xref: /dragonfly/sys/platform/pc64/x86_64/swtch.s (revision 7b21e84b)
1/*
2 * Copyright (c) 2003,2004,2008 The DragonFly Project.  All rights reserved.
3 * Copyright (c) 2008 Jordan Gordeev.
4 *
5 * This code is derived from software contributed to The DragonFly Project
6 * by Matthew Dillon <dillon@backplane.com>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in
16 *    the documentation and/or other materials provided with the
17 *    distribution.
18 * 3. Neither the name of The DragonFly Project nor the names of its
19 *    contributors may be used to endorse or promote products derived
20 *    from this software without specific, prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * Copyright (c) 1990 The Regents of the University of California.
36 * All rights reserved.
37 *
38 * This code is derived from software contributed to Berkeley by
39 * William Jolitz.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 *    may be used to endorse or promote products derived from this software
51 *    without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * $FreeBSD: src/sys/i386/i386/swtch.s,v 1.89.2.10 2003/01/23 03:36:24 ps Exp $
66 */
67
68//#include "use_npx.h"
69
70#include <sys/rtprio.h>
71
72#include <machine/asmacros.h>
73#include <machine/segments.h>
74
75#include <machine/pmap.h>
76#if 0 /* JG */
77#include <machine_base/apic/apicreg.h>
78#endif
79#include <machine/lock.h>
80
81#include "assym.s"
82
83#define MPLOCKED        lock ;
84
85/*
86 * PREEMPT_OPTIMIZE
87 *
88 * This feature allows the preempting (interrupt) kernel thread to borrow
89 * %cr3 from the user process it interrupts, allowing us to do-away with
90 * two %cr3 stores, two atomic ops (pm_active is not modified), and pmap
91 * lock tests (not needed since pm_active is not modified).
92 *
93 * Unfortunately, I couldn't really measure any result so for now the
94 * optimization is disabled.
95 */
96#undef PREEMPT_OPTIMIZE
97
98/*
99 * LWP_SWITCH_OPTIMIZE
100 *
101 * This optimization attempted to avoid a %cr3 store and atomic op, and
102 * it might have been useful on older cpus but newer cpus (and more
103 * importantly multi-core cpus) generally do not switch between LWPs on
104 * the same cpu.  Multiple user threads are more likely to be distributed
105 * across multiple cpus.  In cpu-bound situations the scheduler will already
106 * be in batch-mode (meaning relatively few context-switches/sec), and
107 * otherwise the lwp(s) are likely to be blocked waiting for events.
108 *
109 * On the flip side, the conditionals this option uses measurably reduce
110 * performance (just slightly, honestly).  So this option is disabled.
111 */
112#undef LWP_SWITCH_OPTIMIZE
113
114	/*
115	 * Global Declarations
116	 */
117	.data
118
119	.globl	panic
120	.globl	lwkt_switch_return
121
122#if defined(SWTCH_OPTIM_STATS)
123	.globl	swtch_optim_stats, tlb_flush_count
124swtch_optim_stats:	.long	0		/* number of _swtch_optims */
125tlb_flush_count:	.long	0
126#endif
127
128	/*
129	 * Code
130	 */
131	.text
132
133/*
134 * cpu_heavy_switch(struct thread *next_thread)
135 *
136 *	Switch from the current thread to a new thread.  This entry
137 *	is normally called via the thread->td_switch function, and will
138 *	only be called when the current thread is a heavy weight process.
139 *
140 *	Some instructions have been reordered to reduce pipeline stalls.
141 *
142 *	YYY disable interrupts once giant is removed.
143 */
144ENTRY(cpu_heavy_switch)
145	/*
146	 * Save RIP, RSP and callee-saved registers (RBX, RBP, R12-R15).
