xref: /dragonfly/sys/platform/pc64/x86_64/swtch.s (revision f984587a)
1/*
2 * Copyright (c) 2003,2004,2008 The DragonFly Project.  All rights reserved.
3 * Copyright (c) 2008 Jordan Gordeev.
4 *
5 * This code is derived from software contributed to The DragonFly Project
6 * by Matthew Dillon <dillon@backplane.com>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in
16 *    the documentation and/or other materials provided with the
17 *    distribution.
18 * 3. Neither the name of The DragonFly Project nor the names of its
19 *    contributors may be used to endorse or promote products derived
20 *    from this software without specific, prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * Copyright (c) 1990 The Regents of the University of California.
36 * All rights reserved.
37 *
38 * This code is derived from software contributed to Berkeley by
39 * William Jolitz.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 *    may be used to endorse or promote products derived from this software
51 *    without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * $FreeBSD: src/sys/i386/i386/swtch.s,v 1.89.2.10 2003/01/23 03:36:24 ps Exp $
66 */
67
68#include <sys/rtprio.h>
69
70#include <machine/asmacros.h>
71#include <machine/segments.h>
72
73#include <machine/pmap.h>
74#if 0 /* JG */
75#include <machine_base/apic/apicreg.h>
76#endif
77#include <machine/lock.h>
78
79#include "assym.s"
80
81#define	MPLOCKED	lock ;
82
83/*
84 * PREEMPT_OPTIMIZE
85 *
86 * This feature allows the preempting (interrupt) kernel thread to borrow
87 * %cr3 from the user process it interrupts, allowing us to do-away with
88 * two %cr3 stores, two atomic ops (pm_active is not modified), and pmap
89 * lock tests (not needed since pm_active is not modified).
90 *
91 * Unfortunately, I couldn't really measure any result so for now the
92 * optimization is disabled.
93 */
94#undef PREEMPT_OPTIMIZE
95
96/*
97 * LWP_SWITCH_OPTIMIZE
98 *
99 * This optimization attempted to avoid a %cr3 store and atomic op, and
100 * it might have been useful on older cpus but newer cpus (and more
101 * importantly multi-core cpus) generally do not switch between LWPs on
102 * the same cpu.  Multiple user threads are more likely to be distributed
103 * across multiple cpus.  In cpu-bound situations the scheduler will already
104 * be in batch-mode (meaning relatively few context-switches/sec), and
105 * otherwise the lwp(s) are likely to be blocked waiting for events.
106 *
107 * On the flip side, the conditionals this option uses measurably reduce
108 * performance (just slightly, honestly).  So this option is disabled.
109 */
110#undef LWP_SWITCH_OPTIMIZE
111
112	/*
113	 * Global Declarations
114	 */
115	.data
116
117	.globl	panic
118	.globl	lwkt_switch_return
119
120#if defined(SWTCH_OPTIM_STATS)
121	.globl	swtch_optim_stats, tlb_flush_count
122swtch_optim_stats:	.long	0		/* number of _swtch_optims */
123tlb_flush_count:	.long	0
124#endif
125
126	/*
127	 * Code
128	 */
129	.text
130
131/*
132 * cpu_heavy_switch(struct thread *next_thread)
133 *
134 *	Switch from the current thread to a new thread.  This entry
135 *	is normally called via the thread->td_switch function, and will
136 *	only be called when the current thread is a heavy weight process.
137 *
138 *	Some instructions have been reordered to reduce pipeline stalls.
139 *
140 *	YYY disable interrupts once giant is removed.
141 */
142ENTRY(cpu_heavy_switch)
143	/*
144	 * Save RIP, RSP and callee-saved registers (RBX, RBP, R12-R15).
145	 */
146	movq	PCPU(curthread),%rcx
147	/* On top of the stack is the return adress. */
148	movq	(%rsp),%rax			/* (reorder optimization) */
149	movq	TD_PCB(%rcx),%rdx		/* RDX = PCB */
150	movq	%rax,PCB_RIP(%rdx)		/* return PC may be modified */
151	movq	%rbx,PCB_RBX(%rdx)
152	movq	%rsp,PCB_RSP(%rdx)
153	movq	%rbp,PCB_RBP(%rdx)
154	movq	%r12,PCB_R12(%rdx)
155	movq	%r13,PCB_R13(%rdx)
156	movq	%r14,PCB_R14(%rdx)
157	movq	%r15,PCB_R15(%rdx)
158
159	/*
160	 * Clear the cpu bit in the pmap active mask.  The restore
161	 * function will set the bit in the pmap active mask.
