xref: /dragonfly/sys/platform/pc64/x86_64/trap.c (revision 4d0c54c1)
1 /*-
2  * Copyright (c) 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (C) 1994, David Greenman
5  * Copyright (c) 2008 The DragonFly Project.
6  * Copyright (c) 2008 Jordan Gordeev.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the University of Utah, and William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)trap.c	7.4 (Berkeley) 5/13/91
40  * $FreeBSD: src/sys/i386/i386/trap.c,v 1.147.2.11 2003/02/27 19:09:59 luoqi Exp $
41  */
42 
43 /*
44  * x86_64 Trap and System call handling
45  */
46 
47 #include "use_isa.h"
48 
49 #include "opt_ddb.h"
50 #include "opt_ktrace.h"
51 
52 #include <machine/frame.h>
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/kerneldump.h>
57 #include <sys/proc.h>
58 #include <sys/pioctl.h>
59 #include <sys/types.h>
60 #include <sys/signal2.h>
61 #include <sys/syscall.h>
62 #include <sys/sysctl.h>
63 #include <sys/sysent.h>
64 #include <sys/systm.h>
65 #ifdef KTRACE
66 #include <sys/ktrace.h>
67 #endif
68 #include <sys/ktr.h>
69 #include <sys/sysmsg.h>
70 #include <sys/sysproto.h>
71 #include <sys/sysunion.h>
72 
73 #include <vm/pmap.h>
74 #include <vm/vm.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_kern.h>
77 #include <vm/vm_param.h>
78 #include <machine/cpu.h>
79 #include <machine/pcb.h>
80 #include <machine/smp.h>
81 #include <machine/thread.h>
82 #include <machine/clock.h>
83 #include <machine/vmparam.h>
84 #include <machine/md_var.h>
85 #include <machine_base/isa/isa_intr.h>
86 #include <machine_base/apic/lapic.h>
87 
88 #include <ddb/ddb.h>
89 
90 #include <sys/thread2.h>
91 #include <sys/mplock2.h>
92 
93 #define MAKEMPSAFE(have_mplock)			\
94 	if (have_mplock == 0) {			\
95 		get_mplock();			\
96 		have_mplock = 1;		\
97 	}
98 
99 extern void trap(struct trapframe *frame);
100 
101 static int trap_pfault(struct trapframe *, int);
102 static void trap_fatal(struct trapframe *, vm_offset_t);
103 void dblfault_handler(struct trapframe *frame);
104 
105 #define MAX_TRAP_MSG		30
106 static char *trap_msg[] = {
107 	"",					/*  0 unused */
108 	"privileged instruction fault",		/*  1 T_PRIVINFLT */
109 	"",					/*  2 unused */
110 	"breakpoint instruction fault",		/*  3 T_BPTFLT */
111 	"",					/*  4 unused */
112 	"",					/*  5 unused */
113 	"arithmetic trap",			/*  6 T_ARITHTRAP */
114 	"system forced exception",		/*  7 T_ASTFLT */
115 	"",					/*  8 unused */
116 	"general protection fault",		/*  9 T_PROTFLT */
117 	"trace trap",				/* 10 T_TRCTRAP */
118 	"",					/* 11 unused */
119 	"page fault",				/* 12 T_PAGEFLT */
120 	"",					/* 13 unused */
121 	"alignment fault",			/* 14 T_ALIGNFLT */
122 	"",					/* 15 unused */
123 	"",					/* 16 unused */
124 	"",					/* 17 unused */
125 	"integer divide fault",			/* 18 T_DIVIDE */
126 	"non-maskable interrupt trap",		/* 19 T_NMI */
127 	"overflow trap",			/* 20 T_OFLOW */
128 	"FPU bounds check fault",		/* 21 T_BOUND */
129 	"FPU device not available",		/* 22 T_DNA */
130 	"double fault",				/* 23 T_DOUBLEFLT */
131 	"FPU operand fetch fault",		/* 24 T_FPOPFLT */
132 	"invalid TSS fault",			/* 25 T_TSSFLT */
133 	"segment not present fault",		/* 26 T_SEGNPFLT */
134 	"stack fault",				/* 27 T_STKFLT */
135 	"machine check trap",			/* 28 T_MCHK */
136 	"SIMD floating-point exception",	/* 29 T_XMMFLT */
137 	"reserved (unknown) fault",		/* 30 T_RESERVED */
138 };
139 
140 #ifdef DDB
141 static int ddb_on_nmi = 1;
142 SYSCTL_INT(_machdep, OID_AUTO, ddb_on_nmi, CTLFLAG_RW,
143 	&ddb_on_nmi, 0, "Go to DDB on NMI");
144 static int ddb_on_seg_fault = 0;
145 SYSCTL_INT(_machdep, OID_AUTO, ddb_on_seg_fault, CTLFLAG_RW,
146 	&ddb_on_seg_fault, 0, "Go to DDB on user seg-fault");
147 static int freeze_on_seg_fault = 0;
148 SYSCTL_INT(_machdep, OID_AUTO, freeze_on_seg_fault, CTLFLAG_RW,
149 	&freeze_on_seg_fault, 0, "Go to DDB on user seg-fault");
150 #endif
151 static int panic_on_nmi = 1;
152 SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
153 	&panic_on_nmi, 0, "Panic on NMI");
154 static int fast_release;
155 SYSCTL_INT(_machdep, OID_AUTO, fast_release, CTLFLAG_RW,
156 	&fast_release, 0, "Passive Release was optimal");
157 static int slow_release;
158 SYSCTL_INT(_machdep, OID_AUTO, slow_release, CTLFLAG_RW,
159 	&slow_release, 0, "Passive Release was nonoptimal");
160 
161 /*
162  * System call debugging records the worst-case system call
163  * overhead (inclusive of blocking), but may be inaccurate.
164  */
165 /*#define SYSCALL_DEBUG*/
166 #ifdef SYSCALL_DEBUG
167 uint64_t SysCallsWorstCase[SYS_MAXSYSCALL];
168 #endif
169 
170 /*
171  * Passively intercepts the thread switch function to increase
172  * the thread priority from a user priority to a kernel priority, reducing
173  * syscall and trap overhead for the case where no switch occurs.
174  *
175  * Synchronizes td_ucred with p_ucred.  This is used by system calls,
176  * signal handling, faults, AST traps, and anything else that enters the
177  * kernel from userland and provides the kernel with a stable read-only
178  * copy of the process ucred.
