xref: /dragonfly/sys/platform/pc64/x86_64/swtch.s (revision 73610d44)
1/*
2 * Copyright (c) 2003,2004,2008 The DragonFly Project.  All rights reserved.
3 * Copyright (c) 2008 Jordan Gordeev.
4 *
5 * This code is derived from software contributed to The DragonFly Project
6 * by Matthew Dillon <dillon@backplane.com>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in
16 *    the documentation and/or other materials provided with the
17 *    distribution.
18 * 3. Neither the name of The DragonFly Project nor the names of its
19 *    contributors may be used to endorse or promote products derived
20 *    from this software without specific, prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * Copyright (c) 1990 The Regents of the University of California.
36 * All rights reserved.
37 *
38 * This code is derived from software contributed to Berkeley by
39 * William Jolitz.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 *    must display the following acknowledgement:
51 *	This product includes software developed by the University of
52 *	California, Berkeley and its contributors.
53 * 4. Neither the name of the University nor the names of its contributors
54 *    may be used to endorse or promote products derived from this software
55 *    without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 * SUCH DAMAGE.
68 *
69 * $FreeBSD: src/sys/i386/i386/swtch.s,v 1.89.2.10 2003/01/23 03:36:24 ps Exp $
70 */
71
72//#include "use_npx.h"
73
74#include <sys/rtprio.h>
75
76#include <machine/asmacros.h>
77#include <machine/segments.h>
78
79#include <machine/pmap.h>
80#if 0 /* JG */
81#include <machine_base/apic/apicreg.h>
82#endif
83#include <machine/lock.h>
84
85#include "assym.s"
86
87#define MPLOCKED        lock ;
88
89	.data
90
91	.globl	panic
92	.globl	lwkt_switch_return
93
94#if defined(SWTCH_OPTIM_STATS)
95	.globl	swtch_optim_stats, tlb_flush_count
96swtch_optim_stats:	.long	0		/* number of _swtch_optims */
97tlb_flush_count:	.long	0
98#endif
99
100	.text
101
102
103/*
104 * cpu_heavy_switch(struct thread *next_thread)
105 *
106 *	Switch from the current thread to a new thread.  This entry
107 *	is normally called via the thread->td_switch function, and will
108 *	only be called when the current thread is a heavy weight process.
109 *
110 *	Some instructions have been reordered to reduce pipeline stalls.
111 *
112 *	YYY disable interrupts once giant is removed.
113 */
114ENTRY(cpu_heavy_switch)
115	/*
116	 * Save RIP, RSP and callee-saved registers (RBX, RBP, R12-R15).
117	 */
118	movq	PCPU(curthread),%rcx
119	/* On top of the stack is the return adress. */
120	movq	(%rsp),%rax			/* (reorder optimization) */
121	movq	TD_PCB(%rcx),%rdx		/* RDX = PCB */
122	movq	%rax,PCB_RIP(%rdx)		/* return PC may be modified */
123	movq	%rbx,PCB_RBX(%rdx)
124	movq	%rsp,PCB_RSP(%rdx)
125	movq	%rbp,PCB_RBP(%rdx)
126	movq	%r12,PCB_R12(%rdx)
127	movq	%r13,PCB_R13(%rdx)
128	movq	%r14,PCB_R14(%rdx)
129	movq	%r15,PCB_R15(%rdx)
130
131	/*
132	 * Clear the cpu bit in the pmap active mask.  The restore
133	 * function will set the bit in the pmap active mask.
134	 *
135	 * Special case: when switching between threads sharing the
136	 * same vmspace if we avoid clearing the bit we do not have
137	 * to reload %cr3 (if we clear the bit we could race page
138	 * table ops done by other threads and would have to reload
139	 * %cr3, because those ops will not know to IPI us).
