xref: /dragonfly/sys/platform/pc64/x86_64/trap.c (revision 23b3ef78)
1 /*-
2  * Copyright (c) 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (C) 1994, David Greenman
5  * Copyright (c) 2008 The DragonFly Project.
6  * Copyright (c) 2008 Jordan Gordeev.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the University of Utah, and William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)trap.c	7.4 (Berkeley) 5/13/91
40  * $FreeBSD: src/sys/i386/i386/trap.c,v 1.147.2.11 2003/02/27 19:09:59 luoqi Exp $
41  */
42 
43 /*
44  * x86_64 Trap and System call handling
45  */
46 
47 #include "use_isa.h"
48 
49 #include "opt_ddb.h"
50 #include "opt_ktrace.h"
51 
52 #include <machine/frame.h>
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/kerneldump.h>
57 #include <sys/proc.h>
58 #include <sys/pioctl.h>
59 #include <sys/types.h>
60 #include <sys/signal2.h>
61 #include <sys/syscall.h>
62 #include <sys/sysctl.h>
63 #include <sys/sysent.h>
64 #ifdef KTRACE
65 #include <sys/ktrace.h>
66 #endif
67 #include <sys/ktr.h>
68 #include <sys/sysmsg.h>
69 #include <sys/sysproto.h>
70 #include <sys/sysunion.h>
71 
72 #include <vm/pmap.h>
73 #include <vm/vm.h>
74 #include <vm/vm_extern.h>
75 #include <vm/vm_kern.h>
76 #include <vm/vm_param.h>
77 #include <machine/cpu.h>
78 #include <machine/pcb.h>
79 #include <machine/smp.h>
80 #include <machine/thread.h>
81 #include <machine/clock.h>
82 #include <machine/vmparam.h>
83 #include <machine/md_var.h>
84 #include <machine_base/isa/isa_intr.h>
85 #include <machine_base/apic/lapic.h>
86 
87 #include <ddb/ddb.h>
88 
89 #include <sys/thread2.h>
90 #include <sys/mplock2.h>
91 #include <sys/spinlock2.h>
92 
93 #define MAKEMPSAFE(have_mplock)			\
94 	if (have_mplock == 0) {			\
95 		get_mplock();			\
96 		have_mplock = 1;		\
97 	}
98 
99 extern void trap(struct trapframe *frame);
100 
101 static int trap_pfault(struct trapframe *, int);
102 static void trap_fatal(struct trapframe *, vm_offset_t);
103 void dblfault_handler(struct trapframe *frame);
104 
105 #define MAX_TRAP_MSG		30
106 static char *trap_msg[] = {
107 	"",					/*  0 unused */
108 	"privileged instruction fault",		/*  1 T_PRIVINFLT */
109 	"",					/*  2 unused */
110 	"breakpoint instruction fault",		/*  3 T_BPTFLT */
111 	"",					/*  4 unused */
112 	"",					/*  5 unused */
113 	"arithmetic trap",			/*  6 T_ARITHTRAP */
114 	"system forced exception",		/*  7 T_ASTFLT */
115 	"",					/*  8 unused */
116 	"general protection fault",		/*  9 T_PROTFLT */
117 	"trace trap",				/* 10 T_TRCTRAP */
118 	"",					/* 11 unused */
119 	"page fault",				/* 12 T_PAGEFLT */
120 	"",					/* 13 unused */
121 	"alignment fault",			/* 14 T_ALIGNFLT */
122 	"",					/* 15 unused */
123 	"",					/* 16 unused */
124 	"",					/* 17 unused */
125 	"integer divide fault",			/* 18 T_DIVIDE */
126 	"non-maskable interrupt trap",		/* 19 T_NMI */
127 	"overflow trap",			/* 20 T_OFLOW */
128 	"FPU bounds check fault",		/* 21 T_BOUND */
129 	"FPU device not available",		/* 22 T_DNA */
130 	"double fault",				/* 23 T_DOUBLEFLT */
131 	"FPU operand fetch fault",		/* 24 T_FPOPFLT */
132 	"invalid TSS fault",			/* 25 T_TSSFLT */
133 	"segment not present fault",		/* 26 T_SEGNPFLT */
134 	"stack fault",				/* 27 T_STKFLT */
135 	"machine check trap",			/* 28 T_MCHK */
136 	"SIMD floating-point exception",	/* 29 T_XMMFLT */
137 	"reserved (unknown) fault",		/* 30 T_RESERVED */
138 };
139 
140 #ifdef DDB
141 static int ddb_on_nmi = 1;
142 SYSCTL_INT(_machdep, OID_AUTO, ddb_on_nmi, CTLFLAG_RW,
143 	&ddb_on_nmi, 0, "Go to DDB on NMI");
144 static int ddb_on_seg_fault = 0;
145 SYSCTL_INT(_machdep, OID_AUTO, ddb_on_seg_fault, CTLFLAG_RW,
146 	&ddb_on_seg_fault, 0, "Go to DDB on user seg-fault");
147 static int freeze_on_seg_fault = 0;
148 SYSCTL_INT(_machdep, OID_AUTO, freeze_on_seg_fault, CTLFLAG_RW,
149 	&freeze_on_seg_fault, 0, "Go to DDB on user seg-fault");
150 #endif
151 static int panic_on_nmi = 1;
152 SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
153 	&panic_on_nmi, 0, "Panic on NMI");
154 static int fast_release;
155 SYSCTL_INT(_machdep, OID_AUTO, fast_release, CTLFLAG_RW,
156 	&fast_release, 0, "Passive Release was optimal");
157 static int slow_release;
158 SYSCTL_INT(_machdep, OID_AUTO, slow_release, CTLFLAG_RW,
159 	&slow_release, 0, "Passive Release was nonoptimal");
160 
161 /*
162  * System call debugging records the worst-case system call
163  * overhead (inclusive of blocking), but may be inaccurate.
164  */
165 /*#define SYSCALL_DEBUG*/
166 #ifdef SYSCALL_DEBUG
167 uint64_t SysCallsWorstCase[SYS_MAXSYSCALL];
168 #endif
169 
170 /*
171  * Passively intercepts the thread switch function to increase
172  * the thread priority from a user priority to a kernel priority, reducing
173  * syscall and trap overhead for the case where no switch occurs.
174  *
175  * Synchronizes td_ucred with p_ucred.  This is used by system calls,
176  * signal handling, faults, AST traps, and anything else that enters the
177  * kernel from userland and provides the kernel with a stable read-only
178  * copy of the process ucred.
179  *
180  * To avoid races with another thread updating p_ucred we obtain p_spin.
181  * The other thread doing the update will obtain both p_token and p_spin.
182  * In the case where the cached cred pointer matches, we will already have
183  * the ref and we don't have to do one blessed thing.