179  */
180 static __inline void
181 userenter(struct thread *curtd, struct proc *curp)
182 {
183 	struct ucred *ocred;
184 	struct ucred *ncred;
185 
186 	curtd->td_release = lwkt_passive_release;
187 
188 	if (curtd->td_ucred != curp->p_ucred) {
189 		ncred = crhold(curp->p_ucred);
190 		ocred = curtd->td_ucred;
191 		curtd->td_ucred = ncred;
192 		if (ocred)
193 			crfree(ocred);
194 	}
195 
196 #ifdef DDB
197 	/*
198 	 * Debugging, remove top two user stack pages to catch kernel faults
199 	 */
200 	if (freeze_on_seg_fault > 1 && curtd->td_lwp) {
201 		pmap_remove(vmspace_pmap(curtd->td_lwp->lwp_vmspace),
202 			    0x00007FFFFFFFD000LU,
203 			    0x0000800000000000LU);
204 	}
205 #endif
206 }
207 
208 /*
209  * Handle signals, upcalls, profiling, and other AST's and/or tasks that
210  * must be completed before we can return to or try to return to userland.
211  *
212  * Note that td_sticks is a 64 bit quantity, but there's no point doing 64
213  * arithmatic on the delta calculation so the absolute tick values are
214  * truncated to an integer.
215  */
216 static void
217 userret(struct lwp *lp, struct trapframe *frame, int sticks)
218 {
219 	struct proc *p = lp->lwp_proc;
220 	int sig;
221 
222 	/*
223 	 * Charge system time if profiling.  Note: times are in microseconds.
224 	 * This may do a copyout and block, so do it first even though it
225 	 * means some system time will be charged as user time.
226 	 */
227 	if (p->p_flags & P_PROFIL) {
228 		addupc_task(p, frame->tf_rip,
229 			(u_int)((int)lp->lwp_thread->td_sticks - sticks));
230 	}
231 
232 recheck:
233 	/*
234 	 * Specific on-return-to-usermode checks (LWP_MP_WEXIT,
235 	 * LWP_MP_VNLRU, etc).
236 	 */
237 	if (lp->lwp_mpflags & LWP_MP_URETMASK)
238 		lwpuserret(lp);
239 
240 	/*
241 	 * Block here if we are in a stopped state.
242 	 */
243 	if (p->p_stat == SSTOP || dump_stop_usertds) {
244 		lwkt_gettoken(&p->p_token);
245 		tstop();
246 		lwkt_reltoken(&p->p_token);
247 		goto recheck;
248 	}
249 
250 	/*
251 	 * Post any pending upcalls.  If running a virtual kernel be sure
252 	 * to restore the virtual kernel's vmspace before posting the upcall.
253 	 */
254 	if (p->p_flags & (P_SIGVTALRM | P_SIGPROF)) {
255 		lwkt_gettoken(&p->p_token);
256 		if (p->p_flags & P_SIGVTALRM) {
257 			p->p_flags &= ~P_SIGVTALRM;
258 			ksignal(p, SIGVTALRM);
259 		}
260 		if (p->p_flags & P_SIGPROF) {
261 			p->p_flags &= ~P_SIGPROF;
262 			ksignal(p, SIGPROF);
263 		}
264 		lwkt_reltoken(&p->p_token);
265 		goto recheck;
266 	}
267 
268 	/*
269 	 * Post any pending signals.  If running a virtual kernel be sure
270 	 * to restore the virtual kernel's vmspace before posting the signal.
271 	 *
272 	 * WARNING!  postsig() can exit and not return.
273 	 */
274 	if ((sig = CURSIG_TRACE(lp)) != 0) {
275 		lwkt_gettoken(&p->p_token);
276 		postsig(sig);
277 		lwkt_reltoken(&p->p_token);
278 		goto recheck;
279 	}
280 
281 	/*
282 	 * block here if we are swapped out, but still process signals
283 	 * (such as SIGKILL).  proc0 (the swapin scheduler) is already
284 	 * aware of our situation, we do not have to wake it up.
285 	 */
286 	if (p->p_flags & P_SWAPPEDOUT) {
287 		lwkt_gettoken(&p->p_token);
288 		get_mplock();
289 		p->p_flags |= P_SWAPWAIT;
290 		swapin_request();
291 		if (p->p_flags & P_SWAPWAIT)
292 			tsleep(p, PCATCH, "SWOUT", 0);
293 		p->p_flags &= ~P_SWAPWAIT;
294 		rel_mplock();
295 		lwkt_reltoken(&p->p_token);
296 		goto recheck;
297 	}
298 
299 	/*
300 	 * In a multi-threaded program it is possible for a thread to change
301 	 * signal state during a system call which temporarily changes the
302 	 * signal mask.  In this case postsig() might not be run and we
303 	 * have to restore the mask ourselves.
304 	 */
305 	if (lp->lwp_flags & LWP_OLDMASK) {
306 		lp->lwp_flags &= ~LWP_OLDMASK;
307 		lp->lwp_sigmask = lp->lwp_oldsigmask;
308 		goto recheck;
309 	}
310 }
311 
312 /*
313  * Cleanup from userenter and any passive release that might have occured.
314  * We must reclaim the current-process designation before we can return
315  * to usermode.  We also handle both LWKT and USER reschedule requests.
316  */
317 static __inline void
318 userexit(struct lwp *lp)
319 {
320 	struct thread *td = lp->lwp_thread;
321 	/* globaldata_t gd = td->td_gd; */
322 
323 	/*
324 	 * Handle stop requests at kernel priority.  Any requests queued
325 	 * after this loop will generate another AST.
326 	 */
327 	while (lp->lwp_proc->p_stat == SSTOP) {
328 		lwkt_gettoken(&lp->lwp_proc->p_token);
329 		tstop();
330 		lwkt_reltoken(&lp->lwp_proc->p_token);
331 	}
332 
333 	/*
334 	 * Reduce our priority in preparation for a return to userland.  If
335 	 * our passive release function was still in place, our priority was
336 	 * never raised and does not need to be reduced.
337 	 */
338 	lwkt_passive_recover(td);
339 
340 	/* WARNING: we may have migrated cpu's */
341 	/* gd = td->td_gd; */
342 
343 	/*
344 	 * Become the current user scheduled process if we aren't already,
345 	 * and deal with reschedule requests and other factors.
346 	 */
347 	lp->lwp_proc->p_usched->acquire_curproc(lp);
348 }
349 
350 #if !defined(KTR_KERNENTRY)
351 #define	KTR_KERNENTRY	KTR_ALL
352 #endif
353 KTR_INFO_MASTER(kernentry);
354 KTR_INFO(KTR_KERNENTRY, kernentry, trap, 0,
355 	 "TRAP(pid %d, tid %d, trapno %ld, eva %lu)",
356 	 pid_t pid, lwpid_t tid,  register_t trapno, vm_offset_t eva);
357 KTR_INFO(KTR_KERNENTRY, kernentry, trap_ret, 0, "TRAP_RET(pid %d, tid %d)",
358 	 pid_t pid, lwpid_t tid);
359 KTR_INFO(KTR_KERNENTRY, kernentry, syscall, 0, "SYSC(pid %d, tid %d, nr %ld)",
360 	 pid_t pid, lwpid_t tid,  register_t trapno);
361 KTR_INFO(KTR_KERNENTRY, kernentry, syscall_ret, 0, "SYSRET(pid %d, tid %d, err %d)",
362 	 pid_t pid, lwpid_t tid,  int err);
363 KTR_INFO(KTR_KERNENTRY, kernentry, fork_ret, 0, "FORKRET(pid %d, tid %d)",
364 	 pid_t pid, lwpid_t tid);
365 
366 /*
367  * Exception, fault, and trap interface to the kernel.
