xref: /dragonfly/sys/platform/pc64/x86_64/trap.c (revision 799ba435)
1 /*-
2  * Copyright (c) 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (C) 1994, David Greenman
5  * Copyright (c) 2008 The DragonFly Project.
6  * Copyright (c) 2008 Jordan Gordeev.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the University of Utah, and William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)trap.c	7.4 (Berkeley) 5/13/91
40  * $FreeBSD: src/sys/i386/i386/trap.c,v 1.147.2.11 2003/02/27 19:09:59 luoqi Exp $
41  */
42 
43 /*
44  * x86_64 Trap and System call handling
45  */
46 
47 #include "use_isa.h"
48 
49 #include "opt_ddb.h"
50 #include "opt_ktrace.h"
51 
52 #include <machine/frame.h>
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/kerneldump.h>
57 #include <sys/proc.h>
58 #include <sys/pioctl.h>
59 #include <sys/types.h>
60 #include <sys/signal2.h>
61 #include <sys/syscall.h>
62 #include <sys/sysctl.h>
63 #include <sys/sysent.h>
64 #ifdef KTRACE
65 #include <sys/ktrace.h>
66 #endif
67 #include <sys/ktr.h>
68 #include <sys/sysmsg.h>
69 #include <sys/sysproto.h>
70 #include <sys/sysunion.h>
71 
72 #include <vm/pmap.h>
73 #include <vm/vm.h>
74 #include <vm/vm_extern.h>
75 #include <vm/vm_kern.h>
76 #include <vm/vm_param.h>
77 #include <machine/cpu.h>
78 #include <machine/pcb.h>
79 #include <machine/smp.h>
80 #include <machine/thread.h>
81 #include <machine/clock.h>
82 #include <machine/vmparam.h>
83 #include <machine/md_var.h>
84 #include <machine_base/isa/isa_intr.h>
85 #include <machine_base/apic/lapic.h>
86 
87 #include <ddb/ddb.h>
88 
89 #include <sys/thread2.h>
90 #include <sys/spinlock2.h>
91 
92 extern void trap(struct trapframe *frame);
93 
94 static int trap_pfault(struct trapframe *, int);
95 static void trap_fatal(struct trapframe *, vm_offset_t);
96 void dblfault_handler(struct trapframe *frame);
97 
98 #define MAX_TRAP_MSG		30
99 static char *trap_msg[] = {
100 	"",					/*  0 unused */
101 	"privileged instruction fault",		/*  1 T_PRIVINFLT */
102 	"",					/*  2 unused */
103 	"breakpoint instruction fault",		/*  3 T_BPTFLT */
104 	"",					/*  4 unused */
105 	"",					/*  5 unused */
106 	"arithmetic trap",			/*  6 T_ARITHTRAP */
107 	"system forced exception",		/*  7 T_ASTFLT */
108 	"",					/*  8 unused */
109 	"general protection fault",		/*  9 T_PROTFLT */
110 	"trace trap",				/* 10 T_TRCTRAP */
111 	"",					/* 11 unused */
112 	"page fault",				/* 12 T_PAGEFLT */
113 	"",					/* 13 unused */
114 	"alignment fault",			/* 14 T_ALIGNFLT */
115 	"",					/* 15 unused */
116 	"",					/* 16 unused */
117 	"",					/* 17 unused */
118 	"integer divide fault",			/* 18 T_DIVIDE */
119 	"non-maskable interrupt trap",		/* 19 T_NMI */
120 	"overflow trap",			/* 20 T_OFLOW */
121 	"FPU bounds check fault",		/* 21 T_BOUND */
122 	"FPU device not available",		/* 22 T_DNA */
123 	"double fault",				/* 23 T_DOUBLEFLT */
124 	"FPU operand fetch fault",		/* 24 T_FPOPFLT */
125 	"invalid TSS fault",			/* 25 T_TSSFLT */
126 	"segment not present fault",		/* 26 T_SEGNPFLT */
127 	"stack fault",				/* 27 T_STKFLT */
128 	"machine check trap",			/* 28 T_MCHK */
129 	"SIMD floating-point exception",	/* 29 T_XMMFLT */
130 	"reserved (unknown) fault",		/* 30 T_RESERVED */
131 };
132 
133 #ifdef DDB
134 static int ddb_on_nmi = 1;
135 SYSCTL_INT(_machdep, OID_AUTO, ddb_on_nmi, CTLFLAG_RW,
136 	&ddb_on_nmi, 0, "Go to DDB on NMI");
137 static int ddb_on_seg_fault = 0;
138 SYSCTL_INT(_machdep, OID_AUTO, ddb_on_seg_fault, CTLFLAG_RW,
139 	&ddb_on_seg_fault, 0, "Go to DDB on user seg-fault");
140 static int freeze_on_seg_fault = 0;
141 SYSCTL_INT(_machdep, OID_AUTO, freeze_on_seg_fault, CTLFLAG_RW,
142 	&freeze_on_seg_fault, 0, "Go to DDB on user seg-fault");
143 #endif
144 static int panic_on_nmi = 1;
145 SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
146 	&panic_on_nmi, 0, "Panic on NMI");
147 static int fast_release;
148 SYSCTL_INT(_machdep, OID_AUTO, fast_release, CTLFLAG_RW,
149 	&fast_release, 0, "Passive Release was optimal");
150 static int slow_release;
151 SYSCTL_INT(_machdep, OID_AUTO, slow_release, CTLFLAG_RW,
152 	&slow_release, 0, "Passive Release was nonoptimal");
153 
154 /*
155  * System call debugging records the worst-case system call
156  * overhead (inclusive of blocking), but may be inaccurate.
157  */
158 /*#define SYSCALL_DEBUG*/
159 #ifdef SYSCALL_DEBUG
160 uint64_t SysCallsWorstCase[SYS_MAXSYSCALL];
161 #endif
162 
163 /*
164  * Passively intercepts the thread switch function to increase
165  * the thread priority from a user priority to a kernel priority, reducing
166  * syscall and trap overhead for the case where no switch occurs.
167  *
168  * Synchronizes td_ucred with p_ucred.  This is used by system calls,
169  * signal handling, faults, AST traps, and anything else that enters the
170  * kernel from userland and provides the kernel with a stable read-only
171  * copy of the process ucred.
172  *
173  * To avoid races with another thread updating p_ucred we obtain p_spin.
174  * The other thread doing the update will obtain both p_token and p_spin.
175  * In the case where the cached cred pointer matches, we will already have
176  * the ref and we don't have to do one blessed thing.