184  */
185 static __inline void
186 userenter(struct thread *curtd, struct proc *curp)
187 {
188 	struct ucred *ocred;
189 	struct ucred *ncred;
190 
191 	curtd->td_release = lwkt_passive_release;
192 
193 	if (curtd->td_ucred != curp->p_ucred) {
194 		spin_lock(&curp->p_spin);
195 		ncred = crhold(curp->p_ucred);
196 		spin_unlock(&curp->p_spin);
197 		ocred = curtd->td_ucred;
198 		curtd->td_ucred = ncred;
199 		if (ocred)
200 			crfree(ocred);
201 	}
202 
203 #ifdef DDB
204 	/*
205 	 * Debugging, remove top two user stack pages to catch kernel faults
206 	 */
207 	if (freeze_on_seg_fault > 1 && curtd->td_lwp) {
208 		pmap_remove(vmspace_pmap(curtd->td_lwp->lwp_vmspace),
209 			    0x00007FFFFFFFD000LU,
210 			    0x0000800000000000LU);
211 	}
212 #endif
213 }
214 
215 /*
216  * Handle signals, upcalls, profiling, and other AST's and/or tasks that
217  * must be completed before we can return to or try to return to userland.
218  *
219  * Note that td_sticks is a 64 bit quantity, but there's no point doing 64
220  * arithmatic on the delta calculation so the absolute tick values are
221  * truncated to an integer.
222  */
223 static void
224 userret(struct lwp *lp, struct trapframe *frame, int sticks)
225 {
226 	struct proc *p = lp->lwp_proc;
227 	int sig;
228 
229 	/*
230 	 * Charge system time if profiling.  Note: times are in microseconds.
231 	 * This may do a copyout and block, so do it first even though it
232 	 * means some system time will be charged as user time.
233 	 */
234 	if (p->p_flags & P_PROFIL) {
235 		addupc_task(p, frame->tf_rip,
236 			(u_int)((int)lp->lwp_thread->td_sticks - sticks));
237 	}
238 
239 recheck:
240 	/*
241 	 * Specific on-return-to-usermode checks (LWP_MP_WEXIT,
242 	 * LWP_MP_VNLRU, etc).
243 	 */
244 	if (lp->lwp_mpflags & LWP_MP_URETMASK)
245 		lwpuserret(lp);
246 
247 	/*
248 	 * Block here if we are in a stopped state.
249 	 */
250 	if (p->p_stat == SSTOP || p->p_stat == SCORE || dump_stop_usertds) {
251 		lwkt_gettoken(&p->p_token);
252 		tstop();
253 		lwkt_reltoken(&p->p_token);
254 		goto recheck;
255 	}
256 
257 	/*
258 	 * Post any pending upcalls.  If running a virtual kernel be sure
259 	 * to restore the virtual kernel's vmspace before posting the upcall.
260 	 */
261 	if (p->p_flags & (P_SIGVTALRM | P_SIGPROF)) {
262 		lwkt_gettoken(&p->p_token);
263 		if (p->p_flags & P_SIGVTALRM) {
264 			p->p_flags &= ~P_SIGVTALRM;
265 			ksignal(p, SIGVTALRM);
266 		}
267 		if (p->p_flags & P_SIGPROF) {
268 			p->p_flags &= ~P_SIGPROF;
269 			ksignal(p, SIGPROF);
270 		}
271 		lwkt_reltoken(&p->p_token);
272 		goto recheck;
273 	}
274 
275 	/*
276 	 * Post any pending signals.  If running a virtual kernel be sure
277 	 * to restore the virtual kernel's vmspace before posting the signal.
278 	 *
279 	 * WARNING!  postsig() can exit and not return.
280 	 */
281 	if ((sig = CURSIG_TRACE(lp)) != 0) {
282 		lwkt_gettoken(&p->p_token);
283 		postsig(sig);
284 		lwkt_reltoken(&p->p_token);
285 		goto recheck;
286 	}
287 
288 	/*
289 	 * block here if we are swapped out, but still process signals
290 	 * (such as SIGKILL).  proc0 (the swapin scheduler) is already
291 	 * aware of our situation, we do not have to wake it up.
292 	 */
293 	if (p->p_flags & P_SWAPPEDOUT) {
294 		lwkt_gettoken(&p->p_token);
295 		get_mplock();
296 		p->p_flags |= P_SWAPWAIT;
297 		swapin_request();
298 		if (p->p_flags & P_SWAPWAIT)
299 			tsleep(p, PCATCH, "SWOUT", 0);
300 		p->p_flags &= ~P_SWAPWAIT;
301 		rel_mplock();
302 		lwkt_reltoken(&p->p_token);
303 		goto recheck;
304 	}
305 
306 	/*
307 	 * In a multi-threaded program it is possible for a thread to change
308 	 * signal state during a system call which temporarily changes the
309 	 * signal mask.  In this case postsig() might not be run and we
310 	 * have to restore the mask ourselves.
311 	 */
312 	if (lp->lwp_flags & LWP_OLDMASK) {
313 		lp->lwp_flags &= ~LWP_OLDMASK;
314 		lp->lwp_sigmask = lp->lwp_oldsigmask;
315 		goto recheck;
316 	}
317 }
318 
319 /*
320  * Cleanup from userenter and any passive release that might have occured.
321  * We must reclaim the current-process designation before we can return
322  * to usermode.  We also handle both LWKT and USER reschedule requests.
323  */
324 static __inline void
325 userexit(struct lwp *lp)
326 {
327 	struct thread *td = lp->lwp_thread;
328 	/* globaldata_t gd = td->td_gd; */
329 
330 	/*
331 	 * Handle stop requests at kernel priority.  Any requests queued
332 	 * after this loop will generate another AST.
333 	 */
334 	while (lp->lwp_proc->p_stat == SSTOP ||
335 	       lp->lwp_proc->p_stat == SCORE) {
336 		lwkt_gettoken(&lp->lwp_proc->p_token);
337 		tstop();
338 		lwkt_reltoken(&lp->lwp_proc->p_token);
339 	}
340 
341 	/*
342 	 * Reduce our priority in preparation for a return to userland.  If
343 	 * our passive release function was still in place, our priority was
344 	 * never raised and does not need to be reduced.
345 	 */
346 	lwkt_passive_recover(td);
347 
348 	/* WARNING: we may have migrated cpu's */
349 	/* gd = td->td_gd; */
350 
351 	/*
352 	 * Become the current user scheduled process if we aren't already,
353 	 * and deal with reschedule requests and other factors.
