xref: /dragonfly/sys/platform/pc64/x86_64/swtch.s (revision 92fc8b5c)
1/*
2 * Copyright (c) 2003,2004,2008 The DragonFly Project.  All rights reserved.
3 * Copyright (c) 2008 Jordan Gordeev.
4 *
5 * This code is derived from software contributed to The DragonFly Project
6 * by Matthew Dillon <dillon@backplane.com>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in
16 *    the documentation and/or other materials provided with the
17 *    distribution.
18 * 3. Neither the name of The DragonFly Project nor the names of its
19 *    contributors may be used to endorse or promote products derived
20 *    from this software without specific, prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * Copyright (c) 1990 The Regents of the University of California.
36 * All rights reserved.
37 *
38 * This code is derived from software contributed to Berkeley by
39 * William Jolitz.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 *    must display the following acknowledgement:
51 *	This product includes software developed by the University of
52 *	California, Berkeley and its contributors.
53 * 4. Neither the name of the University nor the names of its contributors
54 *    may be used to endorse or promote products derived from this software
55 *    without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 * SUCH DAMAGE.
68 *
69 * $FreeBSD: src/sys/i386/i386/swtch.s,v 1.89.2.10 2003/01/23 03:36:24 ps Exp $
70 */
71
72//#include "use_npx.h"
73
74#include <sys/rtprio.h>
75
76#include <machine/asmacros.h>
77#include <machine/segments.h>
78
79#include <machine/pmap.h>
80#if JG
81#include <machine_base/apic/apicreg.h>
82#endif
83#include <machine/lock.h>
84
85#include "assym.s"
86
87#if defined(SMP)
88#define MPLOCKED        lock ;
89#else
90#define MPLOCKED
91#endif
92
93	.data
94
95	.globl	panic
96	.globl	lwkt_switch_return
97
98#if defined(SWTCH_OPTIM_STATS)
99	.globl	swtch_optim_stats, tlb_flush_count
100swtch_optim_stats:	.long	0		/* number of _swtch_optims */
101tlb_flush_count:	.long	0
102#endif
103
104	.text
105
106
107/*
108 * cpu_heavy_switch(struct thread *next_thread)
109 *
110 *	Switch from the current thread to a new thread.  This entry
111 *	is normally called via the thread->td_switch function, and will
112 *	only be called when the current thread is a heavy weight process.
113 *
114 *	Some instructions have been reordered to reduce pipeline stalls.
115 *
116 *	YYY disable interrupts once giant is removed.
117 */
118ENTRY(cpu_heavy_switch)
119	/*
120	 * Save RIP, RSP and callee-saved registers (RBX, RBP, R12-R15).
121	 */
122	movq	PCPU(curthread),%rcx
123	/* On top of the stack is the return adress. */
124	movq	(%rsp),%rax			/* (reorder optimization) */
125	movq	TD_PCB(%rcx),%rdx		/* RDX = PCB */
126	movq	%rax,PCB_RIP(%rdx)		/* return PC may be modified */
127	movq	%rbx,PCB_RBX(%rdx)
128	movq	%rsp,PCB_RSP(%rdx)
129	movq	%rbp,PCB_RBP(%rdx)
130	movq	%r12,PCB_R12(%rdx)
131	movq	%r13,PCB_R13(%rdx)
132	movq	%r14,PCB_R14(%rdx)
133	movq	%r15,PCB_R15(%rdx)
134
135	/*
136	 * Clear the cpu bit in the pmap active mask.  The restore
137	 * function will set the bit in the pmap active mask.
138	 *
139	 * Special case: when switching between threads sharing the
140	 * same vmspace if we avoid clearing the bit we do not have
141	 * to reload %cr3 (if we clear the bit we could race page
142	 * table ops done by other threads and would have to reload
143	 * %cr3, because those ops will not know to IPI us).
144	 */
145	movq	%rcx,%rbx			/* RBX = oldthread */
146	movq	TD_LWP(%rcx),%rcx		/* RCX = oldlwp	*/
147	movq	TD_LWP(%rdi),%r13		/* R13 = newlwp */
148	movq	LWP_VMSPACE(%rcx), %rcx		/* RCX = oldvmspace */
149	testq	%r13,%r13			/* might not be a heavy */
150	jz	1f
151	cmpq	LWP_VMSPACE(%r13),%rcx		/* same vmspace? */
152	je	2f
1531:
154	movslq	PCPU(cpuid), %rax
155	MPLOCKED btrq	%rax, VM_PMAP+PM_ACTIVE(%rcx)
1562:
157
158	/*
159	 * Push the LWKT switch restore function, which resumes a heavy
160	 * weight process.  Note that the LWKT switcher is based on
161	 * TD_SP, while the heavy weight process switcher is based on
162	 * PCB_RSP.  TD_SP is usually two ints pushed relative to
163	 * PCB_RSP.  We push the flags for later restore by cpu_heavy_restore.