140	 */
141	movq	%rcx,%rbx			/* RBX = oldthread */
142	movq	TD_LWP(%rcx),%rcx		/* RCX = oldlwp	*/
143	movq	TD_LWP(%rdi),%r13		/* R13 = newlwp */
144	movq	LWP_VMSPACE(%rcx), %rcx		/* RCX = oldvmspace */
145	testq	%r13,%r13			/* might not be a heavy */
146	jz	1f
147	cmpq	LWP_VMSPACE(%r13),%rcx		/* same vmspace? */
148	je	2f
149#if CPUMASK_ELEMENTS != 4
150#error "assembly incompatible with cpumask_t"
151#endif
1521:
153	movq	PCPU(other_cpus)+0,%rax
154	MPLOCKED andq	%rax, VM_PMAP+PM_ACTIVE+0(%rcx)
155	movq	PCPU(other_cpus)+8,%rax
156	MPLOCKED andq	%rax, VM_PMAP+PM_ACTIVE+8(%rcx)
157	movq	PCPU(other_cpus)+16,%rax
158	MPLOCKED andq	%rax, VM_PMAP+PM_ACTIVE+16(%rcx)
159	movq	PCPU(other_cpus)+24,%rax
160	MPLOCKED andq	%rax, VM_PMAP+PM_ACTIVE+24(%rcx)
1612:
162
163	/*
164	 * Push the LWKT switch restore function, which resumes a heavy
165	 * weight process.  Note that the LWKT switcher is based on
166	 * TD_SP, while the heavy weight process switcher is based on
167	 * PCB_RSP.  TD_SP is usually two ints pushed relative to
168	 * PCB_RSP.  We push the flags for later restore by cpu_heavy_restore.
169	 */
170	pushfq
171	cli
172	movq	$cpu_heavy_restore, %rax
173	pushq	%rax
174	movq	%rsp,TD_SP(%rbx)
175
176	/*
177	 * Save debug regs if necessary
178	 */
179	movq    PCB_FLAGS(%rdx),%rax
180	andq    $PCB_DBREGS,%rax
181	jz      1f                              /* no, skip over */
182	movq    %dr7,%rax                       /* yes, do the save */
183	movq    %rax,PCB_DR7(%rdx)
184	/* JG correct value? */
185	andq    $0x0000fc00, %rax               /* disable all watchpoints */
186	movq    %rax,%dr7
187	movq    %dr6,%rax
188	movq    %rax,PCB_DR6(%rdx)
189	movq    %dr3,%rax
190	movq    %rax,PCB_DR3(%rdx)
191	movq    %dr2,%rax
192	movq    %rax,PCB_DR2(%rdx)
193	movq    %dr1,%rax
194	movq    %rax,PCB_DR1(%rdx)
195	movq    %dr0,%rax
196	movq    %rax,PCB_DR0(%rdx)
1971:
198
199#if 1
200	/*
201	 * Save the FP state if we have used the FP.  Note that calling
202	 * npxsave will NULL out PCPU(npxthread).
203	 */
204	cmpq	%rbx,PCPU(npxthread)
205	jne	1f
206	movq	%rdi,%r12		/* save %rdi. %r12 is callee-saved */
207	movq	TD_SAVEFPU(%rbx),%rdi
208	call	npxsave			/* do it in a big C function */
209	movq	%r12,%rdi		/* restore %rdi */
2101:
211#endif
212
213	/*
214	 * Switch to the next thread, which was passed as an argument
215	 * to cpu_heavy_switch().  The argument is in %rdi.
216	 * Set the current thread, load the stack pointer,
217	 * and 'ret' into the switch-restore function.
218	 *
219	 * The switch restore function expects the new thread to be in %rax
220	 * and the old one to be in %rbx.
221	 *
222	 * There is a one-instruction window where curthread is the new
223	 * thread but %rsp still points to the old thread's stack, but
224	 * we are protected by a critical section so it is ok.
225	 */
226	movq	%rdi,%rax		/* RAX = newtd, RBX = oldtd */
227	movq	%rax,PCPU(curthread)
228	movq	TD_SP(%rax),%rsp
229	ret
230
231/*
232 *  cpu_exit_switch(struct thread *next)
233 *
234 *	The switch function is changed to this when a thread is going away
235 *	for good.  We have to ensure that the MMU state is not cached, and
236 *	we don't bother saving the existing thread state before switching.
237 *
238 *	At this point we are in a critical section and this cpu owns the
239 *	thread's token, which serves as an interlock until the switchout is
240 *	complete.
241 */
242ENTRY(cpu_exit_switch)
243	/*
244	 * Get us out of the vmspace
245	 */
246	movq	KPML4phys,%rcx
247	movq	%cr3,%rax
248#if 1
249	cmpq	%rcx,%rax
250	je	1f
251#endif
252	/* JG no increment of statistics counters? see cpu_heavy_restore */
253	movq	%rcx,%cr3
2541:
255	movq	PCPU(curthread),%rbx
256
257	/*
258	 * If this is a process/lwp, deactivate the pmap after we've
259	 * switched it out.