354 	 */
355 	lp->lwp_proc->p_usched->acquire_curproc(lp);
356 }
357 
358 #if !defined(KTR_KERNENTRY)
359 #define	KTR_KERNENTRY	KTR_ALL
360 #endif
361 KTR_INFO_MASTER(kernentry);
362 KTR_INFO(KTR_KERNENTRY, kernentry, trap, 0,
363 	 "TRAP(pid %d, tid %d, trapno %ld, eva %lu)",
364 	 pid_t pid, lwpid_t tid,  register_t trapno, vm_offset_t eva);
365 KTR_INFO(KTR_KERNENTRY, kernentry, trap_ret, 0, "TRAP_RET(pid %d, tid %d)",
366 	 pid_t pid, lwpid_t tid);
367 KTR_INFO(KTR_KERNENTRY, kernentry, syscall, 0, "SYSC(pid %d, tid %d, nr %ld)",
368 	 pid_t pid, lwpid_t tid,  register_t trapno);
369 KTR_INFO(KTR_KERNENTRY, kernentry, syscall_ret, 0, "SYSRET(pid %d, tid %d, err %d)",
370 	 pid_t pid, lwpid_t tid,  int err);
371 KTR_INFO(KTR_KERNENTRY, kernentry, fork_ret, 0, "FORKRET(pid %d, tid %d)",
372 	 pid_t pid, lwpid_t tid);
373 
374 /*
375  * Exception, fault, and trap interface to the kernel.
376  * This common code is called from assembly language IDT gate entry
377  * routines that prepare a suitable stack frame, and restore this
378  * frame after the exception has been processed.
379  *
380  * This function is also called from doreti in an interlock to handle ASTs.
381  * For example:  hardwareint->INTROUTINE->(set ast)->doreti->trap
382  *
383  * NOTE!  We have to retrieve the fault address prior to obtaining the
384  * MP lock because get_mplock() may switch out.  YYY cr2 really ought
385  * to be retrieved by the assembly code, not here.
386  *
387  * XXX gd_trap_nesting_level currently prevents lwkt_switch() from panicing
388  * if an attempt is made to switch from a fast interrupt or IPI.  This is
389  * necessary to properly take fatal kernel traps on SMP machines if
390  * get_mplock() has to block.
391  */
392 
393 void
394 trap(struct trapframe *frame)
395 {
396 	struct globaldata *gd = mycpu;
397 	struct thread *td = gd->gd_curthread;
398 	struct lwp *lp = td->td_lwp;
399 	struct proc *p;
400 	int sticks = 0;
401 	int i = 0, ucode = 0, type, code;
402 	int have_mplock = 0;
403 #ifdef INVARIANTS
404 	int crit_count = td->td_critcount;
405 	lwkt_tokref_t curstop = td->td_toks_stop;
406 #endif
407 	vm_offset_t eva;
408 
409 	p = td->td_proc;
410 	clear_quickret();
411 
412 #ifdef DDB
413         /*
414 	 * We need to allow T_DNA faults when the debugger is active since
415 	 * some dumping paths do large bcopy() which use the floating
416 	 * point registers for faster copying.
417 	 */
418 	if (db_active && frame->tf_trapno != T_DNA) {
419 		eva = (frame->tf_trapno == T_PAGEFLT ? frame->tf_addr : 0);
420 		++gd->gd_trap_nesting_level;
421 		MAKEMPSAFE(have_mplock);
422 		trap_fatal(frame, eva);
423 		--gd->gd_trap_nesting_level;
424 		goto out2;
425 	}
426 #endif
427 
428 	eva = 0;
429 
430 	if ((frame->tf_rflags & PSL_I) == 0) {
431 		/*
432 		 * Buggy application or kernel code has disabled interrupts
433 		 * and then trapped.  Enabling interrupts now is wrong, but
434 		 * it is better than running with interrupts disabled until
435 		 * they are accidentally enabled later.
436 		 */
437 		type = frame->tf_trapno;
438 		if (ISPL(frame->tf_cs) == SEL_UPL) {
439 			MAKEMPSAFE(have_mplock);
440 			/* JG curproc can be NULL */
441 			kprintf(
442 			    "pid %ld (%s): trap %d with interrupts disabled\n",
443 			    (long)curproc->p_pid, curproc->p_comm, type);
444 		} else if (type != T_NMI && type != T_BPTFLT &&
445 		    type != T_TRCTRAP) {
446 			/*
447 			 * XXX not quite right, since this may be for a
448 			 * multiple fault in user mode.
449 			 */
450 			MAKEMPSAFE(have_mplock);
451 			kprintf("kernel trap %d (%s @ 0x%016jx) with "
452 				"interrupts disabled\n",
453 				type,
454 				td->td_comm,
455 				frame->tf_rip);
456 		}
457 		cpu_enable_intr();
458 	}
459 
460 	type = frame->tf_trapno;
461 	code = frame->tf_err;
462 
463 	if (ISPL(frame->tf_cs) == SEL_UPL) {
464 		/* user trap */
465 
466 		KTR_LOG(kernentry_trap, p->p_pid, lp->lwp_tid,
467 			frame->tf_trapno, eva);
468 
469 		userenter(td, p);
470 
471 		sticks = (int)td->td_sticks;
472 		KASSERT(lp->lwp_md.md_regs == frame,
473 			("Frame mismatch %p %p", lp->lwp_md.md_regs, frame));
474 
475 		switch (type) {
476 		case T_PRIVINFLT:	/* privileged instruction fault */
477 			i = SIGILL;
478 			ucode = ILL_PRVOPC;
479 			break;
480 
481 		case T_BPTFLT:		/* bpt instruction fault */
482 		case T_TRCTRAP:		/* trace trap */
483 			frame->tf_rflags &= ~PSL_T;
484 			i = SIGTRAP;
485 			ucode = (type == T_TRCTRAP ? TRAP_TRACE : TRAP_BRKPT);
486 			break;
487 
488 		case T_ARITHTRAP:	/* arithmetic trap */
489 			ucode = code;
490 			i = SIGFPE;
491 			break;
492 
493 		case T_ASTFLT:		/* Allow process switch */
494 			mycpu->gd_cnt.v_soft++;
495 			if (mycpu->gd_reqflags & RQF_AST_OWEUPC) {
496 				atomic_clear_int(&mycpu->gd_reqflags,
497 						 RQF_AST_OWEUPC);
498 				addupc_task(p, p->p_prof.pr_addr,
499 					    p->p_prof.pr_ticks);
500 			}
501 			goto out;
502 
503 		case T_PROTFLT:		/* general protection fault */
504 			i = SIGBUS;
505 			ucode = BUS_OBJERR;
506 			break;
507 		case T_STKFLT:		/* stack fault */
508 		case T_SEGNPFLT:	/* segment not present fault */
509 			i = SIGBUS;
510 			ucode = BUS_ADRERR;
511 			break;
512 		case T_TSSFLT:		/* invalid TSS fault */
513 		case T_DOUBLEFLT:	/* double fault */
514 		default:
515 			i = SIGBUS;
516 			ucode = BUS_OBJERR;
517 			break;
518 
519 		case T_PAGEFLT:		/* page fault */
520 			i = trap_pfault(frame, TRUE);
521 			if (frame->tf_rip == 0) {
522 #ifdef DDB
523 				/* used for kernel debugging only */
524 				while (freeze_on_seg_fault)
525 					tsleep(p, 0, "freeze", hz * 20);
526 #endif
527 			}
528 			if (i == -1 || i == 0)
529 				goto out;
530 
531 
532 			if (i == SIGSEGV)
533 				ucode = SEGV_MAPERR;
534 			else {
535 				i = SIGSEGV;
536 				ucode = SEGV_ACCERR;
537 			}
538 			break;
539 
540 		case T_DIVIDE:		/* integer divide fault */
541 			ucode = FPE_INTDIV;
542 			i = SIGFPE;
543 			break;
544 
545 #if NISA > 0
546 		case T_NMI:
547 			MAKEMPSAFE(have_mplock);
548 			/* machine/parity/power fail/"kitchen sink" faults */
549 			if (isa_nmi(code) == 0) {
550 #ifdef DDB
551 				/*
552 				 * NMI can be hooked up to a pushbutton
553 				 * for debugging.
