xref: /dragonfly/sys/platform/pc64/x86_64/trap.c (revision 32efd857)
1 /*-
2  * Copyright (c) 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (C) 1994, David Greenman
5  * Copyright (c) 2008-2018 The DragonFly Project.
6  * Copyright (c) 2008 Jordan Gordeev.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the University of Utah, and William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)trap.c	7.4 (Berkeley) 5/13/91
40  * $FreeBSD: src/sys/i386/i386/trap.c,v 1.147.2.11 2003/02/27 19:09:59 luoqi Exp $
41  */
42 
43 /*
44  * x86_64 Trap and System call handling
45  */
46 
47 #include "use_isa.h"
48 
49 #include "opt_ddb.h"
50 #include "opt_ktrace.h"
51 
52 #include <machine/frame.h>
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/kerneldump.h>
57 #include <sys/proc.h>
58 #include <sys/pioctl.h>
59 #include <sys/types.h>
60 #include <sys/signal2.h>
61 #include <sys/syscall.h>
62 #include <sys/sysctl.h>
63 #include <sys/sysent.h>
64 #ifdef KTRACE
65 #include <sys/ktrace.h>
66 #endif
67 #include <sys/ktr.h>
68 #include <sys/sysmsg.h>
69 
70 #include <vm/pmap.h>
71 #include <vm/vm.h>
72 #include <vm/vm_extern.h>
73 #include <vm/vm_kern.h>
74 #include <vm/vm_param.h>
75 #include <machine/cpu.h>
76 #include <machine/pcb.h>
77 #include <machine/smp.h>
78 #include <machine/thread.h>
79 #include <machine/clock.h>
80 #include <machine/vmparam.h>
81 #include <machine/md_var.h>
82 #include <machine_base/isa/isa_intr.h>
83 #include <machine_base/apic/lapic.h>
84 
85 #include <ddb/ddb.h>
86 
87 #include <sys/thread2.h>
88 #include <sys/spinlock2.h>
89 
90 /*
91  * These %rip's are used to detect a historical CPU artifact on syscall or
92  * int $3 entry, if not shortcutted in exception.S via
93  * DIRECT_DISALLOW_SS_CPUBUG.
94  */
95 extern void Xbpt(void);
96 extern void Xfast_syscall(void);
97 #define IDTVEC(vec)	X##vec
98 
99 extern void trap(struct trapframe *frame);
100 
101 static int trap_pfault(struct trapframe *, int);
102 static void trap_fatal(struct trapframe *, vm_offset_t);
103 void dblfault_handler(struct trapframe *frame);
104 
105 #define MAX_TRAP_MSG		30
106 static char *trap_msg[] = {
107 	"",					/*  0 unused */
108 	"privileged instruction fault",		/*  1 T_PRIVINFLT */
109 	"",					/*  2 unused */
110 	"breakpoint instruction fault",		/*  3 T_BPTFLT */
111 	"",					/*  4 unused */
112 	"",					/*  5 unused */
113 	"arithmetic trap",			/*  6 T_ARITHTRAP */
114 	"system forced exception",		/*  7 T_ASTFLT */
115 	"",					/*  8 unused */
116 	"general protection fault",		/*  9 T_PROTFLT */
117 	"trace trap",				/* 10 T_TRCTRAP */
118 	"",					/* 11 unused */
119 	"page fault",				/* 12 T_PAGEFLT */
120 	"",					/* 13 unused */
121 	"alignment fault",			/* 14 T_ALIGNFLT */
122 	"",					/* 15 unused */
123 	"",					/* 16 unused */
124 	"",					/* 17 unused */
125 	"integer divide fault",			/* 18 T_DIVIDE */
126 	"non-maskable interrupt trap",		/* 19 T_NMI */
127 	"overflow trap",			/* 20 T_OFLOW */
128 	"FPU bounds check fault",		/* 21 T_BOUND */
129 	"FPU device not available",		/* 22 T_DNA */
130 	"double fault",				/* 23 T_DOUBLEFLT */
131 	"FPU operand fetch fault",		/* 24 T_FPOPFLT */
132 	"invalid TSS fault",			/* 25 T_TSSFLT */
133 	"segment not present fault",		/* 26 T_SEGNPFLT */
134 	"stack fault",				/* 27 T_STKFLT */
135 	"machine check trap",			/* 28 T_MCHK */
136 	"SIMD floating-point exception",	/* 29 T_XMMFLT */
137 	"reserved (unknown) fault",		/* 30 T_RESERVED */
138 };
139 
140 #ifdef DDB
141 static int ddb_on_nmi = 1;
142 SYSCTL_INT(_machdep, OID_AUTO, ddb_on_nmi, CTLFLAG_RW,
143 	&ddb_on_nmi, 0, "Go to DDB on NMI");
144 static int ddb_on_seg_fault = 0;
145 SYSCTL_INT(_machdep, OID_AUTO, ddb_on_seg_fault, CTLFLAG_RW,
146 	&ddb_on_seg_fault, 0, "Go to DDB on user seg-fault");
147 __read_mostly static int freeze_on_seg_fault = 0;
148 SYSCTL_INT(_machdep, OID_AUTO, freeze_on_seg_fault, CTLFLAG_RW,
149 	&freeze_on_seg_fault, 0, "Go to DDB on user seg-fault");
150 #endif
151 static int panic_on_nmi = 1;
152 SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
153 	&panic_on_nmi, 0, "Panic on NMI");
154 
155 /*
156  * System call debugging records the worst-case system call
157  * overhead (inclusive of blocking), but may be inaccurate.
158  */
159 /*#define SYSCALL_DEBUG*/
160 #ifdef SYSCALL_DEBUG
161 
162 #define SCWC_MAXT	30
163 
164 struct syscallwc {
165 	uint32_t idx;
166 	uint32_t dummy;
167 	uint64_t tot[SYS_MAXSYSCALL];
168 	uint64_t timings[SYS_MAXSYSCALL][SCWC_MAXT];
169 } __cachealign;
170 
171 struct syscallwc SysCallsWorstCase[MAXCPU];
172 
173 #endif
174 
175 /*
176  * Passively intercepts the thread switch function to increase
177  * the thread priority from a user priority to a kernel priority, reducing
178  * syscall and trap overhead for the case where no switch occurs.
179  *
180  * Synchronizes td_ucred with p_ucred.  This is used by system calls,
181  * signal handling, faults, AST traps, and anything else that enters the
182  * kernel from userland and provides the kernel with a stable read-only
183  * copy of the process ucred.
184  *
185  * To avoid races with another thread updating p_ucred we obtain p_spin.
186  * The other thread doing the update will obtain both p_token and p_spin.
187  * In the case where the cached cred pointer matches, we will already have
188  * the ref and we don't have to do one blessed thing.
189  */
190 static __inline void
191 userenter(struct thread *curtd, struct proc *curp)
192 {
193 	struct ucred *ocred;
194 	struct ucred *ncred;
195 
196 	curtd->td_release = lwkt_passive_release;
197 
198 	if (__predict_false(curtd->td_ucred != curp->p_ucred)) {
199 		spin_lock(&curp->p_spin);
200 		ncred = crhold(curp->p_ucred);
201 		spin_unlock(&curp->p_spin);
202 		ocred = curtd->td_ucred;
203 		curtd->td_ucred = ncred;
204 		if (ocred)
205 			crfree(ocred);
206 	}
207 }
208 
209 /*
210  * Handle signals, upcalls, profiling, and other AST's and/or tasks that
211  * must be completed before we can return to or try to return to userland.