164	 */
165	pushfq
166	movq	$cpu_heavy_restore, %rax
167	pushq	%rax
168	movq	%rsp,TD_SP(%rbx)
169
170	/*
171	 * Save debug regs if necessary
172	 */
173	movq    PCB_FLAGS(%rdx),%rax
174	andq    $PCB_DBREGS,%rax
175	jz      1f                              /* no, skip over */
176	movq    %dr7,%rax                       /* yes, do the save */
177	movq    %rax,PCB_DR7(%rdx)
178	/* JG correct value? */
179	andq    $0x0000fc00, %rax               /* disable all watchpoints */
180	movq    %rax,%dr7
181	movq    %dr6,%rax
182	movq    %rax,PCB_DR6(%rdx)
183	movq    %dr3,%rax
184	movq    %rax,PCB_DR3(%rdx)
185	movq    %dr2,%rax
186	movq    %rax,PCB_DR2(%rdx)
187	movq    %dr1,%rax
188	movq    %rax,PCB_DR1(%rdx)
189	movq    %dr0,%rax
190	movq    %rax,PCB_DR0(%rdx)
1911:
192
193#if 1
194	/*
195	 * Save the FP state if we have used the FP.  Note that calling
196	 * npxsave will NULL out PCPU(npxthread).
197	 */
198	cmpq	%rbx,PCPU(npxthread)
199	jne	1f
200	movq	%rdi,%r12		/* save %rdi. %r12 is callee-saved */
201	movq	TD_SAVEFPU(%rbx),%rdi
202	call	npxsave			/* do it in a big C function */
203	movq	%r12,%rdi		/* restore %rdi */
2041:
205#endif
206
207	/*
208	 * Switch to the next thread, which was passed as an argument
209	 * to cpu_heavy_switch().  The argument is in %rdi.
210	 * Set the current thread, load the stack pointer,
211	 * and 'ret' into the switch-restore function.
212	 *
213	 * The switch restore function expects the new thread to be in %rax
214	 * and the old one to be in %rbx.
215	 *
216	 * There is a one-instruction window where curthread is the new
217	 * thread but %rsp still points to the old thread's stack, but
218	 * we are protected by a critical section so it is ok.
219	 */
220	movq	%rdi,%rax		/* RAX = newtd, RBX = oldtd */
221	movq	%rax,PCPU(curthread)
222	movq	TD_SP(%rax),%rsp
223	ret
224
225/*
226 *  cpu_exit_switch(struct thread *next)
227 *
228 *	The switch function is changed to this when a thread is going away
229 *	for good.  We have to ensure that the MMU state is not cached, and
230 *	we don't bother saving the existing thread state before switching.
231 *
232 *	At this point we are in a critical section and this cpu owns the
233 *	thread's token, which serves as an interlock until the switchout is
234 *	complete.
235 */
236ENTRY(cpu_exit_switch)
237	/*
238	 * Get us out of the vmspace
239	 */
240	movq	KPML4phys,%rcx
241	movq	%cr3,%rax
242	cmpq	%rcx,%rax
243	je	1f
244	/* JG no increment of statistics counters? see cpu_heavy_restore */
245	movq	%rcx,%cr3
2461:
247	movq	PCPU(curthread),%rbx
248
249	/*
250	 * If this is a process/lwp, deactivate the pmap after we've
251	 * switched it out.
252	 */
253	movq	TD_LWP(%rbx),%rcx
254	testq	%rcx,%rcx
255	jz	2f
256	movslq	PCPU(cpuid), %rax
257	movq	LWP_VMSPACE(%rcx), %rcx		/* RCX = vmspace */
258	MPLOCKED btrq	%rax, VM_PMAP+PM_ACTIVE(%rcx)
2592:
260	/*
261	 * Switch to the next thread.  RET into the restore function, which
262	 * expects the new thread in RAX and the old in RBX.
263	 *
264	 * There is a one-instruction window where curthread is the new
265	 * thread but %rsp still points to the old thread's stack, but
266	 * we are protected by a critical section so it is ok.