554 				 */
555 				if (ddb_on_nmi) {
556 					kprintf ("NMI ... going to debugger\n");
557 					kdb_trap(type, 0, frame);
558 				}
559 #endif /* DDB */
560 				goto out2;
561 			} else if (panic_on_nmi)
562 				panic("NMI indicates hardware failure");
563 			break;
564 #endif /* NISA > 0 */
565 
566 		case T_OFLOW:		/* integer overflow fault */
567 			ucode = FPE_INTOVF;
568 			i = SIGFPE;
569 			break;
570 
571 		case T_BOUND:		/* bounds check fault */
572 			ucode = FPE_FLTSUB;
573 			i = SIGFPE;
574 			break;
575 
576 		case T_DNA:
577 			/*
578 			 * Virtual kernel intercept - pass the DNA exception
579 			 * to the virtual kernel if it asked to handle it.
580 			 * This occurs when the virtual kernel is holding
581 			 * onto the FP context for a different emulated
582 			 * process then the one currently running.
583 			 *
584 			 * We must still call npxdna() since we may have
585 			 * saved FP state that the virtual kernel needs
586 			 * to hand over to a different emulated process.
587 			 */
588 			if (lp->lwp_vkernel && lp->lwp_vkernel->ve &&
589 			    (td->td_pcb->pcb_flags & FP_VIRTFP)
590 			) {
591 				npxdna();
592 				break;
593 			}
594 
595 			/*
596 			 * The kernel may have switched out the FP unit's
597 			 * state, causing the user process to take a fault
598 			 * when it tries to use the FP unit.  Restore the
599 			 * state here
600 			 */
601 			if (npxdna())
602 				goto out;
603 			i = SIGFPE;
604 			ucode = FPE_FPU_NP_TRAP;
605 			break;
606 
607 		case T_FPOPFLT:		/* FPU operand fetch fault */
608 			ucode = ILL_COPROC;
609 			i = SIGILL;
610 			break;
611 
612 		case T_XMMFLT:		/* SIMD floating-point exception */
613 			ucode = 0; /* XXX */
614 			i = SIGFPE;
615 			break;
616 		}
617 	} else {
618 		/* kernel trap */
619 
620 		switch (type) {
621 		case T_PAGEFLT:			/* page fault */
622 			trap_pfault(frame, FALSE);
623 			goto out2;
624 
625 		case T_DNA:
626 			/*
627 			 * The kernel is apparently using fpu for copying.
628 			 * XXX this should be fatal unless the kernel has
629 			 * registered such use.
630 			 */
631 			if (npxdna())
632 				goto out2;
633 			break;
634 
635 		case T_STKFLT:		/* stack fault */
636 		case T_PROTFLT:		/* general protection fault */
637 		case T_SEGNPFLT:	/* segment not present fault */
638 			/*
639 			 * Invalid segment selectors and out of bounds
640 			 * %rip's and %rsp's can be set up in user mode.
641 			 * This causes a fault in kernel mode when the
642 			 * kernel tries to return to user mode.  We want
643 			 * to get this fault so that we can fix the
644 			 * problem here and not have to check all the
645 			 * selectors and pointers when the user changes
646 			 * them.
647 			 */
648 			if (mycpu->gd_intr_nesting_level == 0) {
649 				/*
650 				 * NOTE: in 64-bit mode traps push rsp/ss
651 				 *	 even if no ring change occurs.
652 				 */
653 				if (td->td_pcb->pcb_onfault &&
654 				    td->td_pcb->pcb_onfault_sp ==
655 				    frame->tf_rsp) {
656 					frame->tf_rip = (register_t)
657 						td->td_pcb->pcb_onfault;
658 					goto out2;
659 				}
660 				if (frame->tf_rip == (long)doreti_iret) {
661 					frame->tf_rip = (long)doreti_iret_fault;
662 					goto out2;
663 				}
664 			}
665 			break;
666 
667 		case T_TSSFLT:
668 			/*
669 			 * PSL_NT can be set in user mode and isn't cleared
670 			 * automatically when the kernel is entered.  This
671 			 * causes a TSS fault when the kernel attempts to
672 			 * `iret' because the TSS link is uninitialized.  We
673 			 * want to get this fault so that we can fix the
674 			 * problem here and not every time the kernel is
675 			 * entered.
676 			 */
677 			if (frame->tf_rflags & PSL_NT) {
678 				frame->tf_rflags &= ~PSL_NT;
679 				goto out2;
680 			}
681 			break;
682 
683 		case T_TRCTRAP:	 /* trace trap */
684 #if 0
685 			if (frame->tf_rip == (int)IDTVEC(syscall)) {
686 				/*
687 				 * We've just entered system mode via the
688 				 * syscall lcall.  Continue single stepping
689 				 * silently until the syscall handler has
690 				 * saved the flags.
691 				 */
692 				goto out2;
693 			}
694 			if (frame->tf_rip == (int)IDTVEC(syscall) + 1) {
695 				/*
696 				 * The syscall handler has now saved the
697 				 * flags.  Stop single stepping it.
698 				 */
699 				frame->tf_rflags &= ~PSL_T;
700 				goto out2;
701 			}
702 #endif
703 
704 			/*
705 			 * Ignore debug register trace traps due to
706 			 * accesses in the user's address space, which
707 			 * can happen under several conditions such as
708 			 * if a user sets a watchpoint on a buffer and
709 			 * then passes that buffer to a system call.
710 			 * We still want to get TRCTRAPS for addresses
711 			 * in kernel space because that is useful when
712 			 * debugging the kernel.
713 			 */
714 #if 0 /* JG */
715 			if (user_dbreg_trap()) {
716 				/*
717 				 * Reset breakpoint bits because the
718 				 * processor doesn't
719 				 */
720 				/* XXX check upper bits here */
721 				load_dr6(rdr6() & 0xfffffff0);
722 				goto out2;
723 			}
724 #endif
725 			/*
726 			 * FALLTHROUGH (TRCTRAP kernel mode, kernel address)
727 			 */
728 		case T_BPTFLT:
729 			/*
730 			 * If DDB is enabled, let it handle the debugger trap.