177  */
178 static __inline void
179 userenter(struct thread *curtd, struct proc *curp)
180 {
181 	struct ucred *ocred;
182 	struct ucred *ncred;
183 
184 	curtd->td_release = lwkt_passive_release;
185 
186 	if (curtd->td_ucred != curp->p_ucred) {
187 		spin_lock(&curp->p_spin);
188 		ncred = crhold(curp->p_ucred);
189 		spin_unlock(&curp->p_spin);
190 		ocred = curtd->td_ucred;
191 		curtd->td_ucred = ncred;
192 		if (ocred)
193 			crfree(ocred);
194 	}
195 
196 #ifdef DDB
197 	/*
198 	 * Debugging, remove top two user stack pages to catch kernel faults
199 	 */
200 	if (freeze_on_seg_fault > 1 && curtd->td_lwp) {
201 		pmap_remove(vmspace_pmap(curtd->td_lwp->lwp_vmspace),
202 			    0x00007FFFFFFFD000LU,
203 			    0x0000800000000000LU);
204 	}
205 #endif
206 }
207 
208 /*
209  * Handle signals, upcalls, profiling, and other AST's and/or tasks that
210  * must be completed before we can return to or try to return to userland.
211  *
212  * Note that td_sticks is a 64 bit quantity, but there's no point doing 64
213  * arithmatic on the delta calculation so the absolute tick values are
214  * truncated to an integer.
215  */
216 static void
217 userret(struct lwp *lp, struct trapframe *frame, int sticks)
218 {
219 	struct proc *p = lp->lwp_proc;
220 	int sig;
221 	int ptok;
222 
223 	/*
224 	 * Charge system time if profiling.  Note: times are in microseconds.
225 	 * This may do a copyout and block, so do it first even though it
226 	 * means some system time will be charged as user time.
227 	 */
228 	if (p->p_flags & P_PROFIL) {
229 		addupc_task(p, frame->tf_rip,
230 			(u_int)((int)lp->lwp_thread->td_sticks - sticks));
231 	}
232 
233 recheck:
234 	/*
235 	 * Specific on-return-to-usermode checks (LWP_MP_WEXIT,
236 	 * LWP_MP_VNLRU, etc).
237 	 */
238 	if (lp->lwp_mpflags & LWP_MP_URETMASK)
239 		lwpuserret(lp);
240 
241 	/*
242 	 * Block here if we are in a stopped state.
243 	 */
244 	if (STOPLWP(p, lp)) {
245 		lwkt_gettoken(&p->p_token);
246 		tstop();
247 		lwkt_reltoken(&p->p_token);
248 		goto recheck;
249 	}
250 	while (dump_stop_usertds) {
251 		tsleep(&dump_stop_usertds, 0, "dumpstp", 0);
252 	}
253 
254 	/*
255 	 * Post any pending upcalls.  If running a virtual kernel be sure
256 	 * to restore the virtual kernel's vmspace before posting the upcall.
257 	 */
258 	if (p->p_flags & (P_SIGVTALRM | P_SIGPROF)) {
259 		lwkt_gettoken(&p->p_token);
260 		if (p->p_flags & P_SIGVTALRM) {
261 			p->p_flags &= ~P_SIGVTALRM;
262 			ksignal(p, SIGVTALRM);
263 		}
264 		if (p->p_flags & P_SIGPROF) {
265 			p->p_flags &= ~P_SIGPROF;
266 			ksignal(p, SIGPROF);
267 		}
268 		lwkt_reltoken(&p->p_token);
269 		goto recheck;
270 	}
271 
272 	/*
273 	 * Post any pending signals.  If running a virtual kernel be sure
274 	 * to restore the virtual kernel's vmspace before posting the signal.
275 	 *
276 	 * WARNING!  postsig() can exit and not return.
277 	 */
278 	if ((sig = CURSIG_LCK_TRACE(lp, &ptok)) != 0) {
279 		postsig(sig, ptok);
280 		goto recheck;
281 	}
282 
283 	/*
284 	 * block here if we are swapped out, but still process signals
285 	 * (such as SIGKILL).  proc0 (the swapin scheduler) is already
286 	 * aware of our situation, we do not have to wake it up.
287 	 */
288 	if (p->p_flags & P_SWAPPEDOUT) {
289 		lwkt_gettoken(&p->p_token);
290 		p->p_flags |= P_SWAPWAIT;
291 		swapin_request();
292 		if (p->p_flags & P_SWAPWAIT)
293 			tsleep(p, PCATCH, "SWOUT", 0);
294 		p->p_flags &= ~P_SWAPWAIT;
295 		lwkt_reltoken(&p->p_token);
296 		goto recheck;
297 	}
298 
299 	/*
300 	 * In a multi-threaded program it is possible for a thread to change
301 	 * signal state during a system call which temporarily changes the
302 	 * signal mask.  In this case postsig() might not be run and we
303 	 * have to restore the mask ourselves.
304 	 */
305 	if (lp->lwp_flags & LWP_OLDMASK) {
306 		lp->lwp_flags &= ~LWP_OLDMASK;
307 		lp->lwp_sigmask = lp->lwp_oldsigmask;
308 		goto recheck;
309 	}
310 }
311 
312 /*
313  * Cleanup from userenter and any passive release that might have occured.
314  * We must reclaim the current-process designation before we can return
315  * to usermode.  We also handle both LWKT and USER reschedule requests.
316  */
317 static __inline void
318 userexit(struct lwp *lp)
319 {
320 	struct thread *td = lp->lwp_thread;
321 	/* globaldata_t gd = td->td_gd; */
322 
323 	/*
324 	 * Handle stop requests at kernel priority.  Any requests queued
325 	 * after this loop will generate another AST.
326 	 */
327 	while (STOPLWP(lp->lwp_proc, lp)) {
328 		lwkt_gettoken(&lp->lwp_proc->p_token);
329 		tstop();
330 		lwkt_reltoken(&lp->lwp_proc->p_token);
331 	}
332 
333 	/*
334 	 * Reduce our priority in preparation for a return to userland.  If
335 	 * our passive release function was still in place, our priority was
336 	 * never raised and does not need to be reduced.
337 	 */
338 	lwkt_passive_recover(td);
339 
340 	/* WARNING: we may have migrated cpu's */
341 	/* gd = td->td_gd; */
342 
343 	/*
344 	 * Become the current user scheduled process if we aren't already,
345 	 * and deal with reschedule requests and other factors.