260	 */
261	movq	TD_LWP(%rbx),%rcx
262	testq	%rcx,%rcx
263	jz	2f
264	movq	LWP_VMSPACE(%rcx), %rcx		/* RCX = vmspace */
265	movq	PCPU(other_cpus)+0,%rax
266	MPLOCKED andq	%rax, VM_PMAP+PM_ACTIVE+0(%rcx)
267	movq	PCPU(other_cpus)+8,%rax
268	MPLOCKED andq	%rax, VM_PMAP+PM_ACTIVE+8(%rcx)
269	movq	PCPU(other_cpus)+16,%rax
270	MPLOCKED andq	%rax, VM_PMAP+PM_ACTIVE+16(%rcx)
271	movq	PCPU(other_cpus)+24,%rax
272	MPLOCKED andq	%rax, VM_PMAP+PM_ACTIVE+24(%rcx)
2732:
274	/*
275	 * Switch to the next thread.  RET into the restore function, which
276	 * expects the new thread in RAX and the old in RBX.
277	 *
278	 * There is a one-instruction window where curthread is the new
279	 * thread but %rsp still points to the old thread's stack, but
280	 * we are protected by a critical section so it is ok.
281	 */
282	cli
283	movq	%rdi,%rax
284	movq	%rax,PCPU(curthread)
285	movq	TD_SP(%rax),%rsp
286	ret
287
288/*
289 * cpu_heavy_restore()	(current thread in %rax on entry, old thread in %rbx)
290 *
291 *	Restore the thread after an LWKT switch.  This entry is normally
292 *	called via the LWKT switch restore function, which was pulled
293 *	off the thread stack and jumped to.
294 *
295 *	This entry is only called if the thread was previously saved
296 *	using cpu_heavy_switch() (the heavy weight process thread switcher),
297 *	or when a new process is initially scheduled.
298 *
299 *	NOTE: The lwp may be in any state, not necessarily LSRUN, because
300 *	a preemption switch may interrupt the process and then return via
301 *	cpu_heavy_restore.
302 *
303 *	YYY theoretically we do not have to restore everything here, a lot
304 *	of this junk can wait until we return to usermode.  But for now
305 *	we restore everything.
306 *
307 *	YYY the PCB crap is really crap, it makes startup a bitch because
308 *	we can't switch away.
309 *
310 *	YYY note: spl check is done in mi_switch when it splx()'s.
311 */
312
313ENTRY(cpu_heavy_restore)
314	movq	TD_PCB(%rax),%rdx		/* RDX = PCB */
315	movq	%rdx, PCPU(common_tss) + TSS_RSP0
316	popfq
317
318#if defined(SWTCH_OPTIM_STATS)
319	incl	_swtch_optim_stats
320#endif
321	/*
322	 * Tell the pmap that our cpu is using the VMSPACE now.  We cannot
323	 * safely test/reload %cr3 until after we have set the bit in the
324	 * pmap.
325	 *
326	 * We must do an interlocked test of the CPULOCK_EXCL at the same
327	 * time.  If found to be set we will have to wait for it to clear
328	 * and then do a forced reload of %cr3 (even if the value matches).
329	 *
330	 * XXX When switching between two LWPs sharing the same vmspace
331	 *     the cpu_heavy_switch() code currently avoids clearing the
332	 *     cpu bit in PM_ACTIVE.  So if the bit is already set we can
333	 *     avoid checking for the interlock via CPULOCK_EXCL.  We currently
334	 *     do not perform this optimization.