731 			 * Otherwise, debugger traps "can't happen".
732 			 */
733 			ucode = TRAP_BRKPT;
734 #ifdef DDB
735 			MAKEMPSAFE(have_mplock);
736 			if (kdb_trap(type, 0, frame))
737 				goto out2;
738 #endif
739 			break;
740 
741 #if NISA > 0
742 		case T_NMI:
743 			MAKEMPSAFE(have_mplock);
744 			/* machine/parity/power fail/"kitchen sink" faults */
745 			if (isa_nmi(code) == 0) {
746 #ifdef DDB
747 				/*
748 				 * NMI can be hooked up to a pushbutton
749 				 * for debugging.
750 				 */
751 				if (ddb_on_nmi) {
752 					kprintf ("NMI ... going to debugger\n");
753 					kdb_trap(type, 0, frame);
754 				}
755 #endif /* DDB */
756 				goto out2;
757 			} else if (panic_on_nmi == 0)
758 				goto out2;
759 			/* FALL THROUGH */
760 #endif /* NISA > 0 */
761 		}
762 		MAKEMPSAFE(have_mplock);
763 		trap_fatal(frame, 0);
764 		goto out2;
765 	}
766 
767 	/*
768 	 * Virtual kernel intercept - if the fault is directly related to a
769 	 * VM context managed by a virtual kernel then let the virtual kernel
770 	 * handle it.
771 	 */
772 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
773 		vkernel_trap(lp, frame);
774 		goto out;
775 	}
776 
777 	/* Translate fault for emulators (e.g. Linux) */
778 	if (*p->p_sysent->sv_transtrap)
779 		i = (*p->p_sysent->sv_transtrap)(i, type);
780 
781 	MAKEMPSAFE(have_mplock);
782 	trapsignal(lp, i, ucode);
783 
784 #ifdef DEBUG
785 	if (type <= MAX_TRAP_MSG) {
786 		uprintf("fatal process exception: %s",
787 			trap_msg[type]);
788 		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
789 			uprintf(", fault VA = 0x%lx", frame->tf_addr);
790 		uprintf("\n");
791 	}
792 #endif
793 
794 out:
795 	userret(lp, frame, sticks);
796 	userexit(lp);
797 out2:	;
798 	if (have_mplock)
799 		rel_mplock();
800 	if (p != NULL && lp != NULL)
801 		KTR_LOG(kernentry_trap_ret, p->p_pid, lp->lwp_tid);
802 #ifdef INVARIANTS
803 	KASSERT(crit_count == td->td_critcount,
804 		("trap: critical section count mismatch! %d/%d",
805 		crit_count, td->td_pri));
806 	KASSERT(curstop == td->td_toks_stop,
807 		("trap: extra tokens held after trap! %ld/%ld",
808 		curstop - &td->td_toks_base,
809 		td->td_toks_stop - &td->td_toks_base));
810 #endif
811 }
812 
813 void
814 trap_handle_userenter(struct thread *td)
815 {
816 	userenter(td, td->td_proc);
817 }
818 
819 void
820 trap_handle_userexit(struct trapframe *frame, int sticks)
821 {
822 	struct lwp *lp = curthread->td_lwp;
823 
824 	if (lp) {
825 		userret(lp, frame, sticks);
826 		userexit(lp);
827 	}
828 }
829 
830 static int
831 trap_pfault(struct trapframe *frame, int usermode)
832 {
833 	vm_offset_t va;
834 	struct vmspace *vm = NULL;
835 	vm_map_t map;
836 	int rv = 0;
837 	int fault_flags;
838 	vm_prot_t ftype;
839 	thread_t td = curthread;
840 	struct lwp *lp = td->td_lwp;
841 	struct proc *p;
842 
843 	va = trunc_page(frame->tf_addr);
844 	if (va >= VM_MIN_KERNEL_ADDRESS) {
845 		/*
846 		 * Don't allow user-mode faults in kernel address space.
847 		 */
848 		if (usermode) {
849 			fault_flags = -1;
850 			ftype = -1;
851 			goto nogo;
852 		}
853 
854 		map = &kernel_map;
855 	} else {
856 		/*
857 		 * This is a fault on non-kernel virtual memory.
858 		 * vm is initialized above to NULL. If curproc is NULL
859 		 * or curproc->p_vmspace is NULL the fault is fatal.
860 		 */
861 		if (lp != NULL)
862 			vm = lp->lwp_vmspace;
863 
864 		if (vm == NULL) {
865 			fault_flags = -1;
866 			ftype = -1;
867 			goto nogo;
868 		}
869 
870 		/*
871 		 * Debugging, try to catch kernel faults on the user address
872 		 * space when not inside on onfault (e.g. copyin/copyout)
873 		 * routine.
874 		 */
875 		if (usermode == 0 && (td->td_pcb == NULL ||
876 		    td->td_pcb->pcb_onfault == NULL)) {
877 #ifdef DDB
878 			if (freeze_on_seg_fault) {
879 				kprintf("trap_pfault: user address fault from kernel mode "
880 					"%016lx\n", (long)frame->tf_addr);
881 				while (freeze_on_seg_fault)
882 					    tsleep(&freeze_on_seg_fault, 0, "frzseg", hz * 20);
883 			}
884 #endif
885 		}
886 		map = &vm->vm_map;
887 	}
888 
889 	/*
890 	 * PGEX_I is defined only if the execute disable bit capability is
891 	 * supported and enabled.
892 	 */
893 	if (frame->tf_err & PGEX_W)
894 		ftype = VM_PROT_WRITE;
895 #if 0 /* JG */
896 	else if ((frame->tf_err & PGEX_I) && pg_nx != 0)
897 		ftype = VM_PROT_EXECUTE;
898 #endif
899 	else
900 		ftype = VM_PROT_READ;
901 
902 	if (map != &kernel_map) {
903 		/*
904 		 * Keep swapout from messing with us during this
905 		 *	critical time.
906 		 */
907 		PHOLD(lp->lwp_proc);
908 
909 		/*
910 		 * Issue fault
911 		 */
912 		fault_flags = 0;
913 		if (usermode)
914 			fault_flags |= VM_FAULT_BURST;
915 		if (ftype & VM_PROT_WRITE)
916 			fault_flags |= VM_FAULT_DIRTY;
917 		else
918 			fault_flags |= VM_FAULT_NORMAL;
919 		rv = vm_fault(map, va, ftype, fault_flags);
920 
921 		PRELE(lp->lwp_proc);
922 	} else {
923 		/*
924 		 * Don't have to worry about process locking or stacks in the
925 		 * kernel.
