xref: /dragonfly/sys/platform/pc64/x86_64/trap.c (revision 666e46d7)
1 /*-
2  * Copyright (c) 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (C) 1994, David Greenman
5  * Copyright (c) 2008 The DragonFly Project.
6  * Copyright (c) 2008 Jordan Gordeev.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the University of Utah, and William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)trap.c	7.4 (Berkeley) 5/13/91
40  * $FreeBSD: src/sys/i386/i386/trap.c,v 1.147.2.11 2003/02/27 19:09:59 luoqi Exp $
41  */
42 
43 /*
44  * x86_64 Trap and System call handling
45  */
46 
47 #include "use_isa.h"
48 
49 #include "opt_ddb.h"
50 #include "opt_ktrace.h"
51 
52 #include <machine/frame.h>
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/kerneldump.h>
57 #include <sys/proc.h>
58 #include <sys/pioctl.h>
59 #include <sys/types.h>
60 #include <sys/signal2.h>
61 #include <sys/syscall.h>
62 #include <sys/sysctl.h>
63 #include <sys/sysent.h>
64 #include <sys/systm.h>
65 #ifdef KTRACE
66 #include <sys/ktrace.h>
67 #endif
68 #include <sys/ktr.h>
69 #include <sys/sysmsg.h>
70 #include <sys/sysproto.h>
71 #include <sys/sysunion.h>
72 
73 #include <vm/pmap.h>
74 #include <vm/vm.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_kern.h>
77 #include <vm/vm_param.h>
78 #include <machine/cpu.h>
79 #include <machine/pcb.h>
80 #include <machine/smp.h>
81 #include <machine/thread.h>
82 #include <machine/clock.h>
83 #include <machine/vmparam.h>
84 #include <machine/md_var.h>
85 #include <machine_base/isa/isa_intr.h>
86 #include <machine_base/apic/lapic.h>
87 
88 #include <ddb/ddb.h>
89 
90 #include <sys/thread2.h>
91 #include <sys/mplock2.h>
92 
93 #define MAKEMPSAFE(have_mplock)			\
94 	if (have_mplock == 0) {			\
95 		get_mplock();			\
96 		have_mplock = 1;		\
97 	}
98 
99 extern void trap(struct trapframe *frame);
100 
101 static int trap_pfault(struct trapframe *, int);
102 static void trap_fatal(struct trapframe *, vm_offset_t);
103 void dblfault_handler(struct trapframe *frame);
104 
105 #define MAX_TRAP_MSG		30
106 static char *trap_msg[] = {
107 	"",					/*  0 unused */
108 	"privileged instruction fault",		/*  1 T_PRIVINFLT */
109 	"",					/*  2 unused */
110 	"breakpoint instruction fault",		/*  3 T_BPTFLT */
111 	"",					/*  4 unused */
112 	"",					/*  5 unused */
113 	"arithmetic trap",			/*  6 T_ARITHTRAP */
114 	"system forced exception",		/*  7 T_ASTFLT */
115 	"",					/*  8 unused */
116 	"general protection fault",		/*  9 T_PROTFLT */
117 	"trace trap",				/* 10 T_TRCTRAP */
118 	"",					/* 11 unused */
119 	"page fault",				/* 12 T_PAGEFLT */
120 	"",					/* 13 unused */
121 	"alignment fault",			/* 14 T_ALIGNFLT */
122 	"",					/* 15 unused */
123 	"",					/* 16 unused */
124 	"",					/* 17 unused */
125 	"integer divide fault",			/* 18 T_DIVIDE */
126 	"non-maskable interrupt trap",		/* 19 T_NMI */
127 	"overflow trap",			/* 20 T_OFLOW */
128 	"FPU bounds check fault",		/* 21 T_BOUND */
129 	"FPU device not available",		/* 22 T_DNA */
130 	"double fault",				/* 23 T_DOUBLEFLT */
131 	"FPU operand fetch fault",		/* 24 T_FPOPFLT */
132 	"invalid TSS fault",			/* 25 T_TSSFLT */
133 	"segment not present fault",		/* 26 T_SEGNPFLT */
134 	"stack fault",				/* 27 T_STKFLT */
135 	"machine check trap",			/* 28 T_MCHK */
136 	"SIMD floating-point exception",	/* 29 T_XMMFLT */
137 	"reserved (unknown) fault",		/* 30 T_RESERVED */
138 };
139 
140 #ifdef DDB
141 static int ddb_on_nmi = 1;
142 SYSCTL_INT(_machdep, OID_AUTO, ddb_on_nmi, CTLFLAG_RW,
143 	&ddb_on_nmi, 0, "Go to DDB on NMI");
144 static int ddb_on_seg_fault = 0;
145 SYSCTL_INT(_machdep, OID_AUTO, ddb_on_seg_fault, CTLFLAG_RW,
146 	&ddb_on_seg_fault, 0, "Go to DDB on user seg-fault");
147 static int freeze_on_seg_fault = 0;
148 SYSCTL_INT(_machdep, OID_AUTO, freeze_on_seg_fault, CTLFLAG_RW,
149 	&freeze_on_seg_fault, 0, "Go to DDB on user seg-fault");
150 #endif
151 static int panic_on_nmi = 1;
152 SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
153 	&panic_on_nmi, 0, "Panic on NMI");
154 static int fast_release;
155 SYSCTL_INT(_machdep, OID_AUTO, fast_release, CTLFLAG_RW,
156 	&fast_release, 0, "Passive Release was optimal");
157 static int slow_release;
158 SYSCTL_INT(_machdep, OID_AUTO, slow_release, CTLFLAG_RW,
159 	&slow_release, 0, "Passive Release was nonoptimal");
160 
161 /*
162  * System call debugging records the worst-case system call
163  * overhead (inclusive of blocking), but may be inaccurate.
164  */
165 /*#define SYSCALL_DEBUG*/
166 #ifdef SYSCALL_DEBUG
167 uint64_t SysCallsWorstCase[SYS_MAXSYSCALL];
168 #endif
169 
170 /*
171  * Passively intercepts the thread switch function to increase
172  * the thread priority from a user priority to a kernel priority, reducing
173  * syscall and trap overhead for the case where no switch occurs.
174  *
175  * Synchronizes td_ucred with p_ucred.  This is used by system calls,
176  * signal handling, faults, AST traps, and anything else that enters the
177  * kernel from userland and provides the kernel with a stable read-only
178  * copy of the process ucred.