162	 *
163	 * If we are switching away due to a preempt, TD_PREEMPTED(%rdi)
164	 * will be non-NULL.  In this situation we do want to avoid extra
165	 * atomic ops and %cr3 reloads (see top of file for reasoning).
166	 *
167	 * NOTE: Do not try to optimize avoiding the %cr3 reload or pm_active
168	 *	 adjustment.  This mattered on uni-processor systems but in
169	 *	 multi-core systems we are highly unlikely to be switching
170	 *	 to another thread belonging to the same process on this cpu.
171	 *
172	 *	 (more likely the target thread is still sleeping, or if cpu-
173	 *	 bound the scheduler is in batch mode and the switch rate is
174	 *	 already low).
175	 */
176	movq	%rcx,%rbx			/* RBX = oldthread */
177#ifdef PREEMPT_OPTIMIZE
178	/*
179	 * If we are being preempted the target thread borrows our %cr3
180	 * and we leave our pmap bits intact for the duration.
181	 */
182	movq	TD_PREEMPTED(%rdi),%r13
183	testq	%r13,%r13
184	jne	2f
185#endif
186
187	movq	TD_LWP(%rcx),%rcx		/* RCX = oldlwp	*/
188	movq	LWP_VMSPACE(%rcx), %rcx		/* RCX = oldvmspace */
189#ifdef LWP_SWITCH_OPTIMIZE
190	movq	TD_LWP(%rdi),%r13		/* R13 = newlwp */
191	testq	%r13,%r13			/* might not be a heavy */
192	jz	1f
193	cmpq	LWP_VMSPACE(%r13),%rcx		/* same vmspace? */
194	je	2f
1951:
196#endif
197	movq	PCPU(cpumask_simple),%rsi
198	movq	PCPU(cpumask_offset),%r12
199	xorq	$-1,%rsi
200	MPLOCKED andq %rsi, VM_PMAP+PM_ACTIVE(%rcx, %r12, 1)
2012:
202
203	/*
204	 * Push the LWKT switch restore function, which resumes a heavy
205	 * weight process.  Note that the LWKT switcher is based on
206	 * TD_SP, while the heavy weight process switcher is based on
207	 * PCB_RSP.  TD_SP is usually two ints pushed relative to
208	 * PCB_RSP.  We push the flags for later restore by cpu_heavy_restore.
209	 */
210	pushfq
211	cli
212	movq	$cpu_heavy_restore, %rax
213	pushq	%rax
214	movq	%rsp,TD_SP(%rbx)
215
216	/*
217	 * Save debug regs if necessary
218	 */
219	movq	PCB_FLAGS(%rdx),%rax
220	andq	$PCB_DBREGS,%rax
221	jz	1f				/* no, skip over */
222	movq	%dr7,%rax			/* yes, do the save */
223	movq	%rax,PCB_DR7(%rdx)
224	/* JG correct value? */
225	andq	$0x0000fc00, %rax		/* disable all watchpoints */
226	movq	%rax,%dr7
227	movq	%dr6,%rax
228	movq	%rax,PCB_DR6(%rdx)
229	movq	%dr3,%rax
230	movq	%rax,PCB_DR3(%rdx)
231	movq	%dr2,%rax
232	movq	%rax,PCB_DR2(%rdx)
233	movq	%dr1,%rax
234	movq	%rax,PCB_DR1(%rdx)
235	movq	%dr0,%rax
236	movq	%rax,PCB_DR0(%rdx)
2371:
238
239	/*
240	 * Save the FP state if we have used the FP.  Note that calling
241	 * npxsave will NULL out PCPU(npxthread).