926 		 */
927 		fault_flags = VM_FAULT_NORMAL;
928 		rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
929 	}
930 	if (rv == KERN_SUCCESS)
931 		return (0);
932 nogo:
933 	if (!usermode) {
934 		/*
935 		 * NOTE: in 64-bit mode traps push rsp/ss
936 		 *	 even if no ring change occurs.
937 		 */
938 		if (td->td_pcb->pcb_onfault &&
939 		    td->td_pcb->pcb_onfault_sp == frame->tf_rsp &&
940 		    td->td_gd->gd_intr_nesting_level == 0) {
941 			frame->tf_rip = (register_t)td->td_pcb->pcb_onfault;
942 			return (0);
943 		}
944 		trap_fatal(frame, frame->tf_addr);
945 		return (-1);
946 	}
947 
948 	/*
949 	 * NOTE: on x86_64 we have a tf_addr field in the trapframe, no
950 	 * kludge is needed to pass the fault address to signal handlers.
951 	 */
952 	p = td->td_proc;
953 #ifdef DDB
954 	if (td->td_lwp->lwp_vkernel == NULL) {
955 		while (freeze_on_seg_fault) {
956 			tsleep(p, 0, "freeze", hz * 20);
957 		}
958 		if (ddb_on_seg_fault)
959 			Debugger("ddb_on_seg_fault");
960 	}
961 #endif
962 
963 	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
964 }
965 
966 static void
967 trap_fatal(struct trapframe *frame, vm_offset_t eva)
968 {
969 	int code, ss;
970 	u_int type;
971 	long rsp;
972 	struct soft_segment_descriptor softseg;
973 	char *msg;
974 
975 	code = frame->tf_err;
976 	type = frame->tf_trapno;
977 	sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)], &softseg);
978 
979 	if (type <= MAX_TRAP_MSG)
980 		msg = trap_msg[type];
981 	else
982 		msg = "UNKNOWN";
983 	kprintf("\n\nFatal trap %d: %s while in %s mode\n", type, msg,
984 	    ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
985 	/* three separate prints in case of a trap on an unmapped page */
986 	kprintf("cpuid = %d; ", mycpu->gd_cpuid);
987 	kprintf("lapic->id = %08x\n", lapic->id);
988 	if (type == T_PAGEFLT) {
989 		kprintf("fault virtual address	= 0x%lx\n", eva);
990 		kprintf("fault code		= %s %s %s, %s\n",
991 			code & PGEX_U ? "user" : "supervisor",
992 			code & PGEX_W ? "write" : "read",
993 			code & PGEX_I ? "instruction" : "data",
994 			code & PGEX_P ? "protection violation" : "page not present");
995 	}
996 	kprintf("instruction pointer	= 0x%lx:0x%lx\n",
997 	       frame->tf_cs & 0xffff, frame->tf_rip);
998         if (ISPL(frame->tf_cs) == SEL_UPL) {
999 		ss = frame->tf_ss & 0xffff;
1000 		rsp = frame->tf_rsp;
1001 	} else {
1002 		/*
1003 		 * NOTE: in 64-bit mode traps push rsp/ss even if no ring
1004 		 *	 change occurs.
1005 		 */
1006 		ss = GSEL(GDATA_SEL, SEL_KPL);
1007 		rsp = frame->tf_rsp;
1008 	}
1009 	kprintf("stack pointer	        = 0x%x:0x%lx\n", ss, rsp);
1010 	kprintf("frame pointer	        = 0x%x:0x%lx\n", ss, frame->tf_rbp);
1011 	kprintf("code segment		= base 0x%lx, limit 0x%lx, type 0x%x\n",
1012 	       softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
1013 	kprintf("			= DPL %d, pres %d, long %d, def32 %d, gran %d\n",
1014 	       softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_long, softseg.ssd_def32,
1015 	       softseg.ssd_gran);
1016 	kprintf("processor eflags	= ");
1017 	if (frame->tf_rflags & PSL_T)
1018 		kprintf("trace trap, ");
1019 	if (frame->tf_rflags & PSL_I)
1020 		kprintf("interrupt enabled, ");
1021 	if (frame->tf_rflags & PSL_NT)
1022 		kprintf("nested task, ");
1023 	if (frame->tf_rflags & PSL_RF)
1024 		kprintf("resume, ");
1025 	kprintf("IOPL = %ld\n", (frame->tf_rflags & PSL_IOPL) >> 12);
1026 	kprintf("current process		= ");
1027 	if (curproc) {
1028 		kprintf("%lu\n",
1029 		    (u_long)curproc->p_pid);
1030 	} else {
1031 		kprintf("Idle\n");
1032 	}
1033 	kprintf("current thread          = pri %d ", curthread->td_pri);
1034 	if (curthread->td_critcount)
1035 		kprintf("(CRIT)");
1036 	kprintf("\n");
1037 
1038 #ifdef DDB
1039 	if ((debugger_on_panic || db_active) && kdb_trap(type, code, frame))
1040 		return;
1041 #endif
1042 	kprintf("trap number		= %d\n", type);
1043 	if (type <= MAX_TRAP_MSG)
1044 		panic("%s", trap_msg[type]);
1045 	else
1046 		panic("unknown/reserved trap");
1047 }
1048 
1049 /*
1050  * Double fault handler. Called when a fault occurs while writing
1051  * a frame for a trap/exception onto the stack. This usually occurs
1052  * when the stack overflows (such is the case with infinite recursion,
1053  * for example).
1054  */
1055 static __inline
1056 int
1057 in_kstack_guard(register_t rptr)
1058 {
1059 	thread_t td = curthread;
1060 
1061 	if ((char *)rptr >= td->td_kstack &&
1062 	    (char *)rptr < td->td_kstack + PAGE_SIZE) {
1063 		return 1;
1064 	}
1065 	return 0;
1066 }
1067 
1068 void
1069 dblfault_handler(struct trapframe *frame)
1070 {
1071 	thread_t td = curthread;
1072 
1073 	if (in_kstack_guard(frame->tf_rsp) || in_kstack_guard(frame->tf_rbp)) {
1074 		kprintf("DOUBLE FAULT - KERNEL STACK GUARD HIT!\n");
1075 		if (in_kstack_guard(frame->tf_rsp))
1076 			frame->tf_rsp = (register_t)(td->td_kstack + PAGE_SIZE);
1077 		if (in_kstack_guard(frame->tf_rbp))
1078 			frame->tf_rbp = (register_t)(td->td_kstack + PAGE_SIZE);
1079 	} else {
1080 		kprintf("DOUBLE FAULT\n");
1081 	}
1082 	kprintf("\nFatal double fault\n");
1083 	kprintf("rip = 0x%lx\n", frame->tf_rip);
1084 	kprintf("rsp = 0x%lx\n", frame->tf_rsp);
1085 	kprintf("rbp = 0x%lx\n", frame->tf_rbp);
1086 	/* three separate prints in case of a trap on an unmapped page */
1087 	kprintf("cpuid = %d; ", mycpu->gd_cpuid);
1088 	kprintf("lapic->id = %08x\n", lapic->id);
1089 	panic("double fault");
1090 }
1091 
1092 /*
1093  * syscall2 -	MP aware system call request C handler
1094  *
1095  * A system call is essentially treated as a trap except that the
1096  * MP lock is not held on entry or return.  We are responsible for
1097  * obtaining the MP lock if necessary and for handling ASTs
1098  * (e.g. a task switch) prior to return.