179  */
180 static __inline void
181 userenter(struct thread *curtd, struct proc *curp)
182 {
183 	struct ucred *ocred;
184 	struct ucred *ncred;
185 
186 	curtd->td_release = lwkt_passive_release;
187 
188 	if (curtd->td_ucred != curp->p_ucred) {
189 		ncred = crhold(curp->p_ucred);
190 		ocred = curtd->td_ucred;
191 		curtd->td_ucred = ncred;
192 		if (ocred)
193 			crfree(ocred);
194 	}
195 
196 #ifdef DDB
197 	/*
198 	 * Debugging, remove top two user stack pages to catch kernel faults
199 	 */
200 	if (freeze_on_seg_fault > 1 && curtd->td_lwp) {
201 		pmap_remove(vmspace_pmap(curtd->td_lwp->lwp_vmspace),
202 			    0x00007FFFFFFFD000LU,
203 			    0x0000800000000000LU);
204 	}
205 #endif
206 }
207 
208 /*
209  * Handle signals, upcalls, profiling, and other AST's and/or tasks that
210  * must be completed before we can return to or try to return to userland.
211  *
212  * Note that td_sticks is a 64 bit quantity, but there's no point doing 64
213  * arithmatic on the delta calculation so the absolute tick values are
214  * truncated to an integer.
215  */
216 static void
217 userret(struct lwp *lp, struct trapframe *frame, int sticks)
218 {
219 	struct proc *p = lp->lwp_proc;
220 	int sig;
221 
222 	/*
223 	 * Charge system time if profiling.  Note: times are in microseconds.
224 	 * This may do a copyout and block, so do it first even though it
225 	 * means some system time will be charged as user time.
226 	 */
227 	if (p->p_flags & P_PROFIL) {
228 		addupc_task(p, frame->tf_rip,
229 			(u_int)((int)lp->lwp_thread->td_sticks - sticks));
230 	}
231 
232 recheck:
233 	/*
234 	 * If the jungle wants us dead, so be it.
235 	 */
236 	if (lp->lwp_mpflags & LWP_MP_WEXIT) {
237 		lwkt_gettoken(&p->p_token);
238 		lwp_exit(0);
239 		lwkt_reltoken(&p->p_token);	/* NOT REACHED */
240 	}
241 
242 	/*
243 	 * Block here if we are in a stopped state.
244 	 */
245 	if (p->p_stat == SSTOP || dump_stop_usertds) {
246 		lwkt_gettoken(&p->p_token);
247 		tstop();
248 		lwkt_reltoken(&p->p_token);
249 		goto recheck;
250 	}
251 
252 	/*
253 	 * Post any pending upcalls.  If running a virtual kernel be sure
254 	 * to restore the virtual kernel's vmspace before posting the upcall.
255 	 */
256 	if (p->p_flags & (P_SIGVTALRM | P_SIGPROF | P_UPCALLPEND)) {
257 		lwkt_gettoken(&p->p_token);
258 		if (p->p_flags & P_SIGVTALRM) {
259 			p->p_flags &= ~P_SIGVTALRM;
260 			ksignal(p, SIGVTALRM);
261 		}
262 		if (p->p_flags & P_SIGPROF) {
263 			p->p_flags &= ~P_SIGPROF;
264 			ksignal(p, SIGPROF);
265 		}
266 		if (p->p_flags & P_UPCALLPEND) {
267 			p->p_flags &= ~P_UPCALLPEND;
268 			postupcall(lp);
269 		}
270 		lwkt_reltoken(&p->p_token);
271 		goto recheck;
272 	}
273 
274 	/*
275 	 * Post any pending signals.  If running a virtual kernel be sure
276 	 * to restore the virtual kernel's vmspace before posting the signal.
277 	 *
278 	 * WARNING!  postsig() can exit and not return.
279 	 */
280 	if ((sig = CURSIG_TRACE(lp)) != 0) {
281 		lwkt_gettoken(&p->p_token);
282 		postsig(sig);
283 		lwkt_reltoken(&p->p_token);
284 		goto recheck;
285 	}
286 
287 	/*
288 	 * block here if we are swapped out, but still process signals
289 	 * (such as SIGKILL).  proc0 (the swapin scheduler) is already
290 	 * aware of our situation, we do not have to wake it up.
291 	 */
292 	if (p->p_flags & P_SWAPPEDOUT) {
293 		lwkt_gettoken(&p->p_token);
294 		get_mplock();
295 		p->p_flags |= P_SWAPWAIT;
296 		swapin_request();
297 		if (p->p_flags & P_SWAPWAIT)
298 			tsleep(p, PCATCH, "SWOUT", 0);
299 		p->p_flags &= ~P_SWAPWAIT;
300 		rel_mplock();
301 		lwkt_reltoken(&p->p_token);
302 		goto recheck;
303 	}
304 
305 	/*
306 	 * In a multi-threaded program it is possible for a thread to change
307 	 * signal state during a system call which temporarily changes the
308 	 * signal mask.  In this case postsig() might not be run and we
309 	 * have to restore the mask ourselves.
310 	 */
311 	if (lp->lwp_flags & LWP_OLDMASK) {
312 		lp->lwp_flags &= ~LWP_OLDMASK;
313 		lp->lwp_sigmask = lp->lwp_oldsigmask;
314 		goto recheck;
315 	}
316 }
317 
318 /*
319  * Cleanup from userenter and any passive release that might have occured.
320  * We must reclaim the current-process designation before we can return
321  * to usermode.  We also handle both LWKT and USER reschedule requests.
322  */
323 static __inline void
324 userexit(struct lwp *lp)
325 {
326 	struct thread *td = lp->lwp_thread;
327 	/* globaldata_t gd = td->td_gd; */
328 
329 	/*
330 	 * Handle stop requests at kernel priority.  Any requests queued
331 	 * after this loop will generate another AST.
332 	 */
333 	while (lp->lwp_proc->p_stat == SSTOP) {
334 		lwkt_gettoken(&lp->lwp_proc->p_token);
335 		tstop();
336 		lwkt_reltoken(&lp->lwp_proc->p_token);
337 	}
338 
339 	/*
340 	 * Reduce our priority in preparation for a return to userland.  If
341 	 * our passive release function was still in place, our priority was
342 	 * never raised and does not need to be reduced.
343 	 */
344 	lwkt_passive_recover(td);
345 
346 	/* WARNING: we may have migrated cpu's */
347 	/* gd = td->td_gd; */
348 
349 	/*
350 	 * Become the current user scheduled process if we aren't already,
351 	 * and deal with reschedule requests and other factors.