346 	 */
347 	lp->lwp_proc->p_usched->acquire_curproc(lp);
348 }
349 
350 #if !defined(KTR_KERNENTRY)
351 #define	KTR_KERNENTRY	KTR_ALL
352 #endif
353 KTR_INFO_MASTER(kernentry);
354 KTR_INFO(KTR_KERNENTRY, kernentry, trap, 0,
355 	 "TRAP(pid %d, tid %d, trapno %ld, eva %lu)",
356 	 pid_t pid, lwpid_t tid,  register_t trapno, vm_offset_t eva);
357 KTR_INFO(KTR_KERNENTRY, kernentry, trap_ret, 0, "TRAP_RET(pid %d, tid %d)",
358 	 pid_t pid, lwpid_t tid);
359 KTR_INFO(KTR_KERNENTRY, kernentry, syscall, 0, "SYSC(pid %d, tid %d, nr %ld)",
360 	 pid_t pid, lwpid_t tid,  register_t trapno);
361 KTR_INFO(KTR_KERNENTRY, kernentry, syscall_ret, 0, "SYSRET(pid %d, tid %d, err %d)",
362 	 pid_t pid, lwpid_t tid,  int err);
363 KTR_INFO(KTR_KERNENTRY, kernentry, fork_ret, 0, "FORKRET(pid %d, tid %d)",
364 	 pid_t pid, lwpid_t tid);
365 
366 /*
367  * Exception, fault, and trap interface to the kernel.
368  * This common code is called from assembly language IDT gate entry
369  * routines that prepare a suitable stack frame, and restore this
370  * frame after the exception has been processed.
371  *
372  * This function is also called from doreti in an interlock to handle ASTs.
373  * For example:  hardwareint->INTROUTINE->(set ast)->doreti->trap
374  *
375  * NOTE!  We have to retrieve the fault address prior to potentially
376  *	  blocking, including blocking on any token.
377  *
378  * XXX gd_trap_nesting_level currently prevents lwkt_switch() from panicing
379  * if an attempt is made to switch from a fast interrupt or IPI.
380  */
381 void
382 trap(struct trapframe *frame)
383 {
384 	struct globaldata *gd = mycpu;
385 	struct thread *td = gd->gd_curthread;
386 	struct lwp *lp = td->td_lwp;
387 	struct proc *p;
388 	int sticks = 0;
389 	int i = 0, ucode = 0, type, code;
390 #ifdef INVARIANTS
391 	int crit_count = td->td_critcount;
392 	lwkt_tokref_t curstop = td->td_toks_stop;
393 #endif
394 	vm_offset_t eva;
395 
396 	p = td->td_proc;
397 	clear_quickret();
398 
399 #ifdef DDB
400         /*
401 	 * We need to allow T_DNA faults when the debugger is active since
402 	 * some dumping paths do large bcopy() which use the floating
403 	 * point registers for faster copying.
404 	 */
405 	if (db_active && frame->tf_trapno != T_DNA) {
406 		eva = (frame->tf_trapno == T_PAGEFLT ? frame->tf_addr : 0);
407 		++gd->gd_trap_nesting_level;
408 		trap_fatal(frame, eva);
409 		--gd->gd_trap_nesting_level;
410 		goto out2;
411 	}
412 #endif
413 
414 	eva = 0;
415 
416 	if ((frame->tf_rflags & PSL_I) == 0) {
417 		/*
418 		 * Buggy application or kernel code has disabled interrupts
419 		 * and then trapped.  Enabling interrupts now is wrong, but
420 		 * it is better than running with interrupts disabled until
421 		 * they are accidentally enabled later.
422 		 */
423 		type = frame->tf_trapno;
424 		if (ISPL(frame->tf_cs) == SEL_UPL) {
425 			/* JG curproc can be NULL */
426 			kprintf(
427 			    "pid %ld (%s): trap %d with interrupts disabled\n",
428 			    (long)curproc->p_pid, curproc->p_comm, type);
429 		} else if (type != T_NMI && type != T_BPTFLT &&
430 			   type != T_TRCTRAP) {
431 			/*
432 			 * XXX not quite right, since this may be for a
433 			 * multiple fault in user mode.
434 			 */
435 			kprintf("kernel trap %d (%s @ 0x%016jx) with "
436 				"interrupts disabled\n",
437 				type,
438 				td->td_comm,
439 				frame->tf_rip);
440 		}
441 		cpu_enable_intr();
442 	}
443 
444 	type = frame->tf_trapno;
445 	code = frame->tf_err;
446 
447 	if (ISPL(frame->tf_cs) == SEL_UPL) {
448 		/* user trap */
449 
450 		KTR_LOG(kernentry_trap, p->p_pid, lp->lwp_tid,
451 			frame->tf_trapno, eva);
452 
453 		userenter(td, p);
454 
455 		sticks = (int)td->td_sticks;
456 		KASSERT(lp->lwp_md.md_regs == frame,
457 			("Frame mismatch %p %p", lp->lwp_md.md_regs, frame));
458 
459 		switch (type) {
460 		case T_PRIVINFLT:	/* privileged instruction fault */
461 			i = SIGILL;
462 			ucode = ILL_PRVOPC;
463 			break;
464 
465 		case T_BPTFLT:		/* bpt instruction fault */
466 		case T_TRCTRAP:		/* trace trap */
467 			frame->tf_rflags &= ~PSL_T;
468 			i = SIGTRAP;
469 			ucode = (type == T_TRCTRAP ? TRAP_TRACE : TRAP_BRKPT);
470 			break;
471 
472 		case T_ARITHTRAP:	/* arithmetic trap */
473 			ucode = code;
474 			i = SIGFPE;
475 			break;
476 
477 		case T_ASTFLT:		/* Allow process switch */
478 			mycpu->gd_cnt.v_soft++;
479 			if (mycpu->gd_reqflags & RQF_AST_OWEUPC) {
480 				atomic_clear_int(&mycpu->gd_reqflags,
481 						 RQF_AST_OWEUPC);
482 				addupc_task(p, p->p_prof.pr_addr,
483 					    p->p_prof.pr_ticks);
484 			}
485 			goto out;
486 
487 		case T_PROTFLT:		/* general protection fault */
488 			i = SIGBUS;
489 			ucode = BUS_OBJERR;
490 			break;
491 		case T_STKFLT:		/* stack fault */
492 		case T_SEGNPFLT:	/* segment not present fault */
493 			i = SIGBUS;
494 			ucode = BUS_ADRERR;
495 			break;
496 		case T_TSSFLT:		/* invalid TSS fault */
497 		case T_DOUBLEFLT:	/* double fault */
498 		default:
499 			i = SIGBUS;
500 			ucode = BUS_OBJERR;
501 			break;
502 
503 		case T_PAGEFLT:		/* page fault */
504 			i = trap_pfault(frame, TRUE);
505 #ifdef DDB
506 			if (frame->tf_rip == 0) {
507 				/* used for kernel debugging only */
508 				while (freeze_on_seg_fault)
509 					tsleep(p, 0, "freeze", hz * 20);
510 			}
511 #endif
512 			if (i == -1 || i == 0)
513 				goto out;
514 			if (i == SIGSEGV) {
515 				ucode = SEGV_MAPERR;
516 			} else {
517 				i = SIGSEGV;
518 				ucode = SEGV_ACCERR;
519 			}
520 			break;
521 
522 		case T_DIVIDE:		/* integer divide fault */
523 			ucode = FPE_INTDIV;
524 			i = SIGFPE;
525 			break;
526 
527 #if NISA > 0
528 		case T_NMI:
529 			/* machine/parity/power fail/"kitchen sink" faults */
530 			if (isa_nmi(code) == 0) {
531 #ifdef DDB
532 				/*
533 				 * NMI can be hooked up to a pushbutton
534 				 * for debugging.
