1 /*
2  * Copyright (c) 2003-2011 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * pmap invalidation support code.  Certain hardware requirements must
37  * be dealt with when manipulating page table entries and page directory
38  * entries within a pmap.  In particular, we cannot safely manipulate
39  * page tables which are in active use by another cpu (even if it is
40  * running in userland) for two reasons: First, TLB writebacks will
41  * race against our own modifications and tests.  Second, even if we
42  * were to use bus-locked instruction we can still screw up the
43  * target cpu's instruction pipeline due to Intel cpu errata.
44  */
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/vmmeter.h>
51 #include <sys/thread2.h>
52 #include <sys/sysctl.h>
53 
54 #include <vm/vm.h>
55 #include <vm/pmap.h>
56 #include <vm/vm_object.h>
57 
58 #include <machine/cputypes.h>
59 #include <machine/md_var.h>
60 #include <machine/specialreg.h>
61 #include <machine/smp.h>
62 #include <machine/globaldata.h>
63 #include <machine/pmap.h>
64 #include <machine/pmap_inval.h>
65 #include <machine/clock.h>
66 
67 #if 1	/* DEBUGGING */
68 #define LOOPRECOVER			/* enable watchdog */
69 #endif
70 
71 /*
72  * Watchdog recovery interval, in seconds.
73  *
74  * The watchdog value is generous for two reasons.  First, because the
75  * situation is not supposed to happen at all (but does), and second,
76  * because VMs could be very slow at handling IPIs.
77  */
78 #define LOOPRECOVER_TIMEOUT1	2	/* initial recovery */
79 #define LOOPRECOVER_TIMEOUT2	1	/* repeated recoveries */
80 
81 #define MAX_INVAL_PAGES		128
82 
83 struct pmap_inval_info {
84 	vm_offset_t	va;
85 	pt_entry_t	*ptep;
86 	pt_entry_t	opte;
87 	pt_entry_t	npte;
88 	enum { INVDONE, INVSTORE, INVCMPSET } mode;
89 	int		success;
90 	vm_pindex_t	npgs;
91 	cpumask_t	done;
92 	cpumask_t	mask;
93 #ifdef LOOPRECOVER
94 	cpumask_t	sigmask;
95 	int		failed;
96 	int64_t		tsc_target;
97 #endif
98 } __cachealign;
99 
100 typedef struct pmap_inval_info pmap_inval_info_t;
101 
102 static pmap_inval_info_t	invinfo[MAXCPU];
103 extern cpumask_t		smp_invmask;
104 #ifdef LOOPRECOVER
105 #ifdef LOOPMASK_IN
106 extern cpumask_t		smp_in_mask;
107 #endif
108 extern cpumask_t		smp_smurf_mask;
109 #endif
110 static int pmap_inval_watchdog_print;	/* must always default off */
111 static int pmap_inval_force_allcpus;
112 static int pmap_inval_force_nonopt;
113 
114 SYSCTL_INT(_machdep, OID_AUTO, pmap_inval_watchdog_print, CTLFLAG_RW,
115 	    &pmap_inval_watchdog_print, 0, "");
116 SYSCTL_INT(_machdep, OID_AUTO, pmap_inval_force_allcpus, CTLFLAG_RW,
117 	    &pmap_inval_force_allcpus, 0, "");
118 SYSCTL_INT(_machdep, OID_AUTO, pmap_inval_force_nonopt, CTLFLAG_RW,
119 	    &pmap_inval_force_nonopt, 0, "");
120 
121 static void
122 pmap_inval_init(pmap_t pmap)
123 {
124 	cpulock_t olock;
125 	cpulock_t nlock;
126 
127 	crit_enter_id("inval");
128 
129 	if (pmap != &kernel_pmap) {
130 		for (;;) {
131 			olock = pmap->pm_active_lock;
132 			cpu_ccfence();
133 			nlock = olock | CPULOCK_EXCL;
134 			if (olock != nlock &&
135 			    atomic_cmpset_int(&pmap->pm_active_lock,
136 					      olock, nlock)) {
137 				break;
138 			}
139 			lwkt_process_ipiq();
140 			cpu_pause();
141 		}
142 		atomic_add_acq_long(&pmap->pm_invgen, 1);
143 	}
144 }
145 
146 static void
147 pmap_inval_done(pmap_t pmap)
148 {
149 	if (pmap != &kernel_pmap) {
150 		atomic_add_acq_long(&pmap->pm_invgen, 1);
151 		atomic_clear_int(&pmap->pm_active_lock, CPULOCK_EXCL);
152 	}
153 	crit_exit_id("inval");
154 }
155 
156 #ifdef LOOPRECOVER
157 
158 /*
159  * Debugging and lost IPI recovery code.