147	 */
148	movq	PCPU(curthread),%rcx
149	/* On top of the stack is the return adress. */
150	movq	(%rsp),%rax			/* (reorder optimization) */
151	movq	TD_PCB(%rcx),%rdx		/* RDX = PCB */
152	movq	%rax,PCB_RIP(%rdx)		/* return PC may be modified */
153	movq	%rbx,PCB_RBX(%rdx)
154	movq	%rsp,PCB_RSP(%rdx)
155	movq	%rbp,PCB_RBP(%rdx)
156	movq	%r12,PCB_R12(%rdx)
157	movq	%r13,PCB_R13(%rdx)
158	movq	%r14,PCB_R14(%rdx)
159	movq	%r15,PCB_R15(%rdx)
160
161	/*
162	 * Clear the cpu bit in the pmap active mask.  The restore
163	 * function will set the bit in the pmap active mask.
164	 *
165	 * If we are switching away due to a preempt, TD_PREEMPTED(%rdi)
166	 * will be non-NULL.  In this situation we do want to avoid extra
167	 * atomic ops and %cr3 reloads (see top of file for reasoning).
168	 *
169	 * NOTE: Do not try to optimize avoiding the %cr3 reload or pm_active
170	 *	 adjustment.  This mattered on uni-processor systems but in
171	 *	 multi-core systems we are highly unlikely to be switching
172	 *	 to another thread belonging to the same process on this cpu.
173	 *
174	 *	 (more likely the target thread is still sleeping, or if cpu-
175	 *	 bound the scheduler is in batch mode and the switch rate is
176	 *	 already low).
177	 */
178	movq	%rcx,%rbx			/* RBX = oldthread */
179#ifdef PREEMPT_OPTIMIZE
180	/*
181	 * If we are being preempted the target thread borrows our %cr3
182	 * and we leave our pmap bits intact for the duration.
183	 */
184	movq	TD_PREEMPTED(%rdi),%r13
185	testq	%r13,%r13
186	jne	2f
187#endif
188
189	movq	TD_LWP(%rcx),%rcx		/* RCX = oldlwp	*/
190	movq	LWP_VMSPACE(%rcx), %rcx		/* RCX = oldvmspace */
191#ifdef LWP_SWITCH_OPTIMIZE
192	movq	TD_LWP(%rdi),%r13		/* R13 = newlwp */
193	testq	%r13,%r13			/* might not be a heavy */
194	jz	1f
195	cmpq	LWP_VMSPACE(%r13),%rcx		/* same vmspace? */
196	je	2f
1971:
198#endif
199	movq	PCPU(cpumask_simple),%rsi
200	movq	PCPU(cpumask_offset),%r12
201	xorq	$-1,%rsi
202	MPLOCKED andq %rsi, VM_PMAP+PM_ACTIVE(%rcx, %r12, 1)
2032:
204
205	/*
206	 * Push the LWKT switch restore function, which resumes a heavy
207	 * weight process.  Note that the LWKT switcher is based on
208	 * TD_SP, while the heavy weight process switcher is based on
209	 * PCB_RSP.  TD_SP is usually two ints pushed relative to
210	 * PCB_RSP.  We push the flags for later restore by cpu_heavy_restore.
211	 */
212	pushfq
213	cli
214	movq	$cpu_heavy_restore, %rax
215	pushq	%rax
216	movq	%rsp,TD_SP(%rbx)
217
218	/*
219	 * Save debug regs if necessary
220	 */
221	movq    PCB_FLAGS(%rdx),%rax
222	andq    $PCB_DBREGS,%rax
223	jz      1f                              /* no, skip over */
224	movq    %dr7,%rax                       /* yes, do the save */
225	movq    %rax,PCB_DR7(%rdx)
226	/* JG correct value? */
227	andq    $0x0000fc00, %rax               /* disable all watchpoints */
228	movq    %rax,%dr7
229	movq    %dr6,%rax
230	movq    %rax,PCB_DR6(%rdx)
231	movq    %dr3,%rax
232	movq    %rax,PCB_DR3(%rdx)
233	movq    %dr2,%rax
234	movq    %rax,PCB_DR2(%rdx)
235	movq    %dr1,%rax
236	movq    %rax,PCB_DR1(%rdx)
237	movq    %dr0,%rax
238	movq    %rax,PCB_DR0(%rdx)
2391:
240
241#if 1
242	/*
243	 * Save the FP state if we have used the FP.  Note that calling
244	 * npxsave will NULL out PCPU(npxthread).
