xref: /dragonfly/sys/platform/pc64/x86_64/swtch.s (revision caaec4e3)
1/*
2 * Copyright (c) 2003,2004,2008 The DragonFly Project.  All rights reserved.
3 * Copyright (c) 2008 Jordan Gordeev.
4 *
5 * This code is derived from software contributed to The DragonFly Project
6 * by Matthew Dillon <dillon@backplane.com>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in
16 *    the documentation and/or other materials provided with the
17 *    distribution.
18 * 3. Neither the name of The DragonFly Project nor the names of its
19 *    contributors may be used to endorse or promote products derived
20 *    from this software without specific, prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * Copyright (c) 1990 The Regents of the University of California.
36 * All rights reserved.
37 *
38 * This code is derived from software contributed to Berkeley by
39 * William Jolitz.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 *    may be used to endorse or promote products derived from this software
51 *    without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * $FreeBSD: src/sys/i386/i386/swtch.s,v 1.89.2.10 2003/01/23 03:36:24 ps Exp $
66 */
67
68//#include "use_npx.h"
69
70#include <sys/rtprio.h>
71
72#include <machine/asmacros.h>
73#include <machine/segments.h>
74
75#include <machine/pmap.h>
76#if 0 /* JG */
77#include <machine_base/apic/apicreg.h>
78#endif
79#include <machine/lock.h>
80
81#include "assym.s"
82
83#define	MPLOCKED	lock ;
84
85/*
86 * PREEMPT_OPTIMIZE
87 *
88 * This feature allows the preempting (interrupt) kernel thread to borrow
89 * %cr3 from the user process it interrupts, allowing us to do-away with
90 * two %cr3 stores, two atomic ops (pm_active is not modified), and pmap
91 * lock tests (not needed since pm_active is not modified).
92 *
93 * Unfortunately, I couldn't really measure any result so for now the
94 * optimization is disabled.
95 */
96#undef PREEMPT_OPTIMIZE
97
98/*
99 * LWP_SWITCH_OPTIMIZE
100 *
101 * This optimization attempted to avoid a %cr3 store and atomic op, and
102 * it might have been useful on older cpus but newer cpus (and more
103 * importantly multi-core cpus) generally do not switch between LWPs on
104 * the same cpu.  Multiple user threads are more likely to be distributed
105 * across multiple cpus.  In cpu-bound situations the scheduler will already
106 * be in batch-mode (meaning relatively few context-switches/sec), and
107 * otherwise the lwp(s) are likely to be blocked waiting for events.
108 *
109 * On the flip side, the conditionals this option uses measurably reduce
110 * performance (just slightly, honestly).  So this option is disabled.
111 */
112#undef LWP_SWITCH_OPTIMIZE
113
114	/*
115	 * Global Declarations
116	 */
117	.data
118
119	.globl	panic
120	.globl	lwkt_switch_return
121
122#if defined(SWTCH_OPTIM_STATS)
123	.globl	swtch_optim_stats, tlb_flush_count
124swtch_optim_stats:	.long	0		/* number of _swtch_optims */
125tlb_flush_count:	.long	0
126#endif
127
128	/*
129	 * Code
130	 */
131	.text
132
133/*
134 * cpu_heavy_switch(struct thread *next_thread)
135 *
136 *	Switch from the current thread to a new thread.  This entry
137 *	is normally called via the thread->td_switch function, and will
138 *	only be called when the current thread is a heavy weight process.
139 *
140 *	Some instructions have been reordered to reduce pipeline stalls.
141 *
142 *	YYY disable interrupts once giant is removed.
143 */
144ENTRY(cpu_heavy_switch)
145	/*
146	 * Save RIP, RSP and callee-saved registers (RBX, RBP, R12-R15).