368  * This common code is called from assembly language IDT gate entry
369  * routines that prepare a suitable stack frame, and restore this
370  * frame after the exception has been processed.
371  *
372  * This function is also called from doreti in an interlock to handle ASTs.
373  * For example:  hardwareint->INTROUTINE->(set ast)->doreti->trap
374  *
375  * NOTE!  We have to retrieve the fault address prior to obtaining the
376  * MP lock because get_mplock() may switch out.  YYY cr2 really ought
377  * to be retrieved by the assembly code, not here.
378  *
379  * XXX gd_trap_nesting_level currently prevents lwkt_switch() from panicing
380  * if an attempt is made to switch from a fast interrupt or IPI.  This is
381  * necessary to properly take fatal kernel traps on SMP machines if
382  * get_mplock() has to block.
383  */
384 
385 void
386 trap(struct trapframe *frame)
387 {
388 	struct globaldata *gd = mycpu;
389 	struct thread *td = gd->gd_curthread;
390 	struct lwp *lp = td->td_lwp;
391 	struct proc *p;
392 	int sticks = 0;
393 	int i = 0, ucode = 0, type, code;
394 	int have_mplock = 0;
395 #ifdef INVARIANTS
396 	int crit_count = td->td_critcount;
397 	lwkt_tokref_t curstop = td->td_toks_stop;
398 #endif
399 	vm_offset_t eva;
400 
401 	p = td->td_proc;
402 	clear_quickret();
403 
404 #ifdef DDB
405         /*
406 	 * We need to allow T_DNA faults when the debugger is active since
407 	 * some dumping paths do large bcopy() which use the floating
408 	 * point registers for faster copying.
409 	 */
410 	if (db_active && frame->tf_trapno != T_DNA) {
411 		eva = (frame->tf_trapno == T_PAGEFLT ? frame->tf_addr : 0);
412 		++gd->gd_trap_nesting_level;
413 		MAKEMPSAFE(have_mplock);
414 		trap_fatal(frame, eva);
415 		--gd->gd_trap_nesting_level;
416 		goto out2;
417 	}
418 #endif
419 
420 	eva = 0;
421 
422 	if ((frame->tf_rflags & PSL_I) == 0) {
423 		/*
424 		 * Buggy application or kernel code has disabled interrupts
425 		 * and then trapped.  Enabling interrupts now is wrong, but
426 		 * it is better than running with interrupts disabled until
427 		 * they are accidentally enabled later.
428 		 */
429 		type = frame->tf_trapno;
430 		if (ISPL(frame->tf_cs) == SEL_UPL) {
431 			MAKEMPSAFE(have_mplock);
432 			/* JG curproc can be NULL */
433 			kprintf(
434 			    "pid %ld (%s): trap %d with interrupts disabled\n",
435 			    (long)curproc->p_pid, curproc->p_comm, type);
436 		} else if (type != T_NMI && type != T_BPTFLT &&
437 		    type != T_TRCTRAP) {
438 			/*
439 			 * XXX not quite right, since this may be for a
440 			 * multiple fault in user mode.
441 			 */
442 			MAKEMPSAFE(have_mplock);
443 			kprintf("kernel trap %d with interrupts disabled\n",
444 			    type);
445 		}
446 		cpu_enable_intr();
447 	}
448 
449 	type = frame->tf_trapno;
450 	code = frame->tf_err;
451 
452 	if (ISPL(frame->tf_cs) == SEL_UPL) {
453 		/* user trap */
454 
455 		KTR_LOG(kernentry_trap, p->p_pid, lp->lwp_tid,
456 			frame->tf_trapno, eva);
457 
458 		userenter(td, p);
459 
460 		sticks = (int)td->td_sticks;
461 		KASSERT(lp->lwp_md.md_regs == frame,
462 			("Frame mismatch %p %p", lp->lwp_md.md_regs, frame));
463 
464 		switch (type) {
465 		case T_PRIVINFLT:	/* privileged instruction fault */
466 			i = SIGILL;
467 			ucode = ILL_PRVOPC;
468 			break;
469 
470 		case T_BPTFLT:		/* bpt instruction fault */
471 		case T_TRCTRAP:		/* trace trap */
472 			frame->tf_rflags &= ~PSL_T;
473 			i = SIGTRAP;
474 			ucode = (type == T_TRCTRAP ? TRAP_TRACE : TRAP_BRKPT);
475 			break;
476 
477 		case T_ARITHTRAP:	/* arithmetic trap */
478 			ucode = code;
479 			i = SIGFPE;
480 			break;
481 
482 		case T_ASTFLT:		/* Allow process switch */
483 			mycpu->gd_cnt.v_soft++;
484 			if (mycpu->gd_reqflags & RQF_AST_OWEUPC) {
485 				atomic_clear_int(&mycpu->gd_reqflags,
486 						 RQF_AST_OWEUPC);
487 				addupc_task(p, p->p_prof.pr_addr,
488 					    p->p_prof.pr_ticks);
489 			}
490 			goto out;
491 
492 		case T_PROTFLT:		/* general protection fault */
493 			i = SIGBUS;
494 			ucode = BUS_OBJERR;
495 			break;
496 		case T_STKFLT:		/* stack fault */
497 		case T_SEGNPFLT:	/* segment not present fault */
498 			i = SIGBUS;
499 			ucode = BUS_ADRERR;
500 			break;
501 		case T_TSSFLT:		/* invalid TSS fault */
502 		case T_DOUBLEFLT:	/* double fault */
503 		default:
504 			i = SIGBUS;
505 			ucode = BUS_OBJERR;
506 			break;
507 
508 		case T_PAGEFLT:		/* page fault */
509 			i = trap_pfault(frame, TRUE);
510 			if (frame->tf_rip == 0) {
511 				kprintf("T_PAGEFLT: Warning %%rip == 0!\n");
512 #ifdef DDB
513 				while (freeze_on_seg_fault)
514 					tsleep(p, 0, "freeze", hz * 20);
515 #endif
516 			}
517 			if (i == -1 || i == 0)
518 				goto out;
519 
520 
521 			if (i == SIGSEGV)
522 				ucode = SEGV_MAPERR;
523 			else {
524 				i = SIGSEGV;
525 				ucode = SEGV_ACCERR;
526 			}
527 			break;
528 
529 		case T_DIVIDE:		/* integer divide fault */
530 			ucode = FPE_INTDIV;
531 			i = SIGFPE;
532 			break;
533 
534 #if NISA > 0
535 		case T_NMI:
536 			MAKEMPSAFE(have_mplock);
537 			/* machine/parity/power fail/"kitchen sink" faults */
538 			if (isa_nmi(code) == 0) {
539 #ifdef DDB
540 				/*
541 				 * NMI can be hooked up to a pushbutton
542 				 * for debugging.