245	 */
246	cmpq	%rbx,PCPU(npxthread)
247	jne	1f
248	movq	%rdi,%r12		/* save %rdi. %r12 is callee-saved */
249	movq	TD_SAVEFPU(%rbx),%rdi
250	call	npxsave			/* do it in a big C function */
251	movq	%r12,%rdi		/* restore %rdi */
2521:
253#endif
254
255	/*
256	 * Switch to the next thread, which was passed as an argument
257	 * to cpu_heavy_switch().  The argument is in %rdi.
258	 * Set the current thread, load the stack pointer,
259	 * and 'ret' into the switch-restore function.
260	 *
261	 * The switch restore function expects the new thread to be in %rax
262	 * and the old one to be in %rbx.
263	 *
264	 * There is a one-instruction window where curthread is the new
265	 * thread but %rsp still points to the old thread's stack, but
266	 * we are protected by a critical section so it is ok.
267	 */
268	movq	%rdi,%rax		/* RAX = newtd, RBX = oldtd */
269	movq	%rax,PCPU(curthread)
270	movq	TD_SP(%rax),%rsp
271	ret
272
273/*
274 *  cpu_exit_switch(struct thread *next)
275 *
276 *	The switch function is changed to this when a thread is going away
277 *	for good.  We have to ensure that the MMU state is not cached, and
278 *	we don't bother saving the existing thread state before switching.
279 *
280 *	At this point we are in a critical section and this cpu owns the
281 *	thread's token, which serves as an interlock until the switchout is
282 *	complete.
283 */
284ENTRY(cpu_exit_switch)
285
286#ifdef PREEMPT_OPTIMIZE
287	/*
288	 * If we were preempting we are switching back to the original thread.
289	 * In this situation we already have the original thread's %cr3 and
290	 * should not replace it!
291	 */
292	testl	$TDF_PREEMPT_DONE, TD_FLAGS(%rdi)
293	jne	1f
294#endif
295
296	/*
297	 * Get us out of the vmspace
298	 */
299	movq	KPML4phys,%rcx
300	movq	%cr3,%rax
301	cmpq	%rcx,%rax
302	je	1f
303
304	movq	%rcx,%cr3
3051:
306	movq	PCPU(curthread),%rbx
307
308	/*
309	 * If this is a process/lwp, deactivate the pmap after we've
310	 * switched it out.
311	 */
312	movq	TD_LWP(%rbx),%rcx
313	testq	%rcx,%rcx
314	jz	2f
315	movq	LWP_VMSPACE(%rcx), %rcx		/* RCX = vmspace */
316
317	movq	PCPU(cpumask_simple),%rax
318	movq	PCPU(cpumask_offset),%r12
319	xorq	$-1,%rax
320	MPLOCKED andq %rax, VM_PMAP+PM_ACTIVE(%rcx, %r12, 1)
3212:
322	/*
323	 * Switch to the next thread.  RET into the restore function, which
324	 * expects the new thread in RAX and the old in RBX.
325	 *
326	 * There is a one-instruction window where curthread is the new
327	 * thread but %rsp still points to the old thread's stack, but
328	 * we are protected by a critical section so it is ok.
329	 */
330	cli
331	movq	%rdi,%rax
332	movq	%rax,PCPU(curthread)
333	movq	TD_SP(%rax),%rsp
334	ret
335
336/*
337 * cpu_heavy_restore()	(current thread in %rax on entry, old thread in %rbx)
338 *
339 *	Restore the thread after an LWKT switch.  This entry is normally
340 *	called via the LWKT switch restore function, which was pulled
341 *	off the thread stack and jumped to.
342 *
343 *	This entry is only called if the thread was previously saved
344 *	using cpu_heavy_switch() (the heavy weight process thread switcher),
345 *	or when a new process is initially scheduled.