147	 */
148	movq	PCPU(curthread),%rcx
149	/* On top of the stack is the return adress. */
150	movq	(%rsp),%rax			/* (reorder optimization) */
151	movq	TD_PCB(%rcx),%rdx		/* RDX = PCB */
152	movq	%rax,PCB_RIP(%rdx)		/* return PC may be modified */
153	movq	%rbx,PCB_RBX(%rdx)
154	movq	%rsp,PCB_RSP(%rdx)
155	movq	%rbp,PCB_RBP(%rdx)
156	movq	%r12,PCB_R12(%rdx)
157	movq	%r13,PCB_R13(%rdx)
158	movq	%r14,PCB_R14(%rdx)
159	movq	%r15,PCB_R15(%rdx)
160
161	/*
162	 * Clear the cpu bit in the pmap active mask.  The restore
163	 * function will set the bit in the pmap active mask.
164	 *
165	 * If we are switching away due to a preempt, TD_PREEMPTED(%rdi)
166	 * will be non-NULL.  In this situation we do want to avoid extra
167	 * atomic ops and %cr3 reloads (see top of file for reasoning).
168	 *
169	 * NOTE: Do not try to optimize avoiding the %cr3 reload or pm_active
170	 *	 adjustment.  This mattered on uni-processor systems but in
171	 *	 multi-core systems we are highly unlikely to be switching
172	 *	 to another thread belonging to the same process on this cpu.
173	 *
174	 *	 (more likely the target thread is still sleeping, or if cpu-
175	 *	 bound the scheduler is in batch mode and the switch rate is
176	 *	 already low).
177	 */
178	movq	%rcx,%rbx			/* RBX = oldthread */
179#ifdef PREEMPT_OPTIMIZE
180	/*
181	 * If we are being preempted the target thread borrows our %cr3
182	 * and we leave our pmap bits intact for the duration.
183	 */
184	movq	TD_PREEMPTED(%rdi),%r13
185	testq	%r13,%r13
186	jne	2f
187#endif
188
189	movq	TD_LWP(%rcx),%rcx		/* RCX = oldlwp	*/
190	movq	LWP_VMSPACE(%rcx), %rcx		/* RCX = oldvmspace */
191#ifdef LWP_SWITCH_OPTIMIZE
192	movq	TD_LWP(%rdi),%r13		/* R13 = newlwp */
193	testq	%r13,%r13			/* might not be a heavy */
194	jz	1f
195	cmpq	LWP_VMSPACE(%r13),%rcx		/* same vmspace? */
196	je	2f
1971:
198#endif
199	movq	PCPU(cpumask_simple),%rsi
200	movq	PCPU(cpumask_offset),%r12
201	xorq	$-1,%rsi
202	MPLOCKED andq %rsi, VM_PMAP+PM_ACTIVE(%rcx, %r12, 1)
2032:
204
205	/*
206	 * Push the LWKT switch restore function, which resumes a heavy
207	 * weight process.  Note that the LWKT switcher is based on
208	 * TD_SP, while the heavy weight process switcher is based on
209	 * PCB_RSP.  TD_SP is usually two ints pushed relative to
210	 * PCB_RSP.  We push the flags for later restore by cpu_heavy_restore.
211	 */
212	pushfq
213	cli
214	movq	$cpu_heavy_restore, %rax
215	pushq	%rax
216	movq	%rsp,TD_SP(%rbx)
217
218	/*
219	 * Save debug regs if necessary
220	 */
221	movq	PCB_FLAGS(%rdx),%rax
222	andq	$PCB_DBREGS,%rax
223	jz	1f				/* no, skip over */
224	movq	%dr7,%rax			/* yes, do the save */
225	movq	%rax,PCB_DR7(%rdx)
226	/* JG correct value? */
227	andq	$0x0000fc00, %rax		/* disable all watchpoints */
228	movq	%rax,%dr7
229	movq	%dr6,%rax
230	movq	%rax,PCB_DR6(%rdx)
231	movq	%dr3,%rax
232	movq	%rax,PCB_DR3(%rdx)
233	movq	%dr2,%rax
234	movq	%rax,PCB_DR2(%rdx)
235	movq	%dr1,%rax
236	movq	%rax,PCB_DR1(%rdx)
237	movq	%dr0,%rax
238	movq	%rax,PCB_DR0(%rdx)
2391:
240
241#if 1
242	/*
243	 * Save the FP state if we have used the FP.  Note that calling
244	 * npxsave will NULL out PCPU(npxthread).