543 				 */
544 				if (ddb_on_nmi) {
545 					kprintf ("NMI ... going to debugger\n");
546 					kdb_trap(type, 0, frame);
547 				}
548 #endif /* DDB */
549 				goto out2;
550 			} else if (panic_on_nmi)
551 				panic("NMI indicates hardware failure");
552 			break;
553 #endif /* NISA > 0 */
554 
555 		case T_OFLOW:		/* integer overflow fault */
556 			ucode = FPE_INTOVF;
557 			i = SIGFPE;
558 			break;
559 
560 		case T_BOUND:		/* bounds check fault */
561 			ucode = FPE_FLTSUB;
562 			i = SIGFPE;
563 			break;
564 
565 		case T_DNA:
566 			/*
567 			 * Virtual kernel intercept - pass the DNA exception
568 			 * to the virtual kernel if it asked to handle it.
569 			 * This occurs when the virtual kernel is holding
570 			 * onto the FP context for a different emulated
571 			 * process then the one currently running.
572 			 *
573 			 * We must still call npxdna() since we may have
574 			 * saved FP state that the virtual kernel needs
575 			 * to hand over to a different emulated process.
576 			 */
577 			if (lp->lwp_vkernel && lp->lwp_vkernel->ve &&
578 			    (td->td_pcb->pcb_flags & FP_VIRTFP)
579 			) {
580 				npxdna();
581 				break;
582 			}
583 
584 			/*
585 			 * The kernel may have switched out the FP unit's
586 			 * state, causing the user process to take a fault
587 			 * when it tries to use the FP unit.  Restore the
588 			 * state here
589 			 */
590 			if (npxdna())
591 				goto out;
592 			i = SIGFPE;
593 			ucode = FPE_FPU_NP_TRAP;
594 			break;
595 
596 		case T_FPOPFLT:		/* FPU operand fetch fault */
597 			ucode = ILL_COPROC;
598 			i = SIGILL;
599 			break;
600 
601 		case T_XMMFLT:		/* SIMD floating-point exception */
602 			ucode = 0; /* XXX */
603 			i = SIGFPE;
604 			break;
605 		}
606 	} else {
607 		/* kernel trap */
608 
609 		switch (type) {
610 		case T_PAGEFLT:			/* page fault */
611 			trap_pfault(frame, FALSE);
612 			goto out2;
613 
614 		case T_DNA:
615 			/*
616 			 * The kernel is apparently using fpu for copying.
617 			 * XXX this should be fatal unless the kernel has
618 			 * registered such use.
619 			 */
620 			if (npxdna())
621 				goto out2;
622 			break;
623 
624 		case T_STKFLT:		/* stack fault */
625 			break;
626 
627 		case T_PROTFLT:		/* general protection fault */
628 		case T_SEGNPFLT:	/* segment not present fault */
629 			/*
630 			 * Invalid segment selectors and out of bounds
631 			 * %rip's and %rsp's can be set up in user mode.
632 			 * This causes a fault in kernel mode when the
633 			 * kernel tries to return to user mode.  We want
634 			 * to get this fault so that we can fix the
635 			 * problem here and not have to check all the
636 			 * selectors and pointers when the user changes
637 			 * them.
638 			 */
639 			if (mycpu->gd_intr_nesting_level == 0) {
640 				/*
641 				 * NOTE: in 64-bit mode traps push rsp/ss
642 				 *	 even if no ring change occurs.
643 				 */
644 				if (td->td_pcb->pcb_onfault &&
645 				    td->td_pcb->pcb_onfault_sp ==
646 				    frame->tf_rsp) {
647 					frame->tf_rip = (register_t)
648 						td->td_pcb->pcb_onfault;
649 					goto out2;
650 				}
651 				if (frame->tf_rip == (long)doreti_iret) {
652 					frame->tf_rip = (long)doreti_iret_fault;
653 					goto out2;
654 				}
655 			}
656 			break;
657 
658 		case T_TSSFLT:
659 			/*
660 			 * PSL_NT can be set in user mode and isn't cleared
661 			 * automatically when the kernel is entered.  This
662 			 * causes a TSS fault when the kernel attempts to
663 			 * `iret' because the TSS link is uninitialized.  We
664 			 * want to get this fault so that we can fix the
665 			 * problem here and not every time the kernel is
666 			 * entered.
667 			 */
668 			if (frame->tf_rflags & PSL_NT) {
669 				frame->tf_rflags &= ~PSL_NT;
670 				goto out2;
671 			}
672 			break;
673 
674 		case T_TRCTRAP:	 /* trace trap */
675 #if 0
676 			if (frame->tf_rip == (int)IDTVEC(syscall)) {
677 				/*
678 				 * We've just entered system mode via the
679 				 * syscall lcall.  Continue single stepping
680 				 * silently until the syscall handler has
681 				 * saved the flags.
682 				 */
683 				goto out2;
684 			}
685 			if (frame->tf_rip == (int)IDTVEC(syscall) + 1) {
686 				/*
687 				 * The syscall handler has now saved the
688 				 * flags.  Stop single stepping it.
689 				 */
690 				frame->tf_rflags &= ~PSL_T;
691 				goto out2;
692 			}
693 #endif
694 
695 			/*
696 			 * Ignore debug register trace traps due to
697 			 * accesses in the user's address space, which
698 			 * can happen under several conditions such as
699 			 * if a user sets a watchpoint on a buffer and
700 			 * then passes that buffer to a system call.
701 			 * We still want to get TRCTRAPS for addresses
702 			 * in kernel space because that is useful when
703 			 * debugging the kernel.
704 			 */
705 #if JG
706 			if (user_dbreg_trap()) {
707 				/*
708 				 * Reset breakpoint bits because the
709 				 * processor doesn't
710 				 */
711 				/* XXX check upper bits here */
712 				load_dr6(rdr6() & 0xfffffff0);
713 				goto out2;
714 			}
715 #endif
716 			/*
717 			 * FALLTHROUGH (TRCTRAP kernel mode, kernel address)
718 			 */
719 		case T_BPTFLT:
720 			/*
721 			 * If DDB is enabled, let it handle the debugger trap.
722 			 * Otherwise, debugger traps "can't happen".