335	 */
336	movq	TD_LWP(%rax),%rcx
337	movq	LWP_VMSPACE(%rcx),%rcx		/* RCX = vmspace */
338
339#if CPUMASK_ELEMENTS != 4
340#error "assembly incompatible with cpumask_t"
341#endif
342	movq	PCPU(cpumask)+0,%rsi		/* new contents */
343	MPLOCKED orq %rsi, VM_PMAP+PM_ACTIVE+0(%rcx)
344	movq	PCPU(cpumask)+8,%rsi
345	MPLOCKED orq %rsi, VM_PMAP+PM_ACTIVE+8(%rcx)
346	movq	PCPU(cpumask)+16,%rsi
347	MPLOCKED orq %rsi, VM_PMAP+PM_ACTIVE+16(%rcx)
348	movq	PCPU(cpumask)+24,%rsi
349	MPLOCKED orq %rsi, VM_PMAP+PM_ACTIVE+24(%rcx)
350
351	movl	VM_PMAP+PM_ACTIVE_LOCK(%rcx),%esi
352	testl	$CPULOCK_EXCL,%esi
353	jz	1f
354
355	movq	%rax,%r12		/* save newthread ptr */
356	movq	%rcx,%rdi		/* (found to be set) */
357	call	pmap_interlock_wait	/* pmap_interlock_wait(%rdi:vm) */
358	movq	%r12,%rax
359
360	/*
361	 * Need unconditional load cr3
362	 */
363	movq	TD_PCB(%rax),%rdx	/* RDX = PCB */
364	movq	PCB_CR3(%rdx),%rcx	/* RCX = desired CR3 */
365	jmp	2f			/* unconditional reload */
3661:
367	/*
368	 * Restore the MMU address space.  If it is the same as the last
369	 * thread we don't have to invalidate the tlb (i.e. reload cr3).
370	 * YYY which naturally also means that the PM_ACTIVE bit had better
371	 * already have been set before we set it above, check? YYY
372	 */
373	movq	TD_PCB(%rax),%rdx		/* RDX = PCB */
374	movq	%cr3,%rsi			/* RSI = current CR3 */
375	movq	PCB_CR3(%rdx),%rcx		/* RCX = desired CR3 */
376	cmpq	%rsi,%rcx
377	je	4f
3782:
379#if defined(SWTCH_OPTIM_STATS)
380	decl	_swtch_optim_stats
381	incl	_tlb_flush_count
382#endif
383	movq	%rcx,%cr3
3844:
385
386	/*
387	 * NOTE: %rbx is the previous thread and %rax is the new thread.
388	 *	 %rbx is retained throughout so we can return it.
389	 *
390	 *	 lwkt_switch[_return] is responsible for handling TDF_RUNNING.
391	 */
392
393	/*
394	 * Deal with the PCB extension, restore the private tss
395	 */
396	movq	PCB_EXT(%rdx),%rdi	/* check for a PCB extension */
397	movq	$1,%rcx			/* maybe mark use of a private tss */
398	testq	%rdi,%rdi
399#if 0 /* JG */
400	jnz	2f
401#endif
402
403	/*
404	 * Going back to the common_tss.  We may need to update TSS_RSP0
405	 * which sets the top of the supervisor stack when entering from
406	 * usermode.  The PCB is at the top of the stack but we need another
407	 * 16 bytes to take vm86 into account.
408	 */
409	movq	%rdx,%rcx
410	/*leaq	-TF_SIZE(%rdx),%rcx*/
411	movq	%rcx, PCPU(common_tss) + TSS_RSP0
412
413#if 0 /* JG */
414	cmpl	$0,PCPU(private_tss)	/* don't have to reload if      */
415	je	3f			/* already using the common TSS */
416
417	/* JG? */
418	subq	%rcx,%rcx		/* unmark use of private tss */
419
420	/*
421	 * Get the address of the common TSS descriptor for the ltr.
422	 * There is no way to get the address of a segment-accessed variable
423	 * so we store a self-referential pointer at the base of the per-cpu
424	 * data area and add the appropriate offset.
425	 */
426	/* JG movl? */
427	movq	$gd_common_tssd, %rdi
428	/* JG name for "%gs:0"? */
429	addq	%gs:0, %rdi
430
431	/*
432	 * Move the correct TSS descriptor into the GDT slot, then reload
433	 * ltr.