242	 */
243	cmpq	%rbx,PCPU(npxthread)
244	jne	1f
245	movq	%rdi,%r12		/* save %rdi. %r12 is callee-saved */
246	movq	TD_SAVEFPU(%rbx),%rdi
247	call	npxsave			/* do it in a big C function */
248	movq	%r12,%rdi		/* restore %rdi */
2491:
250
251	/*
252	 * Switch to the next thread, which was passed as an argument
253	 * to cpu_heavy_switch().  The argument is in %rdi.
254	 * Set the current thread, load the stack pointer,
255	 * and 'ret' into the switch-restore function.
256	 *
257	 * The switch restore function expects the new thread to be in %rax
258	 * and the old one to be in %rbx.
259	 *
260	 * There is a one-instruction window where curthread is the new
261	 * thread but %rsp still points to the old thread's stack, but
262	 * we are protected by a critical section so it is ok.
263	 */
264	movq	%rdi,%rax		/* RAX = newtd, RBX = oldtd */
265	movq	%rax,PCPU(curthread)
266	movq	TD_SP(%rax),%rsp
267	ret
268END(cpu_heavy_switch)
269
270/*
271 *  cpu_exit_switch(struct thread *next)
272 *
273 *	The switch function is changed to this when a thread is going away
274 *	for good.  We have to ensure that the MMU state is not cached, and
275 *	we don't bother saving the existing thread state before switching.
276 *
277 *	At this point we are in a critical section and this cpu owns the
278 *	thread's token, which serves as an interlock until the switchout is
279 *	complete.
280 */
281ENTRY(cpu_exit_switch)
282
283#ifdef PREEMPT_OPTIMIZE
284	/*
285	 * If we were preempting we are switching back to the original thread.
286	 * In this situation we already have the original thread's %cr3 and
287	 * should not replace it!
288	 */
289	testl	$TDF_PREEMPT_DONE, TD_FLAGS(%rdi)
290	jne	1f
291#endif
292
293	/*
294	 * Get us out of the vmspace
295	 */
296	movq	KPML4phys,%rcx
297	movq	%cr3,%rax
298	cmpq	%rcx,%rax
299	je	1f
300
301	movq	%rcx,%cr3
3021:
303	movq	PCPU(curthread),%rbx
304
305	/*
306	 * If this is a process/lwp, deactivate the pmap after we've
307	 * switched it out.
308	 */
309	movq	TD_LWP(%rbx),%rcx
310	testq	%rcx,%rcx
311	jz	2f
312	movq	LWP_VMSPACE(%rcx), %rcx		/* RCX = vmspace */
313
314	movq	PCPU(cpumask_simple),%rax
315	movq	PCPU(cpumask_offset),%r12
316	xorq	$-1,%rax
317	MPLOCKED andq %rax, VM_PMAP+PM_ACTIVE(%rcx, %r12, 1)
3182:
319	/*
320	 * Switch to the next thread.  RET into the restore function, which
321	 * expects the new thread in RAX and the old in RBX.
322	 *
323	 * There is a one-instruction window where curthread is the new
324	 * thread but %rsp still points to the old thread's stack, but
325	 * we are protected by a critical section so it is ok.
326	 */
327	cli
328	movq	%rdi,%rax
329	movq	%rax,PCPU(curthread)
330	movq	TD_SP(%rax),%rsp
331	ret
332END(cpu_exit_switch)
333
334/*
335 * cpu_heavy_restore()	(current thread in %rax on entry, old thread in %rbx)
336 *
337 *	We immediately move %rax to %r12.  %rbx is retained throughout, and
338 *	we nominally use %r14 for TD_PCB(%r12) until near the end where we
339 *	switch to %rdx for that.
340 *
341 *	Restore the thread after an LWKT switch.  This entry is normally
342 *	called via the LWKT switch restore function, which was pulled
343 *	off the thread stack and jumped to.
344 *
345 *	This entry is only called if the thread was previously saved
346 *	using cpu_heavy_switch() (the heavy weight process thread switcher),
347 *	or when a new process is initially scheduled.
348 *
349 *	NOTE: The lwp may be in any state, not necessarily LSRUN, because
350 *	a preemption switch may interrupt the process and then return via
351 *	cpu_heavy_restore.
352 *
353 *	YYY theoretically we do not have to restore everything here, a lot
354 *	of this junk can wait until we return to usermode.  But for now
355 *	we restore everything.