535 				 */
536 				if (ddb_on_nmi) {
537 					kprintf ("NMI ... going to debugger\n");
538 					kdb_trap(type, 0, frame);
539 				}
540 #endif /* DDB */
541 				goto out2;
542 			} else if (panic_on_nmi)
543 				panic("NMI indicates hardware failure");
544 			break;
545 #endif /* NISA > 0 */
546 
547 		case T_OFLOW:		/* integer overflow fault */
548 			ucode = FPE_INTOVF;
549 			i = SIGFPE;
550 			break;
551 
552 		case T_BOUND:		/* bounds check fault */
553 			ucode = FPE_FLTSUB;
554 			i = SIGFPE;
555 			break;
556 
557 		case T_DNA:
558 			/*
559 			 * Virtual kernel intercept - pass the DNA exception
560 			 * to the virtual kernel if it asked to handle it.
561 			 * This occurs when the virtual kernel is holding
562 			 * onto the FP context for a different emulated
563 			 * process then the one currently running.
564 			 *
565 			 * We must still call npxdna() since we may have
566 			 * saved FP state that the virtual kernel needs
567 			 * to hand over to a different emulated process.
568 			 */
569 			if (lp->lwp_vkernel && lp->lwp_vkernel->ve &&
570 			    (td->td_pcb->pcb_flags & FP_VIRTFP)
571 			) {
572 				npxdna();
573 				break;
574 			}
575 
576 			/*
577 			 * The kernel may have switched out the FP unit's
578 			 * state, causing the user process to take a fault
579 			 * when it tries to use the FP unit.  Restore the
580 			 * state here
581 			 */
582 			if (npxdna())
583 				goto out;
584 			i = SIGFPE;
585 			ucode = FPE_FPU_NP_TRAP;
586 			break;
587 
588 		case T_FPOPFLT:		/* FPU operand fetch fault */
589 			ucode = ILL_COPROC;
590 			i = SIGILL;
591 			break;
592 
593 		case T_XMMFLT:		/* SIMD floating-point exception */
594 			ucode = 0; /* XXX */
595 			i = SIGFPE;
596 			break;
597 		}
598 	} else {
599 		/* kernel trap */
600 
601 		switch (type) {
602 		case T_PAGEFLT:			/* page fault */
603 			trap_pfault(frame, FALSE);
604 			goto out2;
605 
606 		case T_DNA:
607 			/*
608 			 * The kernel is apparently using fpu for copying.
609 			 * XXX this should be fatal unless the kernel has
610 			 * registered such use.
611 			 */
612 			if (npxdna())
613 				goto out2;
614 			break;
615 
616 		case T_STKFLT:		/* stack fault */
617 		case T_PROTFLT:		/* general protection fault */
618 		case T_SEGNPFLT:	/* segment not present fault */
619 			/*
620 			 * Invalid segment selectors and out of bounds
621 			 * %rip's and %rsp's can be set up in user mode.
622 			 * This causes a fault in kernel mode when the
623 			 * kernel tries to return to user mode.  We want
624 			 * to get this fault so that we can fix the
625 			 * problem here and not have to check all the
626 			 * selectors and pointers when the user changes
627 			 * them.
628 			 */
629 			if (mycpu->gd_intr_nesting_level == 0) {
630 				/*
631 				 * NOTE: in 64-bit mode traps push rsp/ss
632 				 *	 even if no ring change occurs.
633 				 */
634 				if (td->td_pcb->pcb_onfault &&
635 				    td->td_pcb->pcb_onfault_sp ==
636 				    frame->tf_rsp) {
637 					frame->tf_rip = (register_t)
638 						td->td_pcb->pcb_onfault;
639 					goto out2;
640 				}
641 				if (frame->tf_rip == (long)doreti_iret) {
642 					frame->tf_rip = (long)doreti_iret_fault;
643 					goto out2;
644 				}
645 			}
646 			break;
647 
648 		case T_TSSFLT:
649 			/*
650 			 * PSL_NT can be set in user mode and isn't cleared
651 			 * automatically when the kernel is entered.  This
652 			 * causes a TSS fault when the kernel attempts to
653 			 * `iret' because the TSS link is uninitialized.  We
654 			 * want to get this fault so that we can fix the
655 			 * problem here and not every time the kernel is
656 			 * entered.
657 			 */
658 			if (frame->tf_rflags & PSL_NT) {
659 				frame->tf_rflags &= ~PSL_NT;
660 				goto out2;
661 			}
662 			break;
663 
664 		case T_TRCTRAP:	 /* trace trap */
665 #if 0
666 			if (frame->tf_rip == (int)IDTVEC(syscall)) {
667 				/*
668 				 * We've just entered system mode via the
669 				 * syscall lcall.  Continue single stepping
670 				 * silently until the syscall handler has
671 				 * saved the flags.
672 				 */
673 				goto out2;
674 			}
675 			if (frame->tf_rip == (int)IDTVEC(syscall) + 1) {
676 				/*
677 				 * The syscall handler has now saved the
678 				 * flags.  Stop single stepping it.
679 				 */
680 				frame->tf_rflags &= ~PSL_T;
681 				goto out2;
682 			}
683 #endif
684 
685 			/*
686 			 * Ignore debug register trace traps due to
687 			 * accesses in the user's address space, which
688 			 * can happen under several conditions such as
689 			 * if a user sets a watchpoint on a buffer and
690 			 * then passes that buffer to a system call.
691 			 * We still want to get TRCTRAPS for addresses
692 			 * in kernel space because that is useful when
693 			 * debugging the kernel.
694 			 */
695 #if 0 /* JG */
696 			if (user_dbreg_trap()) {
697 				/*
698 				 * Reset breakpoint bits because the
699 				 * processor doesn't
700 				 */
701 				/* XXX check upper bits here */
702 				load_dr6(rdr6() & 0xfffffff0);
703 				goto out2;
704 			}
705 #endif
706 			/*
707 			 * FALLTHROUGH (TRCTRAP kernel mode, kernel address)
708 			 */
709 		case T_BPTFLT:
710 			/*
711 			 * If DDB is enabled, let it handle the debugger trap.
712 			 * Otherwise, debugger traps "can't happen".