212  *
213  * Note that td_sticks is a 64 bit quantity, but there's no point doing 64
214  * arithmatic on the delta calculation so the absolute tick values are
215  * truncated to an integer.
216  */
217 static void
218 userret(struct lwp *lp, struct trapframe *frame, int sticks)
219 {
220 	struct proc *p = lp->lwp_proc;
221 	int sig;
222 	int ptok;
223 
224 	/*
225 	 * Charge system time if profiling.  Note: times are in microseconds.
226 	 * This may do a copyout and block, so do it first even though it
227 	 * means some system time will be charged as user time.
228 	 */
229 	if (__predict_false(p->p_flags & P_PROFIL)) {
230 		addupc_task(p, frame->tf_rip,
231 			(u_int)((int)lp->lwp_thread->td_sticks - sticks));
232 	}
233 
234 recheck:
235 	/*
236 	 * Specific on-return-to-usermode checks (LWP_MP_WEXIT,
237 	 * LWP_MP_VNLRU, etc).
238 	 */
239 	if (lp->lwp_mpflags & LWP_MP_URETMASK)
240 		lwpuserret(lp);
241 
242 	/*
243 	 * Block here if we are in a stopped state.
244 	 */
245 	if (__predict_false(STOPLWP(p, lp))) {
246 		lwkt_gettoken(&p->p_token);
247 		tstop();
248 		lwkt_reltoken(&p->p_token);
249 		goto recheck;
250 	}
251 	while (__predict_false(dump_stop_usertds)) {
252 		tsleep(&dump_stop_usertds, 0, "dumpstp", 0);
253 	}
254 
255 	/*
256 	 * Post any pending upcalls.  If running a virtual kernel be sure
257 	 * to restore the virtual kernel's vmspace before posting the upcall.
258 	 */
259 	if (__predict_false(p->p_flags & (P_SIGVTALRM | P_SIGPROF))) {
260 		lwkt_gettoken(&p->p_token);
261 		if (p->p_flags & P_SIGVTALRM) {
262 			p->p_flags &= ~P_SIGVTALRM;
263 			ksignal(p, SIGVTALRM);
264 		}
265 		if (p->p_flags & P_SIGPROF) {
266 			p->p_flags &= ~P_SIGPROF;
267 			ksignal(p, SIGPROF);
268 		}
269 		lwkt_reltoken(&p->p_token);
270 		goto recheck;
271 	}
272 
273 	/*
274 	 * Post any pending signals.  If running a virtual kernel be sure
275 	 * to restore the virtual kernel's vmspace before posting the signal.
276 	 *
277 	 * WARNING!  postsig() can exit and not return.
278 	 */
279 	if (__predict_false((sig = CURSIG_LCK_TRACE(lp, &ptok)) != 0)) {
280 		postsig(sig, ptok);
281 		goto recheck;
282 	}
283 
284 	/*
285 	 * In a multi-threaded program it is possible for a thread to change
286 	 * signal state during a system call which temporarily changes the
287 	 * signal mask.  In this case postsig() might not be run and we
288 	 * have to restore the mask ourselves.
289 	 */
290 	if (__predict_false(lp->lwp_flags & LWP_OLDMASK)) {
291 		lp->lwp_flags &= ~LWP_OLDMASK;
292 		lp->lwp_sigmask = lp->lwp_oldsigmask;
293 		goto recheck;
294 	}
295 }
296 
297 /*
298  * Cleanup from userenter and any passive release that might have occured.
299  * We must reclaim the current-process designation before we can return
300  * to usermode.  We also handle both LWKT and USER reschedule requests.
301  */
302 static __inline void
303 userexit(struct lwp *lp)
304 {
305 	struct thread *td = lp->lwp_thread;
306 	/* globaldata_t gd = td->td_gd; */
307 
308 	/*
309 	 * Handle stop requests at kernel priority.  Any requests queued
310 	 * after this loop will generate another AST.
311 	 */
312 	while (__predict_false(STOPLWP(lp->lwp_proc, lp))) {
313 		lwkt_gettoken(&lp->lwp_proc->p_token);
314 		tstop();
315 		lwkt_reltoken(&lp->lwp_proc->p_token);
316 	}
317 
318 	/*
319 	 * Reduce our priority in preparation for a return to userland.  If
320 	 * our passive release function was still in place, our priority was
321 	 * never raised and does not need to be reduced.
322 	 */
323 	lwkt_passive_recover(td);
324 
325 	/* WARNING: we may have migrated cpu's */
326 	/* gd = td->td_gd; */
327 
328 	/*
329 	 * Become the current user scheduled process if we aren't already,
330 	 * and deal with reschedule requests and other factors.
331 	 *
332 	 * Do a silly hack to avoid RETPOLINE nonsense.
333 	 */
334 	if (lp->lwp_proc->p_usched == &usched_dfly)
335 		dfly_acquire_curproc(lp);
336 	else
337 		lp->lwp_proc->p_usched->acquire_curproc(lp);
338 }
339 
340 /*
341  * A page fault on a userspace address is classified as SMAP-induced
342  * if:
343  *	- SMAP is supported
344  *	- kernel mode accessed present data page
345  *	- rflags.AC was cleared
346  */
347 static int
348 trap_is_smap(struct trapframe *frame)
349 {
350         if ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 &&
351             (frame->tf_err & (PGEX_P | PGEX_U | PGEX_I | PGEX_RSV)) == PGEX_P &&
352 	    (frame->tf_rflags & PSL_AC) == 0) {
353 		return 1;
354 	} else {
355 		return 0;
356 	}
357 }
358 
359 #if !defined(KTR_KERNENTRY)
360 #define	KTR_KERNENTRY	KTR_ALL
361 #endif
362 KTR_INFO_MASTER(kernentry);
363 KTR_INFO(KTR_KERNENTRY, kernentry, trap, 0,
364 	 "TRAP(pid %d, tid %d, trapno %ld, eva %lu)",
365 	 pid_t pid, lwpid_t tid,  register_t trapno, vm_offset_t eva);
366 KTR_INFO(KTR_KERNENTRY, kernentry, trap_ret, 0, "TRAP_RET(pid %d, tid %d)",
367 	 pid_t pid, lwpid_t tid);
368 KTR_INFO(KTR_KERNENTRY, kernentry, syscall, 0, "SYSC(pid %d, tid %d, nr %ld)",
369 	 pid_t pid, lwpid_t tid,  register_t trapno);
370 KTR_INFO(KTR_KERNENTRY, kernentry, syscall_ret, 0, "SYSRET(pid %d, tid %d, err %d)",
371 	 pid_t pid, lwpid_t tid,  int err);
372 KTR_INFO(KTR_KERNENTRY, kernentry, fork_ret, 0, "FORKRET(pid %d, tid %d)",
373 	 pid_t pid, lwpid_t tid);
374 
375 /*
376  * Exception, fault, and trap interface to the kernel.
377  * This common code is called from assembly language IDT gate entry
378  * routines that prepare a suitable stack frame, and restore this
379  * frame after the exception has been processed.
380  *
381  * This function is also called from doreti in an interlock to handle ASTs.
382  * For example:  hardwareint->INTROUTINE->(set ast)->doreti->trap
383  *
384  * NOTE!  We have to retrieve the fault address prior to potentially
385  *	  blocking, including blocking on any token.
386  *
387  * NOTE!  NMI and kernel DBG traps remain on their respective pcpu IST
388  *	  stacks if taken from a kernel RPL. trap() cannot block in this
389  *	  situation.  DDB entry or a direct report-and-return is ok.