356 *
357 *	YYY the PCB crap is really crap, it makes startup a bitch because
358 *	we can't switch away.
359 *
360 *	YYY note: spl check is done in mi_switch when it splx()'s.
361 */
362
363ENTRY(cpu_heavy_restore)
364	movq	%rax,%r12			/* R12 = newtd */
365	movq	TD_PCB(%rax),%r14		/* R14 = PCB */
366	movq	%r14, PCPU(trampoline)+TR_PCB_RSP
367	movq	PCB_FLAGS(%r14), %rcx
368	movq	%rcx, PCPU(trampoline)+TR_PCB_FLAGS
369	movq	PCB_CR3_ISO(%r14), %rcx
370	movq	%rcx, PCPU(trampoline)+TR_PCB_CR3_ISO
371	movq	PCB_CR3(%r14), %rcx
372	movq	%rcx, PCPU(trampoline)+TR_PCB_CR3
373	popfq
374
375#if defined(SWTCH_OPTIM_STATS)
376	incl	_swtch_optim_stats
377#endif
378#ifdef PREEMPT_OPTIMIZE
379	/*
380	 * If restoring our thread after a preemption has returned to
381	 * us, our %cr3 and pmap were borrowed and are being returned to
382	 * us and no further action on those items need be taken.
383	 */
384	testl	$TDF_PREEMPT_DONE, TD_FLAGS(%r12)
385	jne	4f
386#endif
387
388	/*
389	 * Tell the pmap that our cpu is using the VMSPACE now.  We cannot
390	 * safely test/reload %cr3 until after we have set the bit in the
391	 * pmap.
392	 *
393	 * We must do an interlocked test of the CPULOCK_EXCL at the same
394	 * time.  If found to be set we will have to wait for it to clear
395	 * and then do a forced reload of %cr3 (even if the value matches).
396	 *
397	 * XXX When switching between two LWPs sharing the same vmspace
398	 *     the cpu_heavy_switch() code currently avoids clearing the
399	 *     cpu bit in PM_ACTIVE.  So if the bit is already set we can
400	 *     avoid checking for the interlock via CPULOCK_EXCL.  We currently
401	 *     do not perform this optimization.
402	 */
403	movq	TD_LWP(%r12),%rcx
404	movq	LWP_VMSPACE(%rcx),%rcx		/* RCX = vmspace */
405
406	movq	PCPU(cpumask_simple),%rsi
407	movq	PCPU(cpumask_offset),%r13
408	MPLOCKED orq %rsi, VM_PMAP+PM_ACTIVE(%rcx, %r13, 1)
409
410	movl	VM_PMAP+PM_ACTIVE_LOCK(%rcx),%esi
411	testl	$CPULOCK_EXCL,%esi
412	jz	1f
413
414	movq	%rcx,%rdi		/* (found to be set) */
415	call	pmap_interlock_wait	/* pmap_interlock_wait(%rdi:vm) */
416
417	/*
418	 * Need unconditional load cr3
419	 */
420	movq	PCB_CR3(%r14),%rcx	/* RCX = desired CR3 */
421	jmp	2f			/* unconditional reload */
4221:
423	/*
424	 * Restore the MMU address space.  If it is the same as the last
425	 * thread we don't have to invalidate the tlb (i.e. reload cr3).
426	 *
427	 * XXX Temporary cludge, do NOT do this optimization!  The problem
428	 *     is that the pm_active bit for the cpu had dropped for a small
429	 *     period of time, just a few cycles, but even one cycle is long
430	 *     enough for some other cpu doing a pmap invalidation to not see
431	 *     our cpu.
432	 *
433	 *     When that happens, and we don't invltlb (by loading %cr3), we
434	 *     wind up with a stale TLB.
435	 */
436	movq	%cr3,%rsi			/* RSI = current CR3 */
437	movq	PCB_CR3(%r14),%rcx		/* RCX = desired CR3 */
438	cmpq	%rsi,%rcx
439	/*je	4f*/
4402:
441#if defined(SWTCH_OPTIM_STATS)
442	decl	_swtch_optim_stats
443	incl	_tlb_flush_count
444#endif
445	movq	%rcx,%cr3
4464:
447
448	/*
449	 * NOTE: %rbx is the previous thread and %r12 is the new thread.