352 	 */
353 	lp->lwp_proc->p_usched->acquire_curproc(lp);
354 }
355 
356 #if !defined(KTR_KERNENTRY)
357 #define	KTR_KERNENTRY	KTR_ALL
358 #endif
359 KTR_INFO_MASTER(kernentry);
360 KTR_INFO(KTR_KERNENTRY, kernentry, trap, 0,
361 	 "TRAP(pid %d, tid %d, trapno %ld, eva %lu)",
362 	 pid_t pid, lwpid_t tid,  register_t trapno, vm_offset_t eva);
363 KTR_INFO(KTR_KERNENTRY, kernentry, trap_ret, 0, "TRAP_RET(pid %d, tid %d)",
364 	 pid_t pid, lwpid_t tid);
365 KTR_INFO(KTR_KERNENTRY, kernentry, syscall, 0, "SYSC(pid %d, tid %d, nr %ld)",
366 	 pid_t pid, lwpid_t tid,  register_t trapno);
367 KTR_INFO(KTR_KERNENTRY, kernentry, syscall_ret, 0, "SYSRET(pid %d, tid %d, err %d)",
368 	 pid_t pid, lwpid_t tid,  int err);
369 KTR_INFO(KTR_KERNENTRY, kernentry, fork_ret, 0, "FORKRET(pid %d, tid %d)",
370 	 pid_t pid, lwpid_t tid);
371 
372 /*
373  * Exception, fault, and trap interface to the kernel.
374  * This common code is called from assembly language IDT gate entry
375  * routines that prepare a suitable stack frame, and restore this
376  * frame after the exception has been processed.
377  *
378  * This function is also called from doreti in an interlock to handle ASTs.
379  * For example:  hardwareint->INTROUTINE->(set ast)->doreti->trap
380  *
381  * NOTE!  We have to retrieve the fault address prior to obtaining the
382  * MP lock because get_mplock() may switch out.  YYY cr2 really ought
383  * to be retrieved by the assembly code, not here.
384  *
385  * XXX gd_trap_nesting_level currently prevents lwkt_switch() from panicing
386  * if an attempt is made to switch from a fast interrupt or IPI.  This is
387  * necessary to properly take fatal kernel traps on SMP machines if
388  * get_mplock() has to block.
389  */
390 
391 void
392 trap(struct trapframe *frame)
393 {
394 	struct globaldata *gd = mycpu;
395 	struct thread *td = gd->gd_curthread;
396 	struct lwp *lp = td->td_lwp;
397 	struct proc *p;
398 	int sticks = 0;
399 	int i = 0, ucode = 0, type, code;
400 	int have_mplock = 0;
401 #ifdef INVARIANTS
402 	int crit_count = td->td_critcount;
403 	lwkt_tokref_t curstop = td->td_toks_stop;
404 #endif
405 	vm_offset_t eva;
406 
407 	p = td->td_proc;
408 	clear_quickret();
409 
410 #ifdef DDB
411         /*
412 	 * We need to allow T_DNA faults when the debugger is active since
413 	 * some dumping paths do large bcopy() which use the floating
414 	 * point registers for faster copying.
415 	 */
416 	if (db_active && frame->tf_trapno != T_DNA) {
417 		eva = (frame->tf_trapno == T_PAGEFLT ? frame->tf_addr : 0);
418 		++gd->gd_trap_nesting_level;
419 		MAKEMPSAFE(have_mplock);
420 		trap_fatal(frame, eva);
421 		--gd->gd_trap_nesting_level;
422 		goto out2;
423 	}
424 #endif
425 
426 	eva = 0;
427 
428 	if ((frame->tf_rflags & PSL_I) == 0) {
429 		/*
430 		 * Buggy application or kernel code has disabled interrupts
431 		 * and then trapped.  Enabling interrupts now is wrong, but
432 		 * it is better than running with interrupts disabled until
433 		 * they are accidentally enabled later.
434 		 */
435 		type = frame->tf_trapno;
436 		if (ISPL(frame->tf_cs) == SEL_UPL) {
437 			MAKEMPSAFE(have_mplock);
438 			/* JG curproc can be NULL */
439 			kprintf(
440 			    "pid %ld (%s): trap %d with interrupts disabled\n",
441 			    (long)curproc->p_pid, curproc->p_comm, type);
442 		} else if (type != T_NMI && type != T_BPTFLT &&
443 		    type != T_TRCTRAP) {
444 			/*
445 			 * XXX not quite right, since this may be for a
446 			 * multiple fault in user mode.
447 			 */
448 			MAKEMPSAFE(have_mplock);
449 			kprintf("kernel trap %d with interrupts disabled\n",
450 			    type);
451 		}
452 		cpu_enable_intr();
453 	}
454 
455 	type = frame->tf_trapno;
456 	code = frame->tf_err;
457 
458 	if (ISPL(frame->tf_cs) == SEL_UPL) {
459 		/* user trap */
460 
461 		KTR_LOG(kernentry_trap, p->p_pid, lp->lwp_tid,
462 			frame->tf_trapno, eva);
463 
464 		userenter(td, p);
465 
466 		sticks = (int)td->td_sticks;
467 		KASSERT(lp->lwp_md.md_regs == frame,
468 			("Frame mismatch %p %p", lp->lwp_md.md_regs, frame));
469 
470 		switch (type) {
471 		case T_PRIVINFLT:	/* privileged instruction fault */
472 			i = SIGILL;
473 			ucode = ILL_PRVOPC;
474 			break;
475 
476 		case T_BPTFLT:		/* bpt instruction fault */
477 		case T_TRCTRAP:		/* trace trap */
478 			frame->tf_rflags &= ~PSL_T;
479 			i = SIGTRAP;
480 			ucode = (type == T_TRCTRAP ? TRAP_TRACE : TRAP_BRKPT);
481 			break;
482 
483 		case T_ARITHTRAP:	/* arithmetic trap */
484 			ucode = code;
485 			i = SIGFPE;
486 			break;
487 
488 		case T_ASTFLT:		/* Allow process switch */
489 			mycpu->gd_cnt.v_soft++;
490 			if (mycpu->gd_reqflags & RQF_AST_OWEUPC) {
491 				atomic_clear_int(&mycpu->gd_reqflags,
492 						 RQF_AST_OWEUPC);
493 				addupc_task(p, p->p_prof.pr_addr,
494 					    p->p_prof.pr_ticks);
495 			}
496 			goto out;
497 
498 		case T_PROTFLT:		/* general protection fault */
499 			i = SIGBUS;
500 			ucode = BUS_OBJERR;
501 			break;
502 		case T_STKFLT:		/* stack fault */
503 		case T_SEGNPFLT:	/* segment not present fault */
504 			i = SIGBUS;
505 			ucode = BUS_ADRERR;
506 			break;
507 		case T_TSSFLT:		/* invalid TSS fault */
508 		case T_DOUBLEFLT:	/* double fault */
509 		default:
510 			i = SIGBUS;
511 			ucode = BUS_OBJERR;
512 			break;
513 
514 		case T_PAGEFLT:		/* page fault */
515 			i = trap_pfault(frame, TRUE);
516 			if (frame->tf_rip == 0) {
517 				kprintf("T_PAGEFLT: Warning %%rip == 0!\n");
518 #ifdef DDB
519 				while (freeze_on_seg_fault)
520 					tsleep(p, 0, "freeze", hz * 20);
521 #endif
522 			}
523 			if (i == -1 || i == 0)
524 				goto out;
525 
526 
527 			if (i == SIGSEGV)
528 				ucode = SEGV_MAPERR;
529 			else {
530 				i = SIGSEGV;
531 				ucode = SEGV_ACCERR;
532 			}
533 			break;
534 
535 		case T_DIVIDE:		/* integer divide fault */
536 			ucode = FPE_INTDIV;
537 			i = SIGFPE;
538 			break;
539 
540 #if NISA > 0
541 		case T_NMI:
542 			MAKEMPSAFE(have_mplock);
543 			/* machine/parity/power fail/"kitchen sink" faults */
544 			if (isa_nmi(code) == 0) {
545 #ifdef DDB
546 				/*
547 				 * NMI can be hooked up to a pushbutton
548 				 * for debugging.