713 			 */
714 			ucode = TRAP_BRKPT;
715 #ifdef DDB
716 			if (kdb_trap(type, 0, frame))
717 				goto out2;
718 #endif
719 			break;
720 
721 #if NISA > 0
722 		case T_NMI:
723 			/* machine/parity/power fail/"kitchen sink" faults */
724 			if (isa_nmi(code) == 0) {
725 #ifdef DDB
726 				/*
727 				 * NMI can be hooked up to a pushbutton
728 				 * for debugging.
729 				 */
730 				if (ddb_on_nmi) {
731 					kprintf ("NMI ... going to debugger\n");
732 					kdb_trap(type, 0, frame);
733 				}
734 #endif /* DDB */
735 				goto out2;
736 			} else if (panic_on_nmi == 0)
737 				goto out2;
738 			/* FALL THROUGH */
739 #endif /* NISA > 0 */
740 		}
741 		trap_fatal(frame, 0);
742 		goto out2;
743 	}
744 
745 	/*
746 	 * Fault from user mode, virtual kernel interecept.
747 	 *
748 	 * If the fault is directly related to a VM context managed by a
749 	 * virtual kernel then let the virtual kernel handle it.
750 	 */
751 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
752 		vkernel_trap(lp, frame);
753 		goto out;
754 	}
755 
756 	/* Translate fault for emulators (e.g. Linux) */
757 	if (*p->p_sysent->sv_transtrap)
758 		i = (*p->p_sysent->sv_transtrap)(i, type);
759 
760 	trapsignal(lp, i, ucode);
761 
762 #ifdef DEBUG
763 	if (type <= MAX_TRAP_MSG) {
764 		uprintf("fatal process exception: %s",
765 			trap_msg[type]);
766 		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
767 			uprintf(", fault VA = 0x%lx", frame->tf_addr);
768 		uprintf("\n");
769 	}
770 #endif
771 
772 out:
773 	userret(lp, frame, sticks);
774 	userexit(lp);
775 out2:	;
776 	if (p != NULL && lp != NULL)
777 		KTR_LOG(kernentry_trap_ret, p->p_pid, lp->lwp_tid);
778 #ifdef INVARIANTS
779 	KASSERT(crit_count == td->td_critcount,
780 		("trap: critical section count mismatch! %d/%d",
781 		crit_count, td->td_pri));
782 	KASSERT(curstop == td->td_toks_stop,
783 		("trap: extra tokens held after trap! %ld/%ld",
784 		curstop - &td->td_toks_base,
785 		td->td_toks_stop - &td->td_toks_base));
786 #endif
787 }
788 
789 void
790 trap_handle_userenter(struct thread *td)
791 {
792 	userenter(td, td->td_proc);
793 }
794 
795 void
796 trap_handle_userexit(struct trapframe *frame, int sticks)
797 {
798 	struct lwp *lp = curthread->td_lwp;
799 
800 	if (lp) {
801 		userret(lp, frame, sticks);
802 		userexit(lp);
803 	}
804 }
805 
806 static int
807 trap_pfault(struct trapframe *frame, int usermode)
808 {
809 	vm_offset_t va;
810 	struct vmspace *vm = NULL;
811 	vm_map_t map;
812 	int rv = 0;
813 	int fault_flags;
814 	vm_prot_t ftype;
815 	thread_t td = curthread;
816 	struct lwp *lp = td->td_lwp;
817 	struct proc *p;
818 
819 	va = trunc_page(frame->tf_addr);
820 	if (va >= VM_MIN_KERNEL_ADDRESS) {
821 		/*
822 		 * Don't allow user-mode faults in kernel address space.
823 		 */
824 		if (usermode) {
825 			fault_flags = -1;
826 			ftype = -1;
827 			goto nogo;
828 		}
829 
830 		map = &kernel_map;
831 	} else {
832 		/*
833 		 * This is a fault on non-kernel virtual memory.
834 		 * vm is initialized above to NULL. If curproc is NULL
835 		 * or curproc->p_vmspace is NULL the fault is fatal.
836 		 */
837 		if (lp != NULL)
838 			vm = lp->lwp_vmspace;
839 
840 		if (vm == NULL) {
841 			fault_flags = -1;
842 			ftype = -1;
843 			goto nogo;
844 		}
845 
846 		/*
847 		 * Debugging, try to catch kernel faults on the user address
848 		 * space when not inside on onfault (e.g. copyin/copyout)
849 		 * routine.
850 		 */
851 		if (usermode == 0 && (td->td_pcb == NULL ||
852 		    td->td_pcb->pcb_onfault == NULL)) {
853 #ifdef DDB
854 			if (freeze_on_seg_fault) {
855 				kprintf("trap_pfault: user address fault from kernel mode "
856 					"%016lx\n", (long)frame->tf_addr);
857 				while (freeze_on_seg_fault)
858 					    tsleep(&freeze_on_seg_fault, 0, "frzseg", hz * 20);
859 			}
860 #endif
861 		}
862 		map = &vm->vm_map;
863 	}
864 
865 	/*
866 	 * PGEX_I is defined only if the execute disable bit capability is
867 	 * supported and enabled.
868 	 */
869 	if (frame->tf_err & PGEX_W)
870 		ftype = VM_PROT_WRITE;
871 #if 0 /* JG */
872 	else if ((frame->tf_err & PGEX_I) && pg_nx != 0)
873 		ftype = VM_PROT_EXECUTE;
874 #endif
875 	else
876 		ftype = VM_PROT_READ;
877 
878 	if (map != &kernel_map) {
879 		/*
880 		 * Keep swapout from messing with us during this
881 		 *	critical time.
882 		 */
883 		PHOLD(lp->lwp_proc);
884 
885 		/*
886 		 * Issue fault
887 		 */
888 		fault_flags = 0;
889 		if (usermode)
890 			fault_flags |= VM_FAULT_BURST | VM_FAULT_USERMODE;
891 		if (ftype & VM_PROT_WRITE)
892 			fault_flags |= VM_FAULT_DIRTY;
893 		else
894 			fault_flags |= VM_FAULT_NORMAL;
895 		rv = vm_fault(map, va, ftype, fault_flags);
896 
897 		PRELE(lp->lwp_proc);
898 	} else {
899 		/*
900 		 * Don't have to worry about process locking or stacks in the
901 		 * kernel.
902 		 */
903 		fault_flags = VM_FAULT_NORMAL;
904 		rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
905 	}
906 	if (rv == KERN_SUCCESS)
907 		return (0);
908 nogo:
909 	if (!usermode) {
910 		/*
911 		 * NOTE: in 64-bit mode traps push rsp/ss
912 		 *	 even if no ring change occurs.