346 *
347 *	NOTE: The lwp may be in any state, not necessarily LSRUN, because
348 *	a preemption switch may interrupt the process and then return via
349 *	cpu_heavy_restore.
350 *
351 *	YYY theoretically we do not have to restore everything here, a lot
352 *	of this junk can wait until we return to usermode.  But for now
353 *	we restore everything.
354 *
355 *	YYY the PCB crap is really crap, it makes startup a bitch because
356 *	we can't switch away.
357 *
358 *	YYY note: spl check is done in mi_switch when it splx()'s.
359 */
360
361ENTRY(cpu_heavy_restore)
362	movq	TD_PCB(%rax),%rdx		/* RDX = PCB */
363	movq	%rdx, PCPU(common_tss) + TSS_RSP0
364	popfq
365
366#if defined(SWTCH_OPTIM_STATS)
367	incl	_swtch_optim_stats
368#endif
369#ifdef PREEMPT_OPTIMIZE
370	/*
371	 * If restoring our thread after a preemption has returned to
372	 * us, our %cr3 and pmap were borrowed and are being returned to
373	 * us and no further action on those items need be taken.
374	 */
375	testl	$TDF_PREEMPT_DONE, TD_FLAGS(%rax)
376	jne	4f
377#endif
378
379	/*
380	 * Tell the pmap that our cpu is using the VMSPACE now.  We cannot
381	 * safely test/reload %cr3 until after we have set the bit in the
382	 * pmap.
383	 *
384	 * We must do an interlocked test of the CPULOCK_EXCL at the same
385	 * time.  If found to be set we will have to wait for it to clear
386	 * and then do a forced reload of %cr3 (even if the value matches).
387	 *
388	 * XXX When switching between two LWPs sharing the same vmspace
389	 *     the cpu_heavy_switch() code currently avoids clearing the
390	 *     cpu bit in PM_ACTIVE.  So if the bit is already set we can
391	 *     avoid checking for the interlock via CPULOCK_EXCL.  We currently
392	 *     do not perform this optimization.
393	 */
394	movq	TD_LWP(%rax),%rcx
395	movq	LWP_VMSPACE(%rcx),%rcx		/* RCX = vmspace */
396
397	movq	PCPU(cpumask_simple),%rsi
398	movq	PCPU(cpumask_offset),%r12
399	MPLOCKED orq %rsi, VM_PMAP+PM_ACTIVE(%rcx, %r12, 1)
400
401	movl	VM_PMAP+PM_ACTIVE_LOCK(%rcx),%esi
402	testl	$CPULOCK_EXCL,%esi
403	jz	1f
404
405	movq	%rax,%r12		/* save newthread ptr */
406	movq	%rcx,%rdi		/* (found to be set) */
407	call	pmap_interlock_wait	/* pmap_interlock_wait(%rdi:vm) */
408	movq	%r12,%rax
409
410	/*
411	 * Need unconditional load cr3
412	 */
413	movq	TD_PCB(%rax),%rdx	/* RDX = PCB */
414	movq	PCB_CR3(%rdx),%rcx	/* RCX = desired CR3 */
415	jmp	2f			/* unconditional reload */
4161:
417	/*
418	 * Restore the MMU address space.  If it is the same as the last
419	 * thread we don't have to invalidate the tlb (i.e. reload cr3).
420	 * YYY which naturally also means that the PM_ACTIVE bit had better
421	 * already have been set before we set it above, check? YYY
422	 */
423	movq	TD_PCB(%rax),%rdx		/* RDX = PCB */
424	movq	%cr3,%rsi			/* RSI = current CR3 */
425	movq	PCB_CR3(%rdx),%rcx		/* RCX = desired CR3 */
426	cmpq	%rsi,%rcx
427	je	4f
4282:
429#if defined(SWTCH_OPTIM_STATS)
430	decl	_swtch_optim_stats
431	incl	_tlb_flush_count
432#endif
433	movq	%rcx,%cr3
4344:
435
436	/*
437	 * NOTE: %rbx is the previous thread and %rax is the new thread.
