
1009 	((pdp_entry_t *)KPML4phys)[PML4PML4I] |=
1010 	    pmap_bits_default[PG_RW_IDX] |
1011 	    pmap_bits_default[PG_V_IDX] |
1012 	    pmap_bits_default[PG_U_IDX];
1013 
1014 	/*
1015 	 * Connect the Direct Map slots up to the PML4
1016 	 */
1017 	for (j = 0; j < NDMPML4E; ++j) {
1018 		((pdp_entry_t *)KPML4phys)[DMPML4I + j] =
1019 		    (DMPDPphys + ((vm_paddr_t)j << PAGE_SHIFT)) |
1020 		    pmap_bits_default[PG_RW_IDX] |
1021 		    pmap_bits_default[PG_V_IDX] |
1022 		    pmap_bits_default[PG_U_IDX];
1023 	}
1024 
1025 	/*
1026 	 * Connect the KVA slot up to the PML4
1027 	 */
1028 	for (j = 0; j < NKPML4E; ++j) {
1029 		((pdp_entry_t *)KPML4phys)[KPML4I + j] =
1030 		    KPDPphys + ((vm_paddr_t)j << PAGE_SHIFT);
1031 		((pdp_entry_t *)KPML4phys)[KPML4I + j] |=
1032 		    pmap_bits_default[PG_RW_IDX] |
1033 		    pmap_bits_default[PG_V_IDX] |
1034 		    pmap_bits_default[PG_U_IDX];
1035 	}
1036 	cpu_mfence();
1037 	cpu_invltlb();
1038 }
1039 
1040 /*
1041  *	Bootstrap the system enough to run with virtual memory.
1042  *
1043  *	On the i386 this is called after mapping has already been enabled
1044  *	and just syncs the pmap module with what has already been done.
1045  *	[We can't call it easily with mapping off since the kernel is not
1046  *	mapped with PA == VA, hence we would have to relocate every address
1047  *	from the linked base (virtual) address "KERNBASE" to the actual
1048  *	(physical) address starting relative to 0]
1049  */
1050 void
1051 pmap_bootstrap(vm_paddr_t *firstaddr)
1052 {
1053 	vm_offset_t va;
1054 	pt_entry_t *pte;
1055 	int i;
1056 
1057 	KvaStart = VM_MIN_KERNEL_ADDRESS;
1058 	KvaEnd = VM_MAX_KERNEL_ADDRESS;
1059 	KvaSize = KvaEnd - KvaStart;
1060 
1061 	avail_start = *firstaddr;
1062 
1063 	/*
1064 	 * Create an initial set of page tables to run the kernel in.
1065 	 */
1066 	create_pagetables(firstaddr);
1067 
1068 	virtual2_start = KvaStart;
1069 	virtual2_end = PTOV_OFFSET;
1070 
1071 	virtual_start = (vm_offset_t) PTOV_OFFSET + *firstaddr;
1072 	virtual_start = pmap_kmem_choose(virtual_start);
1073 
1074 	virtual_end = VM_MAX_KERNEL_ADDRESS;
1075 
1076 	/* XXX do %cr0 as well */
1077 	load_cr4(rcr4() | CR4_PGE | CR4_PSE);
1078 	load_cr3(KPML4phys);
1079 
1080 	/*
1081 	 * Initialize protection array.
1082 	 */
1083 	i386_protection_init();
1084 
1085 	/*
1086 	 * The kernel's pmap is statically allocated so we don't have to use
1087 	 * pmap_create, which is unlikely to work correctly at this part of
1088 	 * the boot sequence (XXX and which no longer exists).
1089 	 */
1090 	kernel_pmap.pm_pml4 = (pdp_entry_t *) (PTOV_OFFSET + KPML4phys);
1091 	kernel_pmap.pm_count = 1;
1092 	CPUMASK_ASSALLONES(kernel_pmap.pm_active);
1093 	RB_INIT(&kernel_pmap.pm_pvroot);
1094 	spin_init(&kernel_pmap.pm_spin, "pmapbootstrap");
1095 	for (i = 0; i < PM_PLACEMARKS; ++i)
1096 		kernel_pmap.pm_placemarks[i] = PM_NOPLACEMARK;
1097 
1098 	/*
1099 	 * Reserve some special page table entries/VA space for temporary
1100 	 * mapping of pages.
1101 	 */
1102 #define	SYSMAP(c, p, v, n)	\
1103 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
1104 
1105 	va = virtual_start;
1106 	pte = vtopte(va);
1107 
1108 	/*
1109 	 * CMAP1/CMAP2 are used for zeroing and copying pages.
1110 	 */
1111 	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
1112 
1113 	/*
1114 	 * Crashdump maps.
1115 	 */
1116 	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
1117 
1118 	/*
1119 	 * ptvmmap is used for reading arbitrary physical pages via
1120 	 * /dev/mem.
1121 	 */
1122 	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
1123 
1124 	/*
1125 	 * msgbufp is used to map the system message buffer.
1126 	 * XXX msgbufmap is not used.
1127 	 */
1128 	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
1129 	       atop(round_page(MSGBUF_SIZE)))
1130 
1131 	virtual_start = va;
1132 	virtual_start = pmap_kmem_choose(virtual_start);
1133 
1134 	*CMAP1 = 0;
1135 
1136 	/*
1137 	 * PG_G is terribly broken on SMP because we IPI invltlb's in some
1138 	 * cases rather then invl1pg.  Actually, I don't even know why it
1139 	 * works under UP because self-referential page table mappings
1140 	 */
1141 //	pgeflag = 0;
1142 
1143 	cpu_invltlb();
1144 
1145 	/* Initialize the PAT MSR */
1146 	pmap_init_pat();
1147 	pmap_pinit_defaults(&kernel_pmap);
1148 
1149 	TUNABLE_INT_FETCH("machdep.pmap_fast_kernel_cpusync",
1150 			  &pmap_fast_kernel_cpusync);
1151 
1152 }
1153 
1154 /*
1155  * Setup the PAT MSR.
1156  */
1157 void
1158 pmap_init_pat(void)
1159 {
1160 	uint64_t pat_msr;
1161 	u_long cr0, cr4;
1162 
1163 	/*
1164 	 * Default values mapping PATi,PCD,PWT bits at system reset.
1165 	 * The default values effectively ignore the PATi bit by
1166 	 * repeating the encodings for 0-3 in 4-7, and map the PCD
1167 	 * and PWT bit combinations to the expected PAT types.
1168 	 */
1169 	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |	/* 000 */
1170 		  PAT_VALUE(1, PAT_WRITE_THROUGH) |	/* 001 */
1171 		  PAT_VALUE(2, PAT_UNCACHED) |		/* 010 */
1172 		  PAT_VALUE(3, PAT_UNCACHEABLE) |	/* 011 */
1173 		  PAT_VALUE(4, PAT_WRITE_BACK) |	/* 100 */
1174 		  PAT_VALUE(5, PAT_WRITE_THROUGH) |	/* 101 */
1175 		  PAT_VALUE(6, PAT_UNCACHED) |		/* 110 */
1176 		  PAT_VALUE(7, PAT_UNCACHEABLE);	/* 111 */
1177 	pat_pte_index[PAT_WRITE_BACK]	= 0;
1178 	pat_pte_index[PAT_WRITE_THROUGH]= 0         | X86_PG_NC_PWT;
1179 	pat_pte_index[PAT_UNCACHED]	= X86_PG_NC_PCD;
1180 	pat_pte_index[PAT_UNCACHEABLE]	= X86_PG_NC_PCD | X86_PG_NC_PWT;
1181 	pat_pte_index[PAT_WRITE_PROTECTED] = pat_pte_index[PAT_UNCACHEABLE];
1182 	pat_pte_index[PAT_WRITE_COMBINING] = pat_pte_index[PAT_UNCACHEABLE];
1183 
1184 	if (cpu_feature & CPUID_PAT) {
1185 		/*
1186 		 * If we support the PAT then set-up entries for
1187 		 * WRITE_PROTECTED and WRITE_COMBINING using bit patterns
1188 		 * 5 and 6.
1189 		 */
1190 		pat_msr = (pat_msr & ~PAT_MASK(5)) |
1191 			  PAT_VALUE(5, PAT_WRITE_PROTECTED);
1192 		pat_msr = (pat_msr & ~PAT_MASK(6)) |
1193 			  PAT_VALUE(6, PAT_WRITE_COMBINING);
1194 		pat_pte_index[PAT_WRITE_PROTECTED] = X86_PG_PTE_PAT | X86_PG_NC_PWT;
1195 		pat_pte_index[PAT_WRITE_COMBINING] = X86_PG_PTE_PAT | X86_PG_NC_PCD;
1196 
1197 		/*
1198 		 * Then enable the PAT
1199 		 */
1200 
1201 		/* Disable PGE. */
1202 		cr4 = rcr4();
1203 		load_cr4(cr4 & ~CR4_PGE);
1204 
1205 		/* Disable caches (CD = 1, NW = 0). */
1206 		cr0 = rcr0();
1207 		load_cr0((cr0 & ~CR0_NW) | CR0_CD);
1208 
1209 		/* Flushes caches and TLBs. */
1210 		wbinvd();
1211 		cpu_invltlb();
1212 
1213 		/* Update PAT and index table. */
1214 		wrmsr(MSR_PAT, pat_msr);
1215 
1216 		/* Flush caches and TLBs again. */
1217 		wbinvd();
1218 		cpu_invltlb();
1219 
1220 		/* Restore caches and PGE. */
1221 		load_cr0(cr0);
1222 		load_cr4(cr4);
1223 		PatMsr = pat_msr;
1224 	}
1225 }
1226 
1227 /*
1228  * Set 4mb pdir for mp startup
1229  */
1230 void
1231 pmap_set_opt(void)
1232 {
1233 	if (cpu_feature & CPUID_PSE) {
1234 		load_cr4(rcr4() | CR4_PSE);
1235 		if (mycpu->gd_cpuid == 0) 	/* only on BSP */
1236 			cpu_invltlb();
1237 	}
1238 }
1239 
1240 /*
1241  *	Initialize the pmap module.
1242  *	Called by vm_init, to initialize any structures that the pmap
1243  *	system needs to map virtual memory.
1244  *	pmap_init has been enhanced to support in a fairly consistant
1245  *	way, discontiguous physical memory.
1246  */
1247 void
1248 pmap_init(void)
1249 {
1250 	vm_pindex_t initial_pvs;
1251 	vm_pindex_t i;
1252 
1253 	/*
1254 	 * Allocate memory for random pmap data structures.  Includes the
1255 	 * pv_head_table.
1256 	 */
1257 
1258 	for (i = 0; i < vm_page_array_size; i++) {
1259 		vm_page_t m;
1260 
1261 		m = &vm_page_array[i];
1262 		TAILQ_INIT(&m->md.pv_list);
1263 	}
1264 
1265 	/*
1266 	 * init the pv free list
1267 	 */
1268 	initial_pvs = vm_page_array_size;
1269 	if (initial_pvs < MINPV)
1270 		initial_pvs = MINPV;
1271 	pvzone = &pvzone_store;
1272 	pvinit = (void *)kmem_alloc(&kernel_map,
1273 				    initial_pvs * sizeof (struct pv_entry),
1274 				    VM_SUBSYS_PVENTRY);
1275 	zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry),
1276 		  pvinit, initial_pvs);
1277 
1278 	/*
1279 	 * Now it is safe to enable pv_table recording.
1280 	 */
1281 	pmap_initialized = TRUE;
1282 }
1283 
1284 /*
1285  * Initialize the address space (zone) for the pv_entries.  Set a
1286  * high water mark so that the system can recover from excessive
1287  * numbers of pv entries.
1288  */
1289 void
1290 pmap_init2(void)
1291 {
1292 	vm_pindex_t shpgperproc = PMAP_SHPGPERPROC;
1293 	vm_pindex_t entry_max;
1294 
1295 	TUNABLE_LONG_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1296 	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
1297 	TUNABLE_LONG_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1298 	pv_entry_high_water = 9 * (pv_entry_max / 10);
1299 
1300 	/*
1301 	 * Subtract out pages already installed in the zone (hack)
1302 	 */
1303 	entry_max = pv_entry_max - vm_page_array_size;
1304 	if (entry_max <= 0)
1305 		entry_max = 1;
1306 
1307 	zinitna(pvzone, NULL, 0, entry_max, ZONE_INTERRUPT);
1308 
1309 	/*
1310 	 * Enable dynamic deletion of empty higher-level page table pages
1311 	 * by default only if system memory is < 8GB (use 7GB for slop).
1312 	 * This can save a little memory, but imposes significant
1313 	 * performance overhead for things like bulk builds, and for programs
1314 	 * which do a lot of memory mapping and memory unmapping.
1315 	 */
1316 	if (pmap_dynamic_delete < 0) {
1317 		if (vmstats.v_page_count < 7LL * 1024 * 1024 * 1024 / PAGE_SIZE)
1318 			pmap_dynamic_delete = 1;
1319 		else
1320 			pmap_dynamic_delete = 0;
1321 	}
1322 }
1323 
1324 /*
1325  * Typically used to initialize a fictitious page by vm/device_pager.c
1326  */
1327 void
1328 pmap_page_init(struct vm_page *m)
1329 {
1330 	vm_page_init(m);
1331 	TAILQ_INIT(&m->md.pv_list);
1332 }
1333 
1334 /***************************************************
1335  * Low level helper routines.....
1336  ***************************************************/
1337 
1338 /*
1339  * this routine defines the region(s) of memory that should
1340  * not be tested for the modified bit.
1341  */
1342 static __inline
1343 int
1344 pmap_track_modified(vm_pindex_t pindex)
1345 {
1346 	vm_offset_t va = (vm_offset_t)pindex << PAGE_SHIFT;
1347 	if ((va < clean_sva) || (va >= clean_eva))
1348 		return 1;
1349 	else
1350 		return 0;
1351 }
1352 
1353 /*
1354  * Extract the physical page address associated with the map/VA pair.
1355  * The page must be wired for this to work reliably.
1356  */
1357 vm_paddr_t
1358 pmap_extract(pmap_t pmap, vm_offset_t va, void **handlep)
1359 {
1360 	vm_paddr_t rtval;
1361 	pv_entry_t pt_pv;
1362 	pt_entry_t *ptep;
1363 
1364 	rtval = 0;
1365 	if (va >= VM_MAX_USER_ADDRESS) {
1366 		/*
1367 		 * Kernel page directories might be direct-mapped and
1368 		 * there is typically no PV tracking of pte's
1369 		 */
1370 		pd_entry_t *pt;
1371 
1372 		pt = pmap_pt(pmap, va);
1373 		if (pt && (*pt & pmap->pmap_bits[PG_V_IDX])) {
1374 			if (*pt & pmap->pmap_bits[PG_PS_IDX]) {
1375 				rtval = *pt & PG_PS_FRAME;
1376 				rtval |= va & PDRMASK;
1377 			} else {
1378 				ptep = pmap_pt_to_pte(*pt, va);
1379 				if (*pt & pmap->pmap_bits[PG_V_IDX]) {
1380 					rtval = *ptep & PG_FRAME;
1381 					rtval |= va & PAGE_MASK;
1382 				}
1383 			}
1384 		}
1385 		if (handlep)
1386 			*handlep = NULL;
1387 	} else {
1388 		/*
1389 		 * User pages currently do not direct-map the page directory
1390 		 * and some pages might not used managed PVs.  But all PT's
1391 		 * will have a PV.
1392 		 */
1393 		pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
1394 		if (pt_pv) {
1395 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1396 			if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
1397 				rtval = *ptep & PG_FRAME;
1398 				rtval |= va & PAGE_MASK;
1399 			}
1400 			if (handlep)
1401 				*handlep = pt_pv;	/* locked until done */
1402 			else
1403 				pv_put (pt_pv);
1404 		} else if (handlep) {
1405 			*handlep = NULL;
1406 		}
1407 	}
1408 	return rtval;
1409 }
1410 
1411 void
1412 pmap_extract_done(void *handle)
1413 {
1414 	if (handle)
1415 		pv_put((pv_entry_t)handle);
1416 }
1417 
1418 /*
1419  * Similar to extract but checks protections, SMP-friendly short-cut for
1420  * vm_fault_page[_quick]().  Can return NULL to cause the caller to
1421  * fall-through to the real fault code.  Does not work with HVM page
1422  * tables.
1423  *
1424  * if busyp is NULL the returned page, if not NULL, is held (and not busied).
1425  *
1426  * If busyp is not NULL and this function sets *busyp non-zero, the returned
1427  * page is busied (and not held).
1428  *
1429  * If busyp is not NULL and this function sets *busyp to zero, the returned
1430  * page is held (and not busied).
1431  *
1432  * If VM_PROT_WRITE is set in prot, and the pte is already writable, the
1433  * returned page will be dirtied.  If the pte is not already writable NULL
1434  * is returned.  In otherwords, if the bit is set and a vm_page_t is returned,
1435  * any COW will already have happened and that page can be written by the
1436  * caller.
1437  *
1438  * WARNING! THE RETURNED PAGE IS ONLY HELD AND NOT SUITABLE FOR READING
1439  *	    OR WRITING AS-IS.
1440  */
1441 vm_page_t
1442 pmap_fault_page_quick(pmap_t pmap, vm_offset_t va, vm_prot_t prot, int *busyp)
1443 {
1444 	if (pmap &&
1445 	    va < VM_MAX_USER_ADDRESS &&
1446 	    (pmap->pm_flags & PMAP_HVM) == 0) {
1447 		pv_entry_t pt_pv;
1448 		pv_entry_t pte_pv;
1449 		pt_entry_t *ptep;
1450 		pt_entry_t req;
1451 		vm_page_t m;
1452 		int error;
1453 
1454 		req = pmap->pmap_bits[PG_V_IDX] |
1455 		      pmap->pmap_bits[PG_U_IDX];
1456 		if (prot & VM_PROT_WRITE)
1457 			req |= pmap->pmap_bits[PG_RW_IDX];
1458 
1459 		pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
1460 		if (pt_pv == NULL)
1461 			return (NULL);
1462 		ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1463 		if ((*ptep & req) != req) {
1464 			pv_put(pt_pv);
1465 			return (NULL);
1466 		}
1467 		pte_pv = pv_get_try(pmap, pmap_pte_pindex(va), NULL, &error);
1468 		if (pte_pv && error == 0) {
1469 			m = pte_pv->pv_m;
1470 			if (prot & VM_PROT_WRITE) {
1471 				/* interlocked by presence of pv_entry */
1472 				vm_page_dirty(m);
1473 			}
1474 			if (busyp) {
1475 				if (prot & VM_PROT_WRITE) {
1476 					if (vm_page_busy_try(m, TRUE))
1477 						m = NULL;
1478 					*busyp = 1;
1479 				} else {
1480 					vm_page_hold(m);
1481 					*busyp = 0;
1482 				}
1483 			} else {
1484 				vm_page_hold(m);
1485 			}
1486 			pv_put(pte_pv);
1487 		} else if (pte_pv) {
1488 			pv_drop(pte_pv);
1489 			m = NULL;
1490 		} else {
1491 			/* error, since we didn't request a placemarker */
1492 			m = NULL;
1493 		}
1494 		pv_put(pt_pv);
1495 		return(m);
1496 	} else {
1497 		return(NULL);
1498 	}
1499 }
1500 
1501 /*
1502  * Extract the physical page address associated kernel virtual address.
1503  */
1504 vm_paddr_t
1505 pmap_kextract(vm_offset_t va)
1506 {
1507 	pd_entry_t pt;		/* pt entry in pd */
1508 	vm_paddr_t pa;
1509 
1510 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
1511 		pa = DMAP_TO_PHYS(va);
1512 	} else {
1513 		pt = *vtopt(va);
1514 		if (pt & kernel_pmap.pmap_bits[PG_PS_IDX]) {
1515 			pa = (pt & PG_PS_FRAME) | (va & PDRMASK);
1516 		} else {
1517 			/*
1518 			 * Beware of a concurrent promotion that changes the
1519 			 * PDE at this point!  For example, vtopte() must not
1520 			 * be used to access the PTE because it would use the
1521 			 * new PDE.  It is, however, safe to use the old PDE
1522 			 * because the page table page is preserved by the
1523 			 * promotion.
1524 			 */
1525 			pa = *pmap_pt_to_pte(pt, va);
1526 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
1527 		}
1528 	}
1529 	return pa;
1530 }
1531 
1532 /***************************************************
1533  * Low level mapping routines.....
1534  ***************************************************/
1535 
1536 /*
1537  * Routine: pmap_kenter
1538  * Function:
1539  *  	Add a wired page to the KVA
1540  *  	NOTE! note that in order for the mapping to take effect -- you
1541  *  	should do an invltlb after doing the pmap_kenter().
1542  */
1543 void
1544 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1545 {
1546 	pt_entry_t *ptep;
1547 	pt_entry_t npte;
1548 
1549 	npte = pa |
1550 	       kernel_pmap.pmap_bits[PG_RW_IDX] |
1551 	       kernel_pmap.pmap_bits[PG_V_IDX];
1552 //	       pgeflag;
1553 	ptep = vtopte(va);
1554 #if 1
1555 	pmap_inval_smp(&kernel_pmap, va, 1, ptep, npte);
1556 #else
1557 	/* FUTURE */
1558 	if (*ptep)
1559 		pmap_inval_smp(&kernel_pmap, va, ptep, npte);
1560 	else
1561 		*ptep = npte;
1562 #endif
1563 }
1564 
1565 /*
1566  * Similar to pmap_kenter(), except we only invalidate the mapping on the
1567  * current CPU.  Returns 0 if the previous pte was 0, 1 if it wasn't
1568  * (caller can conditionalize calling smp_invltlb()).
1569  */
1570 int
1571 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
1572 {
1573 	pt_entry_t *ptep;
1574 	pt_entry_t npte;
1575 	int res;
1576 
1577 	npte = pa | kernel_pmap.pmap_bits[PG_RW_IDX] |
1578 		    kernel_pmap.pmap_bits[PG_V_IDX];
1579 	// npte |= pgeflag;
1580 	ptep = vtopte(va);
1581 #if 1
1582 	res = 1;
1583 #else
1584 	/* FUTURE */
1585 	res = (*ptep != 0);
1586 #endif
1587 	atomic_swap_long(ptep, npte);
1588 	cpu_invlpg((void *)va);
1589 
1590 	return res;
1591 }
1592 
1593 /*
1594  * Enter addresses into the kernel pmap but don't bother
1595  * doing any tlb invalidations.  Caller will do a rollup
1596  * invalidation via pmap_rollup_inval().
1597  */
1598 int
1599 pmap_kenter_noinval(vm_offset_t va, vm_paddr_t pa)
1600 {
1601 	pt_entry_t *ptep;
1602 	pt_entry_t npte;
1603 	int res;
1604 
1605 	npte = pa |
1606 	    kernel_pmap.pmap_bits[PG_RW_IDX] |
1607 	    kernel_pmap.pmap_bits[PG_V_IDX];
1608 //	    pgeflag;
1609 	ptep = vtopte(va);
1610 #if 1
1611 	res = 1;
1612 #else
1613 	/* FUTURE */
1614 	res = (*ptep != 0);
1615 #endif
1616 	atomic_swap_long(ptep, npte);
1617 	cpu_invlpg((void *)va);
1618 
1619 	return res;
1620 }
1621 
1622 /*
1623  * remove a page from the kernel pagetables
1624  */
1625 void
1626 pmap_kremove(vm_offset_t va)
1627 {
1628 	pt_entry_t *ptep;
1629 
1630 	ptep = vtopte(va);
1631 	pmap_inval_smp(&kernel_pmap, va, 1, ptep, 0);
1632 }
1633 
1634 void
1635 pmap_kremove_quick(vm_offset_t va)
1636 {
1637 	pt_entry_t *ptep;
1638 
1639 	ptep = vtopte(va);
1640 	(void)pte_load_clear(ptep);
1641 	cpu_invlpg((void *)va);
1642 }
1643 
1644 /*
1645  * Remove addresses from the kernel pmap but don't bother
1646  * doing any tlb invalidations.  Caller will do a rollup
1647  * invalidation via pmap_rollup_inval().
1648  */
1649 void
1650 pmap_kremove_noinval(vm_offset_t va)
1651 {
1652 	pt_entry_t *ptep;
1653 
1654 	ptep = vtopte(va);
1655 	(void)pte_load_clear(ptep);
1656 }
1657 
1658 /*
1659  * XXX these need to be recoded.  They are not used in any critical path.
1660  */
1661 void
1662 pmap_kmodify_rw(vm_offset_t va)
1663 {
1664 	atomic_set_long(vtopte(va), kernel_pmap.pmap_bits[PG_RW_IDX]);
1665 	cpu_invlpg((void *)va);
1666 }
1667 
1668 /* NOT USED
1669 void
1670 pmap_kmodify_nc(vm_offset_t va)
1671 {
1672 	atomic_set_long(vtopte(va), PG_N);
1673 	cpu_invlpg((void *)va);
1674 }
1675 */
1676 
1677 /*
1678  * Used to map a range of physical addresses into kernel virtual
1679  * address space during the low level boot, typically to map the
1680  * dump bitmap, message buffer, and vm_page_array.
1681  *
1682  * These mappings are typically made at some pointer after the end of the
1683  * kernel text+data.
1684  *
1685  * We could return PHYS_TO_DMAP(start) here and not allocate any
1686  * via (*virtp), but then kmem from userland and kernel dumps won't
1687  * have access to the related pointers.
1688  */
1689 vm_offset_t
1690 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
1691 {
1692 	vm_offset_t va;
1693 	vm_offset_t va_start;
1694 
1695 	/*return PHYS_TO_DMAP(start);*/
1696 
1697 	va_start = *virtp;
1698 	va = va_start;
1699 
1700 	while (start < end) {
1701 		pmap_kenter_quick(va, start);
1702 		va += PAGE_SIZE;
1703 		start += PAGE_SIZE;
1704 	}
1705 	*virtp = va;
1706 	return va_start;
1707 }
1708 
1709 #define PMAP_CLFLUSH_THRESHOLD  (2 * 1024 * 1024)
1710 
1711 /*
1712  * Remove the specified set of pages from the data and instruction caches.