267	 */
268	movq	%rdi,%rax
269	movq	%rax,PCPU(curthread)
270	movq	TD_SP(%rax),%rsp
271	ret
272
273/*
274 * cpu_heavy_restore()	(current thread in %rax on entry)
275 *
276 *	Restore the thread after an LWKT switch.  This entry is normally
277 *	called via the LWKT switch restore function, which was pulled
278 *	off the thread stack and jumped to.
279 *
280 *	This entry is only called if the thread was previously saved
281 *	using cpu_heavy_switch() (the heavy weight process thread switcher),
282 *	or when a new process is initially scheduled.
283 *
284 *	NOTE: The lwp may be in any state, not necessarily LSRUN, because
285 *	a preemption switch may interrupt the process and then return via
286 *	cpu_heavy_restore.
287 *
288 *	YYY theoretically we do not have to restore everything here, a lot
289 *	of this junk can wait until we return to usermode.  But for now
290 *	we restore everything.
291 *
292 *	YYY the PCB crap is really crap, it makes startup a bitch because
293 *	we can't switch away.
294 *
295 *	YYY note: spl check is done in mi_switch when it splx()'s.
296 */
297
298ENTRY(cpu_heavy_restore)
299	popfq
300	movq	TD_LWP(%rax),%rcx
301
302#if defined(SWTCH_OPTIM_STATS)
303	incl	_swtch_optim_stats
304#endif
305	/*
306	 * Tell the pmap that our cpu is using the VMSPACE now.  We cannot
307	 * safely test/reload %cr3 until after we have set the bit in the
308	 * pmap (remember, we do not hold the MP lock in the switch code).
309	 *
310	 * Also note that when switching between two lwps sharing the
311	 * same vmspace we have already avoided clearing the cpu bit
312	 * in pm_active.  If we had cleared it other cpus would not know
313	 * to IPI us and we would have to unconditionally reload %cr3.
314	 *
315	 * Also note that if the pmap is undergoing an atomic inval/mod
316	 * that is unaware that our cpu has been added to it we have to
317	 * wait for it to complete before we can continue.
318	 */
319	movq	LWP_VMSPACE(%rcx), %rcx		/* RCX = vmspace */
320	movq	PCPU(cpumask), %rsi
321	MPLOCKED orq	%rsi, VM_PMAP+PM_ACTIVE(%rcx)
322#ifdef SMP
323	btq	$CPUMASK_BIT,VM_PMAP+PM_ACTIVE(%rcx)
324	jnc	1f
325	pushq	%rax
326	movq	%rcx,%rdi
327	call	pmap_interlock_wait		/* pmap_interlock_wait(vm) */
328	popq	%rax
3291:
330#endif
331
332	/*
333	 * Restore the MMU address space.  If it is the same as the last
334	 * thread we don't have to invalidate the tlb (i.e. reload cr3).
335	 * YYY which naturally also means that the PM_ACTIVE bit had better
336	 * already have been set before we set it above, check? YYY
337	 */
338	movq	TD_PCB(%rax),%rdx		/* RDX = PCB */
339	movq	%cr3,%rsi
340	movq	PCB_CR3(%rdx),%rcx
341	cmpq	%rsi,%rcx
342	je	4f
343#if defined(SWTCH_OPTIM_STATS)
344	decl	_swtch_optim_stats
345	incl	_tlb_flush_count
346#endif
347	movq	%rcx,%cr3
3484:
349	/*
350	 * NOTE: %rbx is the previous thread and %eax is the new thread.
351	 *	 %rbx is retained throughout so we can return it.
352	 *
353	 *	 lwkt_switch[_return] is responsible for handling TDF_RUNNING.
354	 */
355
356	/*
357	 * Deal with the PCB extension, restore the private tss
358	 */
359	movq	PCB_EXT(%rdx),%rdi	/* check for a PCB extension */
360	movq	$1,%rcx			/* maybe mark use of a private tss */
361	testq	%rdi,%rdi
362#if JG
363	jnz	2f
364#endif
365
366	/*
367	 * Going back to the common_tss.  We may need to update TSS_RSP0
368	 * which sets the top of the supervisor stack when entering from
369	 * usermode.  The PCB is at the top of the stack but we need another
370	 * 16 bytes to take vm86 into account.
371	 */
372	movq	%rdx,%rcx
373	/*leaq	-TF_SIZE(%rdx),%rcx*/
374	movq	%rcx, PCPU(common_tss) + TSS_RSP0
375
376#if JG
377	cmpl	$0,PCPU(private_tss)	/* don't have to reload if      */
378	je	3f			/* already using the common TSS */
379
380	/* JG? */
381	subq	%rcx,%rcx		/* unmark use of private tss */
382
383	/*
384	 * Get the address of the common TSS descriptor for the ltr.