390  *
391  * XXX gd_trap_nesting_level currently prevents lwkt_switch() from panicing
392  * if an attempt is made to switch from a fast interrupt or IPI.
393  */
394 void
395 trap(struct trapframe *frame)
396 {
397 	static struct krate sscpubugrate = { 1 };
398 	struct globaldata *gd = mycpu;
399 	struct thread *td = gd->gd_curthread;
400 	struct lwp *lp = td->td_lwp;
401 	struct proc *p;
402 	int sticks = 0;
403 	int i = 0, ucode = 0, type, code;
404 #ifdef INVARIANTS
405 	int crit_count = td->td_critcount;
406 	lwkt_tokref_t curstop = td->td_toks_stop;
407 #endif
408 	vm_offset_t eva;
409 
410 	p = td->td_proc;
411 	clear_quickret();
412 
413 #ifdef DDB
414         /*
415 	 * We need to allow T_DNA faults when the debugger is active since
416 	 * some dumping paths do large bcopy() which use the floating
417 	 * point registers for faster copying.
418 	 */
419 	if (db_active && frame->tf_trapno != T_DNA) {
420 		eva = (frame->tf_trapno == T_PAGEFLT ? frame->tf_addr : 0);
421 		++gd->gd_trap_nesting_level;
422 		trap_fatal(frame, eva);
423 		--gd->gd_trap_nesting_level;
424 		goto out2;
425 	}
426 #endif
427 
428 	eva = 0;
429 
430 	if ((frame->tf_rflags & PSL_I) == 0) {
431 		/*
432 		 * Buggy application or kernel code has disabled interrupts
433 		 * and then trapped.  Enabling interrupts now is wrong, but
434 		 * it is better than running with interrupts disabled until
435 		 * they are accidentally enabled later.
436 		 */
437 
438 		type = frame->tf_trapno;
439 		if (ISPL(frame->tf_cs) == SEL_UPL) {
440 			/* JG curproc can be NULL */
441 			kprintf(
442 			    "pid %ld (%s): trap %d with interrupts disabled\n",
443 			    (long)curproc->p_pid, curproc->p_comm, type);
444 		} else if ((type == T_STKFLT || type == T_PROTFLT ||
445 			    type == T_SEGNPFLT) &&
446 			   frame->tf_rip == (long)doreti_iret) {
447 			/*
448 			 * iretq fault from kernel mode during return to
449 			 * userland.
450 			 *
451 			 * This situation is expected, don't complain.
452 			 */
453 		} else if (type != T_NMI && type != T_BPTFLT &&
454 			   type != T_TRCTRAP) {
455 			/*
456 			 * XXX not quite right, since this may be for a
457 			 * multiple fault in user mode.
458 			 */
459 			kprintf("kernel trap %d (%s @ 0x%016jx) with "
460 				"interrupts disabled\n",
461 				type,
462 				td->td_comm,
463 				frame->tf_rip);
464 		}
465 		cpu_enable_intr();
466 	}
467 
468 	type = frame->tf_trapno;
469 	code = frame->tf_err;
470 
471 	if (ISPL(frame->tf_cs) == SEL_UPL) {
472 		/* user trap */
473 
474 		KTR_LOG(kernentry_trap, p->p_pid, lp->lwp_tid,
475 			frame->tf_trapno, eva);
476 
477 		userenter(td, p);
478 
479 		sticks = (int)td->td_sticks;
480 		KASSERT(lp->lwp_md.md_regs == frame,
481 			("Frame mismatch %p %p", lp->lwp_md.md_regs, frame));
482 
483 		switch (type) {
484 		case T_PRIVINFLT:	/* privileged instruction fault */
485 			i = SIGILL;
486 			ucode = ILL_PRVOPC;
487 			break;
488 
489 		case T_BPTFLT:		/* bpt instruction fault */
490 		case T_TRCTRAP:		/* trace trap */
491 			frame->tf_rflags &= ~PSL_T;
492 			i = SIGTRAP;
493 			ucode = (type == T_TRCTRAP ? TRAP_TRACE : TRAP_BRKPT);
494 			break;
495 
496 		case T_ARITHTRAP:	/* arithmetic trap */
497 			ucode = code;
498 			i = SIGFPE;
499 			break;
500 
501 		case T_ASTFLT:		/* Allow process switch */
502 			mycpu->gd_cnt.v_soft++;
503 			if (mycpu->gd_reqflags & RQF_AST_OWEUPC) {
504 				atomic_clear_int(&mycpu->gd_reqflags,
505 						 RQF_AST_OWEUPC);
506 				addupc_task(p, p->p_prof.pr_addr,
507 					    p->p_prof.pr_ticks);
508 			}
509 			goto out;
510 
511 		case T_PROTFLT:		/* general protection fault */
512 			i = SIGBUS;
513 			ucode = BUS_OBJERR;
514 			break;
515 		case T_STKFLT:		/* stack fault */
516 		case T_SEGNPFLT:	/* segment not present fault */
517 			i = SIGBUS;
518 			ucode = BUS_ADRERR;
519 			break;
520 		case T_TSSFLT:		/* invalid TSS fault */
521 		case T_DOUBLEFLT:	/* double fault */
522 		default:
523 			i = SIGBUS;
524 			ucode = BUS_OBJERR;
525 			break;
526 
527 		case T_PAGEFLT:		/* page fault */
528 			i = trap_pfault(frame, TRUE);
529 #ifdef DDB
530 			if (frame->tf_rip == 0) {
531 				/* used for kernel debugging only */
532 				while (freeze_on_seg_fault)
533 					tsleep(p, 0, "freeze", hz * 20);
534 			}
535 #endif
536 			if (i == -1 || i == 0)
537 				goto out;
538 			if (i == SIGSEGV) {
539 				ucode = SEGV_MAPERR;
540 			} else {
541 				i = SIGSEGV;
542 				ucode = SEGV_ACCERR;
543 			}
544 			break;
545 
546 		case T_DIVIDE:		/* integer divide fault */
547 			ucode = FPE_INTDIV;
548 			i = SIGFPE;
549 			break;
550 
551 #if NISA > 0
552 		case T_NMI:
553 			/* machine/parity/power fail/"kitchen sink" faults */
554 			if (isa_nmi(code) == 0) {
555 #ifdef DDB
556 				/*
557 				 * NMI can be hooked up to a pushbutton
558 				 * for debugging.
559 				 */
560 				if (ddb_on_nmi) {
561 					kprintf ("NMI ... going to debugger\n");
562 					kdb_trap(type, 0, frame);
563 				}
564 #endif /* DDB */
565 				goto out2;
566 			} else if (panic_on_nmi)
567 				panic("NMI indicates hardware failure");
568 			break;
569 #endif /* NISA > 0 */
570 
571 		case T_OFLOW:		/* integer overflow fault */
572 			ucode = FPE_INTOVF;
573 			i = SIGFPE;
574 			break;
575 
576 		case T_BOUND:		/* bounds check fault */
577 			ucode = FPE_FLTSUB;
578 			i = SIGFPE;
579 			break;
580 
581 		case T_DNA:
582 			/*
583 			 * Virtual kernel intercept - pass the DNA exception
584 			 * to the virtual kernel if it asked to handle it.
585 			 * This occurs when the virtual kernel is holding
586 			 * onto the FP context for a different emulated
587 			 * process then the one currently running.
588 			 *
589 			 * We must still call npxdna() since we may have
590 			 * saved FP state that the virtual kernel needs
591 			 * to hand over to a different emulated process.