1713  *
1714  * In contrast to pmap_invalidate_cache_range(), this function does not
1715  * rely on the CPU's self-snoop feature, because it is intended for use
1716  * when moving pages into a different cache domain.
1717  */
1718 void
1719 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
1720 {
1721 	vm_offset_t daddr, eva;
1722 	int i;
1723 
1724 	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
1725 	    (cpu_feature & CPUID_CLFSH) == 0)
1726 		wbinvd();
1727 	else {
1728 		cpu_mfence();
1729 		for (i = 0; i < count; i++) {
1730 			daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
1731 			eva = daddr + PAGE_SIZE;
1732 			for (; daddr < eva; daddr += cpu_clflush_line_size)
1733 				clflush(daddr);
1734 		}
1735 		cpu_mfence();
1736 	}
1737 }
1738 
1739 void
1740 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
1741 {
1742 	KASSERT((sva & PAGE_MASK) == 0,
1743 	    ("pmap_invalidate_cache_range: sva not page-aligned"));
1744 	KASSERT((eva & PAGE_MASK) == 0,
1745 	    ("pmap_invalidate_cache_range: eva not page-aligned"));
1746 
1747 	if (cpu_feature & CPUID_SS) {
1748 		; /* If "Self Snoop" is supported, do nothing. */
1749 	} else {
1750 		/* Globally invalidate caches */
1751 		cpu_wbinvd_on_all_cpus();
1752 	}
1753 }
1754 
1755 /*
1756  * Invalidate the specified range of virtual memory on all cpus associated
1757  * with the pmap.
1758  */
1759 void
1760 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1761 {
1762 	pmap_inval_smp(pmap, sva, (eva - sva) >> PAGE_SHIFT, NULL, 0);
1763 }
1764 
1765 /*
1766  * Add a list of wired pages to the kva.  This routine is used for temporary
1767  * kernel mappings such as those found in buffer cache buffer.  Page
1768  * modifications and accesses are not tracked or recorded.
1769  *
1770  * NOTE! Old mappings are simply overwritten, and we cannot assume relaxed
1771  *	 semantics as previous mappings may have been zerod without any
1772  *	 invalidation.
1773  *
1774  * The page *must* be wired.
1775  */
1776 static __inline void
1777 _pmap_qenter(vm_offset_t beg_va, vm_page_t *m, int count, int doinval)
1778 {
1779 	vm_offset_t end_va;
1780 	vm_offset_t va;
1781 
1782 	end_va = beg_va + count * PAGE_SIZE;
1783 
1784 	for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1785 		pt_entry_t pte;
1786 		pt_entry_t *ptep;
1787 
1788 		ptep = vtopte(va);
1789 		pte = VM_PAGE_TO_PHYS(*m) |
1790 			kernel_pmap.pmap_bits[PG_RW_IDX] |
1791 			kernel_pmap.pmap_bits[PG_V_IDX] |
1792 			kernel_pmap.pmap_cache_bits[(*m)->pat_mode];
1793 //		pgeflag;
1794 		atomic_swap_long(ptep, pte);
1795 		m++;
1796 	}
1797 	if (doinval)
1798 		pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
1799 }
1800 
1801 void
1802 pmap_qenter(vm_offset_t beg_va, vm_page_t *m, int count)
1803 {
1804 	_pmap_qenter(beg_va, m, count, 1);
1805 }
1806 
1807 void
1808 pmap_qenter_noinval(vm_offset_t beg_va, vm_page_t *m, int count)
1809 {
1810 	_pmap_qenter(beg_va, m, count, 0);
1811 }
1812 
1813 /*
1814  * This routine jerks page mappings from the kernel -- it is meant only
1815  * for temporary mappings such as those found in buffer cache buffers.
1816  * No recording modified or access status occurs.
1817  *
1818  * MPSAFE, INTERRUPT SAFE (cluster callback)
1819  */
1820 void
1821 pmap_qremove(vm_offset_t beg_va, int count)
1822 {
1823 	vm_offset_t end_va;
1824 	vm_offset_t va;
1825 
1826 	end_va = beg_va + count * PAGE_SIZE;
1827 
1828 	for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1829 		pt_entry_t *pte;
1830 
1831 		pte = vtopte(va);
1832 		(void)pte_load_clear(pte);
1833 		cpu_invlpg((void *)va);
1834 	}
1835 	pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
1836 }
1837 
1838 /*
1839  * This routine removes temporary kernel mappings, only invalidating them
1840  * on the current cpu.  It should only be used under carefully controlled
1841  * conditions.
1842  */
1843 void
1844 pmap_qremove_quick(vm_offset_t beg_va, int count)
1845 {
1846 	vm_offset_t end_va;
1847 	vm_offset_t va;
1848 
1849 	end_va = beg_va + count * PAGE_SIZE;
1850 
1851 	for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1852 		pt_entry_t *pte;
1853 
1854 		pte = vtopte(va);
1855 		(void)pte_load_clear(pte);
1856 		cpu_invlpg((void *)va);
1857 	}
1858 }
1859 
1860 /*
1861  * This routine removes temporary kernel mappings *without* invalidating
1862  * the TLB.  It can only be used on permanent kva reservations such as those
1863  * found in buffer cache buffers, under carefully controlled circumstances.
1864  *
1865  * NOTE: Repopulating these KVAs requires unconditional invalidation.
1866  *	 (pmap_qenter() does unconditional invalidation).
1867  */
1868 void
1869 pmap_qremove_noinval(vm_offset_t beg_va, int count)
1870 {
1871 	vm_offset_t end_va;
1872 	vm_offset_t va;
1873 
1874 	end_va = beg_va + count * PAGE_SIZE;
1875 
1876 	for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1877 		pt_entry_t *pte;
1878 
1879 		pte = vtopte(va);
1880 		(void)pte_load_clear(pte);
1881 	}
1882 }
1883 
1884 /*
1885  * Create a new thread and optionally associate it with a (new) process.
1886  * NOTE! the new thread's cpu may not equal the current cpu.
1887  */
1888 void
1889 pmap_init_thread(thread_t td)
1890 {
1891 	/* enforce pcb placement & alignment */
1892 	td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
1893 	td->td_pcb = (struct pcb *)((intptr_t)td->td_pcb & ~(intptr_t)0xF);
1894 	td->td_savefpu = &td->td_pcb->pcb_save;
1895 	td->td_sp = (char *)td->td_pcb;	/* no -16 */
1896 }
1897 
1898 /*
1899  * This routine directly affects the fork perf for a process.
1900  */
1901 void
1902 pmap_init_proc(struct proc *p)
1903 {
1904 }
1905 
1906 static void
1907 pmap_pinit_defaults(struct pmap *pmap)
1908 {
1909 	bcopy(pmap_bits_default, pmap->pmap_bits,
1910 	      sizeof(pmap_bits_default));
1911 	bcopy(protection_codes, pmap->protection_codes,
1912 	      sizeof(protection_codes));
1913 	bcopy(pat_pte_index, pmap->pmap_cache_bits,
1914 	      sizeof(pat_pte_index));
1915 	pmap->pmap_cache_mask = X86_PG_NC_PWT | X86_PG_NC_PCD | X86_PG_PTE_PAT;
1916 	pmap->copyinstr = std_copyinstr;
1917 	pmap->copyin = std_copyin;
1918 	pmap->copyout = std_copyout;
1919 	pmap->fubyte = std_fubyte;
1920 	pmap->subyte = std_subyte;
1921 	pmap->fuword32 = std_fuword32;
1922 	pmap->fuword64 = std_fuword64;
1923 	pmap->suword32 = std_suword32;
1924 	pmap->suword64 = std_suword64;
1925 	pmap->swapu32 = std_swapu32;
1926 	pmap->swapu64 = std_swapu64;
1927 }
1928 /*
1929  * Initialize pmap0/vmspace0.
1930  *
1931  * On architectures where the kernel pmap is not integrated into the user
1932  * process pmap, this pmap represents the process pmap, not the kernel pmap.
1933  * kernel_pmap should be used to directly access the kernel_pmap.
1934  */
1935 void
1936 pmap_pinit0(struct pmap *pmap)
1937 {
1938 	int i;
1939 
1940 	pmap->pm_pml4 = (pml4_entry_t *)(PTOV_OFFSET + KPML4phys);
1941 	pmap->pm_count = 1;
1942 	CPUMASK_ASSZERO(pmap->pm_active);
1943 	pmap->pm_pvhint_pt = NULL;
1944 	pmap->pm_pvhint_pte = NULL;
1945 	RB_INIT(&pmap->pm_pvroot);
1946 	spin_init(&pmap->pm_spin, "pmapinit0");
1947 	for (i = 0; i < PM_PLACEMARKS; ++i)
1948 		pmap->pm_placemarks[i] = PM_NOPLACEMARK;
1949 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1950 	pmap_pinit_defaults(pmap);
1951 }
1952 
1953 /*
1954  * Initialize a preallocated and zeroed pmap structure,
1955  * such as one in a vmspace structure.
1956  */
1957 static void
1958 pmap_pinit_simple(struct pmap *pmap)
1959 {
1960 	int i;
1961 
1962 	/*
1963 	 * Misc initialization
1964 	 */
1965 	pmap->pm_count = 1;
1966 	CPUMASK_ASSZERO(pmap->pm_active);
1967 	pmap->pm_pvhint_pt = NULL;
1968 	pmap->pm_pvhint_pte = NULL;
1969 	pmap->pm_flags = PMAP_FLAG_SIMPLE;
1970 
1971 	pmap_pinit_defaults(pmap);
1972 
1973 	/*
1974 	 * Don't blow up locks/tokens on re-use (XXX fix/use drop code
1975 	 * for this).
1976 	 */
1977 	if (pmap->pm_pmlpv == NULL) {
1978 		RB_INIT(&pmap->pm_pvroot);
1979 		bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1980 		spin_init(&pmap->pm_spin, "pmapinitsimple");
1981 		for (i = 0; i < PM_PLACEMARKS; ++i)
1982 			pmap->pm_placemarks[i] = PM_NOPLACEMARK;
1983 	}
1984 }
1985 
1986 void
1987 pmap_pinit(struct pmap *pmap)
1988 {
1989 	pv_entry_t pv;
1990 	int j;
1991 
1992 	if (pmap->pm_pmlpv) {
1993 		if (pmap->pmap_bits[TYPE_IDX] != REGULAR_PMAP) {
1994 			pmap_puninit(pmap);
1995 		}
1996 	}
1997 
1998 	pmap_pinit_simple(pmap);
1999 	pmap->pm_flags &= ~PMAP_FLAG_SIMPLE;
2000 
2001 	/*
2002 	 * No need to allocate page table space yet but we do need a valid
2003 	 * page directory table.
2004 	 */
2005 	if (pmap->pm_pml4 == NULL) {
2006 		pmap->pm_pml4 =
2007 		    (pml4_entry_t *)kmem_alloc_pageable(&kernel_map,
2008 							PAGE_SIZE,
2009 							VM_SUBSYS_PML4);
2010 	}
2011 
2012 	/*
2013 	 * Allocate the page directory page, which wires it even though
2014 	 * it isn't being entered into some higher level page table (it
2015 	 * being the highest level).  If one is already cached we don't
2016 	 * have to do anything.
2017 	 */
2018 	if ((pv = pmap->pm_pmlpv) == NULL) {
2019 		pv = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
2020 		pmap->pm_pmlpv = pv;
2021 		pmap_kenter((vm_offset_t)pmap->pm_pml4,
2022 			    VM_PAGE_TO_PHYS(pv->pv_m));
2023 		pv_put(pv);
2024 
2025 		/*
2026 		 * Install DMAP and KMAP.
2027 		 */
2028 		for (j = 0; j < NDMPML4E; ++j) {
2029 			pmap->pm_pml4[DMPML4I + j] =
2030 			    (DMPDPphys + ((vm_paddr_t)j << PAGE_SHIFT)) |
2031 			    pmap->pmap_bits[PG_RW_IDX] |
2032 			    pmap->pmap_bits[PG_V_IDX] |
2033 			    pmap->pmap_bits[PG_U_IDX];
2034 		}
2035 		for (j = 0; j < NKPML4E; ++j) {
2036 			pmap->pm_pml4[KPML4I + j] =
2037 			    (KPDPphys + ((vm_paddr_t)j << PAGE_SHIFT)) |
2038 			    pmap->pmap_bits[PG_RW_IDX] |
2039 			    pmap->pmap_bits[PG_V_IDX] |
2040 			    pmap->pmap_bits[PG_U_IDX];
2041 		}
2042 
2043 		/*
2044 		 * install self-referential address mapping entry
2045 		 */
2046 		pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pv->pv_m) |
2047 		    pmap->pmap_bits[PG_V_IDX] |
2048 		    pmap->pmap_bits[PG_RW_IDX] |
2049 		    pmap->pmap_bits[PG_A_IDX] |
2050 		    pmap->pmap_bits[PG_M_IDX];
2051 	} else {
2052 		KKASSERT(pv->pv_m->flags & PG_MAPPED);
2053 		KKASSERT(pv->pv_m->flags & PG_WRITEABLE);
2054 	}
2055 	KKASSERT(pmap->pm_pml4[255] == 0);
2056 	KKASSERT(RB_ROOT(&pmap->pm_pvroot) == pv);
2057 	KKASSERT(pv->pv_entry.rbe_left == NULL);
2058 	KKASSERT(pv->pv_entry.rbe_right == NULL);
2059 }
2060 
2061 /*
2062  * Clean up a pmap structure so it can be physically freed.  This routine
2063  * is called by the vmspace dtor function.  A great deal of pmap data is
2064  * left passively mapped to improve vmspace management so we have a bit
2065  * of cleanup work to do here.
2066  */
2067 void
2068 pmap_puninit(pmap_t pmap)
2069 {
2070 	pv_entry_t pv;
2071 	vm_page_t p;
2072 
2073 	KKASSERT(CPUMASK_TESTZERO(pmap->pm_active));
2074 	if ((pv = pmap->pm_pmlpv) != NULL) {
2075 		if (pv_hold_try(pv) == 0)
2076 			pv_lock(pv);
2077 		KKASSERT(pv == pmap->pm_pmlpv);
2078 		p = pmap_remove_pv_page(pv);
2079 		pv_free(pv, NULL);
2080 		pv = NULL;	/* safety */
2081 		pmap_kremove((vm_offset_t)pmap->pm_pml4);
2082 		vm_page_busy_wait(p, FALSE, "pgpun");
2083 		KKASSERT(p->flags & (PG_FICTITIOUS|PG_UNMANAGED));
2084 		vm_page_unwire(p, 0);
2085 		vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
2086 
2087 		/*
2088 		 * XXX eventually clean out PML4 static entries and
2089 		 * use vm_page_free_zero()
2090 		 */
2091 		vm_page_free(p);
2092 		pmap->pm_pmlpv = NULL;
2093 	}
2094 	if (pmap->pm_pml4) {
2095 		KKASSERT(pmap->pm_pml4 != (void *)(PTOV_OFFSET + KPML4phys));
2096 		kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pml4, PAGE_SIZE);
2097 		pmap->pm_pml4 = NULL;
2098 	}
2099 	KKASSERT(pmap->pm_stats.resident_count == 0);
2100 	KKASSERT(pmap->pm_stats.wired_count == 0);
2101 }
2102 
2103 /*
2104  * This function is now unused (used to add the pmap to the pmap_list)
2105  */
2106 void
2107 pmap_pinit2(struct pmap *pmap)
2108 {
2109 }
2110 
2111 /*
2112  * This routine is called when various levels in the page table need to
2113  * be populated.  This routine cannot fail.
2114  *
2115  * This function returns two locked pv_entry's, one representing the
2116  * requested pv and one representing the requested pv's parent pv.  If
2117  * an intermediate page table does not exist it will be created, mapped,
2118  * wired, and the parent page table will be given an additional hold
2119  * count representing the presence of the child pv_entry.
2120  */
2121 static
2122 pv_entry_t
2123 pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp)
2124 {
2125 	pt_entry_t *ptep;
2126 	pv_entry_t pv;
2127 	pv_entry_t pvp;
2128 	pt_entry_t v;
2129 	vm_pindex_t pt_pindex;
2130 	vm_page_t m;
2131 	int isnew;
2132 	int ispt;
2133 
2134 	/*
2135 	 * If the pv already exists and we aren't being asked for the
2136 	 * parent page table page we can just return it.  A locked+held pv
2137 	 * is returned.  The pv will also have a second hold related to the
2138 	 * pmap association that we don't have to worry about.
2139 	 */
2140 	ispt = 0;
2141 	pv = pv_alloc(pmap, ptepindex, &isnew);
2142 	if (isnew == 0 && pvpp == NULL)
2143 		return(pv);
2144 
2145 	/*
2146 	 * Special case terminal PVs.  These are not page table pages so
2147 	 * no vm_page is allocated (the caller supplied the vm_page).  If
2148 	 * pvpp is non-NULL we are being asked to also removed the pt_pv
2149 	 * for this pv.
2150 	 *
2151 	 * Note that pt_pv's are only returned for user VAs. We assert that
2152 	 * a pt_pv is not being requested for kernel VAs.  The kernel
2153 	 * pre-wires all higher-level page tables so don't overload managed
2154 	 * higher-level page tables on top of it!
2155 	 */
2156 	if (ptepindex < pmap_pt_pindex(0)) {
2157 		if (ptepindex >= NUPTE_USER) {
2158 			/* kernel manages this manually for KVM */
2159 			KKASSERT(pvpp == NULL);
2160 		} else {
2161 			KKASSERT(pvpp != NULL);
2162 			pt_pindex = NUPTE_TOTAL + (ptepindex >> NPTEPGSHIFT);
2163 			pvp = pmap_allocpte(pmap, pt_pindex, NULL);
2164 			if (isnew)
2165 				vm_page_wire_quick(pvp->pv_m);
2166 			*pvpp = pvp;
2167 		}
2168 		return(pv);
2169 	}
2170 
2171 	/*
2172 	 * The kernel never uses managed PT/PD/PDP pages.
2173 	 */
2174 	KKASSERT(pmap != &kernel_pmap);
2175 
2176 	/*
2177 	 * Non-terminal PVs allocate a VM page to represent the page table,
2178 	 * so we have to resolve pvp and calculate ptepindex for the pvp
2179 	 * and then for the page table entry index in the pvp for
2180 	 * fall-through.
2181 	 */
2182 	if (ptepindex < pmap_pd_pindex(0)) {
2183 		/*
2184 		 * pv is PT, pvp is PD
2185 		 */
2186 		ptepindex = (ptepindex - pmap_pt_pindex(0)) >> NPDEPGSHIFT;
2187 		ptepindex += NUPTE_TOTAL + NUPT_TOTAL;
2188 		pvp = pmap_allocpte(pmap, ptepindex, NULL);
2189 
2190 		/*
2191 		 * PT index in PD
2192 		 */
2193 		ptepindex = pv->pv_pindex - pmap_pt_pindex(0);
2194 		ptepindex &= ((1ul << NPDEPGSHIFT) - 1);
2195 		ispt = 1;
2196 	} else if (ptepindex < pmap_pdp_pindex(0)) {
2197 		/*
2198 		 * pv is PD, pvp is PDP
2199 		 *
2200 		 * SIMPLE PMAP NOTE: Simple pmaps do not allocate above
2201 		 *		     the PD.
2202 		 */
2203 		ptepindex = (ptepindex - pmap_pd_pindex(0)) >> NPDPEPGSHIFT;
2204 		ptepindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
2205 
2206 		if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
2207 			KKASSERT(pvpp == NULL);
2208 			pvp = NULL;
2209 		} else {
2210 			pvp = pmap_allocpte(pmap, ptepindex, NULL);
2211 		}
2212 
2213 		/*
2214 		 * PD index in PDP
2215 		 */
2216 		ptepindex = pv->pv_pindex - pmap_pd_pindex(0);
2217 		ptepindex &= ((1ul << NPDPEPGSHIFT) - 1);
2218 	} else if (ptepindex < pmap_pml4_pindex()) {
2219 		/*
2220 		 * pv is PDP, pvp is the root pml4 table
2221 		 */
2222 		pvp = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
2223 
2224 		/*
2225 		 * PDP index in PML4
2226 		 */
2227 		ptepindex = pv->pv_pindex - pmap_pdp_pindex(0);
2228 		ptepindex &= ((1ul << NPML4EPGSHIFT) - 1);
2229 	} else {
2230 		/*
2231 		 * pv represents the top-level PML4, there is no parent.
2232 		 */
2233 		pvp = NULL;
2234 	}
2235 
2236 	if (isnew == 0)
2237 		goto notnew;
2238 
2239 	/*
2240 	 * (isnew) is TRUE, pv is not terminal.
2241 	 *
2242 	 * (1) Add a wire count to the parent page table (pvp).
2243 	 * (2) Allocate a VM page for the page table.
2244 	 * (3) Enter the VM page into the parent page table.
2245 	 *
2246 	 * page table pages are marked PG_WRITEABLE and PG_MAPPED.
2247 	 */
2248 	if (pvp)
2249 		vm_page_wire_quick(pvp->pv_m);
2250 
2251 	for (;;) {
2252 		m = vm_page_alloc(NULL, pv->pv_pindex,
2253 				  VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
2254 				  VM_ALLOC_INTERRUPT);
2255 		if (m)
2256 			break;
2257 		vm_wait(0);
2258 	}
2259 	vm_page_wire(m);	/* wire for mapping in parent */
2260 	vm_page_unmanage(m);	/* m must be spinunlocked */
2261 	pmap_zero_page(VM_PAGE_TO_PHYS(m));
2262 	m->valid = VM_PAGE_BITS_ALL;
2263 
2264 	vm_page_spin_lock(m);
2265 	pmap_page_stats_adding(m);
2266 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2267 	pv->pv_m = m;
2268 	vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
2269 	vm_page_spin_unlock(m);
2270 
2271 	/*
2272 	 * (isnew) is TRUE, pv is not terminal.
2273 	 *
2274 	 * Wire the page into pvp.  Bump the resident_count for the pmap.
2275 	 * There is no pvp for the top level, address the pm_pml4[] array
2276 	 * directly.
2277 	 *
2278 	 * If the caller wants the parent we return it, otherwise
2279 	 * we just put it away.
2280 	 *
2281 	 * No interlock is needed for pte 0 -> non-zero.
2282 	 *
2283 	 * In the situation where *ptep is valid we might have an unmanaged
2284 	 * page table page shared from another page table which we need to
2285 	 * unshare before installing our private page table page.
2286 	 */
2287 	if (pvp) {
2288 		v = VM_PAGE_TO_PHYS(m) |
2289 		    (pmap->pmap_bits[PG_U_IDX] |
2290 		     pmap->pmap_bits[PG_RW_IDX] |
2291 		     pmap->pmap_bits[PG_V_IDX] |
2292 		     pmap->pmap_bits[PG_A_IDX] |
2293 		     pmap->pmap_bits[PG_M_IDX]);
2294 		ptep = pv_pte_lookup(pvp, ptepindex);
2295 		if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
2296 			pt_entry_t pte;
2297 
2298 			if (ispt == 0) {
2299 				panic("pmap_allocpte: unexpected pte %p/%d",
2300 				      pvp, (int)ptepindex);
2301 			}
2302 			pte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, ptep, v);
2303 			if (vm_page_unwire_quick(
2304 					PHYS_TO_VM_PAGE(pte & PG_FRAME))) {
2305 				panic("pmap_allocpte: shared pgtable "
2306 				      "pg bad wirecount");
2307 			}
2308 		} else {
2309 			pt_entry_t pte;
2310 
2311 			pte = atomic_swap_long(ptep, v);
2312 			if (pte != 0) {
2313 				kprintf("install pgtbl mixup 0x%016jx "
2314 					"old/new 0x%016jx/0x%016jx\n",
2315 					(intmax_t)ptepindex, pte, v);
2316 			}
2317 		}
2318 	}
2319 	vm_page_wakeup(m);
2320 
2321 	/*
2322 	 * (isnew) may be TRUE or FALSE, pv may or may not be terminal.
2323 	 */
2324 notnew:
2325 	if (pvp) {
2326 		KKASSERT(pvp->pv_m != NULL);
2327 		ptep = pv_pte_lookup(pvp, ptepindex);
2328 		v = VM_PAGE_TO_PHYS(pv->pv_m) |
2329 		    (pmap->pmap_bits[PG_U_IDX] |
2330 		     pmap->pmap_bits[PG_RW_IDX] |
2331 		     pmap->pmap_bits[PG_V_IDX] |
2332 		     pmap->pmap_bits[PG_A_IDX] |
2333 		     pmap->pmap_bits[PG_M_IDX]);
2334 		if (*ptep != v) {
2335 			kprintf("mismatched upper level pt %016jx/%016jx\n",
2336 				*ptep, v);
2337 		}
2338 	}
2339 	if (pvpp)
2340 		*pvpp = pvp;
2341 	else if (pvp)
2342 		pv_put(pvp);
2343 	return (pv);
2344 }
2345 
2346 /*
2347  * This version of pmap_allocpte() checks for possible segment optimizations
2348  * that would allow page-table sharing.  It can be called for terminal
2349  * page or page table page ptepindex's.
2350  *
2351  * The function is called with page table page ptepindex's for fictitious
2352  * and unmanaged terminal pages.  That is, we don't want to allocate a
2353  * terminal pv, we just want the pt_pv.  pvpp is usually passed as NULL
2354  * for this case.
2355  *
2356  * This function can return a pv and *pvpp associated with the passed in pmap
2357  * OR a pv and *pvpp associated with the shared pmap.  In the latter case
2358  * an unmanaged page table page will be entered into the pass in pmap.