913 		 */
914 		if (td->td_pcb->pcb_onfault &&
915 		    td->td_pcb->pcb_onfault_sp == frame->tf_rsp &&
916 		    td->td_gd->gd_intr_nesting_level == 0) {
917 			frame->tf_rip = (register_t)td->td_pcb->pcb_onfault;
918 			return (0);
919 		}
920 		trap_fatal(frame, frame->tf_addr);
921 		return (-1);
922 	}
923 
924 	/*
925 	 * NOTE: on x86_64 we have a tf_addr field in the trapframe, no
926 	 * kludge is needed to pass the fault address to signal handlers.
927 	 */
928 	p = td->td_proc;
929 #ifdef DDB
930 	if (td->td_lwp->lwp_vkernel == NULL) {
931 		while (freeze_on_seg_fault) {
932 			tsleep(p, 0, "freeze", hz * 20);
933 		}
934 		if (ddb_on_seg_fault)
935 			Debugger("ddb_on_seg_fault");
936 	}
937 #endif
938 
939 	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
940 }
941 
942 static void
943 trap_fatal(struct trapframe *frame, vm_offset_t eva)
944 {
945 	int code, ss;
946 	u_int type;
947 	long rsp;
948 	struct soft_segment_descriptor softseg;
949 	char *msg;
950 
951 	code = frame->tf_err;
952 	type = frame->tf_trapno;
953 	sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)], &softseg);
954 
955 	if (type <= MAX_TRAP_MSG)
956 		msg = trap_msg[type];
957 	else
958 		msg = "UNKNOWN";
959 	kprintf("\n\nFatal trap %d: %s while in %s mode\n", type, msg,
960 	    ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
961 	/* three separate prints in case of a trap on an unmapped page */
962 	kprintf("cpuid = %d; ", mycpu->gd_cpuid);
963 	kprintf("lapic->id = %08x\n", lapic->id);
964 	if (type == T_PAGEFLT) {
965 		kprintf("fault virtual address	= 0x%lx\n", eva);
966 		kprintf("fault code		= %s %s %s, %s\n",
967 			code & PGEX_U ? "user" : "supervisor",
968 			code & PGEX_W ? "write" : "read",
969 			code & PGEX_I ? "instruction" : "data",
970 			code & PGEX_P ? "protection violation" : "page not present");
971 	}
972 	kprintf("instruction pointer	= 0x%lx:0x%lx\n",
973 	       frame->tf_cs & 0xffff, frame->tf_rip);
974         if (ISPL(frame->tf_cs) == SEL_UPL) {
975 		ss = frame->tf_ss & 0xffff;
976 		rsp = frame->tf_rsp;
977 	} else {
978 		/*
979 		 * NOTE: in 64-bit mode traps push rsp/ss even if no ring
980 		 *	 change occurs.
981 		 */
982 		ss = GSEL(GDATA_SEL, SEL_KPL);
983 		rsp = frame->tf_rsp;
984 	}
985 	kprintf("stack pointer	        = 0x%x:0x%lx\n", ss, rsp);
986 	kprintf("frame pointer	        = 0x%x:0x%lx\n", ss, frame->tf_rbp);
987 	kprintf("code segment		= base 0x%lx, limit 0x%lx, type 0x%x\n",
988 	       softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
989 	kprintf("			= DPL %d, pres %d, long %d, def32 %d, gran %d\n",
990 	       softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_long, softseg.ssd_def32,
991 	       softseg.ssd_gran);
992 	kprintf("processor eflags	= ");
993 	if (frame->tf_rflags & PSL_T)
994 		kprintf("trace trap, ");
995 	if (frame->tf_rflags & PSL_I)
996 		kprintf("interrupt enabled, ");
997 	if (frame->tf_rflags & PSL_NT)
998 		kprintf("nested task, ");
999 	if (frame->tf_rflags & PSL_RF)
1000 		kprintf("resume, ");
1001 	kprintf("IOPL = %ld\n", (frame->tf_rflags & PSL_IOPL) >> 12);
1002 	kprintf("current process		= ");
1003 	if (curproc) {
1004 		kprintf("%lu\n",
1005 		    (u_long)curproc->p_pid);
1006 	} else {
1007 		kprintf("Idle\n");
1008 	}
1009 	kprintf("current thread          = pri %d ", curthread->td_pri);
1010 	if (curthread->td_critcount)
1011 		kprintf("(CRIT)");
1012 	kprintf("\n");
1013 
1014 #ifdef DDB
1015 	if ((debugger_on_panic || db_active) && kdb_trap(type, code, frame))
1016 		return;
1017 #endif
1018 	kprintf("trap number		= %d\n", type);
1019 	if (type <= MAX_TRAP_MSG)
1020 		panic("%s", trap_msg[type]);
1021 	else
1022 		panic("unknown/reserved trap");
1023 }
1024 
1025 /*
1026  * Double fault handler. Called when a fault occurs while writing
1027  * a frame for a trap/exception onto the stack. This usually occurs
1028  * when the stack overflows (such is the case with infinite recursion,
1029  * for example).
1030  */
1031 static __inline
1032 int
1033 in_kstack_guard(register_t rptr)
1034 {
1035 	thread_t td = curthread;
1036 
1037 	if ((char *)rptr >= td->td_kstack &&
1038 	    (char *)rptr < td->td_kstack + PAGE_SIZE) {
1039 		return 1;
1040 	}
1041 	return 0;
1042 }
1043 
1044 void
1045 dblfault_handler(struct trapframe *frame)
1046 {
1047 	thread_t td = curthread;
1048 
1049 	if (in_kstack_guard(frame->tf_rsp) || in_kstack_guard(frame->tf_rbp)) {
1050 		kprintf("DOUBLE FAULT - KERNEL STACK GUARD HIT!\n");
1051 		if (in_kstack_guard(frame->tf_rsp))
1052 			frame->tf_rsp = (register_t)(td->td_kstack + PAGE_SIZE);
1053 		if (in_kstack_guard(frame->tf_rbp))
1054 			frame->tf_rbp = (register_t)(td->td_kstack + PAGE_SIZE);
1055 	} else {
1056 		kprintf("DOUBLE FAULT\n");
1057 	}
1058 	kprintf("\nFatal double fault\n");
1059 	kprintf("rip = 0x%lx\n", frame->tf_rip);
1060 	kprintf("rsp = 0x%lx\n", frame->tf_rsp);
1061 	kprintf("rbp = 0x%lx\n", frame->tf_rbp);
1062 	/* three separate prints in case of a trap on an unmapped page */
1063 	kprintf("cpuid = %d; ", mycpu->gd_cpuid);
1064 	kprintf("lapic->id = %08x\n", lapic->id);
1065 	panic("double fault");
1066 }
1067 
1068 /*
1069  * syscall2 -	MP aware system call request C handler
1070  *
1071  * A system call is essentially treated as a trap except that the
1072  * MP lock is not held on entry or return.  We are responsible for
1073  * obtaining the MP lock if necessary and for handling ASTs
1074  * (e.g. a task switch) prior to return.