592 			 */
593 			if (lp->lwp_vkernel && lp->lwp_vkernel->ve &&
594 			    (td->td_pcb->pcb_flags & FP_VIRTFP)
595 			) {
596 				npxdna();
597 				break;
598 			}
599 
600 			/*
601 			 * The kernel may have switched out the FP unit's
602 			 * state, causing the user process to take a fault
603 			 * when it tries to use the FP unit.  Restore the
604 			 * state here
605 			 */
606 			if (npxdna()) {
607 				gd->gd_cnt.v_trap++;
608 				goto out;
609 			}
610 			i = SIGFPE;
611 			ucode = FPE_FPU_NP_TRAP;
612 			break;
613 
614 		case T_FPOPFLT:		/* FPU operand fetch fault */
615 			ucode = ILL_COPROC;
616 			i = SIGILL;
617 			break;
618 
619 		case T_XMMFLT:		/* SIMD floating-point exception */
620 			ucode = 0; /* XXX */
621 			i = SIGFPE;
622 			break;
623 		}
624 	} else {
625 		/* kernel trap */
626 
627 		switch (type) {
628 		case T_PAGEFLT:			/* page fault */
629 			trap_pfault(frame, FALSE);
630 			goto out2;
631 
632 		case T_DNA:
633 			/*
634 			 * The kernel is apparently using fpu for copying.
635 			 * XXX this should be fatal unless the kernel has
636 			 * registered such use.
637 			 */
638 			if (npxdna()) {
639 				gd->gd_cnt.v_trap++;
640 				goto out2;
641 			}
642 			break;
643 
644 		case T_STKFLT:		/* stack fault */
645 		case T_PROTFLT:		/* general protection fault */
646 		case T_SEGNPFLT:	/* segment not present fault */
647 			/*
648 			 * Invalid segment selectors and out of bounds
649 			 * %rip's and %rsp's can be set up in user mode.
650 			 * This causes a fault in kernel mode when the
651 			 * kernel tries to return to user mode.  We want
652 			 * to get this fault so that we can fix the
653 			 * problem here and not have to check all the
654 			 * selectors and pointers when the user changes
655 			 * them.
656 			 */
657 			if (mycpu->gd_intr_nesting_level == 0) {
658 				/*
659 				 * NOTE: in 64-bit mode traps push rsp/ss
660 				 *	 even if no ring change occurs.
661 				 */
662 				if (td->td_pcb->pcb_onfault &&
663 				    td->td_pcb->pcb_onfault_sp ==
664 				    frame->tf_rsp) {
665 					frame->tf_rip = (register_t)
666 						td->td_pcb->pcb_onfault;
667 					goto out2;
668 				}
669 
670 				/*
671 				 * If the iretq in doreti faults during
672 				 * return to user, it will be special-cased
673 				 * in IDTVEC(prot) to get here.  We want
674 				 * to 'return' to doreti_iret_fault in
675 				 * ipl.s in approximately the same state we
676 				 * were in at the iretq.
677 				 */
678 				if (frame->tf_rip == (long)doreti_iret) {
679 					frame->tf_rip = (long)doreti_iret_fault;
680 					goto out2;
681 				}
682 			}
683 			break;
684 
685 		case T_TSSFLT:
686 			/*
687 			 * PSL_NT can be set in user mode and isn't cleared
688 			 * automatically when the kernel is entered.  This
689 			 * causes a TSS fault when the kernel attempts to
690 			 * `iret' because the TSS link is uninitialized.  We
691 			 * want to get this fault so that we can fix the
692 			 * problem here and not every time the kernel is
693 			 * entered.
694 			 */
695 			if (frame->tf_rflags & PSL_NT) {
696 				frame->tf_rflags &= ~PSL_NT;
697 #if 0
698 				/* do we need this? */
699 				if (frame->tf_rip == (long)doreti_iret)
700 					frame->tf_rip = (long)doreti_iret_fault;
701 #endif
702 				goto out2;
703 			}
704 			break;
705 
706 		case T_TRCTRAP:	 /* trace trap */
707 			/*
708 			 * Detect historical CPU artifact on syscall or int $3
709 			 * entry (if not shortcutted in exception.s via
710 			 * DIRECT_DISALLOW_SS_CPUBUG).
711 			 */
712 			gd->gd_cnt.v_trap++;
713 			if (frame->tf_rip == (register_t)IDTVEC(fast_syscall)) {
714 				krateprintf(&sscpubugrate,
715 					"Caught #DB at syscall cpu artifact\n");
716 				goto out2;
717 			}
718 			if (frame->tf_rip == (register_t)IDTVEC(bpt)) {
719 				krateprintf(&sscpubugrate,
720 					"Caught #DB at int $N cpu artifact\n");
721 				goto out2;
722 			}
723 
724 			/*
725 			 * Ignore debug register trace traps due to
726 			 * accesses in the user's address space, which
727 			 * can happen under several conditions such as
728 			 * if a user sets a watchpoint on a buffer and
729 			 * then passes that buffer to a system call.
730 			 * We still want to get TRCTRAPS for addresses
731 			 * in kernel space because that is useful when
732 			 * debugging the kernel.
733 			 */
734 			if (user_dbreg_trap()) {
735 				/*
736 				 * Reset breakpoint bits because the
737 				 * processor doesn't
738 				 */
739 				load_dr6(rdr6() & ~0xf);
740 				goto out2;
741 			}
742 			/*
743 			 * FALLTHROUGH (TRCTRAP kernel mode, kernel address)
744 			 */
745 		case T_BPTFLT:
746 			/*
747 			 * If DDB is enabled, let it handle the debugger trap.
748 			 * Otherwise, debugger traps "can't happen".
749 			 */
750 			ucode = TRAP_BRKPT;
751 #ifdef DDB
752 			if (kdb_trap(type, 0, frame))
753 				goto out2;
754 #endif
755 			break;
756 
757 #if NISA > 0
758 		case T_NMI:
759 			/* machine/parity/power fail/"kitchen sink" faults */
760 			if (isa_nmi(code) == 0) {
761 #ifdef DDB
762 				/*
763 				 * NMI can be hooked up to a pushbutton
764 				 * for debugging.
765 				 */
766 				if (ddb_on_nmi) {
767 					kprintf ("NMI ... going to debugger\n");
768 					kdb_trap(type, 0, frame);
769 				}
770 #endif /* DDB */
771 				goto out2;
772 			} else if (panic_on_nmi == 0)
773 				goto out2;
774 #endif /* NISA > 0 */
775 			break;
776 		default:
777 			if (type >= T_RESERVED && type < T_RESERVED + 256) {
778 				kprintf("Ignoring spurious unknown "
779 					"cpu trap T_RESERVED+%d\n",
780 					type - T_RESERVED);
781 				gd->gd_cnt.v_trap++;
782 				goto out2;
783 			}
784 			break;
785 		}
786 		trap_fatal(frame, 0);
787 		goto out2;
788 	}
789 
790 	/*
791 	 * Fault from user mode, virtual kernel interecept.
792 	 *
793 	 * If the fault is directly related to a VM context managed by a
794 	 * virtual kernel then let the virtual kernel handle it.