2359  */
2360 static
2361 pv_entry_t
2362 pmap_allocpte_seg(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp,
2363 		  vm_map_entry_t entry, vm_offset_t va)
2364 {
2365 	vm_object_t object;
2366 	pmap_t obpmap;
2367 	pmap_t *obpmapp;
2368 	vm_pindex_t *pt_placemark;
2369 	vm_offset_t b;
2370 	pv_entry_t pte_pv;	/* in original or shared pmap */
2371 	pv_entry_t pt_pv;	/* in original or shared pmap */
2372 	pv_entry_t proc_pd_pv;	/* in original pmap */
2373 	pv_entry_t proc_pt_pv;	/* in original pmap */
2374 	pv_entry_t xpv;		/* PT in shared pmap */
2375 	pd_entry_t *pt;		/* PT entry in PD of original pmap */
2376 	pd_entry_t opte;	/* contents of *pt */
2377 	pd_entry_t npte;	/* contents of *pt */
2378 	vm_page_t m;
2379 	int softhold;
2380 
2381 	/*
2382 	 * Basic tests, require a non-NULL vm_map_entry, require proper
2383 	 * alignment and type for the vm_map_entry, require that the
2384 	 * underlying object already be allocated.
2385 	 *
2386 	 * We allow almost any type of object to use this optimization.
2387 	 * The object itself does NOT have to be sized to a multiple of the
2388 	 * segment size, but the memory mapping does.
2389 	 *
2390 	 * XXX don't handle devices currently, because VM_PAGE_TO_PHYS()
2391 	 *     won't work as expected.
2392 	 */
2393 	if (entry == NULL ||
2394 	    pmap_mmu_optimize == 0 ||			/* not enabled */
2395 	    (pmap->pm_flags & PMAP_HVM) ||		/* special pmap */
2396 	    ptepindex >= pmap_pd_pindex(0) ||		/* not terminal or pt */
2397 	    entry->inheritance != VM_INHERIT_SHARE ||	/* not shared */
2398 	    entry->maptype != VM_MAPTYPE_NORMAL ||	/* weird map type */
2399 	    entry->object.vm_object == NULL ||		/* needs VM object */
2400 	    entry->object.vm_object->type == OBJT_DEVICE ||	/* ick */
2401 	    entry->object.vm_object->type == OBJT_MGTDEVICE ||	/* ick */
2402 	    (entry->offset & SEG_MASK) ||		/* must be aligned */
2403 	    (entry->start & SEG_MASK)) {
2404 		return(pmap_allocpte(pmap, ptepindex, pvpp));
2405 	}
2406 
2407 	/*
2408 	 * Make sure the full segment can be represented.
2409 	 */
2410 	b = va & ~(vm_offset_t)SEG_MASK;
2411 	if (b < entry->start || b + SEG_SIZE > entry->end)
2412 		return(pmap_allocpte(pmap, ptepindex, pvpp));
2413 
2414 	/*
2415 	 * If the full segment can be represented dive the VM object's
2416 	 * shared pmap, allocating as required.
2417 	 */
2418 	object = entry->object.vm_object;
2419 
2420 	if (entry->protection & VM_PROT_WRITE)
2421 		obpmapp = &object->md.pmap_rw;
2422 	else
2423 		obpmapp = &object->md.pmap_ro;
2424 
2425 #ifdef PMAP_DEBUG2
2426 	if (pmap_enter_debug > 0) {
2427 		--pmap_enter_debug;
2428 		kprintf("pmap_allocpte_seg: va=%jx prot %08x o=%p "
2429 			"obpmapp %p %p\n",
2430 			va, entry->protection, object,
2431 			obpmapp, *obpmapp);
2432 		kprintf("pmap_allocpte_seg: entry %p %jx-%jx\n",
2433 			entry, entry->start, entry->end);
2434 	}
2435 #endif
2436 
2437 	/*
2438 	 * We allocate what appears to be a normal pmap but because portions
2439 	 * of this pmap are shared with other unrelated pmaps we have to
2440 	 * set pm_active to point to all cpus.
2441 	 *
2442 	 * XXX Currently using pmap_spin to interlock the update, can't use
2443 	 *     vm_object_hold/drop because the token might already be held
2444 	 *     shared OR exclusive and we don't know.
2445 	 */
2446 	while ((obpmap = *obpmapp) == NULL) {
2447 		obpmap = kmalloc(sizeof(*obpmap), M_OBJPMAP, M_WAITOK|M_ZERO);
2448 		pmap_pinit_simple(obpmap);
2449 		pmap_pinit2(obpmap);
2450 		spin_lock(&pmap_spin);
2451 		if (*obpmapp != NULL) {
2452 			/*
2453 			 * Handle race
2454 			 */
2455 			spin_unlock(&pmap_spin);
2456 			pmap_release(obpmap);
2457 			pmap_puninit(obpmap);
2458 			kfree(obpmap, M_OBJPMAP);
2459 			obpmap = *obpmapp; /* safety */
2460 		} else {
2461 			obpmap->pm_active = smp_active_mask;
2462 			obpmap->pm_flags |= PMAP_SEGSHARED;
2463 			*obpmapp = obpmap;
2464 			spin_unlock(&pmap_spin);
2465 		}
2466 	}
2467 
2468 	/*
2469 	 * Layering is: PTE, PT, PD, PDP, PML4.  We have to return the
2470 	 * pte/pt using the shared pmap from the object but also adjust
2471 	 * the process pmap's page table page as a side effect.
2472 	 */
2473 
2474 	/*
2475 	 * Resolve the terminal PTE and PT in the shared pmap.  This is what
2476 	 * we will return.  This is true if ptepindex represents a terminal
2477 	 * page, otherwise pte_pv is actually the PT and pt_pv is actually
2478 	 * the PD.
2479 	 */
2480 	pt_pv = NULL;
2481 	pte_pv = pmap_allocpte(obpmap, ptepindex, &pt_pv);
2482 	softhold = 0;
2483 retry:
2484 	if (ptepindex >= pmap_pt_pindex(0))
2485 		xpv = pte_pv;
2486 	else
2487 		xpv = pt_pv;
2488 
2489 	/*
2490 	 * Resolve the PD in the process pmap so we can properly share the
2491 	 * page table page.  Lock order is bottom-up (leaf first)!
2492 	 *
2493 	 * NOTE: proc_pt_pv can be NULL.
2494 	 */
2495 	proc_pt_pv = pv_get(pmap, pmap_pt_pindex(b), &pt_placemark);
2496 	proc_pd_pv = pmap_allocpte(pmap, pmap_pd_pindex(b), NULL);
2497 #ifdef PMAP_DEBUG2
2498 	if (pmap_enter_debug > 0) {
2499 		--pmap_enter_debug;
2500 		kprintf("proc_pt_pv %p (wc %d) pd_pv %p va=%jx\n",
2501 			proc_pt_pv,
2502 			(proc_pt_pv ? proc_pt_pv->pv_m->wire_count : -1),
2503 			proc_pd_pv,
2504 			va);
2505 	}
2506 #endif
2507 
2508 	/*
2509 	 * xpv is the page table page pv from the shared object
2510 	 * (for convenience), from above.
2511 	 *
2512 	 * Calculate the pte value for the PT to load into the process PD.
2513 	 * If we have to change it we must properly dispose of the previous
2514 	 * entry.
2515 	 */
2516 	pt = pv_pte_lookup(proc_pd_pv, pmap_pt_index(b));
2517 	npte = VM_PAGE_TO_PHYS(xpv->pv_m) |
2518 	       (pmap->pmap_bits[PG_U_IDX] |
2519 		pmap->pmap_bits[PG_RW_IDX] |
2520 		pmap->pmap_bits[PG_V_IDX] |
2521 		pmap->pmap_bits[PG_A_IDX] |
2522 		pmap->pmap_bits[PG_M_IDX]);
2523 
2524 	/*
2525 	 * Dispose of previous page table page if it was local to the
2526 	 * process pmap.  If the old pt is not empty we cannot dispose of it
2527 	 * until we clean it out.  This case should not arise very often so
2528 	 * it is not optimized.
2529 	 *
2530 	 * Leave pt_pv and pte_pv (in our object pmap) locked and intact
2531 	 * for the retry.
2532 	 */
2533 	if (proc_pt_pv) {
2534 		pmap_inval_bulk_t bulk;
2535 
2536 		if (proc_pt_pv->pv_m->wire_count != 1) {
2537 			/*
2538 			 * The page table has a bunch of stuff in it
2539 			 * which we have to scrap.
2540 			 */
2541 			if (softhold == 0) {
2542 				softhold = 1;
2543 				pmap_softhold(pmap);
2544 			}
2545 			pv_put(proc_pd_pv);
2546 			pv_put(proc_pt_pv);
2547 			pmap_remove(pmap,
2548 				    va & ~(vm_offset_t)SEG_MASK,
2549 				    (va + SEG_SIZE) & ~(vm_offset_t)SEG_MASK);
2550 		} else {
2551 			/*
2552 			 * The page table is empty and can be destroyed.
2553 			 * However, doing so leaves the pt slot unlocked,
2554 			 * so we have to loop-up to handle any races until
2555 			 * we get a NULL proc_pt_pv and a proper pt_placemark.
2556 			 */
2557 			pmap_inval_bulk_init(&bulk, proc_pt_pv->pv_pmap);
2558 			pmap_release_pv(proc_pt_pv, proc_pd_pv, &bulk);
2559 			pmap_inval_bulk_flush(&bulk);
2560 			pv_put(proc_pd_pv);
2561 		}
2562 		goto retry;
2563 	}
2564 
2565 	/*
2566 	 * Handle remaining cases.  We are holding pt_placemark to lock
2567 	 * the page table page in the primary pmap while we manipulate
2568 	 * it.
2569 	 */
2570 	if (*pt == 0) {
2571 		atomic_swap_long(pt, npte);
2572 		vm_page_wire_quick(xpv->pv_m);		/* shared pt -> proc */
2573 		vm_page_wire_quick(proc_pd_pv->pv_m);	/* proc pd for sh pt */
2574 		atomic_add_long(&pmap->pm_stats.resident_count, 1);
2575 	} else if (*pt != npte) {
2576 		opte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, pt, npte);
2577 
2578 #if 0
2579 		opte = pte_load_clear(pt);
2580 		KKASSERT(opte && opte != npte);
2581 
2582 		*pt = npte;
2583 #endif
2584 		vm_page_wire_quick(xpv->pv_m);		/* shared pt -> proc */
2585 
2586 		/*
2587 		 * Clean up opte, bump the wire_count for the process
2588 		 * PD page representing the new entry if it was
2589 		 * previously empty.
2590 		 *
2591 		 * If the entry was not previously empty and we have
2592 		 * a PT in the proc pmap then opte must match that
2593 		 * pt.  The proc pt must be retired (this is done
2594 		 * later on in this procedure).
2595 		 *
2596 		 * NOTE: replacing valid pte, wire_count on proc_pd_pv
2597 		 * stays the same.
2598 		 */
2599 		KKASSERT(opte & pmap->pmap_bits[PG_V_IDX]);
2600 		m = PHYS_TO_VM_PAGE(opte & PG_FRAME);
2601 		if (vm_page_unwire_quick(m)) {
2602 			panic("pmap_allocpte_seg: "
2603 			      "bad wire count %p",
2604 			      m);
2605 		}
2606 	}
2607 
2608 	if (softhold)
2609 		pmap_softdone(pmap);
2610 
2611 	/*
2612 	 * Remove our earmark on the page table page.
2613 	 */
2614 	pv_placemarker_wakeup(pmap, pt_placemark);
2615 
2616 	/*
2617 	 * The existing process page table was replaced and must be destroyed
2618 	 * here.
2619 	 */
2620 	if (proc_pd_pv)
2621 		pv_put(proc_pd_pv);
2622 	if (pvpp)
2623 		*pvpp = pt_pv;
2624 	else
2625 		pv_put(pt_pv);
2626 	return (pte_pv);
2627 }
2628 
2629 /*
2630  * Release any resources held by the given physical map.
2631  *
2632  * Called when a pmap initialized by pmap_pinit is being released.  Should
2633  * only be called if the map contains no valid mappings.
2634  */
2635 struct pmap_release_info {
2636 	pmap_t	pmap;
2637 	int	retry;
2638 	pv_entry_t pvp;
2639 };
2640 
2641 static int pmap_release_callback(pv_entry_t pv, void *data);
2642 
2643 void
2644 pmap_release(struct pmap *pmap)
2645 {
2646 	struct pmap_release_info info;
2647 
2648 	KASSERT(CPUMASK_TESTZERO(pmap->pm_active),
2649 		("pmap still active! %016jx",
2650 		(uintmax_t)CPUMASK_LOWMASK(pmap->pm_active)));
2651 
2652 	/*
2653 	 * There is no longer a pmap_list, if there were we would remove the
2654 	 * pmap from it here.
2655 	 */
2656 
2657 	/*
2658 	 * Pull pv's off the RB tree in order from low to high and release
2659 	 * each page.
2660 	 */
2661 	info.pmap = pmap;
2662 	do {
2663 		info.retry = 0;
2664 		info.pvp = NULL;
2665 
2666 		spin_lock(&pmap->pm_spin);
2667 		RB_SCAN(pv_entry_rb_tree, &pmap->pm_pvroot, NULL,
2668 			pmap_release_callback, &info);
2669 		spin_unlock(&pmap->pm_spin);
2670 
2671 		if (info.pvp)
2672 			pv_put(info.pvp);
2673 	} while (info.retry);
2674 
2675 
2676 	/*
2677 	 * One resident page (the pml4 page) should remain.
2678 	 * No wired pages should remain.
2679 	 */
2680 #if 1
2681 	if (pmap->pm_stats.resident_count !=
2682 	    ((pmap->pm_flags & PMAP_FLAG_SIMPLE) ? 0 : 1) ||
2683 	    pmap->pm_stats.wired_count != 0) {
2684 		kprintf("fatal pmap problem - pmap %p flags %08x "
2685 			"rescnt=%jd wirecnt=%jd\n",
2686 			pmap,
2687 			pmap->pm_flags,
2688 			pmap->pm_stats.resident_count,
2689 			pmap->pm_stats.wired_count);
2690 		tsleep(pmap, 0, "DEAD", 0);
2691 	}
2692 #else
2693 	KKASSERT(pmap->pm_stats.resident_count ==
2694 		 ((pmap->pm_flags & PMAP_FLAG_SIMPLE) ? 0 : 1));
2695 	KKASSERT(pmap->pm_stats.wired_count == 0);
2696 #endif
2697 }
2698 
2699 /*
2700  * Called from low to high.  We must cache the proper parent pv so we
2701  * can adjust its wired count.
2702  */
2703 static int
2704 pmap_release_callback(pv_entry_t pv, void *data)
2705 {
2706 	struct pmap_release_info *info = data;
2707 	pmap_t pmap = info->pmap;
2708 	vm_pindex_t pindex;
2709 	int r;
2710 
2711 	/*
2712 	 * Acquire a held and locked pv, check for release race
2713 	 */
2714 	pindex = pv->pv_pindex;
2715 	if (info->pvp == pv) {
2716 		spin_unlock(&pmap->pm_spin);
2717 		info->pvp = NULL;
2718 	} else if (pv_hold_try(pv)) {
2719 		spin_unlock(&pmap->pm_spin);
2720 	} else {
2721 		spin_unlock(&pmap->pm_spin);
2722 		pv_lock(pv);
2723 		pv_put(pv);
2724 		info->retry = 1;
2725 		spin_lock(&pmap->pm_spin);
2726 
2727 		return -1;
2728 	}
2729 	KKASSERT(pv->pv_pmap == pmap && pindex == pv->pv_pindex);
2730 
2731 	if (pv->pv_pindex < pmap_pt_pindex(0)) {
2732 		/*
2733 		 * I am PTE, parent is PT
2734 		 */
2735 		pindex = pv->pv_pindex >> NPTEPGSHIFT;
2736 		pindex += NUPTE_TOTAL;
2737 	} else if (pv->pv_pindex < pmap_pd_pindex(0)) {
2738 		/*
2739 		 * I am PT, parent is PD
2740 		 */
2741 		pindex = (pv->pv_pindex - NUPTE_TOTAL) >> NPDEPGSHIFT;
2742 		pindex += NUPTE_TOTAL + NUPT_TOTAL;
2743 	} else if (pv->pv_pindex < pmap_pdp_pindex(0)) {
2744 		/*
2745 		 * I am PD, parent is PDP
2746 		 */
2747 		pindex = (pv->pv_pindex - NUPTE_TOTAL - NUPT_TOTAL) >>
2748 			 NPDPEPGSHIFT;
2749 		pindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
2750 	} else if (pv->pv_pindex < pmap_pml4_pindex()) {
2751 		/*
2752 		 * I am PDP, parent is PML4 (there's only one)
2753 		 */
2754 #if 0
2755 		pindex = (pv->pv_pindex - NUPTE_TOTAL - NUPT_TOTAL -
2756 			   NUPD_TOTAL) >> NPML4EPGSHIFT;
2757 		pindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL;
2758 #endif
2759 		pindex = pmap_pml4_pindex();
2760 	} else {
2761 		/*
2762 		 * parent is NULL
2763 		 */
2764 		if (info->pvp) {
2765 			pv_put(info->pvp);
2766 			info->pvp = NULL;
2767 		}
2768 		pindex = 0;
2769 	}
2770 	if (pindex) {
2771 		if (info->pvp && info->pvp->pv_pindex != pindex) {
2772 			pv_put(info->pvp);
2773 			info->pvp = NULL;
2774 		}
2775 		if (info->pvp == NULL)
2776 			info->pvp = pv_get(pmap, pindex, NULL);
2777 	} else {
2778 		if (info->pvp) {
2779 			pv_put(info->pvp);
2780 			info->pvp = NULL;
2781 		}
2782 	}
2783 	r = pmap_release_pv(pv, info->pvp, NULL);
2784 	spin_lock(&pmap->pm_spin);
2785 
2786 	return(r);
2787 }
2788 
2789 /*
2790  * Called with held (i.e. also locked) pv.  This function will dispose of
2791  * the lock along with the pv.
2792  *
2793  * If the caller already holds the locked parent page table for pv it
2794  * must pass it as pvp, allowing us to avoid a deadlock, else it can
2795  * pass NULL for pvp.
2796  */
2797 static int
2798 pmap_release_pv(pv_entry_t pv, pv_entry_t pvp, pmap_inval_bulk_t *bulk)
2799 {
2800 	vm_page_t p;
2801 
2802 	/*
2803 	 * The pmap is currently not spinlocked, pv is held+locked.
2804 	 * Remove the pv's page from its parent's page table.  The
2805 	 * parent's page table page's wire_count will be decremented.
2806 	 *
2807 	 * This will clean out the pte at any level of the page table.
2808 	 * If smp != 0 all cpus are affected.
2809 	 *
2810 	 * Do not tear-down recursively, its faster to just let the
2811 	 * release run its course.
2812 	 */
2813 	pmap_remove_pv_pte(pv, pvp, bulk, 0);
2814 
2815 	/*
2816 	 * Terminal pvs are unhooked from their vm_pages.  Because
2817 	 * terminal pages aren't page table pages they aren't wired
2818 	 * by us, so we have to be sure not to unwire them either.
2819 	 */
2820 	if (pv->pv_pindex < pmap_pt_pindex(0)) {
2821 		pmap_remove_pv_page(pv);
2822 		goto skip;
2823 	}
2824 
2825 	/*
2826 	 * We leave the top-level page table page cached, wired, and
2827 	 * mapped in the pmap until the dtor function (pmap_puninit())
2828 	 * gets called.
2829 	 *
2830 	 * Since we are leaving the top-level pv intact we need
2831 	 * to break out of what would otherwise be an infinite loop.
2832 	 */
2833 	if (pv->pv_pindex == pmap_pml4_pindex()) {
2834 		pv_put(pv);
2835 		return(-1);
2836 	}
2837 
2838 	/*
2839 	 * For page table pages (other than the top-level page),
2840 	 * remove and free the vm_page.  The representitive mapping
2841 	 * removed above by pmap_remove_pv_pte() did not undo the
2842 	 * last wire_count so we have to do that as well.
2843 	 */
2844 	p = pmap_remove_pv_page(pv);
2845 	vm_page_busy_wait(p, FALSE, "pmaprl");
2846 	if (p->wire_count != 1) {
2847 		kprintf("p->wire_count was %016lx %d\n",
2848 			pv->pv_pindex, p->wire_count);
2849 	}
2850 	KKASSERT(p->wire_count == 1);
2851 	KKASSERT(p->flags & PG_UNMANAGED);
2852 
2853 	vm_page_unwire(p, 0);
2854 	KKASSERT(p->wire_count == 0);
2855 
2856 	vm_page_free(p);
2857 skip:
2858 	pv_free(pv, pvp);
2859 
2860 	return 0;
2861 }
2862 
2863 /*
2864  * This function will remove the pte associated with a pv from its parent.
2865  * Terminal pv's are supported.  All cpus specified by (bulk) are properly
2866  * invalidated.
2867  *
2868  * The wire count will be dropped on the parent page table.  The wire
2869  * count on the page being removed (pv->pv_m) from the parent page table
2870  * is NOT touched.  Note that terminal pages will not have any additional
2871  * wire counts while page table pages will have at least one representing
2872  * the mapping, plus others representing sub-mappings.
2873  *
2874  * NOTE: Cannot be called on kernel page table pages, only KVM terminal
2875  *	 pages and user page table and terminal pages.
2876  *
2877  * NOTE: The pte being removed might be unmanaged, and the pv supplied might
2878  *	 be freshly allocated and not imply that the pte is managed.  In this
2879  *	 case pv->pv_m should be NULL.
2880  *
2881  * The pv must be locked.  The pvp, if supplied, must be locked.  All
2882  * supplied pv's will remain locked on return.
2883  *
2884  * XXX must lock parent pv's if they exist to remove pte XXX
2885  */
2886 static
2887 void
2888 pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp, pmap_inval_bulk_t *bulk,
2889 		   int destroy)
2890 {
2891 	vm_pindex_t ptepindex = pv->pv_pindex;
2892 	pmap_t pmap = pv->pv_pmap;
2893 	vm_page_t p;
2894 	int gotpvp = 0;
2895 
2896 	KKASSERT(pmap);
2897 
2898 	if (ptepindex == pmap_pml4_pindex()) {
2899 		/*
2900 		 * We are the top level PML4E table, there is no parent.
2901 		 */
2902 		p = pmap->pm_pmlpv->pv_m;
2903 		KKASSERT(pv->pv_m == p);	/* debugging */
2904 	} else if (ptepindex >= pmap_pdp_pindex(0)) {
2905 		/*
2906 		 * Remove a PDP page from the PML4E.  This can only occur
2907 		 * with user page tables.  We do not have to lock the
2908 		 * pml4 PV so just ignore pvp.
2909 		 */
2910 		vm_pindex_t pml4_pindex;
2911 		vm_pindex_t pdp_index;
2912 		pml4_entry_t *pdp;
2913 
2914 		pdp_index = ptepindex - pmap_pdp_pindex(0);
2915 		if (pvp == NULL) {
2916 			pml4_pindex = pmap_pml4_pindex();
2917 			pvp = pv_get(pv->pv_pmap, pml4_pindex, NULL);
2918 			KKASSERT(pvp);
2919 			gotpvp = 1;
2920 		}
2921 
2922 		pdp = &pmap->pm_pml4[pdp_index & ((1ul << NPML4EPGSHIFT) - 1)];
2923 		KKASSERT((*pdp & pmap->pmap_bits[PG_V_IDX]) != 0);
2924 		p = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
2925 		pmap_inval_bulk(bulk, (vm_offset_t)-1, pdp, 0);
2926 		KKASSERT(pv->pv_m == p);	/* debugging */
2927 	} else if (ptepindex >= pmap_pd_pindex(0)) {
2928 		/*
2929 		 * Remove a PD page from the PDP
2930 		 *
2931 		 * SIMPLE PMAP NOTE: Non-existant pvp's are ok in the case
2932 		 *		     of a simple pmap because it stops at
2933 		 *		     the PD page.
2934 		 */
2935 		vm_pindex_t pdp_pindex;
2936 		vm_pindex_t pd_index;
2937 		pdp_entry_t *pd;
2938 
2939 		pd_index = ptepindex - pmap_pd_pindex(0);
2940 
2941 		if (pvp == NULL) {
2942 			pdp_pindex = NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
2943 				     (pd_index >> NPML4EPGSHIFT);
2944 			pvp = pv_get(pv->pv_pmap, pdp_pindex, NULL);
2945 			gotpvp = 1;
2946 		}
2947 
2948 		if (pvp) {
2949 			pd = pv_pte_lookup(pvp, pd_index &
2950 						((1ul << NPDPEPGSHIFT) - 1));
2951 			KKASSERT((*pd & pmap->pmap_bits[PG_V_IDX]) != 0);
2952 			p = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
2953 			pmap_inval_bulk(bulk, (vm_offset_t)-1, pd, 0);
2954 		} else {
2955 			KKASSERT(pmap->pm_flags & PMAP_FLAG_SIMPLE);
2956 			p = pv->pv_m;		/* degenerate test later */
2957 		}
2958 		KKASSERT(pv->pv_m == p);	/* debugging */
2959 	} else if (ptepindex >= pmap_pt_pindex(0)) {
2960 		/*
2961 		 *  Remove a PT page from the PD
2962 		 */
2963 		vm_pindex_t pd_pindex;
2964 		vm_pindex_t pt_index;
2965 		pd_entry_t *pt;
2966 
2967 		pt_index = ptepindex - pmap_pt_pindex(0);
2968 
2969 		if (pvp == NULL) {
2970 			pd_pindex = NUPTE_TOTAL + NUPT_TOTAL +
2971 				    (pt_index >> NPDPEPGSHIFT);
2972 			pvp = pv_get(pv->pv_pmap, pd_pindex, NULL);
2973 			KKASSERT(pvp);
2974 			gotpvp = 1;
2975 		}
2976 
2977 		pt = pv_pte_lookup(pvp, pt_index & ((1ul << NPDPEPGSHIFT) - 1));
2978 #if 0
2979 		KASSERT((*pt & pmap->pmap_bits[PG_V_IDX]) != 0,
2980 			("*pt unexpectedly invalid %016jx "
2981 			 "gotpvp=%d ptepindex=%ld ptindex=%ld pv=%p pvp=%p",
2982 			*pt, gotpvp, ptepindex, pt_index, pv, pvp));
2983 		p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
2984 #else
2985 		if ((*pt & pmap->pmap_bits[PG_V_IDX]) == 0) {
2986 			kprintf("*pt unexpectedly invalid %016jx "
2987 			        "gotpvp=%d ptepindex=%ld ptindex=%ld "
2988 				"pv=%p pvp=%p\n",
2989 				*pt, gotpvp, ptepindex, pt_index, pv, pvp);
2990 			tsleep(pt, 0, "DEAD", 0);
2991 			p = pv->pv_m;
2992 		} else {
2993 			p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
2994 		}
2995 #endif
2996 		pmap_inval_bulk(bulk, (vm_offset_t)-1, pt, 0);
2997 		KKASSERT(pv->pv_m == p);	/* debugging */
2998 	} else {
2999 		/*
3000 		 * Remove a PTE from the PT page.  The PV might exist even if
3001 		 * the PTE is not managed, in whichcase pv->pv_m should be
3002 		 * NULL.