450	 *	 %rbx is retained throughout so we can return it.
451	 *
452	 *	 lwkt_switch[_return] is responsible for handling TDF_RUNNING.
453	 */
454
455	/*
456	 * Deal with the PCB extension, restore the private tss
457	 */
458	movq	PCB_EXT(%r14),%rdi	/* check for a PCB extension */
459	movq	$1,%rcx			/* maybe mark use of a private tss */
460	testq	%rdi,%rdi
461#if 0 /* JG */
462	jnz	2f
463#endif
464
465#if 0
466	/*
467	 * Going back to the common_tss.  (this was already executed at
468	 * the top).
469	 *
470	 * Set the top of the supervisor stack for the new thread
471	 * in gd_thread_pcb so the trampoline code can load it into %rsp.
472	 */
473	movq	%r14, PCPU(trampoline)+TR_PCB_RSP
474	movq	PCB_FLAGS(%r14), %rcx
475	movq	%rcx, PCPU(trampoline)+TR_PCB_FLAGS
476	movq	PCB_CR3_ISO(%r14), %rcx
477	movq	%rcx, PCPU(trampoline)+TR_PCB_CR3_ISO
478	movq	PCB_CR3(%r14), %rcx
479	movq	%rcx, PCPU(trampoline)+TR_PCB_CR3
480#endif
481
482#if 0 /* JG */
483	cmpl	$0,PCPU(private_tss)	/* don't have to reload if      */
484	je	3f			/* already using the common TSS */
485
486	/* JG? */
487	subq	%rcx,%rcx		/* unmark use of private tss */
488
489	/*
490	 * Get the address of the common TSS descriptor for the ltr.
491	 * There is no way to get the address of a segment-accessed variable
492	 * so we store a self-referential pointer at the base of the per-cpu
493	 * data area and add the appropriate offset.
494	 */
495	/* JG movl? */
496	movq	$gd_common_tssd, %rdi
497	/* JG name for "%gs:0"? */
498	addq	%gs:0, %rdi
499
500	/*
501	 * Move the correct TSS descriptor into the GDT slot, then reload
502	 * ltr.
503	 */
5042:
505	/* JG */
506	movl	%rcx,PCPU(private_tss)		/* mark/unmark private tss */
507	movq	PCPU(tss_gdt), %rbx		/* entry in GDT */
508	movq	0(%rdi), %rax
509	movq	%rax, 0(%rbx)
510	movl	$GPROC0_SEL*8, %esi		/* GSEL(entry, SEL_KPL) */
511	ltr	%si
512#endif
513
5143:
515	/*
516	 * Restore the user %gs and %fs
517	 */
518	movq	PCB_FSBASE(%r14),%r9
519	cmpq	PCPU(user_fs),%r9
520	je	4f
521	movq	%r9,PCPU(user_fs)
522	movl	$MSR_FSBASE,%ecx
523	movl	PCB_FSBASE(%r14),%eax
524	movl	PCB_FSBASE+4(%r14),%edx
525	wrmsr
5264:
527	movq	PCB_GSBASE(%r14),%r9
528	cmpq	PCPU(user_gs),%r9
529	je	5f
530	movq	%r9,PCPU(user_gs)
531	movl	$MSR_KGSBASE,%ecx	/* later swapgs moves it to GSBASE */
532	movl	PCB_GSBASE(%r14),%eax
533	movl	PCB_GSBASE+4(%r14),%edx
534	wrmsr
5355:
536	/*
537	 * Actively restore FP state
538	 */
539	movq	PCPU(npxthread),%r13
540	testq	%r13,%r13
541	jnz	6f
542	movl	TD_FLAGS(%r12),%r13d
543	andq	$TDF_USINGFP,%r13
544	jz	6f
545	movq	%r12,%rdi		/* npxdna_quick(newtd) */
546	call	npxdna_quick
5476:
548
549	/*
550	 * Restore general registers.  %rbx is restored later.
551	 *
552	 * Switch our PCB register from %r14 to %rdx so we can restore
553	 * %r14.