385	 * There is no way to get the address of a segment-accessed variable
386	 * so we store a self-referential pointer at the base of the per-cpu
387	 * data area and add the appropriate offset.
388	 */
389	/* JG movl? */
390	movq	$gd_common_tssd, %rdi
391	/* JG name for "%gs:0"? */
392	addq	%gs:0, %rdi
393
394	/*
395	 * Move the correct TSS descriptor into the GDT slot, then reload
396	 * ltr.
397	 */
3982:
399	/* JG */
400	movl	%rcx,PCPU(private_tss)		/* mark/unmark private tss */
401	movq	PCPU(tss_gdt), %rbx		/* entry in GDT */
402	movq	0(%rdi), %rax
403	movq	%rax, 0(%rbx)
404	movl	$GPROC0_SEL*8, %esi		/* GSEL(entry, SEL_KPL) */
405	ltr	%si
406#endif
407
4083:
409	/*
410	 * Restore the user %gs and %fs
411	 */
412	movq	PCB_FSBASE(%rdx),%r9
413	cmpq	PCPU(user_fs),%r9
414	je	4f
415	movq	%rdx,%r10
416	movq	%r9,PCPU(user_fs)
417	movl	$MSR_FSBASE,%ecx
418	movl	PCB_FSBASE(%r10),%eax
419	movl	PCB_FSBASE+4(%r10),%edx
420	wrmsr
421	movq	%r10,%rdx
4224:
423	movq	PCB_GSBASE(%rdx),%r9
424	cmpq	PCPU(user_gs),%r9
425	je	5f
426	movq	%rdx,%r10
427	movq	%r9,PCPU(user_gs)
428	movl	$MSR_KGSBASE,%ecx	/* later swapgs moves it to GSBASE */
429	movl	PCB_GSBASE(%r10),%eax
430	movl	PCB_GSBASE+4(%r10),%edx
431	wrmsr
432	movq	%r10,%rdx
4335:
434
435	/*
436	 * Restore general registers.  %rbx is restored later.
437	 */
438	movq	PCB_RSP(%rdx), %rsp
439	movq	PCB_RBP(%rdx), %rbp
440	movq	PCB_R12(%rdx), %r12
441	movq	PCB_R13(%rdx), %r13
442	movq	PCB_R14(%rdx), %r14
443	movq	PCB_R15(%rdx), %r15
444	movq	PCB_RIP(%rdx), %rax
445	movq	%rax, (%rsp)
446
447#if JG
448	/*
449	 * Restore the user LDT if we have one
450	 */
451	cmpl	$0, PCB_USERLDT(%edx)
452	jnz	1f
453	movl	_default_ldt,%eax
454	cmpl	PCPU(currentldt),%eax
455	je	2f
456	lldt	_default_ldt
457	movl	%eax,PCPU(currentldt)
458	jmp	2f
4591:	pushl	%edx
460	call	set_user_ldt
461	popl	%edx
4622:
463#endif
464#if JG
465	/*
466	 * Restore the user TLS if we have one
467	 */
468	pushl	%edx
469	call	set_user_TLS
470	popl	%edx
471#endif
472
473	/*
474	 * Restore the DEBUG register state if necessary.
475	 */
476	movq    PCB_FLAGS(%rdx),%rax
477	andq    $PCB_DBREGS,%rax
478	jz      1f                              /* no, skip over */
479	movq    PCB_DR6(%rdx),%rax              /* yes, do the restore */
480	movq    %rax,%dr6
481	movq    PCB_DR3(%rdx),%rax
482	movq    %rax,%dr3
483	movq    PCB_DR2(%rdx),%rax
484	movq    %rax,%dr2
485	movq    PCB_DR1(%rdx),%rax
486	movq    %rax,%dr1
487	movq    PCB_DR0(%rdx),%rax
488	movq    %rax,%dr0
489	movq	%dr7,%rax                /* load dr7 so as not to disturb */
490	/* JG correct value? */
491	andq    $0x0000fc00,%rax         /*   reserved bits               */
492	/* JG we've got more registers on x86_64 */
493	movq    PCB_DR7(%rdx),%rcx
494	/* JG correct value? */
495	andq	$~0x0000fc00,%rcx
496	orq     %rcx,%rax
497	movq    %rax,%dr7
4981:
499	movq	%rbx,%rax
500	movq	PCB_RBX(%rdx),%rbx
501	ret
502
503/*
504 * savectx(struct pcb *pcb)
505 *
506 * Update pcb, saving current processor state.