438	 *	 %rbx is retained throughout so we can return it.
439	 *
440	 *	 lwkt_switch[_return] is responsible for handling TDF_RUNNING.
441	 */
442
443	/*
444	 * Deal with the PCB extension, restore the private tss
445	 */
446	movq	PCB_EXT(%rdx),%rdi	/* check for a PCB extension */
447	movq	$1,%rcx			/* maybe mark use of a private tss */
448	testq	%rdi,%rdi
449#if 0 /* JG */
450	jnz	2f
451#endif
452
453	/*
454	 * Going back to the common_tss.  We may need to update TSS_RSP0
455	 * which sets the top of the supervisor stack when entering from
456	 * usermode.  The PCB is at the top of the stack but we need another
457	 * 16 bytes to take vm86 into account.
458	 */
459	movq	%rdx,%rcx
460	/*leaq	-TF_SIZE(%rdx),%rcx*/
461	movq	%rcx, PCPU(common_tss) + TSS_RSP0
462
463#if 0 /* JG */
464	cmpl	$0,PCPU(private_tss)	/* don't have to reload if      */
465	je	3f			/* already using the common TSS */
466
467	/* JG? */
468	subq	%rcx,%rcx		/* unmark use of private tss */
469
470	/*
471	 * Get the address of the common TSS descriptor for the ltr.
472	 * There is no way to get the address of a segment-accessed variable
473	 * so we store a self-referential pointer at the base of the per-cpu
474	 * data area and add the appropriate offset.
475	 */
476	/* JG movl? */
477	movq	$gd_common_tssd, %rdi
478	/* JG name for "%gs:0"? */
479	addq	%gs:0, %rdi
480
481	/*
482	 * Move the correct TSS descriptor into the GDT slot, then reload
483	 * ltr.
484	 */
4852:
486	/* JG */
487	movl	%rcx,PCPU(private_tss)		/* mark/unmark private tss */
488	movq	PCPU(tss_gdt), %rbx		/* entry in GDT */
489	movq	0(%rdi), %rax
490	movq	%rax, 0(%rbx)
491	movl	$GPROC0_SEL*8, %esi		/* GSEL(entry, SEL_KPL) */
492	ltr	%si
493#endif
494
4953:
496	/*
497	 * Restore the user %gs and %fs
498	 */
499	movq	PCB_FSBASE(%rdx),%r9
500	cmpq	PCPU(user_fs),%r9
501	je	4f
502	movq	%rdx,%r10
503	movq	%r9,PCPU(user_fs)
504	movl	$MSR_FSBASE,%ecx
505	movl	PCB_FSBASE(%r10),%eax
506	movl	PCB_FSBASE+4(%r10),%edx
507	wrmsr
508	movq	%r10,%rdx
5094:
510	movq	PCB_GSBASE(%rdx),%r9
511	cmpq	PCPU(user_gs),%r9
512	je	5f
513	movq	%rdx,%r10
514	movq	%r9,PCPU(user_gs)
515	movl	$MSR_KGSBASE,%ecx	/* later swapgs moves it to GSBASE */
516	movl	PCB_GSBASE(%r10),%eax
517	movl	PCB_GSBASE+4(%r10),%edx
518	wrmsr
519	movq	%r10,%rdx
5205:
521
522	/*
523	 * Restore general registers.  %rbx is restored later.
524	 */
525	movq	PCB_RSP(%rdx), %rsp
526	movq	PCB_RBP(%rdx), %rbp
527	movq	PCB_R12(%rdx), %r12
528	movq	PCB_R13(%rdx), %r13
529	movq	PCB_R14(%rdx), %r14
530	movq	PCB_R15(%rdx), %r15
531	movq	PCB_RIP(%rdx), %rax
532	movq	%rax, (%rsp)
533	movw	$KDSEL,%ax
534	movw	%ax,%es
535
536#if 0 /* JG */
537	/*
538	 * Restore the user LDT if we have one
539	 */
540	cmpl	$0, PCB_USERLDT(%edx)
541	jnz	1f
542	movl	_default_ldt,%eax
543	cmpl	PCPU(currentldt),%eax
544	je	2f
545	lldt	_default_ldt
546	movl	%eax,PCPU(currentldt)
547	jmp	2f
5481:	pushl	%edx
549	call	set_user_ldt
550	popl	%edx
5512:
552#endif
553#if 0 /* JG */
554	/*
555	 * Restore the user TLS if we have one
556	 */
557	pushl	%edx
558	call	set_user_TLS
559	popl	%edx
560#endif
561
562	/*
563	 * Restore the DEBUG register state if necessary.