795 	 */
796 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
797 		vkernel_trap(lp, frame);
798 		goto out;
799 	}
800 
801 	/* Translate fault for emulators (e.g. Linux) */
802 	if (*p->p_sysent->sv_transtrap)
803 		i = (*p->p_sysent->sv_transtrap)(i, type);
804 
805 	gd->gd_cnt.v_trap++;
806 	trapsignal(lp, i, ucode);
807 
808 #ifdef DEBUG
809 	if (type <= MAX_TRAP_MSG) {
810 		uprintf("fatal process exception: %s",
811 			trap_msg[type]);
812 		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
813 			uprintf(", fault VA = 0x%lx", frame->tf_addr);
814 		uprintf("\n");
815 	}
816 #endif
817 
818 out:
819 	userret(lp, frame, sticks);
820 	userexit(lp);
821 out2:	;
822 	if (p != NULL && lp != NULL)
823 		KTR_LOG(kernentry_trap_ret, p->p_pid, lp->lwp_tid);
824 #ifdef INVARIANTS
825 	KASSERT(crit_count == td->td_critcount,
826 		("trap: critical section count mismatch! %d/%d",
827 		crit_count, td->td_pri));
828 	KASSERT(curstop == td->td_toks_stop,
829 		("trap: extra tokens held after trap! %ld/%ld (%s)",
830 		curstop - &td->td_toks_base,
831 		td->td_toks_stop - &td->td_toks_base,
832 		td->td_toks_stop[-1].tr_tok->t_desc));
833 #endif
834 }
835 
836 void
837 trap_handle_userenter(struct thread *td)
838 {
839 	userenter(td, td->td_proc);
840 }
841 
842 void
843 trap_handle_userexit(struct trapframe *frame, int sticks)
844 {
845 	struct lwp *lp = curthread->td_lwp;
846 
847 	if (lp) {
848 		userret(lp, frame, sticks);
849 		userexit(lp);
850 	}
851 }
852 
853 static int
854 trap_pfault(struct trapframe *frame, int usermode)
855 {
856 	vm_offset_t va;
857 	struct vmspace *vm = NULL;
858 	vm_map_t map;
859 	int rv = 0;
860 	int fault_flags;
861 	vm_prot_t ftype;
862 	thread_t td = curthread;
863 	struct lwp *lp = td->td_lwp;
864 	struct proc *p;
865 
866 	va = trunc_page(frame->tf_addr);
867 	if (va >= VM_MIN_KERNEL_ADDRESS) {
868 		/*
869 		 * Don't allow user-mode faults in kernel address space.
870 		 */
871 		if (usermode) {
872 			fault_flags = -1;
873 			ftype = -1;
874 			goto nogo;
875 		}
876 
877 		map = kernel_map;
878 	} else {
879 		/*
880 		 * This is a fault on non-kernel virtual memory.
881 		 * vm is initialized above to NULL. If curproc is NULL
882 		 * or curproc->p_vmspace is NULL the fault is fatal.
883 		 */
884 		if (lp != NULL)
885 			vm = lp->lwp_vmspace;
886 
887 		if (vm == NULL) {
888 			fault_flags = -1;
889 			ftype = -1;
890 			goto nogo;
891 		}
892 
893 		if (usermode == 0) {
894 #ifdef DDB
895 			/*
896 			 * Debugging, catch kernel faults on the user address
897 			 * space when not inside on onfault (e.g. copyin/
898 			 * copyout) routine.
899 			 */
900 			if (td->td_pcb == NULL ||
901 			    td->td_pcb->pcb_onfault == NULL) {
902 				if (freeze_on_seg_fault) {
903 					kprintf("trap_pfault: user address "
904 						"fault from kernel mode "
905 						"%016lx\n",
906 						(long)frame->tf_addr);
907 					while (freeze_on_seg_fault) {
908 						    tsleep(&freeze_on_seg_fault,
909 							   0,
910 							   "frzseg",
911 							   hz * 20);
912 					}
913 				}
914 			}
915 #endif
916 			if (td->td_gd->gd_intr_nesting_level ||
917 			    trap_is_smap(frame) ||
918 			    td->td_pcb == NULL ||
919 			    td->td_pcb->pcb_onfault == NULL) {
920 				kprintf("Fatal user address access "
921 					"from kernel mode from %s at %016jx\n",
922 					td->td_comm, frame->tf_rip);
923 				trap_fatal(frame, frame->tf_addr);
924 				return (-1);
925 			}
926 		}
927 		map = &vm->vm_map;
928 	}
929 
930 	/*
931 	 * PGEX_I is defined only if the execute disable bit capability is
932 	 * supported and enabled.
933 	 */
934 	if (frame->tf_err & PGEX_W)
935 		ftype = VM_PROT_WRITE;
936 	else if (frame->tf_err & PGEX_I)
937 		ftype = VM_PROT_EXECUTE;
938 	else
939 		ftype = VM_PROT_READ;
940 
941 	lwkt_tokref_t stop = td->td_toks_stop;
942 
943 	if (map != kernel_map) {
944 		/*
945 		 * Keep swapout from messing with us during this
946 		 *	critical time.
947 		 */
948 		PHOLD(lp->lwp_proc);
949 
950 		/*
951 		 * Issue fault
952 		 */
953 		fault_flags = 0;
954 		if (usermode)
955 			fault_flags |= VM_FAULT_BURST | VM_FAULT_USERMODE;
956 		if (ftype & VM_PROT_WRITE)
957 			fault_flags |= VM_FAULT_DIRTY;
958 		else
959 			fault_flags |= VM_FAULT_NORMAL;
960 		rv = vm_fault(map, va, ftype, fault_flags);
961 		if (td->td_toks_stop != stop) {
962 			stop = td->td_toks_stop - 1;
963 			kprintf("A-HELD TOKENS DURING PFAULT td=%p(%s) map=%p va=%p ftype=%d fault_flags=%d\n", td, td->td_comm, map, (void *)va, ftype, fault_flags);
964 			panic("held tokens");
965 		}
966 
967 		PRELE(lp->lwp_proc);
968 	} else {
969 		/*
970 		 * Don't have to worry about process locking or stacks in the
971 		 * kernel.
972 		 */
973 		fault_flags = VM_FAULT_NORMAL;
974 		rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
975 		if (td->td_toks_stop != stop) {
976 			stop = td->td_toks_stop - 1;
977 			kprintf("B-HELD TOKENS DURING PFAULT td=%p(%s) map=%p va=%p ftype=%d fault_flags=%d\n", td, td->td_comm, map, (void *)va, ftype, VM_FAULT_NORMAL);
978 			panic("held tokens");
979 		}
980 	}
981 	if (rv == KERN_SUCCESS)
982 		return (0);
983 nogo:
984 	if (!usermode) {
985 		/*
986 		 * NOTE: in 64-bit mode traps push rsp/ss
987 		 *	 even if no ring change occurs.
988 		 */
989 		if (td->td_pcb->pcb_onfault &&
990 		    td->td_pcb->pcb_onfault_sp == frame->tf_rsp &&
991 		    td->td_gd->gd_intr_nesting_level == 0) {
992 			frame->tf_rip = (register_t)td->td_pcb->pcb_onfault;
993 			return (0);
994 		}
995 		trap_fatal(frame, frame->tf_addr);
996 		return (-1);
997 	}
998 
999 	/*
1000 	 * NOTE: on x86_64 we have a tf_addr field in the trapframe, no
1001 	 * kludge is needed to pass the fault address to signal handlers.