160  */
161 static
162 __inline
163 int
164 loopwdog(struct pmap_inval_info *info)
165 {
166 	int64_t tsc;
167 
168 	tsc = rdtsc();
169 	if (info->tsc_target - tsc < 0 && tsc_frequency) {
170 		info->tsc_target = tsc + (tsc_frequency * LOOPRECOVER_TIMEOUT2);
171 		return 1;
172 	}
173 	return 0;
174 }
175 
176 static
177 void
178 loopdebug(const char *msg, pmap_inval_info_t *info)
179 {
180 	int p;
181 	int cpu = mycpu->gd_cpuid;
182 
183 	/*
184 	 * Don't kprintf() anything if the pmap inval watchdog gets hit.
185 	 * DRM can cause an occassional watchdog hit (at least with a 1/16
186 	 * second watchdog), and attempting to kprintf to the KVM frame buffer
187 	 * from Xinvltlb, which ignores critical sections, can implode the
188 	 * system.
189 	 */
190 	if (pmap_inval_watchdog_print == 0)
191 		return;
192 
193 	cpu_lfence();
194 #ifdef LOOPRECOVER
195 	atomic_add_long(&smp_smurf_mask.ary[0], 0);
196 #endif
197 	kprintf("ipilost-%s! %d mode=%d m=%08jx d=%08jx "
198 #ifdef LOOPRECOVER
199 		"s=%08jx "
200 #endif
201 #ifdef LOOPMASK_IN
202 		"in=%08jx "
203 #endif
204 #ifdef LOOPRECOVER
205 		"smurf=%08jx\n"
206 #endif
207 		, msg, cpu, info->mode,
208 		info->mask.ary[0],
209 		info->done.ary[0]
210 #ifdef LOOPRECOVER
211 		, info->sigmask.ary[0]
212 #endif
213 #ifdef LOOPMASK_IN
214 		, smp_in_mask.ary[0]
215 #endif
216 #ifdef LOOPRECOVER
217 		, smp_smurf_mask.ary[0]
218 #endif
219 		);
220 	kprintf("mdglob ");
221 	for (p = 0; p < ncpus; ++p)
222 		kprintf(" %d", CPU_prvspace[p]->mdglobaldata.gd_xinvaltlb);
223 	kprintf("\n");
224 }
225 
226 #endif
227 
228 #ifdef CHECKSIG
229 
230 #define CHECKSIGMASK(info)	_checksigmask(info, __FILE__, __LINE__)
231 
232 static
233 void
234 _checksigmask(pmap_inval_info_t *info, const char *file, int line)
235 {
236 	cpumask_t tmp;
237 
238 	tmp = info->mask;
239 	CPUMASK_ANDMASK(tmp, info->sigmask);
240 	if (CPUMASK_CMPMASKNEQ(tmp, info->mask)) {
241 		kprintf("\"%s\" line %d: bad sig/mask %08jx %08jx\n",
242 			file, line, info->sigmask.ary[0], info->mask.ary[0]);
243 	}
244 }
245 
246 #else
247 
248 #define CHECKSIGMASK(info)
249 
250 #endif
251 
252 /*
253  * Invalidate the specified va across all cpus associated with the pmap.
254  * If va == (vm_offset_t)-1, we invltlb() instead of invlpg().  The operation
255  * will be done fully synchronously with storing npte into *ptep and returning
256  * opte.
257  *
258  * If ptep is NULL the operation will execute semi-synchronously.
259  * ptep must be NULL if npgs > 1
260  */
261 pt_entry_t
262 pmap_inval_smp(pmap_t pmap, vm_offset_t va, vm_pindex_t npgs,
263 	       pt_entry_t *ptep, pt_entry_t npte)
264 {
265 	globaldata_t gd = mycpu;
266 	pmap_inval_info_t *info;
267 	pt_entry_t opte = 0;
268 	int cpu = gd->gd_cpuid;
269 	cpumask_t tmpmask;
270 	unsigned long rflags;
271 
272 	/*
273 	 * Initialize invalidation for pmap and enter critical section.