554	 */
555	movq	%r14,%rdx
556	movq	PCB_RSP(%rdx), %rsp
557	movq	PCB_RBP(%rdx), %rbp
558	movq	PCB_R12(%rdx), %r12
559	movq	PCB_R13(%rdx), %r13
560	movq	PCB_R14(%rdx), %r14
561	movq	PCB_R15(%rdx), %r15
562	movq	PCB_RIP(%rdx), %rax
563	movq	%rax, (%rsp)
564	movw	$KDSEL,%ax
565	movw	%ax,%es
566
567#if 0 /* JG */
568	/*
569	 * Restore the user LDT if we have one
570	 */
571	cmpl	$0, PCB_USERLDT(%edx)
572	jnz	1f
573	movl	_default_ldt,%eax
574	cmpl	PCPU(currentldt),%eax
575	je	2f
576	lldt	_default_ldt
577	movl	%eax,PCPU(currentldt)
578	jmp	2f
5791:	pushl	%edx
580	call	set_user_ldt
581	popl	%edx
5822:
583#endif
584#if 0 /* JG */
585	/*
586	 * Restore the user TLS if we have one
587	 */
588	pushl	%edx
589	call	set_user_TLS
590	popl	%edx
591#endif
592
593	/*
594	 * Restore the DEBUG register state if necessary.
595	 */
596	movq	PCB_FLAGS(%rdx),%rax
597	andq	$PCB_DBREGS,%rax
598	jz	1f				/* no, skip over */
599	movq	PCB_DR6(%rdx),%rax		/* yes, do the restore */
600	movq	%rax,%dr6
601	movq	PCB_DR3(%rdx),%rax
602	movq	%rax,%dr3
603	movq	PCB_DR2(%rdx),%rax
604	movq	%rax,%dr2
605	movq	PCB_DR1(%rdx),%rax
606	movq	%rax,%dr1
607	movq	PCB_DR0(%rdx),%rax
608	movq	%rax,%dr0
609	movq	%dr7,%rax		/* load dr7 so as not to disturb */
610	/* JG correct value? */
611	andq	$0x0000fc00,%rax	/*   reserved bits               */
612	/* JG we've got more registers on x86_64 */
613	movq	PCB_DR7(%rdx),%rcx
614	/* JG correct value? */
615	andq	$~0x0000fc00,%rcx
616	orq	%rcx,%rax
617	movq	%rax,%dr7
618
619	/*
620	 * Clear the QUICKRET flag when restoring a user process context
621	 * so we don't try to do a quick syscall return.
622	 */
6231:
624	andl	$~RQF_QUICKRET,PCPU(reqflags)
625	movq	%rbx,%rax
626	movq	PCB_RBX(%rdx),%rbx
627	ret
628END(cpu_heavy_restore)
629
630/*
631 * savectx(struct pcb *pcb)
632 *
633 * Update pcb, saving current processor state.
634 */
635ENTRY(savectx)
636	/* fetch PCB */
637	/* JG use %rdi instead of %rcx everywhere? */
638	movq	%rdi,%rcx
639
640	/* caller's return address - child won't execute this routine */
641	movq	(%rsp),%rax
642	movq	%rax,PCB_RIP(%rcx)
643
644	movq	%cr3,%rax
645	movq	%rax,PCB_CR3(%rcx)
646
647	movq	%rbx,PCB_RBX(%rcx)
648	movq	%rsp,PCB_RSP(%rcx)
649	movq	%rbp,PCB_RBP(%rcx)
650	movq	%r12,PCB_R12(%rcx)
651	movq	%r13,PCB_R13(%rcx)
652	movq	%r14,PCB_R14(%rcx)
653	movq	%r15,PCB_R15(%rcx)
654
655#if 1
656	/*
657	 * If npxthread == NULL, then the npx h/w state is irrelevant and the
658	 * state had better already be in the pcb.  This is true for forks
659	 * but not for dumps (the old book-keeping with FP flags in the pcb
660	 * always lost for dumps because the dump pcb has 0 flags).
661	 *
662	 * If npxthread != NULL, then we have to save the npx h/w state to
663	 * npxthread's pcb and copy it to the requested pcb, or save to the
664	 * requested pcb and reload.  Copying is easier because we would
665	 * have to handle h/w bugs for reloading.  We used to lose the
666	 * parent's npx state for forks by forgetting to reload.