549 				 */
550 				if (ddb_on_nmi) {
551 					kprintf ("NMI ... going to debugger\n");
552 					kdb_trap(type, 0, frame);
553 				}
554 #endif /* DDB */
555 				goto out2;
556 			} else if (panic_on_nmi)
557 				panic("NMI indicates hardware failure");
558 			break;
559 #endif /* NISA > 0 */
560 
561 		case T_OFLOW:		/* integer overflow fault */
562 			ucode = FPE_INTOVF;
563 			i = SIGFPE;
564 			break;
565 
566 		case T_BOUND:		/* bounds check fault */
567 			ucode = FPE_FLTSUB;
568 			i = SIGFPE;
569 			break;
570 
571 		case T_DNA:
572 			/*
573 			 * Virtual kernel intercept - pass the DNA exception
574 			 * to the virtual kernel if it asked to handle it.
575 			 * This occurs when the virtual kernel is holding
576 			 * onto the FP context for a different emulated
577 			 * process then the one currently running.
578 			 *
579 			 * We must still call npxdna() since we may have
580 			 * saved FP state that the virtual kernel needs
581 			 * to hand over to a different emulated process.
582 			 */
583 			if (lp->lwp_vkernel && lp->lwp_vkernel->ve &&
584 			    (td->td_pcb->pcb_flags & FP_VIRTFP)
585 			) {
586 				npxdna();
587 				break;
588 			}
589 
590 			/*
591 			 * The kernel may have switched out the FP unit's
592 			 * state, causing the user process to take a fault
593 			 * when it tries to use the FP unit.  Restore the
594 			 * state here
595 			 */
596 			if (npxdna())
597 				goto out;
598 			i = SIGFPE;
599 			ucode = FPE_FPU_NP_TRAP;
600 			break;
601 
602 		case T_FPOPFLT:		/* FPU operand fetch fault */
603 			ucode = ILL_COPROC;
604 			i = SIGILL;
605 			break;
606 
607 		case T_XMMFLT:		/* SIMD floating-point exception */
608 			ucode = 0; /* XXX */
609 			i = SIGFPE;
610 			break;
611 		}
612 	} else {
613 		/* kernel trap */
614 
615 		switch (type) {
616 		case T_PAGEFLT:			/* page fault */
617 			trap_pfault(frame, FALSE);
618 			goto out2;
619 
620 		case T_DNA:
621 			/*
622 			 * The kernel is apparently using fpu for copying.
623 			 * XXX this should be fatal unless the kernel has
624 			 * registered such use.
625 			 */
626 			if (npxdna())
627 				goto out2;
628 			break;
629 
630 		case T_STKFLT:		/* stack fault */
631 			break;
632 
633 		case T_PROTFLT:		/* general protection fault */
634 		case T_SEGNPFLT:	/* segment not present fault */
635 			/*
636 			 * Invalid segment selectors and out of bounds
637 			 * %rip's and %rsp's can be set up in user mode.
638 			 * This causes a fault in kernel mode when the
639 			 * kernel tries to return to user mode.  We want
640 			 * to get this fault so that we can fix the
641 			 * problem here and not have to check all the
642 			 * selectors and pointers when the user changes
643 			 * them.
644 			 */
645 			if (mycpu->gd_intr_nesting_level == 0) {
646 				/*
647 				 * NOTE: in 64-bit mode traps push rsp/ss
648 				 *	 even if no ring change occurs.
649 				 */
650 				if (td->td_pcb->pcb_onfault &&
651 				    td->td_pcb->pcb_onfault_sp ==
652 				    frame->tf_rsp) {
653 					frame->tf_rip = (register_t)
654 						td->td_pcb->pcb_onfault;
655 					goto out2;
656 				}
657 				if (frame->tf_rip == (long)doreti_iret) {
658 					frame->tf_rip = (long)doreti_iret_fault;
659 					goto out2;
660 				}
661 			}
662 			break;
663 
664 		case T_TSSFLT:
665 			/*
666 			 * PSL_NT can be set in user mode and isn't cleared
667 			 * automatically when the kernel is entered.  This
668 			 * causes a TSS fault when the kernel attempts to
669 			 * `iret' because the TSS link is uninitialized.  We
670 			 * want to get this fault so that we can fix the
671 			 * problem here and not every time the kernel is
672 			 * entered.
673 			 */
674 			if (frame->tf_rflags & PSL_NT) {
675 				frame->tf_rflags &= ~PSL_NT;
676 				goto out2;
677 			}
678 			break;
679 
680 		case T_TRCTRAP:	 /* trace trap */
681 #if 0
682 			if (frame->tf_rip == (int)IDTVEC(syscall)) {
683 				/*
684 				 * We've just entered system mode via the
685 				 * syscall lcall.  Continue single stepping
686 				 * silently until the syscall handler has
687 				 * saved the flags.
688 				 */
689 				goto out2;
690 			}
691 			if (frame->tf_rip == (int)IDTVEC(syscall) + 1) {
692 				/*
693 				 * The syscall handler has now saved the
694 				 * flags.  Stop single stepping it.
695 				 */
696 				frame->tf_rflags &= ~PSL_T;
697 				goto out2;
698 			}
699 #endif
700 
701 			/*
702 			 * Ignore debug register trace traps due to
703 			 * accesses in the user's address space, which
704 			 * can happen under several conditions such as
705 			 * if a user sets a watchpoint on a buffer and
706 			 * then passes that buffer to a system call.
707 			 * We still want to get TRCTRAPS for addresses
708 			 * in kernel space because that is useful when
709 			 * debugging the kernel.
710 			 */
711 #if JG
712 			if (user_dbreg_trap()) {
713 				/*
714 				 * Reset breakpoint bits because the
715 				 * processor doesn't
716 				 */
717 				/* XXX check upper bits here */
718 				load_dr6(rdr6() & 0xfffffff0);
719 				goto out2;
720 			}
721 #endif
722 			/*
723 			 * FALLTHROUGH (TRCTRAP kernel mode, kernel address)
724 			 */
725 		case T_BPTFLT:
726 			/*
727 			 * If DDB is enabled, let it handle the debugger trap.
728 			 * Otherwise, debugger traps "can't happen".