3003 		 *
3004 		 * NOTE: Userland pmaps manage the parent PT/PD/PDP page
3005 		 *	 table pages but the kernel_pmap does not.
3006 		 *
3007 		 * NOTE: pv's must be locked bottom-up to avoid deadlocking.
3008 		 *	 pv is a pte_pv so we can safely lock pt_pv.
3009 		 *
3010 		 * NOTE: FICTITIOUS pages may have multiple physical mappings
3011 		 *	 so PHYS_TO_VM_PAGE() will not necessarily work for
3012 		 *	 terminal ptes.
3013 		 */
3014 		vm_pindex_t pt_pindex;
3015 		pt_entry_t *ptep;
3016 		pt_entry_t pte;
3017 		vm_offset_t va;
3018 
3019 		pt_pindex = ptepindex >> NPTEPGSHIFT;
3020 		va = (vm_offset_t)ptepindex << PAGE_SHIFT;
3021 
3022 		if (ptepindex >= NUPTE_USER) {
3023 			ptep = vtopte(ptepindex << PAGE_SHIFT);
3024 			KKASSERT(pvp == NULL);
3025 			/* pvp remains NULL */
3026 		} else {
3027 			if (pvp == NULL) {
3028 				pt_pindex = NUPTE_TOTAL +
3029 					    (ptepindex >> NPDPEPGSHIFT);
3030 				pvp = pv_get(pv->pv_pmap, pt_pindex, NULL);
3031 				KKASSERT(pvp);
3032 				gotpvp = 1;
3033 			}
3034 			ptep = pv_pte_lookup(pvp, ptepindex &
3035 						  ((1ul << NPDPEPGSHIFT) - 1));
3036 		}
3037 		pte = pmap_inval_bulk(bulk, va, ptep, 0);
3038 		if (bulk == NULL)		/* XXX */
3039 			cpu_invlpg((void *)va);	/* XXX */
3040 
3041 		/*
3042 		 * Now update the vm_page_t
3043 		 */
3044 		if ((pte & pmap->pmap_bits[PG_MANAGED_IDX]) &&
3045 		    (pte & pmap->pmap_bits[PG_V_IDX])) {
3046 			/*
3047 			 * Valid managed page, adjust (p).
3048 			 */
3049 			if (pte & pmap->pmap_bits[PG_DEVICE_IDX]) {
3050 				p = pv->pv_m;
3051 			} else {
3052 				p = PHYS_TO_VM_PAGE(pte & PG_FRAME);
3053 				KKASSERT(pv->pv_m == p);
3054 			}
3055 			if (pte & pmap->pmap_bits[PG_M_IDX]) {
3056 				if (pmap_track_modified(ptepindex))
3057 					vm_page_dirty(p);
3058 			}
3059 			if (pte & pmap->pmap_bits[PG_A_IDX]) {
3060 				vm_page_flag_set(p, PG_REFERENCED);
3061 			}
3062 		} else {
3063 			/*
3064 			 * Unmanaged page, do not try to adjust the vm_page_t.
3065 			 * pv could be freshly allocated for a pmap_enter(),
3066 			 * replacing an unmanaged page with a managed one.
3067 			 *
3068 			 * pv->pv_m might reflect the new page and not the
3069 			 * existing page.
3070 			 *
3071 			 * We could extract p from the physical address and
3072 			 * adjust it but we explicitly do not for unmanaged
3073 			 * pages.
3074 			 */
3075 			p = NULL;
3076 		}
3077 		if (pte & pmap->pmap_bits[PG_W_IDX])
3078 			atomic_add_long(&pmap->pm_stats.wired_count, -1);
3079 		if (pte & pmap->pmap_bits[PG_G_IDX])
3080 			cpu_invlpg((void *)va);
3081 	}
3082 
3083 	/*
3084 	 * If requested, scrap the underlying pv->pv_m and the underlying
3085 	 * pv.  If this is a page-table-page we must also free the page.
3086 	 *
3087 	 * pvp must be returned locked.
3088 	 */
3089 	if (destroy == 1) {
3090 		/*
3091 		 * page table page (PT, PD, PDP, PML4), caller was responsible
3092 		 * for testing wired_count.
3093 		 */
3094 		KKASSERT(pv->pv_m->wire_count == 1);
3095 		p = pmap_remove_pv_page(pv);
3096 		pv_free(pv, pvp);
3097 		pv = NULL;
3098 
3099 		vm_page_busy_wait(p, FALSE, "pgpun");
3100 		vm_page_unwire(p, 0);
3101 		vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
3102 		vm_page_free(p);
3103 	} else if (destroy == 2) {
3104 		/*
3105 		 * Normal page, remove from pmap and leave the underlying
3106 		 * page untouched.
3107 		 */
3108 		pmap_remove_pv_page(pv);
3109 		pv_free(pv, pvp);
3110 		pv = NULL;		/* safety */
3111 	}
3112 
3113 	/*
3114 	 * If we acquired pvp ourselves then we are responsible for
3115 	 * recursively deleting it.
3116 	 */
3117 	if (pvp && gotpvp) {
3118 		/*
3119 		 * Recursively destroy higher-level page tables.
3120 		 *
3121 		 * This is optional.  If we do not, they will still
3122 		 * be destroyed when the process exits.
3123 		 *
3124 		 * NOTE: Do not destroy pv_entry's with extra hold refs,
3125 		 *	 a caller may have unlocked it and intends to
3126 		 *	 continue to use it.
3127 		 */
3128 		if (pmap_dynamic_delete &&
3129 		    pvp->pv_m &&
3130 		    pvp->pv_m->wire_count == 1 &&
3131 		    (pvp->pv_hold & PV_HOLD_MASK) == 2 &&
3132 		    pvp->pv_pindex != pmap_pml4_pindex()) {
3133 			if (pmap_dynamic_delete == 2)
3134 				kprintf("A %jd %08x\n", pvp->pv_pindex, pvp->pv_hold);
3135 			if (pmap != &kernel_pmap) {
3136 				pmap_remove_pv_pte(pvp, NULL, bulk, 1);
3137 				pvp = NULL;	/* safety */
3138 			} else {
3139 				kprintf("Attempt to remove kernel_pmap pindex "
3140 					"%jd\n", pvp->pv_pindex);
3141 				pv_put(pvp);
3142 			}
3143 		} else {
3144 			pv_put(pvp);
3145 		}
3146 	}
3147 }
3148 
3149 /*
3150  * Remove the vm_page association to a pv.  The pv must be locked.
3151  */
3152 static
3153 vm_page_t
3154 pmap_remove_pv_page(pv_entry_t pv)
3155 {
3156 	vm_page_t m;
3157 
3158 	m = pv->pv_m;
3159 	vm_page_spin_lock(m);
3160 	KKASSERT(m && m == pv->pv_m);
3161 	pv->pv_m = NULL;
3162 	TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3163 	pmap_page_stats_deleting(m);
3164 	if (TAILQ_EMPTY(&m->md.pv_list))
3165 		vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
3166 	vm_page_spin_unlock(m);
3167 
3168 	return(m);
3169 }
3170 
3171 /*
3172  * Grow the number of kernel page table entries, if needed.
3173  *
3174  * This routine is always called to validate any address space
3175  * beyond KERNBASE (for kldloads).  kernel_vm_end only governs the address
3176  * space below KERNBASE.
3177  *
3178  * kernel_map must be locked exclusively by the caller.
3179  */
3180 void
3181 pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
3182 {
3183 	vm_paddr_t paddr;
3184 	vm_offset_t ptppaddr;
3185 	vm_page_t nkpg;
3186 	pd_entry_t *pt, newpt;
3187 	pdp_entry_t *pd, newpd;
3188 	int update_kernel_vm_end;
3189 
3190 	/*
3191 	 * bootstrap kernel_vm_end on first real VM use
3192 	 */
3193 	if (kernel_vm_end == 0) {
3194 		kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
3195 
3196 		for (;;) {
3197 			pt = pmap_pt(&kernel_pmap, kernel_vm_end);
3198 			if (pt == NULL)
3199 				break;
3200 			if ((*pt & kernel_pmap.pmap_bits[PG_V_IDX]) == 0)
3201 				break;
3202 			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
3203 					~(vm_offset_t)(PAGE_SIZE * NPTEPG - 1);
3204 			if (kernel_vm_end - 1 >= kernel_map.max_offset) {
3205 				kernel_vm_end = kernel_map.max_offset;
3206 				break;
3207 			}
3208 		}
3209 	}
3210 
3211 	/*
3212 	 * Fill in the gaps.  kernel_vm_end is only adjusted for ranges
3213 	 * below KERNBASE.  Ranges above KERNBASE are kldloaded and we
3214 	 * do not want to force-fill 128G worth of page tables.
3215 	 */
3216 	if (kstart < KERNBASE) {
3217 		if (kstart > kernel_vm_end)
3218 			kstart = kernel_vm_end;
3219 		KKASSERT(kend <= KERNBASE);
3220 		update_kernel_vm_end = 1;
3221 	} else {
3222 		update_kernel_vm_end = 0;
3223 	}
3224 
3225 	kstart = rounddown2(kstart, (vm_offset_t)(PAGE_SIZE * NPTEPG));
3226 	kend = roundup2(kend, (vm_offset_t)(PAGE_SIZE * NPTEPG));
3227 
3228 	if (kend - 1 >= kernel_map.max_offset)
3229 		kend = kernel_map.max_offset;
3230 
3231 	while (kstart < kend) {
3232 		pt = pmap_pt(&kernel_pmap, kstart);
3233 		if (pt == NULL) {
3234 			/*
3235 			 * We need a new PD entry
3236 			 */
3237 			nkpg = vm_page_alloc(NULL, mycpu->gd_rand_incr++,
3238 			                     VM_ALLOC_NORMAL |
3239 					     VM_ALLOC_SYSTEM |
3240 					     VM_ALLOC_INTERRUPT);
3241 			if (nkpg == NULL) {
3242 				panic("pmap_growkernel: no memory to grow "
3243 				      "kernel");
3244 			}
3245 			paddr = VM_PAGE_TO_PHYS(nkpg);
3246 			pmap_zero_page(paddr);
3247 			pd = pmap_pd(&kernel_pmap, kstart);
3248 
3249 			newpd = (pdp_entry_t)
3250 			    (paddr |
3251 			    kernel_pmap.pmap_bits[PG_V_IDX] |
3252 			    kernel_pmap.pmap_bits[PG_RW_IDX] |
3253 			    kernel_pmap.pmap_bits[PG_A_IDX] |
3254 			    kernel_pmap.pmap_bits[PG_M_IDX]);
3255 			atomic_swap_long(pd, newpd);
3256 
3257 #if 0
3258 			kprintf("NEWPD pd=%p pde=%016jx phys=%016jx\n",
3259 				pd, newpd, paddr);
3260 #endif
3261 
3262 			continue; /* try again */
3263 		}
3264 
3265 		if ((*pt & kernel_pmap.pmap_bits[PG_V_IDX]) != 0) {
3266 			kstart = (kstart + PAGE_SIZE * NPTEPG) &
3267 				 ~(vm_offset_t)(PAGE_SIZE * NPTEPG - 1);
3268 			if (kstart - 1 >= kernel_map.max_offset) {
3269 				kstart = kernel_map.max_offset;
3270 				break;
3271 			}
3272 			continue;
3273 		}
3274 
3275 		/*
3276 		 * We need a new PT
3277 		 *
3278 		 * This index is bogus, but out of the way
3279 		 */
3280 		nkpg = vm_page_alloc(NULL, mycpu->gd_rand_incr++,
3281 				     VM_ALLOC_NORMAL |
3282 				     VM_ALLOC_SYSTEM |
3283 				     VM_ALLOC_INTERRUPT);
3284 		if (nkpg == NULL)
3285 			panic("pmap_growkernel: no memory to grow kernel");
3286 
3287 		vm_page_wire(nkpg);
3288 		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
3289 		pmap_zero_page(ptppaddr);
3290 		newpt = (pd_entry_t)(ptppaddr |
3291 				     kernel_pmap.pmap_bits[PG_V_IDX] |
3292 				     kernel_pmap.pmap_bits[PG_RW_IDX] |
3293 				     kernel_pmap.pmap_bits[PG_A_IDX] |
3294 				     kernel_pmap.pmap_bits[PG_M_IDX]);
3295 		atomic_swap_long(pt, newpt);
3296 
3297 		kstart = (kstart + PAGE_SIZE * NPTEPG) &
3298 			  ~(vm_offset_t)(PAGE_SIZE * NPTEPG - 1);
3299 
3300 		if (kstart - 1 >= kernel_map.max_offset) {
3301 			kstart = kernel_map.max_offset;
3302 			break;
3303 		}
3304 	}
3305 
3306 	/*
3307 	 * Only update kernel_vm_end for areas below KERNBASE.
3308 	 */
3309 	if (update_kernel_vm_end && kernel_vm_end < kstart)
3310 		kernel_vm_end = kstart;
3311 }
3312 
3313 /*
3314  *	Add a reference to the specified pmap.
3315  */
3316 void
3317 pmap_reference(pmap_t pmap)
3318 {
3319 	if (pmap != NULL)
3320 		atomic_add_int(&pmap->pm_count, 1);
3321 }
3322 
3323 /***************************************************
3324  * page management routines.
3325  ***************************************************/
3326 
3327 /*
3328  * Hold a pv without locking it
3329  */
3330 static void
3331 pv_hold(pv_entry_t pv)
3332 {
3333 	atomic_add_int(&pv->pv_hold, 1);
3334 }
3335 
3336 /*
3337  * Hold a pv_entry, preventing its destruction.  TRUE is returned if the pv
3338  * was successfully locked, FALSE if it wasn't.  The caller must dispose of
3339  * the pv properly.
3340  *
3341  * Either the pmap->pm_spin or the related vm_page_spin (if traversing a
3342  * pv list via its page) must be held by the caller in order to stabilize
3343  * the pv.
3344  */
3345 static int
3346 _pv_hold_try(pv_entry_t pv PMAP_DEBUG_DECL)
3347 {
3348 	u_int count;
3349 
3350 	/*
3351 	 * Critical path shortcut expects pv to already have one ref
3352 	 * (for the pv->pv_pmap).
3353 	 */
3354 	if (atomic_cmpset_int(&pv->pv_hold, 1, PV_HOLD_LOCKED | 2)) {
3355 #ifdef PMAP_DEBUG
3356 		pv->pv_func = func;
3357 		pv->pv_line = lineno;
3358 #endif
3359 		return TRUE;
3360 	}
3361 
3362 	for (;;) {
3363 		count = pv->pv_hold;
3364 		cpu_ccfence();
3365 		if ((count & PV_HOLD_LOCKED) == 0) {
3366 			if (atomic_cmpset_int(&pv->pv_hold, count,
3367 					      (count + 1) | PV_HOLD_LOCKED)) {
3368 #ifdef PMAP_DEBUG
3369 				pv->pv_func = func;
3370 				pv->pv_line = lineno;
3371 #endif
3372 				return TRUE;
3373 			}
3374 		} else {
3375 			if (atomic_cmpset_int(&pv->pv_hold, count, count + 1))
3376 				return FALSE;
3377 		}
3378 		/* retry */
3379 	}
3380 }
3381 
3382 /*
3383  * Drop a previously held pv_entry which could not be locked, allowing its
3384  * destruction.
3385  *
3386  * Must not be called with a spinlock held as we might zfree() the pv if it
3387  * is no longer associated with a pmap and this was the last hold count.
3388  */
3389 static void
3390 pv_drop(pv_entry_t pv)
3391 {
3392 	u_int count;
3393 
3394 	for (;;) {
3395 		count = pv->pv_hold;
3396 		cpu_ccfence();
3397 		KKASSERT((count & PV_HOLD_MASK) > 0);
3398 		KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) !=
3399 			 (PV_HOLD_LOCKED | 1));
3400 		if (atomic_cmpset_int(&pv->pv_hold, count, count - 1)) {
3401 			if ((count & PV_HOLD_MASK) == 1) {
3402 #ifdef PMAP_DEBUG2
3403 				if (pmap_enter_debug > 0) {
3404 					--pmap_enter_debug;
3405 					kprintf("pv_drop: free pv %p\n", pv);
3406 				}
3407 #endif
3408 				KKASSERT(count == 1);
3409 				KKASSERT(pv->pv_pmap == NULL);
3410 				zfree(pvzone, pv);
3411 			}
3412 			return;
3413 		}
3414 		/* retry */
3415 	}
3416 }
3417 
3418 /*
3419  * Find or allocate the requested PV entry, returning a locked, held pv.
3420  *
3421  * If (*isnew) is non-zero, the returned pv will have two hold counts, one
3422  * for the caller and one representing the pmap and vm_page association.
3423  *
3424  * If (*isnew) is zero, the returned pv will have only one hold count.
3425  *
3426  * Since both associations can only be adjusted while the pv is locked,
3427  * together they represent just one additional hold.
3428  */
3429 static
3430 pv_entry_t
3431 _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew PMAP_DEBUG_DECL)
3432 {
3433 	struct mdglobaldata *md = mdcpu;
3434 	pv_entry_t pv;
3435 	pv_entry_t pnew;
3436 	int pmap_excl = 0;
3437 
3438 	pnew = NULL;
3439 	if (md->gd_newpv) {
3440 #if 1
3441 		pnew = atomic_swap_ptr((void *)&md->gd_newpv, NULL);
3442 #else
3443 		crit_enter();
3444 		pnew = md->gd_newpv;	/* might race NULL */
3445 		md->gd_newpv = NULL;
3446 		crit_exit();
3447 #endif
3448 	}
3449 	if (pnew == NULL)
3450 		pnew = zalloc(pvzone);
3451 
3452 	spin_lock_shared(&pmap->pm_spin);
3453 	for (;;) {
3454 		/*
3455 		 * Shortcut cache
3456 		 */
3457 		pv = pv_entry_lookup(pmap, pindex);
3458 		if (pv == NULL) {
3459 			vm_pindex_t *pmark;
3460 
3461 			/*
3462 			 * Requires exclusive pmap spinlock
3463 			 */
3464 			if (pmap_excl == 0) {
3465 				pmap_excl = 1;
3466 				if (!spin_lock_upgrade_try(&pmap->pm_spin)) {
3467 					spin_unlock_shared(&pmap->pm_spin);
3468 					spin_lock(&pmap->pm_spin);
3469 					continue;
3470 				}
3471 			}
3472 
3473 			/*
3474 			 * We need to block if someone is holding our
3475 			 * placemarker.  As long as we determine the
3476 			 * placemarker has not been aquired we do not
3477 			 * need to get it as acquision also requires
3478 			 * the pmap spin lock.
3479 			 *
3480 			 * However, we can race the wakeup.
3481 			 */
3482 			pmark = pmap_placemarker_hash(pmap, pindex);
3483 
3484 			if (((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
3485 				atomic_set_long(pmark, PM_PLACEMARK_WAKEUP);
3486 				tsleep_interlock(pmark, 0);
3487 				if (((*pmark ^ pindex) &
3488 				     ~PM_PLACEMARK_WAKEUP) == 0) {
3489 					spin_unlock(&pmap->pm_spin);
3490 					tsleep(pmark, PINTERLOCKED, "pvplc", 0);
3491 					spin_lock(&pmap->pm_spin);
3492 				}
3493 				continue;
3494 			}
3495 
3496 			/*
3497 			 * Setup the new entry
3498 			 */
3499 			pnew->pv_pmap = pmap;
3500 			pnew->pv_pindex = pindex;
3501 			pnew->pv_hold = PV_HOLD_LOCKED | 2;
3502 #ifdef PMAP_DEBUG
3503 			pnew->pv_func = func;
3504 			pnew->pv_line = lineno;
3505 			if (pnew->pv_line_lastfree > 0) {
3506 				pnew->pv_line_lastfree =
3507 						-pnew->pv_line_lastfree;
3508 			}
3509 #endif
3510 			pv = pv_entry_rb_tree_RB_INSERT(&pmap->pm_pvroot, pnew);
3511 			atomic_add_long(&pmap->pm_stats.resident_count, 1);
3512 			spin_unlock(&pmap->pm_spin);
3513 			*isnew = 1;
3514 
3515 			KKASSERT(pv == NULL);
3516 			return(pnew);
3517 		}
3518 
3519 		/*
3520 		 * We already have an entry, cleanup the staged pnew if
3521 		 * we can get the lock, otherwise block and retry.
3522 		 */
3523 		if (__predict_true(_pv_hold_try(pv PMAP_DEBUG_COPY))) {
3524 			if (pmap_excl)
3525 				spin_unlock(&pmap->pm_spin);
3526 			else
3527 				spin_unlock_shared(&pmap->pm_spin);
3528 #if 1
3529 			pnew = atomic_swap_ptr((void *)&md->gd_newpv, pnew);
3530 			if (pnew)
3531 				zfree(pvzone, pnew);
3532 #else
3533 			crit_enter();
3534 			if (md->gd_newpv == NULL)
3535 				md->gd_newpv = pnew;
3536 			else
3537 				zfree(pvzone, pnew);
3538 			crit_exit();
3539 #endif
3540 			KKASSERT(pv->pv_pmap == pmap &&
3541 				 pv->pv_pindex == pindex);
3542 			*isnew = 0;
3543 			return(pv);
3544 		}
3545 		if (pmap_excl) {
3546 			spin_unlock(&pmap->pm_spin);
3547 			_pv_lock(pv PMAP_DEBUG_COPY);
3548 			pv_put(pv);
3549 			spin_lock(&pmap->pm_spin);
3550 		} else {
3551 			spin_unlock_shared(&pmap->pm_spin);
3552 			_pv_lock(pv PMAP_DEBUG_COPY);
3553 			pv_put(pv);
3554 			spin_lock_shared(&pmap->pm_spin);
3555 		}
3556 	}
3557 	/* NOT REACHED */
3558 }
3559 
3560 /*
3561  * Find the requested PV entry, returning a locked+held pv or NULL
3562  */
3563 static
3564 pv_entry_t
3565 _pv_get(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp PMAP_DEBUG_DECL)
3566 {
3567 	pv_entry_t pv;
3568 	int pmap_excl = 0;
3569 
3570 	spin_lock_shared(&pmap->pm_spin);
3571 	for (;;) {
3572 		/*
3573 		 * Shortcut cache
3574 		 */
3575 		pv = pv_entry_lookup(pmap, pindex);
3576 		if (pv == NULL) {
3577 			/*
3578 			 * Block if there is ANY placemarker.  If we are to
3579 			 * return it, we must also aquire the spot, so we
3580 			 * have to block even if the placemarker is held on
3581 			 * a different address.
3582 			 *
3583 			 * OPTIMIZATION: If pmarkp is passed as NULL the
3584 			 * caller is just probing (or looking for a real
3585 			 * pv_entry), and in this case we only need to check
3586 			 * to see if the placemarker matches pindex.
3587 			 */
3588 			vm_pindex_t *pmark;
3589 
3590 			/*
3591 			 * Requires exclusive pmap spinlock
3592 			 */
3593 			if (pmap_excl == 0) {
3594 				pmap_excl = 1;
3595 				if (!spin_lock_upgrade_try(&pmap->pm_spin)) {
3596 					spin_unlock_shared(&pmap->pm_spin);
3597 					spin_lock(&pmap->pm_spin);
3598 					continue;
3599 				}
3600 			}
3601 
3602 			pmark = pmap_placemarker_hash(pmap, pindex);
3603 
3604 			if ((pmarkp && *pmark != PM_NOPLACEMARK) ||
3605 			    ((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
3606 				atomic_set_long(pmark, PM_PLACEMARK_WAKEUP);
3607 				tsleep_interlock(pmark, 0);
3608 				if ((pmarkp && *pmark != PM_NOPLACEMARK) ||
3609 				    ((*pmark ^ pindex) &
3610 				     ~PM_PLACEMARK_WAKEUP) == 0) {
3611 					spin_unlock(&pmap->pm_spin);
3612 					tsleep(pmark, PINTERLOCKED, "pvpld", 0);
3613 					spin_lock(&pmap->pm_spin);
3614 				}
3615 				continue;
3616 			}
3617 			if (pmarkp) {
3618 				if (atomic_swap_long(pmark, pindex) !=
3619 				    PM_NOPLACEMARK) {
3620 					panic("_pv_get: pmark race");
3621 				}
3622 				*pmarkp = pmark;
3623 			}
3624 			spin_unlock(&pmap->pm_spin);
3625 			return NULL;
3626 		}
3627 		if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
3628 			pv_cache(pv, pindex);
3629 			if (pmap_excl)
3630 				spin_unlock(&pmap->pm_spin);
3631 			else
3632 				spin_unlock_shared(&pmap->pm_spin);
3633 			KKASSERT(pv->pv_pmap == pmap &&
3634 				 pv->pv_pindex == pindex);
3635 			return(pv);
3636 		}
3637 		if (pmap_excl) {
3638 			spin_unlock(&pmap->pm_spin);
3639 			_pv_lock(pv PMAP_DEBUG_COPY);
3640 			pv_put(pv);
3641 			spin_lock(&pmap->pm_spin);
3642 		} else {
3643 			spin_unlock_shared(&pmap->pm_spin);
3644 			_pv_lock(pv PMAP_DEBUG_COPY);
3645 			pv_put(pv);
3646 			spin_lock_shared(&pmap->pm_spin);
3647 		}
3648 	}
3649 }
3650 
3651 /*
3652  * Lookup, hold, and attempt to lock (pmap,pindex).