667	 */
668	movq	PCPU(npxthread),%rax
669	testq	%rax,%rax
670	jz	1f
671
672	pushq	%rcx			/* target pcb */
673	movq	TD_SAVEFPU(%rax),%rax	/* originating savefpu area */
674	pushq	%rax
675
676	movq	%rax,%rdi
677	call	npxsave
678
679	popq	%rax
680	popq	%rcx
681
682	movq	$PCB_SAVEFPU_SIZE,%rdx
683	leaq	PCB_SAVEFPU(%rcx),%rcx
684	movq	%rcx,%rsi
685	movq	%rax,%rdi
686	call	bcopy
687#endif
688
6891:
690	ret
691END(savectx)
692
693/*
694 * cpu_idle_restore()	(current thread in %rax on entry, old thread in %rbx)
695 *			(one-time entry)
696 *
697 *	Don't bother setting up any regs other than %rbp so backtraces
698 *	don't die.  This restore function is used to bootstrap into the
699 *	cpu_idle() LWKT only, after that cpu_lwkt_*() will be used for
700 *	switching.
701 *
702 *	Clear TDF_RUNNING in old thread only after we've cleaned up %cr3.
703 *	This only occurs during system boot so no special handling is
704 *	required for migration.
705 *
706 *	If we are an AP we have to call ap_init() before jumping to
707 *	cpu_idle().  ap_init() will synchronize with the BP and finish
708 *	setting up various ncpu-dependant globaldata fields.  This may
709 *	happen on UP as well as SMP if we happen to be simulating multiple
710 *	cpus.
711 */
712ENTRY(cpu_idle_restore)
713	/* cli */
714	movq	KPML4phys,%rcx
715	xorq	%rbp,%rbp		/* dummy frame pointer */
716	pushq	$0			/* dummy return pc */
717
718	/* NOTE: idle thread can never preempt */
719	movq	%rcx,%cr3
720	cmpl	$0,PCPU(cpuid)
721	je	1f
722	andl	$~TDF_RUNNING,TD_FLAGS(%rbx)
723	orl	$TDF_RUNNING,TD_FLAGS(%rax)	/* manual, no switch_return */
724	call	ap_init
725	/*
726	 * ap_init can decide to enable interrupts early, but otherwise, or if
727	 * we are UP, do it here.
728	 */
729	sti
730	jmp	cpu_idle
731
732	/*
733	 * cpu 0's idle thread entry for the first time must use normal
734	 * lwkt_switch_return() semantics or a pending cpu migration on
735	 * thread0 will deadlock.
736	 */
7371:
738	sti
739	pushq	%rax
740	movq	%rbx,%rdi
741	call	lwkt_switch_return
742	popq	%rax
743	jmp	cpu_idle
744END(cpu_idle_restore)
745
746/*
747 * cpu_kthread_restore() (current thread is %rax on entry, previous is %rbx)
748 *			 (one-time execution)
749 *
750 *	Don't bother setting up any regs other then %rbp so backtraces
751 *	don't die.  This restore function is used to bootstrap into an
752 *	LWKT based kernel thread only.  cpu_lwkt_switch() will be used
753 *	after this.
754 *
755 *	Because this switch target does not 'return' to lwkt_switch()
756 *	we have to call lwkt_switch_return(otd) to clean up otd.
757 *	otd is in %ebx.
758 *
759 *	Since all of our context is on the stack we are reentrant and
760 *	we can release our critical section and enable interrupts early.
761 */
762ENTRY(cpu_kthread_restore)
763	sti
764	movq	KPML4phys,%rcx
765	movq	TD_PCB(%rax),%r13
766	xorq	%rbp,%rbp
767
768#ifdef PREEMPT_OPTIMIZE
769	/*
770	 * If we are preempting someone we borrow their %cr3, do not overwrite
771	 * it!
772	 */
773	movq	TD_PREEMPTED(%rax),%r14
774	testq	%r14,%r14
775	jne	1f
776#endif
777	movq	%rcx,%cr3
7781:
779
780	/*
781	 * rax and rbx come from the switchout code.  Call
782	 * lwkt_switch_return(otd).
783	 *
784	 * NOTE: unlike i386, the %rsi and %rdi are not call-saved regs.