1075  *
1076  * MPSAFE
1077  */
1078 void
1079 syscall2(struct trapframe *frame)
1080 {
1081 	struct thread *td = curthread;
1082 	struct proc *p = td->td_proc;
1083 	struct lwp *lp = td->td_lwp;
1084 	caddr_t params;
1085 	struct sysent *callp;
1086 	register_t orig_tf_rflags;
1087 	int sticks;
1088 	int error;
1089 	int narg;
1090 #ifdef INVARIANTS
1091 	int crit_count = td->td_critcount;
1092 #endif
1093 	register_t *argp;
1094 	u_int code;
1095 	int reg, regcnt;
1096 	union sysunion args;
1097 	register_t *argsdst;
1098 
1099 	mycpu->gd_cnt.v_syscall++;
1100 
1101 #ifdef DIAGNOSTIC
1102 	if (ISPL(frame->tf_cs) != SEL_UPL) {
1103 		panic("syscall");
1104 		/* NOT REACHED */
1105 	}
1106 #endif
1107 
1108 	KTR_LOG(kernentry_syscall, p->p_pid, lp->lwp_tid,
1109 		frame->tf_rax);
1110 
1111 	userenter(td, p);	/* lazy raise our priority */
1112 
1113 	reg = 0;
1114 	regcnt = 6;
1115 	/*
1116 	 * Misc
1117 	 */
1118 	sticks = (int)td->td_sticks;
1119 	orig_tf_rflags = frame->tf_rflags;
1120 
1121 	/*
1122 	 * Virtual kernel intercept - if a VM context managed by a virtual
1123 	 * kernel issues a system call the virtual kernel handles it, not us.
1124 	 * Restore the virtual kernel context and return from its system
1125 	 * call.  The current frame is copied out to the virtual kernel.
1126 	 */
1127 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
1128 		vkernel_trap(lp, frame);
1129 		error = EJUSTRETURN;
1130 		callp = NULL;
1131 		goto out;
1132 	}
1133 
1134 	/*
1135 	 * Get the system call parameters and account for time
1136 	 */
1137 	KASSERT(lp->lwp_md.md_regs == frame,
1138 		("Frame mismatch %p %p", lp->lwp_md.md_regs, frame));
1139 	params = (caddr_t)frame->tf_rsp + sizeof(register_t);
1140 	code = frame->tf_rax;
1141 
1142 	if (p->p_sysent->sv_prepsyscall) {
1143 		(*p->p_sysent->sv_prepsyscall)(
1144 			frame, (int *)(&args.nosys.sysmsg + 1),
1145 			&code, &params);
1146 	} else {
1147 		if (code == SYS_syscall || code == SYS___syscall) {
1148 			code = frame->tf_rdi;
1149 			reg++;
1150 			regcnt--;
1151 		}
1152 	}
1153 
1154 	if (p->p_sysent->sv_mask)
1155 		code &= p->p_sysent->sv_mask;
1156 
1157 	if (code >= p->p_sysent->sv_size)
1158 		callp = &p->p_sysent->sv_table[0];
1159 	else
1160 		callp = &p->p_sysent->sv_table[code];
1161 
1162 	narg = callp->sy_narg & SYF_ARGMASK;
1163 
1164 	/*
1165 	 * On x86_64 we get up to six arguments in registers. The rest are
1166 	 * on the stack. The first six members of 'struct trapframe' happen
1167 	 * to be the registers used to pass arguments, in exactly the right
1168 	 * order.
1169 	 */
1170 	argp = &frame->tf_rdi;
1171 	argp += reg;
1172 	argsdst = (register_t *)(&args.nosys.sysmsg + 1);
1173 	/*
1174 	 * JG can we overflow the space pointed to by 'argsdst'
1175 	 * either with 'bcopy' or with 'copyin'?
1176 	 */
1177 	bcopy(argp, argsdst, sizeof(register_t) * regcnt);
1178 	/*
1179 	 * copyin is MP aware, but the tracing code is not
1180 	 */
1181 	if (narg > regcnt) {
1182 		KASSERT(params != NULL, ("copyin args with no params!"));
1183 		error = copyin(params, &argsdst[regcnt],
1184 			(narg - regcnt) * sizeof(register_t));
1185 		if (error) {
1186 #ifdef KTRACE
1187 			if (KTRPOINT(td, KTR_SYSCALL)) {
1188 				ktrsyscall(lp, code, narg,
1189 					(void *)(&args.nosys.sysmsg + 1));
1190 			}
1191 #endif
1192 			goto bad;
1193 		}
1194 	}
1195 
1196 #ifdef KTRACE
1197 	if (KTRPOINT(td, KTR_SYSCALL)) {
1198 		ktrsyscall(lp, code, narg, (void *)(&args.nosys.sysmsg + 1));
1199 	}
1200 #endif
1201 
1202 	/*
1203 	 * Default return value is 0 (will be copied to %rax).  Double-value
1204 	 * returns use %rax and %rdx.  %rdx is left unchanged for system
1205 	 * calls which return only one result.
1206 	 */
1207 	args.sysmsg_fds[0] = 0;
1208 	args.sysmsg_fds[1] = frame->tf_rdx;
1209 
1210 	/*
1211 	 * The syscall might manipulate the trap frame. If it does it
1212 	 * will probably return EJUSTRETURN.
1213 	 */
1214 	args.sysmsg_frame = frame;
1215 
1216 	STOPEVENT(p, S_SCE, narg);	/* MP aware */
1217 
1218 	/*
1219 	 * NOTE: All system calls run MPSAFE now.  The system call itself
1220 	 *	 is responsible for getting the MP lock.
1221 	 */
1222 #ifdef SYSCALL_DEBUG
1223 	uint64_t tscval = rdtsc();
1224 #endif
1225 	error = (*callp->sy_call)(&args);
1226 #ifdef SYSCALL_DEBUG
1227 	tscval = rdtsc() - tscval;
1228 	tscval = tscval * 1000000 / tsc_frequency;
1229 	if (SysCallsWorstCase[code] < tscval)
1230 		SysCallsWorstCase[code] = tscval;
1231 #endif
1232 
1233 out:
1234 	/*
1235 	 * MP SAFE (we may or may not have the MP lock at this point)
1236 	 */
1237 	//kprintf("SYSMSG %d ", error);
1238 	switch (error) {
1239 	case 0:
1240 		/*
1241 		 * Reinitialize proc pointer `p' as it may be different
1242 		 * if this is a child returning from fork syscall.