3653  *
3654  * If the entry does not exist NULL is returned and *errorp is set to 0
3655  *
3656  * If the entry exists and could be successfully locked it is returned and
3657  * errorp is set to 0.
3658  *
3659  * If the entry exists but could NOT be successfully locked it is returned
3660  * held and *errorp is set to 1.
3661  *
3662  * If the entry is placemarked by someone else NULL is returned and *errorp
3663  * is set to 1.
3664  */
3665 static
3666 pv_entry_t
3667 pv_get_try(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp, int *errorp)
3668 {
3669 	pv_entry_t pv;
3670 
3671 	spin_lock_shared(&pmap->pm_spin);
3672 
3673 	pv = pv_entry_lookup(pmap, pindex);
3674 	if (pv == NULL) {
3675 		vm_pindex_t *pmark;
3676 
3677 		pmark = pmap_placemarker_hash(pmap, pindex);
3678 
3679 		if (((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
3680 			*errorp = 1;
3681 		} else if (pmarkp &&
3682 			   atomic_cmpset_long(pmark, PM_NOPLACEMARK, pindex)) {
3683 			*errorp = 0;
3684 		} else {
3685 			/*
3686 			 * Can't set a placemark with a NULL pmarkp, or if
3687 			 * pmarkp is non-NULL but we failed to set our
3688 			 * placemark.
3689 			 */
3690 			*errorp = 1;
3691 		}
3692 		if (pmarkp)
3693 			*pmarkp = pmark;
3694 		spin_unlock_shared(&pmap->pm_spin);
3695 
3696 		return NULL;
3697 	}
3698 
3699 	/*
3700 	 * XXX This has problems if the lock is shared, why?
3701 	 */
3702 	if (pv_hold_try(pv)) {
3703 		pv_cache(pv, pindex);	/* overwrite ok (shared lock) */
3704 		spin_unlock_shared(&pmap->pm_spin);
3705 		*errorp = 0;
3706 		KKASSERT(pv->pv_pmap == pmap && pv->pv_pindex == pindex);
3707 		return(pv);	/* lock succeeded */
3708 	}
3709 	spin_unlock_shared(&pmap->pm_spin);
3710 	*errorp = 1;
3711 
3712 	return (pv);		/* lock failed */
3713 }
3714 
3715 /*
3716  * Lock a held pv, keeping the hold count
3717  */
3718 static
3719 void
3720 _pv_lock(pv_entry_t pv PMAP_DEBUG_DECL)
3721 {
3722 	u_int count;
3723 
3724 	for (;;) {
3725 		count = pv->pv_hold;
3726 		cpu_ccfence();
3727 		if ((count & PV_HOLD_LOCKED) == 0) {
3728 			if (atomic_cmpset_int(&pv->pv_hold, count,
3729 					      count | PV_HOLD_LOCKED)) {
3730 #ifdef PMAP_DEBUG
3731 				pv->pv_func = func;
3732 				pv->pv_line = lineno;
3733 #endif
3734 				return;
3735 			}
3736 			continue;
3737 		}
3738 		tsleep_interlock(pv, 0);
3739 		if (atomic_cmpset_int(&pv->pv_hold, count,
3740 				      count | PV_HOLD_WAITING)) {
3741 #ifdef PMAP_DEBUG2
3742 			if (pmap_enter_debug > 0) {
3743 				--pmap_enter_debug;
3744 				kprintf("pv waiting on %s:%d\n",
3745 					pv->pv_func, pv->pv_line);
3746 			}
3747 #endif
3748 			tsleep(pv, PINTERLOCKED, "pvwait", hz);
3749 		}
3750 		/* retry */
3751 	}
3752 }
3753 
3754 /*
3755  * Unlock a held and locked pv, keeping the hold count.
3756  */
3757 static
3758 void
3759 pv_unlock(pv_entry_t pv)
3760 {
3761 	u_int count;
3762 
3763 	for (;;) {
3764 		count = pv->pv_hold;
3765 		cpu_ccfence();
3766 		KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) >=
3767 			 (PV_HOLD_LOCKED | 1));
3768 		if (atomic_cmpset_int(&pv->pv_hold, count,
3769 				      count &
3770 				      ~(PV_HOLD_LOCKED | PV_HOLD_WAITING))) {
3771 			if (count & PV_HOLD_WAITING)
3772 				wakeup(pv);
3773 			break;
3774 		}
3775 	}
3776 }
3777 
3778 /*
3779  * Unlock and drop a pv.  If the pv is no longer associated with a pmap
3780  * and the hold count drops to zero we will free it.
3781  *
3782  * Caller should not hold any spin locks.  We are protected from hold races
3783  * by virtue of holds only occuring only with a pmap_spin or vm_page_spin
3784  * lock held.  A pv cannot be located otherwise.
3785  */
3786 static
3787 void
3788 pv_put(pv_entry_t pv)
3789 {
3790 #ifdef PMAP_DEBUG2
3791 	if (pmap_enter_debug > 0) {
3792 		--pmap_enter_debug;
3793 		kprintf("pv_put pv=%p hold=%08x\n", pv, pv->pv_hold);
3794 	}
3795 #endif
3796 
3797 	/*
3798 	 * Normal put-aways must have a pv_m associated with the pv,
3799 	 * but allow the case where the pv has been destructed due
3800 	 * to pmap_dynamic_delete.
3801 	 */
3802 	KKASSERT(pv->pv_pmap == NULL || pv->pv_m != NULL);
3803 
3804 	/*
3805 	 * Fast - shortcut most common condition
3806 	 */
3807 	if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 1))
3808 		return;
3809 
3810 	/*
3811 	 * Slow
3812 	 */
3813 	pv_unlock(pv);
3814 	pv_drop(pv);
3815 }
3816 
3817 /*
3818  * Remove the pmap association from a pv, require that pv_m already be removed,
3819  * then unlock and drop the pv.  Any pte operations must have already been
3820  * completed.  This call may result in a last-drop which will physically free
3821  * the pv.
3822  *
3823  * Removing the pmap association entails an additional drop.
3824  *
3825  * pv must be exclusively locked on call and will be disposed of on return.
3826  */
3827 static
3828 void
3829 _pv_free(pv_entry_t pv, pv_entry_t pvp PMAP_DEBUG_DECL)
3830 {
3831 	pmap_t pmap;
3832 
3833 #ifdef PMAP_DEBUG
3834 	pv->pv_func_lastfree = func;
3835 	pv->pv_line_lastfree = lineno;
3836 #endif
3837 	KKASSERT(pv->pv_m == NULL);
3838 	KKASSERT((pv->pv_hold & (PV_HOLD_LOCKED|PV_HOLD_MASK)) >=
3839 		  (PV_HOLD_LOCKED|1));
3840 	if ((pmap = pv->pv_pmap) != NULL) {
3841 		spin_lock(&pmap->pm_spin);
3842 		KKASSERT(pv->pv_pmap == pmap);
3843 		if (pmap->pm_pvhint_pt == pv)
3844 			pmap->pm_pvhint_pt = NULL;
3845 		if (pmap->pm_pvhint_pte == pv)
3846 			pmap->pm_pvhint_pte = NULL;
3847 		pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
3848 		atomic_add_long(&pmap->pm_stats.resident_count, -1);
3849 		pv->pv_pmap = NULL;
3850 		pv->pv_pindex = 0;
3851 		spin_unlock(&pmap->pm_spin);
3852 
3853 		/*
3854 		 * Try to shortcut three atomic ops, otherwise fall through
3855 		 * and do it normally.  Drop two refs and the lock all in
3856 		 * one go.
3857 		 */
3858 		if (pvp)
3859 			vm_page_unwire_quick(pvp->pv_m);
3860 		if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 0)) {
3861 #ifdef PMAP_DEBUG2
3862 			if (pmap_enter_debug > 0) {
3863 				--pmap_enter_debug;
3864 				kprintf("pv_free: free pv %p\n", pv);
3865 			}
3866 #endif
3867 			zfree(pvzone, pv);
3868 			return;
3869 		}
3870 		pv_drop(pv);	/* ref for pv_pmap */
3871 	}
3872 	pv_unlock(pv);
3873 	pv_drop(pv);
3874 }
3875 
3876 /*
3877  * This routine is very drastic, but can save the system
3878  * in a pinch.
3879  */
3880 void
3881 pmap_collect(void)
3882 {
3883 	int i;
3884 	vm_page_t m;
3885 	static int warningdone=0;
3886 
3887 	if (pmap_pagedaemon_waken == 0)
3888 		return;
3889 	pmap_pagedaemon_waken = 0;
3890 	if (warningdone < 5) {
3891 		kprintf("pmap_collect: collecting pv entries -- "
3892 			"suggest increasing PMAP_SHPGPERPROC\n");
3893 		warningdone++;
3894 	}
3895 
3896 	for (i = 0; i < vm_page_array_size; i++) {
3897 		m = &vm_page_array[i];
3898 		if (m->wire_count || m->hold_count)
3899 			continue;
3900 		if (vm_page_busy_try(m, TRUE) == 0) {
3901 			if (m->wire_count == 0 && m->hold_count == 0) {
3902 				pmap_remove_all(m);
3903 			}
3904 			vm_page_wakeup(m);
3905 		}
3906 	}
3907 }
3908 
3909 /*
3910  * Scan the pmap for active page table entries and issue a callback.
3911  * The callback must dispose of pte_pv, whos PTE entry is at *ptep in
3912  * its parent page table.
3913  *
3914  * pte_pv will be NULL if the page or page table is unmanaged.
3915  * pt_pv will point to the page table page containing the pte for the page.
3916  *
3917  * NOTE! If we come across an unmanaged page TABLE (verses an unmanaged page),
3918  *	 we pass a NULL pte_pv and we pass a pt_pv pointing to the passed
3919  *	 process pmap's PD and page to the callback function.  This can be
3920  *	 confusing because the pt_pv is really a pd_pv, and the target page
3921  *	 table page is simply aliased by the pmap and not owned by it.
3922  *
3923  * It is assumed that the start and end are properly rounded to the page size.
3924  *
3925  * It is assumed that PD pages and above are managed and thus in the RB tree,
3926  * allowing us to use RB_SCAN from the PD pages down for ranged scans.
3927  */
3928 struct pmap_scan_info {
3929 	struct pmap *pmap;
3930 	vm_offset_t sva;
3931 	vm_offset_t eva;
3932 	vm_pindex_t sva_pd_pindex;
3933 	vm_pindex_t eva_pd_pindex;
3934 	void (*func)(pmap_t, struct pmap_scan_info *,
3935 		     pv_entry_t, vm_pindex_t *, pv_entry_t,
3936 		     int, vm_offset_t,
3937 		     pt_entry_t *, void *);
3938 	void *arg;
3939 	pmap_inval_bulk_t bulk_core;
3940 	pmap_inval_bulk_t *bulk;
3941 	int count;
3942 	int stop;
3943 };
3944 
3945 static int pmap_scan_cmp(pv_entry_t pv, void *data);
3946 static int pmap_scan_callback(pv_entry_t pv, void *data);
3947 
3948 static void
3949 pmap_scan(struct pmap_scan_info *info, int smp_inval)
3950 {
3951 	struct pmap *pmap = info->pmap;
3952 	pv_entry_t pd_pv;	/* A page directory PV */
3953 	pv_entry_t pt_pv;	/* A page table PV */
3954 	pv_entry_t pte_pv;	/* A page table entry PV */
3955 	vm_pindex_t *pte_placemark;
3956 	vm_pindex_t *pt_placemark;
3957 	pt_entry_t *ptep;
3958 	pt_entry_t oldpte;
3959 	struct pv_entry dummy_pv;
3960 
3961 	info->stop = 0;
3962 	if (pmap == NULL)
3963 		return;
3964 	if (info->sva == info->eva)
3965 		return;
3966 	if (smp_inval) {
3967 		info->bulk = &info->bulk_core;
3968 		pmap_inval_bulk_init(&info->bulk_core, pmap);
3969 	} else {
3970 		info->bulk = NULL;
3971 	}
3972 
3973 	/*
3974 	 * Hold the token for stability; if the pmap is empty we have nothing
3975 	 * to do.
3976 	 */
3977 #if 0
3978 	if (pmap->pm_stats.resident_count == 0) {
3979 		return;
3980 	}
3981 #endif
3982 
3983 	info->count = 0;
3984 
3985 	/*
3986 	 * Special handling for scanning one page, which is a very common
3987 	 * operation (it is?).
3988 	 *
3989 	 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4
3990 	 */
3991 	if (info->sva + PAGE_SIZE == info->eva) {
3992 		if (info->sva >= VM_MAX_USER_ADDRESS) {
3993 			/*
3994 			 * Kernel mappings do not track wire counts on
3995 			 * page table pages and only maintain pd_pv and
3996 			 * pte_pv levels so pmap_scan() works.
3997 			 */
3998 			pt_pv = NULL;
3999 			pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva),
4000 					&pte_placemark);
4001 			ptep = vtopte(info->sva);
4002 		} else {
4003 			/*
4004 			 * User pages which are unmanaged will not have a
4005 			 * pte_pv.  User page table pages which are unmanaged
4006 			 * (shared from elsewhere) will also not have a pt_pv.
4007 			 * The func() callback will pass both pte_pv and pt_pv
4008 			 * as NULL in that case.
4009 			 *
4010 			 * We hold pte_placemark across the operation for
4011 			 * unmanaged pages.
4012 			 *
4013 			 * WARNING!  We must hold pt_placemark across the
4014 			 *	     *ptep test to prevent misintepreting
4015 			 *	     a non-zero *ptep as a shared page
4016 			 *	     table page.  Hold it across the function
4017 			 *	     callback as well for SMP safety.
4018 			 */
4019 			pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva),
4020 					&pte_placemark);
4021 			pt_pv = pv_get(pmap, pmap_pt_pindex(info->sva),
4022 					&pt_placemark);
4023 			if (pt_pv == NULL) {
4024 				KKASSERT(pte_pv == NULL);
4025 				pd_pv = pv_get(pmap,
4026 					       pmap_pd_pindex(info->sva),
4027 					       NULL);
4028 				if (pd_pv) {
4029 					ptep = pv_pte_lookup(pd_pv,
4030 						    pmap_pt_index(info->sva));
4031 					if (*ptep) {
4032 						info->func(pmap, info,
4033 						     NULL, pt_placemark,
4034 						     pd_pv, 1,
4035 						     info->sva, ptep,
4036 						     info->arg);
4037 					} else {
4038 						pv_placemarker_wakeup(pmap,
4039 								  pt_placemark);
4040 					}
4041 					pv_put(pd_pv);
4042 				} else {
4043 					pv_placemarker_wakeup(pmap,
4044 							      pt_placemark);
4045 				}
4046 				pv_placemarker_wakeup(pmap, pte_placemark);
4047 				goto fast_skip;
4048 			}
4049 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(info->sva));
4050 		}
4051 
4052 		/*
4053 		 * NOTE: *ptep can't be ripped out from under us if we hold
4054 		 *	 pte_pv (or pte_placemark) locked, but bits can
4055 		 *	 change.
4056 		 */
4057 		oldpte = *ptep;
4058 		cpu_ccfence();
4059 		if (oldpte == 0) {
4060 			KKASSERT(pte_pv == NULL);
4061 			pv_placemarker_wakeup(pmap, pte_placemark);
4062 		} else if (pte_pv) {
4063 			KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] |
4064 					   pmap->pmap_bits[PG_V_IDX])) ==
4065 				(pmap->pmap_bits[PG_MANAGED_IDX] |
4066 				 pmap->pmap_bits[PG_V_IDX]),
4067 			    ("badA *ptep %016lx/%016lx sva %016lx pte_pv %p",
4068 			    *ptep, oldpte, info->sva, pte_pv));
4069 			info->func(pmap, info, pte_pv, NULL, pt_pv, 0,
4070 				   info->sva, ptep, info->arg);
4071 		} else {
4072 			KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] |
4073 					   pmap->pmap_bits[PG_V_IDX])) ==
4074 			    pmap->pmap_bits[PG_V_IDX],
4075 			    ("badB *ptep %016lx/%016lx sva %016lx pte_pv NULL",
4076 			    *ptep, oldpte, info->sva));
4077 			info->func(pmap, info, NULL, pte_placemark, pt_pv, 0,
4078 				   info->sva, ptep, info->arg);
4079 		}
4080 		if (pt_pv)
4081 			pv_put(pt_pv);
4082 fast_skip:
4083 		pmap_inval_bulk_flush(info->bulk);
4084 		return;
4085 	}
4086 
4087 	/*
4088 	 * Nominal scan case, RB_SCAN() for PD pages and iterate from
4089 	 * there.
4090 	 *
4091 	 * WARNING! eva can overflow our standard ((N + mask) >> bits)
4092 	 *	    bounds, resulting in a pd_pindex of 0.  To solve the
4093 	 *	    problem we use an inclusive range.
4094 	 */
4095 	info->sva_pd_pindex = pmap_pd_pindex(info->sva);
4096 	info->eva_pd_pindex = pmap_pd_pindex(info->eva - PAGE_SIZE);
4097 
4098 	if (info->sva >= VM_MAX_USER_ADDRESS) {
4099 		/*
4100 		 * The kernel does not currently maintain any pv_entry's for
4101 		 * higher-level page tables.
4102 		 */
4103 		bzero(&dummy_pv, sizeof(dummy_pv));
4104 		dummy_pv.pv_pindex = info->sva_pd_pindex;
4105 		spin_lock(&pmap->pm_spin);
4106 		while (dummy_pv.pv_pindex <= info->eva_pd_pindex) {
4107 			pmap_scan_callback(&dummy_pv, info);
4108 			++dummy_pv.pv_pindex;
4109 			if (dummy_pv.pv_pindex < info->sva_pd_pindex) /*wrap*/
4110 				break;
4111 		}
4112 		spin_unlock(&pmap->pm_spin);
4113 	} else {
4114 		/*
4115 		 * User page tables maintain local PML4, PDP, and PD
4116 		 * pv_entry's at the very least.  PT pv's might be
4117 		 * unmanaged and thus not exist.  PTE pv's might be
4118 		 * unmanaged and thus not exist.
4119 		 */
4120 		spin_lock(&pmap->pm_spin);
4121 		pv_entry_rb_tree_RB_SCAN(&pmap->pm_pvroot, pmap_scan_cmp,
4122 					 pmap_scan_callback, info);
4123 		spin_unlock(&pmap->pm_spin);
4124 	}
4125 	pmap_inval_bulk_flush(info->bulk);
4126 }
4127 
4128 /*
4129  * WARNING! pmap->pm_spin held
4130  *
4131  * WARNING! eva can overflow our standard ((N + mask) >> bits)
4132  *	    bounds, resulting in a pd_pindex of 0.  To solve the
4133  *	    problem we use an inclusive range.
4134  */
4135 static int
4136 pmap_scan_cmp(pv_entry_t pv, void *data)
4137 {
4138 	struct pmap_scan_info *info = data;
4139 	if (pv->pv_pindex < info->sva_pd_pindex)
4140 		return(-1);
4141 	if (pv->pv_pindex > info->eva_pd_pindex)
4142 		return(1);
4143 	return(0);
4144 }
4145 
4146 /*
4147  * pmap_scan() by PDs
4148  *
4149  * WARNING! pmap->pm_spin held
4150  */
4151 static int
4152 pmap_scan_callback(pv_entry_t pv, void *data)
4153 {
4154 	struct pmap_scan_info *info = data;
4155 	struct pmap *pmap = info->pmap;
4156 	pv_entry_t pd_pv;	/* A page directory PV */
4157 	pv_entry_t pt_pv;	/* A page table PV */
4158 	vm_pindex_t *pt_placemark;
4159 	pt_entry_t *ptep;
4160 	pt_entry_t oldpte;
4161 	vm_offset_t sva;
4162 	vm_offset_t eva;
4163 	vm_offset_t va_next;
4164 	vm_pindex_t pd_pindex;
4165 	int error;
4166 
4167 	/*
4168 	 * Stop if requested
4169 	 */
4170 	if (info->stop)
4171 		return -1;
4172 
4173 	/*
4174 	 * Pull the PD pindex from the pv before releasing the spinlock.
4175 	 *
4176 	 * WARNING: pv is faked for kernel pmap scans.
4177 	 */
4178 	pd_pindex = pv->pv_pindex;
4179 	spin_unlock(&pmap->pm_spin);
4180 	pv = NULL;	/* invalid after spinlock unlocked */
4181 
4182 	/*
4183 	 * Calculate the page range within the PD.  SIMPLE pmaps are
4184 	 * direct-mapped for the entire 2^64 address space.  Normal pmaps
4185 	 * reflect the user and kernel address space which requires
4186 	 * cannonicalization w/regards to converting pd_pindex's back
4187 	 * into addresses.
4188 	 */
4189 	sva = (pd_pindex - pmap_pd_pindex(0)) << PDPSHIFT;
4190 	if ((pmap->pm_flags & PMAP_FLAG_SIMPLE) == 0 &&
4191 	    (sva & PML4_SIGNMASK)) {
4192 		sva |= PML4_SIGNMASK;
4193 	}
4194 	eva = sva + NBPDP;	/* can overflow */
4195 	if (sva < info->sva)
4196 		sva = info->sva;
4197 	if (eva < info->sva || eva > info->eva)
4198 		eva = info->eva;
4199 
4200 	/*
4201 	 * NOTE: kernel mappings do not track page table pages, only
4202 	 * 	 terminal pages.
4203 	 *
4204 	 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4.
4205 	 *	 However, for the scan to be efficient we try to
4206 	 *	 cache items top-down.
4207 	 */
4208 	pd_pv = NULL;
4209 	pt_pv = NULL;
4210 
4211 	for (; sva < eva; sva = va_next) {
4212 		if (info->stop)
4213 			break;
4214 		if (sva >= VM_MAX_USER_ADDRESS) {
4215 			if (pt_pv) {
4216 				pv_put(pt_pv);
4217 				pt_pv = NULL;
4218 			}
4219 			goto kernel_skip;
4220 		}
4221 
4222 		/*
4223 		 * PD cache, scan shortcut if it doesn't exist.
4224 		 */
4225 		if (pd_pv == NULL) {
4226 			pd_pv = pv_get(pmap, pmap_pd_pindex(sva), NULL);
4227 		} else if (pd_pv->pv_pmap != pmap ||
4228 			   pd_pv->pv_pindex != pmap_pd_pindex(sva)) {
4229 			pv_put(pd_pv);
4230 			pd_pv = pv_get(pmap, pmap_pd_pindex(sva), NULL);
4231 		}
4232 		if (pd_pv == NULL) {
4233 			va_next = (sva + NBPDP) & ~PDPMASK;
4234 			if (va_next < sva)
4235 				va_next = eva;
4236 			continue;
4237 		}
4238 
4239 		/*
4240 		 * PT cache
4241 		 *
4242 		 * NOTE: The cached pt_pv can be removed from the pmap when
4243 		 *	 pmap_dynamic_delete is enabled.
4244 		 */
4245 		if (pt_pv && (pt_pv->pv_pmap != pmap ||
4246 			      pt_pv->pv_pindex != pmap_pt_pindex(sva))) {
4247 			pv_put(pt_pv);
4248 			pt_pv = NULL;
4249 		}
4250 		if (pt_pv == NULL) {
4251 			pt_pv = pv_get_try(pmap, pmap_pt_pindex(sva),
4252 					   &pt_placemark, &error);
4253 			if (error) {
4254 				pv_put(pd_pv);	/* lock order */
4255 				pd_pv = NULL;
4256 				if (pt_pv) {
4257 					pv_lock(pt_pv);
4258 					pv_put(pt_pv);
4259 					pt_pv = NULL;
4260 				} else {
4261 					pv_placemarker_wait(pmap, pt_placemark);
4262 				}
4263 				va_next = sva;
4264 				continue;
4265 			}
4266 			/* may have to re-check later if pt_pv is NULL here */
4267 		}
4268 
4269 		/*
4270 		 * If pt_pv is NULL we either have an shared page table
4271 		 * page and must issue a callback specific to that case,
4272 		 * or there is no page table page.
4273 		 *
4274 		 * Either way we can skip the page table page.
4275 		 *
4276 		 * WARNING! pt_pv can also be NULL due to a pv creation
4277 		 *	    race where we find it to be NULL and then
4278 		 *	    later see a pte_pv.  But its possible the pt_pv
4279 		 *	    got created inbetween the two operations, so
4280 		 *	    we must check.
4281 		 */
4282 		if (pt_pv == NULL) {
4283 			/*
4284 			 * Possible unmanaged (shared from another pmap)
4285 			 * page table page.
4286 			 *
4287 			 * WARNING!  We must hold pt_placemark across the
4288 			 *	     *ptep test to prevent misintepreting
4289 			 *	     a non-zero *ptep as a shared page
4290 			 *	     table page.  Hold it across the function
4291 			 *	     callback as well for SMP safety.
4292 			 */
4293 			ptep = pv_pte_lookup(pd_pv, pmap_pt_index(sva));
4294 			if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
4295 				info->func(pmap, info, NULL, pt_placemark,
4296 					   pd_pv, 1,
4297 					   sva, ptep, info->arg);
4298 			} else {
4299 				pv_placemarker_wakeup(pmap, pt_placemark);
4300 			}
4301 
4302 			/*
4303 			 * Done, move to next page table page.
4304 			 */
4305 			va_next = (sva + NBPDR) & ~PDRMASK;
4306 			if (va_next < sva)
4307 				va_next = eva;
4308 			continue;
4309 		}
4310 
4311 		/*
4312 		 * From this point in the loop testing pt_pv for non-NULL
4313 		 * means we are in UVM, else if it is NULL we are in KVM.
4314 		 *
4315 		 * Limit our scan to either the end of the va represented
4316 		 * by the current page table page, or to the end of the
4317 		 * range being removed.