785	 */
786	pushq	%rax
787	movq	%rbx,%rdi
788	call	lwkt_switch_return
789	popq	%rax
790	decl	TD_CRITCOUNT(%rax)
791	movq	PCB_R12(%r13),%rdi	/* argument to RBX function */
792	movq	PCB_RBX(%r13),%rax	/* thread function */
793	/* note: top of stack return address inherited by function */
794	jmp	*%rax
795END(cpu_kthread_restore)
796
797/*
798 * cpu_lwkt_switch(struct thread *)
799 *
800 *	Standard LWKT switching function.  Only non-scratch registers are
801 *	saved and we don't bother with the MMU state or anything else.
802 *
803 *	This function is always called while in a critical section.
804 *
805 *	There is a one-instruction window where curthread is the new
806 *	thread but %rsp still points to the old thread's stack, but
807 *	we are protected by a critical section so it is ok.
808 */
809ENTRY(cpu_lwkt_switch)
810	pushq	%rbp	/* JG note: GDB hacked to locate ebp rel to td_sp */
811	pushq	%rbx
812	movq	PCPU(curthread),%rbx	/* becomes old thread in restore */
813	pushq	%r12
814	pushq	%r13
815	pushq	%r14
816	pushq	%r15
817	pushfq
818	cli
819
820#if 1
821	/*
822	 * Save the FP state if we have used the FP.  Note that calling
823	 * npxsave will NULL out PCPU(npxthread).
824	 *
825	 * We have to deal with the FP state for LWKT threads in case they
826	 * happen to get preempted or block while doing an optimized
827	 * bzero/bcopy/memcpy.
828	 */
829	cmpq	%rbx,PCPU(npxthread)
830	jne	1f
831	movq	%rdi,%r12		/* save %rdi. %r12 is callee-saved */
832	movq	TD_SAVEFPU(%rbx),%rdi
833	call	npxsave			/* do it in a big C function */
834	movq	%r12,%rdi		/* restore %rdi */
8351:
836#endif
837
838	movq	%rdi,%rax		/* switch to this thread */
839	pushq	$cpu_lwkt_restore
840	movq	%rsp,TD_SP(%rbx)
841	/*
842	 * %rax contains new thread, %rbx contains old thread.
843	 */
844	movq	%rax,PCPU(curthread)
845	movq	TD_SP(%rax),%rsp
846	ret
847END(cpu_lwkt_switch)
848
849/*
850 * cpu_lwkt_restore()	(current thread in %rax on entry)
851 *
852 * Standard LWKT restore function.  This function is always called
853 * while in a critical section.
854 *
855 * WARNING! Due to preemption the restore function can be used to 'return'
856 *	    to the original thread.   Interrupt disablement must be
857 *	    protected through the switch so we cannot run splz here.
858 */
859ENTRY(cpu_lwkt_restore)
860#ifdef PREEMPT_OPTIMIZE
861	/*
862	 * If we are preempting someone we borrow their %cr3 and pmap
863	 */
864	movq	TD_PREEMPTED(%rax),%r14	/* kernel thread preempting? */
865	testq	%r14,%r14
866	jne	1f			/* yes, borrow %cr3 from old thread */
867#endif
868	/*
869	 * Don't reload %cr3 if it hasn't changed.  Since this is a LWKT
870	 * thread (a kernel thread), and the kernel_pmap always permanently
871	 * sets all pm_active bits, we don't have the same problem with it
872	 * that we do with process pmaps.
873	 */
874	movq	KPML4phys,%rcx
875	movq	%cr3,%rdx
876	cmpq	%rcx,%rdx
877	je	1f
878	movq	%rcx,%cr3
8791:
880	/*
881	 * NOTE: %rbx is the previous thread and %rax is the new thread.
882	 *	 %rbx is retained throughout so we can return it.
883	 *
884	 *	 lwkt_switch[_return] is responsible for handling TDF_RUNNING.
885	 */
886	movq	%rbx,%rax
887	popfq
888	popq	%r15
889	popq	%r14
890	popq	%r13
891	popq	%r12
892	popq	%rbx
893	popq	%rbp
894	ret
895END(cpu_lwkt_restore)
896