729 			 */
730 			ucode = TRAP_BRKPT;
731 #ifdef DDB
732 			MAKEMPSAFE(have_mplock);
733 			if (kdb_trap(type, 0, frame))
734 				goto out2;
735 #endif
736 			break;
737 
738 #if NISA > 0
739 		case T_NMI:
740 			MAKEMPSAFE(have_mplock);
741 			/* machine/parity/power fail/"kitchen sink" faults */
742 			if (isa_nmi(code) == 0) {
743 #ifdef DDB
744 				/*
745 				 * NMI can be hooked up to a pushbutton
746 				 * for debugging.
747 				 */
748 				if (ddb_on_nmi) {
749 					kprintf ("NMI ... going to debugger\n");
750 					kdb_trap(type, 0, frame);
751 				}
752 #endif /* DDB */
753 				goto out2;
754 			} else if (panic_on_nmi == 0)
755 				goto out2;
756 			/* FALL THROUGH */
757 #endif /* NISA > 0 */
758 		}
759 		MAKEMPSAFE(have_mplock);
760 		trap_fatal(frame, 0);
761 		goto out2;
762 	}
763 
764 	/*
765 	 * Virtual kernel intercept - if the fault is directly related to a
766 	 * VM context managed by a virtual kernel then let the virtual kernel
767 	 * handle it.
768 	 */
769 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
770 		vkernel_trap(lp, frame);
771 		goto out;
772 	}
773 
774 	/* Translate fault for emulators (e.g. Linux) */
775 	if (*p->p_sysent->sv_transtrap)
776 		i = (*p->p_sysent->sv_transtrap)(i, type);
777 
778 	MAKEMPSAFE(have_mplock);
779 	trapsignal(lp, i, ucode);
780 
781 #ifdef DEBUG
782 	if (type <= MAX_TRAP_MSG) {
783 		uprintf("fatal process exception: %s",
784 			trap_msg[type]);
785 		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
786 			uprintf(", fault VA = 0x%lx", frame->tf_addr);
787 		uprintf("\n");
788 	}
789 #endif
790 
791 out:
792 	userret(lp, frame, sticks);
793 	userexit(lp);
794 out2:	;
795 	if (have_mplock)
796 		rel_mplock();
797 	if (p != NULL && lp != NULL)
798 		KTR_LOG(kernentry_trap_ret, p->p_pid, lp->lwp_tid);
799 #ifdef INVARIANTS
800 	KASSERT(crit_count == td->td_critcount,
801 		("trap: critical section count mismatch! %d/%d",
802 		crit_count, td->td_pri));
803 	KASSERT(curstop == td->td_toks_stop,
804 		("trap: extra tokens held after trap! %ld/%ld",
805 		curstop - &td->td_toks_base,
806 		td->td_toks_stop - &td->td_toks_base));
807 #endif
808 }
809 
810 static int
811 trap_pfault(struct trapframe *frame, int usermode)
812 {
813 	vm_offset_t va;
814 	struct vmspace *vm = NULL;
815 	vm_map_t map;
816 	int rv = 0;
817 	int fault_flags;
818 	vm_prot_t ftype;
819 	thread_t td = curthread;
820 	struct lwp *lp = td->td_lwp;
821 	struct proc *p;
822 
823 	va = trunc_page(frame->tf_addr);
824 	if (va >= VM_MIN_KERNEL_ADDRESS) {
825 		/*
826 		 * Don't allow user-mode faults in kernel address space.
827 		 */
828 		if (usermode) {
829 			fault_flags = -1;
830 			ftype = -1;
831 			goto nogo;
832 		}
833 
834 		map = &kernel_map;
835 	} else {
836 		/*
837 		 * This is a fault on non-kernel virtual memory.
838 		 * vm is initialized above to NULL. If curproc is NULL
839 		 * or curproc->p_vmspace is NULL the fault is fatal.
840 		 */
841 		if (lp != NULL)
842 			vm = lp->lwp_vmspace;
843 
844 		if (vm == NULL) {
845 			fault_flags = -1;
846 			ftype = -1;
847 			goto nogo;
848 		}
849 
850 		/*
851 		 * Debugging, try to catch kernel faults on the user address space when not inside
852 		 * on onfault (e.g. copyin/copyout) routine.
853 		 */
854 		if (usermode == 0 && (td->td_pcb == NULL ||
855 		    td->td_pcb->pcb_onfault == NULL)) {
856 #ifdef DDB
857 			if (freeze_on_seg_fault) {
858 				kprintf("trap_pfault: user address fault from kernel mode "
859 					"%016lx\n", (long)frame->tf_addr);
860 				while (freeze_on_seg_fault)
861 					    tsleep(&freeze_on_seg_fault, 0, "frzseg", hz * 20);
862 			}
863 #endif
864 		}
865 		map = &vm->vm_map;
866 	}
867 
868 	/*
869 	 * PGEX_I is defined only if the execute disable bit capability is
870 	 * supported and enabled.
871 	 */
872 	if (frame->tf_err & PGEX_W)
873 		ftype = VM_PROT_WRITE;
874 #if JG
875 	else if ((frame->tf_err & PGEX_I) && pg_nx != 0)
876 		ftype = VM_PROT_EXECUTE;
877 #endif
878 	else
879 		ftype = VM_PROT_READ;
880 
881 	if (map != &kernel_map) {
882 		/*
883 		 * Keep swapout from messing with us during this
884 		 *	critical time.
885 		 */
886 		PHOLD(lp->lwp_proc);
887 
888 		/*
889 		 * Issue fault
890 		 */
891 		fault_flags = 0;
892 		if (usermode)
893 			fault_flags |= VM_FAULT_BURST;
894 		if (ftype & VM_PROT_WRITE)
895 			fault_flags |= VM_FAULT_DIRTY;
896 		else
897 			fault_flags |= VM_FAULT_NORMAL;
898 		rv = vm_fault(map, va, ftype, fault_flags);
899 
900 		PRELE(lp->lwp_proc);
901 	} else {
902 		/*
903 		 * Don't have to worry about process locking or stacks in the
904 		 * kernel.
905 		 */
906 		fault_flags = VM_FAULT_NORMAL;
907 		rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
908 	}
909 	if (rv == KERN_SUCCESS)
910 		return (0);
911 nogo:
912 	if (!usermode) {
913 		/*
914 		 * NOTE: in 64-bit mode traps push rsp/ss
915 		 *	 even if no ring change occurs.
916 		 */
917 		if (td->td_pcb->pcb_onfault &&
918 		    td->td_pcb->pcb_onfault_sp == frame->tf_rsp &&
919 		    td->td_gd->gd_intr_nesting_level == 0) {
920 			frame->tf_rip = (register_t)td->td_pcb->pcb_onfault;
921 			return (0);
922 		}
923 		trap_fatal(frame, frame->tf_addr);
924 		return (-1);
925 	}
926 
927 	/*
928 	 * NOTE: on x86_64 we have a tf_addr field in the trapframe, no
929 	 * kludge is needed to pass the fault address to signal handlers.