274 	 * This will enter a critical section for us.
275 	 */
276 	if (pmap == NULL)
277 		pmap = &kernel_pmap;
278 	pmap_inval_init(pmap);
279 
280 	/*
281 	 * Shortcut single-cpu case if possible.
282 	 */
283 	if (CPUMASK_CMPMASKEQ(pmap->pm_active, gd->gd_cpumask) &&
284 	    pmap_inval_force_nonopt == 0) {
285 		/*
286 		 * Convert to invltlb if there are too many pages to
287 		 * invlpg on.
288 		 */
289 		if (npgs == 1) {
290 			if (ptep)
291 				opte = atomic_swap_long(ptep, npte);
292 			if (va == (vm_offset_t)-1)
293 				cpu_invltlb();
294 			else
295 				cpu_invlpg((void *)va);
296 		} else if (va == (vm_offset_t)-1 || npgs > MAX_INVAL_PAGES) {
297 			if (ptep) {
298 				while (npgs) {
299 					opte = atomic_swap_long(ptep, npte);
300 					++ptep;
301 					--npgs;
302 				}
303 			}
304 			cpu_invltlb();
305 		} else {
306 			while (npgs) {
307 				if (ptep) {
308 					opte = atomic_swap_long(ptep, npte);
309 					++ptep;
310 				}
311 				cpu_invlpg((void *)va);
312 				va += PAGE_SIZE;
313 				--npgs;
314 			}
315 		}
316 		pmap_inval_done(pmap);
317 
318 		return opte;
319 	}
320 
321 	/*
322 	 * We need a critical section to prevent getting preempted while
323 	 * we setup our command.  A preemption might execute its own
324 	 * pmap_inval*() command and create confusion below.
325 	 *
326 	 * tsc_target is our watchdog timeout that will attempt to recover
327 	 * from a lost IPI.  Set to 1/16 second for now.
328 	 */
329 	info = &invinfo[cpu];
330 
331 	/*
332 	 * We must wait for other cpus which may still be finishing up a
333 	 * prior operation that we requested.
334 	 *
335 	 * We do not have to disable interrupts here.  An Xinvltlb can occur
336 	 * at any time (even within a critical section), but it will not
337 	 * act on our command until we set our done bits.
338 	 */
339 	while (CPUMASK_TESTNZERO(info->done)) {
340 #ifdef LOOPRECOVER
341 		if (loopwdog(info)) {
342 			info->failed = 1;
343 			loopdebug("A", info);
344 			/* XXX recover from possible bug */
345 			CPUMASK_ASSZERO(info->done);
346 		}
347 #endif
348 		cpu_pause();
349 	}
350 	KKASSERT(info->mode == INVDONE);
351 	cpu_mfence();
352 
353 	/*
354 	 * Must set our cpu in the invalidation scan mask before
355 	 * any possibility of [partial] execution (remember, XINVLTLB
356 	 * can interrupt a critical section).
357 	 */
358 	ATOMIC_CPUMASK_ORBIT(smp_invmask, cpu);
359 
360 	info->tsc_target = rdtsc() + (tsc_frequency * LOOPRECOVER_TIMEOUT1);
361 	info->va = va;
362 	info->npgs = npgs;
363 	info->ptep = ptep;
364 	info->npte = npte;
365 	info->opte = 0;
366 #ifdef LOOPRECOVER
367 	info->failed = 0;
368 #endif
369 	info->mode = INVSTORE;
370 
371 	tmpmask = pmap->pm_active;	/* volatile (bits may be cleared) */
372 	if (pmap_inval_force_allcpus)
373 		tmpmask = smp_active_mask;
374 	cpu_ccfence();
375 	CPUMASK_ANDMASK(tmpmask, smp_active_mask);
376 
377 	/*
378 	 * If ptep is NULL the operation can be semi-synchronous, which means
379 	 * we can improve performance by flagging and removing idle cpus
380 	 * (see the idleinvlclr function in mp_machdep.c).
381 	 *
382 	 * Typically kernel page table operation is semi-synchronous.