564	 */
565	movq    PCB_FLAGS(%rdx),%rax
566	andq    $PCB_DBREGS,%rax
567	jz      1f                              /* no, skip over */
568	movq    PCB_DR6(%rdx),%rax              /* yes, do the restore */
569	movq    %rax,%dr6
570	movq    PCB_DR3(%rdx),%rax
571	movq    %rax,%dr3
572	movq    PCB_DR2(%rdx),%rax
573	movq    %rax,%dr2
574	movq    PCB_DR1(%rdx),%rax
575	movq    %rax,%dr1
576	movq    PCB_DR0(%rdx),%rax
577	movq    %rax,%dr0
578	movq	%dr7,%rax                /* load dr7 so as not to disturb */
579	/* JG correct value? */
580	andq    $0x0000fc00,%rax         /*   reserved bits               */
581	/* JG we've got more registers on x86_64 */
582	movq    PCB_DR7(%rdx),%rcx
583	/* JG correct value? */
584	andq	$~0x0000fc00,%rcx
585	orq     %rcx,%rax
586	movq    %rax,%dr7
587
588	/*
589	 * Clear the QUICKRET flag when restoring a user process context
590	 * so we don't try to do a quick syscall return.
591	 */
5921:
593	andl	$~RQF_QUICKRET,PCPU(reqflags)
594	movq	%rbx,%rax
595	movq	PCB_RBX(%rdx),%rbx
596	ret
597
598/*
599 * savectx(struct pcb *pcb)
600 *
601 * Update pcb, saving current processor state.
602 */
603ENTRY(savectx)
604	/* fetch PCB */
605	/* JG use %rdi instead of %rcx everywhere? */
606	movq	%rdi,%rcx
607
608	/* caller's return address - child won't execute this routine */
609	movq	(%rsp),%rax
610	movq	%rax,PCB_RIP(%rcx)
611
612	movq	%cr3,%rax
613	movq	%rax,PCB_CR3(%rcx)
614
615	movq	%rbx,PCB_RBX(%rcx)
616	movq	%rsp,PCB_RSP(%rcx)
617	movq	%rbp,PCB_RBP(%rcx)
618	movq	%r12,PCB_R12(%rcx)
619	movq	%r13,PCB_R13(%rcx)
620	movq	%r14,PCB_R14(%rcx)
621	movq	%r15,PCB_R15(%rcx)
622
623#if 1
624	/*
625	 * If npxthread == NULL, then the npx h/w state is irrelevant and the
626	 * state had better already be in the pcb.  This is true for forks
627	 * but not for dumps (the old book-keeping with FP flags in the pcb
628	 * always lost for dumps because the dump pcb has 0 flags).
629	 *
630	 * If npxthread != NULL, then we have to save the npx h/w state to
631	 * npxthread's pcb and copy it to the requested pcb, or save to the
632	 * requested pcb and reload.  Copying is easier because we would
633	 * have to handle h/w bugs for reloading.  We used to lose the
634	 * parent's npx state for forks by forgetting to reload.