4318 		 */
4319 kernel_skip:
4320 		va_next = (sva + NBPDR) & ~PDRMASK;
4321 		if (va_next < sva)
4322 			va_next = eva;
4323 		if (va_next > eva)
4324 			va_next = eva;
4325 
4326 		/*
4327 		 * Scan the page table for pages.  Some pages may not be
4328 		 * managed (might not have a pv_entry).
4329 		 *
4330 		 * There is no page table management for kernel pages so
4331 		 * pt_pv will be NULL in that case, but otherwise pt_pv
4332 		 * is non-NULL, locked, and referenced.
4333 		 */
4334 
4335 		/*
4336 		 * At this point a non-NULL pt_pv means a UVA, and a NULL
4337 		 * pt_pv means a KVA.
4338 		 */
4339 		if (pt_pv)
4340 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(sva));
4341 		else
4342 			ptep = vtopte(sva);
4343 
4344 		while (sva < va_next) {
4345 			pv_entry_t pte_pv;
4346 			vm_pindex_t *pte_placemark;
4347 
4348 			/*
4349 			 * Yield every 64 pages, stop if requested.
4350 			 */
4351 			if ((++info->count & 63) == 0)
4352 				lwkt_user_yield();
4353 			if (info->stop)
4354 				break;
4355 
4356 			/*
4357 			 * We can shortcut our scan if *ptep == 0.  This is
4358 			 * an unlocked check.
4359 			 */
4360 			if (*ptep == 0) {
4361 				sva += PAGE_SIZE;
4362 				++ptep;
4363 				continue;
4364 			}
4365 			cpu_ccfence();
4366 
4367 			/*
4368 			 * Acquire the related pte_pv, if any.  If *ptep == 0
4369 			 * the related pte_pv should not exist, but if *ptep
4370 			 * is not zero the pte_pv may or may not exist (e.g.
4371 			 * will not exist for an unmanaged page).
4372 			 *
4373 			 * However a multitude of races are possible here
4374 			 * so if we cannot lock definite state we clean out
4375 			 * our cache and break the inner while() loop to
4376 			 * force a loop up to the top of the for().
4377 			 *
4378 			 * XXX unlock/relock pd_pv, pt_pv, and re-test their
4379 			 *     validity instead of looping up?
4380 			 */
4381 			pte_pv = pv_get_try(pmap, pmap_pte_pindex(sva),
4382 					    &pte_placemark, &error);
4383 			if (error) {
4384 				pv_put(pd_pv);		/* lock order */
4385 				pd_pv = NULL;
4386 				if (pt_pv) {
4387 					pv_put(pt_pv);	/* lock order */
4388 					pt_pv = NULL;
4389 				}
4390 				if (pte_pv) {		/* block */
4391 					pv_lock(pte_pv);
4392 					pv_put(pte_pv);
4393 					pte_pv = NULL;
4394 				} else {
4395 					pv_placemarker_wait(pmap,
4396 							pte_placemark);
4397 				}
4398 				va_next = sva;		/* retry */
4399 				break;
4400 			}
4401 
4402 			/*
4403 			 * Reload *ptep after successfully locking the
4404 			 * pindex.  If *ptep == 0 we had better NOT have a
4405 			 * pte_pv.
4406 			 */
4407 			cpu_ccfence();
4408 			oldpte = *ptep;
4409 			if (oldpte == 0) {
4410 				if (pte_pv) {
4411 					kprintf("Unexpected non-NULL pte_pv "
4412 						"%p pt_pv %p "
4413 						"*ptep = %016lx/%016lx\n",
4414 						pte_pv, pt_pv, *ptep, oldpte);
4415 					panic("Unexpected non-NULL pte_pv");
4416 				} else {
4417 					pv_placemarker_wakeup(pmap, pte_placemark);
4418 				}
4419 				sva += PAGE_SIZE;
4420 				++ptep;
4421 				continue;
4422 			}
4423 
4424 			/*
4425 			 * We can't hold pd_pv across the callback (because
4426 			 * we don't pass it to the callback and the callback
4427 			 * might deadlock)
4428 			 */
4429 			if (pd_pv) {
4430 				vm_page_wire_quick(pd_pv->pv_m);
4431 				pv_unlock(pd_pv);
4432 			}
4433 
4434 			/*
4435 			 * Ready for the callback.  The locked pte_pv (if any)
4436 			 * is consumed by the callback.  pte_pv will exist if
4437 			 * the page is managed, and will not exist if it
4438 			 * isn't.
4439 			 */
4440 			if (oldpte & pmap->pmap_bits[PG_MANAGED_IDX]) {
4441 				/*
4442 				 * Managed pte
4443 				 */
4444 				KASSERT(pte_pv &&
4445 					 (oldpte & pmap->pmap_bits[PG_V_IDX]),
4446 				    ("badC *ptep %016lx/%016lx sva %016lx "
4447 				    "pte_pv %p",
4448 				    *ptep, oldpte, sva, pte_pv));
4449 				/*
4450 				 * We must unlock pd_pv across the callback
4451 				 * to avoid deadlocks on any recursive
4452 				 * disposal.  Re-check that it still exists
4453 				 * after re-locking.
4454 				 *
4455 				 * Call target disposes of pte_pv and may
4456 				 * destroy but will not dispose of pt_pv.
4457 				 */
4458 				info->func(pmap, info, pte_pv, NULL,
4459 					   pt_pv, 0,
4460 					   sva, ptep, info->arg);
4461 			} else {
4462 				/*
4463 				 * Unmanaged pte
4464 				 *
4465 				 * We must unlock pd_pv across the callback
4466 				 * to avoid deadlocks on any recursive
4467 				 * disposal.  Re-check that it still exists
4468 				 * after re-locking.
4469 				 *
4470 				 * Call target disposes of pte_pv or
4471 				 * pte_placemark and may destroy but will
4472 				 * not dispose of pt_pv.
4473 				 */
4474 				KASSERT(pte_pv == NULL &&
4475 					(oldpte & pmap->pmap_bits[PG_V_IDX]),
4476 				    ("badD *ptep %016lx/%016lx sva %016lx "
4477 				    "pte_pv %p pte_pv->pv_m %p ",
4478 				     *ptep, oldpte, sva,
4479 				     pte_pv, (pte_pv ? pte_pv->pv_m : NULL)));
4480 				if (pte_pv)
4481 					kprintf("RaceD\n");
4482 				if (pte_pv) {
4483 					info->func(pmap, info,
4484 						   pte_pv, NULL,
4485 						   pt_pv, 0,
4486 						   sva, ptep, info->arg);
4487 				} else {
4488 					info->func(pmap, info,
4489 						   NULL, pte_placemark,
4490 						   pt_pv, 0,
4491 						   sva, ptep, info->arg);
4492 				}
4493 			}
4494 			if (pd_pv) {
4495 				pv_lock(pd_pv);
4496 				vm_page_unwire_quick(pd_pv->pv_m);
4497 				if (pd_pv->pv_pmap == NULL) {
4498 					va_next = sva;		/* retry */
4499 					break;
4500 				}
4501 			}
4502 
4503 			/*
4504 			 * NOTE: The cached pt_pv can be removed from the
4505 			 *	 pmap when pmap_dynamic_delete is enabled,
4506 			 *	 which will cause ptep to become stale.
4507 			 *
4508 			 *	 This also means that no pages remain under
4509 			 *	 the PT, so we can just break out of the inner
4510 			 *	 loop and let the outer loop clean everything
4511 			 *	 up.
4512 			 */
4513 			if (pt_pv && pt_pv->pv_pmap != pmap)
4514 				break;
4515 			pte_pv = NULL;
4516 			sva += PAGE_SIZE;
4517 			++ptep;
4518 		}
4519 	}
4520 	if (pd_pv) {
4521 		pv_put(pd_pv);
4522 		pd_pv = NULL;
4523 	}
4524 	if (pt_pv) {
4525 		pv_put(pt_pv);
4526 		pt_pv = NULL;
4527 	}
4528 	if ((++info->count & 7) == 0)
4529 		lwkt_user_yield();
4530 
4531 	/*
4532 	 * Relock before returning.
4533 	 */
4534 	spin_lock(&pmap->pm_spin);
4535 	return (0);
4536 }
4537 
4538 void
4539 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
4540 {
4541 	struct pmap_scan_info info;
4542 
4543 	info.pmap = pmap;
4544 	info.sva = sva;
4545 	info.eva = eva;
4546 	info.func = pmap_remove_callback;
4547 	info.arg = NULL;
4548 	pmap_scan(&info, 1);
4549 #if 0
4550 	cpu_invltlb();
4551 	if (eva - sva < 1024*1024) {
4552 		while (sva < eva) {
4553 			cpu_invlpg((void *)sva);
4554 			sva += PAGE_SIZE;
4555 		}
4556 	}
4557 #endif
4558 }
4559 
4560 static void
4561 pmap_remove_noinval(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
4562 {
4563 	struct pmap_scan_info info;
4564 
4565 	info.pmap = pmap;
4566 	info.sva = sva;
4567 	info.eva = eva;
4568 	info.func = pmap_remove_callback;
4569 	info.arg = NULL;
4570 	pmap_scan(&info, 0);
4571 }
4572 
4573 static void
4574 pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
4575 		     pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
4576 		     pv_entry_t pt_pv, int sharept,
4577 		     vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
4578 {
4579 	pt_entry_t pte;
4580 
4581 	if (pte_pv) {
4582 		/*
4583 		 * Managed entry
4584 		 *
4585 		 * This will also drop pt_pv's wire_count. Note that
4586 		 * terminal pages are not wired based on mmu presence.
4587 		 *
4588 		 * NOTE: If this is the kernel_pmap, pt_pv can be NULL.
4589 		 */
4590 		KKASSERT(pte_pv->pv_m != NULL);
4591 		pmap_remove_pv_pte(pte_pv, pt_pv, info->bulk, 2);
4592 		pte_pv = NULL;	/* safety */
4593 
4594 		/*
4595 		 * Recursively destroy higher-level page tables.
4596 		 *
4597 		 * This is optional.  If we do not, they will still
4598 		 * be destroyed when the process exits.
4599 		 *
4600 		 * NOTE: Do not destroy pv_entry's with extra hold refs,
4601 		 *	 a caller may have unlocked it and intends to
4602 		 *	 continue to use it.
4603 		 */
4604 		if (pmap_dynamic_delete &&
4605 		    pt_pv &&
4606 		    pt_pv->pv_m &&
4607 		    pt_pv->pv_m->wire_count == 1 &&
4608 		    (pt_pv->pv_hold & PV_HOLD_MASK) == 2 &&
4609 		    pt_pv->pv_pindex != pmap_pml4_pindex()) {
4610 			if (pmap_dynamic_delete == 2)
4611 				kprintf("B %jd %08x\n", pt_pv->pv_pindex, pt_pv->pv_hold);
4612 			pv_hold(pt_pv);	/* extra hold */
4613 			pmap_remove_pv_pte(pt_pv, NULL, info->bulk, 1);
4614 			pv_lock(pt_pv);	/* prior extra hold + relock */
4615 		}
4616 	} else if (sharept == 0) {
4617 		/*
4618 		 * Unmanaged pte (pte_placemark is non-NULL)
4619 		 *
4620 		 * pt_pv's wire_count is still bumped by unmanaged pages
4621 		 * so we must decrement it manually.
4622 		 *
4623 		 * We have to unwire the target page table page.
4624 		 */
4625 		pte = pmap_inval_bulk(info->bulk, va, ptep, 0);
4626 		if (pte & pmap->pmap_bits[PG_W_IDX])
4627 			atomic_add_long(&pmap->pm_stats.wired_count, -1);
4628 		atomic_add_long(&pmap->pm_stats.resident_count, -1);
4629 		if (vm_page_unwire_quick(pt_pv->pv_m))
4630 			panic("pmap_remove: insufficient wirecount");
4631 		pv_placemarker_wakeup(pmap, pte_placemark);
4632 	} else {
4633 		/*
4634 		 * Unmanaged page table (pt, pd, or pdp. Not pte) for
4635 		 * a shared page table.
4636 		 *
4637 		 * pt_pv is actually the pd_pv for our pmap (not the shared
4638 		 * object pmap).
4639 		 *
4640 		 * We have to unwire the target page table page and we
4641 		 * have to unwire our page directory page.
4642 		 *
4643 		 * It is unclear how we can invalidate a segment so we
4644 		 * invalidate -1 which invlidates the tlb.
4645 		 */
4646 		pte = pmap_inval_bulk(info->bulk, (vm_offset_t)-1, ptep, 0);
4647 		atomic_add_long(&pmap->pm_stats.resident_count, -1);
4648 		KKASSERT((pte & pmap->pmap_bits[PG_DEVICE_IDX]) == 0);
4649 		if (vm_page_unwire_quick(PHYS_TO_VM_PAGE(pte & PG_FRAME)))
4650 			panic("pmap_remove: shared pgtable1 bad wirecount");
4651 		if (vm_page_unwire_quick(pt_pv->pv_m))
4652 			panic("pmap_remove: shared pgtable2 bad wirecount");
4653 		pv_placemarker_wakeup(pmap, pte_placemark);
4654 	}
4655 }
4656 
4657 /*
4658  * Removes this physical page from all physical maps in which it resides.
4659  * Reflects back modify bits to the pager.
4660  *
4661  * This routine may not be called from an interrupt.
4662  */
4663 static
4664 void
4665 pmap_remove_all(vm_page_t m)
4666 {
4667 	pv_entry_t pv;
4668 	pmap_inval_bulk_t bulk;
4669 
4670 	if (!pmap_initialized /* || (m->flags & PG_FICTITIOUS)*/)
4671 		return;
4672 
4673 	vm_page_spin_lock(m);
4674 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4675 		KKASSERT(pv->pv_m == m);
4676 		if (pv_hold_try(pv)) {
4677 			vm_page_spin_unlock(m);
4678 		} else {
4679 			vm_page_spin_unlock(m);
4680 			pv_lock(pv);
4681 			pv_put(pv);
4682 			vm_page_spin_lock(m);
4683 			continue;
4684 		}
4685 		KKASSERT(pv->pv_pmap && pv->pv_m == m);
4686 
4687 		/*
4688 		 * Holding no spinlocks, pv is locked.  Once we scrap
4689 		 * pv we can no longer use it as a list iterator (but
4690 		 * we are doing a TAILQ_FIRST() so we are ok).
4691 		 */
4692 		pmap_inval_bulk_init(&bulk, pv->pv_pmap);
4693 		pmap_remove_pv_pte(pv, NULL, &bulk, 2);
4694 		pv = NULL;	/* safety */
4695 		pmap_inval_bulk_flush(&bulk);
4696 		vm_page_spin_lock(m);
4697 	}
4698 	KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
4699 	vm_page_spin_unlock(m);
4700 }
4701 
4702 /*
4703  * Removes the page from a particular pmap
4704  */
4705 void
4706 pmap_remove_specific(pmap_t pmap, vm_page_t m)
4707 {
4708 	pv_entry_t pv;
4709 	pmap_inval_bulk_t bulk;
4710 
4711 	if (!pmap_initialized)
4712 		return;
4713 
4714 again:
4715 	vm_page_spin_lock(m);
4716 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4717 		if (pv->pv_pmap != pmap)
4718 			continue;
4719 		KKASSERT(pv->pv_m == m);
4720 		if (pv_hold_try(pv)) {
4721 			vm_page_spin_unlock(m);
4722 		} else {
4723 			vm_page_spin_unlock(m);
4724 			pv_lock(pv);
4725 			pv_put(pv);
4726 			goto again;
4727 		}
4728 		KKASSERT(pv->pv_pmap == pmap && pv->pv_m == m);
4729 
4730 		/*
4731 		 * Holding no spinlocks, pv is locked.  Once gone it can't
4732 		 * be used as an iterator.  In fact, because we couldn't
4733 		 * necessarily lock it atomically it may have moved within
4734 		 * the list and ALSO cannot be used as an iterator.
4735 		 */
4736 		pmap_inval_bulk_init(&bulk, pv->pv_pmap);
4737 		pmap_remove_pv_pte(pv, NULL, &bulk, 2);
4738 		pv = NULL;	/* safety */
4739 		pmap_inval_bulk_flush(&bulk);
4740 		goto again;
4741 	}
4742 	vm_page_spin_unlock(m);
4743 }
4744 
4745 /*
4746  * Set the physical protection on the specified range of this map
4747  * as requested.  This function is typically only used for debug watchpoints
4748  * and COW pages.
4749  *
4750  * This function may not be called from an interrupt if the map is
4751  * not the kernel_pmap.
4752  *
4753  * NOTE!  For shared page table pages we just unmap the page.
4754  */
4755 void
4756 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
4757 {
4758 	struct pmap_scan_info info;
4759 	/* JG review for NX */
4760 
4761 	if (pmap == NULL)
4762 		return;
4763 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == VM_PROT_NONE) {
4764 		pmap_remove(pmap, sva, eva);
4765 		return;
4766 	}
4767 	if (prot & VM_PROT_WRITE)
4768 		return;
4769 	info.pmap = pmap;
4770 	info.sva = sva;
4771 	info.eva = eva;
4772 	info.func = pmap_protect_callback;
4773 	info.arg = &prot;
4774 	pmap_scan(&info, 1);
4775 }
4776 
4777 static
4778 void
4779 pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
4780 		      pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
4781 		      pv_entry_t pt_pv, int sharept,
4782 		      vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
4783 {
4784 	pt_entry_t pbits;
4785 	pt_entry_t cbits;
4786 	pt_entry_t pte;
4787 	vm_page_t m;
4788 
4789 again:
4790 	pbits = *ptep;
4791 	cbits = pbits;
4792 	if (pte_pv) {
4793 		KKASSERT(pte_pv->pv_m != NULL);
4794 		m = NULL;
4795 		if (pbits & pmap->pmap_bits[PG_A_IDX]) {
4796 			if ((pbits & pmap->pmap_bits[PG_DEVICE_IDX]) == 0) {
4797 				m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
4798 				KKASSERT(m == pte_pv->pv_m);
4799 				vm_page_flag_set(m, PG_REFERENCED);
4800 			}
4801 			cbits &= ~pmap->pmap_bits[PG_A_IDX];
4802 		}
4803 		if (pbits & pmap->pmap_bits[PG_M_IDX]) {
4804 			if (pmap_track_modified(pte_pv->pv_pindex)) {
4805 				if ((pbits & pmap->pmap_bits[PG_DEVICE_IDX]) == 0) {
4806 					if (m == NULL) {
4807 						m = PHYS_TO_VM_PAGE(pbits &
4808 								    PG_FRAME);
4809 					}
4810 					vm_page_dirty(m);
4811 				}
4812 				cbits &= ~pmap->pmap_bits[PG_M_IDX];
4813 			}
4814 		}
4815 	} else if (sharept) {
4816 		/*
4817 		 * Unmanaged page table, pt_pv is actually the pd_pv
4818 		 * for our pmap (not the object's shared pmap).
4819 		 *
4820 		 * When asked to protect something in a shared page table
4821 		 * page we just unmap the page table page.  We have to
4822 		 * invalidate the tlb in this situation.
4823 		 *
4824 		 * XXX Warning, shared page tables will not be used for
4825 		 * OBJT_DEVICE or OBJT_MGTDEVICE (PG_FICTITIOUS) mappings
4826 		 * so PHYS_TO_VM_PAGE() should be safe here.
4827 		 */
4828 		pte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, ptep, 0);
4829 		if (vm_page_unwire_quick(PHYS_TO_VM_PAGE(pte & PG_FRAME)))
4830 			panic("pmap_protect: pgtable1 pg bad wirecount");
4831 		if (vm_page_unwire_quick(pt_pv->pv_m))
4832 			panic("pmap_protect: pgtable2 pg bad wirecount");
4833 		ptep = NULL;
4834 	}
4835 	/* else unmanaged page, adjust bits, no wire changes */
4836 
4837 	if (ptep) {
4838 		cbits &= ~pmap->pmap_bits[PG_RW_IDX];
4839 #ifdef PMAP_DEBUG2
4840 		if (pmap_enter_debug > 0) {
4841 			--pmap_enter_debug;
4842 			kprintf("pmap_protect va=%lx ptep=%p pte_pv=%p "
4843 				"pt_pv=%p cbits=%08lx\n",
4844 				va, ptep, pte_pv,
4845 				pt_pv, cbits
4846 			);
4847 		}
4848 #endif
4849 		if (pbits != cbits) {
4850 			vm_offset_t xva;
4851 
4852 			xva = (sharept) ? (vm_offset_t)-1 : va;
4853 			if (!pmap_inval_smp_cmpset(pmap, xva,
4854 						   ptep, pbits, cbits)) {
4855 				goto again;
4856 			}
4857 		}
4858 	}
4859 	if (pte_pv)
4860 		pv_put(pte_pv);
4861 	else
4862 		pv_placemarker_wakeup(pmap, pte_placemark);
4863 }
4864 
4865 /*
4866  * Insert the vm_page (m) at the virtual address (va), replacing any prior
4867  * mapping at that address.  Set protection and wiring as requested.
4868  *
4869  * If entry is non-NULL we check to see if the SEG_SIZE optimization is
4870  * possible.  If it is we enter the page into the appropriate shared pmap
4871  * hanging off the related VM object instead of the passed pmap, then we
4872  * share the page table page from the VM object's pmap into the current pmap.
4873  *
4874  * NOTE: This routine MUST insert the page into the pmap now, it cannot
4875  *	 lazy-evaluate.
4876  *
4877  * NOTE: If (m) is PG_UNMANAGED it may also be a temporary fake vm_page_t.
4878  *	 never record it.
4879  */
4880 void
4881 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
4882 	   boolean_t wired, vm_map_entry_t entry)
4883 {
4884 	pv_entry_t pt_pv;	/* page table */
4885 	pv_entry_t pte_pv;	/* page table entry */
4886 	vm_pindex_t *pte_placemark;
4887 	pt_entry_t *ptep;
4888 	vm_paddr_t opa;
4889 	pt_entry_t origpte, newpte;
4890 	vm_paddr_t pa;
4891 
4892 	if (pmap == NULL)
4893 		return;
4894 	va = trunc_page(va);
4895 #ifdef PMAP_DIAGNOSTIC
4896 	if (va >= KvaEnd)
4897 		panic("pmap_enter: toobig");
4898 	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
4899 		panic("pmap_enter: invalid to pmap_enter page table "
4900 		      "pages (va: 0x%lx)", va);
4901 #endif
4902 	if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
4903 		kprintf("Warning: pmap_enter called on UVA with "
4904 			"kernel_pmap\n");
4905 #ifdef DDB
4906 		db_print_backtrace();
4907 #endif
4908 	}
4909 	if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
4910 		kprintf("Warning: pmap_enter called on KVA without"
4911 			"kernel_pmap\n");
4912 #ifdef DDB
4913 		db_print_backtrace();
4914 #endif
4915 	}
4916 
4917 	/*
4918 	 * Get locked PV entries for our new page table entry (pte_pv or
4919 	 * pte_placemark) and for its parent page table (pt_pv).  We need
4920 	 * the parent so we can resolve the location of the ptep.
4921 	 *
4922 	 * Only hardware MMU actions can modify the ptep out from
4923 	 * under us.
4924 	 *
4925 	 * if (m) is fictitious or unmanaged we do not create a managing
4926 	 * pte_pv for it.  Any pre-existing page's management state must
4927 	 * match (avoiding code complexity).
4928 	 *
4929 	 * If the pmap is still being initialized we assume existing
4930 	 * page tables.
4931 	 *
4932 	 * Kernel mapppings do not track page table pages (i.e. pt_pv).
4933 	 *
4934 	 * WARNING! If replacing a managed mapping with an unmanaged mapping
4935 	 *	    pte_pv will wind up being non-NULL and must be handled
4936 	 *	    below.
4937 	 */
4938 	if (pmap_initialized == FALSE) {
4939 		pte_pv = NULL;
4940 		pt_pv = NULL;
4941 		pte_placemark = NULL;
4942 		ptep = vtopte(va);
4943 		origpte = *ptep;
4944 	} else if (m->flags & (/*PG_FICTITIOUS |*/ PG_UNMANAGED)) { /* XXX */
4945 		pmap_softwait(pmap);
4946 		pte_pv = pv_get(pmap, pmap_pte_pindex(va), &pte_placemark);
4947 		KKASSERT(pte_pv == NULL);
4948 		if (va >= VM_MAX_USER_ADDRESS) {
4949 			pt_pv = NULL;
4950 			ptep = vtopte(va);
4951 		} else {
4952 			pt_pv = pmap_allocpte_seg(pmap, pmap_pt_pindex(va),
4953 						  NULL, entry, va);
4954 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
4955 		}
4956 		origpte = *ptep;
4957 		cpu_ccfence();
4958 		KASSERT(origpte == 0 ||
4959 			 (origpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0,
4960 			 ("Invalid PTE 0x%016jx @ 0x%016jx\n", origpte, va));
4961 	} else {
4962 		pmap_softwait(pmap);
4963 		if (va >= VM_MAX_USER_ADDRESS) {
4964 			/*
4965 			 * Kernel map, pv_entry-tracked.
4966 			 */
4967 			pt_pv = NULL;
4968 			pte_pv = pmap_allocpte(pmap, pmap_pte_pindex(va), NULL);
4969 			ptep = vtopte(va);
4970 		} else {
4971 			/*
4972 			 * User map
4973 			 */
4974 			pte_pv = pmap_allocpte_seg(pmap, pmap_pte_pindex(va),
4975 						   &pt_pv, entry, va);
4976 			ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
4977 		}
4978 		pte_placemark = NULL;	/* safety */
4979 		origpte = *ptep;
4980 		cpu_ccfence();
4981 		KASSERT(origpte == 0 ||
4982 			 (origpte & pmap->pmap_bits[PG_MANAGED_IDX]),
4983 			 ("Invalid PTE 0x%016jx @ 0x%016jx\n", origpte, va));
4984 	}
4985 
4986 	pa = VM_PAGE_TO_PHYS(m);
4987 	opa = origpte & PG_FRAME;
4988 
4989 	/*
4990 	 * Calculate the new PTE.  Note that pte_pv alone does not mean
4991 	 * the new pte_pv is managed, it could exist because the old pte
4992 	 * was managed even if the new one is not.