383 	 */
384 	if (ptep == NULL)
385 		smp_smurf_idleinvlclr(&tmpmask);
386 	CPUMASK_ORBIT(tmpmask, cpu);
387 	info->mask = tmpmask;
388 
389 	/*
390 	 * Command may start executing the moment 'done' is initialized,
391 	 * disable current cpu interrupt to prevent 'done' field from
392 	 * changing (other cpus can't clear done bits until the originating
393 	 * cpu clears its mask bit, but other cpus CAN start clearing their
394 	 * mask bits).
395 	 */
396 #ifdef LOOPRECOVER
397 	info->sigmask = tmpmask;
398 	CHECKSIGMASK(info);
399 #endif
400 	cpu_sfence();
401 	rflags = read_rflags();
402 	cpu_disable_intr();
403 
404 	ATOMIC_CPUMASK_COPY(info->done, tmpmask);
405 	/* execution can begin here on other cpus due to races */
406 
407 	/*
408 	 * Pass our copy of the done bits (so they don't change out from
409 	 * under us) to generate the Xinvltlb interrupt on the targets.
410 	 */
411 	smp_invlpg(&tmpmask);
412 	opte = info->opte;
413 	KKASSERT(info->mode == INVDONE);
414 
415 	/*
416 	 * Target cpus will be in their loop exiting concurrently with our
417 	 * cleanup.  They will not lose the bitmask they obtained before so
418 	 * we can safely clear this bit.
419 	 */
420 	ATOMIC_CPUMASK_NANDBIT(smp_invmask, cpu);
421 	write_rflags(rflags);
422 	pmap_inval_done(pmap);
423 
424 	return opte;
425 }
426 
427 /*
428  * API function - invalidate the pte at (va) and replace *ptep with npte
429  * atomically only if *ptep equals opte, across the pmap's active cpus.
430  *
431  * Returns 1 on success, 0 on failure (caller typically retries).
432  */
433 int
434 pmap_inval_smp_cmpset(pmap_t pmap, vm_offset_t va, pt_entry_t *ptep,
435 		      pt_entry_t opte, pt_entry_t npte)
436 {
437 	globaldata_t gd = mycpu;
438 	pmap_inval_info_t *info;
439 	int success;
440 	int cpu = gd->gd_cpuid;
441 	cpumask_t tmpmask;
442 	unsigned long rflags;
443 
444 	/*
445 	 * Initialize invalidation for pmap and enter critical section.
446 	 */
447 	if (pmap == NULL)
448 		pmap = &kernel_pmap;
449 	pmap_inval_init(pmap);
450 
451 	/*
452 	 * Shortcut single-cpu case if possible.
453 	 */
454 	if (CPUMASK_CMPMASKEQ(pmap->pm_active, gd->gd_cpumask) &&
455 	    pmap_inval_force_nonopt == 0) {
456 		if (atomic_cmpset_long(ptep, opte, npte)) {
457 			if (va == (vm_offset_t)-1)
458 				cpu_invltlb();
459 			else
460 				cpu_invlpg((void *)va);
461 			pmap_inval_done(pmap);
462 			return 1;
463 		} else {
464 			pmap_inval_done(pmap);
465 			return 0;
466 		}
467 	}
468 
469 	/*
470 	 * We need a critical section to prevent getting preempted while
471 	 * we setup our command.  A preemption might execute its own
472 	 * pmap_inval*() command and create confusion below.
473 	 */
474 	info = &invinfo[cpu];
475 
476 	/*
477 	 * We must wait for other cpus which may still be finishing
478 	 * up a prior operation.
479 	 */
480 	while (CPUMASK_TESTNZERO(info->done)) {
481 #ifdef LOOPRECOVER
482 		if (loopwdog(info)) {
483 			info->failed = 1;
484 			loopdebug("B", info);
485 			/* XXX recover from possible bug */
486 			CPUMASK_ASSZERO(info->done);
487 		}
488 #endif
489 		cpu_pause();
490 	}
491 	KKASSERT(info->mode == INVDONE);
492 	cpu_mfence();
493 
494 	/*
495 	 * Must set our cpu in the invalidation scan mask before
496 	 * any possibility of [partial] execution (remember, XINVLTLB
497 	 * can interrupt a critical section).