245	 */
246	cmpq	%rbx,PCPU(npxthread)
247	jne	1f
248	movq	%rdi,%r12		/* save %rdi. %r12 is callee-saved */
249	movq	TD_SAVEFPU(%rbx),%rdi
250	call	npxsave			/* do it in a big C function */
251	movq	%r12,%rdi		/* restore %rdi */
2521:
253#endif
254
255	/*
256	 * Switch to the next thread, which was passed as an argument
257	 * to cpu_heavy_switch().  The argument is in %rdi.
258	 * Set the current thread, load the stack pointer,
259	 * and 'ret' into the switch-restore function.
260	 *
261	 * The switch restore function expects the new thread to be in %rax
262	 * and the old one to be in %rbx.
263	 *
264	 * There is a one-instruction window where curthread is the new
265	 * thread but %rsp still points to the old thread's stack, but
266	 * we are protected by a critical section so it is ok.
267	 */
268	movq	%rdi,%rax		/* RAX = newtd, RBX = oldtd */
269	movq	%rax,PCPU(curthread)
270	movq	TD_SP(%rax),%rsp
271	ret
272END(cpu_heavy_switch)
273
274/*
275 *  cpu_exit_switch(struct thread *next)
276 *
277 *	The switch function is changed to this when a thread is going away
278 *	for good.  We have to ensure that the MMU state is not cached, and
279 *	we don't bother saving the existing thread state before switching.
280 *
281 *	At this point we are in a critical section and this cpu owns the
282 *	thread's token, which serves as an interlock until the switchout is
283 *	complete.
284 */
285ENTRY(cpu_exit_switch)
286
287#ifdef PREEMPT_OPTIMIZE
288	/*
289	 * If we were preempting we are switching back to the original thread.
290	 * In this situation we already have the original thread's %cr3 and
291	 * should not replace it!
292	 */
293	testl	$TDF_PREEMPT_DONE, TD_FLAGS(%rdi)
294	jne	1f
295#endif
296
297	/*
298	 * Get us out of the vmspace
299	 */
300	movq	KPML4phys,%rcx
301	movq	%cr3,%rax
302	cmpq	%rcx,%rax
303	je	1f
304
305	movq	%rcx,%cr3
3061:
307	movq	PCPU(curthread),%rbx
308
309	/*
310	 * If this is a process/lwp, deactivate the pmap after we've
311	 * switched it out.
312	 */
313	movq	TD_LWP(%rbx),%rcx
314	testq	%rcx,%rcx
315	jz	2f
316	movq	LWP_VMSPACE(%rcx), %rcx		/* RCX = vmspace */
317
318	movq	PCPU(cpumask_simple),%rax
319	movq	PCPU(cpumask_offset),%r12
320	xorq	$-1,%rax
321	MPLOCKED andq %rax, VM_PMAP+PM_ACTIVE(%rcx, %r12, 1)
3222:
323	/*
324	 * Switch to the next thread.  RET into the restore function, which
325	 * expects the new thread in RAX and the old in RBX.
326	 *
327	 * There is a one-instruction window where curthread is the new
328	 * thread but %rsp still points to the old thread's stack, but
329	 * we are protected by a critical section so it is ok.
330	 */
331	cli
332	movq	%rdi,%rax
333	movq	%rax,PCPU(curthread)
334	movq	TD_SP(%rax),%rsp
335	ret
336END(cpu_exit_switch)
337
338/*
339 * cpu_heavy_restore()	(current thread in %rax on entry, old thread in %rbx)
340 *
341 *	Restore the thread after an LWKT switch.  This entry is normally
342 *	called via the LWKT switch restore function, which was pulled
343 *	off the thread stack and jumped to.
344 *
345 *	This entry is only called if the thread was previously saved
346 *	using cpu_heavy_switch() (the heavy weight process thread switcher),
347 *	or when a new process is initially scheduled.
348 *
349 *	NOTE: The lwp may be in any state, not necessarily LSRUN, because
350 *	a preemption switch may interrupt the process and then return via
351 *	cpu_heavy_restore.
352 *
353 *	YYY theoretically we do not have to restore everything here, a lot
354 *	of this junk can wait until we return to usermode.  But for now
355 *	we restore everything.