1243 		 */
1244 		p = curproc;
1245 		lp = curthread->td_lwp;
1246 		frame->tf_rax = args.sysmsg_fds[0];
1247 		frame->tf_rdx = args.sysmsg_fds[1];
1248 		frame->tf_rflags &= ~PSL_C;
1249 		break;
1250 	case ERESTART:
1251 		/*
1252 		 * Reconstruct pc, we know that 'syscall' is 2 bytes.
1253 		 * We have to do a full context restore so that %r10
1254 		 * (which was holding the value of %rcx) is restored for
1255 		 * the next iteration.
1256 		 */
1257 		if (frame->tf_err != 0 && frame->tf_err != 2)
1258 			kprintf("lp %s:%d frame->tf_err is weird %ld\n",
1259 				td->td_comm, lp->lwp_proc->p_pid, frame->tf_err);
1260 		frame->tf_rip -= frame->tf_err;
1261 		frame->tf_r10 = frame->tf_rcx;
1262 		break;
1263 	case EJUSTRETURN:
1264 		break;
1265 	case EASYNC:
1266 		panic("Unexpected EASYNC return value (for now)");
1267 	default:
1268 bad:
1269 		if (p->p_sysent->sv_errsize) {
1270 			if (error >= p->p_sysent->sv_errsize)
1271 				error = -1;	/* XXX */
1272 			else
1273 				error = p->p_sysent->sv_errtbl[error];
1274 		}
1275 		frame->tf_rax = error;
1276 		frame->tf_rflags |= PSL_C;
1277 		break;
1278 	}
1279 
1280 	/*
1281 	 * Traced syscall.  trapsignal() should now be MP aware
1282 	 */
1283 	if (orig_tf_rflags & PSL_T) {
1284 		frame->tf_rflags &= ~PSL_T;
1285 		trapsignal(lp, SIGTRAP, TRAP_TRACE);
1286 	}
1287 
1288 	/*
1289 	 * Handle reschedule and other end-of-syscall issues
1290 	 */
1291 	userret(lp, frame, sticks);
1292 
1293 #ifdef KTRACE
1294 	if (KTRPOINT(td, KTR_SYSRET)) {
1295 		ktrsysret(lp, code, error, args.sysmsg_result);
1296 	}
1297 #endif
1298 
1299 	/*
1300 	 * This works because errno is findable through the
1301 	 * register set.  If we ever support an emulation where this
1302 	 * is not the case, this code will need to be revisited.
1303 	 */
1304 	STOPEVENT(p, S_SCX, code);
1305 
1306 	userexit(lp);
1307 	KTR_LOG(kernentry_syscall_ret, p->p_pid, lp->lwp_tid, error);
1308 #ifdef INVARIANTS
1309 	KASSERT(crit_count == td->td_critcount,
1310 		("syscall: critical section count mismatch! %d/%d",
1311 		crit_count, td->td_pri));
1312 	KASSERT(&td->td_toks_base == td->td_toks_stop,
1313 		("syscall: %ld extra tokens held after trap! syscall %p",
1314 		td->td_toks_stop - &td->td_toks_base,
1315 		callp->sy_call));
1316 #endif
1317 }
1318 
1319 void
1320 fork_return(struct lwp *lp, struct trapframe *frame)
1321 {
1322 	frame->tf_rax = 0;		/* Child returns zero */
1323 	frame->tf_rflags &= ~PSL_C;	/* success */
1324 	frame->tf_rdx = 1;
1325 
1326 	generic_lwp_return(lp, frame);
1327 	KTR_LOG(kernentry_fork_ret, lp->lwp_proc->p_pid, lp->lwp_tid);
1328 }
1329 
1330 /*
1331  * Simplified back end of syscall(), used when returning from fork()
1332  * directly into user mode.
1333  *
1334  * This code will return back into the fork trampoline code which then
1335  * runs doreti.
1336  */
1337 void
1338 generic_lwp_return(struct lwp *lp, struct trapframe *frame)
1339 {
1340 	struct proc *p = lp->lwp_proc;
1341 
1342 	/*
1343 	 * Check for exit-race.  If one lwp exits the process concurrent with
1344 	 * another lwp creating a new thread, the two operations may cross
1345 	 * each other resulting in the newly-created lwp not receiving a
1346 	 * KILL signal.
1347 	 */
1348 	if (p->p_flags & P_WEXIT) {
1349 		lwpsignal(p, lp, SIGKILL);
1350 	}
1351 
1352 	/*
1353 	 * Newly forked processes are given a kernel priority.  We have to
1354 	 * adjust the priority to a normal user priority and fake entry
1355 	 * into the kernel (call userenter()) to install a passive release
1356 	 * function just in case userret() decides to stop the process.  This
1357 	 * can occur when ^Z races a fork.  If we do not install the passive
1358 	 * release function the current process designation will not be
1359 	 * released when the thread goes to sleep.
1360 	 */
1361 	lwkt_setpri_self(TDPRI_USER_NORM);
1362 	userenter(lp->lwp_thread, p);
1363 	userret(lp, frame, 0);
1364 #ifdef KTRACE
1365 	if (KTRPOINT(lp->lwp_thread, KTR_SYSRET))
1366 		ktrsysret(lp, SYS_fork, 0, 0);
1367 #endif
1368 	lp->lwp_flags |= LWP_PASSIVE_ACQ;
1369 	userexit(lp);
1370 	lp->lwp_flags &= ~LWP_PASSIVE_ACQ;
1371 }
1372 
1373 /*
1374  * If PGEX_FPFAULT is set then set FP_VIRTFP in the PCB to force a T_DNA
1375  * fault (which is then passed back to the virtual kernel) if an attempt is
1376  * made to use the FP unit.
1377  *
1378  * XXX this is a fairly big hack.
1379  */
1380 void
1381 set_vkernel_fp(struct trapframe *frame)
1382 {
1383 	struct thread *td = curthread;
1384 
1385 	if (frame->tf_xflags & PGEX_FPFAULT) {
1386 		td->td_pcb->pcb_flags |= FP_VIRTFP;
1387 		if (mdcpu->gd_npxthread == td)
1388 			npxexit();
1389 	} else {
1390 		td->td_pcb->pcb_flags &= ~FP_VIRTFP;
1391 	}
1392 }
1393 
1394 /*
1395  * Called from vkernel_trap() to fixup the vkernel's syscall
1396  * frame for vmspace_ctl() return.
1397  */
1398 void
1399 cpu_vkernel_trap(struct trapframe *frame, int error)
1400 {
1401 	frame->tf_rax = error;
1402 	if (error)
1403 		frame->tf_rflags |= PSL_C;
1404 	else
1405 		frame->tf_rflags &= ~PSL_C;
1406 }
1407