4993 	 */
4994 	newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) |
4995 		 pmap->pmap_bits[PG_V_IDX] | pmap->pmap_bits[PG_A_IDX]);
4996 	if (wired)
4997 		newpte |= pmap->pmap_bits[PG_W_IDX];
4998 	if (va < VM_MAX_USER_ADDRESS)
4999 		newpte |= pmap->pmap_bits[PG_U_IDX];
5000 	if (pte_pv && (m->flags & (/*PG_FICTITIOUS |*/ PG_UNMANAGED)) == 0)
5001 		newpte |= pmap->pmap_bits[PG_MANAGED_IDX];
5002 //	if (pmap == &kernel_pmap)
5003 //		newpte |= pgeflag;
5004 	newpte |= pmap->pmap_cache_bits[m->pat_mode];
5005 	if (m->flags & PG_FICTITIOUS)
5006 		newpte |= pmap->pmap_bits[PG_DEVICE_IDX];
5007 
5008 	/*
5009 	 * It is possible for multiple faults to occur in threaded
5010 	 * environments, the existing pte might be correct.
5011 	 */
5012 	if (((origpte ^ newpte) &
5013 	    ~(pt_entry_t)(pmap->pmap_bits[PG_M_IDX] |
5014 			  pmap->pmap_bits[PG_A_IDX])) == 0) {
5015 		goto done;
5016 	}
5017 
5018 	/*
5019 	 * Ok, either the address changed or the protection or wiring
5020 	 * changed.
5021 	 *
5022 	 * Clear the current entry, interlocking the removal.  For managed
5023 	 * pte's this will also flush the modified state to the vm_page.
5024 	 * Atomic ops are mandatory in order to ensure that PG_M events are
5025 	 * not lost during any transition.
5026 	 *
5027 	 * WARNING: The caller has busied the new page but not the original
5028 	 *	    vm_page which we are trying to replace.  Because we hold
5029 	 *	    the pte_pv lock, but have not busied the page, PG bits
5030 	 *	    can be cleared out from under us.
5031 	 */
5032 	if (opa) {
5033 		if (origpte & pmap->pmap_bits[PG_MANAGED_IDX]) {
5034 			/*
5035 			 * Old page was managed.  Expect pte_pv to exist.
5036 			 * (it might also exist if the old page was unmanaged).
5037 			 *
5038 			 * NOTE: pt_pv won't exist for a kernel page
5039 			 *	 (managed or otherwise).
5040 			 *
5041 			 * NOTE: We may be reusing the pte_pv so we do not
5042 			 *	 destroy it in pmap_remove_pv_pte().
5043 			 */
5044 			KKASSERT(pte_pv && pte_pv->pv_m);
5045 			if (prot & VM_PROT_NOSYNC) {
5046 				pmap_remove_pv_pte(pte_pv, pt_pv, NULL, 0);
5047 			} else {
5048 				pmap_inval_bulk_t bulk;
5049 
5050 				pmap_inval_bulk_init(&bulk, pmap);
5051 				pmap_remove_pv_pte(pte_pv, pt_pv, &bulk, 0);
5052 				pmap_inval_bulk_flush(&bulk);
5053 			}
5054 			pmap_remove_pv_page(pte_pv);
5055 			/* will either set pte_pv->pv_m or pv_free() later */
5056 		} else {
5057 			/*
5058 			 * Old page was not managed.  If we have a pte_pv
5059 			 * it better not have a pv_m assigned to it.  If the
5060 			 * new page is managed the pte_pv will be destroyed
5061 			 * near the end (we need its interlock).
5062 			 *
5063 			 * NOTE: We leave the wire count on the PT page
5064 			 *	 intact for the followup enter, but adjust
5065 			 *	 the wired-pages count on the pmap.
5066 			 */
5067 			KKASSERT(pte_pv == NULL);
5068 			if (prot & VM_PROT_NOSYNC) {
5069 				/*
5070 				 * NOSYNC (no mmu sync) requested.
5071 				 */
5072 				(void)pte_load_clear(ptep);
5073 				cpu_invlpg((void *)va);
5074 			} else {
5075 				/*
5076 				 * Nominal SYNC
5077 				 */
5078 				pmap_inval_smp(pmap, va, 1, ptep, 0);
5079 			}
5080 
5081 			/*
5082 			 * We must adjust pm_stats manually for unmanaged
5083 			 * pages.
5084 			 */
5085 			if (pt_pv) {
5086 				atomic_add_long(&pmap->pm_stats.
5087 						resident_count, -1);
5088 			}
5089 			if (origpte & pmap->pmap_bits[PG_W_IDX]) {
5090 				atomic_add_long(&pmap->pm_stats.
5091 						wired_count, -1);
5092 			}
5093 		}
5094 		KKASSERT(*ptep == 0);
5095 	}
5096 
5097 #ifdef PMAP_DEBUG2
5098 	if (pmap_enter_debug > 0) {
5099 		--pmap_enter_debug;
5100 		kprintf("pmap_enter: va=%lx m=%p origpte=%lx newpte=%lx ptep=%p"
5101 			" pte_pv=%p pt_pv=%p opa=%lx prot=%02x\n",
5102 			va, m,
5103 			origpte, newpte, ptep,
5104 			pte_pv, pt_pv, opa, prot);
5105 	}
5106 #endif
5107 
5108 	if ((newpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0) {
5109 		/*
5110 		 * Entering an unmanaged page.  We must wire the pt_pv unless
5111 		 * we retained the wiring from an unmanaged page we had
5112 		 * removed (if we retained it via pte_pv that will go away
5113 		 * soon).
5114 		 */
5115 		if (pt_pv && (opa == 0 ||
5116 			      (origpte & pmap->pmap_bits[PG_MANAGED_IDX]))) {
5117 			vm_page_wire_quick(pt_pv->pv_m);
5118 		}
5119 		if (wired)
5120 			atomic_add_long(&pmap->pm_stats.wired_count, 1);
5121 
5122 		/*
5123 		 * Unmanaged pages need manual resident_count tracking.
5124 		 */
5125 		if (pt_pv) {
5126 			atomic_add_long(&pt_pv->pv_pmap->pm_stats.
5127 					resident_count, 1);
5128 		}
5129 		if (newpte & pmap->pmap_bits[PG_RW_IDX])
5130 			vm_page_flag_set(m, PG_WRITEABLE);
5131 	} else {
5132 		/*
5133 		 * Entering a managed page.  Our pte_pv takes care of the
5134 		 * PT wiring, so if we had removed an unmanaged page before
5135 		 * we must adjust.
5136 		 *
5137 		 * We have to take care of the pmap wired count ourselves.
5138 		 *
5139 		 * Enter on the PV list if part of our managed memory.
5140 		 */
5141 		KKASSERT(pte_pv && (pte_pv->pv_m == NULL || pte_pv->pv_m == m));
5142 		vm_page_spin_lock(m);
5143 		pte_pv->pv_m = m;
5144 		pmap_page_stats_adding(m);
5145 		TAILQ_INSERT_TAIL(&m->md.pv_list, pte_pv, pv_list);
5146 		vm_page_flag_set(m, PG_MAPPED);
5147 		if (newpte & pmap->pmap_bits[PG_RW_IDX])
5148 			vm_page_flag_set(m, PG_WRITEABLE);
5149 		vm_page_spin_unlock(m);
5150 
5151 		if (pt_pv && opa &&
5152 		    (origpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0) {
5153 			vm_page_unwire_quick(pt_pv->pv_m);
5154 		}
5155 
5156 		/*
5157 		 * Adjust pmap wired pages count for new entry.
5158 		 */
5159 		if (wired) {
5160 			atomic_add_long(&pte_pv->pv_pmap->pm_stats.
5161 					wired_count, 1);
5162 		}
5163 	}
5164 
5165 	/*
5166 	 * Kernel VMAs (pt_pv == NULL) require pmap invalidation interlocks.
5167 	 *
5168 	 * User VMAs do not because those will be zero->non-zero, so no
5169 	 * stale entries to worry about at this point.
5170 	 *
5171 	 * For KVM there appear to still be issues.  Theoretically we
5172 	 * should be able to scrap the interlocks entirely but we
5173 	 * get crashes.
5174 	 */
5175 	if ((prot & VM_PROT_NOSYNC) == 0 && pt_pv == NULL) {
5176 		pmap_inval_smp(pmap, va, 1, ptep, newpte);
5177 	} else {
5178 		origpte = atomic_swap_long(ptep, newpte);
5179 		if (origpte & pmap->pmap_bits[PG_M_IDX]) {
5180 			kprintf("pmap [M] race @ %016jx\n", va);
5181 			atomic_set_long(ptep, pmap->pmap_bits[PG_M_IDX]);
5182 		}
5183 		if (pt_pv == NULL)
5184 			cpu_invlpg((void *)va);
5185 	}
5186 
5187 	/*
5188 	 * Cleanup
5189 	 */
5190 done:
5191 	KKASSERT((newpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0 ||
5192 		 (m->flags & PG_MAPPED));
5193 
5194 	/*
5195 	 * Cleanup the pv entry, allowing other accessors.  If the new page
5196 	 * is not managed but we have a pte_pv (which was locking our
5197 	 * operation), we can free it now.  pte_pv->pv_m should be NULL.
5198 	 */
5199 	if (pte_pv && (newpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0) {
5200 		pv_free(pte_pv, pt_pv);
5201 	} else if (pte_pv) {
5202 		pv_put(pte_pv);
5203 	} else if (pte_placemark) {
5204 		pv_placemarker_wakeup(pmap, pte_placemark);
5205 	}
5206 	if (pt_pv)
5207 		pv_put(pt_pv);
5208 }
5209 
5210 /*
5211  * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
5212  * This code also assumes that the pmap has no pre-existing entry for this
5213  * VA.
5214  *
5215  * This code currently may only be used on user pmaps, not kernel_pmap.
5216  */
5217 void
5218 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
5219 {
5220 	pmap_enter(pmap, va, m, VM_PROT_READ, FALSE, NULL);
5221 }
5222 
5223 /*
5224  * Make a temporary mapping for a physical address.  This is only intended
5225  * to be used for panic dumps.
5226  *
5227  * The caller is responsible for calling smp_invltlb().
5228  */
5229 void *
5230 pmap_kenter_temporary(vm_paddr_t pa, long i)
5231 {
5232 	pmap_kenter_quick((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
5233 	return ((void *)crashdumpmap);
5234 }
5235 
5236 #define MAX_INIT_PT (96)
5237 
5238 /*
5239  * This routine preloads the ptes for a given object into the specified pmap.
5240  * This eliminates the blast of soft faults on process startup and
5241  * immediately after an mmap.
5242  */
5243 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
5244 
5245 void
5246 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
5247 		    vm_object_t object, vm_pindex_t pindex,
5248 		    vm_size_t size, int limit)
5249 {
5250 	struct rb_vm_page_scan_info info;
5251 	struct lwp *lp;
5252 	vm_size_t psize;
5253 
5254 	/*
5255 	 * We can't preinit if read access isn't set or there is no pmap
5256 	 * or object.
5257 	 */
5258 	if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
5259 		return;
5260 
5261 	/*
5262 	 * We can't preinit if the pmap is not the current pmap
5263 	 */
5264 	lp = curthread->td_lwp;
5265 	if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
5266 		return;
5267 
5268 	/*
5269 	 * Misc additional checks
5270 	 */
5271 	psize = x86_64_btop(size);
5272 
5273 	if ((object->type != OBJT_VNODE) ||
5274 		((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
5275 			(object->resident_page_count > MAX_INIT_PT))) {
5276 		return;
5277 	}
5278 
5279 	if (pindex + psize > object->size) {
5280 		if (object->size < pindex)
5281 			return;
5282 		psize = object->size - pindex;
5283 	}
5284 
5285 	if (psize == 0)
5286 		return;
5287 
5288 	/*
5289 	 * If everything is segment-aligned do not pre-init here.  Instead
5290 	 * allow the normal vm_fault path to pass a segment hint to
5291 	 * pmap_enter() which will then use an object-referenced shared
5292 	 * page table page.
5293 	 */
5294 	if ((addr & SEG_MASK) == 0 &&
5295 	    (ctob(psize) & SEG_MASK) == 0 &&
5296 	    (ctob(pindex) & SEG_MASK) == 0) {
5297 		return;
5298 	}
5299 
5300 	/*
5301 	 * Use a red-black scan to traverse the requested range and load
5302 	 * any valid pages found into the pmap.
5303 	 *
5304 	 * We cannot safely scan the object's memq without holding the
5305 	 * object token.
5306 	 */
5307 	info.start_pindex = pindex;
5308 	info.end_pindex = pindex + psize - 1;
5309 	info.limit = limit;
5310 	info.mpte = NULL;
5311 	info.addr = addr;
5312 	info.pmap = pmap;
5313 	info.object = object;
5314 
5315 	/*
5316 	 * By using the NOLK scan, the callback function must be sure
5317 	 * to return -1 if the VM page falls out of the object.
5318 	 */
5319 	vm_object_hold_shared(object);
5320 	vm_page_rb_tree_RB_SCAN_NOLK(&object->rb_memq, rb_vm_page_scancmp,
5321 				     pmap_object_init_pt_callback, &info);
5322 	vm_object_drop(object);
5323 }
5324 
5325 static
5326 int
5327 pmap_object_init_pt_callback(vm_page_t p, void *data)
5328 {
5329 	struct rb_vm_page_scan_info *info = data;
5330 	vm_pindex_t rel_index;
5331 	int hard_busy;
5332 
5333 	/*
5334 	 * don't allow an madvise to blow away our really
5335 	 * free pages allocating pv entries.
5336 	 */
5337 	if ((info->limit & MAP_PREFAULT_MADVISE) &&
5338 		vmstats.v_free_count < vmstats.v_free_reserved) {
5339 		    return(-1);
5340 	}
5341 
5342 	/*
5343 	 * Ignore list markers and ignore pages we cannot instantly
5344 	 * busy (while holding the object token).
5345 	 */
5346 	if (p->flags & PG_MARKER)
5347 		return 0;
5348 	hard_busy = 0;
5349 again:
5350 	if (hard_busy) {
5351 		if (vm_page_busy_try(p, TRUE))
5352 			return 0;
5353 	} else {
5354 		if (vm_page_sbusy_try(p))
5355 			return 0;
5356 	}
5357 	if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
5358 	    (p->flags & PG_FICTITIOUS) == 0) {
5359 		if ((p->queue - p->pc) == PQ_CACHE) {
5360 			if (hard_busy == 0) {
5361 				vm_page_sbusy_drop(p);
5362 				hard_busy = 1;
5363 				goto again;
5364 			}
5365 			vm_page_deactivate(p);
5366 		}
5367 		rel_index = p->pindex - info->start_pindex;
5368 		pmap_enter_quick(info->pmap,
5369 				 info->addr + x86_64_ptob(rel_index), p);
5370 	}
5371 	if (hard_busy)
5372 		vm_page_wakeup(p);
5373 	else
5374 		vm_page_sbusy_drop(p);
5375 
5376 	/*
5377 	 * We are using an unlocked scan (that is, the scan expects its
5378 	 * current element to remain in the tree on return).  So we have
5379 	 * to check here and abort the scan if it isn't.
5380 	 */
5381 	if (p->object != info->object)
5382 		return -1;
5383 	lwkt_yield();
5384 	return(0);
5385 }
5386 
5387 /*
5388  * Return TRUE if the pmap is in shape to trivially pre-fault the specified
5389  * address.
5390  *
5391  * Returns FALSE if it would be non-trivial or if a pte is already loaded
5392  * into the slot.
5393  *
5394  * XXX This is safe only because page table pages are not freed.
5395  */
5396 int
5397 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
5398 {
5399 	pt_entry_t *pte;
5400 
5401 	/*spin_lock(&pmap->pm_spin);*/
5402 	if ((pte = pmap_pte(pmap, addr)) != NULL) {
5403 		if (*pte & pmap->pmap_bits[PG_V_IDX]) {
5404 			/*spin_unlock(&pmap->pm_spin);*/
5405 			return FALSE;
5406 		}
5407 	}
5408 	/*spin_unlock(&pmap->pm_spin);*/
5409 	return TRUE;
5410 }
5411 
5412 /*
5413  * Change the wiring attribute for a pmap/va pair.  The mapping must already
5414  * exist in the pmap.  The mapping may or may not be managed.  The wiring in
5415  * the page is not changed, the page is returned so the caller can adjust
5416  * its wiring (the page is not locked in any way).
5417  *
5418  * Wiring is not a hardware characteristic so there is no need to invalidate
5419  * TLB.  However, in an SMP environment we must use a locked bus cycle to
5420  * update the pte (if we are not using the pmap_inval_*() API that is)...
5421  * it's ok to do this for simple wiring changes.
5422  */
5423 vm_page_t
5424 pmap_unwire(pmap_t pmap, vm_offset_t va)
5425 {
5426 	pt_entry_t *ptep;
5427 	pv_entry_t pt_pv;
5428 	vm_paddr_t pa;
5429 	vm_page_t m;
5430 
5431 	if (pmap == NULL)
5432 		return NULL;
5433 
5434 	/*
5435 	 * Assume elements in the kernel pmap are stable
5436 	 */
5437 	if (pmap == &kernel_pmap) {
5438 		if (pmap_pt(pmap, va) == 0)
5439 			return NULL;
5440 		ptep = pmap_pte_quick(pmap, va);
5441 		if (pmap_pte_v(pmap, ptep)) {
5442 			if (pmap_pte_w(pmap, ptep))
5443 				atomic_add_long(&pmap->pm_stats.wired_count,-1);
5444 			atomic_clear_long(ptep, pmap->pmap_bits[PG_W_IDX]);
5445 			pa = *ptep & PG_FRAME;
5446 			m = PHYS_TO_VM_PAGE(pa);
5447 		} else {
5448 			m = NULL;
5449 		}
5450 	} else {
5451 		/*
5452 		 * We can only [un]wire pmap-local pages (we cannot wire
5453 		 * shared pages)
5454 		 */
5455 		pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
5456 		if (pt_pv == NULL)
5457 			return NULL;
5458 
5459 		ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
5460 		if ((*ptep & pmap->pmap_bits[PG_V_IDX]) == 0) {
5461 			pv_put(pt_pv);
5462 			return NULL;
5463 		}
5464 
5465 		if (pmap_pte_w(pmap, ptep)) {
5466 			atomic_add_long(&pt_pv->pv_pmap->pm_stats.wired_count,
5467 					-1);
5468 		}
5469 		/* XXX else return NULL so caller doesn't unwire m ? */
5470 
5471 		atomic_clear_long(ptep, pmap->pmap_bits[PG_W_IDX]);
5472 
5473 		pa = *ptep & PG_FRAME;
5474 		m = PHYS_TO_VM_PAGE(pa);	/* held by wired count */
5475 		pv_put(pt_pv);
5476 	}
5477 	return m;
5478 }
5479 
5480 /*
5481  * Copy the range specified by src_addr/len from the source map to
5482  * the range dst_addr/len in the destination map.
5483  *
5484  * This routine is only advisory and need not do anything.
5485  */
5486 void
5487 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
5488 	  vm_size_t len, vm_offset_t src_addr)
5489 {
5490 }
5491 
5492 /*
5493  * pmap_zero_page:
5494  *
5495  *	Zero the specified physical page.
5496  *
5497  *	This function may be called from an interrupt and no locking is
5498  *	required.
5499  */
5500 void
5501 pmap_zero_page(vm_paddr_t phys)
5502 {
5503 	vm_offset_t va = PHYS_TO_DMAP(phys);
5504 
5505 	pagezero((void *)va);
5506 }
5507 
5508 /*
5509  * pmap_zero_page:
5510  *
5511  *	Zero part of a physical page by mapping it into memory and clearing
5512  *	its contents with bzero.
5513  *
5514  *	off and size may not cover an area beyond a single hardware page.
5515  */
5516 void
5517 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
5518 {
5519 	vm_offset_t virt = PHYS_TO_DMAP(phys);
5520 
5521 	bzero((char *)virt + off, size);
5522 }
5523 
5524 /*
5525  * pmap_copy_page:
5526  *
5527  *	Copy the physical page from the source PA to the target PA.
5528  *	This function may be called from an interrupt.  No locking
5529  *	is required.
5530  */
5531 void
5532 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
5533 {
5534 	vm_offset_t src_virt, dst_virt;
5535 
5536 	src_virt = PHYS_TO_DMAP(src);
5537 	dst_virt = PHYS_TO_DMAP(dst);
5538 	bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
5539 }
5540 
5541 /*
5542  * pmap_copy_page_frag:
5543  *
5544  *	Copy the physical page from the source PA to the target PA.
5545  *	This function may be called from an interrupt.  No locking
5546  *	is required.
5547  */
5548 void
5549 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
5550 {
5551 	vm_offset_t src_virt, dst_virt;
5552 
5553 	src_virt = PHYS_TO_DMAP(src);
5554 	dst_virt = PHYS_TO_DMAP(dst);
5555 
5556 	bcopy((char *)src_virt + (src & PAGE_MASK),
5557 	      (char *)dst_virt + (dst & PAGE_MASK),
5558 	      bytes);
5559 }
5560 
5561 /*
5562  * Returns true if the pmap's pv is one of the first 16 pvs linked to from
5563  * this page.  This count may be changed upwards or downwards in the future;
5564  * it is only necessary that true be returned for a small subset of pmaps
5565  * for proper page aging.
5566  */
5567 boolean_t
5568 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
5569 {
5570 	pv_entry_t pv;
5571 	int loops = 0;
5572 
5573 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
5574 		return FALSE;
5575 
5576 	vm_page_spin_lock(m);
5577 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5578 		if (pv->pv_pmap == pmap) {
5579 			vm_page_spin_unlock(m);
5580 			return TRUE;
5581 		}
5582 		loops++;
5583 		if (loops >= 16)
5584 			break;
5585 	}
5586 	vm_page_spin_unlock(m);
5587 	return (FALSE);
5588 }
5589 
5590 /*
5591  * Remove all pages from specified address space this aids process exit
5592  * speeds.  Also, this code may be special cased for the current process
5593  * only.
5594  */
5595 void
5596 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5597 {
5598 	pmap_remove_noinval(pmap, sva, eva);
5599 	cpu_invltlb();
5600 }
5601 
5602 /*
5603  * pmap_testbit tests bits in pte's note that the testbit/clearbit
5604  * routines are inline, and a lot of things compile-time evaluate.
5605  */
5606 
5607 static
5608 boolean_t
5609 pmap_testbit(vm_page_t m, int bit)
5610 {
5611 	pv_entry_t pv;
5612 	pt_entry_t *pte;
5613 	pmap_t pmap;
5614 
5615 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
5616 		return FALSE;
5617 
5618 	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
5619 		return FALSE;
5620 	vm_page_spin_lock(m);
5621 	if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
5622 		vm_page_spin_unlock(m);
5623 		return FALSE;
5624 	}
5625 
5626 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5627 #if defined(PMAP_DIAGNOSTIC)
5628 		if (pv->pv_pmap == NULL) {
5629 			kprintf("Null pmap (tb) at pindex: %"PRIu64"\n",
5630 			    pv->pv_pindex);
5631 			continue;
5632 		}
5633 #endif
5634 		pmap = pv->pv_pmap;
5635 
5636 		/*
5637 		 * If the bit being tested is the modified bit, then
5638 		 * mark clean_map and ptes as never
5639 		 * modified.
5640 		 *
5641 		 * WARNING!  Because we do not lock the pv, *pte can be in a
5642 		 *	     state of flux.  Despite this the value of *pte
5643 		 *	     will still be related to the vm_page in some way
5644 		 *	     because the pv cannot be destroyed as long as we
5645 		 *	     hold the vm_page spin lock.
5646 		 */
5647 		if (bit == PG_A_IDX || bit == PG_M_IDX) {
5648 				//& (pmap->pmap_bits[PG_A_IDX] | pmap->pmap_bits[PG_M_IDX])) {
5649 			if (!pmap_track_modified(pv->pv_pindex))
5650 				continue;
5651 		}
5652 
5653 		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5654 		if (*pte & pmap->pmap_bits[bit]) {
5655 			vm_page_spin_unlock(m);
5656 			return TRUE;
5657 		}
5658 	}
5659 	vm_page_spin_unlock(m);
5660 	return (FALSE);
5661 }
5662 
5663 /*
5664  * This routine is used to modify bits in ptes.  Only one bit should be
5665  * specified.  PG_RW requires special handling.
5666  *
5667  * Caller must NOT hold any spin locks
5668  */
5669 static __inline
5670 void
5671 pmap_clearbit(vm_page_t m, int bit_index)
5672 {
5673 	pv_entry_t pv;
5674 	pt_entry_t *pte;
5675 	pt_entry_t pbits;
5676 	pmap_t pmap;
5677 
5678 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
5679 		if (bit_index == PG_RW_IDX)
5680 			vm_page_flag_clear(m, PG_WRITEABLE);
5681 		return;
5682 	}
5683 
5684 	/*
5685 	 * PG_M or PG_A case
5686 	 *
5687 	 * Loop over all current mappings setting/clearing as appropos If
5688 	 * setting RO do we need to clear the VAC?
5689 	 *
5690 	 * NOTE: When clearing PG_M we could also (not implemented) drop
5691 	 *	 through to the PG_RW code and clear PG_RW too, forcing
5692 	 *	 a fault on write to redetect PG_M for virtual kernels, but
5693 	 *	 it isn't necessary since virtual kernels invalidate the
5694 	 *	 pte when they clear the VPTE_M bit in their virtual page
5695 	 *	 tables.
5696 	 *
5697 	 * NOTE: Does not re-dirty the page when clearing only PG_M.
5698 	 *
5699 	 * NOTE: Because we do not lock the pv, *pte can be in a state of
5700 	 *	 flux.  Despite this the value of *pte is still somewhat
5701 	 *	 related while we hold the vm_page spin lock.
5702 	 *
5703 	 *	 *pte can be zero due to this race.  Since we are clearing
5704 	 *	 bits we basically do no harm when this race occurs.