498 	 */
499 	ATOMIC_CPUMASK_ORBIT(smp_invmask, cpu);
500 
501 	info->tsc_target = rdtsc() + (tsc_frequency * LOOPRECOVER_TIMEOUT1);
502 	info->va = va;
503 	info->npgs = 1;			/* unused */
504 	info->ptep = ptep;
505 	info->npte = npte;
506 	info->opte = opte;
507 #ifdef LOOPRECOVER
508 	info->failed = 0;
509 #endif
510 	info->mode = INVCMPSET;
511 	info->success = 0;
512 
513 	tmpmask = pmap->pm_active;	/* volatile */
514 	if (pmap_inval_force_allcpus)
515 		tmpmask = smp_active_mask;
516 	cpu_ccfence();
517 	CPUMASK_ANDMASK(tmpmask, smp_active_mask);
518 	CPUMASK_ORBIT(tmpmask, cpu);
519 	info->mask = tmpmask;
520 
521 	/*
522 	 * Command may start executing the moment 'done' is initialized,
523 	 * disable current cpu interrupt to prevent 'done' field from
524 	 * changing (other cpus can't clear done bits until the originating
525 	 * cpu clears its mask bit).
526 	 */
527 #ifdef LOOPRECOVER
528 	info->sigmask = tmpmask;
529 	CHECKSIGMASK(info);
530 #endif
531 	cpu_sfence();
532 	rflags = read_rflags();
533 	cpu_disable_intr();
534 
535 	ATOMIC_CPUMASK_COPY(info->done, tmpmask);
536 
537 	/*
538 	 * Pass our copy of the done bits (so they don't change out from
539 	 * under us) to generate the Xinvltlb interrupt on the targets.
540 	 */
541 	smp_invlpg(&tmpmask);
542 	success = info->success;
543 	KKASSERT(info->mode == INVDONE);
544 
545 	ATOMIC_CPUMASK_NANDBIT(smp_invmask, cpu);
546 	write_rflags(rflags);
547 	pmap_inval_done(pmap);
548 
549 	return success;
550 }
551 
552 void
553 pmap_inval_bulk_init(pmap_inval_bulk_t *bulk, struct pmap *pmap)
554 {
555 	bulk->pmap = pmap;
556 	bulk->va_beg = 0;
557 	bulk->va_end = 0;
558 	bulk->count = 0;
559 }
560 
561 pt_entry_t
562 pmap_inval_bulk(pmap_inval_bulk_t *bulk, vm_offset_t va,
563 		pt_entry_t *ptep, pt_entry_t npte)
564 {
565 	pt_entry_t pte;
566 
567 	/*
568 	 * Degenerate case, localized or we don't care (e.g. because we
569 	 * are jacking the entire page table) or the pmap is not in-use
570 	 * by anyone.  No invalidations are done on any cpu.
571 	 */
572 	if (bulk == NULL) {
573 		pte = atomic_swap_long(ptep, npte);
574 		return pte;
575 	}
576 
577 	/*
578 	 * If it isn't the kernel pmap we execute the operation synchronously
579 	 * on all cpus belonging to the pmap, which avoids concurrency bugs in
580 	 * the hw related to changing pte's out from under threads.
581 	 *
582 	 * Eventually I would like to implement streaming pmap invalidation
583 	 * for user pmaps to reduce mmap/munmap overheads for heavily-loaded
584 	 * threaded programs.
585 	 */
586 	if (bulk->pmap != &kernel_pmap) {
587 		pte = pmap_inval_smp(bulk->pmap, va, 1, ptep, npte);
588 		return pte;
589 	}
590 
591 	/*
592 	 * This is the kernel_pmap.  All unmap operations presume that there
593 	 * are no other cpus accessing the addresses in question.  Implement
594 	 * the bulking algorithm.  collect the required information and
595 	 * synchronize once at the end.