434	 */
4352:
436	/* JG */
437	movl	%rcx,PCPU(private_tss)		/* mark/unmark private tss */
438	movq	PCPU(tss_gdt), %rbx		/* entry in GDT */
439	movq	0(%rdi), %rax
440	movq	%rax, 0(%rbx)
441	movl	$GPROC0_SEL*8, %esi		/* GSEL(entry, SEL_KPL) */
442	ltr	%si
443#endif
444
4453:
446	/*
447	 * Restore the user %gs and %fs
448	 */
449	movq	PCB_FSBASE(%rdx),%r9
450	cmpq	PCPU(user_fs),%r9
451	je	4f
452	movq	%rdx,%r10
453	movq	%r9,PCPU(user_fs)
454	movl	$MSR_FSBASE,%ecx
455	movl	PCB_FSBASE(%r10),%eax
456	movl	PCB_FSBASE+4(%r10),%edx
457	wrmsr
458	movq	%r10,%rdx
4594:
460	movq	PCB_GSBASE(%rdx),%r9
461	cmpq	PCPU(user_gs),%r9
462	je	5f
463	movq	%rdx,%r10
464	movq	%r9,PCPU(user_gs)
465	movl	$MSR_KGSBASE,%ecx	/* later swapgs moves it to GSBASE */
466	movl	PCB_GSBASE(%r10),%eax
467	movl	PCB_GSBASE+4(%r10),%edx
468	wrmsr
469	movq	%r10,%rdx
4705:
471
472	/*
473	 * Restore general registers.  %rbx is restored later.
474	 */
475	movq	PCB_RSP(%rdx), %rsp
476	movq	PCB_RBP(%rdx), %rbp
477	movq	PCB_R12(%rdx), %r12
478	movq	PCB_R13(%rdx), %r13
479	movq	PCB_R14(%rdx), %r14
480	movq	PCB_R15(%rdx), %r15
481	movq	PCB_RIP(%rdx), %rax
482	movq	%rax, (%rsp)
483	movw	$KDSEL,%ax
484	movw	%ax,%es
485
486#if 0 /* JG */
487	/*
488	 * Restore the user LDT if we have one
489	 */
490	cmpl	$0, PCB_USERLDT(%edx)
491	jnz	1f
492	movl	_default_ldt,%eax
493	cmpl	PCPU(currentldt),%eax
494	je	2f
495	lldt	_default_ldt
496	movl	%eax,PCPU(currentldt)
497	jmp	2f
4981:	pushl	%edx
499	call	set_user_ldt
500	popl	%edx
5012:
502#endif
503#if 0 /* JG */
504	/*
505	 * Restore the user TLS if we have one
506	 */
507	pushl	%edx
508	call	set_user_TLS
509	popl	%edx
510#endif
511
512	/*
513	 * Restore the DEBUG register state if necessary.
514	 */
515	movq    PCB_FLAGS(%rdx),%rax
516	andq    $PCB_DBREGS,%rax
517	jz      1f                              /* no, skip over */
518	movq    PCB_DR6(%rdx),%rax              /* yes, do the restore */
519	movq    %rax,%dr6
520	movq    PCB_DR3(%rdx),%rax
521	movq    %rax,%dr3
522	movq    PCB_DR2(%rdx),%rax
523	movq    %rax,%dr2
524	movq    PCB_DR1(%rdx),%rax
525	movq    %rax,%dr1
526	movq    PCB_DR0(%rdx),%rax
527	movq    %rax,%dr0
528	movq	%dr7,%rax                /* load dr7 so as not to disturb */
529	/* JG correct value? */
530	andq    $0x0000fc00,%rax         /*   reserved bits               */
531	/* JG we've got more registers on x86_64 */
532	movq    PCB_DR7(%rdx),%rcx
533	/* JG correct value? */
534	andq	$~0x0000fc00,%rcx
535	orq     %rcx,%rax
536	movq    %rax,%dr7
537
538	/*
539	 * Clear the QUICKRET flag when restoring a user process context
540	 * so we don't try to do a quick syscall return.
541	 */
5421:
543	andl	$~RQF_QUICKRET,PCPU(reqflags)
544	movq	%rbx,%rax
545	movq	PCB_RBX(%rdx),%rbx
546	ret
547
548/*
549 * savectx(struct pcb *pcb)
550 *
551 * Update pcb, saving current processor state.
552 */
553ENTRY(savectx)
554	/* fetch PCB */
555	/* JG use %rdi instead of %rcx everywhere? */
556	movq	%rdi,%rcx
557
558	/* caller's return address - child won't execute this routine */
559	movq	(%rsp),%rax
560	movq	%rax,PCB_RIP(%rcx)
561
562	movq	%cr3,%rax
563	movq	%rax,PCB_CR3(%rcx)
564
565	movq	%rbx,PCB_RBX(%rcx)
566	movq	%rsp,PCB_RSP(%rcx)
567	movq	%rbp,PCB_RBP(%rcx)
568	movq	%r12,PCB_R12(%rcx)
569	movq	%r13,PCB_R13(%rcx)
570	movq	%r14,PCB_R14(%rcx)
571	movq	%r15,PCB_R15(%rcx)
572
573#if 1
574	/*
575	 * If npxthread == NULL, then the npx h/w state is irrelevant and the
576	 * state had better already be in the pcb.  This is true for forks
577	 * but not for dumps (the old book-keeping with FP flags in the pcb
578	 * always lost for dumps because the dump pcb has 0 flags).