356 *
357 *	YYY the PCB crap is really crap, it makes startup a bitch because
358 *	we can't switch away.
359 *
360 *	YYY note: spl check is done in mi_switch when it splx()'s.
361 */
362
363ENTRY(cpu_heavy_restore)
364	movq	TD_PCB(%rax),%rdx		/* RDX = PCB */
365	movq	%rdx, PCPU(trampoline)+TR_PCB_RSP
366	movq	PCB_FLAGS(%rdx), %rcx
367	movq	%rcx, PCPU(trampoline)+TR_PCB_FLAGS
368	movq	PCB_CR3_ISO(%rdx), %rcx
369	movq	%rcx, PCPU(trampoline)+TR_PCB_CR3_ISO
370	movq	PCB_CR3(%rdx), %rcx
371	movq	%rcx, PCPU(trampoline)+TR_PCB_CR3
372	popfq
373
374#if defined(SWTCH_OPTIM_STATS)
375	incl	_swtch_optim_stats
376#endif
377#ifdef PREEMPT_OPTIMIZE
378	/*
379	 * If restoring our thread after a preemption has returned to
380	 * us, our %cr3 and pmap were borrowed and are being returned to
381	 * us and no further action on those items need be taken.
382	 */
383	testl	$TDF_PREEMPT_DONE, TD_FLAGS(%rax)
384	jne	4f
385#endif
386
387	/*
388	 * Tell the pmap that our cpu is using the VMSPACE now.  We cannot
389	 * safely test/reload %cr3 until after we have set the bit in the
390	 * pmap.
391	 *
392	 * We must do an interlocked test of the CPULOCK_EXCL at the same
393	 * time.  If found to be set we will have to wait for it to clear
394	 * and then do a forced reload of %cr3 (even if the value matches).
395	 *
396	 * XXX When switching between two LWPs sharing the same vmspace
397	 *     the cpu_heavy_switch() code currently avoids clearing the
398	 *     cpu bit in PM_ACTIVE.  So if the bit is already set we can
399	 *     avoid checking for the interlock via CPULOCK_EXCL.  We currently
400	 *     do not perform this optimization.
401	 */
402	movq	TD_LWP(%rax),%rcx
403	movq	LWP_VMSPACE(%rcx),%rcx		/* RCX = vmspace */
404
405	movq	PCPU(cpumask_simple),%rsi
406	movq	PCPU(cpumask_offset),%r12
407	MPLOCKED orq %rsi, VM_PMAP+PM_ACTIVE(%rcx, %r12, 1)
408
409	movl	VM_PMAP+PM_ACTIVE_LOCK(%rcx),%esi
410	testl	$CPULOCK_EXCL,%esi
411	jz	1f
412
413	movq	%rax,%r12		/* save newthread ptr */
414	movq	%rcx,%rdi		/* (found to be set) */
415	call	pmap_interlock_wait	/* pmap_interlock_wait(%rdi:vm) */
416	movq	%r12,%rax
417
418	/*
419	 * Need unconditional load cr3
420	 */
421	movq	TD_PCB(%rax),%rdx	/* RDX = PCB */
422	movq	PCB_CR3(%rdx),%rcx	/* RCX = desired CR3 */
423	jmp	2f			/* unconditional reload */
4241:
425	/*
426	 * Restore the MMU address space.  If it is the same as the last
427	 * thread we don't have to invalidate the tlb (i.e. reload cr3).
428	 *
429	 * XXX Temporary cludge, do NOT do this optimization!  The problem
430	 *     is that the pm_active bit for the cpu had dropped for a small
431	 *     period of time, just a few cycles, but even one cycle is long
432	 *     enough for some other cpu doing a pmap invalidation to not see
433	 *     our cpu.
434	 *
435	 *     When that happens, and we don't invltlb (by loading %cr3), we
436	 *     wind up with a stale TLB.
437	 */
438	movq	TD_PCB(%rax),%rdx		/* RDX = PCB */
439	movq	%cr3,%rsi			/* RSI = current CR3 */
440	movq	PCB_CR3(%rdx),%rcx		/* RCX = desired CR3 */
441	cmpq	%rsi,%rcx
442	/*je	4f*/
4432:
444#if defined(SWTCH_OPTIM_STATS)
445	decl	_swtch_optim_stats
446	incl	_tlb_flush_count
447#endif
448	movq	%rcx,%cr3
4494:
450
451	/*
452	 * NOTE: %rbx is the previous thread and %rax is the new thread.