1099  *
1100  * MPSAFE
1101  */
1102 void
1103 syscall2(struct trapframe *frame)
1104 {
1105 	struct thread *td = curthread;
1106 	struct proc *p = td->td_proc;
1107 	struct lwp *lp = td->td_lwp;
1108 	caddr_t params;
1109 	struct sysent *callp;
1110 	register_t orig_tf_rflags;
1111 	int sticks;
1112 	int error;
1113 	int narg;
1114 #ifdef INVARIANTS
1115 	int crit_count = td->td_critcount;
1116 #endif
1117 	int have_mplock = 0;
1118 	register_t *argp;
1119 	u_int code;
1120 	int reg, regcnt;
1121 	union sysunion args;
1122 	register_t *argsdst;
1123 
1124 	mycpu->gd_cnt.v_syscall++;
1125 
1126 #ifdef DIAGNOSTIC
1127 	if (ISPL(frame->tf_cs) != SEL_UPL) {
1128 		get_mplock();
1129 		panic("syscall");
1130 		/* NOT REACHED */
1131 	}
1132 #endif
1133 
1134 	KTR_LOG(kernentry_syscall, p->p_pid, lp->lwp_tid,
1135 		frame->tf_rax);
1136 
1137 	userenter(td, p);	/* lazy raise our priority */
1138 
1139 	reg = 0;
1140 	regcnt = 6;
1141 	/*
1142 	 * Misc
1143 	 */
1144 	sticks = (int)td->td_sticks;
1145 	orig_tf_rflags = frame->tf_rflags;
1146 
1147 	/*
1148 	 * Virtual kernel intercept - if a VM context managed by a virtual
1149 	 * kernel issues a system call the virtual kernel handles it, not us.
1150 	 * Restore the virtual kernel context and return from its system
1151 	 * call.  The current frame is copied out to the virtual kernel.
1152 	 */
1153 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
1154 		vkernel_trap(lp, frame);
1155 		error = EJUSTRETURN;
1156 		goto out;
1157 	}
1158 
1159 	/*
1160 	 * Get the system call parameters and account for time
1161 	 */
1162 	KASSERT(lp->lwp_md.md_regs == frame,
1163 		("Frame mismatch %p %p", lp->lwp_md.md_regs, frame));
1164 	params = (caddr_t)frame->tf_rsp + sizeof(register_t);
1165 	code = frame->tf_rax;
1166 
1167 	if (p->p_sysent->sv_prepsyscall) {
1168 		(*p->p_sysent->sv_prepsyscall)(
1169 			frame, (int *)(&args.nosys.sysmsg + 1),
1170 			&code, &params);
1171 	} else {
1172 		if (code == SYS_syscall || code == SYS___syscall) {
1173 			code = frame->tf_rdi;
1174 			reg++;
1175 			regcnt--;
1176 		}
1177 	}
1178 
1179 	if (p->p_sysent->sv_mask)
1180 		code &= p->p_sysent->sv_mask;
1181 
1182 	if (code >= p->p_sysent->sv_size)
1183 		callp = &p->p_sysent->sv_table[0];
1184 	else
1185 		callp = &p->p_sysent->sv_table[code];
1186 
1187 	narg = callp->sy_narg & SYF_ARGMASK;
1188 
1189 	/*
1190 	 * On x86_64 we get up to six arguments in registers. The rest are
1191 	 * on the stack. The first six members of 'struct trapframe' happen
1192 	 * to be the registers used to pass arguments, in exactly the right
1193 	 * order.
1194 	 */
1195 	argp = &frame->tf_rdi;
1196 	argp += reg;
1197 	argsdst = (register_t *)(&args.nosys.sysmsg + 1);
1198 	/*
1199 	 * JG can we overflow the space pointed to by 'argsdst'
1200 	 * either with 'bcopy' or with 'copyin'?
1201 	 */
1202 	bcopy(argp, argsdst, sizeof(register_t) * regcnt);
1203 	/*
1204 	 * copyin is MP aware, but the tracing code is not
1205 	 */
1206 	if (narg > regcnt) {
1207 		KASSERT(params != NULL, ("copyin args with no params!"));
1208 		error = copyin(params, &argsdst[regcnt],
1209 			(narg - regcnt) * sizeof(register_t));
1210 		if (error) {
1211 #ifdef KTRACE
1212 			if (KTRPOINT(td, KTR_SYSCALL)) {
1213 				MAKEMPSAFE(have_mplock);
1214 
1215 				ktrsyscall(lp, code, narg,
1216 					(void *)(&args.nosys.sysmsg + 1));
1217 			}
1218 #endif
1219 			goto bad;
1220 		}
1221 	}
1222 
1223 #ifdef KTRACE
1224 	if (KTRPOINT(td, KTR_SYSCALL)) {
1225 		MAKEMPSAFE(have_mplock);
1226 		ktrsyscall(lp, code, narg, (void *)(&args.nosys.sysmsg + 1));
1227 	}
1228 #endif
1229 
1230 	/*
1231 	 * Default return value is 0 (will be copied to %rax).  Double-value
1232 	 * returns use %rax and %rdx.  %rdx is left unchanged for system
1233 	 * calls which return only one result.
1234 	 */
1235 	args.sysmsg_fds[0] = 0;
1236 	args.sysmsg_fds[1] = frame->tf_rdx;
1237 
1238 	/*
1239 	 * The syscall might manipulate the trap frame. If it does it
1240 	 * will probably return EJUSTRETURN.
1241 	 */
1242 	args.sysmsg_frame = frame;
1243 
1244 	STOPEVENT(p, S_SCE, narg);	/* MP aware */
1245 
1246 	/*
1247 	 * NOTE: All system calls run MPSAFE now.  The system call itself
1248 	 *	 is responsible for getting the MP lock.
1249 	 */
1250 #ifdef SYSCALL_DEBUG
1251 	uint64_t tscval = rdtsc();
1252 #endif
1253 	error = (*callp->sy_call)(&args);
1254 #ifdef SYSCALL_DEBUG
1255 	tscval = rdtsc() - tscval;
1256 	tscval = tscval * 1000000 / tsc_frequency;
1257 	if (SysCallsWorstCase[code] < tscval)
1258 		SysCallsWorstCase[code] = tscval;
1259 #endif
1260 
1261 out:
1262 	/*
1263 	 * MP SAFE (we may or may not have the MP lock at this point)
1264 	 */
1265 	//kprintf("SYSMSG %d ", error);
1266 	switch (error) {
1267 	case 0:
1268 		/*
1269 		 * Reinitialize proc pointer `p' as it may be different
1270 		 * if this is a child returning from fork syscall.