723 			 */
724 			ucode = TRAP_BRKPT;
725 #ifdef DDB
726 			MAKEMPSAFE(have_mplock);
727 			if (kdb_trap(type, 0, frame))
728 				goto out2;
729 #endif
730 			break;
731 
732 #if NISA > 0
733 		case T_NMI:
734 			MAKEMPSAFE(have_mplock);
735 			/* machine/parity/power fail/"kitchen sink" faults */
736 			if (isa_nmi(code) == 0) {
737 #ifdef DDB
738 				/*
739 				 * NMI can be hooked up to a pushbutton
740 				 * for debugging.
741 				 */
742 				if (ddb_on_nmi) {
743 					kprintf ("NMI ... going to debugger\n");
744 					kdb_trap(type, 0, frame);
745 				}
746 #endif /* DDB */
747 				goto out2;
748 			} else if (panic_on_nmi == 0)
749 				goto out2;
750 			/* FALL THROUGH */
751 #endif /* NISA > 0 */
752 		}
753 		MAKEMPSAFE(have_mplock);
754 		trap_fatal(frame, 0);
755 		goto out2;
756 	}
757 
758 	/*
759 	 * Virtual kernel intercept - if the fault is directly related to a
760 	 * VM context managed by a virtual kernel then let the virtual kernel
761 	 * handle it.
762 	 */
763 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
764 		vkernel_trap(lp, frame);
765 		goto out;
766 	}
767 
768 	/* Translate fault for emulators (e.g. Linux) */
769 	if (*p->p_sysent->sv_transtrap)
770 		i = (*p->p_sysent->sv_transtrap)(i, type);
771 
772 	MAKEMPSAFE(have_mplock);
773 	trapsignal(lp, i, ucode);
774 
775 #ifdef DEBUG
776 	if (type <= MAX_TRAP_MSG) {
777 		uprintf("fatal process exception: %s",
778 			trap_msg[type]);
779 		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
780 			uprintf(", fault VA = 0x%lx", frame->tf_addr);
781 		uprintf("\n");
782 	}
783 #endif
784 
785 out:
786 	userret(lp, frame, sticks);
787 	userexit(lp);
788 out2:	;
789 	if (have_mplock)
790 		rel_mplock();
791 	if (p != NULL && lp != NULL)
792 		KTR_LOG(kernentry_trap_ret, p->p_pid, lp->lwp_tid);
793 #ifdef INVARIANTS
794 	KASSERT(crit_count == td->td_critcount,
795 		("trap: critical section count mismatch! %d/%d",
796 		crit_count, td->td_pri));
797 	KASSERT(curstop == td->td_toks_stop,
798 		("trap: extra tokens held after trap! %ld/%ld",
799 		curstop - &td->td_toks_base,
800 		td->td_toks_stop - &td->td_toks_base));
801 #endif
802 }
803 
804 static int
805 trap_pfault(struct trapframe *frame, int usermode)
806 {
807 	vm_offset_t va;
808 	struct vmspace *vm = NULL;
809 	vm_map_t map;
810 	int rv = 0;
811 	int fault_flags;
812 	vm_prot_t ftype;
813 	thread_t td = curthread;
814 	struct lwp *lp = td->td_lwp;
815 	struct proc *p;
816 
817 	va = trunc_page(frame->tf_addr);
818 	if (va >= VM_MIN_KERNEL_ADDRESS) {
819 		/*
820 		 * Don't allow user-mode faults in kernel address space.
821 		 */
822 		if (usermode) {
823 			fault_flags = -1;
824 			ftype = -1;
825 			goto nogo;
826 		}
827 
828 		map = &kernel_map;
829 	} else {
830 		/*
831 		 * This is a fault on non-kernel virtual memory.
832 		 * vm is initialized above to NULL. If curproc is NULL
833 		 * or curproc->p_vmspace is NULL the fault is fatal.
834 		 */
835 		if (lp != NULL)
836 			vm = lp->lwp_vmspace;
837 
838 		if (vm == NULL) {
839 			fault_flags = -1;
840 			ftype = -1;
841 			goto nogo;
842 		}
843 
844 		/*
845 		 * Debugging, try to catch kernel faults on the user address space when not inside
846 		 * on onfault (e.g. copyin/copyout) routine.
847 		 */
848 		if (usermode == 0 && (td->td_pcb == NULL ||
849 		    td->td_pcb->pcb_onfault == NULL)) {
850 #ifdef DDB
851 			if (freeze_on_seg_fault) {
852 				kprintf("trap_pfault: user address fault from kernel mode "
853 					"%016lx\n", (long)frame->tf_addr);
854 				while (freeze_on_seg_fault)
855 					    tsleep(&freeze_on_seg_fault, 0, "frzseg", hz * 20);
856 			}
857 #endif
858 		}
859 		map = &vm->vm_map;
860 	}
861 
862 	/*
863 	 * PGEX_I is defined only if the execute disable bit capability is
864 	 * supported and enabled.
865 	 */
866 	if (frame->tf_err & PGEX_W)
867 		ftype = VM_PROT_WRITE;
868 #if JG
869 	else if ((frame->tf_err & PGEX_I) && pg_nx != 0)
870 		ftype = VM_PROT_EXECUTE;
871 #endif
872 	else
873 		ftype = VM_PROT_READ;
874 
875 	if (map != &kernel_map) {
876 		/*
877 		 * Keep swapout from messing with us during this
878 		 *	critical time.
879 		 */
880 		PHOLD(lp->lwp_proc);
881 
882 		/*
883 		 * Issue fault
884 		 */
885 		fault_flags = 0;
886 		if (usermode)
887 			fault_flags |= VM_FAULT_BURST;
888 		if (ftype & VM_PROT_WRITE)
889 			fault_flags |= VM_FAULT_DIRTY;
890 		else
891 			fault_flags |= VM_FAULT_NORMAL;
892 		rv = vm_fault(map, va, ftype, fault_flags);
893 
894 		PRELE(lp->lwp_proc);
895 	} else {
896 		/*
897 		 * Don't have to worry about process locking or stacks in the
898 		 * kernel.
899 		 */
900 		fault_flags = VM_FAULT_NORMAL;
901 		rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
902 	}
903 	if (rv == KERN_SUCCESS)
904 		return (0);
905 nogo:
906 	if (!usermode) {
907 		/*
908 		 * NOTE: in 64-bit mode traps push rsp/ss
909 		 *	 even if no ring change occurs.
910 		 */
911 		if (td->td_pcb->pcb_onfault &&
912 		    td->td_pcb->pcb_onfault_sp == frame->tf_rsp &&
913 		    td->td_gd->gd_intr_nesting_level == 0) {
914 			frame->tf_rip = (register_t)td->td_pcb->pcb_onfault;
915 			return (0);
916 		}
917 		trap_fatal(frame, frame->tf_addr);
918 		return (-1);
919 	}
920 
921 	/*
922 	 * NOTE: on x86_64 we have a tf_addr field in the trapframe, no
923 	 * kludge is needed to pass the fault address to signal handlers.