507 */
508ENTRY(savectx)
509	/* fetch PCB */
510	/* JG use %rdi instead of %rcx everywhere? */
511	movq	%rdi,%rcx
512
513	/* caller's return address - child won't execute this routine */
514	movq	(%rsp),%rax
515	movq	%rax,PCB_RIP(%rcx)
516
517	movq	%cr3,%rax
518	movq	%rax,PCB_CR3(%rcx)
519
520	movq	%rbx,PCB_RBX(%rcx)
521	movq	%rsp,PCB_RSP(%rcx)
522	movq	%rbp,PCB_RBP(%rcx)
523	movq	%r12,PCB_R12(%rcx)
524	movq	%r13,PCB_R13(%rcx)
525	movq	%r14,PCB_R14(%rcx)
526	movq	%r15,PCB_R15(%rcx)
527
528#if 1
529	/*
530	 * If npxthread == NULL, then the npx h/w state is irrelevant and the
531	 * state had better already be in the pcb.  This is true for forks
532	 * but not for dumps (the old book-keeping with FP flags in the pcb
533	 * always lost for dumps because the dump pcb has 0 flags).
534	 *
535	 * If npxthread != NULL, then we have to save the npx h/w state to
536	 * npxthread's pcb and copy it to the requested pcb, or save to the
537	 * requested pcb and reload.  Copying is easier because we would
538	 * have to handle h/w bugs for reloading.  We used to lose the
539	 * parent's npx state for forks by forgetting to reload.
540	 */
541	movq	PCPU(npxthread),%rax
542	testq	%rax,%rax
543	jz	1f
544
545	pushq	%rcx			/* target pcb */
546	movq	TD_SAVEFPU(%rax),%rax	/* originating savefpu area */
547	pushq	%rax
548
549	movq	%rax,%rdi
550	call	npxsave
551
552	popq	%rax
553	popq	%rcx
554
555	movq	$PCB_SAVEFPU_SIZE,%rdx
556	leaq    PCB_SAVEFPU(%rcx),%rcx
557	movq	%rcx,%rsi
558	movq	%rax,%rdi
559	call	bcopy
560#endif
561
5621:
563	ret
564
565/*
566 * cpu_idle_restore()	(current thread in %rax on entry) (one-time execution)
567 *
568 *	Don't bother setting up any regs other than %rbp so backtraces
569 *	don't die.  This restore function is used to bootstrap into the
570 *	cpu_idle() LWKT only, after that cpu_lwkt_*() will be used for
571 *	switching.
572 *
573 *	Clear TDF_RUNNING in old thread only after we've cleaned up %cr3.
574 *	This only occurs during system boot so no special handling is
575 *	required for migration.
576 *
577 *	If we are an AP we have to call ap_init() before jumping to
578 *	cpu_idle().  ap_init() will synchronize with the BP and finish
579 *	setting up various ncpu-dependant globaldata fields.  This may
580 *	happen on UP as well as SMP if we happen to be simulating multiple
581 *	cpus.
582 */
583ENTRY(cpu_idle_restore)
584	/* cli */
585	movq	KPML4phys,%rcx
586	/* JG xor? */
587	movq	$0,%rbp
588	/* JG push RBP? */
589	pushq	$0
590	movq	%rcx,%cr3
591	andl	$~TDF_RUNNING,TD_FLAGS(%rbx)
592#if 0
593	orl	$TDF_RUNNING,TD_FLAGS(%rax)
594#endif
595#ifdef SMP
596	cmpl	$0,PCPU(cpuid)
597	je	1f
598	call	ap_init
5991:
600#endif
601	/*
602	 * ap_init can decide to enable interrupts early, but otherwise, or if
603	 * we are UP, do it here.
604	 */
605	sti
606	jmp	cpu_idle
607
608/*
609 * cpu_kthread_restore() (current thread is %rax on entry) (one-time execution)
610 *
611 *	Don't bother setting up any regs other then %rbp so backtraces
612 *	don't die.  This restore function is used to bootstrap into an
613 *	LWKT based kernel thread only.  cpu_lwkt_switch() will be used
614 *	after this.
615 *
616 *	Because this switch target does not 'return' to lwkt_switch()
617 *	we have to call lwkt_switch_return(otd) to clean up otd.