453	 *	 %rbx is retained throughout so we can return it.
454	 *
455	 *	 lwkt_switch[_return] is responsible for handling TDF_RUNNING.
456	 */
457
458	/*
459	 * Deal with the PCB extension, restore the private tss
460	 */
461	movq	PCB_EXT(%rdx),%rdi	/* check for a PCB extension */
462	movq	$1,%rcx			/* maybe mark use of a private tss */
463	testq	%rdi,%rdi
464#if 0 /* JG */
465	jnz	2f
466#endif
467
468#if 0
469	/*
470	 * Going back to the common_tss.  (this was already executed at
471	 * the top).
472	 *
473	 * Set the top of the supervisor stack for the new thread
474	 * in gd_thread_pcb so the trampoline code can load it into %rsp.
475	 */
476	movq	%rdx, PCPU(trampoline)+TR_PCB_RSP
477	movq	PCB_FLAGS(%rdx), %rcx
478	movq	%rcx, PCPU(trampoline)+TR_PCB_FLAGS
479	movq	PCB_CR3_ISO(%rdx), %rcx
480	movq	%rcx, PCPU(trampoline)+TR_PCB_CR3_ISO
481	movq	PCB_CR3(%rdx), %rcx
482	movq	%rcx, PCPU(trampoline)+TR_PCB_CR3
483#endif
484
485#if 0 /* JG */
486	cmpl	$0,PCPU(private_tss)	/* don't have to reload if      */
487	je	3f			/* already using the common TSS */
488
489	/* JG? */
490	subq	%rcx,%rcx		/* unmark use of private tss */
491
492	/*
493	 * Get the address of the common TSS descriptor for the ltr.
494	 * There is no way to get the address of a segment-accessed variable
495	 * so we store a self-referential pointer at the base of the per-cpu
496	 * data area and add the appropriate offset.
497	 */
498	/* JG movl? */
499	movq	$gd_common_tssd, %rdi
500	/* JG name for "%gs:0"? */
501	addq	%gs:0, %rdi
502
503	/*
504	 * Move the correct TSS descriptor into the GDT slot, then reload
505	 * ltr.
506	 */
5072:
508	/* JG */
509	movl	%rcx,PCPU(private_tss)		/* mark/unmark private tss */
510	movq	PCPU(tss_gdt), %rbx		/* entry in GDT */
511	movq	0(%rdi), %rax
512	movq	%rax, 0(%rbx)
513	movl	$GPROC0_SEL*8, %esi		/* GSEL(entry, SEL_KPL) */
514	ltr	%si
515#endif
516
5173:
518	/*
519	 * Restore the user %gs and %fs
520	 */
521	movq	PCB_FSBASE(%rdx),%r9
522	cmpq	PCPU(user_fs),%r9
523	je	4f
524	movq	%rdx,%r10
525	movq	%r9,PCPU(user_fs)
526	movl	$MSR_FSBASE,%ecx
527	movl	PCB_FSBASE(%r10),%eax
528	movl	PCB_FSBASE+4(%r10),%edx
529	wrmsr
530	movq	%r10,%rdx
5314:
532	movq	PCB_GSBASE(%rdx),%r9
533	cmpq	PCPU(user_gs),%r9
534	je	5f
535	movq	%rdx,%r10
536	movq	%r9,PCPU(user_gs)
537	movl	$MSR_KGSBASE,%ecx	/* later swapgs moves it to GSBASE */
538	movl	PCB_GSBASE(%r10),%eax
539	movl	PCB_GSBASE+4(%r10),%edx
540	wrmsr
541	movq	%r10,%rdx
5425:
543
544	/*
545	 * Restore general registers.  %rbx is restored later.