1271 		 */
1272 		p = curproc;
1273 		lp = curthread->td_lwp;
1274 		frame->tf_rax = args.sysmsg_fds[0];
1275 		frame->tf_rdx = args.sysmsg_fds[1];
1276 		frame->tf_rflags &= ~PSL_C;
1277 		break;
1278 	case ERESTART:
1279 		/*
1280 		 * Reconstruct pc, we know that 'syscall' is 2 bytes.
1281 		 * We have to do a full context restore so that %r10
1282 		 * (which was holding the value of %rcx) is restored for
1283 		 * the next iteration.
1284 		 */
1285 		if (frame->tf_err != 0 && frame->tf_err != 2)
1286 			kprintf("lp %s:%d frame->tf_err is weird %ld\n",
1287 				td->td_comm, lp->lwp_proc->p_pid, frame->tf_err);
1288 		frame->tf_rip -= frame->tf_err;
1289 		frame->tf_r10 = frame->tf_rcx;
1290 		break;
1291 	case EJUSTRETURN:
1292 		break;
1293 	case EASYNC:
1294 		panic("Unexpected EASYNC return value (for now)");
1295 	default:
1296 bad:
1297 		if (p->p_sysent->sv_errsize) {
1298 			if (error >= p->p_sysent->sv_errsize)
1299 				error = -1;	/* XXX */
1300 			else
1301 				error = p->p_sysent->sv_errtbl[error];
1302 		}
1303 		frame->tf_rax = error;
1304 		frame->tf_rflags |= PSL_C;
1305 		break;
1306 	}
1307 
1308 	/*
1309 	 * Traced syscall.  trapsignal() is not MP aware.
1310 	 */
1311 	if (orig_tf_rflags & PSL_T) {
1312 		MAKEMPSAFE(have_mplock);
1313 		frame->tf_rflags &= ~PSL_T;
1314 		trapsignal(lp, SIGTRAP, TRAP_TRACE);
1315 	}
1316 
1317 	/*
1318 	 * Handle reschedule and other end-of-syscall issues
1319 	 */
1320 	userret(lp, frame, sticks);
1321 
1322 #ifdef KTRACE
1323 	if (KTRPOINT(td, KTR_SYSRET)) {
1324 		MAKEMPSAFE(have_mplock);
1325 		ktrsysret(lp, code, error, args.sysmsg_result);
1326 	}
1327 #endif
1328 
1329 	/*
1330 	 * This works because errno is findable through the
1331 	 * register set.  If we ever support an emulation where this
1332 	 * is not the case, this code will need to be revisited.
1333 	 */
1334 	STOPEVENT(p, S_SCX, code);
1335 
1336 	userexit(lp);
1337 	/*
1338 	 * Release the MP lock if we had to get it
1339 	 */
1340 	if (have_mplock)
1341 		rel_mplock();
1342 	KTR_LOG(kernentry_syscall_ret, p->p_pid, lp->lwp_tid, error);
1343 #ifdef INVARIANTS
1344 	KASSERT(crit_count == td->td_critcount,
1345 		("syscall: critical section count mismatch! %d/%d",
1346 		crit_count, td->td_pri));
1347 	KASSERT(&td->td_toks_base == td->td_toks_stop,
1348 		("syscall: extra tokens held after trap! %ld",
1349 		td->td_toks_stop - &td->td_toks_base));
1350 #endif
1351 }
1352 
1353 /*
1354  * NOTE: mplock not held at any point
1355  */
1356 void
1357 fork_return(struct lwp *lp, struct trapframe *frame)
1358 {
1359 	frame->tf_rax = 0;		/* Child returns zero */
1360 	frame->tf_rflags &= ~PSL_C;	/* success */
1361 	frame->tf_rdx = 1;
1362 
1363 	generic_lwp_return(lp, frame);
1364 	KTR_LOG(kernentry_fork_ret, lp->lwp_proc->p_pid, lp->lwp_tid);
1365 }
1366 
1367 /*
1368  * Simplified back end of syscall(), used when returning from fork()
1369  * directly into user mode.
1370  *
1371  * This code will return back into the fork trampoline code which then
1372  * runs doreti.
1373  *
1374  * NOTE: The mplock is not held at any point.
1375  */
1376 void
1377 generic_lwp_return(struct lwp *lp, struct trapframe *frame)
1378 {
1379 	struct proc *p = lp->lwp_proc;
1380 
1381 	/*
1382 	 * Newly forked processes are given a kernel priority.  We have to
1383 	 * adjust the priority to a normal user priority and fake entry
1384 	 * into the kernel (call userenter()) to install a passive release
1385 	 * function just in case userret() decides to stop the process.  This
1386 	 * can occur when ^Z races a fork.  If we do not install the passive
1387 	 * release function the current process designation will not be
1388 	 * released when the thread goes to sleep.
1389 	 */
1390 	lwkt_setpri_self(TDPRI_USER_NORM);
1391 	userenter(lp->lwp_thread, p);
1392 	userret(lp, frame, 0);
1393 #ifdef KTRACE
1394 	if (KTRPOINT(lp->lwp_thread, KTR_SYSRET))
1395 		ktrsysret(lp, SYS_fork, 0, 0);
1396 #endif
1397 	lp->lwp_flags |= LWP_PASSIVE_ACQ;
1398 	userexit(lp);
1399 	lp->lwp_flags &= ~LWP_PASSIVE_ACQ;
1400 }
1401 
1402 /*
1403  * If PGEX_FPFAULT is set then set FP_VIRTFP in the PCB to force a T_DNA
1404  * fault (which is then passed back to the virtual kernel) if an attempt is
1405  * made to use the FP unit.
1406  *
1407  * XXX this is a fairly big hack.
1408  */
1409 void
1410 set_vkernel_fp(struct trapframe *frame)
1411 {
1412 	struct thread *td = curthread;
1413 
1414 	if (frame->tf_xflags & PGEX_FPFAULT) {
1415 		td->td_pcb->pcb_flags |= FP_VIRTFP;
1416 		if (mdcpu->gd_npxthread == td)
1417 			npxexit();
1418 	} else {
1419 		td->td_pcb->pcb_flags &= ~FP_VIRTFP;
1420 	}
1421 }
1422 
1423 /*
1424  * Called from vkernel_trap() to fixup the vkernel's syscall
1425  * frame for vmspace_ctl() return.
1426  */
1427 void
1428 cpu_vkernel_trap(struct trapframe *frame, int error)
1429 {
1430 	frame->tf_rax = error;
1431 	if (error)
1432 		frame->tf_rflags |= PSL_C;
1433 	else
1434 		frame->tf_rflags &= ~PSL_C;
1435 }
1436