1002 	 */
1003 	p = td->td_proc;
1004 #ifdef DDB
1005 	if (td->td_lwp->lwp_vkernel == NULL) {
1006 		while (freeze_on_seg_fault) {
1007 			tsleep(p, 0, "freeze", hz * 20);
1008 		}
1009 		if (ddb_on_seg_fault)
1010 			Debugger("ddb_on_seg_fault");
1011 	}
1012 #endif
1013 
1014 	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
1015 }
1016 
1017 static void
1018 trap_fatal(struct trapframe *frame, vm_offset_t eva)
1019 {
1020 	int code, ss;
1021 	u_int type;
1022 	long rsp;
1023 	struct soft_segment_descriptor softseg;
1024 
1025 	code = frame->tf_err;
1026 	type = frame->tf_trapno;
1027 	sdtossd(&mdcpu->gd_gdt[IDXSEL(frame->tf_cs & 0xffff)], &softseg);
1028 
1029 	kprintf("\n\nFatal trap %d: ", type);
1030 	if (type <= MAX_TRAP_MSG)
1031 		kprintf("%s ", trap_msg[type]);
1032 	else
1033 		kprintf("rsvd(%d) ", type - T_RESERVED);
1034 
1035 	kprintf("while in %s mode\n",
1036 		ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
1037 
1038 	/* three separate prints in case of a trap on an unmapped page */
1039 	kprintf("cpuid = %d; ", mycpu->gd_cpuid);
1040 	if (lapic_usable)
1041 		kprintf("lapic id = %u\n", LAPIC_READID);
1042 	if (type == T_PAGEFLT) {
1043 		kprintf("fault virtual address	= 0x%lx\n", eva);
1044 		kprintf("fault code		= %s %s %s, %s\n",
1045 			code & PGEX_U ? "user" : "supervisor",
1046 			code & PGEX_W ? "write" : "read",
1047 			code & PGEX_I ? "instruction" : "data",
1048 			code & PGEX_P ? "protection violation" : "page not present");
1049 	}
1050 	kprintf("instruction pointer	= 0x%lx:0x%lx\n",
1051 	       frame->tf_cs & 0xffff, frame->tf_rip);
1052         if (ISPL(frame->tf_cs) == SEL_UPL) {
1053 		ss = frame->tf_ss & 0xffff;
1054 		rsp = frame->tf_rsp;
1055 	} else {
1056 		/*
1057 		 * NOTE: in 64-bit mode traps push rsp/ss even if no ring
1058 		 *	 change occurs.
1059 		 */
1060 		ss = GSEL(GDATA_SEL, SEL_KPL);
1061 		rsp = frame->tf_rsp;
1062 	}
1063 	kprintf("stack pointer	        = 0x%x:0x%lx\n", ss, rsp);
1064 	kprintf("frame pointer	        = 0x%x:0x%lx\n", ss, frame->tf_rbp);
1065 	kprintf("code segment		= base 0x%lx, limit 0x%lx, type 0x%x\n",
1066 	       softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
1067 	kprintf("			= DPL %d, pres %d, long %d, def32 %d, gran %d\n",
1068 	       softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_long, softseg.ssd_def32,
1069 	       softseg.ssd_gran);
1070 	kprintf("processor eflags	= ");
1071 	if (frame->tf_rflags & PSL_T)
1072 		kprintf("trace trap, ");
1073 	if (frame->tf_rflags & PSL_I)
1074 		kprintf("interrupt enabled, ");
1075 	if (frame->tf_rflags & PSL_NT)
1076 		kprintf("nested task, ");
1077 	if (frame->tf_rflags & PSL_RF)
1078 		kprintf("resume, ");
1079 	if (frame->tf_rflags & PSL_AC)
1080 		kprintf("smap_open, ");
1081 	kprintf("IOPL = %ld\n", (frame->tf_rflags & PSL_IOPL) >> 12);
1082 	kprintf("current process		= ");
1083 	if (curproc) {
1084 		kprintf("%lu\n",
1085 		    (u_long)curproc->p_pid);
1086 	} else {
1087 		kprintf("Idle\n");
1088 	}
1089 	kprintf("current thread          = pri %d ", curthread->td_pri);
1090 	if (curthread->td_critcount)
1091 		kprintf("(CRIT)");
1092 	kprintf("\n");
1093 
1094 #ifdef DDB
1095 	if ((debugger_on_panic || db_active) && kdb_trap(type, code, frame))
1096 		return;
1097 #endif
1098 	kprintf("trap number		= %d\n", type);
1099 	if (type <= MAX_TRAP_MSG)
1100 		panic("%s", trap_msg[type]);
1101 	else
1102 		panic("unknown/reserved trap");
1103 }
1104 
1105 /*
1106  * Double fault handler. Called when a fault occurs while writing
1107  * a frame for a trap/exception onto the stack. This usually occurs
1108  * when the stack overflows (such is the case with infinite recursion,
1109  * for example).
1110  */
1111 static __inline
1112 int
1113 in_kstack_guard(register_t rptr)
1114 {
1115 	thread_t td = curthread;
1116 
1117 	if ((char *)rptr >= td->td_kstack &&
1118 	    (char *)rptr < td->td_kstack + PAGE_SIZE) {
1119 		return 1;
1120 	}
1121 	return 0;
1122 }
1123 
1124 void
1125 dblfault_handler(struct trapframe *frame)
1126 {
1127 	thread_t td = curthread;
1128 
1129 	if (in_kstack_guard(frame->tf_rsp) || in_kstack_guard(frame->tf_rbp)) {
1130 		kprintf("DOUBLE FAULT - KERNEL STACK GUARD HIT!\n");
1131 		if (in_kstack_guard(frame->tf_rsp))
1132 			frame->tf_rsp = (register_t)(td->td_kstack + PAGE_SIZE);
1133 		if (in_kstack_guard(frame->tf_rbp))
1134 			frame->tf_rbp = (register_t)(td->td_kstack + PAGE_SIZE);
1135 	} else {
1136 		kprintf("DOUBLE FAULT\n");
1137 	}
1138 	kprintf("\nFatal double fault\n");
1139 	kprintf("rip = 0x%lx\n", frame->tf_rip);
1140 	kprintf("rsp = 0x%lx\n", frame->tf_rsp);
1141 	kprintf("rbp = 0x%lx\n", frame->tf_rbp);
1142 	/* three separate prints in case of a trap on an unmapped page */
1143 	kprintf("cpuid = %d; ", mycpu->gd_cpuid);
1144 	if (lapic_usable)
1145 		kprintf("lapic id = %u\n", LAPIC_READID);
1146 	panic("double fault");
1147 }
1148 
1149 /*
1150  * syscall2 -	MP aware system call request C handler
1151  *
1152  * A system call is essentially treated as a trap except that the
1153  * MP lock is not held on entry or return.  We are responsible for
1154  * obtaining the MP lock if necessary and for handling ASTs
1155  * (e.g. a task switch) prior to return.
1156  */
1157 void
1158 syscall2(struct trapframe *frame)
1159 {
1160 	struct thread *td = curthread;
1161 	struct proc *p = td->td_proc;
1162 	struct lwp *lp = td->td_lwp;
1163 	struct sysent *callp;
1164 	register_t orig_tf_rflags;
1165 	int sticks;
1166 	int error;
1167 	int narg;
1168 #ifdef INVARIANTS
1169 	int crit_count = td->td_critcount;
1170 #endif
1171 	struct sysmsg sysmsg;
1172 	union sysunion *argp;
1173 	u_int code;
1174 	const int regcnt = 6;	/* number of args passed in registers */
1175 
1176 	mycpu->gd_cnt.v_syscall++;
1177 
1178 #ifdef DIAGNOSTIC
1179 	if (__predict_false(ISPL(frame->tf_cs) != SEL_UPL)) {
1180 		panic("syscall");
1181 		/* NOT REACHED */
1182 	}
1183 #endif
1184 
1185 	KTR_LOG(kernentry_syscall, p->p_pid, lp->lwp_tid,
1186 		frame->tf_rax);
1187 
1188 	userenter(td, p);	/* lazy raise our priority */
1189 
1190 	/*
1191 	 * Misc
1192 	 */
1193 	sticks = (int)td->td_sticks;
1194 	orig_tf_rflags = frame->tf_rflags;
1195 
1196 	/*
1197 	 * Virtual kernel intercept - if a VM context managed by a virtual
1198 	 * kernel issues a system call the virtual kernel handles it, not us.