546	 */
547	movq	PCB_RSP(%rdx), %rsp
548	movq	PCB_RBP(%rdx), %rbp
549	movq	PCB_R12(%rdx), %r12
550	movq	PCB_R13(%rdx), %r13
551	movq	PCB_R14(%rdx), %r14
552	movq	PCB_R15(%rdx), %r15
553	movq	PCB_RIP(%rdx), %rax
554	movq	%rax, (%rsp)
555	movw	$KDSEL,%ax
556	movw	%ax,%es
557
558#if 0 /* JG */
559	/*
560	 * Restore the user LDT if we have one
561	 */
562	cmpl	$0, PCB_USERLDT(%edx)
563	jnz	1f
564	movl	_default_ldt,%eax
565	cmpl	PCPU(currentldt),%eax
566	je	2f
567	lldt	_default_ldt
568	movl	%eax,PCPU(currentldt)
569	jmp	2f
5701:	pushl	%edx
571	call	set_user_ldt
572	popl	%edx
5732:
574#endif
575#if 0 /* JG */
576	/*
577	 * Restore the user TLS if we have one
578	 */
579	pushl	%edx
580	call	set_user_TLS
581	popl	%edx
582#endif
583
584	/*
585	 * Restore the DEBUG register state if necessary.
586	 */
587	movq	PCB_FLAGS(%rdx),%rax
588	andq	$PCB_DBREGS,%rax
589	jz	1f				/* no, skip over */
590	movq	PCB_DR6(%rdx),%rax		/* yes, do the restore */
591	movq	%rax,%dr6
592	movq	PCB_DR3(%rdx),%rax
593	movq	%rax,%dr3
594	movq	PCB_DR2(%rdx),%rax
595	movq	%rax,%dr2
596	movq	PCB_DR1(%rdx),%rax
597	movq	%rax,%dr1
598	movq	PCB_DR0(%rdx),%rax
599	movq	%rax,%dr0
600	movq	%dr7,%rax		/* load dr7 so as not to disturb */
601	/* JG correct value? */
602	andq	$0x0000fc00,%rax	/*   reserved bits               */
603	/* JG we've got more registers on x86_64 */
604	movq	PCB_DR7(%rdx),%rcx
605	/* JG correct value? */
606	andq	$~0x0000fc00,%rcx
607	orq	%rcx,%rax
608	movq	%rax,%dr7
609
610	/*
611	 * Clear the QUICKRET flag when restoring a user process context
612	 * so we don't try to do a quick syscall return.
613	 */
6141:
615	andl	$~RQF_QUICKRET,PCPU(reqflags)
616	movq	%rbx,%rax
617	movq	PCB_RBX(%rdx),%rbx
618	ret
619END(cpu_heavy_restore)
620
621/*
622 * savectx(struct pcb *pcb)
623 *
624 * Update pcb, saving current processor state.
625 */
626ENTRY(savectx)
627	/* fetch PCB */
628	/* JG use %rdi instead of %rcx everywhere? */
629	movq	%rdi,%rcx
630
631	/* caller's return address - child won't execute this routine */
632	movq	(%rsp),%rax
633	movq	%rax,PCB_RIP(%rcx)
634
635	movq	%cr3,%rax
636	movq	%rax,PCB_CR3(%rcx)
637
638	movq	%rbx,PCB_RBX(%rcx)
639	movq	%rsp,PCB_RSP(%rcx)
640	movq	%rbp,PCB_RBP(%rcx)
641	movq	%r12,PCB_R12(%rcx)
642	movq	%r13,PCB_R13(%rcx)
643	movq	%r14,PCB_R14(%rcx)
644	movq	%r15,PCB_R15(%rcx)
645
646#if 1
647	/*
648	 * If npxthread == NULL, then the npx h/w state is irrelevant and the
649	 * state had better already be in the pcb.  This is true for forks
650	 * but not for dumps (the old book-keeping with FP flags in the pcb
651	 * always lost for dumps because the dump pcb has 0 flags).
652	 *
653	 * If npxthread != NULL, then we have to save the npx h/w state to
654	 * npxthread's pcb and copy it to the requested pcb, or save to the
655	 * requested pcb and reload.  Copying is easier because we would
656	 * have to handle h/w bugs for reloading.  We used to lose the
657	 * parent's npx state for forks by forgetting to reload.