579	 *
580	 * If npxthread != NULL, then we have to save the npx h/w state to
581	 * npxthread's pcb and copy it to the requested pcb, or save to the
582	 * requested pcb and reload.  Copying is easier because we would
583	 * have to handle h/w bugs for reloading.  We used to lose the
584	 * parent's npx state for forks by forgetting to reload.
585	 */
586	movq	PCPU(npxthread),%rax
587	testq	%rax,%rax
588	jz	1f
589
590	pushq	%rcx			/* target pcb */
591	movq	TD_SAVEFPU(%rax),%rax	/* originating savefpu area */
592	pushq	%rax
593
594	movq	%rax,%rdi
595	call	npxsave
596
597	popq	%rax
598	popq	%rcx
599
600	movq	$PCB_SAVEFPU_SIZE,%rdx
601	leaq    PCB_SAVEFPU(%rcx),%rcx
602	movq	%rcx,%rsi
603	movq	%rax,%rdi
604	call	bcopy
605#endif
606
6071:
608	ret
609
610/*
611 * cpu_idle_restore()	(current thread in %rax on entry) (one-time execution)
612 *
613 *	Don't bother setting up any regs other than %rbp so backtraces
614 *	don't die.  This restore function is used to bootstrap into the
615 *	cpu_idle() LWKT only, after that cpu_lwkt_*() will be used for
616 *	switching.
617 *
618 *	Clear TDF_RUNNING in old thread only after we've cleaned up %cr3.
619 *	This only occurs during system boot so no special handling is
620 *	required for migration.
621 *
622 *	If we are an AP we have to call ap_init() before jumping to
623 *	cpu_idle().  ap_init() will synchronize with the BP and finish
624 *	setting up various ncpu-dependant globaldata fields.  This may
625 *	happen on UP as well as SMP if we happen to be simulating multiple
626 *	cpus.
627 */
628ENTRY(cpu_idle_restore)
629	/* cli */
630	movq	KPML4phys,%rcx
631	/* JG xor? */
632	movq	$0,%rbp
633	/* JG push RBP? */
634	pushq	$0
635	movq	%rcx,%cr3
636	cmpl	$0,PCPU(cpuid)
637	je	1f
638	andl	$~TDF_RUNNING,TD_FLAGS(%rbx)
639	orl	$TDF_RUNNING,TD_FLAGS(%rax)	/* manual, no switch_return */
640	call	ap_init
641	/*
642	 * ap_init can decide to enable interrupts early, but otherwise, or if
643	 * we are UP, do it here.
644	 */
645	sti
646	jmp	cpu_idle
647
648	/*
649	 * cpu 0's idle thread entry for the first time must use normal
650	 * lwkt_switch_return() semantics or a pending cpu migration on
651	 * thread0 will deadlock.
652	 */
6531:
654	sti
655	pushq	%rax
656	movq	%rbx,%rdi
657	call	lwkt_switch_return
658	popq	%rax
659	jmp	cpu_idle
660
661/*
662 * cpu_kthread_restore() (current thread is %rax on entry, previous is %rbx)
663 *			 (one-time execution)
664 *
665 *	Don't bother setting up any regs other then %rbp so backtraces
666 *	don't die.  This restore function is used to bootstrap into an
667 *	LWKT based kernel thread only.  cpu_lwkt_switch() will be used
668 *	after this.
669 *
670 *	Because this switch target does not 'return' to lwkt_switch()
671 *	we have to call lwkt_switch_return(otd) to clean up otd.
672 *	otd is in %ebx.
673 *
674 *	Since all of our context is on the stack we are reentrant and
675 *	we can release our critical section and enable interrupts early.
676 */
677ENTRY(cpu_kthread_restore)
678	sti
679	movq	KPML4phys,%rcx
680	movq	TD_PCB(%rax),%r13
681	xorq	%rbp,%rbp
682	movq	%rcx,%cr3
683
684	/*
685	 * rax and rbx come from the switchout code.  Call
686	 * lwkt_switch_return(otd).