1199 	 * Restore the virtual kernel context and return from its system
1200 	 * call.  The current frame is copied out to the virtual kernel.
1201 	 */
1202 	if (__predict_false(lp->lwp_vkernel && lp->lwp_vkernel->ve)) {
1203 		vkernel_trap(lp, frame);
1204 		error = EJUSTRETURN;
1205 		callp = NULL;
1206 		code = 0;
1207 		goto out;
1208 	}
1209 
1210 	/*
1211 	 * Get the system call parameters and account for time
1212 	 */
1213 #ifdef DIAGNOSTIC
1214 	KASSERT(lp->lwp_md.md_regs == frame,
1215 		("Frame mismatch %p %p", lp->lwp_md.md_regs, frame));
1216 #endif
1217 
1218 	code = (u_int)frame->tf_rax;
1219 	if (code >= p->p_sysent->sv_size)
1220 		code = SYS___nosys;
1221 
1222 	argp = (union sysunion *)&frame->tf_rdi;
1223 	callp = &p->p_sysent->sv_table[code];
1224 
1225 	/*
1226 	 * On x86_64 we get up to six arguments in registers. The rest are
1227 	 * on the stack. The first six members of 'struct trapframe' happen
1228 	 * to be the registers used to pass arguments, in exactly the right
1229 	 * order.
1230 	 *
1231 	 * Any arguments beyond available argument-passing registers must
1232 	 * be copyin()'d from the user stack.
1233 	 */
1234 	narg = callp->sy_narg;
1235 	if (__predict_false(narg > regcnt)) {
1236 		register_t *argsdst;
1237 		caddr_t params;
1238 
1239 		argsdst = (register_t *)&sysmsg.extargs;
1240 		bcopy(argp, argsdst, sizeof(register_t) * regcnt);
1241 		params = (caddr_t)frame->tf_rsp + sizeof(register_t);
1242 		error = copyin(params, &argsdst[regcnt],
1243 			       (narg - regcnt) * sizeof(register_t));
1244 		argp = (void *)argsdst;
1245 		if (error) {
1246 #ifdef KTRACE
1247 			if (KTRPOINTP(p, td, KTR_SYSCALL)) {
1248 				ktrsyscall(lp, code, narg, argp);
1249 			}
1250 #endif
1251 			goto bad;
1252 		}
1253 	}
1254 
1255 #ifdef KTRACE
1256 	if (KTRPOINTP(p, td, KTR_SYSCALL)) {
1257 		ktrsyscall(lp, code, narg, argp);
1258 	}
1259 #endif
1260 
1261 	/*
1262 	 * Default return value is 0 (will be copied to %rax).  Double-value
1263 	 * returns use %rax and %rdx.  %rdx is left unchanged for system
1264 	 * calls which return only one result.
1265 	 */
1266 	sysmsg.sysmsg_fds[0] = 0;
1267 	sysmsg.sysmsg_fds[1] = frame->tf_rdx;
1268 
1269 	/*
1270 	 * The syscall might manipulate the trap frame. If it does it
1271 	 * will probably return EJUSTRETURN.
1272 	 */
1273 	sysmsg.sysmsg_frame = frame;
1274 
1275 	STOPEVENT(p, S_SCE, narg);	/* MP aware */
1276 
1277 	/*
1278 	 * NOTE: All system calls run MPSAFE now.  The system call itself
1279 	 *	 is responsible for getting the MP lock.
1280 	 */
1281 #ifdef SYSCALL_DEBUG
1282 	tsc_uclock_t tscval = rdtsc();
1283 #endif
1284 	error = (*callp->sy_call)(&sysmsg, argp);
1285 #ifdef SYSCALL_DEBUG
1286 	tscval = rdtsc() - tscval;
1287 	tscval = tscval * 1000000 / (tsc_frequency / 1000);	/* ns */
1288 	{
1289 		struct syscallwc *scwc = &SysCallsWorstCase[mycpu->gd_cpuid];
1290 		int idx = scwc->idx++ % SCWC_MAXT;
1291 
1292 		scwc->tot[code] += tscval - scwc->timings[code][idx];
1293 		scwc->timings[code][idx] = tscval;
1294 	}
1295 #endif
1296 
1297 out:
1298 	/*
1299 	 * MP SAFE (we may or may not have the MP lock at this point)
1300 	 */
1301 	//kprintf("SYSMSG %d ", error);
1302 	if (__predict_true(error == 0)) {
1303 		/*
1304 		 * Reinitialize proc pointer `p' as it may be different
1305 		 * if this is a child returning from fork syscall.
1306 		 */
1307 		p = curproc;
1308 		lp = curthread->td_lwp;
1309 		frame->tf_rax = sysmsg.sysmsg_fds[0];
1310 		frame->tf_rdx = sysmsg.sysmsg_fds[1];
1311 		frame->tf_rflags &= ~PSL_C;
1312 	} else if (error == ERESTART) {
1313 		/*
1314 		 * Reconstruct pc, we know that 'syscall' is 2 bytes.
1315 		 * We have to do a full context restore so that %r10
1316 		 * (which was holding the value of %rcx) is restored for
1317 		 * the next iteration.
1318 		 */
1319 		if (frame->tf_err != 0 && frame->tf_err != 2)
1320 			kprintf("lp %s:%d frame->tf_err is weird %ld\n",
1321 				td->td_comm, lp->lwp_proc->p_pid, frame->tf_err);
1322 		frame->tf_rip -= frame->tf_err;
1323 		frame->tf_r10 = frame->tf_rcx;
1324 	} else if (error == EJUSTRETURN) {
1325 		/* do nothing */
1326 	} else if (error == EASYNC) {
1327 		panic("Unexpected EASYNC return value (for now)");
1328 	} else {
1329 bad:
1330 		if (p->p_sysent->sv_errsize) {
1331 			if (error >= p->p_sysent->sv_errsize)
1332 				error = -1;	/* XXX */
1333 			else
1334 				error = p->p_sysent->sv_errtbl[error];
1335 		}
1336 		frame->tf_rax = error;
1337 		frame->tf_rflags |= PSL_C;
1338 	}
1339 
1340 	/*
1341 	 * Traced syscall.  trapsignal() should now be MP aware
1342 	 */
1343 	if (__predict_false(orig_tf_rflags & PSL_T)) {
1344 		frame->tf_rflags &= ~PSL_T;
1345 		trapsignal(lp, SIGTRAP, TRAP_TRACE);
1346 	}
1347 
1348 	/*
1349 	 * Handle reschedule and other end-of-syscall issues
1350 	 */
1351 	userret(lp, frame, sticks);
1352 
1353 #ifdef KTRACE
1354 	if (KTRPOINTP(p, td, KTR_SYSRET)) {
1355 		ktrsysret(lp, code, error, sysmsg.sysmsg_result);
1356 	}
1357 #endif
1358 
1359 	/*
1360 	 * This works because errno is findable through the
1361 	 * register set.  If we ever support an emulation where this
1362 	 * is not the case, this code will need to be revisited.