635	 */
636	movq	PCPU(npxthread),%rax
637	testq	%rax,%rax
638	jz	1f
639
640	pushq	%rcx			/* target pcb */
641	movq	TD_SAVEFPU(%rax),%rax	/* originating savefpu area */
642	pushq	%rax
643
644	movq	%rax,%rdi
645	call	npxsave
646
647	popq	%rax
648	popq	%rcx
649
650	movq	$PCB_SAVEFPU_SIZE,%rdx
651	leaq    PCB_SAVEFPU(%rcx),%rcx
652	movq	%rcx,%rsi
653	movq	%rax,%rdi
654	call	bcopy
655#endif
656
6571:
658	ret
659
660/*
661 * cpu_idle_restore()	(current thread in %rax on entry, old thread in %rbx)
662 *			(one-time entry)
663 *
664 *	Don't bother setting up any regs other than %rbp so backtraces
665 *	don't die.  This restore function is used to bootstrap into the
666 *	cpu_idle() LWKT only, after that cpu_lwkt_*() will be used for
667 *	switching.
668 *
669 *	Clear TDF_RUNNING in old thread only after we've cleaned up %cr3.
670 *	This only occurs during system boot so no special handling is
671 *	required for migration.
672 *
673 *	If we are an AP we have to call ap_init() before jumping to
674 *	cpu_idle().  ap_init() will synchronize with the BP and finish
675 *	setting up various ncpu-dependant globaldata fields.  This may
676 *	happen on UP as well as SMP if we happen to be simulating multiple
677 *	cpus.
678 */
679ENTRY(cpu_idle_restore)
680	/* cli */
681	movq	KPML4phys,%rcx
682	xorq	%rbp,%rbp		/* dummy frame pointer */
683	pushq	$0			/* dummy return pc */
684
685	/* NOTE: idle thread can never preempt */
686	movq	%rcx,%cr3
687	cmpl	$0,PCPU(cpuid)
688	je	1f
689	andl	$~TDF_RUNNING,TD_FLAGS(%rbx)
690	orl	$TDF_RUNNING,TD_FLAGS(%rax)	/* manual, no switch_return */
691	call	ap_init
692	/*
693	 * ap_init can decide to enable interrupts early, but otherwise, or if
694	 * we are UP, do it here.
695	 */
696	sti
697	jmp	cpu_idle
698
699	/*
700	 * cpu 0's idle thread entry for the first time must use normal
701	 * lwkt_switch_return() semantics or a pending cpu migration on
702	 * thread0 will deadlock.
703	 */
7041:
705	sti
706	pushq	%rax
707	movq	%rbx,%rdi
708	call	lwkt_switch_return
709	popq	%rax
710	jmp	cpu_idle
711
712/*
713 * cpu_kthread_restore() (current thread is %rax on entry, previous is %rbx)
714 *			 (one-time execution)
715 *
716 *	Don't bother setting up any regs other then %rbp so backtraces
717 *	don't die.  This restore function is used to bootstrap into an
718 *	LWKT based kernel thread only.  cpu_lwkt_switch() will be used
719 *	after this.
720 *
721 *	Because this switch target does not 'return' to lwkt_switch()
722 *	we have to call lwkt_switch_return(otd) to clean up otd.
723 *	otd is in %ebx.
724 *
725 *	Since all of our context is on the stack we are reentrant and
726 *	we can release our critical section and enable interrupts early.
727 */
728ENTRY(cpu_kthread_restore)
729	sti
730	movq	KPML4phys,%rcx
731	movq	TD_PCB(%rax),%r13
732	xorq	%rbp,%rbp
733
734#ifdef PREEMPT_OPTIMIZE
735	/*
736	 * If we are preempting someone we borrow their %cr3, do not overwrite
737	 * it!
738	 */
739	movq	TD_PREEMPTED(%rax),%r14
740	testq	%r14,%r14
741	jne	1f
742#endif
743	movq	%rcx,%cr3
7441:
745
746	/*
747	 * rax and rbx come from the switchout code.  Call
748	 * lwkt_switch_return(otd).
749	 *
750	 * NOTE: unlike i386, %rsi and %rdi are not call-saved regs.