924 	 */
925 	p = td->td_proc;
926 	if (td->td_lwp->lwp_vkernel == NULL) {
927 #ifdef DDB
928 		if (bootverbose || freeze_on_seg_fault || ddb_on_seg_fault) {
929 #else
930 		if (bootverbose) {
931 #endif
932 			kprintf("seg-fault ft=%04x ff=%04x addr=%p rip=%p "
933 			    "pid=%d cpu=%d p_comm=%s\n",
934 			    ftype, fault_flags,
935 			    (void *)frame->tf_addr,
936 			    (void *)frame->tf_rip,
937 			    p->p_pid, mycpu->gd_cpuid, p->p_comm);
938 		}
939 #ifdef DDB
940 		while (freeze_on_seg_fault) {
941 			tsleep(p, 0, "freeze", hz * 20);
942 		}
943 		if (ddb_on_seg_fault)
944 			Debugger("ddb_on_seg_fault");
945 #endif
946 	}
947 
948 	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
949 }
950 
951 static void
952 trap_fatal(struct trapframe *frame, vm_offset_t eva)
953 {
954 	int code, ss;
955 	u_int type;
956 	long rsp;
957 	struct soft_segment_descriptor softseg;
958 	char *msg;
959 
960 	code = frame->tf_err;
961 	type = frame->tf_trapno;
962 	sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)], &softseg);
963 
964 	if (type <= MAX_TRAP_MSG)
965 		msg = trap_msg[type];
966 	else
967 		msg = "UNKNOWN";
968 	kprintf("\n\nFatal trap %d: %s while in %s mode\n", type, msg,
969 	    ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
970 	/* three separate prints in case of a trap on an unmapped page */
971 	kprintf("cpuid = %d; ", mycpu->gd_cpuid);
972 	kprintf("lapic->id = %08x\n", lapic->id);
973 	if (type == T_PAGEFLT) {
974 		kprintf("fault virtual address	= 0x%lx\n", eva);
975 		kprintf("fault code		= %s %s %s, %s\n",
976 			code & PGEX_U ? "user" : "supervisor",
977 			code & PGEX_W ? "write" : "read",
978 			code & PGEX_I ? "instruction" : "data",
979 			code & PGEX_P ? "protection violation" : "page not present");
980 	}
981 	kprintf("instruction pointer	= 0x%lx:0x%lx\n",
982 	       frame->tf_cs & 0xffff, frame->tf_rip);
983         if (ISPL(frame->tf_cs) == SEL_UPL) {
984 		ss = frame->tf_ss & 0xffff;
985 		rsp = frame->tf_rsp;
986 	} else {
987 		/*
988 		 * NOTE: in 64-bit mode traps push rsp/ss even if no ring
989 		 *	 change occurs.
990 		 */
991 		ss = GSEL(GDATA_SEL, SEL_KPL);
992 		rsp = frame->tf_rsp;
993 	}
994 	kprintf("stack pointer	        = 0x%x:0x%lx\n", ss, rsp);
995 	kprintf("frame pointer	        = 0x%x:0x%lx\n", ss, frame->tf_rbp);
996 	kprintf("code segment		= base 0x%lx, limit 0x%lx, type 0x%x\n",
997 	       softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
998 	kprintf("			= DPL %d, pres %d, long %d, def32 %d, gran %d\n",
999 	       softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_long, softseg.ssd_def32,
1000 	       softseg.ssd_gran);
1001 	kprintf("processor eflags	= ");
1002 	if (frame->tf_rflags & PSL_T)
1003 		kprintf("trace trap, ");
1004 	if (frame->tf_rflags & PSL_I)
1005 		kprintf("interrupt enabled, ");
1006 	if (frame->tf_rflags & PSL_NT)
1007 		kprintf("nested task, ");
1008 	if (frame->tf_rflags & PSL_RF)
1009 		kprintf("resume, ");
1010 	kprintf("IOPL = %ld\n", (frame->tf_rflags & PSL_IOPL) >> 12);
1011 	kprintf("current process		= ");
1012 	if (curproc) {
1013 		kprintf("%lu\n",
1014 		    (u_long)curproc->p_pid);
1015 	} else {
1016 		kprintf("Idle\n");
1017 	}
1018 	kprintf("current thread          = pri %d ", curthread->td_pri);
1019 	if (curthread->td_critcount)
1020 		kprintf("(CRIT)");
1021 	kprintf("\n");
1022 
1023 #ifdef DDB
1024 	if ((debugger_on_panic || db_active) && kdb_trap(type, code, frame))
1025 		return;
1026 #endif
1027 	kprintf("trap number		= %d\n", type);
1028 	if (type <= MAX_TRAP_MSG)
1029 		panic("%s", trap_msg[type]);
1030 	else
1031 		panic("unknown/reserved trap");
1032 }
1033 
1034 /*
1035  * Double fault handler. Called when a fault occurs while writing
1036  * a frame for a trap/exception onto the stack. This usually occurs
1037  * when the stack overflows (such is the case with infinite recursion,
1038  * for example).
1039  */
1040 static __inline
1041 int
1042 in_kstack_guard(register_t rptr)
1043 {
1044 	thread_t td = curthread;
1045 
1046 	if ((char *)rptr >= td->td_kstack &&
1047 	    (char *)rptr < td->td_kstack + PAGE_SIZE) {
1048 		return 1;
1049 	}
1050 	return 0;
1051 }
1052 
1053 void
1054 dblfault_handler(struct trapframe *frame)
1055 {
1056 	thread_t td = curthread;
1057 
1058 	if (in_kstack_guard(frame->tf_rsp) || in_kstack_guard(frame->tf_rbp)) {
1059 		kprintf("DOUBLE FAULT - KERNEL STACK GUARD HIT!\n");
1060 		if (in_kstack_guard(frame->tf_rsp))
1061 			frame->tf_rsp = (register_t)(td->td_kstack + PAGE_SIZE);
1062 		if (in_kstack_guard(frame->tf_rbp))
1063 			frame->tf_rbp = (register_t)(td->td_kstack + PAGE_SIZE);
1064 	} else {
1065 		kprintf("DOUBLE FAULT\n");
1066 	}
1067 	kprintf("\nFatal double fault\n");
1068 	kprintf("rip = 0x%lx\n", frame->tf_rip);
1069 	kprintf("rsp = 0x%lx\n", frame->tf_rsp);
1070 	kprintf("rbp = 0x%lx\n", frame->tf_rbp);
1071 	/* three separate prints in case of a trap on an unmapped page */
1072 	kprintf("cpuid = %d; ", mycpu->gd_cpuid);
1073 	kprintf("lapic->id = %08x\n", lapic->id);
1074 	panic("double fault");
1075 }
1076 
1077 /*
1078  * syscall2 -	MP aware system call request C handler
1079  *
1080  * A system call is essentially treated as a trap except that the
1081  * MP lock is not held on entry or return.  We are responsible for
1082  * obtaining the MP lock if necessary and for handling ASTs
1083  * (e.g. a task switch) prior to return.