687	 *
688	 * NOTE: unlike i386, %rsi and %rdi are not call-saved regs.
689	 */
690	pushq	%rax
691	movq	%rbx,%rdi
692	call	lwkt_switch_return
693	popq	%rax
694	decl	TD_CRITCOUNT(%rax)
695	movq	PCB_R12(%r13),%rdi	/* argument to RBX function */
696	movq	PCB_RBX(%r13),%rax	/* thread function */
697	/* note: top of stack return address inherited by function */
698	jmp	*%rax
699
700/*
701 * cpu_lwkt_switch(struct thread *)
702 *
703 *	Standard LWKT switching function.  Only non-scratch registers are
704 *	saved and we don't bother with the MMU state or anything else.
705 *
706 *	This function is always called while in a critical section.
707 *
708 *	There is a one-instruction window where curthread is the new
709 *	thread but %rsp still points to the old thread's stack, but
710 *	we are protected by a critical section so it is ok.
711 */
712ENTRY(cpu_lwkt_switch)
713	pushq	%rbp	/* JG note: GDB hacked to locate ebp rel to td_sp */
714	pushq	%rbx
715	movq	PCPU(curthread),%rbx	/* becomes old thread in restore */
716	pushq	%r12
717	pushq	%r13
718	pushq	%r14
719	pushq	%r15
720	pushfq
721	cli
722
723#if 1
724	/*
725	 * Save the FP state if we have used the FP.  Note that calling
726	 * npxsave will NULL out PCPU(npxthread).
727	 *
728	 * We have to deal with the FP state for LWKT threads in case they
729	 * happen to get preempted or block while doing an optimized
730	 * bzero/bcopy/memcpy.
731	 */
732	cmpq	%rbx,PCPU(npxthread)
733	jne	1f
734	movq	%rdi,%r12		/* save %rdi. %r12 is callee-saved */
735	movq	TD_SAVEFPU(%rbx),%rdi
736	call	npxsave			/* do it in a big C function */
737	movq	%r12,%rdi		/* restore %rdi */
7381:
739#endif
740
741	movq	%rdi,%rax		/* switch to this thread */
742	pushq	$cpu_lwkt_restore
743	movq	%rsp,TD_SP(%rbx)
744	/*
745	 * %rax contains new thread, %rbx contains old thread.
746	 */
747	movq	%rax,PCPU(curthread)
748	movq	TD_SP(%rax),%rsp
749	ret
750
751/*
752 * cpu_lwkt_restore()	(current thread in %rax on entry)
753 *
754 *	Standard LWKT restore function.  This function is always called
755 *	while in a critical section.
756 *
757 *	Warning: due to preemption the restore function can be used to
758 *	'return' to the original thread.  Interrupt disablement must be
759 *	protected through the switch so we cannot run splz here.
760 *
761 *	YYY we theoretically do not need to load KPML4phys into cr3, but if
762 *	so we need a way to detect when the PTD we are using is being
763 *	deleted due to a process exiting.
764 */
765ENTRY(cpu_lwkt_restore)
766	movq	KPML4phys,%rcx	/* YYY borrow but beware desched/cpuchg/exit */
767	movq	%cr3,%rdx
768#if 1
769	cmpq	%rcx,%rdx
770	je	1f
771#endif
772	movq	%rcx,%cr3
7731:
774	/*
775	 * Safety, clear RSP0 in the tss so it isn't pointing at the
776	 * previous thread's kstack (if a heavy weight user thread).
777	 * RSP0 should only be used in ring 3 transitions and kernel
778	 * threads run in ring 0 so there should be none.
779	 */
780	xorq	%rdx,%rdx
781	movq	%rdx, PCPU(common_tss) + TSS_RSP0
782
783	/*
784	 * NOTE: %rbx is the previous thread and %rax is the new thread.
785	 *	 %rbx is retained throughout so we can return it.
786	 *
787	 *	 lwkt_switch[_return] is responsible for handling TDF_RUNNING.
788	 */
789	movq	%rbx,%rax
790	popfq
791	popq	%r15
792	popq	%r14
793	popq	%r13
794	popq	%r12
795	popq	%rbx
796	popq	%rbp
797	ret
798