930 	 */
931 	p = td->td_proc;
932 	if (td->td_lwp->lwp_vkernel == NULL) {
933 #ifdef DDB
934 		if (bootverbose || freeze_on_seg_fault || ddb_on_seg_fault) {
935 #else
936 		if (bootverbose) {
937 #endif
938 			kprintf("seg-fault ft=%04x ff=%04x addr=%p rip=%p "
939 			    "pid=%d cpu=%d p_comm=%s\n",
940 			    ftype, fault_flags,
941 			    (void *)frame->tf_addr,
942 			    (void *)frame->tf_rip,
943 			    p->p_pid, mycpu->gd_cpuid, p->p_comm);
944 		}
945 #ifdef DDB
946 		while (freeze_on_seg_fault) {
947 			tsleep(p, 0, "freeze", hz * 20);
948 		}
949 		if (ddb_on_seg_fault)
950 			Debugger("ddb_on_seg_fault");
951 #endif
952 	}
953 
954 	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
955 }
956 
957 static void
958 trap_fatal(struct trapframe *frame, vm_offset_t eva)
959 {
960 	int code, ss;
961 	u_int type;
962 	long rsp;
963 	struct soft_segment_descriptor softseg;
964 	char *msg;
965 
966 	code = frame->tf_err;
967 	type = frame->tf_trapno;
968 	sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)], &softseg);
969 
970 	if (type <= MAX_TRAP_MSG)
971 		msg = trap_msg[type];
972 	else
973 		msg = "UNKNOWN";
974 	kprintf("\n\nFatal trap %d: %s while in %s mode\n", type, msg,
975 	    ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
976 	/* three separate prints in case of a trap on an unmapped page */
977 	kprintf("cpuid = %d; ", mycpu->gd_cpuid);
978 	kprintf("lapic->id = %08x\n", lapic->id);
979 	if (type == T_PAGEFLT) {
980 		kprintf("fault virtual address	= 0x%lx\n", eva);
981 		kprintf("fault code		= %s %s %s, %s\n",
982 			code & PGEX_U ? "user" : "supervisor",
983 			code & PGEX_W ? "write" : "read",
984 			code & PGEX_I ? "instruction" : "data",
985 			code & PGEX_P ? "protection violation" : "page not present");
986 	}
987 	kprintf("instruction pointer	= 0x%lx:0x%lx\n",
988 	       frame->tf_cs & 0xffff, frame->tf_rip);
989         if (ISPL(frame->tf_cs) == SEL_UPL) {
990 		ss = frame->tf_ss & 0xffff;
991 		rsp = frame->tf_rsp;
992 	} else {
993 		/*
994 		 * NOTE: in 64-bit mode traps push rsp/ss even if no ring
995 		 *	 change occurs.
996 		 */
997 		ss = GSEL(GDATA_SEL, SEL_KPL);
998 		rsp = frame->tf_rsp;
999 	}
1000 	kprintf("stack pointer	        = 0x%x:0x%lx\n", ss, rsp);
1001 	kprintf("frame pointer	        = 0x%x:0x%lx\n", ss, frame->tf_rbp);
1002 	kprintf("code segment		= base 0x%lx, limit 0x%lx, type 0x%x\n",
1003 	       softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
1004 	kprintf("			= DPL %d, pres %d, long %d, def32 %d, gran %d\n",
1005 	       softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_long, softseg.ssd_def32,
1006 	       softseg.ssd_gran);
1007 	kprintf("processor eflags	= ");
1008 	if (frame->tf_rflags & PSL_T)
1009 		kprintf("trace trap, ");
1010 	if (frame->tf_rflags & PSL_I)
1011 		kprintf("interrupt enabled, ");
1012 	if (frame->tf_rflags & PSL_NT)
1013 		kprintf("nested task, ");
1014 	if (frame->tf_rflags & PSL_RF)
1015 		kprintf("resume, ");
1016 	kprintf("IOPL = %ld\n", (frame->tf_rflags & PSL_IOPL) >> 12);
1017 	kprintf("current process		= ");
1018 	if (curproc) {
1019 		kprintf("%lu\n",
1020 		    (u_long)curproc->p_pid);
1021 	} else {
1022 		kprintf("Idle\n");
1023 	}
1024 	kprintf("current thread          = pri %d ", curthread->td_pri);
1025 	if (curthread->td_critcount)
1026 		kprintf("(CRIT)");
1027 	kprintf("\n");
1028 
1029 #ifdef DDB
1030 	if ((debugger_on_panic || db_active) && kdb_trap(type, code, frame))
1031 		return;
1032 #endif
1033 	kprintf("trap number		= %d\n", type);
1034 	if (type <= MAX_TRAP_MSG)
1035 		panic("%s", trap_msg[type]);
1036 	else
1037 		panic("unknown/reserved trap");
1038 }
1039 
1040 /*
1041  * Double fault handler. Called when a fault occurs while writing
1042  * a frame for a trap/exception onto the stack. This usually occurs
1043  * when the stack overflows (such is the case with infinite recursion,
1044  * for example).
1045  */
1046 static __inline
1047 int
1048 in_kstack_guard(register_t rptr)
1049 {
1050 	thread_t td = curthread;
1051 
1052 	if ((char *)rptr >= td->td_kstack &&
1053 	    (char *)rptr < td->td_kstack + PAGE_SIZE) {
1054 		return 1;
1055 	}
1056 	return 0;
1057 }
1058 
1059 void
1060 dblfault_handler(struct trapframe *frame)
1061 {
1062 	thread_t td = curthread;
1063 
1064 	if (in_kstack_guard(frame->tf_rsp) || in_kstack_guard(frame->tf_rbp)) {
1065 		kprintf("DOUBLE FAULT - KERNEL STACK GUARD HIT!\n");
1066 		if (in_kstack_guard(frame->tf_rsp))
1067 			frame->tf_rsp = (register_t)(td->td_kstack + PAGE_SIZE);
1068 		if (in_kstack_guard(frame->tf_rbp))
1069 			frame->tf_rbp = (register_t)(td->td_kstack + PAGE_SIZE);
1070 	} else {
1071 		kprintf("DOUBLE FAULT\n");
1072 	}
1073 	kprintf("\nFatal double fault\n");
1074 	kprintf("rip = 0x%lx\n", frame->tf_rip);
1075 	kprintf("rsp = 0x%lx\n", frame->tf_rsp);
1076 	kprintf("rbp = 0x%lx\n", frame->tf_rbp);
1077 	/* three separate prints in case of a trap on an unmapped page */
1078 	kprintf("cpuid = %d; ", mycpu->gd_cpuid);
1079 	kprintf("lapic->id = %08x\n", lapic->id);
1080 	panic("double fault");
1081 }
1082 
1083 /*
1084  * syscall2 -	MP aware system call request C handler
1085  *
1086  * A system call is essentially treated as a trap except that the
1087  * MP lock is not held on entry or return.  We are responsible for
1088  * obtaining the MP lock if necessary and for handling ASTs
1089  * (e.g. a task switch) prior to return.