1084  *
1085  * MPSAFE
1086  */
1087 void
1088 syscall2(struct trapframe *frame)
1089 {
1090 	struct thread *td = curthread;
1091 	struct proc *p = td->td_proc;
1092 	struct lwp *lp = td->td_lwp;
1093 	caddr_t params;
1094 	struct sysent *callp;
1095 	register_t orig_tf_rflags;
1096 	int sticks;
1097 	int error;
1098 	int narg;
1099 #ifdef INVARIANTS
1100 	int crit_count = td->td_critcount;
1101 #endif
1102 	int have_mplock = 0;
1103 	register_t *argp;
1104 	u_int code;
1105 	int reg, regcnt;
1106 	union sysunion args;
1107 	register_t *argsdst;
1108 
1109 	mycpu->gd_cnt.v_syscall++;
1110 
1111 #ifdef DIAGNOSTIC
1112 	if (ISPL(frame->tf_cs) != SEL_UPL) {
1113 		get_mplock();
1114 		panic("syscall");
1115 		/* NOT REACHED */
1116 	}
1117 #endif
1118 
1119 	KTR_LOG(kernentry_syscall, p->p_pid, lp->lwp_tid,
1120 		frame->tf_rax);
1121 
1122 	userenter(td, p);	/* lazy raise our priority */
1123 
1124 	reg = 0;
1125 	regcnt = 6;
1126 	/*
1127 	 * Misc
1128 	 */
1129 	sticks = (int)td->td_sticks;
1130 	orig_tf_rflags = frame->tf_rflags;
1131 
1132 	/*
1133 	 * Virtual kernel intercept - if a VM context managed by a virtual
1134 	 * kernel issues a system call the virtual kernel handles it, not us.
1135 	 * Restore the virtual kernel context and return from its system
1136 	 * call.  The current frame is copied out to the virtual kernel.
1137 	 */
1138 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
1139 		vkernel_trap(lp, frame);
1140 		error = EJUSTRETURN;
1141 		goto out;
1142 	}
1143 
1144 	/*
1145 	 * Get the system call parameters and account for time
1146 	 */
1147 	KASSERT(lp->lwp_md.md_regs == frame,
1148 		("Frame mismatch %p %p", lp->lwp_md.md_regs, frame));
1149 	params = (caddr_t)frame->tf_rsp + sizeof(register_t);
1150 	code = frame->tf_rax;
1151 
1152 	if (p->p_sysent->sv_prepsyscall) {
1153 		(*p->p_sysent->sv_prepsyscall)(
1154 			frame, (int *)(&args.nosys.sysmsg + 1),
1155 			&code, &params);
1156 	} else {
1157 		if (code == SYS_syscall || code == SYS___syscall) {
1158 			code = frame->tf_rdi;
1159 			reg++;
1160 			regcnt--;
1161 		}
1162 	}
1163 
1164 	if (p->p_sysent->sv_mask)
1165 		code &= p->p_sysent->sv_mask;
1166 
1167 	if (code >= p->p_sysent->sv_size)
1168 		callp = &p->p_sysent->sv_table[0];
1169 	else
1170 		callp = &p->p_sysent->sv_table[code];
1171 
1172 	narg = callp->sy_narg & SYF_ARGMASK;
1173 
1174 	/*
1175 	 * On x86_64 we get up to six arguments in registers. The rest are
1176 	 * on the stack. The first six members of 'struct trapframe' happen
1177 	 * to be the registers used to pass arguments, in exactly the right
1178 	 * order.
1179 	 */
1180 	argp = &frame->tf_rdi;
1181 	argp += reg;
1182 	argsdst = (register_t *)(&args.nosys.sysmsg + 1);
1183 	/*
1184 	 * JG can we overflow the space pointed to by 'argsdst'
1185 	 * either with 'bcopy' or with 'copyin'?
1186 	 */
1187 	bcopy(argp, argsdst, sizeof(register_t) * regcnt);
1188 	/*
1189 	 * copyin is MP aware, but the tracing code is not
1190 	 */
1191 	if (narg > regcnt) {
1192 		KASSERT(params != NULL, ("copyin args with no params!"));
1193 		error = copyin(params, &argsdst[regcnt],
1194 			(narg - regcnt) * sizeof(register_t));
1195 		if (error) {
1196 #ifdef KTRACE
1197 			if (KTRPOINT(td, KTR_SYSCALL)) {
1198 				MAKEMPSAFE(have_mplock);
1199 
1200 				ktrsyscall(lp, code, narg,
1201 					(void *)(&args.nosys.sysmsg + 1));
1202 			}
1203 #endif
1204 			goto bad;
1205 		}
1206 	}
1207 
1208 #ifdef KTRACE
1209 	if (KTRPOINT(td, KTR_SYSCALL)) {
1210 		MAKEMPSAFE(have_mplock);
1211 		ktrsyscall(lp, code, narg, (void *)(&args.nosys.sysmsg + 1));
1212 	}
1213 #endif
1214 
1215 	/*
1216 	 * Default return value is 0 (will be copied to %rax).  Double-value
1217 	 * returns use %rax and %rdx.  %rdx is left unchanged for system
1218 	 * calls which return only one result.
1219 	 */
1220 	args.sysmsg_fds[0] = 0;
1221 	args.sysmsg_fds[1] = frame->tf_rdx;
1222 
1223 	/*
1224 	 * The syscall might manipulate the trap frame. If it does it
1225 	 * will probably return EJUSTRETURN.
1226 	 */
1227 	args.sysmsg_frame = frame;
1228 
1229 	STOPEVENT(p, S_SCE, narg);	/* MP aware */
1230 
1231 	/*
1232 	 * NOTE: All system calls run MPSAFE now.  The system call itself
1233 	 *	 is responsible for getting the MP lock.
1234 	 */
1235 #ifdef SYSCALL_DEBUG
1236 	uint64_t tscval = rdtsc();
1237 #endif
1238 	error = (*callp->sy_call)(&args);
1239 #ifdef SYSCALL_DEBUG
1240 	tscval = rdtsc() - tscval;
1241 	tscval = tscval * 1000000 / tsc_frequency;
1242 	if (SysCallsWorstCase[code] < tscval)
1243 		SysCallsWorstCase[code] = tscval;
1244 #endif
1245 
1246 out:
1247 	/*
1248 	 * MP SAFE (we may or may not have the MP lock at this point)
1249 	 */
1250 	//kprintf("SYSMSG %d ", error);
1251 	switch (error) {
1252 	case 0:
1253 		/*
1254 		 * Reinitialize proc pointer `p' as it may be different
1255 		 * if this is a child returning from fork syscall.