5705 	 */
5706 	if (bit_index != PG_RW_IDX) {
5707 		vm_page_spin_lock(m);
5708 		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5709 #if defined(PMAP_DIAGNOSTIC)
5710 			if (pv->pv_pmap == NULL) {
5711 				kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
5712 				    pv->pv_pindex);
5713 				continue;
5714 			}
5715 #endif
5716 			pmap = pv->pv_pmap;
5717 			pte = pmap_pte_quick(pv->pv_pmap,
5718 					     pv->pv_pindex << PAGE_SHIFT);
5719 			pbits = *pte;
5720 			if (pbits & pmap->pmap_bits[bit_index])
5721 				atomic_clear_long(pte, pmap->pmap_bits[bit_index]);
5722 		}
5723 		vm_page_spin_unlock(m);
5724 		return;
5725 	}
5726 
5727 	/*
5728 	 * Clear PG_RW.  Also clears PG_M and marks the page dirty if PG_M
5729 	 * was set.
5730 	 */
5731 restart:
5732 	vm_page_spin_lock(m);
5733 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5734 		/*
5735 		 * don't write protect pager mappings
5736 		 */
5737 		if (!pmap_track_modified(pv->pv_pindex))
5738 			continue;
5739 
5740 #if defined(PMAP_DIAGNOSTIC)
5741 		if (pv->pv_pmap == NULL) {
5742 			kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
5743 				pv->pv_pindex);
5744 			continue;
5745 		}
5746 #endif
5747 		pmap = pv->pv_pmap;
5748 
5749 		/*
5750 		 * Skip pages which do not have PG_RW set.
5751 		 */
5752 		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5753 		if ((*pte & pmap->pmap_bits[PG_RW_IDX]) == 0)
5754 			continue;
5755 
5756 		/*
5757 		 * We must lock the PV to be able to safely test the pte.
5758 		 */
5759 		if (pv_hold_try(pv)) {
5760 			vm_page_spin_unlock(m);
5761 		} else {
5762 			vm_page_spin_unlock(m);
5763 			pv_lock(pv);	/* held, now do a blocking lock */
5764 			pv_put(pv);
5765 			goto restart;
5766 		}
5767 
5768 		/*
5769 		 * Reload pte after acquiring pv.
5770 		 */
5771 		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5772 #if 0
5773 		if ((*pte & pmap->pmap_bits[PG_RW_IDX]) == 0) {
5774 			pv_put(pv);
5775 			goto restart;
5776 		}
5777 #endif
5778 
5779 		KKASSERT(pv->pv_pmap == pmap && pv->pv_m == m);
5780 		for (;;) {
5781 			pt_entry_t nbits;
5782 
5783 			pbits = *pte;
5784 			cpu_ccfence();
5785 			nbits = pbits & ~(pmap->pmap_bits[PG_RW_IDX] |
5786 					  pmap->pmap_bits[PG_M_IDX]);
5787 			if (pmap_inval_smp_cmpset(pmap,
5788 				     ((vm_offset_t)pv->pv_pindex << PAGE_SHIFT),
5789 				     pte, pbits, nbits)) {
5790 				break;
5791 			}
5792 			cpu_pause();
5793 		}
5794 
5795 		/*
5796 		 * If PG_M was found to be set while we were clearing PG_RW
5797 		 * we also clear PG_M (done above) and mark the page dirty.
5798 		 * Callers expect this behavior.
5799 		 *
5800 		 * we lost pv so it cannot be used as an iterator.  In fact,
5801 		 * because we couldn't necessarily lock it atomically it may
5802 		 * have moved within the list and ALSO cannot be used as an
5803 		 * iterator.
5804 		 */
5805 		vm_page_spin_lock(m);
5806 		if (pbits & pmap->pmap_bits[PG_M_IDX])
5807 			vm_page_dirty(m);
5808 		vm_page_spin_unlock(m);
5809 		pv_put(pv);
5810 		goto restart;
5811 	}
5812 	if (bit_index == PG_RW_IDX)
5813 		vm_page_flag_clear(m, PG_WRITEABLE);
5814 	vm_page_spin_unlock(m);
5815 }
5816 
5817 /*
5818  * Lower the permission for all mappings to a given page.
5819  *
5820  * Page must be busied by caller.  Because page is busied by caller this
5821  * should not be able to race a pmap_enter().
5822  */
5823 void
5824 pmap_page_protect(vm_page_t m, vm_prot_t prot)
5825 {
5826 	/* JG NX support? */
5827 	if ((prot & VM_PROT_WRITE) == 0) {
5828 		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
5829 			/*
5830 			 * NOTE: pmap_clearbit(.. PG_RW) also clears
5831 			 *	 the PG_WRITEABLE flag in (m).
5832 			 */
5833 			pmap_clearbit(m, PG_RW_IDX);
5834 		} else {
5835 			pmap_remove_all(m);
5836 		}
5837 	}
5838 }
5839 
5840 vm_paddr_t
5841 pmap_phys_address(vm_pindex_t ppn)
5842 {
5843 	return (x86_64_ptob(ppn));
5844 }
5845 
5846 /*
5847  * Return a count of reference bits for a page, clearing those bits.
5848  * It is not necessary for every reference bit to be cleared, but it
5849  * is necessary that 0 only be returned when there are truly no
5850  * reference bits set.
5851  *
5852  * XXX: The exact number of bits to check and clear is a matter that
5853  * should be tested and standardized at some point in the future for
5854  * optimal aging of shared pages.
5855  *
5856  * This routine may not block.
5857  */
5858 int
5859 pmap_ts_referenced(vm_page_t m)
5860 {
5861 	pv_entry_t pv;
5862 	pt_entry_t *pte;
5863 	pmap_t pmap;
5864 	int rtval = 0;
5865 
5866 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
5867 		return (rtval);
5868 
5869 	vm_page_spin_lock(m);
5870 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5871 		if (!pmap_track_modified(pv->pv_pindex))
5872 			continue;
5873 		pmap = pv->pv_pmap;
5874 		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5875 		if (pte && (*pte & pmap->pmap_bits[PG_A_IDX])) {
5876 			atomic_clear_long(pte, pmap->pmap_bits[PG_A_IDX]);
5877 			rtval++;
5878 			if (rtval > 4)
5879 				break;
5880 		}
5881 	}
5882 	vm_page_spin_unlock(m);
5883 	return (rtval);
5884 }
5885 
5886 /*
5887  *	pmap_is_modified:
5888  *
5889  *	Return whether or not the specified physical page was modified
5890  *	in any physical maps.
5891  */
5892 boolean_t
5893 pmap_is_modified(vm_page_t m)
5894 {
5895 	boolean_t res;
5896 
5897 	res = pmap_testbit(m, PG_M_IDX);
5898 	return (res);
5899 }
5900 
5901 /*
5902  *	Clear the modify bits on the specified physical page.
5903  */
5904 void
5905 pmap_clear_modify(vm_page_t m)
5906 {
5907 	pmap_clearbit(m, PG_M_IDX);
5908 }
5909 
5910 /*
5911  *	pmap_clear_reference:
5912  *
5913  *	Clear the reference bit on the specified physical page.
5914  */
5915 void
5916 pmap_clear_reference(vm_page_t m)
5917 {
5918 	pmap_clearbit(m, PG_A_IDX);
5919 }
5920 
5921 /*
5922  * Miscellaneous support routines follow
5923  */
5924 
5925 static
5926 void
5927 i386_protection_init(void)
5928 {
5929 	uint64_t *kp;
5930 	int prot;
5931 
5932 	/*
5933 	 * NX supported? (boot time loader.conf override only)
5934 	 */
5935 	TUNABLE_INT_FETCH("machdep.pmap_nx_enable", &pmap_nx_enable);
5936 	if (pmap_nx_enable == 0 || (amd_feature & AMDID_NX) == 0)
5937 		pmap_bits_default[PG_NX_IDX] = 0;
5938 
5939 	/*
5940 	 * 0 is basically read-only access, but also set the NX (no-execute)
5941 	 * bit when VM_PROT_EXECUTE is not specified.
5942 	 */
5943 	kp = protection_codes;
5944 	for (prot = 0; prot < PROTECTION_CODES_SIZE; prot++) {
5945 		switch (prot) {
5946 		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
5947 			/*
5948 			 * This case handled elsewhere
5949 			 */
5950 			*kp++ = 0;
5951 			break;
5952 		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
5953 			/*
5954 			 * Read-only is 0|NX
5955 			 */
5956 			*kp++ = pmap_bits_default[PG_NX_IDX];
5957 			break;
5958 		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
5959 		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
5960 			/*
5961 			 * Execute requires read access
5962 			 */
5963 			*kp++ = 0;
5964 			break;
5965 		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
5966 		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
5967 			/*
5968 			 * Write without execute is RW|NX
5969 			 */
5970 			*kp++ = pmap_bits_default[PG_RW_IDX] |
5971 				pmap_bits_default[PG_NX_IDX];
5972 			break;
5973 		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
5974 		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
5975 			/*
5976 			 * Write with execute is RW
5977 			 */
5978 			*kp++ = pmap_bits_default[PG_RW_IDX];
5979 			break;
5980 		}
5981 	}
5982 }
5983 
5984 /*
5985  * Map a set of physical memory pages into the kernel virtual
5986  * address space. Return a pointer to where it is mapped. This
5987  * routine is intended to be used for mapping device memory,
5988  * NOT real memory.
5989  *
5990  * NOTE: We can't use pgeflag unless we invalidate the pages one at
5991  *	 a time.
5992  *
5993  * NOTE: The PAT attributes {WRITE_BACK, WRITE_THROUGH, UNCACHED, UNCACHEABLE}
5994  *	 work whether the cpu supports PAT or not.  The remaining PAT
5995  *	 attributes {WRITE_PROTECTED, WRITE_COMBINING} only work if the cpu
5996  *	 supports PAT.
5997  */
5998 void *
5999 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
6000 {
6001 	return(pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
6002 }
6003 
6004 void *
6005 pmap_mapdev_uncacheable(vm_paddr_t pa, vm_size_t size)
6006 {
6007 	return(pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
6008 }
6009 
6010 void *
6011 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
6012 {
6013 	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
6014 }
6015 
6016 /*
6017  * Map a set of physical memory pages into the kernel virtual
6018  * address space. Return a pointer to where it is mapped. This
6019  * routine is intended to be used for mapping device memory,
6020  * NOT real memory.
6021  */
6022 void *
6023 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
6024 {
6025 	vm_offset_t va, tmpva, offset;
6026 	pt_entry_t *pte;
6027 	vm_size_t tmpsize;
6028 
6029 	offset = pa & PAGE_MASK;
6030 	size = roundup(offset + size, PAGE_SIZE);
6031 
6032 	va = kmem_alloc_nofault(&kernel_map, size, VM_SUBSYS_MAPDEV, PAGE_SIZE);
6033 	if (va == 0)
6034 		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
6035 
6036 	pa = pa & ~PAGE_MASK;
6037 	for (tmpva = va, tmpsize = size; tmpsize > 0;) {
6038 		pte = vtopte(tmpva);
6039 		*pte = pa |
6040 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
6041 		    kernel_pmap.pmap_bits[PG_V_IDX] | /* pgeflag | */
6042 		    kernel_pmap.pmap_cache_bits[mode];
6043 		tmpsize -= PAGE_SIZE;
6044 		tmpva += PAGE_SIZE;
6045 		pa += PAGE_SIZE;
6046 	}
6047 	pmap_invalidate_range(&kernel_pmap, va, va + size);
6048 	pmap_invalidate_cache_range(va, va + size);
6049 
6050 	return ((void *)(va + offset));
6051 }
6052 
6053 void
6054 pmap_unmapdev(vm_offset_t va, vm_size_t size)
6055 {
6056 	vm_offset_t base, offset;
6057 
6058 	base = va & ~PAGE_MASK;
6059 	offset = va & PAGE_MASK;
6060 	size = roundup(offset + size, PAGE_SIZE);
6061 	pmap_qremove(va, size >> PAGE_SHIFT);
6062 	kmem_free(&kernel_map, base, size);
6063 }
6064 
6065 /*
6066  * Sets the memory attribute for the specified page.
6067  */
6068 void
6069 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
6070 {
6071 
6072     m->pat_mode = ma;
6073 
6074     /*
6075      * If "m" is a normal page, update its direct mapping.  This update
6076      * can be relied upon to perform any cache operations that are
6077      * required for data coherence.
6078      */
6079     if ((m->flags & PG_FICTITIOUS) == 0)
6080         pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), 1, m->pat_mode);
6081 }
6082 
6083 /*
6084  * Change the PAT attribute on an existing kernel memory map.  Caller
6085  * must ensure that the virtual memory in question is not accessed
6086  * during the adjustment.
6087  */
6088 void
6089 pmap_change_attr(vm_offset_t va, vm_size_t count, int mode)
6090 {
6091 	pt_entry_t *pte;
6092 	vm_offset_t base;
6093 	int changed = 0;
6094 
6095 	if (va == 0)
6096 		panic("pmap_change_attr: va is NULL");
6097 	base = trunc_page(va);
6098 
6099 	while (count) {
6100 		pte = vtopte(va);
6101 		*pte = (*pte & ~(pt_entry_t)(kernel_pmap.pmap_cache_mask)) |
6102 		       kernel_pmap.pmap_cache_bits[mode];
6103 		--count;
6104 		va += PAGE_SIZE;
6105 	}
6106 
6107 	changed = 1;	/* XXX: not optimal */
6108 
6109 	/*
6110 	 * Flush CPU caches if required to make sure any data isn't cached that
6111 	 * shouldn't be, etc.
6112 	 */
6113 	if (changed) {
6114 		pmap_invalidate_range(&kernel_pmap, base, va);
6115 		pmap_invalidate_cache_range(base, va);
6116 	}
6117 }
6118 
6119 /*
6120  * perform the pmap work for mincore
6121  */
6122 int
6123 pmap_mincore(pmap_t pmap, vm_offset_t addr)
6124 {
6125 	pt_entry_t *ptep, pte;
6126 	vm_page_t m;
6127 	int val = 0;
6128 
6129 	ptep = pmap_pte(pmap, addr);
6130 
6131 	if (ptep && (pte = *ptep) != 0) {
6132 		vm_offset_t pa;
6133 
6134 		val = MINCORE_INCORE;
6135 		if ((pte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0)
6136 			goto done;
6137 
6138 		pa = pte & PG_FRAME;
6139 
6140 		if (pte & pmap->pmap_bits[PG_DEVICE_IDX])
6141 			m = NULL;
6142 		else
6143 			m = PHYS_TO_VM_PAGE(pa);
6144 
6145 		/*
6146 		 * Modified by us
6147 		 */
6148 		if (pte & pmap->pmap_bits[PG_M_IDX])
6149 			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
6150 		/*
6151 		 * Modified by someone
6152 		 */
6153 		else if (m && (m->dirty || pmap_is_modified(m)))
6154 			val |= MINCORE_MODIFIED_OTHER;
6155 		/*
6156 		 * Referenced by us
6157 		 */
6158 		if (pte & pmap->pmap_bits[PG_A_IDX])
6159 			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
6160 
6161 		/*
6162 		 * Referenced by someone
6163 		 */
6164 		else if (m && ((m->flags & PG_REFERENCED) ||
6165 				pmap_ts_referenced(m))) {
6166 			val |= MINCORE_REFERENCED_OTHER;
6167 			vm_page_flag_set(m, PG_REFERENCED);
6168 		}
6169 	}
6170 done:
6171 
6172 	return val;
6173 }
6174 
6175 /*
6176  * Replace p->p_vmspace with a new one.  If adjrefs is non-zero the new
6177  * vmspace will be ref'd and the old one will be deref'd.
6178  *
6179  * The vmspace for all lwps associated with the process will be adjusted
6180  * and cr3 will be reloaded if any lwp is the current lwp.
6181  *
6182  * The process must hold the vmspace->vm_map.token for oldvm and newvm
6183  */
6184 void
6185 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
6186 {
6187 	struct vmspace *oldvm;
6188 	struct lwp *lp;
6189 
6190 	oldvm = p->p_vmspace;
6191 	if (oldvm != newvm) {
6192 		if (adjrefs)
6193 			vmspace_ref(newvm);
6194 		p->p_vmspace = newvm;
6195 		KKASSERT(p->p_nthreads == 1);
6196 		lp = RB_ROOT(&p->p_lwp_tree);
6197 		pmap_setlwpvm(lp, newvm);
6198 		if (adjrefs)
6199 			vmspace_rel(oldvm);
6200 	}
6201 }
6202 
6203 /*
6204  * Set the vmspace for a LWP.  The vmspace is almost universally set the
6205  * same as the process vmspace, but virtual kernels need to swap out contexts
6206  * on a per-lwp basis.
6207  *
6208  * Caller does not necessarily hold any vmspace tokens.  Caller must control
6209  * the lwp (typically be in the context of the lwp).  We use a critical
6210  * section to protect against statclock and hardclock (statistics collection).
6211  */
6212 void
6213 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
6214 {
6215 	struct vmspace *oldvm;
6216 	struct pmap *pmap;
6217 
6218 	oldvm = lp->lwp_vmspace;
6219 
6220 	if (oldvm != newvm) {
6221 		crit_enter();
6222 		KKASSERT((newvm->vm_refcnt & VM_REF_DELETED) == 0);
6223 		lp->lwp_vmspace = newvm;
6224 		if (curthread->td_lwp == lp) {
6225 			pmap = vmspace_pmap(newvm);
6226 			ATOMIC_CPUMASK_ORBIT(pmap->pm_active, mycpu->gd_cpuid);
6227 			if (pmap->pm_active_lock & CPULOCK_EXCL)
6228 				pmap_interlock_wait(newvm);
6229 #if defined(SWTCH_OPTIM_STATS)
6230 			tlb_flush_count++;
6231 #endif
6232 			if (pmap->pmap_bits[TYPE_IDX] == REGULAR_PMAP) {
6233 				curthread->td_pcb->pcb_cr3 = vtophys(pmap->pm_pml4);
6234 			} else if (pmap->pmap_bits[TYPE_IDX] == EPT_PMAP) {
6235 				curthread->td_pcb->pcb_cr3 = KPML4phys;
6236 			} else {
6237 				panic("pmap_setlwpvm: unknown pmap type\n");
6238 			}
6239 			load_cr3(curthread->td_pcb->pcb_cr3);
6240 			pmap = vmspace_pmap(oldvm);
6241 			ATOMIC_CPUMASK_NANDBIT(pmap->pm_active,
6242 					       mycpu->gd_cpuid);
6243 		}
6244 		crit_exit();
6245 	}
6246 }
6247 
6248 /*
6249  * Called when switching to a locked pmap, used to interlock against pmaps
6250  * undergoing modifications to prevent us from activating the MMU for the
6251  * target pmap until all such modifications have completed.  We have to do
6252  * this because the thread making the modifications has already set up its
6253  * SMP synchronization mask.
6254  *
6255  * This function cannot sleep!
6256  *
6257  * No requirements.
6258  */
6259 void
6260 pmap_interlock_wait(struct vmspace *vm)
6261 {
6262 	struct pmap *pmap = &vm->vm_pmap;
6263 
6264 	if (pmap->pm_active_lock & CPULOCK_EXCL) {
6265 		crit_enter();
6266 		KKASSERT(curthread->td_critcount >= 2);
6267 		DEBUG_PUSH_INFO("pmap_interlock_wait");
6268 		while (pmap->pm_active_lock & CPULOCK_EXCL) {
6269 			cpu_ccfence();
6270 			lwkt_process_ipiq();
6271 		}
6272 		DEBUG_POP_INFO();
6273 		crit_exit();
6274 	}
6275 }
6276 
6277 vm_offset_t
6278 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
6279 {
6280 
6281 	if ((obj == NULL) || (size < NBPDR) ||
6282 	    ((obj->type != OBJT_DEVICE) && (obj->type != OBJT_MGTDEVICE))) {
6283 		return addr;
6284 	}
6285 
6286 	addr = roundup2(addr, NBPDR);
6287 	return addr;
6288 }
6289 
6290 /*
6291  * Used by kmalloc/kfree, page already exists at va
6292  */
6293 vm_page_t
6294 pmap_kvtom(vm_offset_t va)
6295 {
6296 	pt_entry_t *ptep = vtopte(va);
6297 
6298 	KKASSERT((*ptep & kernel_pmap.pmap_bits[PG_DEVICE_IDX]) == 0);
6299 	return(PHYS_TO_VM_PAGE(*ptep & PG_FRAME));
6300 }
6301 
6302 /*
6303  * Initialize machine-specific shared page directory support.  This
6304  * is executed when a VM object is created.
6305  */
6306 void
6307 pmap_object_init(vm_object_t object)
6308 {
6309 	object->md.pmap_rw = NULL;
6310 	object->md.pmap_ro = NULL;
6311 }
6312 
6313 /*
6314  * Clean up machine-specific shared page directory support.  This
6315  * is executed when a VM object is destroyed.
6316  */
6317 void
6318 pmap_object_free(vm_object_t object)
6319 {
6320 	pmap_t pmap;
6321 
6322 	if ((pmap = object->md.pmap_rw) != NULL) {
6323 		object->md.pmap_rw = NULL;
6324 		pmap_remove_noinval(pmap,
6325 				  VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
6326 		CPUMASK_ASSZERO(pmap->pm_active);
6327 		pmap_release(pmap);
6328 		pmap_puninit(pmap);
6329 		kfree(pmap, M_OBJPMAP);
6330 	}
6331 	if ((pmap = object->md.pmap_ro) != NULL) {
6332 		object->md.pmap_ro = NULL;
6333 		pmap_remove_noinval(pmap,
6334 				  VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
6335 		CPUMASK_ASSZERO(pmap->pm_active);
6336 		pmap_release(pmap);
6337 		pmap_puninit(pmap);
6338 		kfree(pmap, M_OBJPMAP);
6339 	}
6340 }
6341 
6342 /*
6343  * pmap_pgscan_callback - Used by pmap_pgscan to acquire the related
6344  * VM page and issue a pginfo->callback.
6345  *
6346  * We are expected to dispose of any non-NULL pte_pv.
6347  */
6348 static
6349 void
6350 pmap_pgscan_callback(pmap_t pmap, struct pmap_scan_info *info,
6351 		      pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
6352 		      pv_entry_t pt_pv, int sharept,
6353 		      vm_offset_t va, pt_entry_t *ptep, void *arg)
6354 {
6355 	struct pmap_pgscan_info *pginfo = arg;
6356 	vm_page_t m;
6357 
6358 	if (pte_pv) {
6359 		/*
6360 		 * Try to busy the page while we hold the pte_pv locked.
6361 		 */
6362 		KKASSERT(pte_pv->pv_m);
6363 		m = PHYS_TO_VM_PAGE(*ptep & PG_FRAME);
6364 		if (vm_page_busy_try(m, TRUE) == 0) {
6365 			if (m == PHYS_TO_VM_PAGE(*ptep & PG_FRAME)) {
6366 				/*
6367 				 * The callback is issued with the pte_pv
6368 				 * unlocked and put away, and the pt_pv
6369 				 * unlocked.
6370 				 */
6371 				pv_put(pte_pv);
6372 				if (pt_pv) {
6373 					vm_page_wire_quick(pt_pv->pv_m);
6374 					pv_unlock(pt_pv);
6375 				}
6376 				if (pginfo->callback(pginfo, va, m) < 0)
6377 					info->stop = 1;
6378 				if (pt_pv) {
6379 					pv_lock(pt_pv);
6380 					vm_page_unwire_quick(pt_pv->pv_m);
6381 				}
6382 			} else {
6383 				vm_page_wakeup(m);
6384 				pv_put(pte_pv);
6385 			}
6386 		} else {
6387 			++pginfo->busycount;
6388 			pv_put(pte_pv);
6389 		}
6390 	} else {
6391 		/*
6392 		 * Shared page table or unmanaged page (sharept or !sharept)
6393 		 */
6394 		pv_placemarker_wakeup(pmap, pte_placemark);
6395 	}
6396 }
6397 
6398 void
6399 pmap_pgscan(struct pmap_pgscan_info *pginfo)
6400 {
6401 	struct pmap_scan_info info;
6402 
6403 	pginfo->offset = pginfo->beg_addr;
6404 	info.pmap = pginfo->pmap;
6405 	info.sva = pginfo->beg_addr;
6406 	info.eva = pginfo->end_addr;
6407 	info.func = pmap_pgscan_callback;
6408 	info.arg = pginfo;
6409 	pmap_scan(&info, 0);
6410 	if (info.stop == 0)
6411 		pginfo->offset = pginfo->end_addr;
6412 }
6413 
6414 /*
6415  * Wait for a placemarker that we do not own to clear.  The placemarker
6416  * in question is not necessarily set to the pindex we want, we may have
6417  * to wait on the element because we want to reserve it ourselves.
6418  *
6419  * NOTE: PM_PLACEMARK_WAKEUP sets a bit which is already set in
6420  *	 PM_NOPLACEMARK, so it does not interfere with placemarks
6421  *	 which have already been woken up.
6422  */
6423 static
6424 void
6425 pv_placemarker_wait(pmap_t pmap, vm_pindex_t *pmark)
6426 {
6427 	if (*pmark != PM_NOPLACEMARK) {
6428 		atomic_set_long(pmark, PM_PLACEMARK_WAKEUP);
6429 		tsleep_interlock(pmark, 0);
6430 		if (*pmark != PM_NOPLACEMARK)
6431 			tsleep(pmark, PINTERLOCKED, "pvplw", 0);
6432 	}
6433 }
6434 
6435 /*
6436  * Wakeup a placemarker that we own.  Replace the entry with
6437  * PM_NOPLACEMARK and issue a wakeup() if necessary.
6438  */
6439 static
6440 void
6441 pv_placemarker_wakeup(pmap_t pmap, vm_pindex_t *pmark)
6442 {
6443 	vm_pindex_t pindex;
6444 
6445 	pindex = atomic_swap_long(pmark, PM_NOPLACEMARK);
6446 	KKASSERT(pindex != PM_NOPLACEMARK);
6447 	if (pindex & PM_PLACEMARK_WAKEUP)
6448 		wakeup(pmark);
6449 }
6450