1090  *
1091  * MPSAFE
1092  */
1093 void
1094 syscall2(struct trapframe *frame)
1095 {
1096 	struct thread *td = curthread;
1097 	struct proc *p = td->td_proc;
1098 	struct lwp *lp = td->td_lwp;
1099 	caddr_t params;
1100 	struct sysent *callp;
1101 	register_t orig_tf_rflags;
1102 	int sticks;
1103 	int error;
1104 	int narg;
1105 #ifdef INVARIANTS
1106 	int crit_count = td->td_critcount;
1107 #endif
1108 	int have_mplock = 0;
1109 	register_t *argp;
1110 	u_int code;
1111 	int reg, regcnt;
1112 	union sysunion args;
1113 	register_t *argsdst;
1114 
1115 	mycpu->gd_cnt.v_syscall++;
1116 
1117 #ifdef DIAGNOSTIC
1118 	if (ISPL(frame->tf_cs) != SEL_UPL) {
1119 		get_mplock();
1120 		panic("syscall");
1121 		/* NOT REACHED */
1122 	}
1123 #endif
1124 
1125 	KTR_LOG(kernentry_syscall, p->p_pid, lp->lwp_tid,
1126 		frame->tf_rax);
1127 
1128 	userenter(td, p);	/* lazy raise our priority */
1129 
1130 	reg = 0;
1131 	regcnt = 6;
1132 	/*
1133 	 * Misc
1134 	 */
1135 	sticks = (int)td->td_sticks;
1136 	orig_tf_rflags = frame->tf_rflags;
1137 
1138 	/*
1139 	 * Virtual kernel intercept - if a VM context managed by a virtual
1140 	 * kernel issues a system call the virtual kernel handles it, not us.
1141 	 * Restore the virtual kernel context and return from its system
1142 	 * call.  The current frame is copied out to the virtual kernel.
1143 	 */
1144 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
1145 		vkernel_trap(lp, frame);
1146 		error = EJUSTRETURN;
1147 		goto out;
1148 	}
1149 
1150 	/*
1151 	 * Get the system call parameters and account for time
1152 	 */
1153 	KASSERT(lp->lwp_md.md_regs == frame,
1154 		("Frame mismatch %p %p", lp->lwp_md.md_regs, frame));
1155 	params = (caddr_t)frame->tf_rsp + sizeof(register_t);
1156 	code = frame->tf_rax;
1157 
1158 	if (p->p_sysent->sv_prepsyscall) {
1159 		(*p->p_sysent->sv_prepsyscall)(
1160 			frame, (int *)(&args.nosys.sysmsg + 1),
1161 			&code, &params);
1162 	} else {
1163 		if (code == SYS_syscall || code == SYS___syscall) {
1164 			code = frame->tf_rdi;
1165 			reg++;
1166 			regcnt--;
1167 		}
1168 	}
1169 
1170 	if (p->p_sysent->sv_mask)
1171 		code &= p->p_sysent->sv_mask;
1172 
1173 	if (code >= p->p_sysent->sv_size)
1174 		callp = &p->p_sysent->sv_table[0];
1175 	else
1176 		callp = &p->p_sysent->sv_table[code];
1177 
1178 	narg = callp->sy_narg & SYF_ARGMASK;
1179 
1180 	/*
1181 	 * On x86_64 we get up to six arguments in registers. The rest are
1182 	 * on the stack. The first six members of 'struct trapframe' happen
1183 	 * to be the registers used to pass arguments, in exactly the right
1184 	 * order.
1185 	 */
1186 	argp = &frame->tf_rdi;
1187 	argp += reg;
1188 	argsdst = (register_t *)(&args.nosys.sysmsg + 1);
1189 	/*
1190 	 * JG can we overflow the space pointed to by 'argsdst'
1191 	 * either with 'bcopy' or with 'copyin'?
1192 	 */
1193 	bcopy(argp, argsdst, sizeof(register_t) * regcnt);
1194 	/*
1195 	 * copyin is MP aware, but the tracing code is not
1196 	 */
1197 	if (narg > regcnt) {
1198 		KASSERT(params != NULL, ("copyin args with no params!"));
1199 		error = copyin(params, &argsdst[regcnt],
1200 			(narg - regcnt) * sizeof(register_t));
1201 		if (error) {
1202 #ifdef KTRACE
1203 			if (KTRPOINT(td, KTR_SYSCALL)) {
1204 				MAKEMPSAFE(have_mplock);
1205 
1206 				ktrsyscall(lp, code, narg,
1207 					(void *)(&args.nosys.sysmsg + 1));
1208 			}
1209 #endif
1210 			goto bad;
1211 		}
1212 	}
1213 
1214 #ifdef KTRACE
1215 	if (KTRPOINT(td, KTR_SYSCALL)) {
1216 		MAKEMPSAFE(have_mplock);
1217 		ktrsyscall(lp, code, narg, (void *)(&args.nosys.sysmsg + 1));
1218 	}
1219 #endif
1220 
1221 	/*
1222 	 * Default return value is 0 (will be copied to %rax).  Double-value
1223 	 * returns use %rax and %rdx.  %rdx is left unchanged for system
1224 	 * calls which return only one result.
1225 	 */
1226 	args.sysmsg_fds[0] = 0;
1227 	args.sysmsg_fds[1] = frame->tf_rdx;
1228 
1229 	/*
1230 	 * The syscall might manipulate the trap frame. If it does it
1231 	 * will probably return EJUSTRETURN.
1232 	 */
1233 	args.sysmsg_frame = frame;
1234 
1235 	STOPEVENT(p, S_SCE, narg);	/* MP aware */
1236 
1237 	/*
1238 	 * NOTE: All system calls run MPSAFE now.  The system call itself
1239 	 *	 is responsible for getting the MP lock.
1240 	 */
1241 #ifdef SYSCALL_DEBUG
1242 	uint64_t tscval = rdtsc();
1243 #endif
1244 	error = (*callp->sy_call)(&args);
1245 #ifdef SYSCALL_DEBUG
1246 	tscval = rdtsc() - tscval;
1247 	tscval = tscval * 1000000 / tsc_frequency;
1248 	if (SysCallsWorstCase[code] < tscval)
1249 		SysCallsWorstCase[code] = tscval;
1250 #endif
1251 
1252 out:
1253 	/*
1254 	 * MP SAFE (we may or may not have the MP lock at this point)
1255 	 */
1256 	//kprintf("SYSMSG %d ", error);
1257 	switch (error) {
1258 	case 0:
1259 		/*
1260 		 * Reinitialize proc pointer `p' as it may be different
1261 		 * if this is a child returning from fork syscall.