596 	 */
597 	pte = atomic_swap_long(ptep, npte);
598 	if (va == (vm_offset_t)-1) {
599 		bulk->va_beg = va;
600 	} else if (bulk->va_beg == bulk->va_end) {
601 		bulk->va_beg = va;
602 		bulk->va_end = va + PAGE_SIZE;
603 	} else if (va == bulk->va_end) {
604 		bulk->va_end = va + PAGE_SIZE;
605 	} else {
606 		bulk->va_beg = (vm_offset_t)-1;
607 		bulk->va_end = 0;
608 #if 0
609 		pmap_inval_bulk_flush(bulk);
610 		bulk->count = 1;
611 		if (va == (vm_offset_t)-1) {
612 			bulk->va_beg = va;
613 			bulk->va_end = 0;
614 		} else {
615 			bulk->va_beg = va;
616 			bulk->va_end = va + PAGE_SIZE;
617 		}
618 #endif
619 	}
620 	++bulk->count;
621 
622 	return pte;
623 }
624 
625 void
626 pmap_inval_bulk_flush(pmap_inval_bulk_t *bulk)
627 {
628 	if (bulk == NULL)
629 		return;
630 	if (bulk->va_beg != bulk->va_end) {
631 		if (bulk->va_beg == (vm_offset_t)-1) {
632 			pmap_inval_smp(bulk->pmap, bulk->va_beg, 1, NULL, 0);
633 		} else {
634 			vm_pindex_t n;
635 
636 			n = (bulk->va_end - bulk->va_beg) >> PAGE_SHIFT;
637 			pmap_inval_smp(bulk->pmap, bulk->va_beg, n, NULL, 0);
638 		}
639 	}
640 	bulk->va_beg = 0;
641 	bulk->va_end = 0;
642 	bulk->count = 0;
643 }
644 
645 /*
646  * Called from Xinvl with a critical section held and interrupts enabled.
647  */
648 int
649 pmap_inval_intr(cpumask_t *cpumaskp, int toolong)
650 {
651 	globaldata_t gd = mycpu;
652 	pmap_inval_info_t *info;
653 	int loopme = 0;
654 	int cpu;
655 	cpumask_t cpumask;
656 
657 	/*
658 	 * Check all cpus for invalidations we may need to service.
659 	 */
660 	cpu_ccfence();
661 	cpu = gd->gd_cpuid;
662 	cpumask = *cpumaskp;
663 
664         while (CPUMASK_TESTNZERO(cpumask)) {
665                 int n = BSFCPUMASK(cpumask);
666 
667 #ifdef LOOPRECOVER
668 		KKASSERT(n >= 0 && n < MAXCPU);
669 #endif
670 
671                 CPUMASK_NANDBIT(cpumask, n);
672 		info = &invinfo[n];
673 
674 		/*
675 		 * Checkout cpu (cpu) for work in the target cpu info (n)
676 		 *
677 		 * if (n == cpu) - check our cpu for a master operation
678 		 * if (n != cpu) - check other cpus for a slave operation
679 		 *
680 		 * Due to interrupts/races we can catch a new operation
681 		 * in an older interrupt in other cpus.
682 		 *
683 		 * A fence is needed once we detect the (not) done bit.
684 		 */
685 		if (!CPUMASK_TESTBIT(info->done, cpu))
686 			continue;
687 		cpu_lfence();
688 #ifdef LOOPRECOVER
689 		if (toolong) {
690 			kprintf("pminvl %d->%d %08jx %08jx mode=%d\n",
691 				cpu, n, info->done.ary[0], info->mask.ary[0],
692 				info->mode);
693 		}
694 #endif
695 
696 		/*
697 		 * info->mask and info->done always contain the originating
698 		 * cpu until the originator is done.  Targets may still be
699 		 * present in info->done after the originator is done (they
700 		 * will be finishing up their loops).
701 		 *
702 		 * Clear info->mask bits on other cpus to indicate that they
703 		 * have quiesced (entered the loop).  Once the other mask bits
704 		 * are clear we can execute the operation on the original,
705 		 * then clear the mask and done bits on the originator.  The
706 		 * targets will then finish up their side and clear their
707 		 * done bits.
708 		 *
709 		 * The command is considered 100% done when all done bits have
710 		 * been cleared.
711 		 */
712 		if (n != cpu) {
713 			/*
714 			 * Command state machine for 'other' cpus.
715 			 */
716 			if (CPUMASK_TESTBIT(info->mask, cpu)) {
717 				/*
718 				 * Other cpus indicate to originator that they
719 				 * are quiesced.
720 				 */
721 				ATOMIC_CPUMASK_NANDBIT(info->mask, cpu);
722 				loopme = 1;
723 			} else if (info->ptep &&
724 				   CPUMASK_TESTBIT(info->mask, n)) {
725 				/*
726 				 * Other cpu must wait for the originator (n)
727 				 * to complete its command if ptep is not NULL.