658	 */
659	movq	PCPU(npxthread),%rax
660	testq	%rax,%rax
661	jz	1f
662
663	pushq	%rcx			/* target pcb */
664	movq	TD_SAVEFPU(%rax),%rax	/* originating savefpu area */
665	pushq	%rax
666
667	movq	%rax,%rdi
668	call	npxsave
669
670	popq	%rax
671	popq	%rcx
672
673	movq	$PCB_SAVEFPU_SIZE,%rdx
674	leaq	PCB_SAVEFPU(%rcx),%rcx
675	movq	%rcx,%rsi
676	movq	%rax,%rdi
677	call	bcopy
678#endif
679
6801:
681	ret
682END(savectx)
683
684/*
685 * cpu_idle_restore()	(current thread in %rax on entry, old thread in %rbx)
686 *			(one-time entry)
687 *
688 *	Don't bother setting up any regs other than %rbp so backtraces
689 *	don't die.  This restore function is used to bootstrap into the
690 *	cpu_idle() LWKT only, after that cpu_lwkt_*() will be used for
691 *	switching.
692 *
693 *	Clear TDF_RUNNING in old thread only after we've cleaned up %cr3.
694 *	This only occurs during system boot so no special handling is
695 *	required for migration.
696 *
697 *	If we are an AP we have to call ap_init() before jumping to
698 *	cpu_idle().  ap_init() will synchronize with the BP and finish
699 *	setting up various ncpu-dependant globaldata fields.  This may
700 *	happen on UP as well as SMP if we happen to be simulating multiple
701 *	cpus.
702 */
703ENTRY(cpu_idle_restore)
704	/* cli */
705	movq	KPML4phys,%rcx
706	xorq	%rbp,%rbp		/* dummy frame pointer */
707	pushq	$0			/* dummy return pc */
708
709	/* NOTE: idle thread can never preempt */
710	movq	%rcx,%cr3
711	cmpl	$0,PCPU(cpuid)
712	je	1f
713	andl	$~TDF_RUNNING,TD_FLAGS(%rbx)
714	orl	$TDF_RUNNING,TD_FLAGS(%rax)	/* manual, no switch_return */
715	call	ap_init
716	/*
717	 * ap_init can decide to enable interrupts early, but otherwise, or if
718	 * we are UP, do it here.
719	 */
720	sti
721	jmp	cpu_idle
722
723	/*
724	 * cpu 0's idle thread entry for the first time must use normal
725	 * lwkt_switch_return() semantics or a pending cpu migration on
726	 * thread0 will deadlock.
727	 */
7281:
729	sti
730	pushq	%rax
731	movq	%rbx,%rdi
732	call	lwkt_switch_return
733	popq	%rax
734	jmp	cpu_idle
735END(cpu_idle_restore)
736
737/*
738 * cpu_kthread_restore() (current thread is %rax on entry, previous is %rbx)
739 *			 (one-time execution)
740 *
741 *	Don't bother setting up any regs other then %rbp so backtraces
742 *	don't die.  This restore function is used to bootstrap into an
743 *	LWKT based kernel thread only.  cpu_lwkt_switch() will be used
744 *	after this.
745 *
746 *	Because this switch target does not 'return' to lwkt_switch()
747 *	we have to call lwkt_switch_return(otd) to clean up otd.
748 *	otd is in %ebx.
749 *
750 *	Since all of our context is on the stack we are reentrant and
751 *	we can release our critical section and enable interrupts early.
752 */
753ENTRY(cpu_kthread_restore)
754	sti
755	movq	KPML4phys,%rcx
756	movq	TD_PCB(%rax),%r13
757	xorq	%rbp,%rbp
758
759#ifdef PREEMPT_OPTIMIZE
760	/*
761	 * If we are preempting someone we borrow their %cr3, do not overwrite
762	 * it!
763	 */
764	movq	TD_PREEMPTED(%rax),%r14
765	testq	%r14,%r14
766	jne	1f
767#endif
768	movq	%rcx,%cr3
7691:
770
771	/*
772	 * rax and rbx come from the switchout code.  Call
773	 * lwkt_switch_return(otd).
774	 *
775	 * NOTE: unlike i386, the %rsi and %rdi are not call-saved regs.