618 *	otd is in %ebx.
619 *
620 *	Since all of our context is on the stack we are reentrant and
621 *	we can release our critical section and enable interrupts early.
622 */
623ENTRY(cpu_kthread_restore)
624	sti
625	movq	KPML4phys,%rcx
626	movq	TD_PCB(%rax),%r13
627	/* JG "movq $0, %rbp"? "xorq %rbp, %rbp"? */
628	movq	$0,%rbp
629	movq	%rcx,%cr3
630
631	/*
632	 * rax and rbx come from the switchout code.  Call
633	 * lwkt_switch_return(otd).
634	 *
635	 * NOTE: unlike i386, %rsi and %rdi are not call-saved regs.
636	 */
637	pushq	%rax
638	movq	%rbx,%rdi
639	call	lwkt_switch_return
640	popq	%rax
641#if 0
642	andl	$~TDF_RUNNING,TD_FLAGS(%rbx)
643	orl	$TDF_RUNNING,TD_FLAGS(%rax)
644#endif
645	decl	TD_CRITCOUNT(%rax)
646	movq	PCB_R12(%r13),%rdi	/* argument to RBX function */
647	movq	PCB_RBX(%r13),%rax	/* thread function */
648	/* note: top of stack return address inherited by function */
649	jmp	*%rax
650
651/*
652 * cpu_lwkt_switch(struct thread *)
653 *
654 *	Standard LWKT switching function.  Only non-scratch registers are
655 *	saved and we don't bother with the MMU state or anything else.
656 *
657 *	This function is always called while in a critical section.
658 *
659 *	There is a one-instruction window where curthread is the new
660 *	thread but %rsp still points to the old thread's stack, but
661 *	we are protected by a critical section so it is ok.
662 */
663ENTRY(cpu_lwkt_switch)
664	pushq	%rbp	/* JG note: GDB hacked to locate ebp rel to td_sp */
665	pushq	%rbx
666	movq	PCPU(curthread),%rbx
667	pushq	%r12
668	pushq	%r13
669	pushq	%r14
670	pushq	%r15
671	pushfq
672
673#if 1
674	/*
675	 * Save the FP state if we have used the FP.  Note that calling
676	 * npxsave will NULL out PCPU(npxthread).
677	 *
678	 * We have to deal with the FP state for LWKT threads in case they
679	 * happen to get preempted or block while doing an optimized
680	 * bzero/bcopy/memcpy.
681	 */
682	cmpq	%rbx,PCPU(npxthread)
683	jne	1f
684	movq	%rdi,%r12		/* save %rdi. %r12 is callee-saved */
685	movq	TD_SAVEFPU(%rbx),%rdi
686	call	npxsave			/* do it in a big C function */
687	movq	%r12,%rdi		/* restore %rdi */
6881:
689#endif
690
691	movq	%rdi,%rax		/* switch to this thread */
692	pushq	$cpu_lwkt_restore
693	movq	%rsp,TD_SP(%rbx)
694	movq	%rax,PCPU(curthread)
695	movq	TD_SP(%rax),%rsp
696
697	/*
698	 * %rax contains new thread, %rbx contains old thread.
699	 */
700	ret
701
702/*
703 * cpu_lwkt_restore()	(current thread in %rax on entry)
704 *
705 *	Standard LWKT restore function.  This function is always called
706 *	while in a critical section.
707 *
708 *	Warning: due to preemption the restore function can be used to
709 *	'return' to the original thread.  Interrupt disablement must be
710 *	protected through the switch so we cannot run splz here.
711 *
712 *	YYY we theoretically do not need to load KPML4phys into cr3, but if
713 *	so we need a way to detect when the PTD we are using is being
714 *	deleted due to a process exiting.
715 */
716ENTRY(cpu_lwkt_restore)
717	movq	KPML4phys,%rcx	/* YYY borrow but beware desched/cpuchg/exit */
718	movq	%cr3,%rdx
719	cmpq	%rcx,%rdx
720	je	1f
721	movq	%rcx,%cr3
7221:
723	/*
724	 * NOTE: %rbx is the previous thread and %eax is the new thread.
725	 *	 %rbx is retained throughout so we can return it.
726	 *
727	 *	 lwkt_switch[_return] is responsible for handling TDF_RUNNING.
728	 */
729	movq	%rbx,%rax
730	popfq
731	popq	%r15
732	popq	%r14
733	popq	%r13
734	popq	%r12
735	popq	%rbx
736	popq	%rbp
737	ret
738