1363 	 */
1364 	STOPEVENT(p, S_SCX, code);
1365 
1366 	userexit(lp);
1367 	KTR_LOG(kernentry_syscall_ret, p->p_pid, lp->lwp_tid, error);
1368 #ifdef INVARIANTS
1369 	KASSERT(crit_count == td->td_critcount,
1370 		("syscall: critical section count mismatch! "
1371 		 "%d/%d in %s sysno=%d",
1372 		crit_count, td->td_pri, td->td_comm, code));
1373 	KASSERT(&td->td_toks_base == td->td_toks_stop,
1374 		("syscall: %ld extra tokens held after trap! syscall %p",
1375 		td->td_toks_stop - &td->td_toks_base,
1376 		callp->sy_call));
1377 #endif
1378 }
1379 
1380 /*
1381  * Handles the syscall() and __syscall() API
1382  */
1383 void xsyscall(struct sysmsg *sysmsg, struct nosys_args *uap);
1384 
1385 int
1386 sys_xsyscall(struct sysmsg *sysmsg, const struct nosys_args *uap)
1387 {
1388 	struct trapframe *frame;
1389 	struct sysent *callp;
1390 	union sysunion *argp;
1391 	struct thread *td;
1392 	struct proc *p;
1393 	const int regcnt = 5;	/* number of args passed in registers */
1394 	u_int code;
1395 	int error;
1396 	int narg;
1397 
1398 	td = curthread;
1399 	p = td->td_proc;
1400 	frame = sysmsg->sysmsg_frame;
1401 	code = (u_int)frame->tf_rdi;
1402 	if (code >= p->p_sysent->sv_size)
1403 		code = SYS___nosys;
1404 	argp = (union sysunion *)(&frame->tf_rdi + 1);
1405 	callp = &p->p_sysent->sv_table[code];
1406 	narg = callp->sy_narg;
1407 
1408 	/*
1409 	 * On x86_64 we get up to six arguments in registers.  The rest are
1410 	 * on the stack.  However, for syscall() and __syscall() the syscall
1411 	 * number is inserted as the first argument, so the limit is reduced
1412 	 * by one to five.
1413 	 */
1414 	if (__predict_false(narg > regcnt)) {
1415 		register_t *argsdst;
1416 		caddr_t params;
1417 
1418 		argsdst = (register_t *)&sysmsg->extargs;
1419 		bcopy(argp, argsdst, sizeof(register_t) * regcnt);
1420 		params = (caddr_t)frame->tf_rsp + sizeof(register_t);
1421 		error = copyin(params, &argsdst[regcnt],
1422 			       (narg - regcnt) * sizeof(register_t));
1423 		argp = (void *)argsdst;
1424 		if (error) {
1425 #ifdef KTRACE
1426 			if (KTRPOINTP(p, td, KTR_SYSCALL)) {
1427 				ktrsyscall(td->td_lwp, code, narg, argp);
1428 			}
1429 			if (KTRPOINTP(p, td, KTR_SYSRET)) {
1430 				ktrsysret(td->td_lwp, code, error,
1431 					  sysmsg->sysmsg_result);
1432 			}
1433 #endif
1434 			return error;
1435 		}
1436 	}
1437 
1438 #ifdef KTRACE
1439 	if (KTRPOINTP(p, td, KTR_SYSCALL)) {
1440 		ktrsyscall(td->td_lwp, code, narg, argp);
1441 	}
1442 #endif
1443 
1444 	error = (*callp->sy_call)(sysmsg, argp);
1445 
1446 #ifdef KTRACE
1447 	if (KTRPOINTP(p, td, KTR_SYSRET)) {
1448 		register_t rval;
1449 
1450 		rval = (callp->sy_rsize <= 4) ? sysmsg->sysmsg_result :
1451 						sysmsg->sysmsg_lresult;
1452 		ktrsysret(td->td_lwp, code, error, rval);
1453 	}
1454 #endif
1455 
1456 	return error;
1457 }
1458 
1459 void
1460 fork_return(struct lwp *lp, struct trapframe *frame)
1461 {
1462 	frame->tf_rax = 0;		/* Child returns zero */
1463 	frame->tf_rflags &= ~PSL_C;	/* success */
1464 	frame->tf_rdx = 1;
1465 
1466 	generic_lwp_return(lp, frame);
1467 	KTR_LOG(kernentry_fork_ret, lp->lwp_proc->p_pid, lp->lwp_tid);
1468 }
1469 
1470 /*
1471  * Simplified back end of syscall(), used when returning from fork()
1472  * directly into user mode.
1473  *
1474  * This code will return back into the fork trampoline code which then
1475  * runs doreti.
1476  */
1477 void
1478 generic_lwp_return(struct lwp *lp, struct trapframe *frame)
1479 {
1480 	struct proc *p = lp->lwp_proc;
1481 
1482 	/*
1483 	 * Check for exit-race.  If one lwp exits the process concurrent with
1484 	 * another lwp creating a new thread, the two operations may cross
1485 	 * each other resulting in the newly-created lwp not receiving a
1486 	 * KILL signal.
1487 	 */
1488 	if (p->p_flags & P_WEXIT) {
1489 		lwpsignal(p, lp, SIGKILL);
1490 	}
1491 
1492 	/*
1493 	 * Newly forked processes are given a kernel priority.  We have to
1494 	 * adjust the priority to a normal user priority and fake entry
1495 	 * into the kernel (call userenter()) to install a passive release
1496 	 * function just in case userret() decides to stop the process.  This
1497 	 * can occur when ^Z races a fork.  If we do not install the passive
1498 	 * release function the current process designation will not be
1499 	 * released when the thread goes to sleep.
1500 	 */
1501 	lwkt_setpri_self(TDPRI_USER_NORM);
1502 	userenter(lp->lwp_thread, p);
1503 	userret(lp, frame, 0);
1504 #ifdef KTRACE
1505 	if (KTRPOINTP(p, lp->lwp_thread, KTR_SYSRET))
1506 		ktrsysret(lp, SYS_fork, 0, 0);
1507 #endif
1508 	lp->lwp_flags |= LWP_PASSIVE_ACQ;
1509 	userexit(lp);
1510 	lp->lwp_flags &= ~LWP_PASSIVE_ACQ;
1511 }
1512 
1513 /*
1514  * If PGEX_FPFAULT is set then set FP_VIRTFP in the PCB to force a T_DNA
1515  * fault (which is then passed back to the virtual kernel) if an attempt is
1516  * made to use the FP unit.
1517  *
1518  * XXX this is a fairly big hack.
1519  */
1520 void
1521 set_vkernel_fp(struct trapframe *frame)
1522 {
1523 	struct thread *td = curthread;
1524 
1525 	if (frame->tf_xflags & PGEX_FPFAULT) {
1526 		td->td_pcb->pcb_flags |= FP_VIRTFP;
1527 		if (mdcpu->gd_npxthread == td)
1528 			npxexit();
1529 	} else {
1530 		td->td_pcb->pcb_flags &= ~FP_VIRTFP;
1531 	}
1532 }
1533 
1534 /*
1535  * Called from vkernel_trap() to fixup the vkernel's syscall
1536  * frame for vmspace_ctl() return.
1537  */
1538 void
1539 cpu_vkernel_trap(struct trapframe *frame, int error)
1540 {
1541 	frame->tf_rax = error;
1542 	if (error)
1543 		frame->tf_rflags |= PSL_C;
1544 	else
1545 		frame->tf_rflags &= ~PSL_C;
1546 }
1547