1262 		 */
1263 		p = curproc;
1264 		lp = curthread->td_lwp;
1265 		frame->tf_rax = args.sysmsg_fds[0];
1266 		frame->tf_rdx = args.sysmsg_fds[1];
1267 		frame->tf_rflags &= ~PSL_C;
1268 		break;
1269 	case ERESTART:
1270 		/*
1271 		 * Reconstruct pc, we know that 'syscall' is 2 bytes.
1272 		 * We have to do a full context restore so that %r10
1273 		 * (which was holding the value of %rcx) is restored for
1274 		 * the next iteration.
1275 		 */
1276 		if (frame->tf_err != 0 && frame->tf_err != 2)
1277 			kprintf("lp %s:%d frame->tf_err is weird %ld\n",
1278 				td->td_comm, lp->lwp_proc->p_pid, frame->tf_err);
1279 		frame->tf_rip -= frame->tf_err;
1280 		frame->tf_r10 = frame->tf_rcx;
1281 		break;
1282 	case EJUSTRETURN:
1283 		break;
1284 	case EASYNC:
1285 		panic("Unexpected EASYNC return value (for now)");
1286 	default:
1287 bad:
1288 		if (p->p_sysent->sv_errsize) {
1289 			if (error >= p->p_sysent->sv_errsize)
1290 				error = -1;	/* XXX */
1291 			else
1292 				error = p->p_sysent->sv_errtbl[error];
1293 		}
1294 		frame->tf_rax = error;
1295 		frame->tf_rflags |= PSL_C;
1296 		break;
1297 	}
1298 
1299 	/*
1300 	 * Traced syscall.  trapsignal() is not MP aware.
1301 	 */
1302 	if (orig_tf_rflags & PSL_T) {
1303 		MAKEMPSAFE(have_mplock);
1304 		frame->tf_rflags &= ~PSL_T;
1305 		trapsignal(lp, SIGTRAP, TRAP_TRACE);
1306 	}
1307 
1308 	/*
1309 	 * Handle reschedule and other end-of-syscall issues
1310 	 */
1311 	userret(lp, frame, sticks);
1312 
1313 #ifdef KTRACE
1314 	if (KTRPOINT(td, KTR_SYSRET)) {
1315 		MAKEMPSAFE(have_mplock);
1316 		ktrsysret(lp, code, error, args.sysmsg_result);
1317 	}
1318 #endif
1319 
1320 	/*
1321 	 * This works because errno is findable through the
1322 	 * register set.  If we ever support an emulation where this
1323 	 * is not the case, this code will need to be revisited.
1324 	 */
1325 	STOPEVENT(p, S_SCX, code);
1326 
1327 	userexit(lp);
1328 	/*
1329 	 * Release the MP lock if we had to get it
1330 	 */
1331 	if (have_mplock)
1332 		rel_mplock();
1333 	KTR_LOG(kernentry_syscall_ret, p->p_pid, lp->lwp_tid, error);
1334 #ifdef INVARIANTS
1335 	KASSERT(crit_count == td->td_critcount,
1336 		("syscall: critical section count mismatch! %d/%d",
1337 		crit_count, td->td_pri));
1338 	KASSERT(&td->td_toks_base == td->td_toks_stop,
1339 		("syscall: extra tokens held after trap! %ld",
1340 		td->td_toks_stop - &td->td_toks_base));
1341 #endif
1342 }
1343 
1344 /*
1345  * NOTE: mplock not held at any point
1346  */
1347 void
1348 fork_return(struct lwp *lp, struct trapframe *frame)
1349 {
1350 	frame->tf_rax = 0;		/* Child returns zero */
1351 	frame->tf_rflags &= ~PSL_C;	/* success */
1352 	frame->tf_rdx = 1;
1353 
1354 	generic_lwp_return(lp, frame);
1355 	KTR_LOG(kernentry_fork_ret, lp->lwp_proc->p_pid, lp->lwp_tid);
1356 }
1357 
1358 /*
1359  * Simplified back end of syscall(), used when returning from fork()
1360  * directly into user mode.
1361  *
1362  * This code will return back into the fork trampoline code which then
1363  * runs doreti.
1364  *
1365  * NOTE: The mplock is not held at any point.
1366  */
1367 void
1368 generic_lwp_return(struct lwp *lp, struct trapframe *frame)
1369 {
1370 	struct proc *p = lp->lwp_proc;
1371 
1372 	/*
1373 	 * Newly forked processes are given a kernel priority.  We have to
1374 	 * adjust the priority to a normal user priority and fake entry
1375 	 * into the kernel (call userenter()) to install a passive release
1376 	 * function just in case userret() decides to stop the process.  This
1377 	 * can occur when ^Z races a fork.  If we do not install the passive
1378 	 * release function the current process designation will not be
1379 	 * released when the thread goes to sleep.
1380 	 */
1381 	lwkt_setpri_self(TDPRI_USER_NORM);
1382 	userenter(lp->lwp_thread, p);
1383 	userret(lp, frame, 0);
1384 #ifdef KTRACE
1385 	if (KTRPOINT(lp->lwp_thread, KTR_SYSRET))
1386 		ktrsysret(lp, SYS_fork, 0, 0);
1387 #endif
1388 	lp->lwp_flags |= LWP_PASSIVE_ACQ;
1389 	userexit(lp);
1390 	lp->lwp_flags &= ~LWP_PASSIVE_ACQ;
1391 }
1392 
1393 /*
1394  * If PGEX_FPFAULT is set then set FP_VIRTFP in the PCB to force a T_DNA
1395  * fault (which is then passed back to the virtual kernel) if an attempt is
1396  * made to use the FP unit.
1397  *
1398  * XXX this is a fairly big hack.
1399  */
1400 void
1401 set_vkernel_fp(struct trapframe *frame)
1402 {
1403 	struct thread *td = curthread;
1404 
1405 	if (frame->tf_xflags & PGEX_FPFAULT) {
1406 		td->td_pcb->pcb_flags |= FP_VIRTFP;
1407 		if (mdcpu->gd_npxthread == td)
1408 			npxexit();
1409 	} else {
1410 		td->td_pcb->pcb_flags &= ~FP_VIRTFP;
1411 	}
1412 }
1413 
1414 /*
1415  * Called from vkernel_trap() to fixup the vkernel's syscall
1416  * frame for vmspace_ctl() return.
1417  */
1418 void
1419 cpu_vkernel_trap(struct trapframe *frame, int error)
1420 {
1421 	frame->tf_rax = error;
1422 	if (error)
1423 		frame->tf_rflags |= PSL_C;
1424 	else
1425 		frame->tf_rflags &= ~PSL_C;
1426 }
1427