751	 */
752	pushq	%rax
753	movq	%rbx,%rdi
754	call	lwkt_switch_return
755	popq	%rax
756	decl	TD_CRITCOUNT(%rax)
757	movq	PCB_R12(%r13),%rdi	/* argument to RBX function */
758	movq	PCB_RBX(%r13),%rax	/* thread function */
759	/* note: top of stack return address inherited by function */
760	jmp	*%rax
761
762/*
763 * cpu_lwkt_switch(struct thread *)
764 *
765 *	Standard LWKT switching function.  Only non-scratch registers are
766 *	saved and we don't bother with the MMU state or anything else.
767 *
768 *	This function is always called while in a critical section.
769 *
770 *	There is a one-instruction window where curthread is the new
771 *	thread but %rsp still points to the old thread's stack, but
772 *	we are protected by a critical section so it is ok.
773 */
774ENTRY(cpu_lwkt_switch)
775	pushq	%rbp	/* JG note: GDB hacked to locate ebp rel to td_sp */
776	pushq	%rbx
777	movq	PCPU(curthread),%rbx	/* becomes old thread in restore */
778	pushq	%r12
779	pushq	%r13
780	pushq	%r14
781	pushq	%r15
782	pushfq
783	cli
784
785#if 1
786	/*
787	 * Save the FP state if we have used the FP.  Note that calling
788	 * npxsave will NULL out PCPU(npxthread).
789	 *
790	 * We have to deal with the FP state for LWKT threads in case they
791	 * happen to get preempted or block while doing an optimized
792	 * bzero/bcopy/memcpy.
793	 */
794	cmpq	%rbx,PCPU(npxthread)
795	jne	1f
796	movq	%rdi,%r12		/* save %rdi. %r12 is callee-saved */
797	movq	TD_SAVEFPU(%rbx),%rdi
798	call	npxsave			/* do it in a big C function */
799	movq	%r12,%rdi		/* restore %rdi */
8001:
801#endif
802
803	movq	%rdi,%rax		/* switch to this thread */
804	pushq	$cpu_lwkt_restore
805	movq	%rsp,TD_SP(%rbx)
806	/*
807	 * %rax contains new thread, %rbx contains old thread.
808	 */
809	movq	%rax,PCPU(curthread)
810	movq	TD_SP(%rax),%rsp
811	ret
812
813/*
814 * cpu_lwkt_restore()	(current thread in %rax on entry)
815 *
816 * Standard LWKT restore function.  This function is always called
817 * while in a critical section.
818 *
819 * WARNING! Due to preemption the restore function can be used to 'return'
820 *	    to the original thread.   Interrupt disablement must be
821 *	    protected through the switch so we cannot run splz here.
822 */
823ENTRY(cpu_lwkt_restore)
824#ifdef PREEMPT_OPTIMIZE
825	/*
826	 * If we are preempting someone we borrow their %cr3 and pmap
827	 */
828	movq	TD_PREEMPTED(%rax),%r14	/* kernel thread preempting? */
829	testq	%r14,%r14
830	jne	1f			/* yes, borrow %cr3 from old thread */
831#endif
832	movq	KPML4phys,%rcx	/* YYY borrow but beware desched/cpuchg/exit */
833	movq	%cr3,%rdx
834	cmpq	%rcx,%rdx
835	je	1f
836	movq	%rcx,%cr3
8371:
838	/*
839	 * Safety, clear RSP0 in the tss so it isn't pointing at the
840	 * previous thread's kstack (if a heavy weight user thread).
841	 * RSP0 should only be used in ring 3 transitions and kernel
842	 * threads run in ring 0 so there should be none.
843	 */
844	xorq	%rdx,%rdx
845	movq	%rdx, PCPU(common_tss) + TSS_RSP0
846
847	/*
848	 * NOTE: %rbx is the previous thread and %rax is the new thread.
849	 *	 %rbx is retained throughout so we can return it.
850	 *
851	 *	 lwkt_switch[_return] is responsible for handling TDF_RUNNING.
852	 */
853	movq	%rbx,%rax
854	popfq
855	popq	%r15
856	popq	%r14
857	popq	%r13
858	popq	%r12
859	popq	%rbx
860	popq	%rbp
861	ret
862