776	 */
777	pushq	%rax
778	movq	%rbx,%rdi
779	call	lwkt_switch_return
780	popq	%rax
781	decl	TD_CRITCOUNT(%rax)
782	movq	PCB_R12(%r13),%rdi	/* argument to RBX function */
783	movq	PCB_RBX(%r13),%rax	/* thread function */
784	/* note: top of stack return address inherited by function */
785	jmp	*%rax
786END(cpu_kthread_restore)
787
788/*
789 * cpu_lwkt_switch(struct thread *)
790 *
791 *	Standard LWKT switching function.  Only non-scratch registers are
792 *	saved and we don't bother with the MMU state or anything else.
793 *
794 *	This function is always called while in a critical section.
795 *
796 *	There is a one-instruction window where curthread is the new
797 *	thread but %rsp still points to the old thread's stack, but
798 *	we are protected by a critical section so it is ok.
799 */
800ENTRY(cpu_lwkt_switch)
801	pushq	%rbp	/* JG note: GDB hacked to locate ebp rel to td_sp */
802	pushq	%rbx
803	movq	PCPU(curthread),%rbx	/* becomes old thread in restore */
804	pushq	%r12
805	pushq	%r13
806	pushq	%r14
807	pushq	%r15
808	pushfq
809	cli
810
811#if 1
812	/*
813	 * Save the FP state if we have used the FP.  Note that calling
814	 * npxsave will NULL out PCPU(npxthread).
815	 *
816	 * We have to deal with the FP state for LWKT threads in case they
817	 * happen to get preempted or block while doing an optimized
818	 * bzero/bcopy/memcpy.
819	 */
820	cmpq	%rbx,PCPU(npxthread)
821	jne	1f
822	movq	%rdi,%r12		/* save %rdi. %r12 is callee-saved */
823	movq	TD_SAVEFPU(%rbx),%rdi
824	call	npxsave			/* do it in a big C function */
825	movq	%r12,%rdi		/* restore %rdi */
8261:
827#endif
828
829	movq	%rdi,%rax		/* switch to this thread */
830	pushq	$cpu_lwkt_restore
831	movq	%rsp,TD_SP(%rbx)
832	/*
833	 * %rax contains new thread, %rbx contains old thread.
834	 */
835	movq	%rax,PCPU(curthread)
836	movq	TD_SP(%rax),%rsp
837	ret
838END(cpu_lwkt_switch)
839
840/*
841 * cpu_lwkt_restore()	(current thread in %rax on entry)
842 *
843 * Standard LWKT restore function.  This function is always called
844 * while in a critical section.
845 *
846 * WARNING! Due to preemption the restore function can be used to 'return'
847 *	    to the original thread.   Interrupt disablement must be
848 *	    protected through the switch so we cannot run splz here.
849 */
850ENTRY(cpu_lwkt_restore)
851#ifdef PREEMPT_OPTIMIZE
852	/*
853	 * If we are preempting someone we borrow their %cr3 and pmap
854	 */
855	movq	TD_PREEMPTED(%rax),%r14	/* kernel thread preempting? */
856	testq	%r14,%r14
857	jne	1f			/* yes, borrow %cr3 from old thread */
858#endif
859	/*
860	 * Don't reload %cr3 if it hasn't changed.  Since this is a LWKT
861	 * thread (a kernel thread), and the kernel_pmap always permanently
862	 * sets all pm_active bits, we don't have the same problem with it
863	 * that we do with process pmaps.
864	 */
865	movq	KPML4phys,%rcx
866	movq	%cr3,%rdx
867	cmpq	%rcx,%rdx
868	je	1f
869	movq	%rcx,%cr3
8701:
871	/*
872	 * NOTE: %rbx is the previous thread and %rax is the new thread.
873	 *	 %rbx is retained throughout so we can return it.
874	 *
875	 *	 lwkt_switch[_return] is responsible for handling TDF_RUNNING.
876	 */
877	movq	%rbx,%rax
878	popfq
879	popq	%r15
880	popq	%r14
881	popq	%r13
882	popq	%r12
883	popq	%rbx
884	popq	%rbp
885	ret
886END(cpu_lwkt_restore)
887