728 				 */
729 				loopme = 1;
730 			} else {
731 				/*
732 				 * Other cpu detects that the originator has
733 				 * completed its command, or there was no
734 				 * command.
735 				 *
736 				 * Now that the page table entry has changed,
737 				 * we can follow up with our own invalidation.
738 				 */
739 				vm_offset_t va = info->va;
740 				vm_pindex_t npgs;
741 
742 				if (va == (vm_offset_t)-1 ||
743 				    info->npgs > MAX_INVAL_PAGES) {
744 					cpu_invltlb();
745 				} else {
746 					for (npgs = info->npgs; npgs; --npgs) {
747 						cpu_invlpg((void *)va);
748 						va += PAGE_SIZE;
749 					}
750 				}
751 				ATOMIC_CPUMASK_NANDBIT(info->done, cpu);
752 				/* info invalid now */
753 				/* loopme left alone */
754 			}
755 		} else if (CPUMASK_TESTBIT(info->mask, cpu)) {
756 			/*
757 			 * Originator is waiting for other cpus
758 			 */
759 			if (CPUMASK_CMPMASKNEQ(info->mask, gd->gd_cpumask)) {
760 				/*
761 				 * Originator waits for other cpus to enter
762 				 * their loop (aka quiesce).
763 				 *
764 				 * If this bugs out the IPI may have been lost,
765 				 * try to reissue by resetting our own
766 				 * reentrancy bit and clearing the smurf mask
767 				 * for the cpus that did not respond, then
768 				 * reissuing the IPI.
769 				 */
770 				loopme = 1;
771 #ifdef LOOPRECOVER
772 				if (loopwdog(info)) {
773 					info->failed = 1;
774 					loopdebug("C", info);
775 					/* XXX recover from possible bug */
776 					cpu_disable_intr();
777 					ATOMIC_CPUMASK_NANDMASK(smp_smurf_mask,
778 								info->mask);
779 					smp_invlpg(&smp_active_mask);
780 
781 					/*
782 					 * Force outer-loop retest of Xinvltlb
783 					 * requests (see mp_machdep.c).
784 					 */
785 					cpu_enable_intr();
786 				}
787 #endif
788 			} else {
789 				/*
790 				 * Originator executes operation and clears
791 				 * mask to allow other cpus to finish.
792 				 */
793 				KKASSERT(info->mode != INVDONE);
794 				if (info->mode == INVSTORE) {
795 					if (info->ptep)
796 						info->opte = atomic_swap_long(info->ptep, info->npte);
797 					CHECKSIGMASK(info);
798 					ATOMIC_CPUMASK_NANDBIT(info->mask, cpu);
799 					CHECKSIGMASK(info);
800 				} else {
801 					if (atomic_cmpset_long(info->ptep,
802 							      info->opte, info->npte)) {
803 						info->success = 1;
804 					} else {
805 						info->success = 0;
806 					}
807 					CHECKSIGMASK(info);
808 					ATOMIC_CPUMASK_NANDBIT(info->mask, cpu);
809 					CHECKSIGMASK(info);
810 				}
811 				loopme = 1;
812 			}
813 		} else {
814 			/*
815 			 * Originator does not have to wait for the other
816 			 * cpus to finish.  It clears its done bit.  A new
817 			 * command will not be initiated by the originator
818 			 * until the other cpus have cleared their done bits
819 			 * (asynchronously).
820 			 */
821 			vm_offset_t va = info->va;
822 			vm_pindex_t npgs;
823 
824 			if (va == (vm_offset_t)-1 ||
825 			    info->npgs > MAX_INVAL_PAGES) {
826 				cpu_invltlb();
827 			} else {
828 				for (npgs = info->npgs; npgs; --npgs) {
829 					cpu_invlpg((void *)va);
830 					va += PAGE_SIZE;
831 				}
832 			}
833 
834 			/* leave loopme alone */
835 			/* other cpus may still be finishing up */
836 			/* can't race originator since that's us */
837 			info->mode = INVDONE;
838 			ATOMIC_CPUMASK_NANDBIT(info->done, cpu);
839 		}
840         }
841 	return loopme;
842 }
843