1256 		 */
1257 		p = curproc;
1258 		lp = curthread->td_lwp;
1259 		frame->tf_rax = args.sysmsg_fds[0];
1260 		frame->tf_rdx = args.sysmsg_fds[1];
1261 		frame->tf_rflags &= ~PSL_C;
1262 		break;
1263 	case ERESTART:
1264 		/*
1265 		 * Reconstruct pc, we know that 'syscall' is 2 bytes.
1266 		 * We have to do a full context restore so that %r10
1267 		 * (which was holding the value of %rcx) is restored for
1268 		 * the next iteration.
1269 		 */
1270 		if (frame->tf_err != 0 && frame->tf_err != 2)
1271 			kprintf("lp %s:%d frame->tf_err is weird %ld\n",
1272 				td->td_comm, lp->lwp_proc->p_pid, frame->tf_err);
1273 		frame->tf_rip -= frame->tf_err;
1274 		frame->tf_r10 = frame->tf_rcx;
1275 		break;
1276 	case EJUSTRETURN:
1277 		break;
1278 	case EASYNC:
1279 		panic("Unexpected EASYNC return value (for now)");
1280 	default:
1281 bad:
1282 		if (p->p_sysent->sv_errsize) {
1283 			if (error >= p->p_sysent->sv_errsize)
1284 				error = -1;	/* XXX */
1285 			else
1286 				error = p->p_sysent->sv_errtbl[error];
1287 		}
1288 		frame->tf_rax = error;
1289 		frame->tf_rflags |= PSL_C;
1290 		break;
1291 	}
1292 
1293 	/*
1294 	 * Traced syscall.  trapsignal() is not MP aware.
1295 	 */
1296 	if (orig_tf_rflags & PSL_T) {
1297 		MAKEMPSAFE(have_mplock);
1298 		frame->tf_rflags &= ~PSL_T;
1299 		trapsignal(lp, SIGTRAP, TRAP_TRACE);
1300 	}
1301 
1302 	/*
1303 	 * Handle reschedule and other end-of-syscall issues
1304 	 */
1305 	userret(lp, frame, sticks);
1306 
1307 #ifdef KTRACE
1308 	if (KTRPOINT(td, KTR_SYSRET)) {
1309 		MAKEMPSAFE(have_mplock);
1310 		ktrsysret(lp, code, error, args.sysmsg_result);
1311 	}
1312 #endif
1313 
1314 	/*
1315 	 * This works because errno is findable through the
1316 	 * register set.  If we ever support an emulation where this
1317 	 * is not the case, this code will need to be revisited.
1318 	 */
1319 	STOPEVENT(p, S_SCX, code);
1320 
1321 	userexit(lp);
1322 	/*
1323 	 * Release the MP lock if we had to get it
1324 	 */
1325 	if (have_mplock)
1326 		rel_mplock();
1327 	KTR_LOG(kernentry_syscall_ret, p->p_pid, lp->lwp_tid, error);
1328 #ifdef INVARIANTS
1329 	KASSERT(crit_count == td->td_critcount,
1330 		("syscall: critical section count mismatch! %d/%d",
1331 		crit_count, td->td_pri));
1332 	KASSERT(&td->td_toks_base == td->td_toks_stop,
1333 		("syscall: extra tokens held after trap! %ld",
1334 		td->td_toks_stop - &td->td_toks_base));
1335 #endif
1336 }
1337 
1338 /*
1339  * NOTE: mplock not held at any point
1340  */
1341 void
1342 fork_return(struct lwp *lp, struct trapframe *frame)
1343 {
1344 	frame->tf_rax = 0;		/* Child returns zero */
1345 	frame->tf_rflags &= ~PSL_C;	/* success */
1346 	frame->tf_rdx = 1;
1347 
1348 	generic_lwp_return(lp, frame);
1349 	KTR_LOG(kernentry_fork_ret, lp->lwp_proc->p_pid, lp->lwp_tid);
1350 }
1351 
1352 /*
1353  * Simplified back end of syscall(), used when returning from fork()
1354  * directly into user mode.
1355  *
1356  * This code will return back into the fork trampoline code which then
1357  * runs doreti.
1358  *
1359  * NOTE: The mplock is not held at any point.
1360  */
1361 void
1362 generic_lwp_return(struct lwp *lp, struct trapframe *frame)
1363 {
1364 	struct proc *p = lp->lwp_proc;
1365 
1366 	/*
1367 	 * Newly forked processes are given a kernel priority.  We have to
1368 	 * adjust the priority to a normal user priority and fake entry
1369 	 * into the kernel (call userenter()) to install a passive release
1370 	 * function just in case userret() decides to stop the process.  This
1371 	 * can occur when ^Z races a fork.  If we do not install the passive
1372 	 * release function the current process designation will not be
1373 	 * released when the thread goes to sleep.
1374 	 */
1375 	lwkt_setpri_self(TDPRI_USER_NORM);
1376 	userenter(lp->lwp_thread, p);
1377 	userret(lp, frame, 0);
1378 #ifdef KTRACE
1379 	if (KTRPOINT(lp->lwp_thread, KTR_SYSRET))
1380 		ktrsysret(lp, SYS_fork, 0, 0);
1381 #endif
1382 	lp->lwp_flags |= LWP_PASSIVE_ACQ;
1383 	userexit(lp);
1384 	lp->lwp_flags &= ~LWP_PASSIVE_ACQ;
1385 }
1386 
1387 /*
1388  * If PGEX_FPFAULT is set then set FP_VIRTFP in the PCB to force a T_DNA
1389  * fault (which is then passed back to the virtual kernel) if an attempt is
1390  * made to use the FP unit.
1391  *
1392  * XXX this is a fairly big hack.
1393  */
1394 void
1395 set_vkernel_fp(struct trapframe *frame)
1396 {
1397 	struct thread *td = curthread;
1398 
1399 	if (frame->tf_xflags & PGEX_FPFAULT) {
1400 		td->td_pcb->pcb_flags |= FP_VIRTFP;
1401 		if (mdcpu->gd_npxthread == td)
1402 			npxexit();
1403 	} else {
1404 		td->td_pcb->pcb_flags &= ~FP_VIRTFP;
1405 	}
1406 }
1407 
1408 /*
1409  * Called from vkernel_trap() to fixup the vkernel's syscall
1410  * frame for vmspace_ctl() return.
1411  */
1412 void
1413 cpu_vkernel_trap(struct trapframe *frame, int error)
1414 {
1415 	frame->tf_rax = error;
1416 	if (error)
1417 		frame->tf_rflags |= PSL_C;
1418 	else
1419 		frame->tf_rflags &= ~PSL_C;
1420 }
1421